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Introduction

R is an open source implementation of the programming language S, created at Bell Laboratories by John Chambers, 
Rick Becker, and Alan Wilks. In addition to R, S is the basis of the commercially available S-PLUS system. Widely 
recognized as the chief architect of S, Chambers in 1998 won the prestigious Software System Award from the 
Association for Computing Machinery, which said Chambers’ design of the S system “forever altered how people 
analyze, visualize, and manipulate data.” 

Think of R as an integrated system or environment that allows users multiple ways to access its many functions 
and features. You can use R as an interactive command-line interpreted language, much like a calculator. Type a 
command, press Enter, and R provides the answer in the R console. R is simultaneously a functional language and 
an object-oriented language. In addition to thousands of contributed packages, R has programming features, just as 
all computer programming languages do, allowing conditionals and looping, and giving the user the facility to create 
custom functions and specify various input and output options.

R is widely used as a statistical computing and software environment, but the R Core Team would rather consider  
R an environment “within which many classical and modern statistical techniques have been implemented.” In addition 
to its statistical prowess, R provides impressive and flexible graphics capabilities. Many users are attracted to R primarily 
because of its graphical features. R has basic and advanced plotting functions with many customization features.

Chambers and others at Bell Labs were developing S while I was in college and grad school, and of course I was 
completely oblivious to that fact, even though my major professor and I were consulting with another AT&T division 
at the time. I began my own statistical software journey writing programs in Fortran. I might find that a given program 
did not have a particular analysis I needed, such as a routine for calculating an intraclass correlation, so I would write 
my own program. BMDP and SAS were available in batch versions for mainframe computers when I was in graduate 
school—one had to learn Job Control Language (JCL) in order to tell the computer which tapes to load. I typed punch 
cards and used a card reader to read in JCL and data. 

On a much larger and very much more sophisticated scale, this is essentially why the computer scientists at Bell 
Labs created S (for statistics). Fortran was and still is a general-purpose language, but it did not have many statistical 
capabilities. The design of S began with an informal meeting in 1976 at Bell Labs to discuss the design of a high-level 
language with an “algorithm,” which meant a Fortran-callable subroutine. Like its predecessor S, R can easily and 
transparently access compiled code from various other languages, including Fortran and C++ among others. R can 
also be interfaced with a variety of other programs, such as Python and SPSS. 

R works in batch mode, but its most popular use is as an interactive data analysis, calculation, and graphics 
system running in a windowing system. R works on Linux, PC, and Mac systems. Be forewarned that R is not a  
point-and-click graphical user interface (GUI) program such as SPSS or Minitab. Unlike these programs, R provides 
terse output, but can be queried for more information should you need it. In this book, you will see screen captures  
of R running in the Windows operating system. 

According to my friend and colleague, computer scientist and bioinformatics expert Dr. Nathan Goodman, 
statistical analysis essentially boils down to four empirical problems: problems involving description, problems 
involving differences, problems involving relationships, and problems involving classification. I agree wholeheartedly 
with Nat. All the problems and solutions presented in this book fall into one or more of those general categories.  
The problems are manifold, but the solutions are mostly limited to these four situations.
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What this Book Covers
This book is for anyone—business professional, programmer, statistician, teacher, or student—who needs to find 
a way to use R to solve practical problems. Readers who have solved or attempted problems similar to the ones in 
this book using other tools will readily concur that each tool in one’s toolbox works better for some problems than 
for others. R novices will find best practices for using R’s features effectively. Intermediate-to-advanced R users and 
programmers will find shortcuts and applications that they may not have considered, as well as different ways to do 
things they might want to do.

The Structure of this Book
The standardized format will make this a useful book for future reference. Unlike most other books, you do not have 
to start at the beginning and go through this book sequentially. Each chapter is a stand-alone lesson that starts with 
a typical problem (most of which come from true-life problems that I have faced, or ones that others have described 
and have given me permission to share). The datasets used with this book to illustrate the solutions should be similar 
to the datasets readers have worked with, or would like to work with. 

Apart from a few contrived examples in the early chapters, most of the datasets and exercises come from real-world 
problems and data. Following a bit of background, the problem and the data are presented, and then readers learn one 
efficient way to solve the problem using R. Similar problems will quickly come to mind, and readers will be able to adapt 
what they learn here to those problems.

Conventions Used in this Book
In this book, code and script segments will be shown this way:

> x <- c(1, 3, 5)
> px <- c(0.5, 0.25, 0.25)
> dist <- sample(x, size = 1000, replace = TRUE, prob <- px)
> 

Code and R functions written inline will also be formatted in the code style.
When you are instructed to perform a command within the R Console or R Editor by using the (limited)  

point-and-click interface, the instructions will appear as follows: File ➤ Workspace.

Looking Forward
In Chapter 1, you will learn how to get R, how R works, and some of the basic things you can do with R. You will learn 
how to work with the R interface and the various windows you will find in R. Finally, you will learn how R deals with 
missing data, vectors, and matrices.
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Chapter 1

Migrating to R: As Easy As 1, 2, 3

There are compelling reasons to use R. An enthusiastic community of users, programmers, and contributors 
support R and its evolution. R is accurate, produces excellent graphs, has a variety of built-in functions, and is both a 
functional language and an object-oriented one. R is completely free and is distributed as open-source software.  
Here is how to get started. It really is as easy as 1, 2, 3.

Getting R Up and Running on Your System
The current version at the time of this writing was R 3.1.0. A recent version needs to be available on your computer  
in order for you to benefit from the R recipes you will learn in this book. Many users migrate to R from other statistical 
packages, while other users migrate to R from other programming languages. Both types of users are in for a bit of a 
shock. R is a programming language, but very much unlike most other ones. R is not exactly a statistics package,  
but rather an environment that includes many traditional statistical analyses. This is neither a statistics book nor an 
R programming book, though we will cover elements of both when solving problems within the recipes contained in 
this book.

Visit the Comprehensive R Archive Network (http://cran.us.r-project.org/); see the screen capture in 
Figure 1-1. Users of PCs and Macs can download precompiled binary files, whereas Linux users may have to do 
the compiling on their own. However, many Linux systems have R as part of their distributions, so Linux users may 
already have R preinstalled (I’ll show you how to check this later in this section).
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Click Mirrors and select the site closest to you. Download the precompiled binary files for your system or 
follow the instructions for compiling the source code if you need to do so. If you have never installed R, install the 
base distribution first. Most users of Windows will be able to use the 32-bit version of R. If you want to explore the 
advantages and disadvantages of using the 64-bit version (assuming you have a 64-bit Windows system), look at the 
information provided by the R Project to help you choose. You can also do what I did, and install both the 32-bit and 
the 64-bit versions.

Choose your installation language and options. The defaults are fine for most users. If the R installation was 
successful, you will have a directory labeled R and a desktop icon for launching R. Figure 1-2 shows the opening 
screen of R 3.1.0 in a Windows 7 environment. 

Figure 1-1.  The Comprehensive R Archive Network
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As I mentioned, Linux users may have to compile the R source code, but should first check to see if R is 
distributed with their version of Linux. For instance, I use Lubuntu, a distribution of Linux, on one of my computers, 
and the base version of R comes prepackaged with Lubuntu, as it does with most Ubuntu versions. To see if you have 
R base in your Linux system, use the following commands. Open a terminal session. The command prompt in Linux is 
the tilde character (~) followed by the dollar sign ($).
 
~$: sudo apt-get install r-base
 

Once you have installed the base version of R, you can run R from the terminal as follows:
 
~$: R
 

Note that the Linux version of R is not likely to be the latest one, as I am currently running R 3.0.2 in Linux  
(see Figure 1-3) .

Figure 1-2.  The R Console appears in the R GUI
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As you see in Figures 1-2 and 1-3, the command prompt in R is >. The following section will show you how to take 
R for a quick spin.

Okay, So I Have R. What’s Next?
Whether you are a programmer or a statistician, or like me, a little of both, R takes some getting used to. Most statistics 
programs, such as SPSS, separate the data, the syntax (programming language), and the output. R takes a minimalist 
stance on this. If you are not using something, it is not visible to you. If you need to use something, either you must 
open it, as in the R Editor for writing and saving R scripts, or R will open it for you, as in the R Graphics Device when 
you generate a histogram or some other graphic output. So, let’s see how to get around in the R interface.

A quick glance shows that the R interface is not particularly fancy, but it is highly functional. Examine the options 
available to you in the menu bar and the icon bar. R opens with the welcome screen shown in Figure 1-2. You can 
keep that if you like (I like it), or simply press Ctrl+L or select Edit ➤ Clear Console to clear the console. You will be 
working in the R Console most of the time, but you can open a window with a simple text editor for writing scripts and 
functions. Do this by selecting File ➤ New script. The built-in R Editor is convenient for writing longer scripts and 
functions, but also simply for writing R commands and editing them before you run them. Many R users prefer to use 
the text editor of their liking. For Windows users, Notepad is fine. When you produce a graphic object, the R Graphics 
Device will open. The R GUI (graphical user interface) is completely customizable as well.

Although we are showing R running in the R Console, you should be aware that there are several integrated 
development environments (IDEs) for R. One of the best of these is RStudio.

Figure 1-3.  R running in a Linux system (Lubuntu)
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Do not worry about losing your output when you clear the console. This is simply the view of what you have on 
the screen at the moment. The output will scroll off the window when you type other commands and generate new 
output. Your complete R session is saved to a history file, and you can save and reload your R workspaces. The obvious 
advantage of saving your workspace is that you do not have to reload the data and functions you used in your R 
session. Everything will be there again when you reload the workspace.

You will most likely not be interested in saving your R workspace with the examples from this chapter. If you do 
want to save an R workspace, you will receive a prompt when you quit the session. To exit the session, enter q() or 
select File ➤ Exit. R will give you the prompt shown in Figure 1-4.

Figure 1-4.  R prompts the user to save the workspace image

From this point forward, the R Console is shown only in special cases. The R commands and output will always 
appear in code font, as explained in the introduction. Launch R if it is not already running on your system. The best 
way to learn from this book is to have R running and to try to duplicate the screens you see in the book. If you can do 
that, you will learn a great deal about using R for data analysis and statistics.

First, we will do some simple math, and then we will do some more interesting and a little more complicated 
things. In R, one assigns values to objects with the assignment operator. The traditional assignment operator is <-. 
There is also a little-used right-pointing assignment operator, ->. You can also use the equals sign for assignments. 
There is some advantage in that you avoid two keystrokes when you use = instead of <-. In this book, we will always 
use <- for assignments. The = sign is used to specify values for arguments and options in R commands. To test for 
equality, use ==.

R accepts numbers, characters, variables, and even other functions as input to its functions. R is unlike other 
languages in several important ways. In most computer languages, a number can be assigned to a constant, usually 
with an equal sign, =. For example, in Python, you can make the assignment x = 10. The value of 10 is assigned to the 
variable x. The “type” of x is a scalar quantity (a single value) stored as an integer:
 
Python 3.3.1 (v3.3.1:d9893d13c628, Apr  6 2013, 20:25:12) [MSC v.1600 32 bit (Intel)] on win32
Type "copyright", "credits" or "license()" for more information>>> x = 10
>>> x
10
>>> type(x)
<class 'int'>
 

If you will remember some of your mathematical or computer training, recall that numerical data can be scalars 
(individual values or constants), arrays (or vectors) with one row or one column of numbers, or matrices with two or 
more rows and two or more columns. Many computer languages make distinctions among these data types. In some 
languages, which are called “strongly typed,” you must declare the variable’s type and dimensionality before you 
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assign a value or values to it. In other languages, known as “loosely typed,” You can assign different types of values to 
the same variable without having to declare the type. R works that way, and is a very loosely typed language.

To R, there are no scalar quantities. When you enter 1 + 1 and then press Enter, R displays [1] 2 on the next 
line and gives you another command prompt. The index [1] indicates that to R, the integer object 2 is an integer 
vector of length 1. The number 2 is the first (and only) element in that vector. You can assign an R command to a 
variable (object), say, x, and R will keep that assignment until you change it. When we assign x <- 1 + 1, the value 
of 2 is assigned to the object x. We can now use x in R commands, such as x + 1. R’s indexes start with 1 instead of 
0, as some other computer languages do. If you type numbers <- 1:10, R will assign the numbers 1 through 10 to the 
integer vector called numbers.
 
> 1 + 1
[1] 2
> x <- 1 + 1
> x + 1
[1] 3
> x * x
[1] 4
> numbers <- 1:10
> numbers
 [1]  1  2  3  4  5  6  7  8  9 10
> numbers ^ 2
 [1]   1   4   9  16  25  36  49  64  81 100
> numbers * x
 [1]  2  4  6  8 10 12 14 16 18 20
> sqrt(numbers)
 [1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490 2.645751 2.828427
 [9] 3.000000 3.162278
 

As mentioned at the beginning of this chapter, R is both functional and object-oriented. To R, everything is a 
function, including the basic mathematics operators. Everything is also an object in R. When you assign x <- 1 + 1, 
you have created an object called x. One of the most useful and powerful features of R is that many of its operators and 
functions are vectorized

In computer science, something is vectorized if the program works on the vector in elementwise fashion, 
performing the same operation on each element of the vector that it would have performed on a scalar until it reaches 
the end of the vector. The general category of array-programming languages includes languages that generalize 
operations on scalars transparently to vectors, matrices, and higher-order arrays. An operation that works on an entire 
array is called a vectorized operation. Most computer languages are not vectorized to the extent R is. This makes it easy 
in many situations to avoid explicit loops, which are very slow in comparison to a vectorized operation. If you work in 
a scientific or engineering setting, you are probably familiar with MATLAB and Octave. Along with R and Python using 
the NumPy extension, these languages support array programming.

The only other computer language I have worked with that has the same level of vectorization is the now defunct 
language APL. In most languages, you would have to write a loop to square the numbers from 1 to 10. But in R, you 
simply use the exponent operator (^) to square all the numbers at once. The primary advantage of this is that you can 
frequently avoid explicit loops, as mentioned earlier.

R is case sensitive. Note that x and X are different objects in R. Although R is case sensitive, it is insensitive to 
spaces. I write code that uses spaces and indentation simply to make it easier for me and others to understand, and I 
usually comment my code fairly liberally. You would be surprised how often you can be doing something that makes 
perfectly good sense at the time, but looks like total gibberish when you return to it a few months later. Comments 
help. To insert a comment in a line of R code, simply enter #. The interpreter ignores anything after the # (pound sign 
or hash tag).
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Here’s a demonstration of the case sensitivity of R and the use of comments. Instead of working directly in the 
R GUI, click File ➤ New Script to open the R Editor. It is far easier to write and correct multiple lines of code in the 
editor (or in some other text editor) and execute the code from there than to type directly into the R Console.  
When you work in the R Editor, leave out the > command prompt. R will supply it (see Figure 1-5).

Figure 1-5.  Use the R Editor to write multiple lines of R code

To execute your code, select one or more lines of code from the R Editor, and then click the icon for running the 
code in the R Console. As a shortcut, if you want to run all the code, use Ctrl+A to select all the code, and then press 
Ctrl+R to run the code in the R Console. Here is what you get:
 
> x <- 2  #Assign a value to object x
> x == x  #Determine whether x is equal to x
[1] TRUE
> X <- 10 #Assign a value to object X
> x == X  #Determine whether x is equal to X
[1] FALSE
> x * X   #Multiply the two objects
[1] 20
>
 

Table 1-1 presents some useful operators, functions, and constants in R.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1 ■ Migrating to R: As Easy As 1, 2, 3

8

Table 1-1.  Useful Operator, Functions, and Constants in R

Operation/Function R Operator Code Example

Addition + 1 + 1

Subtraction - 2 – 1

Multiplication * 3 * 2

Division / 3 / 2

Exponentiation ^ 3 ^ 2

Square root sqrt() Sqrt(81)

Natural logarithm log() > exp(1)
[1] 2.718282
> log(exp(1))
[1] 1

Common logarithm log10() > log10(100)
[1] 2

Complex numbers complex() > z <- complex(real = 2, imaginary = 3)
> z
[1] 2+3i

Pi pi > pi
[1] 3.141593

Euler’s number e exp(1) > exp(1)
[1] 2.718282

Table 1-2 shows R’s comparison operators. They evaluate to a logical value of TRUE or FALSE.

Table 1-2.  R Comparison Operators

Operator Description Code Example Result/Comment

> Greater than 3 > 2
2 > 3

TRUE
FALSE

< Less than 2 < 3
3 < 2

TRUE
FALSE

>= Greater than or equal to 2 >=2
2 >=3

TRUE
FALSE

<= Less than or equal to 2 <= 2
3 <= 2

TRUE
FALSE

== Equal to 2 == 2
2 == 3

TRUE
FALSE

!= Not equal to 2 != 3
2 !=2

TRUE
FALSE
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Table 1-3 shows R’s logical operators. 

Table 1-3.  Logical Operators in R

Operator Description Code Example Result/Comment

& Logical And > x <- 0:2
> y <- 2:0
> (x < 1) & (y > 1)
[1]  TRUE FALSE FALSE

This is the vectorized version. It compares two vectors 
element-wise and returns a vector of TRUE and/or 
FALSE.

&& Logical And > x <- 0:2
> y <- 2:0
> (x < 1) && (y > 1)
[1] TRUE

This is the unvectorized version. It compares only the 
first value in each vector, left to right, and returns only 
the first logical result.

| Logical Or > (x < 1) | (y > 1)
[1]  TRUE FALSE FALSE

This is the vectorized version. It compares two vectors 
element-wise and returns a vector of TRUE and/or 
FALSE.

|| Logical Or > (x < 1) || (y > 1)
[1] TRUE

This is the unvectorized version. It compares two 
vectors and returns only the first logical result.

! Logical Not > !y == x
[1]  TRUE FALSE  TRUE

Logical negation. Returns either a single logical value 
or a vector of TRUE and/or FALSE. 

Understanding the Data Types in R
As the preceding discussion has shown, R is strange in several ways. Remember R is both functional and object-oriented, 
so it has a bit of an identity crisis when it comes to dealing with data. Instead of the expected integer, floating point, 
array, and matrix types for expressing numerical values, R uses vectors for all these types of data. Beginning users of 
R are quickly lost in a swamp of objects, names, classes, and types. The best thing to do is to take the time to learn the 
various data types in R, and to learn how they are similar to, and often very different from, the ways you have worked 
with data using other languages or systems.

R has six “atomic” vector types, including logical, integer, real, complex, string (or character) and raw.  Another 
data type in R is the list. Vectors must contain only one type of data, but lists can contain any combination of data 
types. A data frame is a special kind of list and the most common data object for statistical analysis. Like any list, 
a data frame can contain both numerical and character information. Some character information can be used for 
factors, and when that is the case, the data type becomes numeric. Working with factors can be a bit tricky because 
they are “like” vectors to some extent, but are not exactly vectors. My friends who are programmers think factors are 
“evil,” while statisticians like me love the fact that verbal labels can be used as factors in R, because such factors are 
self-labelling. It makes infinitely more sense to have a column in a data frame labelled sex with two entries, male and 
female, than it does to have a column labelled sex with 0s and 1s in the data frame.

In addition to vectors, lists, and data frames, R has language objects including calls, expressions, and names. 
There are symbol objects and function objects, as well as expression objects. There is also a special object called NULL, 
which is used to indicate that an object is absent. Missing data in R are indicated by NA.

We next discuss handling missing data. Then we will touch very briefly on vectors and matrices in R.
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Handling Missing Data in R
Create a simple vector using the c() function (some people say it means combine, while others say it means 
concatenate). I prefer “combine” because there is also a cat() function for concatenating output. For now, just type in 
the following and observe the results. The na.rm = TRUE option does not remove the missing value, but simply omits 
it from the calculations.
 
> x <- c(10, NA, 10, 25, 30, 15, 10, 18, 16, 15)
> x
 [1] 10 NA 10 25 30 15 10 18 16 15
> mean(x)
[1] NA
> mean(x, na.rm = TRUE)
[1] 16.55556
>

Working with Vectors in R
As you have learned, R treats a single number as a vector of length 1. If you create a vector of two or more objects, 
the vector must contain only a single data type. If you try to make a vector with multiple data types, R will coerce the 
vector into a single type. Chapter 3 covers how to deal with various data structure in more detail. For now, the goal is 
simply to show how R works with vectors.

Because you know how to use the R Editor and the R Console now, we will dispense with those formalities and 
just show the code and the output together. First, we will make a vector of 10 numbers, and then add a character 
element to the vector. R coerces the data to a character vector because we added a character object to it. I used the 
index [11] to add another element to the vector. But the vector now does not contain numbers and you cannot do 
math on it. Use a negative index, [-11], to remove the character and the R function  as.integer() to change the 
vector back to integers:
 
> x <- 1:10
> x
 [1]  1  2  3  4  5  6  7  8  9 10
> typeof(x)
[1] "integer"
> x[11] <- "happy"
> x
 [1] "1"     "2"     "3"     "4"     "5"     "6"     "7"     "8"     "9"
[10] "10"    "happy"
> typeof(x)
[1] "character"
> x <- x[-11]
> x
 [1] "1"  "2"  "3"  "4"  "5"  "6"  "7"  "8"  "9"  "10"
> x <- as.integer(x)
> x
 [1]  1  2  3  4  5  6  7  8  9 10
> typeof(x)
[1] "integer"
>
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To make the example a little more interesting, let us work with some real data. The following data (thanks to Nat 
Goodman for the data) represent the ages in weeks of 20 randomly sampled mice from a much larger dataset.
 
> ages
 [1] 10.5714 13.2857 13.5714 16.0000 10.2857 19.5714 20.0000  7.7143 20.5714
[10] 19.2857 14.0000 14.4286 19.7143 18.0000 13.2857 17.2857  5.2857 16.2857
[19] 14.1429  6.0000
> mean(ages)
[1] 14.46428
> typeof(ages)
[1] "double"
> mode(ages)
[1] "numeric"
> class(ages)
[1] "numeric"
 

R stores numeric values that are not integers in double-precision form. We can access individual elements of a 
vector with the index or indexes of those elements. Remember that most R functions and operators are vectorized,  
so that you can calculate the ages of the mice in months by dividing each age by 4. It takes only one line of code 
(shown in bold), and looping is not necessary.
 
> ages[1]
[1] 10.5714
> ages[20] 
[1] 6
> ages[3:9]
[1] 13.5714 16.0000 10.2857 19.5714 20.0000  7.7143 20.5714
> months <- ages/4
> months
 [1] 2.642850 3.321425 3.392850 4.000000 2.571425 4.892850 5.000000 1.928575
 [9] 5.142850 4.821425 3.500000 3.607150 4.928575 4.500000 3.321425 4.321425
[17] 1.321425 4.071425 3.535725 1.500000
 

When you perform operations with vectors of different lengths, R will repeat the values of the shorter vector to 
match the length of the longer one. This “recycling” is sometimes very helpful as in multiplication by a scalar (vector 
of length 1), but sometimes produces unexpected results. If the length of the longer vector is a multiple of the shorter 
vector, this works well. If not, you get strange results like the following:
 
> x <- 1:2
> y <- 1:10
> z <- 1:3
> y/x
 [1] 1 1 3 2 5 3 7 4 9 5
> y/z
 [1]  1.0  1.0  1.0  4.0  2.5  2.0  7.0  4.0  3.0 10.0
Warning message:
In y/z : longer object length is not a multiple of shorter object length
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Working with Matrices in R
In another peculiarity of R, a matrix is also a vector, but a vector is not a matrix. I know this sounds like doublespeak, 
but read on for further explanation. A matrix is a vector with dimensions. You can make a vector into a one-dimensional 
matrix if you need to do so. Matrix operations are a snap in R. In this book, we work with two-dimensional matrices 
only, but higher-order matrices are possible, too.

We can create a matrix from a vector of numbers. Start with a vector of 50 random standard normal deviates  
(z scores if you like). R fills the matrix columnwise.
 
> zscores <- rnorm(50)
> zscores
 [1] -1.19615960  0.95960082  0.50725210 -0.37411224  1.42044733  1.69437460
 [7]  0.51677914 -0.04810441 -1.28024577 -0.48968148  1.28769546  0.93050145
[13]  0.72614070 -0.19306114 -0.56122938  0.77504861 -0.26756380 -1.11077206
[19] -0.60040090 -0.31920172  1.16802977  1.69736349  0.93134640 -1.15182325
[25]  0.12167256 -1.16038178  1.00415819  0.54469494  1.60231699 -0.11057038
[31]  0.01264523  0.57436245  0.54283138 -0.53045053  0.18115294  1.16062792
[37]  0.63649217  0.59524893 -0.52972220  0.45013366  0.31892391 -0.32371074
[43]  0.89716628 -0.15187155  0.25808226  1.73149549  1.36917698 -0.05803692
[49]  0.44942046  1.07708172
 
> zmatrix <- matrix(zscores, nrow = 10, ncol = 5)
> zmatrix
             [,1]       [,2]       [,3]        [,4]        [,5]
 [1,] -1.19615960  1.2876955  1.1680298  0.01264523  0.31892391
 [2,]  0.95960082  0.9305014  1.6973635  0.57436245 -0.32371074
 [3,]  0.50725210  0.7261407  0.9313464  0.54283138  0.89716628
 [4,] -0.37411224 -0.1930611 -1.1518232 -0.53045053 -0.15187155
 [5,]  1.42044733 -0.5612294  0.1216726  0.18115294  0.25808226
 [6,]  1.69437460  0.7750486 -1.1603818  1.16062792  1.73149549
 [7,]  0.51677914 -0.2675638  1.0041582  0.63649217  1.36917698
 [8,] -0.04810441 -1.1107721  0.5446949  0.59524893 -0.05803692
 [9,] -1.28024577 -0.6004009  1.6023170 -0.52972220  0.44942046
[10,] -0.48968148 -0.3192017 -0.1105704  0.45013366  1.07708172
>
 

Imagine the five columns are students’ standard scores on four quizzes and a final exam. You can specify names 
for the rows and columns of the matrix as follows:
 
> rownames(zmatrix)<-c("Jill","Nat","Jane","Tim","Larry","Harry","Barry","Mary","Gary","Eric")
> zmatrix
             [,1]       [,2]       [,3]        [,4]        [,5]
Jill  -1.19615960  1.2876955  1.1680298  0.01264523  0.31892391
Nat    0.95960082  0.9305014  1.6973635  0.57436245 -0.32371074
Jane   0.50725210  0.7261407  0.9313464  0.54283138  0.89716628
Tim   -0.37411224 -0.1930611 -1.1518232 -0.53045053 -0.15187155
Larry  1.42044733 -0.5612294  0.1216726  0.18115294  0.25808226
Harry  1.69437460  0.7750486 -1.1603818  1.16062792  1.73149549
Barry  0.51677914 -0.2675638  1.0041582  0.63649217  1.36917698
Mary  -0.04810441 -1.1107721  0.5446949  0.59524893 -0.05803692
Gary  -1.28024577 -0.6004009  1.6023170 -0.52972220  0.44942046
Eric  -0.48968148 -0.3192017 -0.1105704  0.45013366  1.07708172
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> colnames(zmatrix) <- c("quiz1","quiz2","quiz3","quiz4","final")
> zmatrix
            quiz1      quiz2      quiz3       quiz4       final
Jill  -1.19615960  1.2876955  1.1680298  0.01264523  0.31892391
Nat    0.95960082  0.9305014  1.6973635  0.57436245 -0.32371074
Jane   0.50725210  0.7261407  0.9313464  0.54283138  0.89716628
Tim   -0.37411224 -0.1930611 -1.1518232 -0.53045053 -0.15187155
Larry  1.42044733 -0.5612294  0.1216726  0.18115294  0.25808226
Harry  1.69437460  0.7750486 -1.1603818  1.16062792  1.73149549
Barry  0.51677914 -0.2675638  1.0041582  0.63649217  1.36917698
Mary  -0.04810441 -1.1107721  0.5446949  0.59524893 -0.05803692
Gary  -1.28024577 -0.6004009  1.6023170 -0.52972220  0.44942046
Eric  -0.48968148 -0.3192017 -0.1105704  0.45013366  1.07708172
 

Standardized scores are usually reported to two decimal places. Remove some of the extra decimals to make the 
next part of the code a little less cluttered. Set the number of decimals by using the round() function:
 
zmatrix <round(zmatrix, digits = 2)
zmatrix
      quiz1 quiz2 quiz3 quiz4 final
Jill  -1.20  1.29  1.17  0.01  0.32
Nat    0.96  0.z93 1.70  0.57 -0.32
Jane   0.51  0.73  0.93  0.54  0.90
Tim   -0.37 -0.19 -1.15 -0.53 -0.15
Larry  1.42 -0.56  0.12  0.18  0.26
Harry  1.69  0.78 -1.16  1.16  1.73
Barry  0.52 -0.27  1.00  0.64  1.37
Mary  -0.05 -1.11  0.54  0.60 -0.06
Gary  -1.28 -0.60  1.60 -0.53  0.45
Eric  -0.49 -0.32 -0.11  0.45  1.08
 

If you have occasion to fill a matrix rowwise, set the byrow argument to T or TRUE. You can do this as follows.
 
> y <- matrix(x, nrow = 10, ncol = 10, byrow = TRUE) 
> y

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]   11   12   13   14   15   16   17   18   19    20
 [3,]   21   22   23   24   25   26   27   28   29    30
 [4,]   31   32   33   34   35   36   37   38   39    40
 [5,]   41   42   43   44   45   46   47   48   49    50
 [6,]   51   52   53   54   55   56   57   58   59    60
 [7,]   61   62   63   64   65   66   67   68   69    70
 [8,]   71   72   73   74   75   76   77   78   79    80
 [9,]   81   82   83   84   85   86   87   88   89    90
[10,]   91   92   93   94   95   96   97   98   99   100
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R uses two indexes for the elements of a two-dimensional matrix. As with vectors, the indexes must be enclosed 
in square brackets. A range of values can be specified by use of the colon operator, as in [1:2]. You can also use a 
comma to indicate a whole row or a whole column of a matrix. Consider the following examples.
 
> y[,1:5]
      [,1] [,2] [,3] [,4] [,5]
 [1,]    1    2    3    4    5
 [2,]   11   12   13   14   15
 [3,]   21   22   23   24   25
 [4,]   31   32   33   34   35
 [5,]   41   42   43   44   45
 [6,]   51   52   53   54   55
 [7,]   61   62   63   64   65
 [8,]   71   72   73   74   75
 [9,]   81   82   83   84   85
[10,]   91   92   93   94   95
> y[1:5,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
[2,]   11   12   13   14   15   16   17   18   19    20
[3,]   21   22   23   24   25   26   27   28   29    30
[4,]   31   32   33   34   35   36   37   38   39    40
[5,]   41   42   43   44   45   46   47   48   49    50
> y[5,5]
[1] 45
> y[10,10]
 

[1] 100R can do many useful things with matrices. For example, calculate the variance-covariance matrix by using 
the var() function:
 
> varcovar <- var(zmatrix)
> varcovar
           quiz1      quiz2      quiz3      quiz4       final
quiz1  1.0544544 0.11489111 -0.3285267  0.3838900  0.19691333
quiz2  0.1148911 0.63790667  0.1006644  0.1074422  0.07846222
quiz3 -0.3285267 0.10066444  1.0574489 -0.0665400 -0.19844667
quiz4  0.3838900 0.10744222 -0.0665400  0.2859656  0.20044222
final  0.1969133 0.07846222 -0.1984467  0.2004422  0.47039556
 

Invert a matrix by using the solve() function: 
 
> inverse <- solve(varcovar)
> inverse
            quiz1       quiz2      quiz3      quiz4      final
quiz1  2.23763294 -0.02683957  0.6305501 -3.3937313  0.7799048
quiz2 -0.02683957  1.72182793 -0.2326712 -0.5743348 -0.1293917
quiz3  0.63055010 -0.23267125  1.2358101 -0.9683403  0.7088308
quiz4 -3.39373126 -0.57433478 -0.9683403 10.3613632 -3.3071827
final  0.77990476 -0.12939168  0.7088308 -3.3071827  3.5292487
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Do matrix multiplication by using the %*% operator. Just to make things clear, the matrix product of a matrix and 
its inverse is an identity matrix with 1’s on the diagonal and 0’s in the off-diagonals. Showing the result with fewer 
decimals makes this more obvious. For some reason, many of my otherwise very bright students do not “get” scientific 
notation at all.
 
> identity <- varcovar %*% inverse
> identity
              quiz1         quiz2         quiz3        quiz4         final
quiz1  1.000000e+00  5.038152e-18  3.282422e-17 2.602627e-16  5.529431e-18
quiz2 -8.009544e-18  1.000000e+00 -2.323920e-17 1.080679e-16 -4.710858e-17
quiz3 -7.697835e-17  7.521991e-17  1.000000e+00 9.513874e-17 -9.215718e-17
quiz4  1.076477e-16  1.993407e-17  3.182133e-17 1.000000e+00 -4.325967e-17
final -4.770490e-18 -6.986328e-18 -1.832302e-17 1.560167e-16  1.000000e+00
 
> identity <- round(identity, 2)
> identity
      quiz1 quiz2 quiz3 quiz4 final
quiz1     1     0     0     0     0
quiz2     0     1     0     0     0
quiz3     0     0     1     0     0
quiz4     0     0     0     1     0
final     0     0     0     0     1

Looking Backward and Forward
In Chapter 1, you learned three important things: how to get R, how to use R, and how to work with missing data and 
various types of data in R. These are foundational skills. In Chapter 2, you will learn more about input and output in R.  
Chapter 3 will fill in the gaps concerning various data structures, returning to vectors and matrices, as well as learning 
how to work with lists and data frames.
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Chapter 2

Input and Output

R provides many input and output capabilities. This chapter contains recipes on how to read data into R, as well as 
how to use several handy input and output functions. Although most R users are more concerned with input, there are 
times when you need to write to a file. You will find recipes for that in this chapter as well.

Oracle boasts that Java is everywhere, and that is certainly true, as Java is in everything from automobiles to cell 
phones and computers. R is not everywhere, but it is everywhere you need it to be for data analysis and statistics.

Recipe 2-1. Inputting and Outputting Data
Problem 
To work with data, you need to get it into your R program. You may want to obtain that data from user input or from a 
file. Once you have done some processing you may want to output some data.

Solution
Besides typing data into the console, you can use the script editor. The output for your R session appears in the R 
Console or the R Graphics Device. The basic commands for reading data from a file are read.table() and  
read.csv().

Note■■   Here CSV refers to comma-separated values.

You can write to a file using  write.table(). In addition to these standard ways to get data into and out of R, 
there are some other helpful tools as well. You can use data frames, which are a special kind of list. As with any list, 
you can have multiple data types, and for statistical applications, the data frame is the most common data structure in 
R. You can get data and scripts from the Internet, and you can write functions that query users for keyboard input.

Before we discuss these I/O (input/output) options, let’s see how you can get information regarding files and 
directories in R. File and directory information can be very helpful. The functions getwd() and setwd() are used to 
identify the current working directory and to change the working directory. For files in your working directory, simply 
use the file name. For files in a different directory, you must give the path to the file in addition to the name.

The function file.info() provides details of a particular file. If you need to know whether a particular file is 
present in a directory, use file.exists(). Using the function objects() or ls() will show all the objects in your 
workspace. Type dir() for a list of all the files in the current directory. Finally, you can see a complete list of file- and 
directory-related functions by entering the command ?files.

To organize the discussion, I’ll cover keyboard and monitor I/O; reading, cleaning, and writing data files; reading 
and writing text files; and R connections, in that order.
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Keyboard and Monitor Access
You can use the scan() function to read in a vector from a file or the keyboard.  If you would rather enter the elements 
of a vector one at a time with a new line for input, just type x <- scan() and press the Enter key. R gives you the 
index, and you supply the value. See the following example. When you are finished entering data, just hit the Enter 
key with an empty index.
 
> xvector <- scan()
1: 19
2: 20
3: 31
4: 25
5: 36
6: 43
7: 53
8: 62
9: 40
10: 29
11:
Read 10 items
> xvector
 [1] 19 20 31 25 36 43 53 62 40 29
 

Humans are better and faster at entering data in a column than they are at entering data in a row. You may like 
this way of entering vectors more than using the c() function.

If your data are in a file in the current working directory, you can enter a vector by using the file name as the 
argument for scan(). For example, assume you have a vector stored in a file called yvector.txt.
 
> scan("yvector.txt")
Read 10 items
 [1] 22 18 32 39 42 73 37 55 34 34
 

The readline() function works in a similar fashion to get information from the keyboard. For example, you may 
have a code fragment like the following:
 
> yourName <- readline("Type in Your First and Last Name: ")
Type in Your First and Last Name: Larry Pace
> yourName
[1] "Larry Pace"
 

In the interactive mode, you can print the value of an object to the screen simply by typing the name of the object 
and pressing Enter.  You can also use the print() function, but it is not necessary at the top level of the interactive 
session. However, if you want to write a function that prints to the console, just typing the name of the object will no 
longer work. In that case, you will have to use the print() function. Examine the following code. I wrote the function 
in the script editor to make things a little easier to control. I cover writing R functions in more depth in Chapter 11.
 
> cubes
function(x) {
print(x^3)
}
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> x <- 1:20
> cubes(x)
 [1]    1    8   27   64  125  216  343  512  729 1000 1331 1728 2197 2744 3375
[16] 4096 4913 5832 6859 8000

Reading and Writing Data Files 
R can deal with data files of various types. Tab-delimited and CSV are two of the most common file types. If you load 
the foreign package, you can read in additional data types, such as SPSS and SAS files.

Reading Data Files

To illustrate, I will get some data in SPSS format from the General Social Survey (GSS) and then open it in R. The GSS 
dataset is used by researchers in business, economics, marketing, sociology, political science, and psychology. The 
most recent GSS data are from 2012. You can download the data from www3.norc.org/GSS+Website/Download/ in 
either SPSS format or Stata format.

Because Stata does a better job than SPSS at coding the missing data in the GSS dataset, I saved the Stata (*.DTA) 
format into my directory and then opened the dataset in SPSS. This fixed the problem of dealing with missing data, 
but my data are far from ready for analysis yet. If you do not have SPSS, you can download the open-source program 
PSPP, which can read and write SPSS files, and can do most of the analyses available in SPSS. The point of this 
illustration is simply that there are data out there in cyberspace that you can import into R, but you may often have 
to make a pit stop at SPSS, Stata, PSPP, Excel, or some other program before the data are ready for R. If you have an 
“orderly” SPSS dataset with variable names that are legal in R, you can open that file directly into R with no difficulty 
using the foreign() package.

When I read the SPSS data file into R, I see I still have some work to do:
 
> require(foreign)
Loading required package: foreign
> gss2012 <- read.spss("GSS2012.sav")
There were 11 warnings (use warnings() to see them)
> warnings()
Warning messages:
1: In read.spss("GSS2012.sav") :
  GSS2012.sav: Unrecognized record type 7, subtype 18 encountered in system file
2: In `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels) else paste0(labels,  ... :
  duplicated levels in factors are deprecated
3: In `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels) else paste0(labels,  ... :
  duplicated levels in factors are deprecated
4: In `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels) else paste0(labels,  ... :
  duplicated levels in factors are deprecated
5: In `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels) else paste0(labels,  ... :
  duplicated levels in factors are deprecated
6: In `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels) else paste0(labels,  ... :
  duplicated levels in factors are deprecated
7: In `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels) else paste0(labels,  ... :
  duplicated levels in factors are deprecated
8: In `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels) else paste0(labels,  ... :
  duplicated levels in factors are deprecated

www.it-ebooks.info

http://www3.norc.org/GSS+Website/Download/
http://www.it-ebooks.info/


Chapter 2 ■ Input and Output

20

9: In `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels) else paste0(labels,  ... :
  duplicated levels in factors are deprecated
10: In `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels) else paste0(labels,  ... :
  duplicated levels in factors are deprecated
11: In `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels) else paste0(labels,  ... :
  duplicated levels in factors are deprecated
 

Although this dataset with 4820 records and 1067 variables is large by the standards of the majority of researchers, 
the data are not “big” in the modern sense. As you can see by the preceding warning messages, the next problem is 
that the data must be cleaned up a bit before I can do any serious data analysis. Dealing with dirty data is a real-world 
problem that is not sufficiently addressed in most statistics textbooks, in which professors like me make up examples that 
are easy to work with, and which almost never have missing data. Recipe 2-2 deals with cleaning up data.

Note■■    R nearly choked on the GSS data. We will talk about how to handle very large datasets in Chapter 13. 

Writing Data Files

The write.table() function is the analog of the read.table() function. The write.table() function writes a data 
frame. The function cat() can also be used to write to a file (or to the screen), by successive parts. What this means is 
that you concatenate the arguments to the cat() function, separating them by commas. You can use any R data type 
for this purpose. The following code illustrates this:
 
> cats <- c("Tom","Felix","Mittens","Socks","Boots","Fluffy")
> ages <- c(12,10,8,2,5,3)
> pets <- data.frame(cats, ages, stringsASFactors = FALSE)
> pets
     cats ages stringsASFactors
1     Tom   12            FALSE
2   Felix   10            FALSE
3 Mittens    8            FALSE
4   Socks    2            FALSE
5   Boots    5            FALSE
6  Fluffy    3            FALSE
> write.table(pets, "myCats")
> cat("Tom\n", file = "catFile")
> cat("Felix\n", file = "catFile", append = TRUE)
> ## verify the file writes by using the file.exists() function
> file.exists("myCats")
[1] TRUE
> file.exists("catFile")
[1] TRUE 
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Recipe 2-2. Cleaning Up Data
Problem 
Real-world data often need cleaning. For example, the GSS codebook uses several different codes for missing data. 
The easiest way to handle the recoding in this particular case is to clean the dataset in SPSS (see Recipe 2-1 for 
more on GSS). After the cleaning, the data will be more orderly. In many cases, cleaning data in R is more efficient, 
and in many others, it might be more efficient to use the search-and-replace functionality of a word processor or a 
spreadsheet program. As always, choose the most appropriate tool from the toolbox. If the dataset is small, you can 
make minor edits using the R Data Editor, not to be confused with the script editor.

Solution
When you have serious data recoding and cleaning to do (I call it “data surgery”), I suggest you make use of the plyr 
package in R. Think of a pair of pliers. The plyr package is a SAC (split-apply-combine) tool, and does a great job for 
such purposes.

To illustrate some real-world data cleaning issues, let us use a manageable (and I hope interesting to you) set of 
data, compliments of Dr. Nat Goodman. The data consist of various measurements of mutant and normal mice. The 
mutated mice were created to carry the genome sequence for Huntington’s disease. Several different strains of mice 
were used because inbred mice are as alike genetically as human twins are. For this example, we will work with only 
two strains of mice.

The following is the head (the first few records) of the mouse data (which we can view with the head() function). 
Each mouse has a unique identifier, the strain, the nominal genome sequence, and the actual genome sequence.  
The sequence CAG repeated seven times represents a normal mouse. CAG sequences of 40 or more are associated 
with Huntington’s disease in mice. The other variables are self-descriptive. The age is the mouse’s age in weeks.  
This dataset represents a small portion of a much larger dataset.

As you have seen previously, when you read in CSV files, you do not have to specify that the first row contains 
the variable names. The “header” is expected in a CSV file. However, many tab-delimited files do not have a row of 
column headers. If your tab-delimited file does have a row of variable names as the first row, you must set the header 
option to T or TRUE, as shown in the following code segment.
 
> mouseWeights <- read.table("Mouse_Weights.txt", header = TRUE)
> head(mouseWeights)
  mouse_id strain cag_nominal cag_actual sex    age body_weight brain_weight
1   hd1769     B6        Q111        113   F 3.7143       11.18        0.380
2   hd1777     B6        Q111        137   F 4.0000       12.50        0.434
3   hd1778     B6          WT          7   F 4.0000       13.30        0.406
4   hd1782     B6        Q111        136   F 4.0000       11.66        0.426
5   hd1806     B6          WT          7   M 4.0000       14.33        0.464
6   hd1808     B6        Q111        113   M 4.0000       13.72        0.414
 

When we examine the data, we see that there are some problems. We find that some mice have an impossible 
body weight of zero grams. Other mice have an equally impossible brain weight of zero grams.
 
summary(mouseWeights)
    mouse_id    strain   cag_nominal       cag_actual     sex              age
 hd1094 :  1   B6 :376      Q111:172   Min.   :  7.00   F:315   Min.   : 3.714
 hd1095 :  1   CD1:268      Q50 :166   1st Qu.:  7.00   M:329   1st Qu.: 8.000
 hd1104 :  1                Q92 : 51   Median : 48.00           Median :12.143
 hd1107 :  1                WT  :255   Mean   : 57.93           Mean   :12.138
 hd1109 :  1                           3rd Qu.:113.00           3rd Qu.:16.286
 hd1110 :  1                           Max.   :154.00           Max.   :20.571
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 (Other):638
   body_weight     brain_weight
 Min.   : 0.00   Min.   :0.0000
 1st Qu.:21.12   1st Qu.:0.4580
 Median :25.65   Median :0.4900
 Mean   :27.57   Mean   :0.4925
 3rd Qu.:33.00   3rd Qu.:0.5353
 Max.   :59.00   Max.   :0.6660
                 NA's   :12
 

Recode the zeros to missing data as follows. You can attach() the data frame to make it easier to access the 
individual variables without having to type the data frame name each time you access the variable. After you have 
attached the data frame, you can refer to variables by their names rather than using the $ format. The following 
commands will assign a missing value code (NA) to every mouse whose brain weight is equal to zero. Remember that 
we check for equality in R by using two equals signs (==). Note the square brackets that are used as an index to instruct 
R to locate all the brain weights of zero and reassign NA to them.
 
> attach(mouseWeights)
> brain_weight[brain_weight==0] <- NA
> body_weight[body_weight==0] <- NA
 

Now, just to illustrate the R Data Editor, say you want to simplify the variable names a little further to make the 
code more compact. To edit the data frame from inside R, simply enter fix(mouseWeights). The R Data Editor opens 
in the R GUI (see Figure 2-1).
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The Data Editor is a simple spreadsheet-like view of your data frame. Make any needed changes, and then when 
you close the Data Editor, the changes are saved. Here is the newly named set of variables:
 
> head(mouseWeights)
      ID strain CAGnom CAGscale sex    age bodyWt brainWt
1 hd1769     B6   Q111      113   F 3.7143  11.18   0.380
2 hd1777     B6   Q111      137   F 4.0000  12.50   0.434
3 hd1778     B6     WT        7   F 4.0000  13.30   0.406
4 hd1782     B6   Q111      136   F 4.0000  11.66   0.426
5 hd1806     B6     WT        7   M 4.0000  14.33   0.464
6 hd1808     B6   Q111      113   M 4.0000  13.72   0.414
>
 

Figure 2-1.  The R Data Editor opens in the R GUI
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Finally, tidy things up a bit. Use the detach() function to “unattach” the mouseWeights data. Remove any 
unneeded objects by using the rm() function, and save the workspace image if you plan to work with the objects and 
data you used in this session.

Recipe 2-3. Dealing with Text Data
Problem
We are dealing with increasing volumes of text data. Text mining has become an important area of research and 
innovation, as well as a lucrative one. For our purposes, we define text data as data consisting mostly of characters and 
words. Text data is typically formatted in lines and paragraphs for human beings to read and understand.

Qualitative researchers treat textual material the same way quantitative researchers treat numbers.  Qualitative 
researchers describe text data, look for relationships and differences, and examine patterns and classifications. There 
is a growing trend toward combining these methods into a mixed-method research approach.

Solution
Consider Plastic Omnium’s environmental policy, which states:

Plastic Omnium maintains a proactive environmental protection policy at the highest levels of the 
company worldwide. It not only ensures compliance with the legal requirements in effect in the 
countries where Plastic Omnium is present, but in the cases where there are no such requirements 
or where the company deems the existing requirements inadequate, Plastic Omnium develops 
and implements its own rules and ensures that they are followed. Every employee involved in an 
environment-related activity – such as measuring, recordkeeping, composing a report about an 
action or situation with consequences for the environment, or handling hazardous products or 
hazardous waste – must take care to perform his or her activities in strict compliance with the laws 
in effect and only after having received the necessary prior authorizations.

Everyone must ensure that the rules developed by Plastic Omnium are properly applied and will 
ensure that reports concerning events or situations related to environmental protection are accurate 
and complete. An employee who is aware of an event or situation within the company, which could 
result in pollution to the environment, has the duty to take immediate action to bring the matter to the 
attention of his or her direct supervisor or go directly to the Group’s Human Resources Department.

—Source: www.plasticomnium.com/en/

Microsoft Word has very rudimentary text analysis tools. We can count the number of words in the policy  
(there are 205). However, beyond spell checking and grammar checking, there’s not too much else we can do using a 
word processor. R opens up a host of new possibilities.

To do serious text mining in R, you should install the tm package. This topic will be addressed in Chapter 14, but 
for the present, let’s just see how to read the text file into R. I saved the policy as a plain-text file with line feeds only.
 
> Omni <- readLines("Plastic_Omni_Environ_Policy.txt")
> Omni
 [1] "Plastic Omnium maintains a proactive environmental protection policy at the highest levels of "
 [2] "the company worldwide. It not only ensures compliance with the legal requirements in effect in "
 [3] "the countries where Plastic Omnium is present, but in the cases where there are no such "
 [4] "requirements or where the company deems the existing requirements inadequate, Plastic "
 [5] "Omnium develops and implements its own rules and ensures that they are followed. Every "
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 [6] "employee involved in an environment-related activity – such as measuring, recordkeeping, "
 [7] "composing a report about an action or situation with consequences for the environment, or "
 [8] "handling hazardous products or hazardous waste – must take care to perform his or her "
 [9] "activities in strict compliance with the laws in effect and only after having received the "
[10] "necessary prior authorizations."
[11] ""
[12] "Everyone must ensure that the rules developed by Plastic Omnium are properly applied and will "
[13] "ensure that reports concerning events or situations related to environmental protection are "
[14] "accurate and complete. "
[15] ""
[16] "An employee who is aware of an event or situation within the company, which could result in "
[17] "pollution to the environment, has the duty to take immediate action to bring the matter to the "
[18] "attention of his or her direct supervisor or go directly to the Group’s Human Resources "
[19] "Department."
[20] ""
 

We use the readLines() function to read in a text file all at once or one line at a time. What is returned is a single 
character vector. The preceding example reads in a whole file, but if we would rather read in a line at a time, we will 
have to establish a connection. In this case, we will use a connection for file access. Create a connection with various 
R functions, such as file(), url(), or several additional functions. To see which functions can be used to establish 
connections, type ?connections at the command prompt. The parameter r means that we have opened the file for 
reading. We tell R to read in the lines one at a time by setting the argument n to 1.
 
> connection <- file("Plastic_Omni_Environ_Policy.txt", "r")
> readLines(connection, n = 1)
[1] "Plastic Omnium maintains a proactive environmental protection policy at the highest levels of "
> readLines(connection, n = 1)
[1] "the company worldwide. It not only ensures compliance with the legal requirements in effect in "
>

Recipe 2-4. Getting Data from the Internet
Problem
Many datasets are located in repositories on the Internet. There are datasets like the GSS data we have discussed, and 
literally thousands more web-hosted datasets in economics, data science, finance, government data for the United States 
and many other countries, health care, machine learning, and various university data repositories. The problem is not so 
much that we don’t have enough data, but instead the problem is that we don’t know how to access the right data.

Recipe 2-3 covered how to use a connection to read in a data file line by line. We can also establish a connection 
to a URL. This makes it possible to read in data from that particular source. The url type of connection supports 
http://, ftp://, and file://. For additional information on connections, type ?connection at the R command 
prompt to see the documentation for the connections() function.

Solution
Recipe 2-3 describes how you can simply copy and paste information from the Internet into a text document and read 
it into R. However, Recipe 2-4 shows you how to use the scan() function to import a data file. The scan() function, 
unlike the read.table() function, returns a list or a vector. This makes it easy to read a text file from the Internet.  
For example, the Institute for Digital Research and Education (IDRE) at UCLA provides excellent R tutorials and 
example data. Let us read in the file scan.txt from the IDRE web site. We tell R that we want to read the text file into a 
list with the what argument.
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> (x <- scan("http://www.ats.ucla.edu/stat/data/scan.txt", what = list(age = 0,
+     name = "")))
Read 4 records
$age
[1] 12 24 35 20
 
$name
[1] "bobby"   "kate"    "david"   "michael"
 

The read.table() function allows the user to read in any kind of delimited ASCII file. Here’s another example 
from IDRE. In this case, we read in a text file and specify there is a row of column headings by setting the header 
argument to TRUE.
 
> (test <- read.table("http://www.ats.ucla.edu/stat/data/test.txt", header = TRUE))
   prgtype gender  id ses schtyp level
1  general      0  70   4      1     1
2   vocati      1 121   4      2     1
3  general      0  86   4      3     1
4   vocati      0 141   4      3     1
5 academic      0 172   4      2     1
6 academic      0 113   4      2     1
7  general      0  50   3      2     1
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Chapter 3

Data Structures

As a refresher, the basic data structures in R are vectors, matrices, lists, and data frames. Remember R does not 
recognize a scalar quantity, instead treating that quantity as a vector of length 1. In Chapter 3, you will learn what you 
need to know about working with the various data structures in R.

Recipe 3-1. How to Work with Vectors
Problem
Vectors were introduced in Chapter 1, and were described as the fundamental data type in R. In Recipe 3-1, you will 
learn more about working with vectors, adding and deleting elements, and subsetting vectors. You will also learn 
more about how vectors relate to other data types in R and how to perform vector operations.

Solution
As you recall, a vector can be any of the six atomic types, but a vector must contain elements of only one data type.  
As you learned in Chapter 1, you can create a vector from the R Console or the R Editor by entering values with either 
the c() or the scan() function.

Remember that if you work with vectors of different lengths, R will recycle the elements of the shorter vector to 
match the length of the longer vector. This is often exactly what you want to do, but sometimes it is not. When you use 
vectors that are mismatched, that is, in which the longer vector’s length is not a multiple of the shorter vector’s length, 
R will give you a warning to that effect:
 
> x <- 1:10
> y <- 1:5
> x/y
 [1] 1.000000 1.000000 1.000000 1.000000 1.000000 6.000000 3.500000 2.666667
 [9] 2.250000 2.000000
> z <- 1:3
> x/z
 [1]  1.0  1.0  1.0  4.0  2.5  2.0  7.0  4.0  3.0 10.0
Warning message:
In x/z : longer object length is not a multiple of shorter object length
 

Because the length of x is a multiple of the length of y, the division produced no warning. In the second example, 
the numbers 1, 2, and 3 were recycled so that on the 10th division, 1 was the element of z divided into 10. Next, 
examine vector arithmetic in R.
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As long as the vectors have the same length, all is well. Arithmetic operations work on vectors elementwise. That 
is, the operation is performed for the first element of each vector, then for the second, and so on until the last pair of 
elements is reached.
 
> xvec
 [1]  0  1  2  3  4  5  6  7  8  9 10 11 12 13
> yvec
 [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14
> zvec <- xvec + yvec
> zvec
 [1]  1  3  5  7  9 11 13 15 17 19 21 23 25 27
> xvec - yvec
 [1] -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
> xvec * yvec
 [1]   0   2   6  12  20  30  42  56  72  90 110 132 156 182
> xvec / yvec
 [1] 0.0000000 0.5000000 0.6666667 0.7500000 0.8000000 0.8333333 0.8571429
 [8] 0.8750000 0.8888889 0.9000000 0.9090909 0.9166667 0.9230769 0.9285714
 

Vectors are combined by the use of the c() function:
 
> newVec <- c(xvec, yvec)
> newVec
 [1]  0  1  2  3  4  5  6  7  8  9 10 11 12 13  1  2  3  4  5  6  7  8  9 10 11
[26] 12 13 14
 

Remember there is no scalar quantity in R. When you retrieve an element of a vector in R, the result is not really 
the element itself, but a “vector slice.” We use the index or indexes of the vector slice we need by putting the indexes in 
square brackets ([]). Remove an element or elements of a vector by using negative indexes. Add elements or change 
the values of elements using indexes. If we ask for an element by using an out-of-range index, R will report NA. Let’s 
examine all these operations.
 
> newVec <- newVec[-1]
> newVec
 [1]  1  2  3  4  5  6  7  8  9 10 11 12 13  1  2  3  4  5  6  7  8  9 10 11 12
[26] 13 14
> vecSlice <- newVec[1:13]
> vecSlice
 [1]  1  2  3  4  5  6  7  8  9 10 11 12 13
> vecSlice[14] <- 14
> vecSlice
 [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14
> vecSlice[15]
[1] NA
 

It is also possible to use a logical index vector to slice a new vector from a given vector. The logical vector must be 
of the same length as the original vector. The following code illustrates this:
 
> xVec <- 1:10
> logicVec <- c(TRUE,FALSE,TRUE,FALSE,TRUE,FALSE,TRUE,FALSE,TRUE,FALSE)
> vecSlice[logicVec]
[1]  1  3  5  7  9 11 13
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We can assign names to the elements of vectors. Let us switch to a character vector for this illustration. The 
names can be used to retrieve and reorder the elements of the vector:
 
> charVec <- c("Phyllis","Argo")
> charVec
[1] "Phyllis" "Argo"
> names(charVec) <- c("FirstName","LastName")
> charVec
FirstName  LastName
"Phyllis"    "Argo"
> charVec[c("LastName","FirstName")]
 LastName FirstName
   "Argo" "Phyllis"
 

The replicate function rep() can be used to create a vector with any number of replications of the same entry:
 
> X <- rep(1,10)
> X
 [1] 1 1 1 1 1 1 1 1 1 1
 

The sequence function seq() requires a starting value, an ending value, and an increment value. For example:
 
> z <- seq(-4, 4, 0.1)
> z
 [1] -4.0 -3.9 -3.8 -3.7 -3.6 -3.5 -3.4 -3.3 -3.2 -3.1 -3.0 -2.9 -2.8 -2.7 -2.6
[16] -2.5 -2.4 -2.3 -2.2 -2.1 -2.0 -1.9 -1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1
[31] -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1  0.0  0.1  0.2  0.3  0.4
[46]  0.5  0.6  0.7  0.8  0.9  1.0  1.1  1.2  1.3  1.4  1.5  1.6  1.7  1.8  1.9
[61]  2.0  2.1  2.2  2.3  2.4  2.5  2.6  2.7  2.8  2.9  3.0  3.1  3.2  3.3  3.4
[76]  3.5  3.6  3.7  3.8  3.9  4.0
 

Recall that missing values are represented in R by NA, and that many R functions will not apply when there are 
missing data unless you set the argument na.rm to TRUE.

Recipe 3-2. How to Work with Matrices
Problem
As you learned in Chapter 1, R provides many operations for dealing with matrices. We will use real data taken from 
the General Satisfaction Survey (GSS) for this recipe so that you can see the power of R for working with matrices.

Solution
Matrices and vectors are related, as we have discussed before. A matrix is a vector with dimensions. The elements 
of the matrix must be of the same basic data type. Use the matrix() function to create a matrix. As you will recall, 
when you create a matrix from data elements, R will fill the matrix columnwise by default. Matrix transposition is the 
interchanging of rows and columns. We accomplish matrix transposition by the function t(). Matrix inversion is done 
by the solve() function. An illustration of these operations follows.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3 ■ Data Structures

30

First, let us extract some variables from the GSS dataset discussed earlier. We will use the cbind() function to 
create a matrix. Let us use the job satisfaction variable as the dependent variable Y. We will create an Xij matrix by 
combining a vector of 1s with the age, job security, and income variables. Then we will transpose the Xij matrix and 
solve for the regression coefficients using matrix operations. You may recall from a statistics class along the way that 
the column of 1s allow us to calculate the vector of unstandardized regression coefficients. We create our various 
components as follows. The data frame is a list, as you learned earlier.
 
> head(jobSat)
  age sex race jobsecok income06 satjob7
1  22   1    1        2       25       2
2  36   2    2        2       19       4
3  36   1    1        3       19       3
4  47   2    2        2       18       3
5  54   1    1        3       22       5
6  45   2    3        1       24       2
 

So far, so good. Now for a little matrix wizardry. We create the vector Y, the matrix Xij, and then solve for the 
regression coefficients using matrix algebra. To explain, the vector Y is simply the column of job satisfaction scores. 
The matrix Xij is created from a vector of 1s and the age, income, and job security variable. See the following code:
 
> Y <- jobSat$satjob7
> ones <- rep(1, 695)
> Xij <- cbind(ones, jobSat$age, jobSat$race, jobSat$jobsecok, jobSat$income06)
 

With the column of 1s added, our Xij matrix looks like this:
 
> head(Xij)
     index age income06 jobsecok
[1,]     1  22       25        2
[2,]     1  36       19        2
[3,]     1  36       19        3
[4,]     1  47       18        2
[5,]     1  54       22        3
[6,]     1  45       24        1
 

Now, use the traditional matrix formula B=(X’X)−1X’Y to solve for the regression coefficients.
 
> transpose <- t(Xij)
> product <- transpose %*% Xij
> product
         index     age income06 jobsecok
index      695   29451    12569     1094
age      29451 1371371   538411    46474
income06 12569  538411   245013    19675
jobsecok  1094   46474    19675     2118
> inverse <- solve(product) 
> inverse
                 index           age      income06
index     0.0376712386 -2.949646e-04 -9.507791e-04
age      -0.0002949646  8.236163e-06 -2.714459e-06
income06 -0.0009507791 -2.714459e-06  5.747651e-05
jobsecok -0.0041537160 -3.148802e-06  1.673929e-05
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              jobsecok
index    -4.153716e-03
age      -3.148802e-06
income06  1.673929e-05
jobsecok  2.531236e-03
> B <- inverse %*% (transpose %*% Y)
> B
            [,1]
index     2.5233
age      -0.0107
income06 -0.0152
jobsecok  0.5213
 

Just for comparison purposes, do this analysis using R’s linear model lm() function.
 
> Model <- lm(Y ~ age + income06 + jobsecok)
> summary(Model)
 
Call:
lm(formula = Y ~ age + income06 + jobsecok)
 
Residuals:
   Min     1Q Median     3Q    Max
-3.039 -0.811 -0.142  0.611  4.453
 
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)  2.52326    0.22008   11.47   <2e-16 ***
age         -0.01071    0.00325   -3.29   0.0011 **
income06    -0.01525    0.00860   -1.77   0.0766 .
jobsecok     0.52134    0.05705    9.14   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 
Residual standard error: 1.13 on 691 degrees of freedom
Multiple R-squared:  0.126,     Adjusted R-squared:  0.122
F-statistic: 33.2 on 3 and 691 DF,  p-value: <2e-16
 

As you see, the coefficients are the same as the ones we calculated using matrix algebra.

Recipe 3-3. How to Work with Lists
Problem
Lists are another very important data structure in R. The advantage of a list is that it can combine multiple data types. 
Recall that indexing is done differently for lists than for vectors and matrices. Lists form the basis for objects such as 
data frames, and are useful for combining mismatched vectors, as you will soon learn.
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Solution
You have learned that there are six atomic vector types in R. A list is a vector, too, but unlike the atomic vectors, which 
cannot be broken down any further, lists are a special kind of recursive vector. Here is a common application for a list. 
If you are familiar with Python, you will immediately think of a dictionary. In Recipe 3-3, you will learn how to work 
with lists, including how to create a list, how to access list components and values, and how to apply functions to lists.

Creating a List
Use the list() function to create a list. You might think of a list as a generic vector that can contain other objects. 
For illustrative purposes, I will create an inventory of a few of the books lying around my desk and in the nearby 
bookshelves. I include the title, the year of publication, the author, and the publisher. This is the kind of bibliographic 
information one might be interested in when creating a reference list. First, I entered the information for one of my 
favorite books.
 
> book <- list(title="Exploratory Data Analysis", year=1977,author="John W. Tukey")
> book
$title
[1] "Exploratory Data Analysis"
 
$year
[1] 1977
 
$author
[1] "John W. Tukey"
 

Note that it is not necessary to add component names (also known as tags), but they are helpful. We can use 
the names to retrieve list components. Recall that we index the elements (or components) of a list by using bracket 
notation, but we can do so in two different ways. We can use either single square brackets ([]) or double  square 
brackets ([[]]), and the results will be different. Using single brackets results in a list, whereas using double brackets 
results in a component, and the result will have the type of that component. To illustrate, see that we have three 
components. Even though book1 and book2 look the same, they are different types of data. Lists can also contain other 
lists, and they are combined in the same way vectors are.
 
> book <- list(title="Exploratory Data Analysis", year=1977,author="John W. Tukey")
> book
$title
[1] "Exploratory Data Analysis"
 
$year
[1] 1977
 
$author
[1] "John W. Tukey"
 
> book$title
[1] "Exploratory Data Analysis"
> book$year
[1] 1977
> book$author
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[1] "John W. Tukey"
> book1 <- book [1]
> book2 <- book[[1]]
> book1
$title
[1] "Exploratory Data Analysis"
 
> book2
[1] "Exploratory Data Analysis"
> typeof(book1)
[1] "list"
> typeof(book2)
[1] "character"
> book2 <- list(title="Statistics for the Social Sciences",year=1973,author="William L. Hays")
> books <- c(book1, book2)
> books
$title
[1] "Exploratory Data Analysis"
 
$title
[1] "Statistics for the Social Sciences"
 
$year
[1] 1973
 
$author
[1] "William L. Hays"

Adding and Deleting List Components
To add a component to an existing list, simply assign it using a new name and value, or add a list element by using 
vector indexing:
 
> newList <- list(a = 1, b = 2, c = 3)
> newList
$a
[1] 1
 
$b
[1] 2
 
$c
[1] 3
 
> newList$d <- 4
> newList
$a
[1] 1
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$b
[1] 2
 
$c
[1] 3
 
$d
[1] 4
 
> newList$e <- 5
> newList[6] <- 6
> newList
$a
[1] 1
 
$b
[1] 2
 
$c
[1] 3
 
$d
[1] 4
 
$e
[1] 5
 
[[6]]
[1] 6
 

Recall that for vectors, we simply use a negative index, as in [–3], to remove an element. With lists, the way to 
delete a list element is to assign the special value NULL to the component. Here is an example. Assume I accidentally 
entered a line feed at the end of entry 9 in my list. I want to delete that entry but leave the others as they are. When  
I assign NULL to the 9th entry, it is removed from my list, and the length of the list is reduced accordingly.
 
> Grades <- list("A","B","A","B+","C","F","A-","D","B-
+ ","C+")
> Grades
[[1]]
[1] "A"
 
[[2]]
[1] "B"
 
[[3]]
[1] "A"
 
[[4]]
[1] "B+"
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[[5]]
[1] "C"
 
[[6]]
[1] "F"
 
[[7]]
[1] "A-"
 
[[8]]
[1] "D"
 
[[9]]
[1] "B-\n"
 
[[10]]
[1] "C+"
> Grades[[9]] <- NULL
> Grades
[[1]]
[1] "A"
 
[[2]]
[1] "B"
 
[[3]]
[1] "A"
 
[[4]]
[1] "B+"
 
[[5]]
[1] "C"
 
[[6]]
[1] "F"
 
[[7]]
[1] "A-"
 
[[8]]
[1] "D"
 
[[9]] 
[1] "C+"
> length(Grades)
[1] 9
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Applying Functions to Lists
The lapply() and sapply() functions can be used to apply R functions to lists. In the following code, I compare the 
quiz scores for two sections of the same statistics class I am currently teaching. The lapply() function applies the 
mean() function and returns a list, whereas the sapply() function applies the mean function and returns a vector.
 
> quizzes <- list(sect1 = c(10,18,16,16,16,18,14,18,6,20),
+ sect2 = c(18,16,12,16,16,14,18,18,10,14,20,6,16,16,10,14))
> lapply(quizzes,mean)
$sect1
[1] 15.2
 
$sect2
[1] 14.625
 
> sapply(quizzes,mean) 
  sect1  sect2
15.200 14.625
> list <- lapply(quizzes,mean)
> typeof(list)
[1] "list"
> vector <- sapply(quizzes,mean)
> typeof(vector)
[1] "double"

Recipe 3-4. Working with Data Frames
Problem
You have already learned that the data frame is the most frequently used data structure for statistical analysis, and that 
a data frame is a kind of list. Like matrices, data frames must be rectangular in that every row and column intersection 
(cell, if you will) contains a value. Data frames, like all lists, can contain any combination of data types, including 
integer, numeric, character, and logical. Some character variables are used as factors in statistical analyses.

Let us work with some data I collected concerning graduate students’ writing assignments in a management class 
I taught. Data included the course section, the student’s sex, the overall course grade, the grades on the Week 2 writing 
assignment and the Week 6 writing assignment, whether the student used excessive quotation in each assignment, 
whether the student was documented to have plagiarized the assignment, whether the student voluntarily submitted 
the assignment to Turnitin.com, the Turnitin similarity indexes for the Week 2 and Week 6 writing assignments, and 
the percentage of quoted material in each assignment.

Solution
The data described were archival in nature. As a matter of course, I submitted each student’s Week 2 and Week 6 
(the final week) written assignments to Turnitin.com. The grades were retrieved from the course gradebook. The 
data represented three sections of the same online course, with 55 students in all. There were some missing data, 
as one might expect. Students probably committed more plagiarism than the data indicate, because I did not count 
suspected plagiarism, but only the specific incidents I could document.

c
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Creating a Data Frame and Accessing Data Frame Elements
Data frames can contain any type of data, including other data frames, but in this book, we will limit ourselves 
to data frames containing numbers and character strings. Applying the length() function returns the number of 
variables in the dataset, while applying the  same function to one of the variables returns the number of records:
 
> plagiarism <- read.csv("plagiarism.csv")
> length(plagiarism)
[1] 17
> length(plagiarism$Course)
[1] 55
 

You can access data frame elements using matrix-like indexing. You can also use variable names to access 
individual variables (columns, if you will):
 
plagiarism[1,1]
[1] MFE1135A
Levels: MFE1123A MFE1129A MFE1135A
> plagiarism$Course
 [1] MFE1135A MFE1135A MFE1135A MFE1135A MFE1135A MFE1135A MFE1135A MFE1135A
 [9] MFE1135A MFE1135A MFE1135A MFE1129A MFE1129A MFE1129A MFE1129A MFE1129A
[17] MFE1129A MFE1129A MFE1129A MFE1129A MFE1129A MFE1129A MFE1129A MFE1129A
[25] MFE1129A MFE1129A MFE1129A MFE1129A MFE1129A MFE1129A MFE1129A MFE1123A
[33] MFE1123A MFE1123A MFE1123A MFE1123A MFE1123A MFE1123A MFE1123A MFE1123A
[41] MFE1123A MFE1123A MFE1123A MFE1123A MFE1123A MFE1123A MFE1123A MFE1123A
[49] MFE1123A MFE1123A MFE1123A MFE1123A MFE1123A MFE1123A MFE1123A
Levels: MFE1123A MFE1129A MFE1135A
 
> lowestGrade <- min(plagiarism$CourseGr)
> lowestGrade
[1] 51.01
 

You can filter data and apply functions to data frame elements. For example, let’s see who got the lowest overall 
course grade.
 
> lowestGrade <- min(plagiarism$CourseGr)
> lowestGrade
[1] 51.01
> hist(plagiarism$CourseGr)
 

Is my reputation as a notoriously easy grader still intact (see Figure 3-1)?
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Yes, students have nothing to worry about. 

Dealing with Missing Data, Take 2
You will recall that in the preparation of the data, missing data must be coded as NA. R will attempt to deal with 
missing data, but you often must specify the na.rm = TRUE option. If you simply want to remove all records with 
missing data, use the complete.cases() function.
 
> summary(plagiarism)
      Course   Sex       CourseGr         Wk2Gr            Wk6Gr
 MFE1123A:24   F:38   Min.   :51.01   Min.   :  0.00   Min.   :  0.00
 MFE1129A:20   M:17   1st Qu.:89.69   1st Qu.: 85.71   1st Qu.: 87.50
 MFE1135A:11          Median :93.66   Median : 90.00   Median : 92.50
                      Mean   :90.99   Mean   : 88.00   Mean   : 87.68
                      3rd Qu.:96.72   3rd Qu.: 95.00   3rd Qu.: 97.50
                      Max.   :99.68   Max.   :100.00   Max.   :100.00

Figure 3-1.  Histogram of final course grades
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 ExcQuote1 Plagiarized1 Plagiarized2 VoluntaryTII          Source1
 No :33    No :48       No :54       No :43       Internet     :10
 Yes:22    Yes: 7       Yes: 1       Yes:12       Publication  : 2
                                                  StudentPapers: 9
                                                  None         :34
                                                                     
        Wk2Sim          Wk2Inc         PctQuot1          Wk6Sim
 Min.   : 0.00   Min.   : 0.00   Min.   : 0.000   Min.   : 0.00
 1st Qu.: 4.00   1st Qu.: 8.00   1st Qu.: 0.000   1st Qu.: 3.00
 Median : 8.00   Median :17.00   Median : 4.000   Median : 5.00
 Mean   :12.73   Mean   :19.98   Mean   : 7.255   Mean   :10.16
 3rd Qu.:14.50   3rd Qu.:28.00   3rd Qu.:13.500   3rd Qu.:14.00
 Max.   :79.00   Max.   :79.00   Max.   :29.000   Max.   :42.00
                                                  NA's   :10
     Wk6Inc         PctQuot2      ExcQuote2
 Min.   : 0.00   Min.   : 0.000   No  :32
 1st Qu.: 6.00   1st Qu.: 1.000   Yes :13
 Median :10.00   Median : 2.000   NA's:10
 Mean   :13.33   Mean   : 3.178
 3rd Qu.:17.00   3rd Qu.: 4.000
 Max.   :46.00   Max.   :15.000
 NA's   :10      NA's   :10
> plagiarism2 <- plagiarism[complete.cases(plagiarism),]
> summary(plagiarism2)
      Course    Sex        CourseGr            Wk2Gr            Wk6Gr
 MFE1123A:14   F:31   Min.   :69.99   Min.   :  0.00   Min.   : 70.00
 MFE1129A:20   M:14   1st Qu.:89.81   1st Qu.: 85.71   1st Qu.: 87.50
 MFE1135A:11          Median :94.52   Median : 90.00   Median : 92.50
                      Mean   :92.16   Mean   : 87.71   Mean   : 91.17
                      3rd Qu.:96.85   3rd Qu.: 94.29   3rd Qu.: 97.50
                      Max.   :99.68   Max.   :100.00   Max.   :100.00
 ExcQuote1 Plagiarized1 Plagiarized2 VoluntaryTII          Source1
 No :30    No :40       No :44       No :36       Internet     : 7
 Yes:15    Yes: 5       Yes: 1       Yes: 9       Publication  : 2
                                                  StudentPapers: 5
                                                  None         :31
     
        Wk2Sim          Wk2Inc        PctQuot1          Wk6Sim
 Min.   : 0.00   Min.   : 2.0   Min.   : 0.000   Min.   : 0.00
 1st Qu.: 4.00   1st Qu.: 8.0   1st Qu.: 0.000   1st Qu.: 3.00
 Median : 8.00   Median :15.0   Median : 4.000   Median : 5.00
 Mean   :12.91   Mean   :19.8   Mean   : 6.889   Mean   :10.16
 3rd Qu.:13.00   3rd Qu.:24.0   3rd Qu.: 8.000   3rd Qu.:14.00
 Max.   :79.00   Max.   :79.0   Max.   :29.000   Max.   :42.00
        Wk6Inc         PctQuot2   ExcQuote2
 Min.   : 0.00   Min.   : 0.000      No :32
 1st Qu.: 6.00   1st Qu.: 1.000      Yes:13
 Median :10.00   Median : 2.000
 Mean   :13.33   Mean   : 3.178
 3rd Qu.:17.00   3rd Qu.: 4.000
 Max.   :46.00   Max.   :15.000
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Subsetting Data
You can subset data in many ways. For example, using the dataset women from the R distribution, you can select only 
women who are above the median in weight. The parentheses in the code fragment (women2 <- women[women$weight 
> 135, ]) permits you to save a step and show the selected data immediately.
 
> women
   height weight
1      58    115
2      59    117
3      60    120
4      61    123
5      62    126
6      63    129
7      64    132
8      65    135
9      66    139
10     67    142
11     68    146
12     69    150
13     70    154
14     71    159
15     72    164
 
summary(women$weight)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
  115.0   124.5   135.0   136.7   148.0   164.0
> (women2 <- women[women$weight > 135, ])
   height weight
9      66    139
10     67    142
11     68    146
12     69    150
13     70    154
14     71    159
15     72    164
 

As you have seen, you can use matrix-type indexing with a data frame. For example, to select only the vector of 
women’s heights, do the following:
 
> (height <- women[,1])
 [1] 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
 

The subset() function can also be used to select variables using logical tests. To illustrate, let’s return briefly to the 
GSS data first mentioned in Chapter 2, Recipe 2-1. We will select only subjects who are married (marital status = 1).
 
> married <- subset(jobSat, marital == 1) 
 

We can also combine logical tests. Select people age 21 and older who worked at least 40 hours last week. Note 
the use of & in the following.
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Time40plusHrs <- subset(married, age >=21 & hrs1 >=40)
> head(fullTime40plusHrs)
    wrkstat hrs1 marital age sex race happy weekswrk jobsec jobsecok happy7
24        1   40       1  45   2    3     1       52      2        1      2
35        1   40       1  42   2    1     2       52      5        2      3
75        1   50       1  46   1    1     2       52      5        2      2
83        1   55       1  44   1    1     1       52      5        2      2
118       1   40       1  40   2    1     2       52      4        2      3
127       1   45       1  53   1    1     2       40      2        2      1
    satjob7 satfam7 realrinc  conrinc
24        2       2  49000.0  76600.0
35        3       3  22050.0  34470.0
75        4       2  49000.0  76600.0
83        3       2  33075.0  51705.0
118       2       2  40425.0  63195.0
127       2       1 341672.4 324512.3

Saving Datasets
You have already learned that you can write data to various file types, such as CSV and tab-delimited text files. You can 
also save your datasets in the native R data format, which is the *.rda format. Instead of reading *.rda files, you load 
them as you would any other R object. This makes it very convenient for other R users who want to work with your data. 
Let’s see how this is done using the data from the plagiarism study. An advantage of loading an R dataset in *.rda format 
is that it will stay in your workspace when you save it, and you will not have to reload the data during the next session.
 
> plagiarism <- read.csv("plagiarism.csv")
> save(plagiarism, file = "plagiarism.rda")
> file.exists("plagiarism.rda")
[1] TRUE
> load("plagiarism.rda")
> head(plagiarism)
    Course Sex CourseGr Wk2Gr Wk6Gr ExcQuote1 Plagiarized1 Plagiarized2
1 MFE1135A   F    84.55 92.86  97.5        No           No           No
2 MFE1135A   F    91.29 87.14  90.0        No           No           No
3 MFE1135A   M    89.83 84.29  80.0       Yes           No           No
4 MFE1135A   M    91.43 87.14  77.5       Yes          Yes           No
5 MFE1135A   F    71.20  0.00  70.0       Yes          Yes          Yes
6 MFE1135A   F    96.60 88.57  97.5       Yes          Yes           No
  VoluntaryTII       Source1 Wk2Sim Wk2Inc PctQuot1 Wk6Sim Wk6Inc PctQuot2
1           No          <NA>     10     10        0     11     14        3
2           No          <NA>      4     18       14     21     32       11
3           No      Internet      5     31       26      4      9        5
4           No      Internet     11     11        0     18     19        1
5           No   Publication     62     63        1     13     28       15
6           No StudentPapers     55     55        0      2      6        4
  ExcQuote2
1        No
2       Yes
3       Yes
4        No
5       Yes
6        No
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Chapter 4

Merging and Reshaping Datasets

This chapter covers how to merge datasets, add rows and columns to existing datasets, reshape datasets, and stack 
and unstack datasets. You will find that some of the analyses you want to do will require stacked data, others will 
require unstacked data, and still others can use data of either type.

Recipe 4-1. Merging Datasets by a Common Variable
Problem
We often have datasets with one or more common variables and want to combine those datasets by matching on a 
common variable. The merge() function locates matching variables and combines datasets based on these variables.

Solution
The following hypothetical data represent the information on 20 students and each student’s scores on five quizzes 
along with the student’s final grade (the average of the quiz scores). See that the only variable the data frames have in 
common is the student number in column 1.
 
> studentInfo
   Student    Sex Age
1        1   male  18
2        2   male  19
3        3   male  17
4        4   male  20
5        5 female  23
6        6 female  18
7        7   male  21
8        8 female  20
9        9 female  23
10      10 female  21
11      11 female  23
12      12   male  18
13      13   male  21
14      14   male  17
15      15   male  19
16      16 female  20
17      17 female  19
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18      18 female  22
19      19 female  22
20      20   male  20
> studentQuizzes
   Student    Sex Age Quiz1 Quiz2 Quiz3 Quiz4 Quiz5 FinalGrade
1        1   male  18    83    87    81    80    69       69.7
2        2   male  19    76    89    61    85    75       67.5
3        3   male  17    85    86    65    64    81       66.3
4        4   male  20    92    73    76    88    64       68.8
5        5 female  23    82    75    96    87    78       73.5
6        6 female  18    88    73    76    91    81       71.2
7        7   male  21    89    71    61    70    75       64.5
8        8 female  20    89    70    87    76    88       71.7
9        9 female  23    92    85    95    89    62       74.3
10      10 female  21    86    83    77    64    63       65.7
11      11 female  23    90    71    91    86    87       74.7
12      12   male  18    84    71    67    62    70       62.0
13      13   male  21    83    80    89    60    60       65.5
14      14   male  17    79    77    82    63    74       65.3
15      15   male  19    89    80    64    94    78       70.7
16      16 female  20    76    85    65    92    82       70.0
17      17 female  19    92    76    76    74    91       71.3
18      18 female  22    75    90    78    70    76       68.5
19      19 female  22    87    87    63    73    64       66.0
20      20   male  20    75    74    63    91    87       68.3
 

To merge the datasets, do the following:
 
> studentComplete <- merge(studentInfo, studentQuizzes)
 
> studentComplete
   Student    Sex Age Quiz1 Quiz2 Quiz3 Quiz4 Quiz5 FinalGrade
1        1   male  18    83    87    81    80    69       69.7
2       10 female  21    86    83    77    64    63       65.7
3       11 female  23    90    71    91    86    87       74.7
4       12   male  18    84    71    67    62    70       62.0
5       13   male  21    83    80    89    60    60       65.5
6       14   male  17    79    77    82    63    74       65.3
7       15   male  19    89    80    64    94    78       70.7
8       16 female  20    76    85    65    92    82       70.0
9       17 female  19    92    76    76    74    91       71.3
10      18 female  22    75    90    78    70    76       68.5
11      19 female  22    87    87    63    73    64       66.0
12       2   male  19    76    89    61    85    75       67.5
13      20   male  20    75    74    63    91    87       68.3
14       3   male  17    85    86    65    64    81       66.3
15       4   male  20    92    73    76    88    64       68.8
16       5 female  23    82    75    96    87    78       73.5
17       6 female  18    88    73    76    91    81       71.2
18       7   male  21    89    71    61    70    75       64.5
19       8 female  20    89    70    87    76    88       71.7
20       9 female  23    92    85    95    89    62       74.3
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Notice that the student numbers are no longer in the original order. R merges on the student number and then 
sorts on the common variable. But in this case, the number 1 is followed by 10–19, then 2, 20, and 3–9. We can get 
the numbers back into order by using the order() function, as follows. Note that the row numbers are still the ones 
associated with the original records, but the new data frame shows the student numbers in order once again.
 
> studentComplete <- studentComplete[order(studentComplete[1]),]
> head(studentComplete)
   Student    Sex Age Quiz1 Quiz2 Quiz3 Quiz4 Quiz5 FinalGrade
1        1   male  18    83    87    81    80    69       69.7
12       2   male  19    76    89    61    85    75       67.5
14       3   male  17    85    86    65    64    81       66.3
15       4   male  20    92    73    76    88    64       68.8
16       5 female  23    82    75    96    87    78       73.5
17       6 female  18    88    73    76    91    81       71.2
 

It is possible that the variables on which you would like to merge datasets have different names in the different 
datasets (remember R is case sensitive). To deal with that situation, you can either rename the variables so that the 
names match, or you can use the by.x and by.y options in the merge() command. As an example, what if the student 
numbers had different variable names, such as id in one file and studentID in another, as follows:
 
> head(studentInfo)
  studentID    Sex Age
1         1   male  18
2         2   male  19
3         3   male  17
4         4   male  20
5         5 female  23
6         6 female  18
> head(studentQuizzes)
  id    Sex Age Quiz1 Quiz2 Quiz3 Quiz4 Quiz5 FinalGrade
1  1   male  18    83    87    81    80    69       69.7
2  2   male  19    76    89    61    85    75       67.5
3  3   male  17    85    86    65    64    81       66.3
4  4   male  20    92    73    76    88    64       68.8
5  5 female  23    82    75    96    87    78       73.5
6  6 female  18    88    73    76    91    81       71.2
 

The label for the merged column is from the first data frame. See that the sex and age variables were inherited 
from both data frames and are now labeled by their sources.
 
> newData <- merge(x=studentInfo, y=studentQuizzes, by.x="studentID", by.y ="id")
> head(newData)
  studentID  Sex.x Age.x  Sex.y Age.y Quiz1 Quiz2 Quiz3 Quiz4 Quiz5 FinalGrade
1         1   male    18   male    18    83    87    81    80    69       69.7
2         2   male    19   male    19    76    89    61    85    75       67.5
3         3   male    17   male    17    85    86    65    64    81       66.3
4         4   male    20   male    20    92    73    76    88    64       68.8
5         5 female    23 female    23    82    75    96    87    78       73.5
6         6 female    18 female    18    88    73    76    91    81       71.2
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To eliminate the duplicated columns, you can set them to NULL, as we have discussed previously, or you can tell R 
to merge on multiple columns to avoid this problem in the first place. I edited both data frames to use the same names 
for id, sex, and age. Now I simply merge the two data frames as follows:
 
> merge(studentInfo, studentQuizzes, c("id", "sex", "age"))
   id    sex age Quiz1 Quiz2 Quiz3 Quiz4 Quiz5 FinalGrade
1   1   male  18    83    87    81    80    69       69.7
2  10 female  21    86    83    77    64    63       65.7
3  11 female  23    90    71    91    86    87       74.7
4  12   male  18    84    71    67    62    70       62.0
5  13   male  21    83    80    89    60    60       65.5
6  14   male  17    79    77    82    63    74       65.3
7  15   male  19    89    80    64    94    78       70.7
8  16 female  20    76    85    65    92    82       70.0
9  17 female  19    92    76    76    74    91       71.3
10 18 female  22    75    90    78    70    76       68.5
11 19 female  22    87    87    63    73    64       66.0
12  2   male  19    76    89    61    85    75       67.5
13 20   male  20    75    74    63    91    87       68.3
14  3   male  17    85    86    65    64    81       66.3
15  4   male  20    92    73    76    88    64       68.8
16  5 female  23    82    75    96    87    78       73.5
17  6 female  18    88    73    76    91    81       71.2
18  7   male  21    89    71    61    70    75       64.5
19  8 female  20    89    70    87    76    88       71.7
20  9 female  23    92    85    95    89    62       74.3
 

When you merge data frames, R will exclude any observations that appear in only one dataset. Here are some 
data from the CIA World Factbook web site. We have the economic and demographic data in a CSV file called 
demographic.csv, and the number of airports in each country in a separate CSV file called airports.csv. After 
reading those files in with the read.csv() function, I see that they contain data for different countries. The merge 
will exclude countries not in both datasets. The demographic information covers 46 countries, 45 of which are also 
in the airport dataset. The airport information includes 236 countries. The merge includes only the countries in both 
datasets. The final list of countries included in the merged dataset is shown at the end of the following R code:
 
> head(demographic)
    country      area g20 petroleum population pct65plus lifeExpectancy
1   Algeria 2,381,740   0         2     31,736      4.07          69.95
2 Argentina 2,766,890   1         1     37,385     10.42          75.26
3 Australia 7,686,850   1         1     19,357     12.50          79.87
4   Austria    83,858   0         0      8,150     15.38          77.84
5   Belgium    30,510   0         0     10,259     16.95          77.96
6    Brazil 8,511,965   1         1    174,469      5.45          63.24
  Literacy  GDP labor unempl exports imports cellPhones
1     61.6  5.5   9.1     30    19.6     9.2      0.034
2     96.2 12.9    15     15    26.5    25.2      3.000
3    100.0 23.2   9.5    6.4    69.0    77.0      6.400
4     98.0 25.0   3.7    5.4    63.2    65.6      4.500
5     98.0 25.3  4.34    8.4   181.4   166.0      1.000
6     83.3  6.5    79    7.1    55.1    55.8      4.400
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> head(airports)
        country airports
1 United States   13,513
2        Brazil    4,093
3        Mexico    1,714
4        Canada    1,467
5        Russia    1,218
6     Argentina    1,138
> completeCIA <- merge(demographic, airports)
> head(completeCIA)
    country      area g20 petroleum population pct65plus lifeExpectancy
1   Algeria 2,381,740   0         2     31,736      4.07          69.95
2 Argentina 2,766,890   1         1     37,385     10.42          75.26
3 Australia 7,686,850   1         1     19,357     12.50          79.87
4   Austria    83,858   0         0      8,150     15.38          77.84
5   Belgium    30,510   0         0     10,259     16.95          77.96
6    Brazil 8,511,965   1         1    174,469      5.45          63.24
  Literacy  GDP labor unempl exports imports cellPhones airports
1     61.6  5.5   9.1     30    19.6     9.2      0.034      157
2     96.2 12.9    15     15    26.5    25.2      3.000    1,138
3    100.0 23.2   9.5    6.4    69.0    77.0      6.400      480
4     98.0 25.0   3.7    5.4    63.2    65.6      4.500       52
5     98.0 25.3  4.34    8.4   181.4   166.0      1.000       41
6     83.3  6.5    79    7.1    55.1    55.8      4.400    4,093
> length(completeCIA$airports)
[1] 45
> length(demographic$country)
[1] 46
> length(airports$country)
[1] 236
> completeCIA$country
 [1] Algeria              Argentina            Australia
 [4] Austria              Belgium              Brazil
 [7] Canada               China                Czech Republic
[10] Denmark              Finland              France
[13] Germany              Greece               Hungary
[16] Iceland              India                Indonesia
[19] Iran                 Iraq                 Ireland
[22] Italy                Japan                Kuwait
[25] Libya                Luxembourg           Mexico
[28] Netherlands          New Zealand          Nigeria
[31] Norway               Poland               Portugal
[34] Qatar                Russia               Saudi Arabia
[37] South Africa         Spain                Sweden
[40] Switzerland          Turkey               United Arab Emirates
[43] United Kingdom       United States        Venezuela
46 Levels: Algeria Argentina Australia Austria Belgium Brazil Canada ... Venezuela
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Recipe 4-2. Adding Rows and Columns
Problem
A common problem is the need to add new rows or columns to a data frame. In Recipe 4-2, you will learn how to do that.

Solution
To add rows and columns of data, you use the rbind() and cbind() functions, respectively. I have a vector containing 
the weights of 40 adult males who exercise regularly. I want to create a vector of id numbers and combine that vector 
with the weights. This is a job for the cbind() function. The vector of weights is transformed to a data frame (using the 
as.data.frame() function), and then the vector of id numbers is bound to the weights, as shown in the following code:
 
> weights
 [1] 169.1 144.2 179.3 175.8 152.6 166.8 135.0 201.5 175.2 139.0 156.3 186.6
[13] 191.1 151.3 209.4 237.1 176.7 220.6 166.1 137.4 164.2 162.4 151.8 144.1
[25] 204.6 193.8 172.9 161.9 174.8 169.8 213.3 198.0 173.3 214.5 137.1 119.5
[37] 189.1 164.7 170.1 151.0
> weights <- as.data.frame(weights)
> id <- c(1:40)
> id
 [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
[26] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
> weights <- cbind(weights, id)
)
> > head(weights)
  weights id
1   169.1  1
2   144.2  2
3   179.3  3
4   175.8  4
5   152.6  5
6   166.8  6
 

Now, imagine I obtain the weights of another dozen men who exercise regularly. I used the rnorm() function to 
create the additional data. The rnorm() function produces a random sample of normally distributed scores. I created 
a 12-element vector with a mean of 175 pounds (lb.) and a standard deviation of 20. The combination of the two 
vectors produced a matrix, but it is easy to bind it to the data frame.
 
> extraWeights <- rnorm(12,175,20)
> extraWeights
 [1] 166.8790 191.1003 187.1548 158.1391 136.4888 162.1276 211.9919 189.0800
 [9] 202.9519 205.6483 197.1733 173.3894
> extraWeights <- round(extraWeights, 2)
> extraWeights
 [1] 166.88 191.10 187.15 158.14 136.49 162.13 211.99 189.08 202.95 205.65
[11] 197.17 173.39
> newids <- c(41:52)
> newData <- cbind(extraWeights, newids)
> newData
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      extraWeights newids
 [1,]       166.88     41
 [2,]       191.10     42
 [3,]       187.15     43
 [4,]       158.14     44
 [5,]       136.49     45
 [6,]       162.13     46
 [7,]       211.99     47
 [8,]       189.08     48
 [9,]       202.95     49
[10,]       205.65     50
[11,]       197.17     51
[12,]       173.39     52
 

Next, I made sure the two datasets had the same variable names for the rbind() function to work properly. I used 
the Data Editor and changed the variable names in newData, as shown in Figure 4-1.

Figure 4-1.  Using the Data Editor to change variable names

Then, I combined the data using rbind() and verified that all 52 observations were in the new dataset.
 
> weights <- rbind(weights, newData)
> summary(weights)
> length(weights$id)
[1] 52
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Recipe 4-3. Reshaping a Dataset
Problem 
Many repeated-measures datasets have a column for each measurement. For example, here are some repeated-
measures data representing the scores on a 20-item test of algebra at the beginning of a statistics course, at the end 
of the course, and six months later. The wide version has each score in a separate column for each student. The long 
version has all 30 scores in a single column, and the time of the test is coded 1, 2, 3 for each measurement. The student 
numbers are repeated, which means that each student’s data occupy 10 rows in the dataset. It's quite common to want 
to convert from the wide version to the long version, and vice versa.
 
> wideData
   Student Before After SixMo
1        1     13    15    17
2        2      8     8     7
3        3     12    15    14
4        4     12    17    16
5        5     19    20    20
6        6     10    15    14
7        7     10    13    15
8        8      8    12    11
9        9     14    15    13
10      10     11    16     9
> head(longData)
  Case Student Time Score
1    1       1    1    13
2    2       2    1     8
3    3       3    1    12
4    4       4    1    12
5    5       5    1    19
6    6       6    1    10
> tail(longData)
   Case Student Time Score
25   25       5    3    20
26   26       6    3    14
27   27       7    3    15
28   28       8    3    11
29   29       9    3    13
30   30      10    3     9

Solution
The reshape() function can convert wide format to long format, and long format to wide format. Let us take the wide 
data first and convert that dataset to long form. I use separate lines to make the function easier to comprehend:
 
> longScores <- reshape(wideData,
+ direction = "long",
+ varying = list(c("Before","After","SixMo")),
+ times=c(1,2,3),
+ timevar = "Time", idvar = "Student",
+ v.names = "Score")
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The reshape() function requires several arguments:

•	 direction tells R what the desired shape of the new data frame will be.

•	 varying corresponds to the variable names in the wide format that will become separate 
variables in the reshaped data.

•	 times indicates the values to use for the newly created time variable specified by the timevar 
argument.

•	 v.names gives the names of the variables in the long format that correspond to multiple 
variables in the wide format.

We have reshaped the wide dataset into a long dataset (see Figure 4-2).

Figure 4-2.  The reshaped data in long form

The reshape() function does not require the v.names and timevar arguments. They can be used to give 
appropriate names to the variables.

Now, let’s reverse the process. We will convert the long dataset back into a wide dataset. The first order 
of business is to sort the longScores dataset by student number so that each student’s data will occupy three 
consecutive rows. Changing from one format to the other is often necessary because the data must be in a particular 
form in order for the analysis to work properly.
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> head(longScores)
    Student Time Score
1.1       1    1    13
2.1       2    1     8
3.1       3    1    12
4.1       4    1    12
5.1       5    1    19
6.1       6    1    10
 
> longScores.sort <- longScores[order(longScores$Student),]
> head(longScores.sort)
    Student Time Score
1.1       1    1    13
1.2       1    2    15
1.3       1    3    17
2.1       2    1     8
2.2       2    2     8
2.3       2    3     7
 

Now, with the data in the correct format, we can change the long data back into wide data, as follows. Note that 
the time variable and the id variable are the same as in the previous example:
 
> wide <- reshape(longScores.sort,timevar = "Time", idvar = "Student", direction = "wide")
> wide
     Student Score.1 Score.2 Score.3
1.1        1      13      15      17
2.1        2       8       8       7
3.1        3      12      15      14
4.1        4      12      17      16
5.1        5      19      20      20
6.1        6      10      15      14
7.1        7      10      13      15
8.1        8       8      12      11
9.1        9      14      15      13
10.1      10      11      16       9

Recipe 4-4. Stacking and Unstacking Data
Problem 
Some R functions allow you to use either stacked or unstacked data. For example, here are the scores on a recent 
200-point quiz for two sections of my online psychological statistics class. The data are in both stacked and unstacked 
form. For example, the t.test() function can be used with either stacked or unstacked data, but that is not true of 
many other analyses, so learning to stack and unstack data as required is a very useful basic R skill.
 
> unstacked
  section1 section2
1      176      120
2      176      199
3       98      159
4      118      127
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5      103      141
6      190      132
7      173      176
8      184       52
9      149      180
> stacked
   score  section
1    176 section1
2    176 section1
3     98 section1
4    118 section1
5    103 section1
6    190 section1
7    173 section1
8    184 section1
9    149 section1
10   120 section2
11   199 section2
12   159 section2
13   127 section2
14   141 section2
15   132 section2
16   176 section2
17    52 section2
18   180 section2

Solution
Use the stack() function.
 
> stacked <- stack(unstacked)
> stacked
   values      ind
1     176 section1
2     176 section1
3      98 section1
4     118 section1
5     103 section1
6     190 section1
7     173 section1
8     184 section1
9     149 section1
10    120 section2
11    199 section2
12    159 section2
13    127 section2
14    141 section2
15    132 section2
16    176 section2
17     52 section2
18    180 section2
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Similarly, you can unstack data by using the unstack() function:
 
> unstacked <- unstack(stacked)
> unstacked
  section1 section2
1      176      120
2      176      199
3       98      159
4      118      127
5      103      141
6      190      132
7      173      176
8      184       52
9      149      180
 

Here are some important points about the stack() and unstack() functions. First, you can only stack data on 
numeric variables. If there are more than two variables in the data frame, you must specify which variables to use, 
as in the following example. Because there were only two variables in the example, the values argument was not 
needed, but if there are more than two variables, you must specify the grouping variable (factor) to use for unstacking. 
The ~ (tilde) notation means the same as “by” to R. So we are telling R to unstack the data using the values “by” 
individual.
 
> unstacked2 <- unstack(stacked, values ~ ind)
> unstacked2
  section1 section2
1      176      120
2      176      199
3       98      159
4      118      127
5      103      141
6      190      132
7      173      176
8      184       52
9      149      180
 

If you have stacked data in which the number of values in each group differ, when you try to unstack that dataset, 
R cannot make a data frame and will output a list instead (see Recipe 3-3 for an example in which I created a list 
because two classes had different numbers of students.). You can still access the groups by using the $ notation that 
we have discussed when the data are in a list.

To illustrate, the complete data for the two sections is mismatched in length; that is, the classes are of different 
sizes. Here is the complete dataset. For each section, I prepared a statistics template in Microsoft Excel, and I could 
determine from the online classroom which students had downloaded and used the templates. I was interested in 
learning if the students who used the Excel template made better grades on the quiz.
 
   Score Section Used
1    176       1    0
2    176       1    0
3     98       1    0
4    118       1    0
5    103       1    0
6    190       1    1
7      0       1    0
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8    173       1    0
9      0       1    0
10   184       1    0
11   149       1    0
12     0       1    0
13   136       1    0
14   171       1    0
15   174       1    0
16   155       1    0
17   154       1    1
19   199       2    1
20   159       2    1
21   127       2    0
22   141       2    0
23     0       2    0
24   132       2    0
25   176       2    1
26     0       2    0
27    52       2    0
28   180       2    1
29   120       2    0
 

When I unstack this set of data, I get lists rather than a data frame. The scores are coerced into character format.
 
unstacked <- unstack(quizGrades, Score ~ Section)
> unstacked
$`1`
 [1] "176" "176" "98"  "118" "103" "190" "0"   "173" "0"   "184" "149" "0"
[13] "136" "171" "174" "155" "154"
 
$`2`
 [1] "199" "159" "127" "141" "0"   "132" "176" "0"   "52"  "180" "120"
 
> typeof(unstacked)
[1] "list"
 

Finally, to the point of stacked and unstacked data, examine the output of the t.test() function using first the 
unstacked data and then the stacked data. As I mentioned, this function can handle both types of data. The t.test() 
function is more flexible than many others in R:
 
> t.test(unstacked$quiz1,unstacked$quiz2)
 
        Welch Two Sample t-test
 
data:  unstacked$quiz1 and unstacked$quiz2
t = 0.4774, df = 15.52, p-value = 0.6397
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -31.06128  49.06128
sample estimates:
mean of x mean of y
 151.8889  142.8889
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> t.test(stacked$score ~ stacked$section)
 
        Welch Two Sample t-test
 
data:  stacked$score by stacked$section
t = 0.4774, df = 15.52, p-value = 0.6397
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -31.06128  49.06128
sample estimates:
mean in group 1 mean in group 2
       151.8889        142.8889
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Chapter 5

Working with Dates and Strings

In Chapter 5, you will learn how to work with dates and strings.

Recipe 5-1. Working with Dates and Times
Problem
When you import date and time data into R, these are not recognized automatically. To work with them, you must 
convert dates and times to the proper format.

Solution
The system’s idea of the current date is returned by the Sys.Date() function. You can retrieve the current date with 
the time by using the Sys.time() function. Examine the following examples.
 
> Sys.time()
[1] "2014-06-03 13:26:35.06454 EDT"
  
> ## locale-specific version of date()
> format(Sys.time(), "%a %b %d %X %Y")
[1] "Tue Jun 03 1:26:35 PM 2014"
>
> Sys.Date()
[1] "2014-06-03"
>
> Sys.timezone()
[1] "America/New_York"
 

In R, the default format for dates is the four-digit year, followed by the month, and then the day. These can be 
separated by slashes or dashes and must be converted using the as.Date() function. R provides three date and  
date-time variable classes. These are Date, POSIXct, and POSIXlt. The current date and time are in PSOSIXct format 
by default, and this is generally the best alternative.

Here are some examples.
 
> as.Date("1952-5-30")
[1] "1952-05-30"
> as.Date("1952/10/28")
[1] "1952-10-28"
 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5 ■ Working with Dates and Strings

58

Many programs, such as Microsoft Excel, use the format month/day/year rather than year/month/day. To deal 
with this situation, you can create a format string using any of the following date codes (see Table 5-1).

Table 5-1.  R Format Codes for Various Date Values

Code Value

%d Day of the month (decimal number)

%m Month (decimal number)

%b Month (abbreviated)

%B Month (full name)

%y Year (two digits)

%Y Year (four digits)

For example, to convert the character string “6/1/2014” to a date in R, create the format string "%m/%d/%Y" to 
achieve the desired result.
 
> today <- as.Date("6/1/2014", format="%m/%d/%Y")
> class(today)
[1] "Date"
 

Date objects are stored internally as the number of days since January 1, 1970. Earlier dates are represented 
by negative numbers. You can convert a date object to the internal form by using the as.numeric() function. For 
example, statistician John Tukey’s birthdate was 6/16/1915, while R. A. Fisher was born on 2/17/1890. We can use the 
weekdays() and months() functions to extract the desired components of a date:
 
StatBdays <- c(tukey = as.Date("1915-01-16"),fisher = as.Date("1890-02-17"))
> StatBdays
       tukey       fisher
"1915-01-16" "1890-02-17"
> weekdays(StatBdays)
     tukey     fisher
"Saturday"   "Monday"
> months(StatBdays)
     tukey     fisher
 "January" "February"
 

You can perform arithmetic with dates. For example, to determine the age in days of a person born on June 3, 
2000, you could do the following. First, assign today’s date to the variable today. Then, assign a date to June 3, 2000. 
Finally, subtract the dates as follows:
 
> today <- Sys.Date()
> today
[1] "2014-06-27"
> then <- as.Date("2000/6/3")
> then
[1] "2000-06-03"
> howLong <- today - then
> howLong
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Time difference of 5137 days
> Sys.Date() - then
Time difference of 5137 days
 

You can make this a little more generic by using the system date instead of creating a date variable  
for the current day:
 
> Sys.Date() - then
Time difference of 5137 days
 

Here is a more meaningful use of date calculations. We have $1,000 to invest, and want to know how much money 
we will have on May 22, 2015, if we can earn simple interest of .05% per day. The as.integer() function converts the 
dates to integer format. I wrote a simple function to calculate the simple interest, and then supplied the appropriate 
arguments to it to find the answer.
 
> start <- as.integer(as.Date("2015/1/1"))
> stop <- as.integer(as.Date("2015/5/22"))
> t <- stop - start
>
> Return <- function(p = 1000, r = .0005, t = 365){
+ amount <- p * (1 + r * t)
+ return(amount)
+ }
> t
[1] 141
> Return(1000,.0005, 141)
[1] 1070.5
 

When you have times along with dates, the best class to use is most often POSIXct objects, as mentioned 
previously. The “ct” stands for calendar time. The POSIXlt object stands for local time. The POSIXct class returns the 
numeric value , whereas the POSIXlt class returns a list, as you can see from examining the following code. As the 
name implies, the unclass() function returns a copy of its argument with its class attribute removed.
 
> time1 <- as.POSIXct(Sys.Date())
> time1
[1] "2014-06-02 20:00:00 EDT"
> unclass(time1)
[1] 1401753600
> time2 <- as.POSIXlt(Sys.Date())
> unclass(time2)
$sec
[1] 0
 
$min
[1] 0
 
$hour
[1] 0
 
$mday
[1] 3
 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5 ■ Working with Dates and Strings

60

$mon
[1] 5
 
$year
[1] 114
 
$wday
[1] 2
 
$yday
[1] 153
 
$isdst
[1] 0
 
attr(,"tzone")
[1] "UTC"
> time1
[1] "2014-06-02 20:00:00 EDT"
> class(time1)
[1] "POSIXct" "POSIXt"
> mode(time1)
[1] "numeric"
> time2
[1] "2014-06-03 UTC"
> class(time2)
[1] "POSIXlt" "POSIXt"
> mode(time2)
[1] "list" 

Recipe 5-2. Working with Character Strings
Problem
Visualize an iceberg. When we think of data, we typically think of something like a data frame in R, an Excel 
spreadsheet, or some other database with a fixed structure. As you have seen, data frames can include both string 
data (character) as numbers, but in data frames, these are limited to a fixed structure and represent factors or nominal 
variables. The visible part of the iceberg is about 20%, containing “data” as we commonly conceptualize it. The 80% 
below the surface contains a dizzying array of “stuff,” and much of that stuff is very useful, even vital, to us on a daily 
basis, both at a personal and at a business level. The stuff includes, among other things, video and audio files, images, 
texts of all kinds, PDF files, PowerPoint files, e-mail, notes, and Word documents.

We have a digital universe that is growing exponentially. According to EMC’s seventh digital universe study 
conducted by the market research company IDC, the size of the digital universe increases 40% per year.

In the year 2005, there were “only” 132 exabytes of data. An exabyte is 2.5 × 10^18 bytes. The Internet of Things 
(IoT) is predicted to account for approximately 10% of the digital universe by 2020, which itself will contain nearly as 
many digital bits as the number of stars in the “real” universe.

With this much information “out there,” and the majority of it not numbers, but instead narratives, pictures, 
and sounds, text mining has become increasingly important. Although perhaps not as proficient as other scripting 
languages in this regard, R is still quite capable of working with string data. We will discuss creating strings first, and 
then we will discuss various options for working with string data.
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Solution
The class of a string object is a character. Strings must be enclosed in either single or double quotes. You can insert 
single quotes into a string enclosed in double quotes, and vice versa, but you cannot insert the same kind of quote. 
In order for R to recognize the quote, you have to escape it with a slash. The character() function is used to create 
vector objects of the character type.

In this solution, you’ll learn how to create character strings and how to find patterns and matches in strings. You 
will also learn how to use the stringr() function to make working with strings more effective and more systematic.

Creating Character Strings
You can create character strings in a couple of different ways. You have already seen the use of the c() function. You 
can also create an empty character vector and then fill in the elements separately. Here are a couple of examples.
 
> example <- character(5)
> example
[1] "" "" "" "" ""
> example[1] <- "a"
> example[2] <- "b"
> example[3] <- "c"
> example[4] <- "d"
> example[5] <- "e"
> example
[1] "a" "b" "c" "d" "e"
> example2 <- c("f","g","h","i","j")
> example2
[1] "f" "g" "h" "i" "j"
> c(example, example2)
 [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"
 

Another important function for dealing with character data is paste(). This function takes any number of 
arguments, coerces them to character type if they are not already in that format, and then pastes, or concatenates, the 
arguments into one or more character strings. Examine the following code segments.
 
> PieLife <- paste("The life of", pi,"is sweet")
> PieLife
[1] "The life of 3.14159265358979 is sweet"
 

The default is to use a space as the separator, but you can specify other separators by declaring the type you want. 
For example, you can use a comma followed by a space.
 
> MyPieLife <- paste("Today", Sys.Date(), "I did not eat pie.", sep = ", ")
> MyPieLife
[1] "Today, 2014-06-06, I did not eat pie."
> typeof(MyPieLife)
[1] "character"
 

You can also use the cat() function to concatenate output, but as the following example shows, one cannot save 
the output from the cat() function to a variable. You will find the cat() and print() functions to be very useful when 
you write your own custom functions in R. Note the “escaped” character "\n" to tell R to go to the next line. Without 
the "\n", R would keep the command prompt on the same line with the output. Observe that the attempt to create 
a variable called MyPieLife with the paste() function was successful, but the same thing is not true for the cat() 
function. The “variable” we created is nonexistent.
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> MyPieLife <- cat("Today, ", as.character(Sys.Date()),", I did not eat pie.","\n")
Today,  2014-06-06 , I did not eat pie.
>
> typeof(MyPieLife)
[1] "NULL"
 

Pasting has the same recycling property as vectors do. If you paste objects of different lengths, the shorter length 
will be recycled, as you can see in the following example.
 
> paste("X",1:10,sep = ".")
 [1] "X.1"  "X.2"  "X.3"  "X.4"  "X.5"  "X.6"  "X.7"  "X.8"  "X.9"  "X.10"
 

In addition to concatenating character values with the paste() function, you can also use the sprintf() 
function. This function allows us the opportunity to control output by specifying the format of the objects being 
printed. For example:
 
> sprintf("%s was born in %d", "Tukey", 1915)
[1] "Tukey was born in 1915"

Finding Patterns and Matches in Strings
The substr() function can be used to extract a substring, and the sub() function can be used to replace the first 
occurrence of a word or substring match. The gsub() function replaces all matches. The grep() function searches for 
matches to a pattern within the elements of a character vector. See the following examples for the use of the sub() and 
gsub() functions.
 
> TukeySaid <- "An approximate answer to the right problem is worth a good
+ deal more than the exact answer to an approximate problem."
> substr(TukeySaid,start = 3, stop = 14)
[1] " approximate"
> sub("answer", "solution", TukeySaid)
[1] "An approximate solution to the right problem is worth a good\ndeal more than the exact answer 
to an approximate problem."
> gsub("answer", "solution", TukeySaid)
[1] "An approximate solution to the right problem is worth a good\ndeal more than the exact solution 
to an approximate problem."
>
 

The grep() function can locate matches in character vectors. For example, the state.name dataset that ships 
with R lists the names of the 50 United States:
 
state.name
 [1] "Alabama"        "Alaska"         "Arizona"        "Arkansas"
 [5] "California"     "Colorado"       "Connecticut"    "Delaware"
 [9] "Florida"        "Georgia"        "Hawaii"         "Idaho"
[13] "Illinois"       "Indiana"        "Iowa"           "Kansas"
[17] "Kentucky"       "Louisiana"      "Maine"          "Maryland"
[21] "Massachusetts"  "Michigan"       "Minnesota"      "Mississippi"
[25] "Missouri"       "Montana"        "Nebraska"       "Nevada"
[29] "New Hampshire"  "New Jersey"     "New Mexico"     "New York"
[33] "North Carolina" "North Dakota"   "Ohio"           "Oklahoma"
[37] "Oregon"         "Pennsylvania"   "Rhode Island"   "South Carolina"
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[41] "South Dakota"   "Tennessee"      "Texas"          "Utah"
[45] "Vermont"        "Virginia"       "Washington"     "West Virginia"
[49] "Wisconsin"      "Wyoming"
 

Let us find the states with the word “New” in their names. Without the argument value = TRUE, the grep() 
function returns the index numbers of these states rather than their names. See the following:
 
> grep(state.name, pattern = "New")
[1] 29 30 31 32
> grep(state.name, pattern = "New", value = TRUE)
[1] "New Hampshire" "New Jersey"    "New Mexico"    "New York"
 

Now, find the state or states with the longest name(s). Use the nchar() function for this purpose. We see that two 
of the states have 14-character names. We can then determine the names of those two states.
 
> nchar(state.name)
 [1]  7  6  7  8 10  8 11  8  7  7  6  5  8  7  4  6  8  9  5  8 13  8  9 11  8
[26]  7  8  6 13 10 10  8 14 12  4  8  6 12 12 14 12  9  5  4  7  8 10 13  9  7
> longest <- nchar(state.name)
> state.name[which(longest == max(longest))]
[1] "North Carolina" "South Carolina"

Using the stringr Package
The stringr package written by Hadley Wickham overcomes some of the limitations of the base version  
of R when it comes to string manipulations. According to Wickham, the stringr package is a “set of simple  
wrappers that make R’s string functions more consistent, simpler, and easier to use.” Install the package by using  
the install.packages() function.

You can load stringr into your current R session with library() or require(). To see the list of the functions 
available in stringr, use the command library(help = stringr).
 
> install.packages("stringr")
> library(stringr)
> library(help = stringr)
 

The stringr package has all the functionality of the string functions we have used previously, but has the 
advantage that it works with missing data in a more appropriate way, as demonstrated next. The stringr package also 
has functionality that is not available in base R, such as the ability to duplicate characters. All the functions start with 
“str_” followed by a term that is descriptive of the task the function performs. 

The str_length() and str_c() Functions

In the base R string functions, NA is treated as a two-character string, rather than as missing data. To illustrate, the 
nchar() function counts the characters in “NA” and reports it as a two-character string, while the str_length() 
function in stringr recognizes the missing value as such:
 
myName <- c("Larry",NA,"Pace")
> nchar(myName)
[1] 5 2 4
> str_length(myName)
[1]  5 NA  4
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The str_length() function also converts factors to characters, something of which nchar() is not capable.
 
> sexFactor <- factor(c(0,0,0,0,1,1,1,1,0,1,1,0,0,1), labels = c("female","male"))
> sexFactor
 [1] female female female female male   male   male   male   female male
[11] male   female female male
Levels: female male
> nchar(sexFactor)
Error in nchar(sexFactor) : 'nchar()' requires a character vector
> str_length(sexFactor)
 [1] 6 6 6 6 4 4 4 4 6 4 4 6 6 4
 

The str_c() function is a substitute for paste(), but uses the empty string "" as the default separator instead of 
using the whitespace, as paste() does.
 
> str_c("Statistics","is","the","grammar","of","science.","Karl Pearson")
[1] "Statisticsisthegrammarofscience.Karl Pearson"
 

You can change the separator by using the sep argument, as follows:
 
> str_c("Statistics","is","the","grammar","of","science.","Karl Pearson", sep = " ")
[1] "Statistics is the grammar of science. Karl Pearson"

The str_sub() Function

The str_sub() function extracts substrings from character vectors. The user supplies three arguments: the string 
vector, the start value, and the end value. The function has the ability to work with negative indexes, which cause the 
function to work backward from the last character in a string element.
 
> pearsonSays <-str_c("Statistics","is","the","grammar","of","science.","Karl Pearson", sep = " ")
> pearsonSays
[1] "Statistics is the grammar of science. Karl Pearson"
> str_sub(pearsonSays, start = 1, end = 10)
[1] "Statistics"
> str_sub(pearsonSays, start = -7, end = -1)
[1] "Pearson"
 

You can also use the str_sub() function to replace substrings, as in the following example.
 
> str_sub(pearsonSays, 39, 50) <- "Ronald Fisher"
> pearsonSays
[1] "Statistics is the grammar of science. Ronald Fisher"

The str_dup() Function

R provides no specific function for duplicating string characters, but the str_dup() function in stringr allows that 
operation. The str_dup() function duplicates and then concatenates strings within a character vector. You can specify 
the particular string as well as the number of times the string is to be duplicated. See the following:
 
> SantaSays <- str_dup("Ho", 3)
> SantaSays
[1] "HoHoHo"
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> MrsSantaSays <- c(str_dup("Merry", 1:3),"Christmas")
> MrsSantaSays
[1] "Merry"           "MerryMerry"      "MerryMerryMerry" "Christmas"

Padding, Wrapping, and Trimming Strings 

Padding involves taking a string and adding leading or trailing characters (or both) to achieve a specified width. The 
str_pad() function accomplishes this. The default is the use of a space (pad = " "). The side argument takes the 
options "left", "right", and "both" to achieve left, right, and centered alignment. Here are some examples.
 
> str_pad("Tukey", width = 10)
[1] "     Tukey"
> str_pad("Tukey", width = 10, side = "right")
[1] "Tukey     "
> str_pad("Tukey", width = 10, side = "both")
[1] "  Tukey   "
> str_pad("Tukey", width = 10, pad = "#")
[1] "#####Tukey"
 

The str_wrap() function can wrap a string to form paragraphs. For example, consider the following  
quote from R. A. Fisher:
 
fisherSays <- c(
        "If ... we choose a group of social",
        "phenomena with no antecedent knowledge",
        "of the causation or absence of causation",
        "among them, then the calculation of",
        "correlation coefficients, total or partial,",
        "will not advance us a step toward evaluating",
        "the importance of the causes at work.",
        "R. A. Fisher"
        )
 

To display this quote as a single paragraph, we must paste the elements together as follows. The collapse 
argument tells R to “unconcatenate” the individual lines and create a single string vector.
 
fisherSays <- paste(fisherSays, collapse = " ")
 

We can control the width of the lines, as well as indentation. The default arguments for indent and exdent are 0. 
Here is an example.
 
> cat(str_wrap(fisherSays, width = 30, indent = 2), "\n")
  If ... we choose a group of
social phenomena with no
antecedent knowledge of the
causation or absence of
causation among them, then
the calculation of
correlation coefficients,
total or partial, will not
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advance us a step toward
evaluating the importance of
the causes at work. R. A.
Fisher
 

We can trim strings using the str_trim() function. In string processing, we often parse a text into individual 
words. The words usually wind up having whitespaces (blank space) on either end. If that is the situation,  
use str_trim() to remove the whitespaces.
 
> textToTrim <- c("There", "   are","many   "," extra ", "whitespaces")
> textToTrim
[1] "There"       "   are"      "many   "     " extra "     "whitespaces"
> str_trim(textToTrim, side = "both")
[1] "There"       "are"         "many"        "extra"       "whitespaces"

Extracting Words

The word() function extracts words from a sentence. You pass the function a string along with the starting position 
of the first word to extract. The end position is that of the last word to extract. By default, a single space is used as the 
separator between words. Let’s use the Fisher quote and extract different words. We extract the first, the second, and 
the last words of each string.
 
> fisherSays <- c(
+ "If ... we choose a group of social",
+ "phenomena with no antecedent knowledge",
+ "of the causation or absence of causation",
+ "among them, then the calculation of",
+ "correlation coefficients, total or partial,",
+ "will not advance us a step toward evaluating",
+ "the importance of the causes at work.",
+ "R. A. Fisher")
> word(fisherSays, 1)
[1] "If"          "phenomena"   "of"          "among"       "correlation"
[6] "will"        "the"         "R."
> word(fisherSays, 2)
[1] "..."           "with"          "the"           "them,"
[5] "coefficients," "not"           "importance"    "A."
> word(fisherSays, -1)
[1] "social"     "knowledge"  "causation"  "of"         "partial,"
[6] "evaluating" "work."      "Fisher"
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Chapter 6

Working with Tables

R provides a variety of ways to work with data arranged in tabular form. Previous chapters covered vectors, matrices, 
lists, factors, and data frames. This chapter expands on this and covers how to work with tables. We will start with 
simple frequency tables in which we summarize the frequencies of observations in each level of a categorical variable. 
We will then consider two-dimensional tables and higher-order tables. You will learn how to create, display, and 
analyze tabular data. We will limit ourselves to categorical data, but we will discuss frequency distributions for scale 
(interval and ratio) data in Chapter 7.

The table() function returns a contingency table, which is an object of class table and is an array of integer 
values. The integer values can be arranged in multiple rows and columns, just as a vector can be made into a matrix. 
As an example, the HairEyeColor data included with R are in the form of a three-way table, as the following code 
demonstrates:
 
> data(HairEyeColor)
> HairEyeColor
, , Sex = Male
 
        Eye
Hair    Brown Blue Hazel Green
Black      32   11    10     3
Brown      53   50    25    15
Red        10   10     7     7
Blond       3   30     5     8
 
, , Sex = Female
 
        Eye
Hair    Brown Blue Hazel Green
Black      36    9     5     2
Brown      66   34    29    14
Red        16    7     7     7
Blond       4   64     5     8
 
> class(HairEyeColor)
[1] "table"
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Recipe 6-1. Working with One-Way Tables 
Problem
Researchers often collect and enter data in haphazard order. We can sort the data to make more sense of it, but a 
frequency table makes even more sense, and is often one of the first things we will do when we have numbers that are 
not in any particular order. If we count the frequencies of each raw data value, we have created a simple frequency 
distribution, also known as a frequency table. If there is only one categorical variable, the table() function will return 
a one-way table. For those unfamiliar with this method of describing tables, a one-way table has only one row or 
column of data.

Solution
The following data came from the larger plagiarism study I conducted. For 21 students, the major source of the 
material they plagiarized was determined though Turnitin originality reports as being the Internet, other student 
papers, or publications such as articles in journals. The data were not in any particular order. The table() function 
makes it easy to determine the Internet and other student papers were the most popular sources of plagiarized 
material. Incidentally, many students tell me when confronted that they did not know it was wrong to paste material 
from web sites into their papers without attribution of the source. One even told me she had done this throughout her 
entire master’s degree program and no one had ever corrected her.
 
> Source
 [1] "Internet"      "Internet"      "Publication"   "StudentPapers"
 [5] "Internet"      "Internet"      "Internet"      "Internet"
 [9] "StudentPapers" "Publication"   "StudentPapers" "Internet"
[13] "StudentPapers" "StudentPapers" "StudentPapers" "Internet"
[17] "StudentPapers" "StudentPapers" "Internet"      "Internet"
[21] "StudentPapers"
> table(Source)
Source
     Internet   Publication StudentPapers
           10             2             9
 

You can also make a table from summary data if you have such data already collected. For example, the following 
data are from a class exercise in which I have students count the colors of the paint finishes on the first 100 cars  
and trucks they find in a parking lot or passing through an intersection. The table can be made directly by use of 
the as.table() function. The names will default to letters of the alphabet, but you can overwrite those with more 
meaningful names. To conserve space, we will use the first letter or the first two letters of the color names.
 
> carColors <- as.table(c(19,16,17,16,6,7,4,6,6,3))
> carColors
 A  B  C  D  E  F  G  H  I  J
19 16 17 16  6  7  4  6  6  3
> row.names(carColors) <- c("W","B","S","G","R","Bl","Br","Y","G","O")
> carColors
 W  B  S  G  R Bl Br  Y  G  O
19 16 17 16  6  7  4  6  6  3
 

When presenting one-way frequency distributions visually, you should use either a pie chart or a bar chart. 
The categories are separate, and there is no underlying continuum, so the bars in a bar chart should not touch. To 
make the graphics more meaningful, you can color the bars or pie slices to match the colors represented in the table. 
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Chapter 8 covers data visualization in more depth. For now, let’s just create a bar plot of the car color data and give the 
bars the appropriate colors (see Figure 6-1). You can find the named colors that R supports by doing a quick Internet 
search. In the following code, see that the x- and y-axis labels can be specified by use of the xlab and ylab arguments.
 
> myColors <- c("white","black","gray","gray50","red","blue","brown","yellow","green","khaki")
> barplot(carColors, col = myColors, xlab = "Color", ylab = "Frequency", main = "Automotive + Paint 
Color Preferences")
 

Figure 6-1.  Automotive paint color preferences

We can also determine whether the frequencies in a table are distributed on the basis of chance, or if they 
conform to some other expectation. The most common way of doing this for one-way tables is the chi-square test we 
will discuss in greater detail in Chapter 10. 

Recipe 6-2. Working with Two-Way Tables 
Problem
The analysis of cross-classified categorical data occupies a prominent place in statistics and data analysis. A wide 
variety of biological, business, and social science data take the form of cross-classified contingency tables. Although a 
commonly used practice in the analysis of contingency tables is the chi-square test, modern alternatives are available, 
in particular log-linear models. In Recipe 6-2, you will learn how to create and display two-way tables.
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Solution
Until the recent past, the statistical and computational techniques for analyzing cross-classified data were limited, and 
the typical approach to analyzing higher order tables was to do a series of analyses of two-dimensional marginal totals. 
The chi-square test has stood the test of time, but the recent development of log-linear models makes it possible to 
overcome the limitations of the two-dimensional approach when there are tables with more than two categories.

As with one-way tables, you can create a contingency table from raw data, or you can create a table from 
summary data with the as.table() function. I will illustrate both options. Let us return to the mouse weight dataset 
discussed in Chapter 2. The strain of the mouse and the sex of the mouse are both categorical data. We will use the 
table() function to create a two-way table of sex by strain. Then, we will produce a nice-looking clustered barplot of 
the data for visualizing the distribution of sex by strain. The strains have been labeled A, B, C, and D.
 
> counts <- table(mouseWeights$sex,mouseWeights$strain)
> counts
    
      A   B   C   D
  F  62 178 137  41
  M  36 198 131  61
> barplot(counts, col = c("gray","antiquewhite"), ylab = "Count",xlab = "Strain",
+ main = "Mouse Strain by Sex", legend = rownames(counts), beside=T)
 

The clustered or “side-by-side” bar graph is shown in Figure 6-2.

Figure 6-2.  Clustered bar graph of mouse sex by strain
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Now, let’s create a two-way table from summary data. We’ll return to the GSS data and make a two-way table that 
compares the job satisfaction scores from 1 to 7 for males and females (labeled 1 and 2, respectively). Here is the table:
 
     1   2    3    4   5   6   7
  1  66  144  116  29  25  10  5
  2  56  120  144  25  15   3  4
 

We will use the as.table() function once again to create the two-way contingency table. To make the table, I first 
created a vector, then turned the vector into a matrix, and finally made the matrix into a table. As before, the default 
row and column names are successive letters of the alphabet, but it is easy to change those to the correct labels, in this 
case, numbers.
 
> newTable <- c(66, 144, 116, 29, 25, 10, 5, 56, 120, 144, 25, 15, 3, 4)
> newTable <- matrix(newTable, ncol = 7, byrow = T)
> newTable
     [,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,]   66  144  116   29   25   10    5
[2,]   56  120  144   25   15    3    4
> newTable <- as.table(newTable)
> newTable
    A   B   C   D   E   F   G
A  66 144 116  29  25  10   5
B  56 120 144  25  15   3   4
> rownames(newTable) <- 1:2
> colnames(newTable) <- 1:7
> newTable
    1   2   3   4   5   6   7
1  66 144 116  29  25  10   5
2  56 120 144  25  15   3   4
 

As before, we can make a barplot to show the distribution of job satisfaction by sex (see Figure 6-3).
 
> barplot(newTable, beside = T, xlab = "Job Satisfaction", ylab = "Frequency",
+ legend = rownames(newTable))
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Recipe 6-3. Analyzing One- and Two-Way Tables
Problem
A very common problem is determining whether the observed frequencies in one- or two-way tables differ 
significantly from expectation. We determine an expected frequency based on some null hypothesis, and then 
compare the observed and expected frequencies to determine whether the observed frequencies are due to chance 
(sampling error) or due to significant departures from the expected frequencies. The most frequently used tool for this 
kind of tabular analysis is the chi-square test.

The chi-square test comes in two varieties. When we analyze a one-way table, we use a chi-square test of 
goodness of fit. Two-way tables are analyzed with a chi-square test of independence (also known as a test of 
association). For the goodness-of-fit test, the expected frequencies may be equal or unequal, depending on the null 
hypothesis. The test of independence, on the other hand, uses the observed frequencies to calculate the expected 
frequencies. I will explain and illustrate both tests.

Solution
The German geodist Friedrich Robert Helmert discovered the chi-square distribution in 1876. Helmert found that 
the sample variance for a normal distribution followed a chi-square distribution. Helmert’s discovery was touted 
in his own books, as well as other German texts, but was not known in English. The chi-square distribution was 
independently rediscovered in 1900 when Karl Pearson developed his goodness-of-fit test. R. A. Fisher and  
William S. Gosset (“Student”) later made the connection to the sample variance.

Figure 6-3.  Job satisfaction scores by sex (source: GSS) 
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The chi-square distribution was applied to tests of goodness of fit by Pearson. R—along with many statistical 
packages, such as SPSS—labels the test “Pearson’s Chi-Square.” The chi-square distribution has a single parameter, 
known as the degrees of freedom. Unlike other distributions, the chi-square distribution’s degrees of freedom are based 
on the number of categories rather than the sample size. Pearson had difficulty applying the concept of degrees of 
freedom correctly to his own chi-square tests, and was subsequently corrected by Fisher on this matter.  The degrees 
of freedom are the number of categories minus 1. The total of the observations, N, and the total of the number of 
categories, k, are both constrained. The N objects must be placed in the k categories in such a way that the probability 
totals 1, and each object fits into one (and only one) of the categories. These are the conditions of mutual exclusivity 
and exhaustiveness. Interestingly, from a mathematical standpoint, the expected value of chi-square when the null 
hypothesis is true is the degrees of freedom. As the value of chi-square increases, it becomes less probable that the 
observed values came from the distribution specified by the null hypothesis.

We will do a chi-square goodness-of-fit test for the car color preference data. Assuming the 10 colors would be 
distributed evenly if each color was equally preferred, we would expect each color to occur 10 times in the sample of 
100 cars. To calculate chi-square, we subtract the expected frequency from the observed frequency for each category, 
square this deviation score, divide the squared deviation by the expected frequency, and sum these values across 
categories. As explained earlier, the degrees of freedom for this particular test would be 10 – 1 = 9. Clearly, the colors 
are not equally popular, as is shown by the p value, which is substantially lower than .05, the customary alpha level. 
 
> carColors
 W  B  S  G  R Bl Br  Y  G  O
19 16 17 16  6  7  4  6  6  3
> chisq.test(carColors)
 
        Chi-squared test for given probabilities
 
data: carColors
X-squared = 34.4, df = 9, p-value = 7.599e-05
 

For the chi-square test of independence, the expected frequencies are calculated by multiplying the marginal 
(row and column) totals for each cell, and then dividing that product by the overall sample size. The resulting values 
are the frequencies that would be expected if there were no association between the two categories. It is customary to 
identify the two-way contingency table as r × c (row-by-column), and the degrees of freedom for the chi-square test of 
independence are calculated as the number of rows minus 1 times the number of columns minus 1, or (r – 1)(c – 1).

Let us determine if the sexes of the mice in our dataset are equally distributed across the four strains. Once again, 
the p value lower than .05 makes it clear that there are unequal numbers of male and female mice across the strains.
 
> chisq.test(mouseWeights$sex, mouseWeights$strain)
 
        Pearson's Chi-squared test
 
data: mouseWeights$sex and mouseWeights$strain
X-squared = 11.9429, df = 3, p-value = 0.007581
 

The expected frequency for each cell, as I mentioned, is calculated by multiplying the marginal row total and 
the marginal column total for that cell, and dividing the product by the overall sample size. Here is the table with the 
marginal totals added:
 
> newTable
            A   B   C   D rowMargins
F          62 178 137  41        418
M          36 198 131  61        426
colMargins 98 376 268 102        844
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As an example, the expected number of female mice for strain A would be found by multiplying 418 by 98, and 
dividing the product, 40964, by the number of mice, 844. The resulting value of 48.54 is the expected frequency if 
the sex and strain of the mice were not associated. With a little matrix algebra, it is easy to calculate all the expected 
frequencies at once: 
 
> rowMargins <- matrix(c(418,426)rowMargins)
> rowMargins
     [,1]
[1,]  418
[2,]  426
> colMargins <- matrix(c(93,376,268,102))
> colMargins
     [,1]
[1,]   93
[2,]  376
[3,]  268
[4,]  102
> colMargins <- t(colMargins)
> expected <- (rowMargins %*% colMargins)/844
> expected
         [,1]    [,2]     [,3]     [,4]
[1,] 48.53555 186.218 132.7299 50.51659
[2,] 49.46445 189.782 135.2701 51.48341

Recipe 6-4. Working with Higher-Order Tables
Problem
As mentioned at the beginning of this chapter, the traditional way to analyze three-way or higher tables was to separate 
the table into a series of two-way tables and then perform chi-square tests of independence for each two-way table.  
Log-linear modeling of contingency tables has essentially supplanted the use of chi-square analysis for three-way and 
higher tables. I will illustrate using the aforementioned HairEyeColor table that ships with R. Here are the numbers:
 
> HairEyeColor
, , Sex = Male
 
       Eye
Hair   Brown Blue Hazel Green
Black     32   11    10     3
Brown     53   50    25    15
Red       10   10     7     7
Blond      3   30     5     8
 
, , Sex = Female
 
       Eye
Hair   Brown Blue Hazel Green
Black     36    9     5     2
Brown     66   34    29    14
Red       16    7     7     7
Blond      4   64     5     8
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The customary way of handling this sort of data would be to do a chi-square test of independence for each sex to 
determine if there is an association between hair color and eye color. This, of course, omits the consideration of the 
possible interactions between sex and the other two categorical variables.

Solution
The log-linear model provides the ability to analyze the three-way table as a whole. Log-linear models range from the 
simplest model, in which the expected frequencies are all equal, to the most complex (saturated model), in which 
every component is included.

To do a log-linear analysis, we load the data and the MASS package. The log-linear analysis produces both a 
Pearson’s chi-square and a likelihood-ratio chi-square. We are testing the same null hypothesis that we do in a  
two-way chi-square, namely that the three or more categorical variables are independent.

We build a formula to indicate the categorical variables in our analysis, and we use different signs to indicate how 
we want to combine these variables. The tilde (~) indicates the beginning of the formula. The plus signs indicate an 
additive model; that is, one in which we are not interested in examining interactions. By contrast, a multiplicative model 
uses asterisks (*) to indicate a model with interactions. Here is the additive model for the hair, sex, and eye color data:
 
> data(HairEyeColor)
> library(MASS)
> dimnames(HairEyeColor)
$Hair
[1] "Black" "Brown" "Red" "Blond"
 
$Eye
[1] "Brown" "Blue" "Hazel" "Green"
 
$Sex
[1] "Male" "Female"
 
> indep <- loglm(~Hair + Eye + Sex, data = HairEyeColor)
> summary(indep)
Formula:
~Hair + Eye + Sex
attr(,"variables")
list(Hair, Eye, Sex)
attr(,"factors")
     Hair Eye Sex
Hair    1   0   0
Eye     0   1   0
Sex     0   0   1
attr(,"term.labels")
[1] "Hair" "Eye" "Sex"
attr(,"order")
[1] 1 1 1
attr(,"intercept")
[1] 1
attr(,"response")
[1] 0
attr(,".Environment")
<environment: R_GlobalEnv>
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Statistics:
                       X^2  df  P(>X^2)
Likelihood Ratio  166.3001  24        0
Pearson           164.9247  24        0
 

With p-values of approximately zero, both hypothesis tests show that the model departs significantly from 
independence.

A fully-saturated model would include the main effects along with all the interactions, and would not provide 
useful information, as the saturated model uses all the components and produces a likelihood-ratio statistic of zero:
 
> summary(indep2)
Formula:
~Hair * Eye * Sex
attr(,"variables")
list(Hair, Eye, Sex)
attr(,"factors")
     Hair Eye Sex Hair:Eye Hair:Sex Eye:Sex Hair:Eye:Sex
Hair    1   0   0        1        1       0            1
Eye     0   1   0        1        0       1            1
Sex     0   0   1        0        1       1            1
attr(,"term.labels")
[1] "Hair"         "Eye"          "Sex"          "Hair:Eye"     "Hair:Sex"
[6] "Eye:Sex"      "Hair:Eye:Sex"
attr(,"order")
[1] 1 1 1 2 2 2 3
attr(,"intercept")
[1] 1
attr(,"response")
[1] 0
attr(,".Environment")
<environment: R_GlobalEnv>
 
Statistics:
                  X^2  df  P(>X^2)
Likelihood Ratio    0   0        1
Pearson             0   0        1
 

We use an iterative process to find the least complex model that best explains the associations among the 
variables. This can be a hit-or-miss proposition. For example, the model ~ Eye + Hair * Sex stipulates that hair 
color and sex are dependent (associated), while eye color is independent of both hair color and sex.
 
> indep3 <- loglm(Eye ~ Hair * Sex, data = HairEyeColor)
> summary(indep3)
Formula: 
Eye ~ Hair * Sex
attr(,"variables")
list(Eye, Hair, Sex)
attr(,"factors")
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     Hair Sex Hair:Sex
Eye     0   0        0
Hair    1   0        1
Sex     0   1        1
attr(,"term.labels")
[1] "Hair"     "Sex"      "Hair:Sex"
attr(,"order")
[1] 1 1 2
attr(,"intercept")
[1] 1
attr(,"response")
[1] 1
attr(,".Environment")
<environment: R_GlobalEnv>
 
Statistics:
                      X^2  df  P(>X^2)
Likelihood Ratio 299.4790  24        0
Pearson          334.0596  24        0
 

You can see that this model is more effective than the initial additive one. We can use backward elimination, in 
which the highest-order interactions are successively removed from the saturated model until the reduced model no 
longer accurately describes the data. Although this process is not built into the loglm function, it is possible to build 
the saturated model and then use the step() function to with the direction set to backward:
 
> saturated <- loglm( ~ Hair * Eye * Sex, data = HairEyeColor)
> step(saturated, direction = "backward")
Start: AIC=64
~Hair * Eye * Sex
 
               Df    AIC
- Hair:Eye:Sex  9 52.761
<none>            64.000
 
Step: AIC=52.76
~Hair + Eye + Sex + Hair:Eye + Hair:Sex + Eye:Sex
 
           Df     AIC
- Eye:Sex   3  51.764
<none>         52.761
- Hair:Sex  3  58.327
- Hair:Eye  9 184.678
 
Step: AIC=51.76
~Hair + Eye + Sex + Hair:Eye + Hair:Sex
 
           Df     AIC
<none>         51.764
- Hair:Sex  3  53.857
- Hair:Eye  9 180.207
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Call:
loglm(formula = ~Hair + Eye + Sex + Hair:Eye + Hair:Sex, data = HairEyeColor,
    evaluate = FALSE)
 
Statistics:
                      X^2  df    P(>X^2)
Likelihood Ratio 11.76372  12  0.4648372
Pearson          11.77059  12  0.4642751
 

AIC is the Akaike Information Criterion. Smaller AIC values are better. In two steps, R has first eliminated the 
three-way interaction term, and then the two-way interaction between eye color and sex. Our most parsimonious 
model includes hair color, eye color, sex, and the interactions of hair and eye color and hair color and sex.
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Chapter 7

Summarizing and Describing Data

In this chapter, you learn how to summarize and describe data measured at the interval or ratio level. We will lump 
interval and ratio measures together and call the combination “scale” data because these types of measurement have 
equal intervals between successive data values.

Chapter 6 showed how to summarize categorical data using the table() function. This function works in the 
same fashion for scale data to produce simple frequency tables. With small datasets, simple frequency tables are fine, 
but with larger datasets, we need a way to group the data by intervals to keep the frequency table from being too long 
to be of any use.

In addition to simple and grouped frequency distributions, you will learn how to calculate the common 
descriptive statistics for scale data, including measures of central tendency, variability, skewness, and kurtosis. We will 
quickly outgrow the statistical prowess of the base R distribution and find that several packages will help us (and keep 
us from having to write custom functions). We will explore the usefulness of the fBasics and prettyR packages, in 
particular. The chapter ends with a description of how to calculate various quantiles for a data distribution.

Recipe 7-1. Creating Simple Frequency Distributions
Problem
We are awash in a sea of data. The volume of data is doubling approximately every 18 months. Raw data are not 
particularly helpful because it is hard to detect patterns. In addition to summarizing categorical data, tables are also 
very useful for summarizing the frequencies of interval and ratio data.

Solution
Tables help to make order from chaos. As mentioned, we use the table() function to create a simple frequency 
distribution. The simple frequency distribution tells us a great deal about the shape of the data, whether there is a 
modal value (or even multiple modes), and the range of data values. As mentioned, simple frequency distributions are 
limited to small datasets.

The ages in years of the recipients of the Oscar for Best Actress and Best Actor since the beginning of the 
Academy Awards in 1928 are in the data frame called oscars. I created the data frame from information available on 
Wikipedia. Interested readers can retrieve a copy of this data frame from the companion web site for this book.
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> head(oscars)
    award              name
1 Actress      Janet Gaynor
2 Actress     Mary Pickford
3 Actress     Norma Shearer
4 Actress    Marie Dressler
5 Actress       Helen Hayes
6 Actress Katharine Hepburn
                                                            movie years days
1 Seventh Heaven, Street Angel, and Sunrise: A Song of Two Humans    22  222
2                                                        Coquette    37  360
3                                                    The Divorcee    28   87
4                                                    Min and Bill    63    1
5                                      The Sin of Madelon Claudet    32   39
6                                                   Morning Glory    26  308
> tail(oscars)
    award                name              movie years days
169 Actor           Sean Penn               Milk    48  189
170 Actor        Jeff Bridges        Crazy Heart    60   93
171 Actor         Colin Firth  The King's Speech    50  170
172 Actor       Jean Dujardin         The Artist    39  252
173 Actor    Daniel Day-Lewis            Lincoln    55  301
174 Actor Matthew McConaughey Dallas Buyers Club    44  118
 

We can construct a frequency table of the ages in years of the winners of Best Actress as follows:
 
> actress <- subset(oscars, award == "Actress")
> table(actress$years)
 
21 22 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 41 42 44 45 48 49 54 60
 1  2  2  4  5  4  4  8  3  3  4  6  3  5  2  2  4  2  6  2  1  2  1  2  1  1
61 62 63 74 80
 3  1  1  1  1
 

Let’s do the same thing for the actors:
 
> actor <- subset(oscars, award == "Actor")
> table(actor$years)
 
29 30 31 32 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
 1  2  1  3  3  2  4  5  5  5  3  4  5  5  2  5  1  4  3  4  2  2  2  2  1  1
56 57 60 62 76
 1  2  3  3  1
 

With 87 people in each subset, we are beginning to see the limits of the simple frequency distribution. With this 
many data points, it seems a grouped frequency distribution would be more helpful (see Recipe 7-2). 
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Recipe 7-2. Creating Grouped Frequency Distributions
Problem
Simple frequency distributions are not appropriate for large datasets. The “granularity” of the data at the level of the 
individual values presents a “forest versus trees” dilemma (see Recipe 7-1 for tables that are not particularly useful, 
where we get lost in the trees and forget we are in a forest). The grouped frequency distribution is what we need to 
see where we are in the forest so that we can get out safely. Recipe 7-2 teaches you how to create a grouped frequency 
distribution, and you learn that you have control over the interval width so that you can specify an effective class 
interval size for your distribution.

Solution
The range in ages of the Oscar-winning actors and actresses is 21–80. Let us establish 12 intervals from 20 to 80 by 
setting breaks at 5 years. First, establish breaks by using the seq() function. Then use the cut() function to separate 
the data into the intervals. Because we do not want any overlap, we close each interval on the left and leave it open 
on the right. This is accomplished by using the right = FALSE argument. You can use the trick of an extra pair of 
parentheses to create the table and print it at the same time.
 
> breaks <- seq(20, 80, by = 5)
> ageIntervals <- cut(oscars$years, breaks, right = FALSE)
> (ages <- table(ageIntervals))
ageIntervals
[20,25) [25,30) [30,35) [35,40) [40,45) [45,50) [50,55) [55,60) [60,65) [65,70)
      5      26      28      36      28      22      10       4      12       0
[70,75) [75,80)
      1       1 

Recipe 7-3. Calculating Summary Statistics
Problem
Frequency distributions are helpful, but they still leave us with unanswered questions about our data and its 
properties. These questions include the precise values for measures of the central tendency, variability, skewness, 
and kurtosis of a dataset. In particular, if data consist of more than one variable, tables become less useful, and we 
need statistics such as chi-square or likelihood ratios to describe the relationships among the variables. In Recipe 7-3, 
you learn how to use R base, as well as the contributed package fBasics to find the these summary statistics. We 
also explore the usefulness of the prettyR package for describing numerical data, as well as for frequency tables and 
crosstabulations.

Solution
Base R provides most of the common statistical indexes, but a few are missing. For example, though I have in my 
possession a book that claims the mode() function locates the modal value in a dataset, that is clearly not the case.  
The mode() function, as you have already seen, shows the storage class of an R object.

Table 7-1 lists the commonly used statistical functions in the base R distribution, which does not have functions 
for the mode, skewness, or kurtosis.
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Here are the summary statistics for the 174 ages in the oscars data frame.
 
> mean(oscars$years)
[1] 40.08046
> median(oscars$years)
[1] 38
> min(oscars$years)
[1] 21
> max(oscars$years)
[1] 80
> range(oscars$years)
[1] 21 80
> IQR(oscars$years)
[1] 13.75
> sd(oscars$years)
[1] 11.05396
> var(oscars$years)
[1] 122.19
> length(oscars$years)
[1] 174
> sum(oscars$years)
[1] 6974
> summary(oscars$years)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
  21.00   32.00   38.00   40.08   45.75   80.00
 

A histogram shows that the ages are positively skewed (see Figure 7-1). Use the breaks argument to specify  
five-year intervals for the histogram, as follows:
 
> hist(oscars$years, breaks = seq(20,80, by = 5))
 

Table 7-1.  Commonly Used Statistical Functions in R

Function Calculates This

mean() Arithmetic average

median() Median

min() Minimum value

max() Maximum value

range() Shows minimum and maximum values

IQR() Interquartile range

sd() Standard deviation, treating data as a sample

var() Variance, treating data as a sample

length() Counts the number of data points

sum() The total of the data points

summary() Five-number summary plus the mean
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Many R packages add statistical functionality missing from the base version of R. One of the best of these is the 
fBasics package. Install fBasics and use the package for summary statistics. 
 
> install.packages("fbasics")
> library(fBasics)
Loading required package: MASS
Loading required package: timeDate
Loading required package: timeSeries
 
Attaching package: 'fBasics'
 
The following object is masked from 'package:base':
 
    norm
 
> basicStats(oscars$years)
            X..oscars.years
nobs             174.000000
NAs                0.000000
Minimum           21.000000
Maximum           80.000000
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Figure 7-1.  The age distribution is positively skewed
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1. Quartile       32.000000
3. Quartile       45.750000
Mean              40.080460
Median            38.000000
Sum             6974.000000
SE Mean            0.837999
LCL Mean          38.426442
UCL Mean          41.734477
Variance         122.190021
Stdev             11.053959
Skewness           0.876438
Kurtosis           0.794613
 

This summary confirms the positive skew in the distribution of ages. The skewness coefficient would be zero if 
the data were completely symmetrical. Similarly, the data are positively kurtotic, meaning the distribution of ages is 
“peaked.” In addition to the coefficients for skewness and kurtosis, we get the number of missing values (in this case 
none), the standard summary descriptive statistics, the standard error of the mean, and the lower and upper limits 
of a 95% confidence interval for the mean. In Chapter 12, you will learn some contemporary statistical methods for 
dealing with data such as these that depart from a normal distribution. 

Another useful package is prettyR. It provides many options, including formatting R output for web display, the 
missing mode function we discussed earlier, and the ability to describe various data objects, including numeric and 
logical values.
 
> library(prettyR)
> describe(oscars$years)
Description of structure(list(x = c(22, 37, 28, 63, 32, 26, 31, 27, 27, 28, 30, 26, 29, 24, 38, 25, 
29, 41, 30, 35, 32, 33, 29, 38, 54, 24, 25, 48, 41, 28, 41, 39, 29, 27, 31, 38, 29, 25, 35, 60, 61, 
26, 35, 34, 34, 27, 37, 42, 41, 36, 32, 41, 33, 31, 74, 33, 49, 38, 61, 21, 41, 26, 80, 42, 29, 33, 
36, 45, 49, 39, 34, 26, 25, 33, 35, 35, 28, 30, 29, 61, 32, 33, 45, 29, 62, 22, 44, 44, 41, 62, 53, 
47, 35, 34, 34, 49, 41, 37, 38, 34, 32, 40, 43, 48, 41, 39, 49, 57, 41, 38, 39, 52, 51, 35, 30, 39, 
36, 43, 49, 36, 47, 31, 47, 37, 57, 42, 45, 42, 45, 62, 43, 42, 48, 49, 56, 38, 60, 30, 40, 42, 37, 
76, 39, 53, 45, 36, 62, 43, 51, 32, 42, 54, 52, 37, 38, 32, 45, 60, 46, 40, 36, 47, 29, 43, 37, 38, 
45, 50, 48, 60, 50, 39, 55, 44)), .Names = "x", row.names = c(NA, -174L), class = "data.frame")
 
Numeric
              mean    median       var        sd   valid.n
x            40.08  .     38     122.2     11.05       174
 
> Mode(oscars$years)
[1] "41"
> mode(oscars$years)
[1] "numeric"
 

Remember R’s case sensitivity. The Mode() function in prettyR finds the mode, while the mode() function returns 
the storage class. The prettyR package also “prettifies” frequency tables and crosstabulations. It also provides a very 
useful function to break down a numeric variable by one or more grouping variables. Let us examine the brkdn() 
function first. You must enter a formula showing the variable to be analyzed, the grouping variable, the data source, 
the number of grouping levels, the numeric description you want, and the number of places to round the results.  
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The formatting is very effective. Examine the means and variances for the ages of the male and female Oscar winners. 
It appears there may be some age discrimination against females.
 
> require(prettyR)
> brkdn(years ~ award, data = oscars, maxlevels = 2, num.desc = c("mean", "var"),
+ vname.width = NULL, width = 10, round.n = 2)
 
Breakdown of years by award 
Level       mean        var  
Actor       44.03       78.08
Actress     36.13       136.1
 

An independent-samples t test confirms the suspicion that the average ages for male and female winners are 
significantly different.
 
> t.test(oscars$years ~ oscars$award)
Welch Two Sample t-test
 
data: oscars$years by oscars$award
t = 5.0402, df = 160.244, p-value = 1.244e-06
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
  4.809494 11.006598
sample estimates:
  mean in group Actor mean in group Actress
             44.03448              36.12644
 

Now, look at a frequency distribution and a crosstabulation formatted by prettyR. Because the age range is so 
great for the entertainers’ ages, we will us a smaller dataset. See how much more informative the table produced by 
freq() in prettyR is than the one from the table() function is?
 
> freq(studentComplete$Quiz1)
 
Frequencies for studentComplete$Quiz1
       89   92   75   76   83   79   82   84   85   86   87   88   90   NA
        3    3    2    2    2    1    1    1    1    1    1    1    1    0
%      15   15   10   10   10    5    5    5    5    5    5    5    5    0
%!NA   15   15   10   10   10    5    5    5    5    5    5    5    5
 
> table(studentComplete$Quiz1)
 
75 76 79 82 83 84 85 86 87 88 89 90 92
 2  2  1  1  2  1  1  1  1  1  3  1  3
 

Using the plagiarism data frame from Chapter 6 (see Recipe 6-1), we crosstabulate the student’s sex and whether 
he or she plagiarized the first assignment in the class. Compare the output from the prettyR calculate.xtab() 
function to that of the table() function in base R. It is obvious that prettyR wins that comparison.
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> calculate.xtab(plagiarism$Sex,plagiarism$Plagiarized1) 
Crosstabulation of plagiarism$Sex by plagiarism$Plagiarized1
        plagiarism$Plagiarized1
...     No      Yes
F       27      4       31
        87.1    12.9     -
        67.5    80      68.89
 
M       13      1       14
        92.86   7.14     -
        32.5    20      31.11
 
        40      5        45
        88.89   11.11    100
odds ratio = 0.52
relative risk (plagiarism$Sex-M) = 0.55
 
> table(plagiarism$Sex,plagiarism$Plagiarized1)
    
    No Yes
  F 27   4
  M 13   1
 

Although the calculate.xtab() function is more informative than the table() function, the output is still 
not what you might see from the pivot table command in a commercial spreadsheet like Excel. The delim.xtab() 
function formats a crosstabulation with counts and percentages. You can specify whether to display the column 
of percentages next to the row of counts, or to display them separately. We will format the crosstabulation we 
just produced. By setting the interdigitate argument to F or FALSE, you will get the rows of counts and totals 
separately from the rows and totals of percentages—a more appealing alternative to me, at least, in terms of the visual 
appearance of the tables.
 
> delim.xtab(crosstab, interdigitate = F)
crosstab
 
        No      Yes     Total
F       27      4       31
M       13      1       14
Total   40      5       45
  
crosstab
 
        No      Yes     Total
F       87.1%   12.9%   100%
M       92.9%   7.1%    100%
Total   88.9%   11.1%   100%
 

For purposes of comparison, I show the pivot table produced by Excel 2013 for the same data, followed by the 
output from SPSS (see Figures 7-2 and 7-3).
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Recipe 7-4. Working with Quantiles
Problem
We often find it useful to use intervals to represent the separation of data into more or less distinct categories. The 
most easily recognized of these is the percentile. By dividing a distribution into smaller groups of equal sizes, we are 
better able to visualize the location of an individual score in the data distribution. Quantile is a rather strange word, 
and not one on the tips of most people’s tongues. Technically, quantiles are points taken at regular intervals from the 
cumulative density function (CDF) of a random variable. If we have q quantiles, we will thus divide the dataset into  
q equally sized subsets. Percentiles (also known as centiles) cut a distribution into 100 equal groups. Another common 
example is quartiles, which as the name implies, cut a distribution into fourths. The usefulness of these breakdowns is 
that they give us an idea of “how high” or “low” a given score is. The first quartile is also the 25th percentile, the second 
quartile is the 50th percentile (or the median), and the third quartile is the 75th percentile.

Solution
Although the definition of a quantile is fairly simple, the calculation of one is a bit problematic. For example, there 
are five different methods of determining quartiles in SAS. R’s own quantile() function has nine different definitions 
(types) for calculating quantiles. Type ?quantile at the command prompt to learn more about these types. The 
default is type 7, which is consistent with that of the S language. When I was an R newbie, I was perplexed that my 
TI-84 calculator, Excel, SPSS, Minitab, and R were inconsistent in reporting values for quartiles. Since then, I have 
learned a lot more about R, and Microsoft has even patched up its quartile function so Excel produces the correct 
values according to the National Institute of Standards and Technology (NIST).

Figure 7-2.  A pivot table in Excel 2013

Figure 7-3.  SPSS output of the crosstablulation
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Continuing with our data on Oscar winners, let’s look at the quartiles. Observe the use of a vector of probabilities 
between 0 and 1 to establish which quantiles to report. We could just as easily report deciles (tenths) if we desired to. 
R reports the minimum value as the 0th percentile and the maximum value as the 100th percentile. Even that is a matter 
of controversy, as many statisticians (myself among them) argue that the 0th and 100th percentiles are undefined.
 
quantile(oscars$years, prob = seq(0, 1, 0.25))
   0%   25%   50%   75%  100%
21.00 32.00 38.00 45.75 80.00
> quantile(oscars$years, prob = seq(0, 1, 0.10))
  0%  10%  20%  30%  40%  50%  60%  70%  80%  90% 100%
21.0 27.3 30.0 33.0 36.0 38.0 41.0 44.0 48.4 55.7 80.0
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Chapter 8

Graphics and Data Visualization

In Chapter 8, you learn how to graph and visualize data. As in other areas, R’s base graphics capabilities are fine for 
most day-to-day graphing purposes, but a number of packages extend R’s graphical functionality. We will use the 
ggplot2 package to illustrate.

The ggplot2 package was written by Hadley Wickham and Winston Chang as an implementation of the 
“grammar of graphics.” This term was introduced by Leland Wilkinson in his book on the subject published by 
Springer in 2005. The idea was to take the good parts of the base R graphics and lattice graphics, and none of the bad 
parts. All the graphics you have seen thus far were created using the base version of R.

A point about graphics and visualization is in order. The two are not exactly the same thing. A graph is a kind 
of diagram that shows the relationships between two or more things represented as dots, bars, or lines. To visualize 
something, on the other hand, we first develop a mental picture. The image in our mind helps us understand the data 
in a way that looking at raw data cannot do. Of course, what has happened is that visualization has evolved to include 
not just a mental process, but external processes as well. We could say that visualization is correctly described as 
turning something that is symbolic into something geometric. Visualization allows researchers to “observe” their own 
simulations and calculations.

It is very easy to make bad graphs. It is not very easy to make beautiful ones. If you would like to sit at the feet 
of a master, study the work of Edward Tufte. His books on the visual display of quantitative data are masterpieces. 
According to Tufte, “Excellence in statistical graphics consists of complex ideas communicated with clarity, precision, 
and efficiency,” (from the second edition of The Visual Display of Quantitative Information, Graphics Press, 2001). 
Tufte’s book has approximately 250 illustrations of very good graphics and a few examples of really terrible ones.  
My favorite thing about Tufte is that he dislikes PowerPoint as much as I do (www.edwardtufte.com/tufte/powerpoint).

We begin with the ubiquitous pie chart. According to Wilkinson, the pie chart has been praised unjustifiably 
by managers and maligned unjustifiably by statisticians. For example, the R documentation for the pie() function 
states: “Pie charts are a very bad way of displaying information. The eye is good at judging linear measures and bad 
at judging relative areas. A bar chart or dot chart is a preferable way of displaying this type of data.” I agree with the 
second and third sentences, but not with the first one. In addition to the pie chart, we will run through the standard 
graphics, some of which you have already seen in earlier chapters. We will also explore several techniques for 
visualizing data, including categorical and scale data.

Recipe 8-1. Getting the Colors You Want
Problem
R’s default color palette is a series of pastel colors, much like the sidewalk chalk children like to play with. The colors 
are not very appealing, but they are functional for many basic uses. Users often want to establish a more effective color 
scheme. You learn several important skills in Recipe 8-1, including choices for color palettes, how to create a pie chart 
representation of a color palette, and how to display multiple graphic objects simultaneously.
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Solution
The pie chart is so simple that a five-year-old can grasp the concept. It is also so appealing to the eye that people 
cannot resist making pie charts. It is also very easy to muck one up, and people do it all the time. One thing you should 
never do is to make a 3D pie chart. Excel will readily do this for you, but a 3D pie chart is a definite no-no. The 3D pie 
chart distorts the perspective of the data as well as introduces a false third dimension. R makes decent pie charts, and 
they are completely customizable. My guess is that Hadley Wickham doesn’t like pie charts. The ggplot2 package 
features many “geoms,” but there is not one for a pie chart.

Note■■  T he label “geom” is short for geometric object.

One excellent use for a pie chart is to explore the color palettes in R. I wish I could say I thought this up, but the 
example is in the R documentation for the palette function. We first draw a blank pie chart by using the argument 
col = FALSE, and then fill the graphics device with the blank pie chart, R’s default palette, the rainbow palette  
(my personal favorite), and the heat colors palette. Here’s the code for doing that. The par() function allows the user 
to place multiple graphic objects in the same window, in this case, four objects arranged in two rows and two columns, 
but with no borders displayed. The argument main can be used to specify the title of each separate graphic object.
 
    n<- 7
par(mfrow = c(2,2))
pie(rep(1,n), col = FALSE, main = "Blank Pie")
pie(rep(1,n), main = "Default Colors")
pie(rep(1,n), col = rainbow(n), main = "Rainbow Colors")
pie(rep(1,n), col = heat.colors(n), main = "Heat Colors")
 

See Figure 8-1 for the graphical representations.
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Figure 8-1.  Illustration of a few of R’s color palettes
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In addition to learning about the color palettes, you just learned how to display multiple graphs in the R Graphics 
Device. Examine Figure 8-2 to see that you can copy and save the output, as well as print it. To access these options, 
just right-click anywhere in the Graphics Device window.

Figure 8-2.  R allows you to copy, save, and print graphics

Recipe 8-2. Using the Standard Graphs
Problem
Many people are visual learners and thinkers. Numbers are wonderful, and I like playing with numbers and 
“crunching” them, but I really like to turn them into pictures, both mental and physical. The trite expression that a 
picture is worth a thousand words has a ring of truth to it.

Every statistics book in my library has a chapter on the graphical display of data. This is usually the second or 
third chapter in the book, because graphs are part of descriptive statistics, or what Tukey called exploratory data 
analysis. You have seen frequency distributions, histograms, pie charts, and bar charts (including clustered bar charts) 
in earlier chapters. In the remaining recipes in Chapter 8, you learn to produce line graphs, scatterplots, and various 
exploratory graphs and plots. We will use ggplot2 for most of the graphics in this chapter.
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Solution
First, let us review some principles of good graphics before illustrating the various graphs that I just listed. Here are 
Tufte’s principles of graphical integrity (www.asq0511.org/Presentations/1298/sld008.htm):

The physical area on the graphic should be directly proportional to the number represented.•	

The data and important events should be labeled and explained on the graphic.•	

The graphic should show variation in the data, not design variation.•	

Time series displays of money should use deflated and standardized units.•	

The number of chart dimensions should not exceed the number of data dimension.•	

Do not quote data out of context.•	

Histograms
The bars in a histogram represent the frequencies of the observations. Because there is an underlying continuum, 
the bars should touch. Histograms are one of the most common and most meaningful ways to display simple and 
grouped frequency distributions.

Here is an example of a histogram taken from the ggplot2 documentation. In keeping with Tufte’s principles,  
I added a descriptive title. The code follows. The data for more 58,788 movies ship with ggplot2. The rating is based 
on International Movie Database (IMDB) user votes and can range from 1 to a perfect 10. We take a sample of 1,000 
to keep our example manageable. The set.seed function allows us to generate pseudorandom numbers that we can 
replicate should we want to use the same example again. This is useful for various purposes; in this case, for sampling 
from a larger dataset. See Figure 8-3 for the histogram.
 
> library(ggplot2)
> set.seed(5689)
> movies <- movies[sample(nrow(movies), 1000), ]
> qplot(rating, data=movies, geom="histogram", main = "Movie Ratings") 
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Figure 8-3.  Histogram produced by ggplot2

Bar Charts
Both histograms and bar charts are produced by the geom_bar() function in ggplot2. Here are some actual expense 
data from one of my recent conference trips. First I create a data frame called df, which contains the meal and prices. 
Then I download ggplot2 using the command install.packages("ggplot2"), followed by library("ggplot2") 
after the download is completed.

The aes() function creates the “aesthetic” for the bar chart. The default legend is redundant in this case, but can be 
removed by setting guides(fill = FALSE). We define the bar chart by telling R what the axes are, as well as what variable 
to fill. The stat = "identity" option specifies that that the bars should represent the actual values in the data frame. The 
default is stat = "bin", which causes the bars to represent frequencies. The completed bar chart appears in Figure 8-4.
 
> df
       Meal Price
1 Breakfast 13.98
2     Lunch 21.52
3    Dinner 37.52
> barChart<- ggplot(df)
> barChart <- barChart +geom_bar(aes(x=Meal,y=Price, fill=Meal), stat ="identity")
> barChart + ggtitle("Meal Expenses")
> barChart + guides(fill = FALSE) 
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Line Graphs
We use line graphs to display the change in a variable or variables over time. A common example is the change in 
the closing price of a stock. A frequency polygon is also a kind of line graph. The following data are from the Yahoo! 
Finance web site. The data include the opening, high, low, closing, volume, and adjusted closing prices of Starbucks 
stock for the year 2013. I added an index number for the 252 days in the dataset.
 
> head(starbucks)
      date  open  high   low close  volume adj_close number
1 1/2/2013 54.59 55.00 54.26 55.00 6633800     53.88      1
2 1/3/2013 55.07 55.61 55.00 55.37 7335200     54.24      2
3 1/4/2013 55.53 56.00 55.31 55.69 5455700     54.55      3
4 1/7/2013 55.40 55.79 55.01 55.72 4360000     54.58      4
5 1/8/2013 55.58 55.72 55.07 55.62 4806700     54.48      5
6 1/9/2013 55.89 55.90 54.33 54.63 8339200     53.51      6
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Figure 8-4.  Bar chart produced by ggplot2
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Scatterplots
The scatterplot is the default in ggplot2 if no geom is specified. This is consistent with the base version of R, which 
will produce a scatterplot when you plot two variables without further specification. Let us see how the Starbucks 
volumes relate to the date. Remember the xlab and ylab arguments are used to specify the labels for the x and y axes.
 
> qplot(starbucks$number, starbucks$volume, xlab = "date", ylab = "volume", main = "Starbucks Volume 
by Date")
 

The scatterplot appears in Figure 8-6. There is no apparent relationship between the date and the volume.
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Figure 8-5.  Starbucks closing stock prices for the year 2013

We can use the qplot() function in ggplot2 for most basic graphs. See the syntax as follows. Note that the geom 
type is specified as a character string. The finished line graph appears in Figure 8-5.
 
> qplot(starbucks$number, starbucks$adj_close, geom="line", main="Starbucks Closing Price") 
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Recipe 8-3. Using Graphics for Exploratory Data Analysis
Problem
According to John Tukey’s preface to Exploratory Data Analysis (Pearson, 1977): “Once upon a time, statisticians 
only explored. Then they learned to confirm exactly—to confirm a few things exactly, each under very specific 
circumstances. As they emphasized exact confirmation, their techniques inevitably became less flexible.”

Tukey believed that exploratory data analysis is “detective work,” and I agree. The two most common graphical 
tools for exploratory data analysis are the stem-and-leaf plot and the boxplot. These tools do help you see another, 
deeper layer in the data. The boxplot, in particular, is very useful for visualizing the shape of the data, as well as the 
presence of outliers. In addition to these plots, we will examine the dot plot (of which there are a couple of varieties).

Solution
A boxplot is a visual representation of the Tukey five-number summary of a dataset. These numbers are the minimum, 
the first quartile, the median, the third quartile, and the maximum. Tukey originally called the plot a “box and 
whiskers” plot.
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Figure 8-6.  Scatterplot of Starbucks volume by date
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Side-by-side boxplots are very handy for comparing two or more groups. The following example uses the 
PlantGrowth data frame that comes with the base version of R. The data represent the weights of 30 plants divided 
into three groups on the basis of a control condition and two treatment conditions:
 
> summary(PlantGrowth)
     weight       group
 Min.   :3.590   ctrl:10
 1st Qu.:4.550   trt1:10
 Median :5.155   trt2:10
 Mean   :5.073
 3rd Qu.:5.530
 Max.   :6.310
 

Here is how to make side-by-side boxplots for the three groups using qplot(). See the graphics output in 
Figure 8-7, where you will note the presence of two outliers in the trt1 group.
 
> boxPlot <- ggplot(PlantGrowth, aes(x=group, y=weight)) + geom_boxplot()
> boxPlot 
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Figure 8-7.  Side-by-side boxplots
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I retrieved the following information from the Internet. The data include the location (the 50 US states plus 
Washington, DC), the region, the 2013 population, the percentage of the population with PhDs, the per capita income 
in 2012, the total number of PhDs awarded in that state or location during 2012, and the breakdown of these degrees 
by male and female. The data are part of a much larger database managed by the National Science Foundation.
 
> head(phds)
    location        region  pop2013 phdPct income total maleTot femaleTot
1    Alabama     southEast  4833722 0.0134  35625   648     328       320
2     Alaska nonContiguous   735132 0.0068  46778    50      29        21
3    Arizona          west  6626624 0.0134  35979   888     491       397
4   Arkansas     southEast  2959373 0.0066  34723   194     110        84
5 California          west 38332521 0.0157  44980  6035    3423      2612
6   Colorado       central  5268367 0.0154  45135   809     427       382
 

It would be interesting to see if there is a positive correlation between the percentage of the population with PhDs 
and the per capita income. There is.
 
> cor.test(phds$phdPct, phds$income)
 
        Pearson's product-moment correlation
 
data: phds$phdPct and phds$income
t = 2.3124, df = 49, p-value = 0.025
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.0416852 0.5423665
sample estimates:
      cor
0.3136656
 

The correlation  of r = .31 is statistically significant at p = .025,  but not particularly large. Squaring the correlation 
coefficient gives us the “coefficient of determination,” which shows the percentage of variance overlap between 
the per capita income and the percentage of PhDs graduated from a state. We can estimate that about 9.8% of the 
variation in per capita income can be predicted by knowing the percentage of PhDs who graduated in that state. 
However, the correlation is misleading, as you will see when we determine there are outliers throwing off the 
relationship. As indicated, we can use ggplot2 to produce a very nice box plot to determine the presence of the 
outliers. To make a boxplot for a single variable, you must add a fake x grouping variable to the aesthetic. See the 
following code and the resulting boxplot, which reveals four high outliers, one of them extreme (see Figure 8-8).  
We use scale_x_discrete(breaks = NULL to remove the unwanted zero that appears on the x axis of the plot.
 
> plot <- ggplot(phds, aes(x = factor(0), y = phdPct))+ geom_boxplot() + xlab("")
> plot <- plot + scale_x_discrete(breaks = NULL)
> plot
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The four locations with the highest percentages of PhDs are the District of Columbia, Massachusetts, 
Washington, and Wisconsin. With these locations taken out of the data, the correlation becomes slightly higher:
 
> cor.test(data = phds, x = phds$phdPct, y = phds$income)
 
        Pearson's product-moment correlation
 
data: phds$phdPct and phds$income
t = 2.4334, df = 44, p-value = 0.01909
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.06011174 0.57700935
sample estimates:
      cor
0.3443999
 

A scatterplot also reveals that with the outliers removed, there is basically a linear relationship between the 
percent of PhDs and the per capita income in a state. We can still account for only 11.9% of the variation in income, 
however (see Figure 8-9, in which I used ggplot to add the line of best fit). The inclusion of geom_point() adds the 
required layer to the scatterplot to make it visible in the R Graphics Device. The fit line is added by stat_smooth, 
which plots a smoother—in this case, a linear model— on the scatterplot.
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Figure 8-8.  Boxplot reveals four outliers
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 > plot <- ggplot(phds,aes(phdPct, income)) + geom_point()
> plot <- plot + stat_smooth(method = "lm", se = FALSE)
> plot 
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Figure 8-9.  Scatterplot with line of best fit added

Stem-and-leaf plots are a semigraphical way to show the frequencies in a dataset. The stems are the leading 
digit(s) and the leaves are the trailing digits. A stem-and-leaf plot (also known as a stemplot) shows every value in the 
dataset, preserving what I call its “granularity.” The stem-and-leaf plot is not available in ggplot2, but it is in the base 
version of R.

One of my favorite R datasets is faithful, which lists the waiting time between eruptions and the duration of the 
eruptions of the Old Faithful geyser in Yellowstone National Park. Let us produce a stem-and-leaf plot of the waiting 
times. Because there are so many observations, R created separate bins for the trailing digits 0–4 and for 5–9 in a split 
stem-and-leaf plot. Clearly, if the stem-and-leaf plot were rotated 90 degrees counterclockwise, it would resemble a 
grouped frequency histogram. Unlike other graphs, the stem-and-leaf plot is displayed in the R Console.
 
> stem(faithful$waiting)
 
  The decimal point is 1 digit(s) to the right of the |
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  4 | 3
  4 | 55566666777788899999
  5 | 00000111111222223333333444444444
  5 | 555555666677788889999999
  6 | 00000022223334444
  6 | 555667899
  7 | 00001111123333333444444
  7 | 555555556666666667777777777778888888888888889999999999
  8 | 000000001111111111111222222222222333333333333334444444444
  8 | 55555566666677888888999
  9 | 00000012334
  9 | 6
 

Dotplots are another very good way to preserve the granularity of the dataset. The newest release of the  
ggplot2 package has dotplots, but, at least according to Twitter, will not have stem-and-leaf plots any time soon.  
As it materializes, there are different kinds of dotplots. The frequency dotplot was described by Leland Wilkinson, the 
mastermind behind the grammar of graphics. There is also a version of the dotplot developed by William Cleveland 
as an alternative to bar charts. See the completed Wilkinson dotplot in Figure 8-10. For each aesthetic used to create a 
plot in ggplot, one must supply the proper “geom” to produce the required layer.
 
> ggplot(faithful, aes(x = waiting)) + geom_dotplot()
stat_bindot: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this. 
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Figure 8-10.  Dotplot of waiting times between eruptions of Old Faithful
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Recipe 8-4. Using Graphics for Data Visualization
Problem
As was mentioned in the introduction to this chapter, data visualization is not the same thing as a graph. Certain 
graphs discussed in the other recipes in this chapter are useful for visualization. In Recipe 8-4, for example, boxplots 
and scatterplots can quickly tell us something about the relationship between variables and about the presence 
and the effect of outliers. Similarly, there are many other diagnostic plots that help us delve deeper into the unseen 
properties of the data.

Data visualization is becoming increasingly important, and also includes the visualization of ideas and concepts. 
For example the word cloud is an interesting way to visualize the occurrences of words or references in a text or a web 
site. We will cover word clouds in Chapter 14, but for now, let’s use ggplot2 and learn how to produce maps, and then 
populate them with data to help us visualize the information more effectively.

Solution
R is an effective visualization tool with the ggplot2 package installed. One of the best uses of ggplot2 is to create 
maps that help to visualize one or more attributes of a geographical location. According to Hadley Wickham, the 
grammar of graphics requires that every plot must consist of five components:

a default dataset with aesthetic mappings•	

one or more layers, each with a geometric object, a statistical transformation, and a dataset •	
with aesthetic mappings

a scale for each aesthetic mapping•	

a coordinate system•	

a facet specification•	

The purpose of the ggmap package is to take a downloaded map image and plot it as a context layer in ggplot2. 
The user can then add layers of data, statistics, or models to the map. With ggmap, the x aesthetic is fixed to longitude, 
the y aesthetic is fixed to latitude, and the coordinate system is fixed to the Mercator projection.

Compare a table of the level of unemployment by US county in 2009 to a map with the same information  
(see Figure 8-11). It is obvious that the map allows visualization that is not possible from the raw data.
 
> head(unemp)
  fips   pop unemp colorBuckets
1 1001 23288   9.7            5
2 1003 81706   9.1            5
3 1005  9703  13.4            6
4 1007  8475  12.1            6
5 1009 25306   9.9            5
6 1011  3527  16.4            6
> tail(unemp)
      fips   pop unemp colorBuckets
3213 72143 12060  16.3            6
3214 72145 20122  17.6            6
3215 72147  3053  27.7            6
3216 72149  9141  19.8            6
3217 72151 11066  24.1            6
3218 72153 16275  16.0            6
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The following example is based on the Harvard University Center for Computational Biology’s course on spatial 
maps and geocoding in R (http://bcb.dfci.harvard.edu/~aedin/courses/R/CDC/maps.html). Here is how the 
map was constructed. Note the use of color to add visual appeal to the map. We cut the unemployment statistics 
into five categories, plot the map, and then “fill the bucket” for each US county. The result is a visually attractive 
and informative overview of unemployment at the state and county levels. FIPS are Federal Information Processing 
Standards five-digit codes assigned by the National Institute of Standards and Technology (NIST) to specify US states 
(the first two digits) and counties (the last three digits).
 
data(unemp)
data(county.fips)
 
# Plot unemployment by country
colors = c("#F1EEF6", "#D4B9DA", "#C994C7", "#DF65B0", "#DD1C77",
    "#980043")
head(unemp)
unemp$colorBuckets <- as.numeric(cut(unemp$unemp, c(0, 2, 4, 6, 8,
    10, 100)))
colorsmatched <- unemp$colorBuckets[match(county.fips$fips, unemp$fips)]
 
map("county", col = colors[colorsmatched], fill = TRUE, resolution = 0,
    lty = 0, projection = "polyconic")
## Loading required package: mapproj
 

unemployment by county, 2009

<2% 2-4% 4-6% 6-8% 8-10% >10%

Figure 8-11.  Unemployment by county, 2009

www.it-ebooks.info

http://bcb.dfci.harvard.edu/~aedin/courses/R/CDC/maps.html
http://www.it-ebooks.info/


Chapter 8 ■ Graphics and Data Visualization

104

# Add border around each State
map("state", col = "white", fill = FALSE, add = TRUE, lty = 1, lwd = 0.2,
    projection = "polyconic")
title("unemployment by county, 2009")
 
leg.txt <- c("<2%", "2-4%", "4-6%", "6-8%", "8-10%", ">10%")
legend("topright", leg.txt, horiz = TRUE, fill = colors)
 

Of course, we can visualize other things besides unemployment statistic by US county. For example, here is a map 
of the southeastern United States (see Figure 8-12). I used ggplot to build the map, and the geocode() function to 
look up the latitude and longitude values for a state university in each state. I then looked up the fall 2013 enrollment 
for each school and plotted the schools’ locations along with a label and the total enrollment, which shows as a larger 
filled circle for larger enrollments. Here is the code that accomplished this. Only a couple of the geocodes are shown 
to illustrate.
 
> geocode("university of georgia")
Information from URL : http://maps.googleapis.com/maps/api/geocode/json?address= 
university+of+georgia&sensor=false
Google Maps API Terms of Service : http://developers.google.com/maps/terms
        lon      lat
1 -83.37732 33.94801
> geocode("university of alabama")

Information from URL : http://maps.googleapis.com/maps/api/geocode/json?address= 
university+of+alabama&sensor=false
Google Maps API Terms of Service : http://developers.google.com/maps/terms
        lon      lat
1 -87.54743 33.21444
 
> mydata
                                       school      long      lat enrollment    label
1                       University of Alabama -87.54743 33.21444      34852       UA
2                       University of Florida -82.34639 29.64526      49042       UF
3                       University of Georgia -83.37732 33.94801      34536      UGA
4                      University of Kentucky -84.50397 38.03065      28037       UK
5                   University of Mississippi -89.53844 34.36473      22286 Ole Miss
6 University of North Carolina at Chapel Hill -79.04691 35.90491      28136      UNC
7                University of South Carolina -81.02743 33.99611      32848      USC
8        University of Tennessee at Knoxville -83.92074 35.96064      27171      UTK
9                      University of Virginia -78.50798 38.03355      23464      UVA
 

www.it-ebooks.info

http://maps.googleapis.com/maps/api/geocode/json?address=university+of+georgia&sensor=false
http://maps.googleapis.com/maps/api/geocode/json?address=university+of+georgia&sensor=false
http://developers.google.com/maps/terms
http://maps.googleapis.com/maps/api/geocode/json?address=university+of+alabama&sensor=false
http://maps.googleapis.com/maps/api/geocode/json?address=university+of+alabama&sensor=false
http://developers.google.com/maps/terms
http://www.it-ebooks.info/


Chapter 8 ■ Graphics and Data Visualization

105

Now, here is the code for making the map:
 
library(ggplot2)
library(maps)
#load us map data
all_states <- map_data("state")
southeast <- subset(all_states, region %in% c("florida", "georgia", "south carolina",  
"north carolina", "virginia","kentucky","tennessee","mississippi","alabama"))
p <- ggplot()
p <- p + geom_polygon(data=southeast, aes(x=long, y=lat, group = group), color="white" )
p <- p + geom_point( data=mydata, aes(x=long, y=lat, size = enrollment), color="coral1") +  
scale_size(name="Total Enrollment")
p <- p + geom_text( data=mydata, hjust=0.5, vjust=-0.5, aes(x=long, y=lat, label=label), 
color="gold2", size=4 )
 

And finally, the map itself (see Figure 8-12).

Figure 8-12.  Universities in the southeast and their enrollments
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Chapter 9

Probability Distributions

Looking up probabilities once was a time-consuming, complex, and error-prone task. Virtually every statistics book 
has tables of various probability distributions in an appendix, but R provides a family of functions for both discrete 
and continuous probability functions, making the use of tables unnecessary. You have already seen the rnorm() 
function used to produce random numbers that simulate a normal distribution with a certain mean and standard 
deviation. The functions for other probability distributions are all similarly labeled to make it easy to remember them.

In this chapter, you will learn how to use R for finding various probabilities for both discrete and continuous 
probability distributions. The normal distribution can serve as a model for the rest. The density function is dnorm(). 
The cumulative probability distribution (PDF) is pnorm() and the quantile function is qnorm(). The function for 
simulating a random value based on the normal distribution is rnorm().

Recipe 9-1. Finding Areas Under the Standard Normal Curve
Problem
Everyone who uses statistics on even a casual basis needs to look up the probability to the left or to the right of a 
given z score. It is also very common to need to find the area between two z scores. Because the standard normal 
distribution is symmetrical, many of the tables go from the mean of 0 to a high z score of 3.5 or 4.0. In Recipe 9-1, you 
learn how to build and plot your own standard normal distribution to visualize areas under the curve. You also learn 
how to “look up” areas and plot them for visualization.

Solution
First, we will build two vectors. One is the x axis (z scores ranging from –4 to 4) and the other is the probability density 
for each z score. This is the y axis. We will combine the vectors into a data frame, which we will abbreviate df. To get 
the densities, we use the dnorm() function.
 
> xaxis <- seq(-4, 4, by = 0.10)
> yaxis <- dnorm(xaxis)
> df <- as.data.frame(cbind(xaxis, yaxis))
 

We now have everything we need to build a standard normal distribution and plot it (see Figure 9-1). Here’s how 
to build the curve. Though technically not required, combining the axes into a data frame allows us to use ggplot2 
with the data frame to produce different graphics. Here, however, we simply use the base R graphics module to plot 
the normal curve. To clarify matters, the type is "l", which stands for “line,” and not the numeral 1.
 
df <- as.data.frame(cbind(xaxis, yaxis))
> plot(df, xlab = "z score", ylab = "density", type = "l")
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We see the familiar unimodal, symmetrical, bell-shaped curve and note that the probabilities taper off rapidly 
after values of z = ±3.

You can find areas under the normal curve by using a subtraction strategy. The pnorm() function also allows you 
to find both right- and left-tailed probabilities. You can find the area between any two z scores simply by subtracting 
the area to the left of the lower z score from the area to the left of the higher z score. Find the area to the left of a z 
score by using the pnorm() function. Similarly, you can find the area to the right of a given z score by setting the lower 
argument to FALSE (or by finding 1-pnorm()). Let us determine the areas to the left and right of a z score of 1.96:
 
> pnorm(1.96)
[1] 0.9750021
> pnorm(1.96, lower = FALSE)
[1] 0.0249979
 

Clearly, if we subtract the area to the left of z = –1.96 from the area to the left of z =1.96, we will be left with the 
middle 95% of the standard normal distribution:
 
> pnorm(1.96) - pnorm(1.96, lower = FALSE)
[1] 0.9500042
We could also find this using pnorm(1.96)-pnorm(-1.96).
 

It is similarly easy to use the qnorm() function to locate critical values. Assume we want the value of z that cuts off 
the top 10% of the standard normal distribution from the lower 90%. We use the qnorm() function as follows:
 
> qnorm(.90)
[1] 1.281552
 

Figure 9-1.  The standard normal curve

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 9 ■ Probability Distributions

109

We can also supply a vector of quantiles to the qnorm() function. For example, here are the critical values of z for 
alpha levels of .10, .05, and .01.
 
> quantiles <- c(.95, .975, .995)
> qnorm(quantiles)
[1] 1.644854 1.959964 2.575829

Recipe 9-2. Working with Binomial Probabilities
The binomial probability distribution is the distribution of the random variable r, the number of “successes” in a 
series of N dichotomous (0,1) trials, where the result of each trial is a 0 (failure) or a 1 (success). Often the definition of 
success is arbitrary, as in heads or tails in a coin toss, but sometimes the definition of success is logical, as in a correct 
answer to a multiple-choice question or a unit without a defect. The binomial distribution gives the probability of 
r successes in N trials, where r can range from 0 to N. The most common and well-known example is that of a coin 
toss. We know intuitively that a fair coin has a probability of .5 of landing on heads, and a probability of .5 of landing 
on tails. Yet when we flip the coin, we get one or the other. The two outcomes are dbinom mutually exclusive. The 
law of large numbers tells us that over a long series of trials, the empirical probability of heads will converge on the 
theoretical probability.

Problem
Technically, the binomial probability distribution has a probability mass function (PMF), rather than a PDF, because 
the binomial distribution is discrete. Finding binomial probabilities is similar to finding normal probabilities.

Solution
The binomial distribution is used in a variety of applications. Binomial distributions have the following four 
characteristics:

The probability of success, •	 p, remains constant for all trials.

The procedure has a fixed number of trials, •	 N.

The •	 N trials are independent. The outcome of any trial does not affect the outcome of any 
other trial.

Each trial must result in either a success or a failure.•	

As an example, assume that a manufacturing process is known to produce 4.7% defective parts. A random sample 
of 10 parts is obtained. What is the probability that exactly 3 parts are defective? What is the probability that 0 parts 
are defective? What is the probability that 4 or more parts are defective? The binomial distribution can help us answer 
these questions. For the sake of illustration, let us generate the entire distribution of binomial probabilities for exactly 
0 to 10 defective parts given a defect rate of .047. We use the dbinom() function in this case. For convenience, we 
create a data frame to show the number of “successes” (in this case, defects) and the exact probabilities.
 
> r <- 0:10
> N <- 10
> p <- .047
> prob <- round(dbinom(r, N, p), 5)
> prob <- as.data.frame(cbind(r, prob))
> prob
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    r    prob
1   0 0.61792
2   1 0.30474
3   2 0.06763
4   3 0.00889
5   4 0.00077
6   5 0.00005
7   6 0.00000
8   7 0.00000
9   8 0.00000
10  9 0.00000
11 10 0.00000
 

The probability of exactly 3 parts being defective is .06763. The probability of exactly 0 parts being defective is 
.61792. The probability of 4 or more parts being defective is .00077 + .00005 = .00083. We can also use the cumulative 
binomial distribution to solve the last problem, the probability of 4 or more parts being defective. The complement 
rule of probability says that we can find the complement of a probability p by subtracting p from 1. We can find the 
left-tailed probability of r | R <= 3 as follows, and then subtract that value from 1 to get the probability of 4 or more 
defects.
 
> round(1 - pbinom(3, 10, .047), 5)
[1] 0.00082
 

As another example, assume that a commercial airliner has four jet engines. The independent reliability of each 
engine is p = .92 or 92%. For the aircraft to land safely, at least two of the engines must be working properly. What is 
the probability that the flight can land safely? The probability that two or more engines will work properly is .998 or 
99.8%. We can find this using the complement rule, or equivalently by setting the lower argument to F or FALSE:
 
> N <- 4
> p <- .92
> 1 - pbinom(1, N, p)
[1] 0.9980749
> pbinom(1, N, p, lower = F)
[1] 0.9980749 

Recipe 9-3. Working with Poisson Probabilities
Problem
The Poisson distribution (named after French mathematician  Siméon Denis Poisson) shows the number of 
“occurrences” within a given interval. The interval may be distance, time, area, volume, or some other measure. 
Unlike the binomial distribution, the Poisson distribution does not have a fixed number of observations. The Poisson 
distribution applies in the following circumstances:

The number of occurrences that occur within a given interval is independent of the number of •	
occurrences in any other nonoverlapping interval.

The probability that an occurrence will fall within an interval is the same for all intervals of the •	
same size, and is proportional to the size of the interval (for small intervals).

As the size of the interval becomes smaller, the probability of an occurrence in that interval •	
approaches zero.
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Remember the Poisson counts have no theoretical upper bound, so we often use the complement rule of 
probability to solve Poisson problems. In many disciplines, certain events need to be counted or estimated in order 
to make good decisions or plans. For example, the number of cars going through an intersection, or the number of 
accidents at the intersection could be a justification for installing a traffic light. Estimating the number of calls arriving 
at a customer service center is important for staffing purposes.

Solution
The Poisson distribution is useful for determining probabilities of events that occur rarely, but are significant when 
they do occur. One of the earliest applications of the Poisson distribution was its use by Ladislaus Bortkiewicz in 1898 
to study the rate of deaths among Prussian soldiers who had been accidentally kicked by horses.

In more routine applications, the Poisson distribution has been used to determine the probabilities of 
industrial accidents, hurricanes, and manufacturing defects. As an example, imagine that a manufacturing plant 
has historically averaged six “reportable” accidents per quarter. What is the probability of exactly six accidents in the 
next quarter? What is the probability of zero accidents? What is the probability of more than six accidents? We can 
use the functions for the Poisson distribution to answer these questions. We must supply the number of occurrences 
(which can be a vector) and lambda (which is the mean number of occurrences per interval). Following the pattern 
of binomial probabilities, dpois(x,lambda) gives the probability that there are x occurrences in an interval, while 
ppois(x,lambda) gives the probability of x or fewer occurrences in an interval, when the mean occurrence rate for 
intervals  of that size is lambda.
 
> dpois(6, 6) ## The exact probability of 6 accidents
[1] 0.1606231
> dpois(0, 6) ## The exact probability of 0 accidents
[1] 0.002478752
> 1 - ppois (6, 6) ## The probability of more than 6 accidents
[1] 0.3936972 

Recipe 9-4. Finding p Values and Critical Values of t, F,  
and Chi-Square
Problem
P values and critical values figure prominently in inferential statistics. Historically, tables of critical values were used 
to determine the significance of a statistical test and to choose the appropriate values for developing confidence 
intervals. Tables are helpful, but often incomplete, and the use of tables is often cumbersome and prone to error. You 
saw earlier that the qnorm() function can be used to find critical values of z for different alpha levels. We can similarly 
use qt(), qf(), and qchisq() for finding critical values of t, F, and chi-square for various degrees of freedom. The 
built-in functions of R make tables largely unnecessary, as these functions are faster to use and often more accurate 
than tabled values.

Solution
Finding quantiles for various probability distributions is very easy. You may recall the t distribution has a single 
parameter: the degrees of freedom. The F distribution has two parameters: the degrees of freedom for the numerator 
and the degrees of freedom for the denominator. The chi-square distribution has one parameter: the degrees of 
freedom. Interestingly from a mathematical standpoint, each of these distributions has a theoretical relationship 
to the normal distribution, though their probability density functions are quite different from that for the normal 
distribution. The t distribution is symmetrical, like the normal distribution, but the F and chi-square distributions are 
positively skewed.
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Finding p Values for t
Finding one- and two-tailed p values for t is made simple with the pt() function. The pt() function returns the left-
tailed, or optionally, the right-tailed cumulative probability for a given value of t and the relevant degrees of freedom. 
For example, if we have conducted a one-tailed test with 18 degrees of freedom, and the value of t calculated from our 
sample results was 2.393, the p value is found as follows:
 
> pt(2.393, 18, lower = F)
[1] 0.01391179
 

If the test is two-tailed, we can simply double the one-tailed probability:
 
> 2 * pt(2.393, 18, lower = F)
[1] 0.02782358

Finding Critical Values of t
For t tests, we often use two-tailed hypothesis tests, and for such tests, there will be two critical values of t. We also use 
lower and upper critical values of t to develop confidence intervals for the mean. It is typical practice to use only the 
right tail of the F and chi-square distributions for hypothesis tests, but in certain circumstances, we use both tails, as 
in confidence intervals for the variance and standard deviation using the chi-square distribution.

Assume we have the following 25 scores:
 
> x <- rnorm(25, 65, 10)
> x <- round(x, 1)
> x
[1] 60.2 64.4 64.8 65.6 63.7 68.0 85.7 58.2 53.1 55.0 72.3 50.2 78.5 67.1 79.2
[16] 72.1 59.2 50.6 77.8 56.3 64.0 76.8 68.2 75.0 59.6
 

We can use the t distribution to develop a confidence interval for the population mean. Because we have  
25 scores, the degrees of freedom are n – 1 = 24. We want to find the values of t that cut off the top 2.5% of the 
distribution and the lower 2.5%, leaving us with 95% in the middle. Like the standard normal distribution, the t 
distribution has a mean of zero. Because the t distribution is an estimate of the normal distribution, a confidence 
interval based on the t distribution will be wider than a confidence interval based on the standard normal 
distribution. Let us calculate the mean and standard deviation of the data, and then construct a confidence interval. 
We will use the fBasics package. Begin with the commands install.packages("fBasics") and library(fBasics).
 
> install.packages("fBasics")
> library(fBasics)
> basicStats(x)
                      x
nobs          25.000000
NAs            0.000000
Minimum       50.200000
Maximum       85.700000
1. Quartile   59.200000
3. Quartile   72.300000
Mean          65.824000
Median        64.800000
Sum         1645.600000
SE Mean        1.917057
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LCL Mean      61.867388
UCL Mean      69.780612
Variance      91.877733
Stdev          9.585287
Skewness       0.178608
Kurtosis      -0.968359
 

Note the upper (UCL) and lower (LCL) control limits of the 95% confidence interval for the mean. These are 
developed using the t distribution. The confidence interval can be defined as:

95% CI:  M –  ta/2
×s

M
 £ m £  M + ta/2

×s
M

We can use the qt() function to find the critical values of t as follows. As with the normal distribution, the critical 
values of t are the same in absolute value. The value s

M
 is the standard error of the mean, which is reported above.

 
> qt(.975, 24)
[1] 2.063899
> qt(.025, 24)
[1] -2.063899

Substituting the appropriate values produces the following result, and we see that our confidence limits agree 
with those produced by the fBasics package.
 
95% CI = 65.824 – 2.063899×1.917057 £ m £ 65.824 + 2.063899×1.917057
= 65.824 – 3.956612 £ m £  65.824 + 3.956612
= 61.867388 £ m £  69.780612
 

The t.test() function in R will automatically produce confidence intervals. For example, if we simply do a  
one-sample t test with the preceding data, R will calculate the confidence interval for us:
 
> t.test(x)
 
        One Sample t-test
 
data:  x
t = 34.336, df = 24, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 61.86739 69.78061
sample estimates:
mean of x
   65.824

Finding p Values for F
Unlike the t distribution, the F distribution is positively skewed. It has two degrees of freedom so most textbooks have 
several pages of tables, which could be eliminated using R. As I mentioned earlier, we usually find critical values of F 
in the right tail of the distribution. The F ratio is formed from two variance estimates, and it can range from zero to +∞. 
As a matter of expediency, if you are simply testing the equality of two variance estimates, you should always divide 
the smaller estimate into the larger one. Though it is possible to test using the left tail of the F distribution, this is 
rarely done. The pf() function locates the p value and the qf() function gives the quantile for a given F ratio and the 
relevant degrees of freedom.
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For example, assume we have two variance estimates and wish to test the null hypothesis that they are equal 
against the alternative that they are unequal. Let’s create a vector of y scores to join with the x scores we worked with 
in Recipe 9-4:
 
> head(df)
     x    y
1 60.2 84.5
2 64.4 89.7
3 64.8 74.0
4 65.6 90.4
5 63.7 84.9
6 68.0 99.6
> tail(df)
      x    y
20 56.3 79.8
21 64.0 82.5
22 76.8 80.7
23 68.2 86.4
24 75.0 81.2
25 59.6 94.1
 

We can use the sapply() function to obtain the variances of x and y.
 
> sapply(df, var)
       x        y
91.87773 43.40677
 

The question is whether the variance for x, the larger of the two estimates, is significantly larger than the variance 
for y. There are 25 observations for each variable, so the degrees of freedom for the F ratio are 24 and 24. We supply 
the value of F, the numerator degrees of freedom, and the denominator degrees of freedom to find the p value.  
To obtain a two-tailed p value, we double the one-tailed value:
 
F <- var(x)/var(y)
> F
[1] 2.075825
> pvalue
Error: object 'pvalue' not found
> pvalue <- 2*(pf(F, 24, 24, lower = FALSE)
+ )
> pvalue
[1] 0.07984798
 

We see that the estimates differ by more than a factor of 2, but they are not significantly different at alpha = .05.  
To compare the means of x and y, we could therefore use the t test that assumes equality of variance. The two means 
are significantly different, as the p value indicates.
 
> t.test(x, y, var.equal = T)
 
        Two Sample t-test
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data: x and y
t = -8.7317, df = 48, p-value = 1.766e-11
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -25.06795 -15.68405
sample estimates:
mean of x mean of y
   65.824    86.200
 

Finding Critical Values of F
Use the qf() function to find quantiles for the F distribution. For example, assume we have three groups and each 
group has 10 observations. For an analysis of variance, the critical value of F would be found as follows. Note we have 29 
total degrees of freedom, 2 degrees of freedom between groups, and 27 degrees of freedom within groups. We thus need 
a critical value of F for 2 and 27 degrees of freedom that cut off the lower 95% of the F distribution from the upper 5%:
 
> qf(0.95, 2, 27)
[1] 3.354131

Finding p Values for Chi-Square
The chi-square distribution, like the F distribution, is positively skewed. It has one parameter, the degrees of freedom. 
We use the chi-square distribution nonparametrically for tests of model fit (or goodness of fit) and association. The 
chi-square distribution is also used parametrically for confidence intervals for the variance and standard deviation.

Use the pchisq() function to find the p value for a value of chi-square. In an interesting historical side note, 
Pearson, who developed the chi-square tests of goodness of fit and association, had difficulty with getting the degrees 
of freedom right. Fisher corrected Pearson—and the two were bitter enemies thereafter. For chi-square used for 
goodness of fit, the degrees of freedom are not based on sample size, but on the number of categories. We will discuss 
this in more depth in Chapter 10.

Assume we have a value of chi-square of 16.402 with 2 degrees of freedom. Find the p value as follows:
 
> chisq <- 16.402
> pchisq(chisq, 2, lower = FALSE)
[1] 0.0002743791

Finding Critical Values of Chi-Square
We can use the qchisq() function for finding critical values of chi-square. For tests of goodness of fit and association 
(also known as tests of independence), we test on the right tail of the distribution. For confidence intervals for the 
variance and the standard deviation, we find left- and right-tailed values of chi-square.

Now, let us see how to construct a confidence interval for the population variance using the chi-square 
distribution. We will use the standard 95% confidence interval. We will continue to work with our example data.  
We found the variance for x from our previous table to be 91.87773. A confidence interval for the population variance 
can be defined as follows:
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The right and left values of chi-square cut off the upper and lower 2.5% of the distribution, respectively. Let us 
find both values. We supply the probability and the degrees of freedom. In this case, the degrees of freedom are n – 1 = 
25 – 1 = 24.
 
> qchisq(.975, 24)
[1] 39.36408
> qchisq(.025, 24)
[1] 12.40115
 

Now, we can substitute the required values to find the confidence interval for the population variance:
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To find the confidence interval for the standard deviation, simply extract the positive square roots of the upper 
and lower limits:

56 017199 177 81137 7 4845 13 3335. . . .< < = < <s s
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Chapter 10

Hypothesis Tests for Means, Ranks, 
or Proportions

R provides easy access to virtually any of the traditional hypothesis tests for means, ranks, and proportions one might 
need. In Chapter 10 you learn how to do hypothesis tests for one sample, for two samples, and for three or more samples. 
We will include both parametric tests and nonparametric tests, illustrating each with appropriate data. The statistics 
functions in base R are usually adequate, but it is often helpful to use additional packages for their enhanced features.

Before we delve into hypothesis testing, let us briefly review the scales of measurement and their relationship to 
data and hypothesis testing. Throughout this book, we have made little distinction between interval and ratio data. The 
difference, of course, is that ratio data have a true zero point, while the zero point on an interval scale is arbitrary. From 
a statistical perspective, we combine interval and ratio data into a single category, and we can do parametric statistical 
analyses with such data as long as the distributional assumptions are warranted. We have also used nominal data, 
which in the strictest sense are simply categories in which we group objects or individuals with the same attribute. We 
can use numbers to represent the categories, but a label or some other identifier would work as well. We have a variety 
of techniques for dealing with nominal data. Between nominal and interval data is the ordinal scale. Ordinal measures 
give us information about ranks, but they do not tell us about the differences between ranks. Because there are no equal 
intervals with ordinal data, we must use techniques based on the order of the measures. These techniques are generally 
called nonparametric because they require few, if any, assumptions about population parameters. Moreover, these 
techniques are not typically used to make estimates or inferences about population parameters.

Recipe 10-1. One-Sample Tests
Problem
Many studies are descriptive in nature and involve the collection of a single sample of data. Often there are no 
inferences involved in such studies. With descriptive studies, we summarize the data, perhaps graphically as well 
as numerically, and report our findings. In other studies, however, we are interested in comparing sample values to 
known or hypothesized population values. In such cases, we use a category of tests known as one-sample tests.

Solution
We will discuss one-sample tests for interval and ratio data, and then expand our discussion to include one-sample 
tests for ordinal and nominal data.
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One-Sample z and t Tests for Means
When we describe a sample, we are typically interested in the standard descriptive statistics, including central 
tendency and variability. You learned to calculate these statistics in Chapter 7. As a quick reminder, we must have 
interval or ratio data for statistics such as the mean and variance to be meaningful. When we have such data, we can 
use the fBasics package to get a quick statistical summary. Here again are the summary statistics for the variable x we 
used in Chapter 9.
 
> require(fBasics)
Loading required package: fBasics
Loading required package: MASS
Loading required package: timeDate
Loading required package: timeSeries
> x
 [1] 60.2 64.4 64.8 65.6 63.7 68.0 85.7 58.2 53.1 55.0 72.3 50.2 78.5 67.1 79.2
[16] 72.1 59.2 50.6 77.8 56.3 64.0 76.8 68.2 75.0 59.6
> basicStats(x)
                      x
nobs          25.000000
NAs            0.000000
Minimum       50.200000
Maximum       85.700000
1. Quartile   59.200000
3. Quartile   72.300000
Mean          65.824000
Median        64.800000
Sum         1645.600000
SE Mean        1.917057
LCL Mean      61.867388
UCL Mean      69.780612
Variance      91.877733
Stdev          9.585287
Skewness       0.178608
Kurtosis      -0.968359
 

In situations where we know the population standard deviation, s, we can use a z test to compare a sample mean 
to a known or hypothesized population mean. The one-sample z test is among the simplest of the hypothesis tests, 
and is typically the first parametric test taught in a statistics course. Assume that we know the population from which 
the x scores were sampled is normally distributed and has a standard deviation of 11. We want to test the hypothesis 
that the sample came from a population with a mean of 70. The one-sample z test is not built into the base version 
of R, but its calculations are relatively simple. We use the following formula, in which the known or hypothesized 
population mean is subtracted from the sample mean, and the difference is divided by the standard error of the mean.

z
x

n

=
-( )m
s
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Assuming we want to do a two-tailed test with alpha = .05, we will use critical values of z = ±1.96.  
Our simple calculations are as follows:
 
> z <- (mean(x)- 70)/(11/sqrt(25))
> z
[1] -1.898182
 

If you want to create a more effective and reusable z.test function, you can do something like the following. The 
arguments supplied to the function are the raw data, the test value (mu), the sample size, and the alpha level, which is 
defaulted to the customary a = .05.
 
       }
 
z.test <- function(x, mu, sigma, n, alpha = 0.05) {
       sampleMean <- mean(x)
       stdError <- sigma/sqrt(n)
       zCrit <- qnorm(1 - alpha/2)
       sampleZ <- (sampleMean-mu)/stdError
       LL <- sampleMean - zCrit*stdError
       UL <- sampleMean + zCrit*stdError
       pValue <- 2 * (1 - pnorm(abs(sampleZ)))
       cat("\t","one-sample z test","\n")
       cat("sample mean:",sampleMean,"\n")
       cat("test value:",mu,"\t","sigma:",sigma,"\n")
       cat("sample z:",sampleZ,"\n")
       cat("p value:",pValue,"\n")
       cat((1-alpha)*100,"percent confidence interval","\n")
       cat("lower:",LL,"\t","upper:",UL,"\n")
}
 

Here is the output from the z.test function shown earlier. For familiarity’s sake, I purposely produced output 
similar to that of the built-in t.test function in R.
 
> z.test(x, mu = 70, sigma = 11, n = 25, alpha = 0.05)
         one-sample z test
sample mean: 65.824
test value: 70   sigma: 11
sample z: -1.898182
p value: 0.05767214
95 percent confidence interval
lower: 61.51208          upper: 70.13592
 

Because you now have a reusable function, you can change the arguments and run the test again. For example, 
let us change the alpha level to .01 and examine the new confidence interval. Note that as the confidence level 
increases, the interval width increases correspondingly.
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> z.test(x,70,11,25,.01)
         One-Sample z Test
  
sample mean: 65.824
test value: 70   sigma: 11
Sample z: -1.898182
P value: 0.05767214
99 percent confidence interval
Lower: 60.15718          Upper: 71.49082
 

The one-sample and two-sample z tests for means are implemented in the BSDA package available through 
CRAN. We will illustrate the BSDA package in Recipe 10-3.

It is rarely the case that we know the population standard deviation. When the population standard deviation is 
unknown, we use one-sample t tests to test hypotheses about a sample mean. The formula for t is identical to that for 
z, but we use the t distribution rather than the standard normal distribution to find p values and calculate confidence 
intervals, and we use the sample standard deviation instead of the population standard deviation. The t.test 
function allows you to test a sample mean against a known or hypothesized population mean when the population 
standard deviation is unknown. The function performs the t test and calculates a 95% confidence interval. The user 
specifies the data and the hypothesized population mean.
 
> t.test(x, mu = 70)
 
        One Sample t-test
 
data:  x
t = -2.1783, df = 24, p-value = 0.03943
alternative hypothesis: true mean is not equal to 70
95 percent confidence interval:
 61.86739 69.78061
sample estimates:
mean of x
   65.824

One-Sample Tests for Nominal and Ordinal Data
It is often of interest to determine whether a sample proportion is equal to a known or hypothesized population 
proportion. For example, a recent Gallup poll showed that 58% of Americans believe higher insurance rates are 
justified for those who smoke. Assume we conduct the same poll with a random sample in a tobacco-producing state 
such as North Carolina. We poll 300 adults and determine that 148 of them are in favor of higher insurance rates for 
smokers. Our sample proportion is as follows:

ˆ / .p = =148 300 4933

We can use the prop.test function in base R to determine whether the sample proportion of .4933 is significantly 
different from the hypothesized population proportion of .58:
 
> prop.test(148, 300, .58)
 
        1-sample proportions test with continuity correction
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data:  148 out of 300, null probability 0.58
X-squared = 8.8978, df = 1, p-value = 0.002855
alternative hypothesis: true p is not equal to 0.58
95 percent confidence interval:
 0.4355593 0.5512809
sample estimates:
        p
0.4933333
 

The results indicate that the sample proportion is significantly lower than the US average.
As a statistical side note, most statistics texts cast the one-sample test of proportion as a z test rather than a  

chi-square test. The interested reader is referred to a good statistics text for an explanation. A good online source for 
basic statistics is Dr. David Lane’s HyperStat web site at http://davidmlane.com/hyperstat/.

‘Suffice it to say here that when one calculates z for a one-sample test of proportion, squaring the value of z 
produces the value of chi-square, and the two tests are statistically and mathematically equivalent. The binom.
test function can be used for a proportion, as follows. Note, however, that the prop.test function applies the Yates 
correction for continuity, so the value of z2 will not equal chi-square in this case, and the p values and confidence 
intervals are slightly different for the two tests, though not appreciably so:
 
> binom.test(148, 300, .58)
 
        Exact binomial test
 
data:  148 and 300
number of successes = 148, number of trials = 300, p-value = 0.002797
alternative hypothesis: true probability of success is not equal to 0.58
95 percent confidence interval:
 0.4354025 0.5513971
sample estimates:
probability of success
             0.4933333
 

The paired-samples t test can be used to compare two scores for either the same subjects (repeated measures) or 
matched pairs of scores. The paired-samples t test is a special case of the one-sample t test in that the data of interest 
are the differences between the paired scores. Similarly, when you have ordinal data, a nonparametric alternative to 
the one-sample t test is the Wilcoxon signed rank test, which also applies to paired data. The paired-samples t test 
typically is used to test the hypothesis that the mean difference is zero against the alternative that the mean difference 
is not zero. Scale data that have been converted to ranks because the data are non-normal or data collected as ranks 
originally may be analyzed with the Wilcoxon signed rank test.

Assume there is a proposal to build a new school in a residential neighborhood. At the last town council meeting, 
results of a poll of 13 people in the neighborhood were presented as evidence that there is support for the new school. 
Unfortunately, the data collection tool was developed by one of the neighborhood residents, and yielded only ordinal 
data. Here are 13 hypothetical responses (see Table 10-1). Nine of the 13 respondents indicated the school should be 
built either immediately or soon. There is ordinality to the responses, but they are not on an interval scale. We can 
transform the responses to ordinal scores from 1 to 5 and test the hypothesis that the average score is 3 (no opinion) 
against the alternative that the median score is not equal to 3 (no opinion). We see that resident 8 has no opinion. The 
customary practice is to discard observations that lead to a zero difference between the score and the test value, so we 
will create the data frame omitting resident 8.
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Table 10-1.  Hypothetical Opinion Poll Results

Resident The school is not an 
asset. Do not build it.

The school may be  
an asset eventually.

I have no 
opinion.

The school is an 
asset. Build it soon.

The school is absolutely 
necessary. Build it now!

  1 X

  2 X

  3 X

  4 X

  5 X

  6 X

  7 X

  8 X

  9 X

10 X

11 X

12 X

13 X

The transformed scores are as follows. I included a column for the test value, 3, and the difference between 
the individual’s ranking and the test value for instructive purposes, but these are not used in the test. Instead, one 
specifies the column of scores and the test value in the arguments to the wilcox.test function. Although the test 
value is technically a hypothetical median score, the function labels this as mu.
 
> schoolPoll
   person score testValue diff
1       1    1         3   -2
2       2    2         3   -1
3       3    4         3    1
4       4    4         3    1
5       5    4         3    1
6       6    5         3    2
7       7    4         3    1
9       9    2         3   -1
10     10    4         3    1
11     11    5         3    2
12     12    5         3    2
13     13    4         3    1
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> wilcox.test(schoolPoll$score, mu = 3)
 
        Wilcoxon signed rank test with continuity correction
 
data:  schoolPoll$score
V = 58.5, p-value = 0.1217
alternative hypothesis: true location is not equal to 3
 
Warning message:
In wilcox.test.default(schoolPoll$score, mu = 3) :
  cannot compute exact p-value with ties
 

The test shows that the median score is not significantly different from the test value of 3. For the sake of 
comparison, the output from SPSS for the Wilcoxon signed rank test for the same data is shown in Figure 10-1. 
Unsurprisingly, the two programs produce the same result. The inquisitive reader may want to repeat this test using 
the column of difference scores as the data and with the test value set to zero. The results should be identical to those 
of the test on the scores themselves.

Figure 10-1.  SPSS output for the Wilcoxon signed rank test

Recipe 10-2. Two-Sample Tests for Related Means, Ranks,  
and Proportions
Problem
Two-sample tests are many researchers’ stock in trade. The independent-samples t test is probably the most 
frequently used hypothesis test in many fields of research. We have discussed the one-sample t test and its 
relationship to the paired-samples t test, but let’s illustrate it again here. We will also discuss the independent-samples 
t tests, both assuming equal variances in the population and assuming unequal variances. Finally, we will discuss 
nonparametric tests for two samples using nominal and ordinal data.

Solution
The paired-samples t test is a special case of the one-sample t test, as we have discussed. Just as we did with the 
imaginary poll data in Recipe 10-1, we can calculate a column of difference scores for the pairs of observations. 
Testing the hypothesis that the mean difference is zero shows that there is really just one sample, the difference scores. 
The degrees of freedom correspond to the number of pairs minus 1, rather than the total number of observations.

With ordinal data, the Wilcoxon signed rank test illustrated in Recipe 10-1 can be used for paired data as well. 
The McNemar test is used for paired nominal data. As with the 2 × 2 chi-square test for independent samples, the 
McNemar test is often used in conjunction with the Yates continuity correction.
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Let us begin with an example of a paired-samples t test. In this experiment conducted by the author, five-letter 
stimulus words were flashed briefly on a computer screen to the right or the left of a fixation point in the center of the 
screen. The duration of the word on the screen increased until the participant could type the correct word. Because 
of the “wiring” of the human brain, words projected to the left of the fixation point are sent to the right cerebral cortex 
for processing, whereas those shown on the right of the fixation point go to the left side. On the premise that the left 
side of the brain is specialized for verbal processing, it should be true that words are recognized more quickly by the 
left brain than by the right brain. Words sent to the right brain should take longer to be processed because of the extra 
time required to transfer them to the verbal processing areas on the left side of the brain. The data are as follows:
 
> head(pairedData)
  sex age handed  left right
1   M  24      R 0.115 0.139
2   F  19      R 0.090 0.093
3   F  22      L 0.104 0.133
4   F  18      L 0.101 0.100
5   F  18      L 0.116 0.116
6   F  18      L 0.090 0.113
> tail(pairedData)
   sex age handed  left right
92   F  18      R 0.093 0.096
93   F  19      R 0.106 0.124
94   F  20      R 0.093 0.099
95   F  18      R 0.108 0.108
96   M  18      R 0.110 0.136
97   M  18      R 0.098 0.116
 

For instructive purposes, let us once again calculate a column of difference scores, subtracting the processing 
time for the left side of the brain from that of the right side of the brain. We will append this column to the data frame 
by use of the cbind() function. As we suspected, most of the differences are positive, indicating the left side of the 
brain recognizes words more quickly than the right side does.
 
> diff <- pairedData$right - pairedData$left
> pairedData <- cbind(pairedData, diff)
> head(pairedData)
  sex age handed  left right   diff
1   M  24      R 0.115 0.139  0.024
2   F  19      R 0.090 0.093  0.003
3   F  22      L 0.104 0.133  0.029
4   F  18      L 0.101 0.100 -0.001
5   F  18      L 0.116 0.116  0.000
6   F  18      L 0.090 0.113  0.023
 

Now, let us perform a paired-samples t test followed by a one-sample t test on the difference scores testing the 
hypothesis that the mean difference is zero against the two-sided alternative that the mean difference is not zero. 
Note that apart from slight labelling differences, the two tests produce the same results. The left side of the brain is 
significantly faster than the right side at recognizing words.
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> t.test(pairedData$right, pairedData$left, paired = T)
 
        Paired t-test
 
data:  pairedData$right and pairedData$left
t = 7.6137, df = 96, p-value = 1.85e-11
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 0.007362381 0.012555144
sample estimates:
mean of the differences
            0.009958763
 
> t.test(pairedData$diff, mu = 0)
 
        One Sample t-test
 
data:  pairedData$diff
t = 7.6137, df = 96, p-value = 1.85e-11
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 0.007362381 0.012555144
sample estimates:
  mean of x
0.009958763
 

The data for both left- and right-brain word recognition are positively skewed. The difference data, however, are 
more normally distributed, as the histograms and normal q-q plot indicate (see Figure 10-2). Remember you can set 
the graphic device to show multiple graphs using the par function. We display histograms for the left- and right-brain 
word recognition data and the difference data, as well as a normal q-q plot for the difference data.
 
> par(mfrow=c(2,2))
> hist(pairedData$left)
> hist(pairedData$right)
> hist(pairedData$diff)
> qqnorm(pairedData$diff)
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We can use the same data to illustrate the Wilcoxon signed rank test for paired data. The normal q-q plot 
shown in Figure 10-2 indicates a roughly linear relationship between the observed and theoretical quantiles, but the 
histogram shows the difference data are still slightly positively skewed and that there are outliers in the data. We can 
convert the data to ranks and then perform the signed rank test to determine if the average difference has a “location 
shift” of zero. This is the rough equivalent of testing the hypothesis that the median difference score is zero. Our 
paired-samples t test has already indicated that the left side of the brain is significantly faster at word recognition than 
the right side. Let us determine whether the difference is still significant when we use the nonparametric test. The 
signed rank test is significant.
 
> wilcox.test(pairedData$right, pairedData$left, paired = T)
 
        Wilcoxon signed rank test with continuity correction
 
data:  pairedData$right and pairedData$left
V = 3718, p-value = 1.265e-10
alternative hypothesis: true location shift is not equal to 0
 

Figure 10-2.  Histograms of the word recognition data
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For nominal data, we can use the McNemar test for nominal data representing repeated measurements of the 
same objects or individuals or matched pairs of subjects. This test applies to 2 × 2 contingency tables in which the 
data are paired. The table is constructed as follows (see Table 10-2).

Table 10-2.  Table Layout for the McNemar Test

Measure 2 Positive Measure 2 Negative Row Total

Measure 1 Positive a B a + b

Measure 1 Negative c D c + d

Column Total a + c b + d n

Table 10-3.  Hypothetical Data for McNemar Test

After Approve After Disapprove Row Total

Before Approve 461 53 514

Before Disapprove 443 52 495

Column Total 904 105 1009

The test statistic is chi-square with 1 degree of freedom, calculated as follows:

x =
b - c

b + c
2

2( )

Note that the main diagonal of the table is not used to calculate the value of chi-square. Instead, the off-diagonal 
entries are used. We are testing the hypothesis that the off-diagonal entries b and c are equal. As with the 2 × 2 
contingency table for independent samples, the Yates continuity correction may be applied, in which case the value of 
chi-square is computed as follows:

c 2

2
0 5

=
- -( )

+

b c

b c

.

As a concrete example, assume we asked a sample of 1,009 people whether they approved or disapproved of 
George W. Bush’s handling of his job as president immediately before and immediately after the September 11 
attacks. The hypothetical data1 are shown in Table 10-3.

1These data are loosely based on the Gallup poll results reported at http://www.gallup.com/poll/116500/presidential-
approval-ratings-george-bush.aspx.

 > BushApproval <- matrix(c(461,53,443,52),ncol = 2)
> BushApproval
     [,1] [,2]
[1,]  461  443
[2,]   53   52
> mcnemar.test(BushApproval)
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        McNemar's Chi-squared test with continuity correction
 
data:  BushApproval
McNemar's chi-squared = 305.0827, df = 1, p-value < 2.2e-16
 

We reach the rather obvious conclusion (which was supported by the Gallup polls in 2001) that Mr. Bush’s 
approval ratings increased significantly after 9/11.

The McNemar test is effective for tables in which b + c > 25. When b + c < 25, a binomial test can be used to 
determine the exact probability that b = c.

Recipe 10-3. Two-Sample Tests for Independent Means, Ranks, 
and Proportions
Problem
The use of independent samples to determine the effectiveness of some treatment or manipulation is common in 
research. The independent-samples t test applies when the dependent variable is interval or ratio in nature. We can 
use either the t test assuming equal variances in the population or the test assuming unequal variances. With ordinal 
data, the nonparametric alternative to the t test is the Mann-Whitney U test. We can use chi-square or z tests to 
compare independent proportions.

Solution
Parametric tests such as the t test and the analysis of variance (ANOVA) assume the data are interval or ratio, that the 
data are sampled from a normally distributed population, and that the variances of the groups being compared are 
equal in the population. To the extent that these assumptions are met, the standard hypothesis tests are effective. The 
central limit theorem allows us to relax the assumption of normality of the population distribution, as the sampling 
distribution of means converges on a normal distribution as the sample size increases, regardless of the shape of the 
parent population.

The traditional alternative to parametric tests when distributional assumptions are violated, as we have discussed 
and illustrated, is the use of distribution-free or nonparametric tests. However, the independent-samples t test 
assuming unequal variances is often a preferable alternative. In Chapter 12, you will learn additional alternatives, 
most of which have been developed in the past 50 years, for dealing with data that are not normally distributed.

A two-sample z test is applicable when the population standard deviations are known or when the samples are 
large. As with the one-sample test, the two-sample z test is not built into base R. As mentioned previously, both one-
sample and two-sample z tests are available in the BSDA package. The z.test function in BSDA is quite flexible. Here is 
the one-sample z test output for our x array, and the results are identical to those from the z.test function we wrote 
earlier in Recipe 10-1.
 
> install.packages("BSDA")
> library(BSDA)
Loading required package: e1071
Loading required package: lattice
 
Attaching package: 'BSDA'
 
The following object is masked from 'package:datasets':
 
    Orange
 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 10 ■ Hypothesis Tests for Means, Ranks, or Proportions

129

> z.test(x, mu = 70, sigma.x = 11)
 
        One-sample z-Test
 
data:  x
z = -1.8982, p-value = 0.05767
alternative hypothesis: true mean is not equal to 70
95 percent confidence interval:
 61.51208 70.13592
sample estimates:
mean of x
   65.824
 

A two-sample z test can be conducted using either known (unlikely) values for the population standard 
deviations or using the sample standard deviations (more likely) as estimates of the population parameters. The  
two-sample z test will produce identical test statistics as those of the independent-samples t test when the sample 
standard deviations are used, as the following output illustrates. See that the Welch t test adjusts the degrees of 
freedom to compensate for unequal variances. The data for x and y are as follows. Assume they represent the 
hypothetical scores of two different classes on a statistics course final.
 
> x
 [1] 60.2 64.4 64.8 65.6 63.7 68.0 85.7 58.2 53.1 55.0 72.3 50.2 78.5 67.1 79.2
[16] 72.1 59.2 50.6 77.8 56.3 64.0 76.8 68.2 75.0 59.6
> y
 [1] 84.5 89.7 74.0 90.4 84.9 99.6 90.0 94.2 91.2 95.2 91.4 79.0 75.9 77.9 90.9
[16] 79.7 85.6 85.2 91.0 79.8 82.5 80.7 86.4 81.2 94.1
 
> z.test(x, y, sigma.x = sd(x), sigma.y = sd(y))
 
        Two-sample z-Test
 
data:  x and y
z = -8.7317, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -24.94971 -15.80229
sample estimates:
mean of x mean of y
   65.824    86.200
  
> t.test(x, y)
 
      Welch Two Sample t-test
        
data:  x and y
t = -8.7317, df = 42.768, p-value = 4.686e-11
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -25.08283 -15.66917
sample estimates:
mean of x mean of y
   65.824    86.200
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When the assumption of homogeneity of variance is justified, the independent-samples test assuming equal 
variances in the population is slightly more powerful than the Welch test. Let us compare the two tests. To conduct 
the pooled-variance t test, set the var.equal argument to T or TRUE. The value of t is the same for both tests, but the p 
values, degrees of freedom, and confidence intervals are slightly different. For the pooled-variance t test, the degrees 
of freedom are n

1
 + n

2
 – 2.

 
> t.test(x, y, var.equal = T)
 
        Two Sample t-test
 
data:  x and y
t = -8.7317, df = 48, p-value = 1.766e-11
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -25.06795 -15.68405
sample estimates:
mean of x mean of y
   65.824    86.200
 

The wilcox.test function can be used to conduct an independent-groups nonparametric test. This test is 
commonly known and taught as the Mann-Whitney U test, but technically would be better labelled the Wilcoxon-
Mann-Whitney sum of ranks test. To conduct the Mann-Whitney test, use the following syntax. We will continue 
with our example of the x and y vectors we worked with earlier. The Mann-Whitney test is often described as a test 
comparing the medians of the two groups, but it is really testing the locations of the two distributions. We see that 
when the data are converted to ranks, the difference is still significant.
 
> wilcox.test(x, y)
 
        Wilcoxon rank sum test
 
data:  x and y
W = 33, p-value = 8.5e-10
alternative hypothesis: true location shift is not equal to 0
 

Comparing two independent proportions can be accomplished by a z test or by a chi-square test, as we have 
discussed previously. Let us compare the two sample proportions p̂ = x / n1 1 1  and ˆ /p x n2 2 2=  where x

i
 and n

i
 

represents the counts of the occurrences and the samples size for sample i. A two-sample z test for proportions is 
calculated as follows:

z
p p

pq
n

pq
n

=
-

+

ˆ ˆ
1 2

1 2

where p  is the pooled sample proportion, ( ) ( )1 2 1 2x + x / n + n , and q = 1 – p .
As we have discussed, the square of the z statistic calculated by use of the preceding formula is distributed as 

chi-square with 1 degree of freedom. Let us do a one-tailed test with the following data to determine if airbags in 
automobiles save lives. The hypothetical data are as follows (see Table 10-4).
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Either the chisq.test or the prop.test function can be used to test the hypothesis that the proportions are equal 
against the alternative that they are unequal. First, however, for instructive purposes, let us calculate the value of z 
using the formula shown earlier. We can write a reusable function as follows, passing the arguments x

1
, x

2
, n

1
, and n

2
, 

which are the number of “successes” and the column totals in Table 10-4.
 
z.prop <- function(x1, x2, n1, n2) {
       p1 <- x1/n1
       p2 <- x2/n2
       p_bar <- (x1+x2)/(n1+n2)
       q_bar <- 1-p_bar
       pq <- p_bar * q_bar
       z <- (p1 - p2)/sqrt((pq/n1)+(pq/n2))
       return(z)
       }
> z.prop(41,58,11589,9915)
[1] -2.496433
 

Now, for the sake of comparison, run the same test using the prop.test function in R. See that the square of  
z obtained by our function equals the uncorrected value of chi-square from the prop.test function.
 
> prop.test(x = c(41,58), n = c(11589, 9915), correct = FALSE)
 
        2-sample test for equality of proportions without continuity
        correction
 
data:  c(41, 58) out of c(11589, 9915)
X-squared = 6.2322, df = 1, p-value = 0.01254
alternative hypothesis: two.sided
95 percent confidence interval:
 -0.0041616709 -0.0004620991
sample estimates:
     prop 1      prop 2
0.003537838 0.005849723

Table 10-4.  Hypothetical Airbag Data

Airbag Present No Airbag Present Row Total

Occupant or Driver Fatality 41 58 99

Total Number of Occupants 11548 9857 21405

Column Total 11589 9915 21504
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Recipe 10-4. Tests for Three or More Means
Problem
In many research studies, there are three or more means to compare. Although it is tempting to perform multiple t 
tests to test for mean differences, this results in a compounding Type I error. As a result, we are much more likely to 
reject a true null hypothesis than we would be for a single test at the same nominal alpha level. If each of the c tests is 
conducted with the same nominal alpha level, the actual Type I error rate compounds as follows:

a atot
c= - -1 1( )

The analysis of variance (ANOVA) controls the overall rate of a Type I error to no more than alpha, allowing us to 
determine if there are mean differences among two or more samples without inflating the probability of a Type I error.

Solution
To illustrate, with six means, there are 

6
C

2
 = 15 pairwise comparisons possible. Thus, the overall Type I error rate 

would be 1 – .9515 = .54, which is clearly far too high. R. A. Fisher developed the ANOVA to perform a single overall test 
with a controlled Type I error rate. If the overall test is significant, at least one pair of means is significantly different, 
and depending on the circumstances, one might conduct post hoc comparisons at a controlled Type I error rate to 
determine which means differ.

The one-way ANOVA compares means from independent samples. This test is a direct extension of the 
independent-samples t test, and produces identical results to the t test when two samples are compared. The 
repeated-measures ANOVA compares two or more means for the same subjects under different conditions or at 
different points in time. The repeated-measures ANOVA is a direct extension of the paired-samples t test. It is also 
possible to have multiple factors in an ANOVA. We will discuss the simplest of these cases, a balanced factorial design 
with two factors.

The parametric ANOVA assumes that the data are at least interval, that the measurements within a group are 
independent, and that the variances of the groups are equal in the population. When these assumptions are violated, 
the nonparametric alternatives to the one-way ANOVA and repeated-measures ANOVA are the Kruskal-Wallis 
analysis of variance for ranks and the Friedman test, respectively.

The aov and anova functions are part of base R. The ez package provides the ezANOVA function, which makes it 
easier to do between-groups and within-subjects ANOVAs, as well as mixed-model designs. Let us start with the one-
way case. This is called a between-groups design because the groups are independent. As with the independent-samples 
t test, there is no requirement that the sample sizes must be equal for the one-way ANOVA. The overall F statistic is 
calculated as the ratio of the between-groups variance to the within-groups (error) variance. If the null hypothesis that 
the means are equal is true, the F ratio will be very close to 1. As the between-groups (treatment) variance becomes 
larger, the F ratio increases in value. We will begin our discussion with one-way tests for means and ranks.
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One-Way Tests
The following data are from a study conducted at the University of Melbourne. The pain tolerance threshold was 
calculated for adult men and women with different hair colors. The higher the pain number, the greater the person’s 
tolerance for pain. Side-by-side boxplots are helpful to visualize the data. We see an obvious connection between 
hair color and pain thresholds. People with light blond hair are more pain tolerant than others. We will test the 
significance of this effect with a one-way ANOVA. The qplot function in ggplot2 produces the side-by-side boxplots 
(see Figure 10-3).
 
> hair
           color pain
1     LightBlond   62
2     LightBlond   60
3     LightBlond   71
4     LightBlond   55
5     LightBlond   48
6      DarkBlond   63
7      DarkBlond   57
8      DarkBlond   52
9      DarkBlond   41
10     DarkBlond   43
11 LightBrunette   42
12 LightBrunette   50
13 LightBrunette   41
14 LightBrunette   37
15  DarkBrunette   32
16  DarkBrunette   39
17  DarkBrunette   51
18  DarkBrunette   30
19  DarkBrunette   35
 
> install.packages("ggplot2")
> library(ggplot2)
> qplot(factor(color), pain, data = hair, geom = "boxplot")
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Using the aov function, we see that the pain thresholds are statistically significantly different, though as yet we 
are not sure which means differ from one another. A popular post hoc test to compare pairs of means is the Tukey 
HSD (honestly significant difference) test, which is built into the base version of R as the function TukeyHSD. There 
are many other post hoc procedures, including Bonferroni corrections, the Scheffe test, and the Fisher LSD (least 
significant difference) criterion. First, examine the ANOVA summary table, and then the results of the Tukey HSD test, 
which shows that people with light blond hair have significantly higher pain thresholds than light and dark brunettes, 
but that light and dark blondes do not differ significantly.
 
> summary(model <- aov(pain ~ color, data = hair))
            Df Sum Sq Mean Sq F value  Pr(>F)
color        3   1361   453.6   6.791 0.00411 **
Residuals   15   1002    66.8
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> TukeyHSD(model)
  Tukey multiple comparisons of means
    95% family-wise confidence level
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Figure 10-3.  Pain threshold by hair color
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Fit: aov(formula = pain ~ color, data = hair)
 
$color
                            diff        lwr        upr     p adj
DarkBrunette-DarkBlond     -13.8 -28.696741  1.0967407 0.0740679
LightBlond-DarkBlond         8.0  -6.896741 22.8967407 0.4355768
LightBrunette-DarkBlond     -8.7 -24.500380  7.1003795 0.4147283
LightBlond-DarkBrunette     21.8   6.903259 36.6967407 0.0037079
LightBrunette-DarkBrunette   5.1 -10.700380 20.9003795 0.7893211
LightBrunette-LightBlond   -16.7 -32.500380 -0.8996205 0.0366467
 

The pain data do not appear to have equal variances, as the boxplots in Figure 10-3 imply. The car (Companion 
to Applied Regression) package provides several tests of homogeneity of variance, including the Levene test, which 
is used by SPSS as well. Let us determine whether the variances differ significantly. First, we will use the aggregate 
function to show the variances for the four groups, and then we will conduct the Levene test. The lack of significance 
for the Levene test is a function of the small sample sizes.
 
> aggregate(pain ~ color, data = hair, var)
          color     pain
1     DarkBlond 86.20000
2  DarkBrunette 69.30000
3    LightBlond 72.70000
4 LightBrunette 29.66667
> > install.packages("car")
> library(car)
> leveneTest(pain ~ color, data = hair)
Levene's Test for Homogeneity of Variance (center = median)
      Df F value Pr(>F)
group  3  0.3927   0.76
      15
 

Just as the independent-samples t test provides the options for assuming equal or unequal variances, the  
oneway.test function in R provides a Welch-adjusted F test that does not assume equality of variance. The results are 
similar to those of the standard ANOVA, which assumes equality of variance, but as with the t test, the values of p and 
the degrees of freedom are different for the two tests.
 
> oneway.test(pain ~ color, data = hair)
 
        One-way analysis of means (not assuming equal variances)
 
data:  pain and color
F = 5.8901, num df = 3.00, denom df = 8.33, p-value = 0.01881
 

When the assumptions of normality or equality of variance are violated, we can perform a Kruskal-Wallis analysis 
of variance by ranks using the kruskal.test function in base R. This test makes no assumptions of equality of 
variance or normality of distribution. It determines whether the distributions have the same shape, and is not a test of 
the equality of medians, though some statistics authors claim it is. The test statistic for the Kruskal-Wallis test is called 
H, and it is distributed as chi-square when the null hypothesis is true.
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> kruskal.test(hair$pain, hair$color)
 
        Kruskal-Wallis rank sum test
 
data:  hair$pain and hair$color
Kruskal-Wallis chi-squared = 10.5886, df = 3, p-value = 0.01417

Two-Way Tests for Means
The two-way ANOVA adds a second factor, so that the design now incorporates a dependent variable and two factors, 
each of which has at least two levels. Thus the most basic two-way design will have four group means to compare. We 
will consider only the simple case of a balanced factorial design with equal numbers of observations per cell. With the 
two-way ANOVA, you can test for main effects for each of the factors and for the possibility of an interaction between 
them. From a research perspective, two-way ANOVA is efficient, because each subject is exposed to a combination of 
treatments (factors). Additionally, interactions are often of interest because they show us the limits or boundaries of 
the treatment conditions. Although higher-order and mixed-model ANOVAs are also possible, the interpretation of 
the results becomes more difficult as the design becomes more complex.

The two-way ANOVA can be conceptualized as a table with rows and columns. Let the rows represent Factor 
A, and the columns represent Factor B. In a balanced factorial design, each cell represents an independent group, 
and all groups have equal sample sizes. Post hoc comparisons are not necessary or possible when the design is a 2 × 
2 factorial ANOVA, so we will illustrate with a 2 × 3 example. We consider only the fixed effects model here, but the 
interested reader should know that there are also random effects models in which the factor levels are assumed to be 
samples of some larger population rather than fixed in advance of the hypothesis tests. With the two-way ANOVA, the 
total sum of squares is partitioned into the effects due to Factor A, those due to Factor B, those due to the interaction 
of Factors A and B, and an error or residual term. Thus we have three null hypotheses in the two-way ANOVA, one for 
each main effect, and one for the interaction.

Assume we have data representing the job satisfaction scores for junior accountants after one year on their first 
job. The factors are investment in the job (high, medium, or low) and quality of alternatives (high or low). High quality 
alternatives represent attractive job opportunities with other employers. Although these data are fabricated, they 
are consistent with those presented by Rusbult and Farrell, the creators of the investment model,2 which has been 
validated both in the workplace and in the context of romantic relationships. Assume we have a total of 60 subjects, so 
the two-way table has 10 observations per cell. For this example, let’s use the ezANOVA function in the ez package. The 
data are as follows:
 
> head(jobSat)
  subject satisf alternatives investment
1       1     52          low        low
2       2     42          low        low
3       3     63          low        low
4       4     48          low        low
5       5     51          low        low
6       6     55          low        low

2 See Rusbult, C. E., and Farrell, D. (1983). A longitudinal test of the investment model. The impact on job satisfaction, job 
commitment, and turnover of variations in reward, costs, alternatives, and investments. Journal of Applied Psychology, 68, 
429–438.
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> tail(jobSat)
   subject satisf alternatives investment
55      55     87         high       high
56      56     80         high       high
57      57     88         high       high
58      58     79         high       high
59      59     83         high       high
60      60     80         high       high
 

The output from the ezANOVA function shows that there is a significant main effect for investment and a 
significant interaction, but that the main effect for alternatives is not significant. When the interaction is significant,  
it is advisable to plot it in order to understand and interpret it before examining the main effects.
 
> install.packages("ez")
> library(ez)
> ezANOVA(data = jobSat, dv = satisf, wid = subject, between = .(alternatives, investment))
Warning: Converting "subject" to factor for ANOVA.
$ANOVA
                   Effect DFn DFd           F            p p<.05        ges
1            alternatives   1  54   0.8413829 3.630803e-01       0.01534212
2              investment   2  54 307.6647028 3.036366e-30     * 0.91932224
3 alternatives:investment   2  54  29.4058656 2.296500e-09     * 0.52132638
 
$`Levene's Test for Homogeneity of Variance`
  DFn DFd      SSn   SSd        F         p p<.05
    1 5  54 68.13333 519.3 1.416984 0.2329502
 

The Levene test reveals that the variances can be assumed to be homogeneous. The interaction plot can be 
generated by use of the interaction.plot function (see Figure 10-4).
 
> with(jobSat, interaction.plot(alternatives, investment, satisf, mean))
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Cautious interpretation of the main effect for investment indicates that for those who have made medium or high 
investment, job satisfaction is higher than for those who have made lower investment. However, the interaction effect 
shows that job satisfaction is lower for those who have medium investment if they have fewer job alternatives.

A little-known nonparametric alternative to the two-way ANOVA is the Scheirer-Ray-Hare (SRH) test. This test 
is not currently available in base or any contributed package I am able to locate. The SRH test is a direct extension 
of the Kruskal-Wallis analysis of variance by ranks to the two-way case. Not all statisticians agree that the SRH 
test is appropriate for ranked data. For example, Dr. Larry Toothaker of the University of Oklahoma discourages 
its use because it inflates the Type I error rate and does not test the interaction term correctly. A more effective 
nonparametric alternative to the factorial ANOVA is the aligned rank transform (ART) test. This test applies the 
traditional factorial ANOVA after the data have been “aligned” and ranked. A Windows program developed by  
Dr. Jacob Wobbrock of the University of Washington for aligning and ranking data can be found at  
http://depts.washington.edu/aimgroup/proj/art/.

Recipe 10-5. Repeated-Measures Designs
Problem
Repeated-measures designs involve measures of the same subjects either at different points in time or under different 
conditions. These are also known as within-subjects designs. One can test the subject effect and the treatment effect, 
though the subject effect is commonly not tested. In this design, each subject serves as its own control, and individual 
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Figure 10-4.  Interaction plot
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differences are allocated to systematic variation rather than to error. As a result, the error variation is reduced 
accordingly, and the tests of treatment effects are generally more powerful in repeated-measures designs than in 
between-groups designs.

Solution
We will consider the repeated measures design and illustrate its power relative to the one-way between-groups 
ANOVA. Then we will discuss the Friedman test as a nonparametric alternative to the repeated-measures ANOVA.

The repeated-measures design can be thought of as a special case of the two-way ANOVA with one observation 
per cell. With one observation, there is no within-cell variance, but the cells for a single subject can be compared to 
the overall subject total. The sums of squares for treatments and for subjects are calculated as in the one-way ANOVA. 
The absence of within-cell variation means there is no ability to test an interaction effect, and the subject x treatment 
interaction mean square is used as the error term in repeated-measures ANOVA. The repeated-measures ANOVA also 
applies to experiments in which randomized blocks are used to control for “nuisance” factors.

To illustrate the power of the repeated-measures design relative to the between-groups design, let us consider the 
following example modified from Welkowitz, Cohen, and Ewen (2006). In this hypothetical example, subjects listened 
to classical music while performing a spatial ability test. The study was designed to test the so-called “Mozart” effect 
in which listening to classical music—especially that of Mozart—is believed to improve spatial reasoning, at least 
momentarily. We will first treat the data as a between-groups design and then run a repeated-measures analysis 
assuming that each subject listened to all five composers. We see that the one-way ANOVA is not significant:
 
> music <- read.csv("music.csv")
> head(music)
  Person Subject Composer Score
1      1       1   Mozart    16
2      2       2   Mozart    16
3      3       3   Mozart    14
4      4       4   Mozart    13
5      5       5   Mozart    12
6      6       1   Chopin    16
> tail(music)
   Person Subject  Composer Score
20     20       5  Schubert    12
21     21       1 Beethoven    14
22     22       2 Beethoven    13
23     23       3 Beethoven    13
24     24       4 Beethoven    10
25     25       5 Beethoven    10
> factor(music$Composer)
 [1] Mozart    Mozart    Mozart    Mozart    Mozart    Chopin    Chopin
 [8] Chopin    Chopin    Chopin    Bach      Bach      Bach      Bach
[15] Bach      Schubert  Schubert  Schubert  Schubert  Schubert  Beethoven
[22] Beethoven Beethoven Beethoven Beethoven
Levels: Bach Beethoven Chopin Mozart Schubert
> between <- lm(Score ~ Composer, data = music)
> anova(between)
Analysis of Variance Table
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Response: Score
          Df Sum Sq Mean Sq F value Pr(>F)
Composer   4   14.4    3.60  0.8411 0.5154
Residuals 20   85.6    4.28
 

Now, let us recast the analysis as a repeated-measures ANOVA. We assume each person listened to all five 
composers and completed five parallel versions of the spatial ability test. To control for order and sequencing effects, 
let us further assume that each person listened to the five composers in random order, controlled by the computer. 
Although there are many different ways to run the repeated-measures ANOVA, one effective way is to use the ezANOVA 
function in the ez package.
 
> ezANOVA(data = music, dv = Score, wid = Subject, within = Composer)
Warning: Converting "Subject" to factor for ANOVA.
$ANOVA
    Effect DFn DFd        F           p p<.05   ges
2 Composer   4  16 5.538462 0.005399203     * 0.144
 
$`Mauchly's Test for Sphericity`
    Effect        W         p p<.05
2 Composer 0.591716 0.9989984
 
$`Sphericity Corrections`
    Effect   GGe       p[GG] p[GG]<.05      HFe       p[HF] p[HF]<.05
2 Composer 0.845 0.009177744         * 6.008065 0.005399203         *
 

The F ratio for the repeated-measures analysis is significant at p = .005. The repeated-measures ANOVA assumes 
sphericity, which is the assumption that the differences between the variances of the repeated measures are equal 
in the population. Unlike the homogeneity of variance assumption in one-way ANOVA, the sphericity assumption 
is more restrictive, and violations of it lead to substantial increases in Type I error. The Mauchly test confirms that 
we can assume the sphericity assumption was met in this case. In cases where the sphericity assumption is violated, 
the two common corrections are to multiply the degrees of freedom by a correction factor known as e (Greek letter 
epsilon). The first method of calculating e is known as the Greenhouse-Geisser (GGe), and the second is known as the 
Huyn-Feldt (HFe).

When the overall F ratio is significant, it is customary to employ post hoc tests to determine the patterns of 
significance in the repeated measures. The two most common approaches are to use the Tukey HSD test illustrated in 
Recipe 10-4 or to use Bonferroni-adjusted comparisons. Let us illustrate the use of the Bonferroni technique. Because 
there are 

5
C

2
= 10 pairs of means, the adjusted alpha level for the Bonferroni comparisons would be .05 / 10 = .005. The 

Bonferroni-adjusted comparisons reveal that only the comparison between Beethoven and Mozart is significant. Here 
are the means followed by the Bonferroni-adjusted pairwise t tests.
 
> aggregate(Score ~ Composer, data = music, mean)
   Composer Score
1      Bach  12.4
2 Beethoven  12.0
3    Chopin  13.2
4    Mozart  14.2
5  Schubert  13.2
 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 10 ■ Hypothesis Tests for Means, Ranks, or Proportions

141

> with(music, pairwise.t.test(Score, Composer, p.adjust.method = "bonferroni", paired = T))
 
        Pairwise comparisons using paired t tests
 
data:  Score and Composer
 
          Bach  Beethoven Chopin Mozart
Beethoven 1.000 -         -      -
Chopin    1.000 1.000     -      -
Mozart    0.213 0.042     0.890  -
Schubert  1.000 1.000     1.000  0.890
 
P value adjustment method: bonferroni
 

The Friedman test is a nonparametric alternative to the repeated-measures ANOVA. As with most other 
nonparametric tests, the dependent variable is converted to ranks. In the case of repeated-measures, the data are 
ranked for a given subject, and the ranks for the treatments across subjects are tested for significance. When the 
overall Friedman test is significant, the most common follow-up test is the use of multiple Wilcoxon signed rank 
tests. As with the parametric tests, it is important to recognize and control for the inflated Type I error resulting from 
multiple pairwise comparisons. Here is the Friedman test applied to the current data. For the sake of convenience,  
I transformed the data to a “wide” format and saved it as a matrix to simplify the application of the Friedman test.  
The test shows that there is an effect of the composer, just as the parametric test indicated.
 
> musicWide
  Mozart Chopin Bach Schubert Beethoven
1     16     16   16       16        14
2     16     14   14       14        13
3     14     13   12       12        13
4     13     13   10       12        10
5     12     10   10       12        10
> musicWide <- as.matrix(musicWide)
> friedman.test(musicWide)
 
        Friedman rank sum test
 
data:  musicWide
Friedman chi-squared = 11.1169, df = 4, p-value = 0.02528
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Chapter 11

Relationships Between and  
Among Variables

In Chapter 11, you learn how to examine and test the significance of relationships between two or more variables 
measured at the scale (interval and ratio), ordinal, and nominal levels. The study of relationships is an important part 
of statistics, because we use correlational studies to answer important research questions in a variety of disciplines.

We begin with correlation and regression, examining relationships between a single predictor and a single 
criterion or dependent variable. We then move to special cases of the correlation coefficient that involve ranked 
or nominal data for one or both of the variables. Next, we expand the discussion to include a brief introduction to 
multiple correlation and regression, and we show the importance of this very general technique by relating it to the 
hypothesis tests we studied in Chapter 10.

Recipe 11-1. Determining Whether Two Scale Variables Are 
Correlated
Problem
Francis Galton developed the concept of correlation, but left his protégé Karl Pearson to work out the formula.  
We find that many variables are related to each other in a linear fashion, but correlation does not prove causation.  
For example, Galton measured various characteristics of more than 9,000 people, including their head circumference. 
His belief was that people with larger heads must have larger brains and that people with larger brains must be more 
intelligent. That hypothesis was refuted for years, but recent analyses have shown that indeed there is a small but 
significant relationship between brain volume and intelligence. A study of more than 1,500 people in 37 samples 
produced an estimate of the population correlation between the volume of the brain measured in vivo by MRI and 
an intelligence of .33. Correlation and regression are used in many disciplines to model linear relationships between 
two or more variables. We begin with the bivariate case for scale data and then study variations on the correlation 
coefficient for examining relationships when the variables are not measured on a scale.

The correlation coefficient can be understood best by first understanding the concept of covariation. The 
covariance of x (the predictor) and y (the criterion) is the average of the cross-products of their respective deviation 
scores for each pair of data points. The covariance, which we will designate as s

xy
, can be positive, zero, or negative. 

In other words, the two variables may be positively related (they both go up together and down together); not at all 
related; or negatively related (one variable goes up while the other goes down). The population covariance is defined 
as follows:

s
m m

xy

x yx y

N
=

-( ) -( )å
.
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where N is the number of pairs of (x, y) data points. When we do not know the population mean, we substitute the 
sample mean and divide the sum of the cross-products of the deviation scores by n – 1 as a correction factor:

s
x x y y

nxy =
-( ) -( )
-

å
1

.

The covariance is a useful index, but it is affected by the units of measurement for x and y. The covariance 
of football players’ heights and weights expressed in centimeters and kilograms is different from the covariance 
expressed in inches and pounds. The correlation coefficient corrects this by dividing the covariance by the product 
of the standard deviations of x and y, resulting in an index that ranges from –1 through 0 to +1, representing a perfect 
negative relationship, no linear relationship, and a perfect positive relationship. The correlation between the players’ 
heights and weights is invariant whether the height units are inches or centimeters, and whether the weights are 
expressed in pounds or kilograms. In the population, we define the correlation coefficient as r (the Greek letter rho):

r
s
s sxy

xy

x y

= .

In the sample, we use the sample statistics as estimates of the population parameters.

Solution
Let us illustrate the “scalelessness” property of the correlation coefficient by working out the example used earlier. The 
following data represent the 2014 roster for the New Orleans Saints. Heights are recorded in inches and centimeters, 
and weights are recorded in pounds and kilograms.
 
> saints <- read.csv("saintsRoster.csv")
> head(saints)
  Number             Name Position Inches Pounds centimeters kilograms Age
1     72 Armstead, Terron        T     77    304      195.58    138.18  23
2     61  Armstrong, Matt        C     74    302      187.96    137.27  24
3     27    Bailey, Champ       CB     73    192      185.42     87.27  36
4     36     Ball, Marcus        S     73    209      185.42     95.00  27
5      9      Brees, Drew       QB     72    209      182.88     95.00  35
6     34  Brooks, Derrius       CB     70    192      177.80     87.27  26
  Experience             College
1          1 Arkansas-Pine Bluff
2          R  Grand Valley State
3         16             Georgia
4          1             Memphis
5         14              Purdue
6          1    Western Kentucky
> tail(saints)
   Number             Name Position Inches Pounds centimeters kilograms Age
70     75   Walker, Tyrunn       DE     75    294      190.50    133.64  24
71     42   Warren, Pierre        S     74    200      187.96     90.91  22
72     82 Watson, Benjamin       TE     75    255      190.50    115.91  33
73     71    Weaver, Jason      T/G     77    305      195.58    138.64  25
74     60    Welch, Thomas        T     79    310      200.66    140.91  27
75     24     White, Corey       CB     73    205      185.42     93.18  24
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   Experience              College
70          3                Tulsa
71          R   Jacksonville State
72         11              Georgia
73          1 Southern Mississippi
74          4           Vanderbilt
75          3              Samford
 

Observe that the covariances between height and weight are different, depending on the units of measurement as 
we discussed before, but the correlations are the same (within rounding error) for height and weight, regardless of the 
measurement units. The covariance is found with the cov() function, and the correlation with the cor() function.
 
> cov(saints$Inches, saints$Pounds)
[1] 80.86685
> cov(saints$centimeters, saints$kilograms)
[1] 93.36248
> cor(saints$Inches, saints$Pounds)
[1] 0.6817679
> cor(saints$centimeters, saints$kilograms)
[1] 0.6817578
 

For the height and weight data, there is a positive correlation. The cor.test() function tests the significance of 
the correlation coefficient:
 
> cor.test(saints$Inches, saints$Pounds)
 
        Pearson's product-moment correlation
 
data:  saints$Inches and saints$Pounds
t = 7.9624, df = 73, p-value = 1.657e-11
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.5380635 0.7869594
sample estimates:
      cor
0.6817679
 

With 73 degrees of freedom, the correlation is highly significant. The astute reader will notice that the significance 
of the correlation is tested with a t test.

The correlation coefficient can be used to calculate the intercept and the slope of the regression line, as follows. 
We will symbolize the intercept as b

0
 and the regression coefficient (slope) as b

1
. The slope is

b r
s

sxy
y

x
1 =

æ

è
ç

ö

ø
÷.

and the intercept is

b y b x0 1= - .
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See that the intercept will be the mean of y when the slope coefficient is zero. The lm() function (for linear 
model) will produce the coefficients. The t test in the bivariate case for the slope coefficient is equivalent to the t test 
for the overall regression, and the F ratio for the regression is the square of the t value.
 
> model <- lm(saints$Pounds ~ saints$Inches)
> summary(model)
 
Call:
lm(formula = saints$Pounds ~ saints$Inches)
 
Residuals:
    Min      1Q  Median      3Q     Max
-68.877 -21.465  -1.282  19.351 104.579
 
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept)   -662.668    113.935  -5.816 1.48e-07 ***
saints$Inches   12.228      1.536   7.962 1.66e-11 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 
Residual standard error: 33.97 on 73 degrees of freedom
Multiple R-squared:  0.4648,    Adjusted R-squared:  0.4575
F-statistic:  63.4 on 1 and 73 DF,  p-value: 1.657e-11

Recipe 11-2. Special Cases of the Correlation Coefficient
Problem
We often have data for x or y (or both) that are not interval or ratio, but we would still like to determine whether 
there is a relationship or association between the variables. There are alternatives to the Pearson correlation for such 
circumstances. We will examine the case in which one variable is measured on a scale while the other is measured as 
a dichotomy, where one or both variables are measured at the ordinal level, and where both variables are measured 
as dichotomies.

Solution
When you correlate a binary (0, 1) variable with a variable measured on a scale, you are using a special case of the 
correlation coefficient known as the point-biserial correlation. The computations are no different from those for the 
standard correlation coefficient. The binary variable might be the predictor x, or it might be the criterion y. When the 
binary variable is the predictor, the point-biserial correlation is equivalent to the independent-samples t test with 
regard to the information to be gleaned from the analysis. When the binary variable is the criterion, we are predicting 
a dichotomous outcome such as pass/fail. There are some issues with predicting a (0, 1) outcome using standard 
correlation and regression, and logistic regression offers a very attractive alternative that addresses these issues. When 
both variables are dichotomous, the index of relationship is known as the phi coefficient, and it has a relationship to 
chi-square, as you will learn.
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Point-Biserial Correlation
Let us return to the example used for the independent-samples t test in Recipe 10-3. For this analysis, the data are 
reconfigured so that the dependent variable is the x scores followed by the y scores from the previous example. A 0 is 
used to indicate membership in x and a 1 is used to indicate y group membership.
 
> head(biserial)
  newDV indicator
1  60.2         0
2  64.4         0
3  64.8         0
4  65.6         0
5  63.7         0
6  68.0         0
> tail(biserial)
   newDV indicator
45  79.8         1
46  82.5         1
47  80.7         1
48  86.4         1
49  81.2         1
50  94.1         1
 

We can now regress the new dependent variable onto the column of zeros and ones by using the lm() function. 
The results will be instructive in terms of the relationship between the t test and correlation.
 
> biserialCorr <- lm(newDV ~ indicator, data = biserial)
> summary(biserialCorr)
 
Call:
lm(formula = newDV ~ indicator, data = biserial)
 
Residuals:
    Min      1Q  Median      3Q     Max
-16.616  -4.691  -0.120   5.059  19.876
 
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)   65.824      1.647  39.958  < 2e-16 ***
indicator     18.692      2.330   8.024 2.03e-10 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 
Residual standard error: 8.237 on 48 degrees of freedom
Multiple R-squared:  0.5729,    Adjusted R-squared:  0.564
F-statistic: 64.38 on 1 and 48 DF,  p-value: 2.029e-10
 

Now, compare the results from the linear model with the results of the standard t test assuming equal variances 
for x and y. Observe that the value of t testing the significance of the slope coefficient in the regression model is 
equivalent to the value of t comparing the means (ignoring the sign). The intercept term in the regression model 
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is equal to the mean of x, and the slope coefficient is equal to the difference between the means of x and y. These 
equivalences are because both the correlation and the t test are based on the same underlying general linear model.
 
> t.test(x, y, var.equal = T)
 
        Two Sample t-test
 
data:  x and y
t = -8.0235, df = 48, p-value = 2.029e-10
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -23.37607 -14.00793
sample estimates:
mean of x mean of y
   65.824    84.516
 

As you just saw, the use of a dichotomous predictor is equivalent to an independent-samples t test. However, 
when the criterion is dichotomous and the predictor is interval or ratio, problems often arise. The problem is that 
the regression equation can lead to predictions for the criterion that are less than 0 and greater than 1. These can 
simply be converted to 0s and 1s as an expedient, but a more elegant alternative is to use binary logistic regression 
rather than point-biserial correlation for this purpose. Let us explore these issues with the following data. The job 
satisfaction data we worked with in Chapter 10 have been modified to include two binary variables, which indicate 
whether the individual is satisfied overall (1 = yes, 0 = no) and whether the person was promoted (1 = yes, 0 = no).
 
> head(jobSat)
  subject satisf perf alternatives investment satYes promoYes
1       1     52   61          low        low      0        0
2       2     42   72          low        low      0        1
3       3     63   74          low        low      0        1
4       4     48   69          low        low      0        0
5       5     51   65          low        low      0        0
6       6     55   71          low        low      0        0
> tail(jobSat)
   subject satisf perf alternatives investment satYes promoYes
55      55     87   67         high       high      1        0
56      56     80   75         high       high      1        1
57      57     88   70         high       high      1        0
58      58     79   71         high       high      1        0
59      59     83   67         high       high      1        0
60      60     80   73         high       high      1        1
 

Say we are interested in determining the correlation between promotion and satisfaction. We want to know if 
those who are more satisfied are more likely to be promoted. Our criterion now is a dichotomous variable. We can 
regress this variable onto the vector of satisfaction scores using the lm() function. We see there is a significant linear 
relationship. Those who are more satisfied are also more likely to be promoted. The R2 value indicates the percentage 
of variance overlap between satisfaction and promotion, which is approximately 14.8%. The product-moment 
correlation is the square root of the R2 value, which is .385 because the slope is positive.
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> predictPromo <- lm(promoYes ~ satisf, data = jobSat)
> summary(predictPromo)
 
Call:
lm(formula = promoYes ~ satisf, data = jobSat)
 
Residuals:
    Min      1Q  Median      3Q     Max
-0.6705 -0.4584 -0.1031  0.4240  0.8816
 
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.270122   0.229652  -1.176  0.24431
satisf       0.010225   0.003222   3.174  0.00241 **
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 
Residual standard error: 0.4652 on 58 degrees of freedom
Multiple R-squared:  0.148,     Adjusted R-squared:  0.1333
F-statistic: 10.07 on 1 and 58 DF,  p-value: 0.002409
 

Using the coefficients from our linear model, we can develop a prediction for each employee’s promotion from 
his or her satisfaction score. The predict(lm) function performs this operation automatically.
 
> predict <- predict(lm(promoYes ~ satisf, data = jobSat))
> predict <- round(predict,2)
> jobSat <- cbind(jobSat, predict)
> head(jobSat)
  subject satisf perf alternatives investment satYes promoYes predict
1       1     52   61          low        low      0        0    0.26
2       2     42   72          low        low      0        1    0.16
3       3     63   74          low        low      0        1    0.37
4       4     48   69          low        low      0        0    0.22
5       5     51   65          low        low      0        0    0.25
6       6     55   71          low        low      0        0    0.29
 
> summary(jobSat$predict)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
 0.0200  0.2575  0.5100  0.4347  0.5800  0.6900
 

In the current case, the predicted values for promotion are all probabilities between 0 and 1. Note, however, that 
this is not always the case. In many situations, when you are predicting a binary outcome, the predicted values will be 
lower than 0 or greater than 1, as mentioned earlier. A preferable alternative in such cases is binary logistic regression. 
Use the glm() function (for general linear model) to perform the binary logistic regression. We create a model called 
myLogit and then obtain the summary.
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> myLogit <- glm(promoYes ~ satisf, data = jobSat, family = "binomial")
> summary(myLogit)
 
Call:
glm(formula = promoYes ~ satisf, family = "binomial", data = jobSat)
 
Deviance Residuals:
    Min       1Q   Median       3Q      Max
-1.5272  -1.0785  -0.5136   1.0394   2.0143
 
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.77399    1.33523  -2.826  0.00471 **
satisf       0.04964    0.01791   2.771  0.00559 **
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 
(Dispersion parameter for binomial family taken to be 1)
 
    Null deviance: 82.108  on 59  degrees of freedom
Residual deviance: 72.391  on 58  degrees of freedom
AIC: 76.391
 
Number of Fisher Scoring iterations: 3
 

This model is also significant. We see that for approximately every unit increase in job satisfaction, the log odds of 
promotion versus nonpromotion increase by .05.

The Phi Coefficient
The phi coefficient is a version of the correlation coefficient in which both variables are dichotomous. We also use the 
phi coefficient as an effect-size index for chi-square for 2 × 2 contingency tables. In this case, correlating the columns 
of zeros and ones is an equivalent analysis to conducting a chi-square test on the 2 × 2 contingency table. The 
relationship between phi and chi-square is as follows, where N is the total number of observations. First, we calculate 
the standard correlation coefficient with the two dichotomous variables, and then we calculate chi-square and show 
the relationship.

f
c2

2

=
N

.

 
> cor.test(jobSat$satYes, jobSat$promoYes)
 
        Pearson's product-moment correlation
 
data:  jobSat$satYes and jobSat$promoYes
t = 3.4586, df = 58, p-value = 0.001024
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.1782873 0.6039997
sample estimates:
      cor
0.4134925
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The value of chi-square (without the Yates continuity correction) is as follows:
 
> chisq.test(table(jobSat$satYes, jobSat$promoYes), correct = F)
 
        Pearson's Chi-squared test
 
data:  table(jobSat$satYes, jobSat$promoYes)
X-squared = 10.2586, df = 1, p-value = 0.001361
 

Apart from rounding error, the phi coefficient is equal to the correlation that we calculated previously.
 
> phi <- sqrt(10.2586/60)
> phi
[1] 0.4134932

The Spearman Rank Correlation
The Spearman Rank Correlation, r

s
, (also known as Spearman’s Rho) is the nonparametric version of the correlation 

coefficient for variables measured at the ordinal level. Technically, this index measures the degree of monotonic 
increasing or decreasing relationship instead of linear relationship. This is because ordinal measures do not provide 
information concerning the distances between ranks. Some data are naturally ordinal in nature, while other data are 
converted to ranks because the data are nonnormal in their distribution.

As with the phi coefficient, r
s
 can be calculated using the formula for the product moment coefficient after 

converting both variables to ranks. The value of r
s
 is calculated as follows:

r
d
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-
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where d
i
 = x

i
 – y

1
 is the difference between ranks for a given pair of observations. The cor.test() function in R 

provides the option for calculating Spearman’s r
s
. To illustrate, let us examine the relationship between the job 

satisfaction and job performance. See that when we choose the argument method = "spearman" for the cor.test() 
function, the result is identical to the standard correlation between the ranks for the two variables.
 
> cor.test(jobSat$satisf, jobSat$perf, method = "spearman")
 
        Spearman's rank correlation rho
 
data:  jobSat$satisf and jobSat$perf
S = 20906.99, p-value = 0.0008597
alternative hypothesis: true rho is not equal to 0
sample estimates:
      rho
0.4190888
 
Warning message:
In cor.test.default(jobSat$satisf, jobSat$perf, method = "spearman") :
  Cannot compute exact p-value with ties
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Now, examine the result of correlating the two sets of ranks:
 
> cor.test(rank(jobSat$satisf), rank(jobSat$perf))
 
        Pearson's product-moment correlation
 
data:  rank(jobSat$satisf) and rank(jobSat$perf)
t = 3.5153, df = 58, p-value = 0.0008597
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.1848335 0.6082819
sample estimates:
      cor
0.4190888

Recipe 11-3. A Brief Introduction to Multiple Regression 
Problem
In many research studies, there is a single dependent (criterion) variable but multiple predictors. Multiple correlation 
and regression apply in cases of one dependent variable and two or more independent (predictor or explanatory) 
variables. Multiple regression takes into account not only the relationships of each predictor to the criterion, but the 
intercorrelations of the predictors as well. The multiple linear regression model is as follows:

ˆ .y b b x b xk k= + + +0 1 1 

This means that the predicted value of y is a linear combination of an intercept term added to a weighted 
combination of the k predictors. The regression coefficients, symbolized by b, are calculated in such a way that the 
sum of the squared residuals (the differences between the observed and predicted values of y) is minimized. The 
multiple correlation coefficient, R, is the product-moment correlation coefficient between the observed and predicted 
y values. Just as in bivariate correlation and regression, R2 shows the percentage of variation in the dependent 
(criterion) variable that can be explained by knowing the value of the predictors for each individual or object.

Finding the values of the regression coefficients and testing the significance of the overall regression allows 
us to determine the relative importance of each predictor to the overall regression, and whether a given variable 
contributes significantly to the prediction of y. We use multiple regression in many different applications.

Solution
Multiple regression is a very general technique. ANOVA can be seen as a special case of multiple regression, just as the 
independent-samples t test can be seen as a special case of bivariate regression. Let us consider a common situation. 
We would like to predict college students’ freshman grade point average (GPA) from a combination of motivational 
and academic variables.

The following data are from a large-scale retention study I performed for a private liberal arts university. Data 
were gathered from incoming freshmen over a three-year period from 2005 to 2007. Academic variables included the 
students’ high school GPAs, their freshman GPAs, their standardized test scores (ACT and SAT), and the students’ 
rank in their high schools’ graduating class, normalized by the size of the high school. Motivational variables 
included whether the student listed this university first among the schools to receive his or her standardized test 
scores (preference) and how many hours the student attempted in his or her first semester as a freshman. Another 
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motivational variable was whether the student was the recipient of an athletic scholarship. Demographic variables 
included the students’ sex and ethnicity. The data are as follows:
 
> head(gpa)
     id pref frYr frHrs female hsGPA collGPA retained ethnic SATV SATM  SAT ACT
1 17869    1 2006  15.5      1  4.04    2.45        1      1  480  530 1010  18
2 17417    1 2005  19.0      1  4.20    2.89        0      0  520  570 1090  20
3 16681    1 2006  15.0      1  4.15    2.60        1      1  400  410  810  18
4 17416    1 2005  16.5      1  4.50    3.39        1      1  490  480  970  23
5 16990    1 2005  17.0      1  3.83    2.65        1      1  440  460  900  18
6 16254    1 2006  15.0      1  4.32    1.93        1      1  450  650 1100  22
  hsRank hsSize classPos athlete
1    129    522     0.75       0
2     35    287     0.88       0
3      9     13     0.31       0
4      6    158     0.96       0
5     94    279     0.66       0
6     23    239     0.90       0
> tail(gpa)
       id pref frYr frHrs female hsGPA collGPA retained ethnic SATV SATM  SAT
290 17019    1 2006    17      1  3.76    1.57        1      1  480  590 1070
291 18668    1 2007    15      1  4.24    2.80        1      1  540  480 1020
292 18662    1 2007    15      0  3.31    2.33        1      1  440  570 1010
293 19217    1 2007    16      0  4.54    2.25        1      1  540  470 1010
294 16041    1 2005    16      0  3.55    2.69        1      1  540  570 1110
295 18343    1 2007    16      1  4.21    3.31        1      1  530  660 1190
    ACT hsRank hsSize classPos athlete
290  18    133    297     0.55       0
291  24     34    243     0.86       0
292  17    179    306     0.42       1
293  20      7     12     0.42       0
294  22    218    498     0.56       1
295  27     32    301     0.89       0
 

The lm() function in base R can be used for multiple regression. Let us create a linear model with the college GPA 
as the criterion and the academic variables of SAT verbal, SAT math, high school GPA, and class position as predictors. 
We can also add sex, preference, and status as a student athlete as predictors. We will run the full model and then 
eliminate any predictors that do not add significantly to the overall regression.
 
> mulReg <- lm(collGPA ~ SATV + SATM + hsGPA + classPos + female + pref + athlete, data = gpa)
> summary(mulReg)
 
Call:
lm(formula = collGPA ~ SATV + SATM + hsGPA + classPos + female +
    pref + athlete, data = gpa)
 
Residuals:
    Min      1Q  Median      3Q     Max
-1.2170 -0.3267  0.0130  0.3253  1.4529
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Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept)  0.2207168  0.2874792   0.768  0.44326
SATV         0.0015583  0.0005095   3.059  0.00243 **
SATM         0.0003460  0.0005027   0.688  0.49178
hsGPA        0.2620812  0.0986011   2.658  0.00830 **
classPos     1.0528486  0.2416664   4.357 1.84e-05 ***
female       0.1714455  0.0704189   2.435  0.01552 *
pref        -0.2986353  0.1164998  -2.563  0.01088 *
athlete      0.0574808  0.0772814   0.744  0.45761
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 
Residual standard error: 0.5136 on 287 degrees of freedom
Multiple R-squared:  0.4433,    Adjusted R-squared:  0.4297
F-statistic: 32.64 on 7 and 287 DF,  p-value: < 2.2e-16
 

The significant predictors are SAT verbal, high school GPA, class position, sex, and stated preference for this 
university. Let us run the regression again using only those predictors. Normally, we eliminate the nonsignificant 
variables one at a time; that is, we exclude the predictor with the highest p-value first, but here we eliminate both 
SATM and the athlete variable at the same time for illustrative purposes, as the p-values are quite similar.
 
> mulReg2 <- lm(collGPA ~ SATV + hsGPA + classPos + female + pref, data = gpa)
> summary(mulReg2)
 
Call:
lm(formula = collGPA ~ SATV + hsGPA + classPos + female + pref,
    data = gpa)
 
Residuals:
    Min      1Q  Median      3Q     Max
-1.2199 -0.3445  0.0213  0.3131  1.4816
 
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept)  0.3182779  0.2730307   1.166 0.244688
SATV         0.0016898  0.0004428   3.816 0.000166 ***
hsGPA        0.2663688  0.0960505   2.773 0.005912 **
classPos     1.0850437  0.2395356   4.530 8.65e-06 ***
female       0.1517149  0.0680608   2.229 0.026575 *
pref        -0.3008454  0.1152196  -2.611 0.009497 **
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 
Residual standard error: 0.5129 on 289 degrees of freedom
Multiple R-squared:  0.4408,    Adjusted R-squared:  0.4312
F-statistic: 45.57 on 5 and 289 DF,  p-value: < 2.2e-16
 

The value of R2 is basically unchanged, and our new model uses only predictors that each contribute significantly 
to the overall regression. The predictors are highly interrelated, as the following correlations show, so we are 
interested in finding a combination of predictors that are each related to the criterion independently.
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We can apply the regression equation we created to get predicted values of the college GPA, along with a 95% 
confidence interval using the predict.lm function. Remember the product-moment correlation between the 
predicted y values and the observed y values is multiple R, as the following output shows. The predict.lm function 
will optionally provide a confidence interval for each fitted value of y, giving the lower and upper bounds for the 
mean y for a given x. You can also specify a prediction interval, which will give the prediction limits for the range of 
individual y scores for a given x score. See that the predict.lm() function produces a matrix. Squaring the correlation 
between the fitted values and the observed y values produces the value of R2 reported earlier.
 
> gpa.fit <- predict.lm(mulReg2, interval = "confidence")
> head(gpa.fit)
       fit      lwr      upr
1 2.870169 2.788140 2.952199
2 3.121436 3.038125 3.204747
3 2.286866 2.010149 2.563582
4 3.237456 3.128370 3.346542
5 2.648985 2.553701 2.744270
6 3.056815 2.945514 3.168115
> cor(gpa.fit[,1], gpa$collGPA)^2
[1] 0.4408457
 

Our linear model is as follows.

ˆ . . . . .y = + ( ) + ( ) + ( ) +0 3183 00169 26637 1 085 1517SATV hsGPA classPos (( . .female) pref- ( )0 300845

This formula produces the fitted value of 2.8702 as the predicted value of the college GPA for the first student in 
the dataset. The interpretation of the confidence interval is that we are 95% confident that students with the same SAT 
verbal score, the same high school GPA, the same class position, and the same stated preference as this student will 
have college GPAs between 2.788 and 2.952.
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Chapter 12

Contemporary Statistical Methods

You learned the traditional tests for differences in Chapter 10 and for relationships in Chapter 11. In Chapter 12, you 
will learn some of the modern statistical methods developed over the past half century. You have learned by now that 
statistics is not a static field, but a growing, dynamic, and evolving one. With modern technology, statisticians are 
able to perform calculations and analyses not previously available. The notion of sampling from a population and 
estimating parameters is still an important one, but newer techniques that allow us to use samples in new ways are 
increasingly available.

In Chapter 12, you will learn about modern robust statistical techniques that allow us to resample our data 
repeatedly and build the distribution of a statistic of interest, perhaps even one of our own creation. We can also 
simulate data and make inferences concerning various statistics. We can use techniques that improve our ability to 
make correct inferences when data distributions depart from normality. It is also possible to use permutation tests as 
alternatives to traditional hypothesis tests.

The disenchantment with null hypothesis significance testing began soon after R. A. Fisher suggested the 
technique in the first place. Fisher asserted that one does not (ever) need an alternative hypothesis. Instead, one 
examines a sample of data under the assumption of some population distribution, and determines the probability 
that the sample came from such a population. If the probability is low, then one rejects the null hypothesis. If the 
probability is high, the null hypothesis is not rejected. The notion of an alpha or significance level was important to 
Fisher’s formulation, but the idea of a Type II error was not considered. Fisher also developed the notion of a p value 
as an informal, but useful, way of determining just how likely it was that the sample results occurred by chance alone.

Karl Pearson’s son Egon Pearson and Jerzy Neyman developed a different form of hypothesis testing. In their 
framework, two probabilities were calculated, each associated with a competing hypothesis. The hypothesis that was 
chosen had the higher probability of having produced the sample results. Thus, the Neyman-Pearson formulation 
considered (and calculated) both Type I and Type II errors. Fisher objected to the Neyman-Pearson approach, and a 
bitter rivalry ensued. The rivalry ended with Fisher’s death in 1962, but the controversy endures.

Current hypothesis testing is an uneasy admixture of the Fisher and Neyman-Pearson approaches. The debate 
between these two approaches has been pursued on both philosophical and mathematical grounds. Mathematicians 
claim to have resolved the debate, while philosophers continue to examine the two approaches independently. 
However, an alternative is emerging that may soon supplant both of these approaches. These newer methods provide 
one the ability to make better, that is, more accurate and more powerful, inferences when data do not meet parametric 
distributional assumptions such as normality and equality of variance.

Recipe 12-1. Resampling Techniques
Problem
Many statistical problems are intractable from the perspective of traditional hypothesis testing. For example, making 
inferences about the distribution of certain statistics is difficult or impossible using traditional methods. Examine the 
histogram in Figure 12-1, which represents the hypothetical scores of 20 elderly people on a memory test. The data are 
clearly not normal. As the histogram indicates, some of the subjects have lost cognitive functioning. The problem is 
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how to develop a confidence interval for the median of the data. It is clear how to develop a confidence interval for a 
mean, but what about a confidence interval for the median? Here are the 20 memory scores.
 
Memory <- c(2.5, 3.5, 4.5, 5.5, 6.5, 6.5, 6.5, 8.5, 8.5, 9.5, 9.5, 9.5, 9.5, 10.5, 10.5, 10.5, + 
10.5, 11.5, 11.5, 12.5)
> breaks <- seq(2, 14, 1)
> hist(memory, breaks) 

Figure 12-1.  Hypothetical memory data for 20 elderly people  

Solution
The solution in not as difficult as one might imagine. We treat the sample of 20 as a “pseudo-population,” and take 
repeated resamples with replacement from our original sample. We then calculate the median of each sample and 
study the distribution of sample medians. We can find the 95% confidence limits from that distribution using R’s 
quantile() function. Let us generate 10,000 resamples and calculate the median of each. Then we will generate a 
histogram of the distribution of the medians, followed by the calculation of the limits of the 95% confidence interval 
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for the median. There are many ways to do this, but we can simply write a few lines of R code that loop explicitly 
through 10,000 iterations, taking a sample with replacement each time, and calculating and storing the median of 
each sample. Here is our R code. The numeric() command makes an empty vector that we then fill with the medians 
from each of the 10,000 resamples. The sampling with replacement is accomplished by setting the replace argument 
to T or TRUE.
 
nSamples <- 10000
medianSamp <- numeric()
for (i in 1:nSamples) medianSamp[i] <- median(sample(memory, replace = T))
hist(medianSamp)
(llMedian <- quantile(medianSamp, 0.025))
(ulMedian <- quantile(medianSamp, 0.975))
 

The histogram of the medians appears in Figure 12-2. Just as the original sample was negatively skewed, so is our 
distribution of medians.

Figure 12-2.  Histogram of 10,000 medians from resampling the “pseudo-population”   
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The 95% confidence interval for the median is [6.5, 10.5].
 
> (llMedian <- quantile(medianSamp, 0.025))
2.5%
 6.5
> (ulMedian <- quantile(medianSamp, 0.975))
 97.5%
10.5
 

The essence of all resampling techniques is the same as what we have done here. We use a sample of data and 
take a large number of resamples with replacement. We then study the distribution of the statistic of interest. This 
general approach is known as bootstrapping. The bootstrapping method can be used for other statistics simply by 
altering the R code. For example, we can study the distribution of the sample variance, the mean, or any other statistic 
we want without assuming anything about the population.

Recipe 12-2. Making Inferences About Means from Real Data
Problem
Real data are very unlikely to be normally distributed. Indeed, the parametric assumptions for t tests and ANOVA are 
often not met. When we make inferences about means and are unwilling to assume the population is normal, or that 
the variances in the population are equal, modern robust statistical methods can be very helpful. This approach was 
championed and described by Rand Wilcox in his articles and books on contemporary statistical methods. Wilcox has 
developed the WRS (Wilcox’ Robust Statistics) package, with more than 1,100 functions for various robust statistical 
calculations. The WRS package is not available through CRAN because of the lack of complete documentation for 
all functions, but it can be obtained from GitHub or through Wilcox’s web site at http://dornsife.usc.edu/labs/
rwilcox/software/.

You will need to download this package if you wish to try out some of the functions that are used in the examples 
that follow. In general, a statistic is said to be robust to the extent that it performs well when the data are not normally 
distributed or when two or more samples have widely differing variances. Another concern with real data is that 
statistics such as the mean are heavily influenced by the presence of outliers. The median, on the other hand, is a 
robust statistic for estimating the central tendency of a data distribution because it is unaffected by extreme values.  
To elaborate further on the idea of robustness, Mosteller and Tukey defined two types, resistance and efficiency.  
A statistic (for example, the median) is resistant if changing a small part of the data (even by a large amount) does not 
lead to a large change in the estimate. A statistic has robustness of efficiency, on the other hand, if the statistic has 
high efficiency in a variety of situations, rather than a single situation. For example, the mean and variance, which are 
used as the basis for standard confidence intervals, do not have robustness of efficiency because they work well in this 
capacity only when data are normally distributed or when sample sizes are large.

Solution
The standard t test discussed in Chapter 10 is useful for comparing means when the data are sampled from normal 
distributions and when the variances are equal in the population. The Welch t test (the R default) is a better 
alternative when the population variances cannot be assumed to be equal. However, both versions of the t test are 
ineffective when the data differ substantially from a normal distribution—that is, when the distributions are highly 
skewed, as is often the case with real data (especially if the data have not been cleaned).

Trimmed means remove outliers by excluding a certain percentage of values at the high and low ends of the 
data distribution, and then calculating the mean of the remaining data values. Similarly, we can calculate Winsorized 
statistics. Winsorizing (named after Charles P. Winsor, who suggested the technique) is slightly more complicated 
than trimming. Winsorizing is defined as follows: the k-th Winsorized mean is the average of the observations after 
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each of the first k smallest values are replaced by the (k + 1)th smallest value, and the k largest values are replaced by 
the (k + 1)th largest value. Thus, Winsorizing does not discard data values, as trimming does, but replaces data values 
with other observed values that are closer to the center of the data distribution.

The mean and the variance are used as the basis of confidence intervals, and by our definitions, they are efficient 
when the data are from a normal population. However, these statistics do not possess robustness of efficiency or 
resistance. Therefore, we would like to find estimators of the population mean that are both resistant and possess 
robustness of efficiency. We can develop confidence limits for a trimmed mean or for the differences between 
trimmed means. These techniques are robust alternatives to the standard one-sample and two-sample t tests.

Calculating and examining trimmed means is one alternative to the standard or Welch t test. A common 
approach is to use a 10% trimmed mean, therefore excluding the upper 10% and the lower 10% of observations. 
The mean function in R can be used to calculate the trimmed mean of a set of numbers. For example, let us calculate 
the trimmed mean for the numbers we used in Recipe 12-1. With 20% trimming, the trimmed mean is closer to the 
median than the original mean was, though even with trimming, the trimmed data are still negatively skewed, as the 
trimmed mean is lower than the median. The median is resistant, but has less robustness of efficiency than a trimmed 
or Winsorized mean because these statistics use more information than does the median.

We can calculate the variance for a trimmed mean as follows:

s

n
w
2

21 2( )- g

where s
w

2 is the Winsorized variance as discussed earlier, n is the sample size before trimming, and g is the proportion 
of trimming. We can then calculate the standard error of the trimmed mean as

s

n
w

( )1 2- g

Wilcox’s WRS package includes a tmean function for calculating the trimmed mean, a trmse function for 
estimating the standard error of the trimmed mean, a win function for calculating a Winsorized mean, and a winvar 
function for calculating a Winsorized variance. The following code shows these functions applied to the memory 
data from Recipe 12-1. Observe that the built-in mean function produces the same answer as Wilcox’s tmean function, 
where the trimming proportion is the same. Note also that the trimming substantially reduced the variance of the 
trimmed data.
 
> mean(memory)
[1] 8.4
> mean(memory, trim = .2)
[1] 8.833333
> tmean(memory, tr = .2)
[1] 8.833333
> trimse(memory, tr = .2)
[1] 0.6578363
> win(memory, tr = .2)
[1] 8.7
> winvar(memory, tr = .2)
[1] 3.115789
> var(memory)
[1] 7.989474
 

x
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We can also get a confidence interval for the trimmed mean by using Wilcox’s function trimci. This can 
substitute for a one-sample t test when the data are not normally distributed. If the test value (the hypothesized 
population mean) is within the limits of the confidence interval, we conclude that the evidence suggests that the 
sample came from a population with m

0
.

 
> trimci(memory, tr = .2, alpha = .05)
[1] "The p-value returned by the this function is based on the"
[1] "null value specified by the argument null.value, which defaults to 0"
$ci
[1]  7.385445 10.281221
 
$estimate
[1] 8.833333
 
$test.stat
[1] 13.42786
 
$se
[1] 0.6578363
 
$p.value
[1] 3.63381e-08
 
$n
[1] 20
 

Now, assume that we locate a sample of elderly people who take a memory-enhancing supplement. We want to 
compare the means of the two groups (labeled memory1 and memory2). We note that the memory scores for the first 
group are negatively skewed and that the scores for the second group are positively skewed (see Figure 12-3). We find 
further that the variances of the two groups are not equal.
 
> memory1
 [1]  2.5  3.5  4.5  5.5  6.5  6.5  6.5  8.5  8.5  9.5  9.5  9.5  9.5 10.5 10.5
[16] 10.5 10.5 11.5 11.5 12.5
> memory2
 [1]  5.5  5.5  6.0  6.0  6.0  7.5  7.5  7.5  7.5  7.5  7.5 10.0 10.0 11.0 13.0
[16] 14.0 16.0 16.0 16.0 20.0
>
 
[1] 8.4
> mean(memory2)
[1] 10
> var(memory1)
[1] 7.989474
> var(memory2)
[1]  18.94737
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A robust alternative to the two-sample t test was developed by Yuen. The Yuen t statistic is the difference between 
the two trimmed means divided by the estimated standard error of the difference between the trimmed means,

t
X X

d d
y

t t=
-
+

1 2

1 2

where the standard error estimates,

d
n

h hj
j wj

j j

=
-

-

( )

( )
,

1

1

2s

and the variance estimate, s
wj

2, is the g-Winsorized variance for group j, and h
j
 is the effective sample size after 

trimming. The degrees of freedom for the Yuen test are calculated as

u y

d d

d h d h
=

+
- + -

( )

/( ) ( )
.1 2

2

1
2

1 2
2

21 1

Figure 12-3.  Comparison of memory scores of two groups of elderly persons 
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Wilcox’s function yuen performs this test. Let us compare the results of the Welch test and the Yuen test to 
determine the effect of trimming on the resulting confidence intervals.
 
> t.test(memory1, memory2)
 
        Welch Two Sample t-test
 
data:  memory1 and memory2
t = -1.3787, df = 32.604, p-value = 0.1774
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -3.9622155  0.7622155
sample estimates:
mean of x mean of y
      8.4      10.0
 

The yuen function produces a list as its output, so we will create an object and query the results for the confidence 
interval and p-value. The yuen function defaults to a trimming value of 0.20 and an alpha level of 0.05.
 
> yuenTest <- yuen(memory1, memory2)
> yuenTest$ci
  
[1] -3.215389  2.715389
> yuenTest$p.value
[1] 0.8609031
 

When the sample size is small, as it is in this case, a preferable alternative is to use a bootstrapped version 
of Yuen’s robust t test. Wilcox provides a function yuenbt to calculate a percentile-t bootstrap that estimates a 
confidence interval for the difference between two trimmed means. As with any hypothesis testing situation where 
the  hypothesized difference is zero, the fact that zero or no difference is “in” the confidence interval implies that we 
do not reject the null hypothesis.
 
> yuenbt(memory1, memory2, nboot = 2000)
[1] "NOTE: p-value computed only when side=T"
$ci
[1] -3.940663  2.441760
 
$test.stat
[1] -0.1811149
 
$p.value
[1] NA
 
$est.1
[1] 8.833333
 
$est.2
[1] 9.083333
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$est.dif
[1] -0.25
 
$n1
[1] 20
 
$n2
[1] 20
 

The robust tests and confidence intervals indicate the two groups are more similar than does the standard 
parametric approach. As a last alternative, we can simply use a nonparametric test, the Mann-Whitney U test, to 
determine if the two distributions differ in shape. This test also shows that the memory scores of the two groups do 
not differ significantly.
 
> wilcox.test(memory1, memory2)
 
        Wilcoxon rank sum test with continuity correction
 
data:  memory1 and memory2
W = 177, p-value = 0.5417
alternative hypothesis: true location shift is not equal to 0
 
Warning message:
In wilcox.test.default(memory1, memory2) :
  cannot compute exact p-value with ties
 

Recipe 12-3. Permutation Tests
Problem
Permutation tests are similar in logic to bootstrap tests, but use permutations of the data rather than resampling  
with replacement. Because of this, a permutation test repeated on the same data will produce the same results, 
whereas a bootstrap test with the same data will produce different results. In many cases, the two will be similar, but 
remember because bootstraps use sampling with replacement, no two bootstrap tests will be entirely equivalent.  
On the other hand, techniques that use permutation tests will always produce the same results because of the nature 
of permutations. When an exact answer is needed, permutation tests are preferred over bootstrap tests.

The permutation test was developed by R. A. Fisher in the 1930s. At that time, permutations had to be calculated 
by hand, a tedious process indeed. Fisher’s famous “lady and the tea” problem illustrates the logic of permutation 
tests. Fisher met a lady (Dr. Muriel Bristol) who claimed to have such a discerning sense of taste that she should 
correctly distinguish between tea into which milk had been poured before the tea and tea into which the milk was 
poured into the cup after the tea. Fisher wanted to test the hypothesis that this woman was not able to guess correctly 
more than at a chance level (the null hypothesis). The test was performed by pouring four cups each of tea with the 
milk poured first and with the tea poured first. The order of the eight cups was randomized, and each was presented to 
the lady for her judgment. The lady was then to divide the cups into two groups by the “treatment”—that is, whether 
milk or tea was added first. There are 8 4 70C =  ways in which four cups could be chosen from eight cups. It has been 
reported that the lady correctly identified all 8 cups, but in his description of this experiment in his book, Fisher 
illustrated the test with three correct guesses and one incorrect guess. The critical region Fisher used for his test was 
1/70 = .014, which would occur only when the lady correctly identified all eight cups. The probability of identifying six 
or more of the eight cups was too high to justify rejecting the null hypothesis.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 12 ■ Contemporary Statistical Methods

166

Solution
All permutation tests share the logic of Fisher’s exact test. The perm package provides permutation tests for 2 and 
K samples. For example, we can perform a permutation test comparing the means of our two memory groups as 
follows. Either an asymptotic or an exact test can be conducted, though in our current case, the two produce virtually 
identical results.
 
> permTS(memory1, memory2)
 
        Permutation Test using Asymptotic Approximation
 
data:  memory1 and memory2
Z = -1.3505, p-value = 0.1769
alternative hypothesis: true mean memory1 - mean memory2 is not equal to 0
sample estimates:
mean memory1 - mean memory2
                       -1.6
 
> permTS(memory1, memory2, exact = T)
 
        Exact Permutation Test Estimated by Monte Carlo
 
data:  memory1 and memory2
p-value = 0.18
alternative hypothesis: true mean memory1 - mean memory2 is not equal to 0
sample estimates:
mean memory1 - mean memory2
                       -1.6
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Chapter 13

Writing Reusable Functions

R provides users the ability to write, save, and reuse functions. These functions are flexible and extend the power 
of R for users who need specialized capabilities not provided by the functions in base R or in contributed packages. 
Users are advised, however, to check CRAN (the Comprehensive R Archive Network) before they write a function, as 
it is very likely that someone else has encountered the same problem previously, and has already written the desired 
function for you. A case in point is the z test function we wrote in Recipe 10-1. As it materializes, the BSDA package 
already has a function labeled z.test that accomplishes the purpose we needed, and which also provides more 
options, including two-sample tests and directional and nondirectional alternative hypotheses.

Nonetheless, there usually comes a time when an R user wants to learn to be an R programmer, and writing functions 
is a key part of R programming. Functions do not have to be elegant or sophisticated to be useful. An often-used acronym 
in computer science is DRY (don’t repeat yourself  ). Whenever you can reuse a line or lines of code to do something you 
need done more than once, functions will save you time and make your work more consistent.

Recipe 13-1. Understanding R Functions
Problem
Most users of R start as novices and then advance to users, programmers, and ultimately for some, contributors to 
the R community. Functions are a basic building block in R, and even if you are not particularly interested in writing 
functions, you still need to understand how functions work in order to become a more effective user of R, an R 
programmer, and perhaps ultimately a contributor of your own functions to CRAN.

As with everything else in R, a function is an object. Functions take input, perform operations on that input, 
and produce output. Functions can also call other functions and even take functions as input and produce different 
functions as output. You can create functions that ask for user input in the interactive R console, too.

Solution
Every R function has three components. These are the function body (the code inside the function), the function 
arguments, and the function environment (the locations of the function’s variables). The function’s arguments are 
both formal and actual. For example, a function to calculate the square of x has x as a formal argument, and may have 
the value of 8 as an actual argument:
 
> squareX <- function (x) {
+ print(x^2)
+ }
> squareX(8)
[1] 64
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R evaluates the arguments to a function in a specified order. First, it looks for exact matches to the argument 
name (also called a tag). Second, R looks for any partial matches on tags. The formal arguments may also contain 
‘ . . . ’as an indication that there are unspecified arguments. If the formal arguments contain the ellipsis ‘ . . . ’, then any 
argument after it must have exact matching. The third pass is positional matching. Any unmatched formal arguments 
are “bound” to unnamed supplied arguments in order.

Functions arguments in R are lazy, which means that they are not evaluated if they are not used, and R will not 
produce an error if an unneeded argument is supplied, though it will often provide a warning. Let us use a common 
function to see how arguments are evaluated. As implied earlier, the order is unimportant if you use the argument 
names and exact or partial matches. Here is the mad function in R (for median absolute deviation from the median of 
a dataset). See that when you enter the function name without parentheses or arguments, R will print the function 
source code or other information, along with the function’s bytecode location and environment namespace. I chose 
the mad function because it is one in which the code is written in R. Many other functions, such as sum, are written 
in C or some other language, and typing in the function name is much less instructive. See the following code for an 
illustration.
 
> mad
function (x, center = median(x), constant = 1.4826, na.rm = FALSE,
    low = FALSE, high = FALSE)
{
    if (na.rm)
        x <- x[!is.na(x)]
    n <- length(x)
    constant * if ((low || high) && n%%2 == 0) {
        if (low && high)
            stop("'low' and 'high' cannot be both TRUE")
        n2 <- n%/%2 + as.integer(high)
        sort(abs(x - center), partial = n2)[n2]
    }
    else median(abs(x - center))
}
<bytecode: 0x000000000c353650>
<environment: namespace:stats>
 
> sum
function (..., na.rm = FALSE)  .Primitive("sum")
 

Returning to the mad function, note the variety of arguments with defaults. The default value of “center” is the 
median of the dataset. There is a scaling constant, 1.4826, which ensures consistency with the principle that when x is 
distributed as N(m, s2) with a large sample size, the expected value of the mean absolute deviation should approach 
the population standard deviation, s. The na.rm argument tells R what to do if the dataset has missing values. The 
high and low arguments specify whether the “high median” or the “low median” will be used when the dataset has an 
even number of values. The high median is the higher of the two middle values, and the low median is the lower of the 
two middle values. With both of these arguments set to FALSE, the standard definition of the median as the average of 
the two middle values is used.

The following data are the serum cholesterol levels of 62 of the patients in the famous Framingham heart study:
 
> chol
 [1] 393 353 334 336 327 308 300 300 283 285 270 270 272 278 278 263 264 267 267
[20] 267 268 254 254 254 256 256 258 240 243 246 247 248 230 230 230 230 231 232
[39] 232 232 234 234 236 236 238 220 225 225 226 210 211 212 215 216 217 218 202
[58] 202 192 198 184 167
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Let’s use the mad function and see what happens when we omit all the arguments except x, the numeric vector.
 
> mad(chol)
[1] 35.5824
 

Now, we can specify the center as mean. Here are several different ways we could specify the argument, as we 
discussed. We can use an exact match to the argument name, omit it entirely because center is the second argument, 
or use a shorter version of the name for a partial match. All three approaches produce the same result.
 
> mad(chol, center = mean(chol))
[1] 29.74765
> mad(chol, mean(chol))
[1] 29.74765
> mad(chol, cen = mean(chol))
[1] 29.74765
 

As an extended example of writing a function, let us revisit the z.test function we worked with in Chapter 10. 
We will give our function the descriptive name of oneSampZ to distinguish it from the more general z.test function in 
the BSDA package. In the process of updating our function, we will modify it to make it more flexible, and you will learn 
how such improvements might work for you with similar kinds of problems.

First, let us clean up our function a bit by changing some of the labels and making the output a little nicer to 
look at. Following is the improved function for a one-sample z test. Remember we are doing a two-tailed test and 
developing a (1 – a) × 100% confidence interval. As you examine the function, identify the function body and the 
arguments. See that you can specify a default value for any of the arguments you like, as we did here for the alpha 
level. If you accept the default value, you can omit that particular argument when you call the function. A note is in 
order about the test value, which we call mu in keeping with the built-in t.test function. The actual hypotheses being 
tested are better described as follows for the function in its current state (we will expand on that momentarily). The 
usual notation for the null hypothesis is H

0
, and for the alternative hypothesis, H

1
. We are testing a null hypothesis that 

the population mean is equal to a known or hypothesized population mean, which we can label m0. Symbolically, our 
competing hypotheses are as follows:

H

H
o :

:

m m
m m
=
¹

0

1 0

 
oneSampZ <- function(x, mu, sigma, n, alpha = 0.05){
       sampleMean <- mean(x)
       stdError <- sigma/sqrt(n)
       zcrit <- qnorm(1 - alpha/2)
       zobs <- (sampleMean - mu)/stdError
       LL <- sampleMean - zcrit * stdError
       UL <- sampleMean + zcrit * stdError
       pvalue <- 2 * (1 - pnorm(abs(zobs)))
       cat("\t","one-sample z test","\n","\n")
       cat("sample mean:",sampleMean,"\t","sigma:",sigma,"\n")
       cat("sample size:",n,"\n")
       cat("test value:",mu,"\n")
       cat("sample z:",zobs,"\n")
       cat("p value:",pvalue,"\n")
       cat((1-alpha),"percent confidence interval:","\n")
       cat("lower:",LL,"\t","upper:",UL,"\n")
       }
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In the current case, with a two-sided hypothesis test, the confidence interval will be symmetrical around the 
mean, with half of the alpha in each tail of the normal distribution. To explain in detail how the function works, note 
that we pass a vector of scores, x, the test value mu sigma, the sample size, and the alpha level, which defaults to .05, 
to the function. The function calculates the sample mean, the standard error of the mean, the critical value of z, the 
sample z, the lower and upper limits of the confidence interval, and the two-tailed p value. These results are reported 
by use of the cat() function.

Let’s add some features to our function. We can eliminate the need to pass the length of the vector by using the 
length() function for that purpose. We can also provide the option for the test to be one-tailed as well as two-tailed. 
The option to make the test one-tailed means we must allow for both right-tailed and left-tailed alternative hypotheses. 
As a result, the one-sided confidence intervals will not be symmetrical around the mean, but will have -∞ as the lower 
bound for the left-tailed test and +∞ as the upper bound for the right-tailed test. We need to add logic to our function 
to accommodate these choices and their consequences, so the function will necessarily become somewhat more 
complicated than before.
 
###########################################################################
#                                                                         #
#                    One-sample z Test Function                           #
#                       Written by Larry Pace                             #
#                                                                         #
###########################################################################
oneSampZ <- function(x, mu, sigma = sd(x), alternative = "two.sided", alpha = .05){
  meanX <- mean(x)
  n <- length(x)
  stdErr <- sigma/sqrt(n)
  zobs <- (meanX - mu)/stdErr
  choices <- c("two.sided","less","greater")
  chosen <- pmatch(alternative, choices)
  alternative <- choices[chosen]
  if (alternative == "greater") {
       testtype <- "alternative: true mean > test value"
       zcrit <- abs(qnorm(alpha))
       LL <- meanX - zcrit*stdErr
       UL <- Inf
       pvalue <- 1-pnorm(abs(zobs))
       }
  else if (alternative == "less") {
       testtype <- "alternative: true mean < test value"
       zcrit <- qnorm(1 - alpha)
       LL <- -Inf
       UL <- meanX + zcrit*stdErr
       pvalue <- pnorm(abs(zobs))
       }
  else {
       testtype <- "alternative: true mean unequal to test value"
       zcrit <- qnorm(1-alpha/2)
       LL <- meanX - zcrit*stdErr
       UL <- meanX + zcrit*stdErr
       pvalue <- 2*(1-pnorm(abs(zobs)))
      }
  cat("\t","one-sample z test","\n","\n")
  cat("sample mean:",meanX,"\n")
  cat("test value:",mu,"\n")
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  cat("sigma:",sigma,"\n")
  cat(testtype,"\n")
  cat("observed z:",zobs,"\n")
  cat("p value:",pvalue,"\n")
  cat((1-alpha)*100," percent confidence interval","\n")
  cat("lower:",LL,"\t","upper:",UL,"\n")
}
 

This improved function takes a vector of scores, a test value, and a population standard deviation. If the 
population standard deviation is not provided, the function will use the sample standard deviation instead. The 
function defaults to a two-tailed test with an alpha level of .05. You can specify a right-tailed (“greater”) or a left-tailed 
(“less”) alternative hypothesis, and can change the alpha level if you choose. The function determines the choice of 
test and returns the appropriate p value along with a (1–a) × 100% confidence interval.

The hypotheses for the left-tailed and right-tailed tests are such that the confidence intervals are no longer 
symmetrical. There are two points of view about the null hypothesis in this case. Some statisticians continue to state 
the null hypothesis as a point estimate of the population parameter, while others modify the statement of the null 
hypothesis to encompass the entire range of possible outcomes. I tend to side with the first group, but many of my 
colleagues do not. Here is how we would state the hypotheses in both of these cases for a right-tailed test. First, the 
point-estimate statement:

H

H
0 0

1 0

:

:

m m
m m
=
>

Now the “cover all outcomes” approach, which emphasizes that the null hypothesis must cover all possibilities 
not represented by the alternative hypothesis:

H

H
0 0

1 0

:

:

m m
m m
£
>

We can use the fBasics package to get summary statistics for the cholesterol data we used for the z test.
 
> library(fBasics)
Loading required package: MASS
Loading required package: timeDate
Loading required package: timeSeries
 
Attaching package: 'fBasics'
 
The following object is masked from 'package:base':
 
    norm
 
> basicStats(chol)
                    chol
nobs           62.000000
NAs             0.000000
Minimum       167.000000
Maximum       393.000000
1. Quartile   225.250000
3. Quartile   267.750000
Mean          250.064516
Median        241.500000
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Sum         15504.000000
SE Mean         5.258363
LCL Mean      239.549769
UCL Mean      260.579263
Variance     1714.323638
Stdev          41.404392
Skewness        1.002676
Kurtosis        1.439256
 

We note the data are positively skewed and positively kurtotic as the summary statistics show, and as we can 
visually verify in the histogram shown in Figure 13-1.

With a sample size of 62, we should be able to invoke the central limit theorem and assume that the sampling 
distribution of means will be roughly normal. This would justify the use of a z test to compare this sample to the known 
mean and standard deviation of serum cholesterol levels in 20- to 74-year-old males, which are 211 and 46, respectively. 
To double-check the reasonability of our assumptions, we can perform a bootstrap sampling of our data to determine if  

Figure 13-1.  Histogram of cholesterol levels for 62 patients
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the distribution of means is indeed approximately normal. See the plot of the sample means in Figure 13-2. For this plot,  
I converted the means to standard scores using the scale function, and then plotted the z scores with the normal curve as 
an overlay. Examine the following code to see how to do this. The freq = FALSE argument specifies the plotting of densities 
rather than frequencies, and the ylim argument makes sure there is enough room on the graph for the normal curve.
 
nsamps <- 10000
cholMean <- numeric()
for(i in 1:nsamps) cholMean[i] <- mean(sample(chol, replace = T))
CI <- c(quantile(cholMean, 0.025), quantile(cholMean, 0.975))
CI
    2.5%    97.5%
240.3867 260.6133
 
> zcholMean <- scale(cholMean)
> hist(zcholMean, freq = FALSE, col = "gray", ylim = c(0, 0.4))
> curve(dnorm, col = "red", add = TRUE)
 

Figure 13-2.  Plot of 10,000 resampled means from the cholesterol data
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Let us use our modified one-sample z test function to test the null hypothesis that the sample came from a population 
with a mean serum cholesterol level of 211 and a standard deviation of 46 against the one-sided alternative that the 
sample came from a population with a higher mean cholesterol level. We will adopt an alpha level of .01 for the test.

Here is the output from the one-sample z test, followed by the output from R’s t.test function for comparison. 
The results are similar because the sample is relatively large.
 
> oneSampZ(chol, mu = 211, sigma = 46, alternative = "greater", alpha = 0.01)
 
         one-sample z test
  
sample mean: 250.0645
test value: 211
sigma: 46
alternative: true mean > test value
observed z: 6.686833
p value: 1.140266e-11
99  percent confidence interval
lower: 236.474   upper: Inf
 
> t.test(chol,mu = 211, alternative = "greater", conf.level = 0.99)
 
        One Sample t-test
 
data:  chol
t = 7.429, df = 61, p-value = 2.117e-10
alternative hypothesis: true mean is greater than 211
99 percent confidence interval:
 237.502     Inf
sample estimates:
mean of x
 250.0645
 

The extremely low p values indicate we can reject the null hypothesis, and we conclude that the sample came 
from a population with a mean higher than 211.

For comparison’s sake, I also conducted the one-sample z test using the built-in z.test function in the BSDA package:
 
> library(BSDA)
> z.test(x = chol, alternative = "greater", mu = 211, sigma.x = 46, conf.level = 0.99)
 
        One-sample z-Test
 
data:  chol
z = 6.6868, p-value = 1.14e-11
alternative hypothesis: true mean is greater than 211
99 percent confidence interval:
 236.474      NA
sample estimates:
mean of x
 250.0645
 

Apart from labelling and the number of decimals reported, the two functions produce the same result, but BSDA 
used NA rather than Inf to represent the upper limit of the confidence interval.
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Recipe 13-2. Writing Functions That Produce Other Functions
Problem
Recipe 13-1 shows how a function can call other R functions, such as mean and length. Many R functions are actually 
functions of other functions. When you create an object in a function, that object is local to the function. The last value 
computed in a function will be automatically returned by R, but it is often a good idea to use an explicit return() 
statement. To illustrate the scoping of the variables and objects in a function, note that we can define x within the 
function, but that assignment will not affect the value of x in the global environment (our R workspace). Similarly,  
R functions such as mean and length reside in the global workspace, and can be used within other functions.

The function squareX redefines x as the square of x, and then prints the new vector, but this is local to the 
function. When you execute the function, the values of x in the global environment are unaffected:
 
squareX <- function(x) {
        x <- x^2
        print(x)
}
> squareX(x)
 [1]  8469.954  5938.378 11432.517  8755.406  8574.257  4004.169  6577.281
 [8]  7978.817  3664.919  8242.086  5112.292  7149.063  7074.971  5202.297
[15]  7303.618  4876.769  5373.086  7577.157  8590.604  7122.608  9195.885
[22] 10393.261  6212.646  4804.475  9342.008  5934.501 10749.049  5390.253
[29]  6821.605  9874.911
> x
 [1]  92.03235  77.06087 106.92295  93.57033  92.59728  63.27850  81.10044
 [8]  89.32423  60.53857  90.78593  71.50029  84.55213  84.11285  72.12695
[15]  85.46121  69.83387  73.30134  87.04686  92.68551  84.39555  95.89518
[22] 101.94735  78.82034  69.31432  96.65406  77.03571 103.67762  73.41834
[29]  82.59301  99.37259
 

Functions can also produce other functions as output, which is useful in a variety of situations. For example, suppose 
we want to create a function that makes it easier to take various roots of numbers. R has the built-in sqrt function and the 
exponent operator (^), but perhaps you work with cube roots, and would rather have a function just for that.

Solution
We want to create a function called take.root, which creates a second function called root. We can use the root 
function to specify the desired root of a given number, as follows. We pass n to the take.root function, which then 
uses the root function to extract the appropriate root.
 
take.root <- function(n){
       root <- function(x){
               x^(1/n)
       }
       root
}
 
> sqrRoot <- take.root(2)
> sqrRoot(64)
[1] 8
> cubeRoot <- take.root(3)
> cubeRoot(27)
[1] 3
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Observe that in our workspace, we now have functions for extracting square roots and cube roots. When you  
print a function without the (), R shows you the function body and the environment in which the function was 
created. We will discuss R environments and scoping in a little more depth in Recipe 13-3.
 
> ls()
 [1] "chol"       "cholMean"   "cubeRoot"   "LL"         "normalDist"
 [6] "oneSampZ"   "repeated"   "sqrRoot"    "take.root"  "UL"
[11] "x"          "xy"         "zobs"
> sqrRoot
function(x){
x^(1/n)
}
<environment: 0x0239ee44> 

Recipe 13-3. Writing Functions That Request User Input
Problem
Most of the functions in R produce output that is either printed to the console or passed to some other function. 
Occasionally, you may want to have a function request input directly from the user. There are many ways to make R 
interactive, including the web application Shiny by RStudio, as we will discuss in Recipe 13-4. If your aspirations are 
less ambitious, you can use R functions to request user input from a function.

Solution
Assume that we are interested in obtaining user input for some of the arguments to a function. For example, what if 
we want a body mass index (BMI) calculator that will prompt the user for his or her height and weight? We could of 
course pass these as arguments to the function, but we could also ask the user to enter them after being prompted.

Here is our simple BMI function. It prompts the user for his or her height in inches and weight in pounds, and 
then calculates the BMI. The function also determines the person’s classification as underweight, normal, overweight, 
or obese, according to the standards set by the National Heart, Lung, and Blood Institute.
 
BMI <- function() {
       cat("Please enter your height in inches and weight in pounds:","\n")
       height <- as.numeric(readline("height = "))
       weight <- as.numeric(readline("weight = "))
       bmi <- weight/(height^2)*703
       cat("Your body mass index is:",bmi,"\n")
       if (bmi < 18.5) risk = "Underweight"
       else if (bmi >= 18.5 && bmi <= 24.9) risk = "Normal"
       else if (bmi >= 25 && bmi <= 29.9) risk = "Overweight"
       else risk = "Obese"
       cat("According to the National Heart, Lung, and Blood Institute,","\n")
       cat("your BMI is in the",risk,"category.","\n")
}
 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 13 ■ Writing Reusable Functions

177

To use the function, you simply enter BMI() at the R command prompt after copying the function into the 
working memory. You may recall that the function script can be saved as an R file from the R editor and loaded into 
the working memory by opening the script, and then selecting all the code and pressing Alt + R to “run” it. Here is how 
the function looks in operation. The two lines in bold are the points at which the function prompts the user for input:
 
> BMI()
Please enter your height in inches and weight in pounds:
height = 67
weight = 149
Your body mass index is: 23.33415
According to the National Heart, Lung, and Blood Institute,
your BMI is in the Normal category.

Recipe 13-4. Taking R to the Web
Problem
Taking R to the Web involves the use of some kind of server, whether you are running it on your local machine or 
using a web-based server to which you have access. RStudio makes it easy to create web applications using the Shiny 
package, and we will illustrate that in Recipe 13-4. Shiny is a product of Revolution Analytics, and is provided free 
of charge, along with the RStudio GUI for R. Many of their other value-added solutions are commercial products. 
Because Shiny integrates so easily with RStudio, we will illustrate Shiny with RStudio rather than the R Console.

Solution
Every Shiny application must have two scripts. One is the user interface script, and the other is the server script. The 
server script specifies the input and output and the user interface script specifies what the shiny application will do. 
For instance, Figure 13-3 shows a basic server.R script in the RStudio interface. Observe the triangle next to Run App 
in the code (top-left) panel. When you have Shiny installed, you will have this feature available whenever you create a 
Shiny application. Also notice in the right panel that shiny and shinyapps must both be installed as R packages.
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The user interface script contains the commands that make the shiny application. Here is the code for the script 
ui.R in my RStudio workspace (I will only show the RStudio interface if there is something new to add). One of the nice 
features of RStudio is that it makes sure your parentheses balance, and using indentation makes the code easier to 
read. See that you can use HTML-type tags in your Shiny application. Type the following and save it as ui.R:
 
shinyUI(fluidPage(
  titlePanel("Check out Shiny"),
  sidebarLayout(
    sidebarPanel( "sidebar panel",
    h3("Shiny is from RStudio")),
    mainPanel("main panel",
      h1("This is a level 1 header!")
  )
  ))
)
 

Figure 13-3.  The RStudio interface with a shinyServer script in the script window
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Here’s what happens when you click Run App (see Figure 13-4). Note that the web application is running on my 
local host. If you want to look at the app in a browser, you can click Open in Browser. If you want to deploy to app to 
RStudio’s shiny server, you will have to register for a free account.

After establishing your ShinyApps account, you can host your applications on the ShinyApps server and deploy 
them by clicking the Deploy button (see Figure 13-5).

Figure 13-4.  A Shiny application running in RStudio
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The application opens in a browser window with the URL https://larrypace.shinyapps.io/App-1/.
You can add interactivity to your apps very easily. For example, here is RStudio’s demonstration application of 

a histogram of the Old Faithful eruption data, with a slider bar for the number of bins. See that every Shiny app must 
have a server.R script and a ui.R script. You can display the scripts next to the output, or below it if you would rather  
do so (see Figure 13-6).

Figure 13-5.  Preparing to deploy a Shiny application

Figure 13-6.  The “Hello Shiny” demonstration
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Here is the ui.R script for the application:
 
library(shiny)
 
# Define UI for application that draws a histogram
shinyUI(fluidPage(
 
  # Application title
  titlePanel("Hello Shiny!"),
 
  # Sidebar with a slider input for the number of bins
  sidebarLayout(
    sidebarPanel(
      sliderInput("bins",
                  "Number of bins:",
                  min = 1,
                  max = 50,
                  value = 30)
    ),
 
    # Show a plot of the generated distribution
    mainPanel(
      plotOutput("distPlot")
    )
  )
))
 

RStudio provides an excellent tutorial and a gallery of many Shiny apps that you can examine and modify.  
You can find these resources at http://shiny.rstudio.com. Although you do not have to be running RStudio in  
order to use Shiny, the two solutions play very well together, as you might expect.
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Chapter 14

Working with Financial Data

Individuals and organizations work with financial data on a daily basis. While accountants are interested in money 
from an accrual basis, individuals and financial managers in organizations are usually more interested in money from 
a cash basis. That is, they are interested in revenues and expenses only with respect to the actual inflows and outflows 
of cash. Both individuals and organizations maintain solvency by acquiring the cash flows necessary to satisfy their 
obligations and to obtain the assets needed to achieve their goals. In this chapter, you will learn how to use R to 
analyze financial data, and we will primarily adopt the perspective of cash flow rather than accrual.

Recipe 14-1. Getting and Visualizing Financial Data
Problem
Financial data are everywhere, but often may seem inaccessible. You learned in Chapter 7 that you can retrieve 
financial information such as stock prices from the Yahoo! Finance web site. The Internet provides a wide variety 
of financial data ripe for the plucking. Those who invest in stock and other equities need to be able to visualize the 
patterns of change over time, and one of the best ways to do that is to use various charts, such as the bar chart, the 
candle chart (which bears a superficial resemblance to a boxplot), and the line chart. The quantmod package provides 
charts—both alone and in combination, as you will observe next.

Solution
You can use R to analyze financial data of various sorts. The quantmod package provides many options for analyzing 
stock data. Let us use Yahoo! Finance as the source to retrieve Netflix stock information from January 2007 to 
September 2014. The getSymbols function loads the data directly into the R workspace:
 
> install.packages("quantmod")
> library(quantmod)
> getSymbols("NFLX", src = "yahoo")
[1] "NFLX"
> head(NFLX)
           NFLX.Open NFLX.High NFLX.Low NFLX.Close NFLX.Volume NFLX.Adjusted
2007-01-03     26.00     26.77    25.74      26.61     2348700         26.61
2007-01-04     26.41     26.80    25.10      25.35     2279900         25.35
2007-01-05     25.34     25.34    24.45      24.81     2170100         24.81
2007-01-08     24.82     24.89    23.57      23.83     2620700         23.83
2007-01-09     23.99     24.08    23.52      23.99     1515900         23.99
2007-01-10     23.97     24.25    23.88      24.07     1635500         24.07
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> tail(NFLX)
           NFLX.Open NFLX.High NFLX.Low NFLX.Close NFLX.Volume NFLX.Adjusted
2014-09-23    441.23    448.01   440.50     443.90     1638800        443.90
2014-09-24    444.46    451.66   442.54     450.56     1364500        450.56
2014-09-25    449.90    452.35   442.42     443.49     1405700        443.49
2014-09-26    445.00    450.64   443.89     448.75     1486400        448.75
2014-09-29    444.07    450.54   442.02     449.56     1359500        449.56
2014-09-30    452.30    457.19   449.80     451.18     1781800        451.18
 

We see the traditional open, high, low, close (OHLC) data for each trading day, along with the daily trading 
volume and the adjusted closing price. Let us restrict our data to the second quarter of 2014 in order to get a better 
view of some of the charting options available in quantmod. It is very easy to subset the data by year and month, as 
follows. Note the use of the::operator to select the range of dates.
 
> NFLX2Q <- NFLX["2014-04::2014-06"] # April 2014 through June 2014
> head(NFLX2Q)
           NFLX.Open NFLX.High NFLX.Low NFLX.Close NFLX.Volume NFLX.Adjusted
2014-04-01    351.75    365.25   351.74     364.69     3048400        364.69
2014-04-02    365.66    371.05   358.30     362.88     3456300        362.88
2014-04-03    361.33    365.10   350.10     354.69     3140500        354.69
2014-04-04    355.45    356.00   335.88     337.31     4994000        337.31
2014-04-07    340.51    348.19   331.11     338.00     5335900        338.00
2014-04-08    340.05    350.79   338.39     348.89     3680200        348.89
> tail(NFLX2Q)
           NFLX.Open NFLX.High NFLX.Low NFLX.Close NFLX.Volume NFLX.Adjusted
2014-06-23    439.36    441.86   435.55     439.52     1524700        439.52
2014-06-24    438.05    449.94   435.50     436.36     2909600        436.36
2014-06-25    435.00    444.76   433.33     444.21     2250300        444.21
2014-06-26    440.79    442.14   436.75     439.61     2033900        439.61
2014-06-27    438.32    443.19   437.40     442.08     2226800        442.08
 

Figure 14-1 is a candle chart for the selected period. The color scheme chosen (multi.col = TRUE) means the 
following (taken from the function documentation): a “gray candle” means that the opening price is lower than the 
closing price on two consecutive trading days; a white one means the opening price is lower than the closing price on 
the second day, but higher than the closing price on the previous day; red means the opening price is higher than the 
closing price on the second day, but lower on the previous day; and black means the opening price is higher than the 
closing price on both trading days (see Figure 14-1). The argument TA = NULL removes the overlay, which defaults to a 
volume chart.

gray => Op[t] < Cl[t] and Op[t] < Cl[t-1]•	

white => Op[t] < Cl[t] and Op[t] > Cl[t-1]•	

red => Op[t] > Cl[t] and Op[t] < Cl[t-1]•	

black => Op[t] > Cl[t] and Op[t] > Cl[t-1] •	
 
> candleChart(NFLX2Q, multi.col = TRUE, theme = "white", TA = NULL)
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A bar chart is similarly easily implemented (see Figure 14-2). In order to see the white bars, let us replace the 
“white” theme with the “black” theme:
 
> barChart(NFLX2Q, multi.col = TRUE, theme = "black", bar.type = "hlc", TA = NULL)
 

Figure 14-1.  Candle chart for Netflix stock prices, 2nd quarter 2014
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Note that the “bar chart” is not a bar graph in the traditional sense, but a plot for each trading day of the high, 
low, and closing price of the stock. We use the same color scheme for the bar chart and the candle chart. The line 
chart (not shown) has similar options. The chartSeries function combines charts as follows (see Figure 14-3).

Figure 14-2.  Bar chart for 2nd quarter 2014 Netflix stock prices
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Recipe 14-2. Analyzing Stock Returns
Problem
Making good investment decisions involves understanding risk and reward, and balancing the two. Many factors 
are at play in the decision to invest, including the time frame, the person’s age (or the organization’s purpose for the 
investment), the expected return, and the tax implications of the investment. R provides tools to help a person or an 
organization make sound investment decisions.

Figure 14-3.  A combined candle and volume chart produced by the chartSeries function
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Solution
We continue with our use of the quantmod package, but also explore other packages that focus on financial 
applications and analysis. Let us examine the performance of Netflix stock and determine if investing in Netflix is a 
good investment. In the process, we will examine the simple return and the continuously compounded return on our 
investment in Netflix.

We have the following data (taken from Yahoo! Finance, as discussed earlier), which represent the OHLC data for 
Netflix stock on a monthly basis from May 2009 to October 2014. We will use the adjusted closing price, which takes 
splits and dividends into account. Note that most financial analysts would use the end-of-month rather than first-of-
month data, but Yahoo! provides the first of month.

Tip■■  T o find the data, simply search for the Netflix historical data and select monthly. Set the dates to select the data 
from May 1, 2009 to October 1, 2009, and then click Download to Spreadsheet at the bottom of the screen.

 
> NFLX_monthly <- read.csv("NFLX_monthly.csv")
> head(NFLX_monthly)
       date  open  high   low close     vol adjusted
1  5/1/2009 45.25 45.83 36.25 39.42 1963600    39.42
2  6/1/2009 39.99 42.81 37.05 41.34 1859400    41.34
3  7/1/2009 41.58 47.69 37.93 43.94 1762400    43.94
4  8/3/2009 44.35 46.67 42.51 43.63 1073100    43.63
5  9/1/2009 43.19 48.20 39.27 46.17 1326900    46.17
6 10/1/2009 45.75 57.50 44.30 53.45 1496700    53.45
> tail(NFLX_monthly)
        date   open   high    low  close     vol adjusted
61  5/1/2014 324.05 421.74 314.36 417.83 3762400   417.83
62  6/2/2014 419.48 450.82 412.50 440.60 2471000   440.60
63  7/1/2014 456.23 475.87 418.52 422.72 2879700   422.72
64  8/1/2014 421.76 485.30 412.51 477.64 1932600   477.64
65  9/2/2014 478.50 489.29 438.88 451.18 1909100   451.18
66 10/1/2014 448.69 450.49 437.29 449.98 3736900   449.98
 

First, let us examine the growth pattern by using a line chart. To demonstrate R’s flexibility, let us use the ggplot2 
package to produce the line chart (see Figure 14-4). We can create an index for the number of rows in the Netflix 
monthly data and use that index as our x axis, as follows:
 
> install.packages("ggplot2")
> library(ggplot2)
> n <- nrow(NFLX_monthly)
> index <- 1:n
> index
 [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22
[23] 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
[45] 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
> ggplot(NFLX_monthly, aes(x=index,y=adjusted))+geom_line()
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The growth pattern certainly looks encouraging. Let us calculate the simple return for the Netflix stock over the 
months. We will use the following formula for our calculations:

R
P P

Pt
t t

t

=
- -

-

1

1

where R
t
 is the simple rate of return, and P

t
 is the adjusted closing price for month t. We will create a vector of the 

simple return.

Figure 14-4.  Netflix monthly adjusted closing price from 5/1/2009 to 10/1/2014
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The continuously compounded monthly rate of return is found from the following formula, where r
t
 is the rate 

of return at time t, P
t
 is the adjusted closing price at time t, and P

t–1
 is the adjusted closing price at time t–1. The log() 

function in R finds the natural logarithm:

r P Pt t t= - -ln( ) ln( )1

We can also calculate a vector for the compounded return and compare the two with a line chart. Take the 
number of rows in the Netflix monthly data and call that n. We will use that as our index for calculating the differences 
for our formulas for simple and continuously compounded returns:
 
> n <- nrow(NFLX_monthly)
> t <- NFLX_monthly[2:n, 7]
> tminus1 <- NFLX_monthly[1:(n-1), 7]
> Rt <- (t - tminus1)/tminus1
> ccret <- log(t) - log(tminus1)
> plot(Rt, type = "l", col = "red")
> lines(ccret, col = "blue")
 

We observe that the compounded rate of return (the line rendered in blue) is always slightly lower than the 
simple rate of return (see Figure 14-5).

Figure 14-5.  Comparison of simple and continuously compounded returns for Netflix stock
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Now, we have enough information to answer an important question: “If we invested a dollar in Netflix stock on 
the first trading day of 2013, what would our investment be worth at the end of 2013?” Let’s select the daily trading 
information for Netflix from 2013, and perform the necessary calculations. We will use the Yahoo! Finance web site 

once again and select the Netflix data for 2013, which you can download in CSV format and then read into R:
 
> nflx_2013 <- read.csv("nflx_2013.csv")
> head(nflx_2013)
      date   open   high   low  clos     vol   adj
1 1/2/2013  95.21  95.81 90.69 92.01 2775900 92.01
2 1/3/2013  91.97  97.92 91.53 96.59 3987500 96.59
3 1/4/2013  96.54  97.71 95.54 95.98 2537300 95.98
4 1/7/2013  96.39 101.75 96.12 99.20 6507200 99.20
5 1/8/2013 100.01 100.99 96.80 97.16 3530700 97.16
6 1/9/2013  97.12  97.95 94.55 95.91 2889000 95.9
 

We can calculate the simple return as before, and then use the cumprod() function to calculate the cumulative 
product of our investment, which, as we see from inspection of Figure 14-6, would have been a very good one.

Figure 14-6.  Future value of $1 invested in Netflix stock
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Recipe 14-3. Comparing Stocks
Problem
Most individual and corporate investors would rather have a portfolio of stocks and other investments, instead of 
investing in a single stock. In Recipe 14-3, you get a brief introduction into the analysis of stock performance of several 
stocks at the same time. We will keep our examples simple, but in the process, you will learn how to use the same 
approach with more complex investments.

Solution
We will use three R packages in our solution, the PerformanceAnalytics package, the zoo package, and the tseries 
package. As you remember, the quantmod package requires both the zoo package and the xts package.

Let us continue with our analysis of Netflix stocks, but add two companies, in this case, Starbucks and Microsoft, to 
the mix. We want to determine the performance of these three stocks taken together and see if the combination is a good 
investment. We will get the data from Yahoo! Finance as before, and then get it into the format we need for our analysis. 
The “zoo” class stands for “Z’s ordered observations,” and allows the user to work with both regular and irregular time 
series data. We will retrieve the historical prices for our three stocks from January 2012 to December 2013, and then 
change the date format to the year and month. Last, we will merge the three sets of prices into one dataset.
 
> install.packages("PerformanceAnalytics")
> library(PerformanceAnalytics);library(zoo);library(tseries);
> NFLX_prices = get.hist.quote(instrument="nflx", start="2012-01-01",end="2013-12-31",
+ quote="AdjClose",provider="yahoo", origin="1970-01-01",compression="m", retclass="zoo")
> SBUX_prices = get.hist.quote(instrument="sbux", start="2012-01-01",end="2013-12-31",
+ quote="AdjClose",provider="yahoo", origin="1970-01-01",compression="m", retclass="zoo")
> MSFT_prices = get.hist.quote(instrument="msft", start="2012-01-01",end="2013-12-31",
+ quote="AdjClose",provider="yahoo", origin="1970-01-01",compression="m", retclass="zoo")
> index(NFLX_prices) = as.yearmon(index(NFLX_prices))
> index(SBUX_prices) = as.yearmon(index(SBUX_prices))
> index(MSFT_prices) = as.yearmon(index(MSFT_prices))
> portfolio_prices <- merge(NFLX_prices,SBUX_prices,MSFT_prices)
> colnames(portfolio_prices) <- c("NFLX","SBUX","MSFT")
> head(portfolio_prices)
           NFLX  SBUX  MSFT
Jan 2012 120.20 46.11 27.30
Feb 2012 110.73 46.89 29.54
Mar 2012 115.04 53.96 30.02
Apr 2012  80.14 55.39 29.80
May 2012  63.44 53.16 27.34
Jun 2012  68.49 51.64 28.66
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To calculate the continuously compounded returns for our three stocks, we can use the following syntax. Note 
that the continuously compounded return is the difference in the log prices for each column.
 
> portfolio_returns <- diff(log(portfolio_prices))
> head(portfolio_returns)
                NFLX        SBUX         MSFT
Feb 2012 -0.08206222  0.01677459  0.078858575
Mar 2012  0.03818509  0.14043860  0.016118549
Apr 2012 -0.36150479  0.02615604 -0.007355433
May 2012 -0.23368053 -0.04109284 -0.086157562
Jun 2012  0.07659317 -0.02900967  0.047151591
Jul 2012 -0.18627153 -0.16352185 -0.037324396
 

We can use the PerformanceAnalytics package’s chart.TimeSeries function to create a chart of the returns 
(see Figure 14-7). We see that the Netflix stock is somewhat more variable than the other two, but also appears to have 
gained more value overall.

Figure 14-7.  Continuously compounded returns for three stocks
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Calculating and plotting the simple returns will make our analysis more meaningful. The simple returns are 
calculated for each column in the same way we did before, by dividing the differences between the prices at times t 
and t–1 and dividing by the price at time t–1. However, the PerformanceAnalytics package has the difference and lag 
functions built in to make the calculations easier. The k parameter shows we are using a time lag of one month. The 
chart.CumReturns function produces a very attractive chart (see Figure 14-8).
 
simple_returns = diff(portfolio_prices)/lag(portfolio_prices, k=-1);
chart.CumReturns(simple_returns, legend.loc="topleft", wealth.index = TRUE, main= "Future Value of 
$1 invested") 

Figure 14-8.  Cumulative return chart for three stocks

We can also use boxplots to compare the three investments, as follows (see Figure 14-9 for the resulting chart):
 
chart.Boxplot(simple_returns) 
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Recipe 14-4. A Brief Introduction to Portfolios
Problem
Now that you have seen how we might analyze stocks and make comparisons of different stocks, important questions 
still remain. If we want to invest in a diversified combination of stocks or other investments, what will be our expected 
return? What is our expected risk? To answer these questions, we will briefly explore the constant expected return 
(CER) model. This model is used quite often in finance for portfolio analysis, Capital Asset Pricing, and option 
pricing models. The CER model assumes an asset’s return over time is independent and normally distributed, with a 
constant mean and variance. The model allows us to correlate the expected returns on different assets, assuming that 
the correlations are constant over time. The CER model is equivalent to the measurement error model in statistics.  

Figure 14-9.  Boxplots of the simple returns for three stocks
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We state that each asset return is equal to a constant m
i
 (the expected return) plus a normally distributed random 

variable e
it
 with a mean of zero and a constant variance.

r t Tit i it= + =m e , , ,1

This model serves as the basis for “modern portfolio theory” (MPT), and is widely used, as mentioned earlier. Of 
course, it is only a model, and like most models, it fails to capture the entirety of what happens in the real world, where 
markets are not always efficient and investors are not always rational. But it is a good place to start when analyzing 
different combinations of investments as to their expected return and risk. Just as the assumption of normality is 
often incorrect in statistics, it is often incorrect in stock performance. To the extent that the assumptions of the CRR 
model are met, the MPT is an effective representation of the performance of an investment over time, and serves as a 
benchmark for more complicated models. MPT assumes that investors are averse to risk, and that given two portfolios 
with the same expected return, investors would choose the less risky one. Generally, assets with higher expected 
returns are riskier, and each investor must decide how much risk is acceptable. We use the standard deviation of 
return as an indicator of risk. This is not a particularly good choice if the asset returns are not normally distributed, as 
discussed briefly.

Solution
Let us simplify our example and include only Netflix and Starbucks stock as our “risky assets.” Once you understand 
the theory, you will be able to apply the same analysis to a more complicated portfolio with more equities. The 
expected return for a given portfolio is the proportion-weighted combination of the constituent assets’ returns. 
We will use w

i
 to represent the weighting of a constituent asset (in this case Netflix and Starbucks). Note that the 

weightings can be negative. Calculate the expected return as follows:

E E( ) ( )R w Rp i i
i

=å

where R
p
 is the return on the portfolio, R

i
 is the return on asset i, and w

i
 is the weighting of asset i, which is the 

proportion of asset i in the portfolio. Let us develop a series of weights for each asset. The weights must add to 1 for 
each combination.
 
> weights_NFLX <- seq(-1,2,.1)
> weights_SBUX <- 1 - weights_NFLX
> weights_NFLX
 [1] -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1  0.0  0.1  0.2  0.3  0.4
[16]  0.5  0.6  0.7  0.8  0.9  1.0  1.1  1.2  1.3  1.4  1.5  1.6  1.7  1.8  1.9
[31]  2.0
> weights_SBUX
 [1]  2.0  1.9  1.8  1.7  1.6  1.5  1.4  1.3  1.2  1.1  1.0  0.9  0.8  0.7  0.6
[16]  0.5  0.4  0.3  0.2  0.1  0.0 -0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9
[31] -1.0
 

Thanks to the excellent instructions of Dr. Eric Zivot of the University of Washington, who teaches computational 
finance and makes his course available via Coursera, I was able to learn how to develop a graph of my portfolio’s 
relative expected return and relative risk, as follows. First, let us get more current performance data on our two stocks, 
Netflix and Starbucks. I use the same approach as in Recipe 14-3 to retrieve the monthly adjusted closing prices for 
the period from January 2013 to September 2014. Merge the two stocks and rename the columns:
 
> NFLX_prices = get.hist.quote(instrument="nflx", start="2013-01-10",end="2014-09-
+ 30",quote="AdjClose",provider="yahoo", origin="1970-01-01",compression="m", retclass="zoo")
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> SBUX_prices = get.hist.quote(instrument="sbux", start="2013-01-10",end="2014-09-
+ 30",quote="AdjClose",provider="yahoo", origin="1970-01-01",compression="m", retclass="zoo")
> colnames(myPortfolio) <- c("NFLX","SBUX")
> head(myPortfolio)
             NFLX  SBUX
2013-01-10 165.24 54.79
2013-02-01 188.08 53.75
2013-03-01 189.28 55.81
2013-04-01 216.07 59.62
2013-05-01 226.25 62.08
2013-06-03 211.09 64.41
> tail(myPortfolio)
             NFLX  SBUX
2014-04-01 322.04 70.13
2014-05-01 417.83 72.99
2014-06-02 440.60 77.12
2014-07-01 422.72 77.42
2014-08-01 477.64 77.81
2014-09-02 451.18 75.46
 
> myPortfolio_returns <- diff(myPortfolio)/lag(myPortfolio, k = -1)
 

Now, assuming the return is constant over months, we calculate the annualized mean, variance, standard 
deviation, covariance matrix, covariance of the two stocks, and correlation of the two stocks, as follows. We will 
use these statistics to calculate the expected return (mean) and the expected risk (the standard deviation) for each 
combination of weightings defined earlier.
 
> mean_annual <- apply(myPortfolio,2,mean)*12
> var_annual <- apply(myPortfolio,2,var)*12
> sd_annual <- sqrt(var_annual)
> covMat_annual <- cov(myPortfolio)*12
> covHat_annual <- cov(myPortfolio)[1,2]*12
> corr_annual <- cor(myPortfolio)[1,2]
 

Let us now calculate the mean expected performance for each portfolio, and then calculate the variance and 
standard deviation for each portfolio, as follows. The variance of a portfolio relies on the previously calculated 
statistics. The formula is

s s s sp A A B B A B ABw w w w2 2 2 2 2 2= + +

where the w’s are the portfolio weights, s2 is the variance, and s
AB

 is the covariance of the two stocks. Here is the vector 
of means for the different portfolios:
 
> mean_portfolio <- weights_NFLX*mean_annual["NFLX"] + weights_SBUX*mean_annual["SBUX"]
> mean_portfolio
 [1] -0.27792745 -0.22954062 -0.18115378 -0.13276695 -0.08438012 -0.03599329
 [7]  0.01239354  0.06078037  0.10916721  0.15755404  0.20594087  0.25432770
[13]  0.30271453  0.35110137  0.39948820  0.44787503  0.49626186  0.54464869
[19]  0.59303552  0.64142236  0.68980919  0.73819602  0.78658285  0.83496968
[25]  0.88335651  0.93174335  0.98013018  1.02851701  1.07690384  1.12529067
[31]  1.17367751
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We can now calculate the variance and standard deviation of our portfolios in the following way:
 
#var_portfolio =  weights_NFLX^2 * var_NFLX + weights_SBUX^2 * var_SBUX + 2 * weights_NFLX* 
weights_SBUX*cov_NFLX_SBUX
#sd_portfolio = sqrt(var_portfolio)
 

At last we can plot our different portfolios. An efficient portfolio is one that produces a reasonable expected 
return with a reasonable risk level. See Figure 14-10 for the plot, which is in the shape of a hyperbola.
 
plot(sd_portfolio, mean_portfolio, type="b", pch=16, ylim=c(0, max(mean_portfolio)), xlim=c(0,
+ max(sd_portfolio)), xlab=expression(sigma[p]), ylab=expression(mu[p]), col=c(rep("green", 11), + 
rep("red", 20)))
text(x=sd_NFLX, y=mean_NFLX, labels="Netflix", pos=4)
text(x=sd_SBUX, y=mean_SBUX, labels="Starbucks", pos=2)
 

Figure 14-10.  Plotting the different portfolios

Dr. Zivot has provided an R function for his computational finance class at the University of Washington that 
calculates the global minimum variance portfolio, which provides the lowest possible volatility for the underlying 
assets. This and Dr. Zivot’s other R functions are available at http://faculty.washington.edu/ezivot/econ424/
portfolio.r.
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Figure 14-11.  Plotting the location of the global minimum variance portfolio

We will find the global minimum variance portfolio and plot its position on a slightly modified version of our 
previous graph (see Figure 14-11). The globalMin.portfolio() function requires only the input of the expected 
returns (the means_annual in our case) and the covariance matrix (covMat_annual in this case).
 
> GMV <- globalMin.portfolio(mean_annual, covMat_annual)
> GMV$sd
[1] 0.1556587
> GMV$er
[1] 0.2570875
 
> plot(sd_portfolio, mean_portfolio, type="b", pch=16, ylim=c(0, max(mean_portfolio)),  
xlim=c(0, max(sd_portfolio)), xlab=expression(sigma[p]), ylab=expression(mu[p]),  
col=c(rep("green", 11), rep("red", 20)))
> text(x=sd_NFLX, y=mean_NFLX, labels="NFLX", pos=4)
> text(x=sd_SBUX, y=mean_SBUX, labels="SBUX", pos=4)
> text(x=GMV$sd,y=GMV$er,labels="Gobal Min", pos = 2) 
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Chapter 15

Dealing with Big Data

Datasets are big and getting bigger, as has been mentioned previously in this book. People talk of the five Vs of big 
data, which include volume, variety, velocity, veracity (or lack thereof), and value (or lack thereof). The value gleaned 
from big data may be short-lived, simply because of the velocity with which the data can change. To deal with bigger 
data, we need faster processing for larger datasets. To accomplish this, we can use parallel processing, speed up the 
operations of our processing, use more efficient algorithms, or some combination of these approaches. In this chapter, 
you will learn how to use the R packages to perform parallel processing, how to extend (and speed up) the capabilities 
of the traditional R data frame by using data tables instead, and how to speed up computations in R by using compiled 
code from C++ as well as by preallocating result objects.

Recipe 15-1. Parallel R
Problem
Computing requirements increase when datasets become larger and computations become more intensive.  
One way to increase computing speed is to distribute the computing tasks to two or more processing units. This is the 
basic idea behind dual-core and multi-core processors. To the extent that the processing task can be divided among 
different processors without creating interference or requiring extensive communication among the processors, 
parallel processing can be more efficient than sequential processing. The ideal is what is known as “embarrassingly 
parallel” or “perfectly parallel” processing, in which little or no effort is required to separate the problem into a 
number of parallel problems. In the ideal situation, there is no overhead associated with parallel processing, so a 
single sequential process that takes 20 seconds to run should take 5 seconds to run with four parallel processing units.

Parallel processing can be accomplished in different ways. We can use a multi-core processor on a single 
machine, combine multiple workstations (as in a computer lab), or use computer clusters—as in a supercomputer. 
In R, parallel processing works by establishing a cluster of processing units, each of which is an instance of R, one of 
which one is the primary (“master processor”), and the others  are the secondary (“worker processors”).

Parallel R involves the creation of a cluster of R processes on the same or different machines. The master 
processor is the one in which we create the cluster, and the worker processors wait for and process the parts of the 
processing task distributed to them. The master processor consolidates the results from the separate workers and 
produces the final output. In the real world, unlike the ideal one, there is overhead associated with parallel processing, 
so some tasks do not benefit from parallel processing because of overhead, while computation-intensive processes 
can benefit substantially.
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Solution
Parallel computing can be either implicit or explicit, depending on the level at which the hardware and software come 
together. For example, the pnmath package by Luke Tierney uses the OpenMP parallel processing directives of recent 
compilers for implicit parallelism by replacing some internal R functions with substitute functions that can make 
use of multiple cores without any explicit requests from the user. There are several other such packages that provide 
implicit parallelism, but our discussion will focus on explicit parallelism. 

Unlike implicit parallelism, explicit parallelism requires a communications layer. The first R package providing 
this capability was rpvm by Na Li and Tony Rossini. This package used the PVM (Parallel Virtual Machine) standard 
and libraries. More recently, the MPI (Message Passing Interface) has become more popular. It is supported in R via 
the Rmpi package written by Hao Yu. There are other standards, including NWS (NetWorkSpaces), and sockets.  
A socket cluster is a set of copies of R running in parallel, often on the same machine, though it is also possible to 
specify the host names on which the worker processes are to be executed as well. If the sockets are to be formed on 
the same machine, a positive integer specifies the number of socket clusters. For example, if we use the snow package 
written by Luke Tierney, and we have a quad-core machine, we can set up four clusters as follows. The original R 
process, that is, the one in which we are typing the commands, is the master (or manager) process. We are setting up 
four new worker processes, one on each of our processors. Each process is a separate R session, so we are creating 
the ability to run multiple R sessions at the same time (or in parallel). See that each of these clusters is running on 
localhost, the standard network name for the local machine.
 
> install.packages("snow")
> library(snow)
> cl <- makeCluster(type = "SOCK", 4)
> cl
[[1]]
$con
        description               class                mode                text
"<-Larry2in1:11720"          "sockconn"               "a+b"            "binary"
             opened            can read           can write
           "opened"               "yes"               "yes"
 
$host
[1] "localhost"
 
$rank
[1] 1
 
attr(,"class")
[1] "SOCKnode"
 
[[2]]
$con
        description               class                mode                text
"<-Larry2in1:11720"          "sockconn"               "a+b"            "binary"
             opened            can read           can write
           "opened"               "yes"               "yes"
 
$host
[1] "localhost"
 
$rank
[1] 2
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attr(,"class")
[1] "SOCKnode"
 
[[3]]
$con
        description               class                mode                text
"<-Larry2in1:11720"          "sockconn"               "a+b"            "binary"
             opened            can read           can write
           "opened"               "yes"               "yes"
 
$host
[1] "localhost"
 
$rank
[1] 3
 
attr(,"class")
[1] "SOCKnode"
 
[[4]]
$con
        description               class                mode                text
"<-Larry2in1:11720"          "sockconn"               "a+b"            "binary"
             opened            can read           can write
           "opened"               "yes"               "yes"
 
$host
[1] "localhost"
 
$rank
[1] 4
 
attr(,"class")
[1] "SOCKnode"
 
attr(,"class")
[1] "SOCKcluster" "cluster"
 

The acronym snow stands for Simple Network of Workstations. The snow package uses a “scatter and gather” 
approach in which the manager process distributes “chunks” of the task to the worker processors and then gathers the 
results and combines them. In addition to socket clusters, snow supports MPI, NWS, and PVM, as discussed earlier. 
There are now many other R packages that support either explicit or implicit parallelism. The snowfall package 
written by Jochen Knaus is built on snow and uses its network and cluster capabilities. The snowfall package provides 
the ability to connect directly to R-specific clusters via the sfCluster function and gives the user additional flexibility, 
such as command-line arguments for configuration. Tierney has more recently authored the parallel package, and 
there are several additional packages for parallel computing available, including the doParallel and doSnow packages 
written by Steve Weston at Revolution Analytics, who is also the author of the foreach package. The foreach package 
provides an idiom for iterating over the elements in a collection without the use of explicit loop counting. The main 
intention is to produce a return value, and in that sense, foreach is similar to lapply, which we have discussed 
previously. The doParallel package provides support for the foreach package and acts as an interface between 
foreach and parallel.
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Among the many choices available, we will begin with the use of the doParallel package.  The doParallel 
package requires the user to register a parallel “backend.” A backend in this context is the explicit notification to the 
%dopar% operator that there is a cluster of worker processes available to it. If the backend is not registered, the foreach 
package will run the tasks sequentially rather than in parallel. After installing doParallel and loading it, we create a 
cluster, register the backend, and then use foreach to distribute the parts of the task to the “worker” processors. The 
%dopar% operator makes the processing parallel, while the %do% operator makes it sequential. First, let us make sure 
we have the required package and load it:
 
> install.packages("doParallel")
> library(doParallel)
Loading required package: foreach
foreach: simple, scalable parallel programming from Revolution Analytics
Use Revolution R for scalability, fault tolerance and more.
http://www.revolutionanalytics.com
Loading required package: iterators
Loading required package: parallel"
 

Observe that the doParallel package requires the foreach, iterators, and parallel packages. Let us begin with 
a very simple “proof of concept” demonstration before getting down to more serious computations. Simply loading 
the doParallel package is not sufficient. If you load the package and then use the %dopar% operator, the processing 
will still be sequential, as shown next. You must register the backend once per session, in which case the clusters 
you have created will work in parallel. If the backend is not registered, the processing will continue to be sequential, 
though the warning to that effect will appear only once per session. As we discussed earlier, we must use makeCluster 
with a positive integer (or with a list of host names) to specify the number of worker processes. 
 
> cluster <- makeCluster(2)
> foreach(i=1:5) %dopar% i^(i+1)
[[1]]
[1] 1
 
[[2]]
[1] 8
 
[[3]]
[1] 81
 
[[4]]
[1] 1024
 
[[5]]
[1] 15625
 
Warning message:
executing %dopar% sequentially: no parallel backend registered
 

So, we must register the backend only once per session. We will now have parallel processing with our proof of 
concept example:
 
> clusters <- makeCluster(2)
> registerDoParallel(clusters)
> foreach(i=1:5) %dopar% i^(i+1)
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[[1]]
[1] 1
 
[[2]]
[1] 8
 
[[3]]
[1] 81
 
[[4]]
[1] 1024
 
[[5]]
[1] 15625
 

The defaults in doParallel are reasonable, and will work for most users most of the time. To find out how many 
worker processes you have access to, you can use the getDoParWorkers function:
 
> getDoParWorkers()
[1] 2
 

You can also use doParallel with multi-core functionality, but you will be limited to the number of physical 
cores available to you. For example, the Toshiba laptop computer on which I am working at the moment has a  
dual-core processor. See what happens when I try to use more than two processors:
 
> options(cores = 2)
> getDoParWorkers()
[1] 2
> options(cores = 4)
> getDoParWorkers()
[1] 2
 

Having changed offices in the middle of the day, I am now working on a machine with a quad-core processor. 
Note that I can now use all four cores:
 
> options(cores = 4)
> getDoParWorkers()
[1] 4
 

Now that you understand the basics, we will use a less trivial example. As those who have worked with large 
datasets or computer-intensive calculations well know, R is not a speed demon compared to compiled languages.  
The use of vectorized operations and functions yields speed efficiencies, but there are times when R is slow compared 
to other languages. Remember that R is interpreted, not compiled. You can connect R with compiled code from other 
languages, such as C++, a subject upon which we will touch very lightly in Recipe 15-3. Meanwhile, let us examine the 
use of parallel R and determine what kinds of speed improvements we might experience.

Adapting Weston’s “toy example” in the doParallel documentation, we will use two clusters to perform a 
bootstrapping problem, and compare the results of sequential and parallel processing by using the system.time 
function. We will run 10,000 bootstrap iterations in parallel and compare the results to the same task performed 
sequentially. The system.time function will give us the elapsed time, and the [3] index will return it at the end of 
the processing. Here is our code. First, let us use the iris dataset and select 100 rows of data with the two species 
versicolor and virginica. We will use the lm function to predict sepal length using the species as the predictor.
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> x <- iris[which(iris[,5] != "setosa"), c(1, 5)]
> head(x)
   Sepal.Length    Species
51          7.0 versicolor
52          6.4 versicolor
53          6.9 versicolor
54          5.5 versicolor
55          6.5 versicolor
56          5.7 versicolor
> tail(x)
    Sepal.Length   Species
145          6.7 virginica
146          6.7 virginica
147          6.3 virginica
148          6.5 virginica
149          6.2 virginica
150          5.9 virginica
 

Now, we can run the process in parallel using two clusters:
 
> clusters <- makeCluster(2) 
> registerDoParallel(clusters)
trials <- 10000
parallelTime <- system.time({
        r <- foreach(icount(trials), .combine=cbind) %dopar% {
                ind <- sample(100, 100, replace = TRUE)
        result1 <- lm(x[ind,1]~x[ind,2])
        coefficients(result1)
        }
})[3]
parallelTime
elapsed
  25.59
 

By changing %dopar% to %do%, we can process sequentially for comparison purposes:
 
> trials <- 10000
> sequentialTime <- system.time({
        r <- foreach(icount(trials), .combine=cbind) %do% {
        ind <- sample(100, 100, replace = TRUE)
        result1 <- lm(x[ind,1]~x[ind,2])
        coefficients(result1)
        }
 })[3]
sequentialTime
elapsed
  33.89
 

Parallel processing with two clusters was about 24.5% faster than sequential processing in this case. Remember 
that this is simply the performance of my particular machine and its dual-core processor. Your results are very likely to 
be different.
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The doSNOW package works in a similar way to doParallel, allowing the user to register the snow parallel backend 
for the foreach package. In this case, we will specify socket clusters. In this particular instance, doSNOW produced 
slightly faster parallel processing than doParallel:
 
clusters <- makeCluster(2, type = type = "SOCK")
registerDoSNOW(clusters)
trials <- 10000
parallelTime <- system.time({
        r <- foreach(icount(trials), .combine=cbind) %dopar% {
                ind <- sample(100, 100, replace = TRUE)
        result1 <- lm(x[ind,1]~x[ind,2])
        coefficients(result1) 
        }
})[3]
> parallelTime
elapsed
  22.36

Recipe 15-2. Using Data Tables
Problem
One of the drawbacks of R is that the traditional data frame becomes cumbersome and slow with very large datasets. 
The data.table package provides additional features to the data frame that make it faster and easier to use. The data 
table created by the function is also a data frame, so all the things you can do with data frames work with tables as 
well, with a few exceptions as noted next.

Solution
Those familiar with creating data frames and subsetting them, as we have discussed in this book, will find the data 
table to be intuitive. We create data tables in the same way that we create data frames. Observe that the data table uses 
colons to separate the row numbers from the first column of data.
 
> install.packages("data.table")
> library(data.table)
> DataFrame <- data.frame(x = c("b","b","b","a","a"),v = rnorm(5))
> DataFrame
  x          v
1 b -1.1006306
2 b -1.3294956
3 b -0.2006320
4 a  1.6582277
5 a  0.1527988
> DataTable <- data.table(x = c("b","b","b","a","a"),v = rnorm(5))
> DataTable
   x          v
1: b -0.1329364
2: b  0.6700842
3: b  0.4488872
4: a  0.2374386
5: a  1.5203938
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Instead of creating a data table from scratch as before, you can convert any existing data frame to a data table.  
To illustrate, we will download the SPSS version of the General Satisfaction Survey discussed earlier and then import it 
using the Hmisc package. The result will be the expected data frame, which we can then convert to a data table.
 
> install.packages("Hmisc")
> library(Hmisc)
> GSSdataframe <- spss.get("GSS2012Merged_R5.sav", use.value.labels = TRUE)
 

As we did before, we receive warning messages while importing the data into R because of the treatment 
of missing values in the GSS data. You can look at the GSS data in a spreadsheet-like format by using the View() 
function. Although not big by the standards of today, our dataset is large enough, with 4,820 rows and 1,069 columns. 
We convert the data frame to a data table simply by using the data.table function. The data table is using 22 MB of 
storage. By contrast, the following CARS table is a data table created from the cars data that ship with R, and it uses 
only 1 MB of storage.
 
> CARS <- data.table(cars)
> View(GSSdataframe)
> nrow(GSSdataframe)
[1] 4820
> ncol(GSSdataframe)
[1] 1069
> GSSdataTable <- data.table(GSSdataframe)
> tables()
Loading required package: portfolio
Loading required package: nlme
     NAME          NROW  NCOL MB
[1,] CARS            50     2  1
[2,] DataTable        5     2  1
[3,] GSSdataTable 4,820 1,069 22
     COLS
[1,] speed,dist
[2,] x,v
[3,] year,id,wrkstat,hrs1,hrs2,evwork,wrkslf,wrkgovt,OCC10,INDUS10,marital,divorce,wi
     KEY
[1,]
[2,]
[3,]
Total: 24MB
 

Instead of dealing with row names as in data frames, we work with keys in data tables. You can set a key by using 
setkey(). The key can be one or more columns in the data table. Each data table may have only one key. Let us 
experiment with the DataTable object stored in the working memory. The table is now sorted by the key. When we 
run the tables() command again, we see that DataTable indeed has a key, while we have not yet assigned keys to the 
CARS or the GSS data tables.
 
> setkey(DataTable, x)
> DataTable
   x          v
1: a  0.2374386
2: a  1.5203938
3: b -0.1329364
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4: b  0.6700842
5: b  0.4488872
> tables()
     NAME          NROW  NCOL MB
[1,] CARS            50     2  1
[2,] DataTable        5     2  1
[3,] GSSdataTable 4,820 1,069 22
     COLS
[1,] speed,dist
[2,] x,v
[3,] year,id,wrkstat,hrs1,hrs2,evwork,wrkslf,wrkgovt,OCC10,INDUS10,marital,divorce,wi
     KEY
[1,]
[2,] x
[3,]
Total: 24MB
 

Now, we can use the key to retrieve specific rows of data. For example, we can use the key to retrieve only the 
rows in the data table with the value of "b" in the x column: 
 
> DataTable["b",]
   x          v
1: b -0.1329364
2: b  0.6700842
3: b  0.4488872
 

The comma shown in the previous command is optional:
 
> DataTable["b"]
   x          v
1: b -0.1329364
2: b  0.6700842
3: b  0.4488872
 

Let us examine the speed improvements we can get with the use of keys in a data table as compared to the use of 
comparison operators in a data frame. To make the illustration more meaningful, we will simulate some data. Building 
on the example in the documentation for the data.table package, we will create a data frame with approximately 10 
million rows and 676 groups. We generate two columns—one with capital letters and one with lowercase letters—to 
create the groups, and then create a vector of z scores using rnorm():
 
grpsize <- ceiling(1e7/26^2)
tt <- system.time(DF <- data.frame(
x = rep(LETTERS, each=26*grpsize),
y = rep(letters, each=grpsize),
z = rnorm(grpsize*26^2),
stringsAsFactors = FALSE))[3]
> tt
elapsed
   1.89
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Now, let’s extract a group from the data frame, the cases in which the value of x is "L" and the value of y is "p". 
We use the standard approach to subsetting the data, which includes comparison operators for the two variables. 
The time is not terrible. It took my system 2.14 seconds to extract the 14,793 records that match the criteria. R is using 
vectorized searching here:
 
> tt <- system.time(answer1 <- DF[DF$x == "L" & DF$y == "p",])[3]
> tt
elapsed
   2.14
 

For comparison’s sake, let’s convert the data frame to a data table and use the key to extract the same information 
as before:
 
> DT <- as.data.table(DF)
> setkey(DT, x, y)
> tt <- system.time(answer2 <- DT[list("L", "p")])[3]
> tt
elapsed
   0.01
> head(answer1)
        x y           z
4452694 L p  0.48961111
4452695 L p -0.09609168
4452696 L p  0.26847516
4452697 L p  1.11715638
4452698 L p -0.77547270
4452699 L p  0.19132284
> head(answer2)
   x y           z
1: L p  0.48961111
2: L p -0.09609168
3: L p  0.26847516
4: L p  1.11715638
5: L p -0.77547270
6: L p  0.19132284
 
> identical(answer1$z, answer2$z) 
[1] TRUE
 

We can use the identical() function to verify that the two answers are equivalent. Both sets of retrieved 
information are the same. The extraction of exactly the same information from the data.table was more than 200 
times faster than the traditional data frame approach. The reason the data table was so much faster is that with the 
table we used a binary search rather than a vector search, as we did with the data frame. Here is an important lesson, 
paraphrased from a footnote in the data.table documentation: If you use parallel techniques to run vectorized 
operations, your efficiency may be much lower than simply using a data table.

What we just did was to “join” DT to the 1 row, 2 column table returned by list("L", "p"). Because this is a 
frequent activity, there is an alias, namely .(), which is a “dot” command followed by parentheses enclosing the 
search criteria for the key (in this case, the x and y columns of the table).
 
> identical(DT[list("L", "p"),], DT[.("L", "p"),])
[1] TRUE
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The data table allows us to do very fast grouping as well. The second argument to the data table may be one or 
more expressions whose arguments are column names (without quotes). The third argument is a by expression. Let’s 
compare the use of the tapply() function to the use of the by in data.table. We see something on the order of a 
tenfold increase in speed.
 
> tt <- system.time(total1 <- tapply(DT$z, DT$x, sum))[3]; tt
elapsed
   1.65
> tt <- system.time(total2 <- DT[,sum(z), by = x])[3]; tt
elapsed
   0.17
 

We can also group on two columns should we need to do so. This is also much faster than using tapply(). I will 
leave the performance comparisons to the interested reader.
 
> ttt <- system.time(total3 <- DT[,sum(z), by = "x,y"]); ttt
   user  system elapsed
   0.18    0.03    0.22

Recipe 15-3. Compiled Code and Preallocation
Problem
Working with big data is becoming more and more the norm. There are many suggestions for increasing the speed 
of processing, input and output operation, and data management. Some of these are obvious, such as upgrading 
hardware, upgrading software, parallel computing (where it makes sense), using data tables as illustrated in  
Recipe 15-2, and using other languages besides R for time-critical functions.  We will touch briefly in Recipe 15-3 on 
the last item, using another language. Because C++ is compiled, we can take advantage of that fact and use compiled 
code to speed up computations. We will also use another quick tip to make your code execute more quickly, which is 
as simple as preallocating a result object before filling it.

Solution
Although we have been using system.time to determine the elapsed time for executing our code, we will use the 
microbenchmark package for more precise comparisons in Recipe 15-3. Let us download and install the Rcpp package 
as well, which will provide a seamless integration of R and C++. We can write C++ equivalents to R functions, compile 
them, and then use them as if they were R functions. Unlike R, C++ performs looping very efficiently, and a compiled 
C++ object in R can be much more efficient than even vectorized R functions.

The first step for a Windows user is to install Rtools, if you do not have them, and to make sure that the Rtools 
are in the path so that R can find them. This will enable you to compile C++ code from within the Rcpp package. The 
Rtools are available from CRAN at http://cran.r-project.org/bin/windows/Rtools/. Follow the installation 
instructions, and if you like, you can have the installer add the Rtools to your path rather than editing the path 
manually. If you have a Mac system, you will need Xcode to compile C++ code. Users of Linux systems will have a C++ 
compiler with their Linux distribution. 

After installing Rcpp and having the Rtools available, you will be able to write small segments of C++ code that 
can be used in place of R functions, and which work in basically the same way, except that the C++ code will be 
compiled rather than interpreted. As C++ is quite a “big” language, we will focus on just a few examples to get you 
started. If this is a subject you find interesting or useful in your work, you will find Dirk Eddelbuettel’s book, Seamless 
R and C++ Integration with Rcpp (Springer, 2013), to be very helpful. As a couple of pointers (or reminders), R is not 
“typed,” but C++ is a strongly typed language, and you must declare the type of a variable before you can use it.  
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Also, unlike R, iterations in C++ begin with 0, not with 1. The for loop in C++ is different from the one in R, and unlike 
R, C++’s operations are not vectorized.

In addition to compiling C++ code from files saved with the *.cpp extension, you can use C++ inline in R for 
small code segments. As this is the simplest way to get started, we will look at a couple of examples. The more useful 
approach will be saving the C++ source file and then “sourcing it” in R using the sourceCpp function in Rcpp.

Adapting an example from Eddelbuettel, let’s compare an R function to calculate the nth number in a Fibonacci 
sequence to an inline function we create using Rcpp and C++. Recall that the Fibonacci sequence begins with 0, 1, 1, 
2, 3, 5, 8, 13, 21, 34, 55. Each successive number is the sum of the previous two numbers. A rather straightforward R 
function can be written to find the Fibonacci number for any position in the sequence. The Fibonacci sequence can 
be defined mathematically as follows, with seed values F

0
 = 0 and F

1
 = 1.

F F Fn n n= +- -1 2

We can program this in R with a relatively simple function:
 
fibR <- function(n) {
        if (n == 0) return(0)
        if (n == 1) return(1)
        return(fibR(n-1)+fibR(n-2))
}
 

To make a C++ function work in R, we can use Rcpp as follows. In this particular case, the C++ function is almost a 
literal translation of the R code. The question is whether the C++ function is faster than the R function. We will answer 
that question using the microbenchmark package after verifying that the two functions produce the same results. 
Simply execute the following script to create and compile the function fibCpp. Note that lines of C++ code must be 
terminated by a semicolon (;):
 
library(Rcpp)
cppFunction('int fibCpp(int n) {
        if(n == 0) return(0);
        if(n == 1) return(1);
        return(fibCpp(n -1) + fibCpp(n - 2));
}
' )
 

The functions produce the same result:
 
> fibCpp(20)
[1] 6765
> fibR(20)
[1] 6765
 

However, the compiled C++ function is much faster, as the microbenchmark indicates:
 
> library(microbenchmark)
> microbenchmark(fibCpp(20), fibR(20))
Unit: microseconds
       expr      min        lq        mean     median        uq        max
 fibCpp(20)    42.92    44.319    51.75065    49.4505    57.848     99.367
   fibR(20) 72050.87 72297.183 72963.34808 72483.5550 72632.372 109907.356
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 neval
   100
   100
 

Be aware that although the newly created function is in your workspace for repeated use in the current session, 
the compiled code is not saved, and you will need to compile the function again to use it in a new session. As I 
mentioned, it is more useful to write the C++ function and save it in a *.cpp file and source it when you need it. Here 
is an example. We will take a commonly used R function and produce a C++ version of it. In this case, we will see how 
much of a savings we might get by calculating the variance of a dataset with C++ as compared to using R’s built-in var 
function. You can use the R Editor or any other text editor to write the following code and save it as a *.cpp file. I chose 
the self-explanatory name varC.cpp. The function uses a two-pass algorithm to find the mean and then the variance 
using the definitional formula for the variance:

s
x x

nx
2

2

1
=

-( )
-

å

As before, we must declare the type for x, n, and the other variables in our function. The use of differing forms of 
commenting allows us to embed R code, which the compiler sees as a comment and ignores. The size command in 
C++ determines the length of the x vector. In C++, it is common to declare a variable’s type and assign an initial value 
to it at the same time. Here are the contents of the varC.cpp file, which I created using the R Editor.
 
#include <Rcpp.h>
using namespace Rcpp;
 
// [[Rcpp::export]]
double varC(NumericVector x) {
  int n = x.size();
  double sum1 = 0;
  double sum2 = 0;
  double mean = 0;
  double var = 0;
 
  for(int i = 0; i < n; ++i) {
    sum1 += x[i];
  }
  mean = sum1 / n;
 
  for(int i = 0; i < n; ++i) {
    sum2 += (x[i]-mean)*(x[i]-mean);
  }
  var = sum2 / (n-1);
  return var;
}
 
/*** R
library(microbenchmark) 
x <- rnorm(1e6)
microbenchmark(
  var(x),
  varC(x)
)
*/
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To compile and execute this function, use the source.Cpp function in Rcpp. We create a vector of 1,000,000 
random normal deviates, and see how long it takes our C++ function to find the variance as compared to the var 
function in R. Although the time savings are not as dramatic in this case, we still achieve a decent improvement, even 
though the R function is already vectorized.
 
> library(Rcpp)
> sourceCpp("varC.cpp")
 
> library(microbenchmark)
 
> x <- rnorm(1e6)
 
> microbenchmark(
+   var(x),
+   varC(x)
+ )
Unit: milliseconds
    expr      min       lq     mean   median       uq      max neval
  var(x) 6.947759 6.992777 7.041822 7.020535 7.077449 7.377417   100
 varC(x) 3.140090 3.179044 3.200733 3.190008 3.207968 3.311300   100
 

As a last illustration of making code more efficient, note the difference between the time required to fill a result 
object when you preallocate it as compared to simply creating the object. This is a way to save more time, especially 
when working with loops (which are sometimes unavoidable). Here, we create a loop that produces 100,000 random 
normal deviates. In the first case, we simply declare x1 to be a numeric vector and then fill it using the loop. In the 
second case, we preallocate the vector and then fill it. Notice the substantial speed difference the preallocation makes.
 
> timer <- system.time({
+ x1 <- numeric()
+ for(i in 1:100000) x1[i] = rnorm(1)
+ })[3] 
> timer
elapsed
  10.03
> timer <- system.time({
+ x1 <- numeric(100000)
+ for(i in 1:100000) x1[i] = rnorm(1)
+ })[3]
> timer
elapsed
   0.52
 

We have scratched the surface of the very powerful and flexible Rcpp package, but I hope the interested reader 
has enough information from this recipe to get started and to continue to learn how to work with the package.
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Chapter 16

Mining the Gold in Data and Text

Part of the Big Data revolution is the rapid growth of text and unstructured data. Instead of retrieving information 
as we would from a structured dataset or a known set of search terms, text and data mining are concerned with 
extracting information, which is fundamentally different. Each of us is bombarded with information every day, 
much of it in numeric form, but the majority in text form. Mining the “gold” from data and text has become a very 
important task and a very big business. We can see an evolution of information from data to information to knowledge 
to intelligence. Organizations need ways to find and leverage the valuable intelligence in vast and unorganized 
collections of data and text, and that is what we will talk about in this chapter.

To solve this complex and challenging problem, we need a capable and scalable solution. R offers that and more. 
Before we get into specifics, let’s examine exactly what data mining is (and is not). We might define data mining as 
the extraction of predictive (read valuable) information from (relatively) large datasets. To the extent possible, the 
extraction should be automatic, and the information should be predictive of something valuable to us. Implicit in 
this definition is that there is some statistical methodology that allows us to extract the information. There are many 
different data mining algorithms and tools, and it is somewhat of an idiosyncrasy to become enamored of a specific 
algorithm at the expense of understanding the results and their implications. Data mining tools typically include 
decision trees, various approaches to classification, the use of neural networks and machine learning, inducing rules 
or associations, reducing the dimensionality of data, and various approaches to clustering. Although there may be 
some overlap in purpose, data mining is not typically associated with data visualization, various queries of structured 
data, or data warehousing.

If you use statistics on a regular basis, you are probably already (at least) a fledgling data miner, perhaps without 
realizing it. For example, my doctoral dissertation involved the creation of subgroups from a sample of several 
thousand insurance agents on the basis of their responses to an autobiographical questionnaire with several hundred 
questions. I used principal components analysis to reduce the dimensionality of the biodata questionnaire, and then 
used hierarchical clustering of individual profiles to identify subgroups of agents who had various prior experiences 
in common. In support of the psychological adage that the best predictor of future behavior is past behavior, I found 
indeed that certain groups of agents were more likely than others to have both interest in and potential for becoming 
agency managers. I also found that other subgroups of agents might be very successful as agents, but were not 
interested in, nor likely to be good at, a management position with the company. At the time (back in the late 1970s),  
I had never heard of data mining, but the same techniques I used then are used in data mining today.

I did the data analysis for my dissertation using SAS running in batch mode on a mainframe IBM computer, 
performing a principal components analysis with varimax rotation that took from midnight to 6 a.m. As in many 
other areas, such as modern robust statistics, the techniques for data mining have often been conceptualized and 
developed long before the computing power and speed were available to make them feasible for use with today’s 
incredibly large and loosely structured datasets.

Because data mining is a diverse field, there is not a single R package capable of all the data mining techniques 
that I mentioned. We will therefore have to pick and choose some illustrative applications. Progress, however, is being 
made toward the goal of a general-purpose R-based data mining package, and currently, the rattle package written 
by Graham Williams is the clear front-runner. The rattle package provides a graphical user interface for R and gives 
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the user a point-and-click approach to data mining that works similarly to the way John Fox’s R Commander package 
is used for standard statistical analyses. The rattle package must be installed as any other R package is, but when 
launched, provides its own Gnome-based interface (see Figure 16-1).

Beyond requiring the user to know how to install and launch an R package, Rattle does not require the user to 
be expert in the use of R, per se, but does assume familiarity with various approaches to data mining. The interface 
for rattle is laid out in such a way that it shows the progression of a typical data mining project, from loading data to 
various explorations, tests, transformations, and other manipulations of data to examining clusters or associations, 
choosing models, and then evaluating the models. We will return to rattle later in this chapter, comparing some of its 
output to that of R functions for the same analyses.

Figure 16-1.  The Rattle package running under R 3.1.2
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For now, we will use some of the built-in R functions for various data mining applications. Again, we will not 
delve into the depths of data mining or cover the entire set of procedures, but you will get a brief exposure to some of 
the most commonly used tools.

Recipe 16-1. Reducing the Dimensionality of Data
Problem
Data mining, as the name implies, seeks to discover information from unstructured data, when such information is 
not obvious. If the information were obvious, it would exist in a structured format. Though there are still challenges 
retrieving and analyzing data when the volume of structured data becomes very large, the challenge of extracting 
information from unstructured data is much greater. With large datasets consisting of multiple variables, it is often 
difficult to detect connections and patterns. It is also difficult to determine whether the interrelationships among the 
variables are such that we can reduce the dimensionality of the data to something more manageable and reasonable. 
In Recipe 16-1, you will learn how to use R for a principal components analysis (PCA). PCA and the closely related 
method of factor analysis have been used for many years, and have quickly demonstrated themselves to be useful in 
data mining applications.

Solution
For those interested in the history of statistics, factor analysis was developed in the early 1900s by British psychologist 
Charles Spearman, though most people are more likely to associate Spearman with the rank correlation coefficient. 
Spearman used factor analysis to support the theory that there is a general intelligence factor, g, which explains the 
relationships among different cognitive tests.

PCA is related to factor analysis, but PCA is more useful as a data reduction and descriptive statistical technique, 
whereas factor analysis is used to identify (exploratory) or verify (confirmatory) the presence of underlying 
unobserved (latent) variables called factors (in a completely different sense from a factor in an R data frame or table). 
In PCA, the primary goal is to find a relatively small number of “components” that can be used to summarize a set 
of variables without the loss of too much information. In PCA, the correlation matrix used to determine the number 
of components has 1’s on the diagonal. This means that in PCA, we are seeking to explain (or account for) 100% of 
the variance (including the variance unique to each variable, the variance that is common among variables, and the 
error variance). In factor analysis, on the other hand, rather than unities (1’s), the diagonal of the correlation matrix 
has “communalities” (that is, the variances shared in common with other variables), excluding the variance unique to 
each variable and error. For our current purposes, PCA will work fine.

Here are the 11 statements on a survey concerning the use of laptop computers in class (see Table 16-1). 
Statements marked with a superscripted a are negatively worded and reverse scored. My student Neal Herring and 
I developed the survey as part of a class project. The university where the survey was developed and administered 
has a requirement that students must have a laptop computer available for every class (ubiquitous computing 
requirement). We were interested in knowing whether students were in favor of this or not, and used Likert scaling to 
develop the survey from a much larger list of candidate items. The survey was administered to 65 students, with  
61 complete cases (no missing data). Respondents rated their agreement or disagreement with each statement on a  
five-point response scale with 1 = Strongly disagree, 2 = Disagree, 3 = Undecided, 4 = Agree, and 5 = Strongly agree.
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Here are the first few rows of the dataset. See that in addition to item responses, we collected data on the 
respondents’ sex, GPA, and class standing (1 = freshman to 4 = senior).
 
> head(laptops,3)
  id Item1 Item2 Item3 Item4 Item5 Item6 Item7 Item8 Item9 Item10 Item11 Sex
1  1     4     3     3     4     2     2     5     2     4      4      4   1
2  2     2     5     2     4     1     5     5     5     3      5      5   1
3  3     3     2     1     3     2     2     2     2     3      4      3   0
  Status  GPA
1      4 2.60
2      4 3.70
3      3 3.64
 

We will use the R package psych to find the principal components from the correlation matrix, as discussed 
earlier. We will also rotate the factor solution to a varimax (orthogonal rotation). The princomp() function in base R 
produces an unrotated solution, while the psych package allows rotation to several different solutions. As mentioned, 
the correlation matrix with 1’s on the diagonal is used in PCA. We find that the 11 items are represented well by three 
principal components. The number of factors to extract is a bit of a controversial issue. A good rule of thumb is that 
any factor (or component) with an eigenvalue greater than 1 is a candidate for retention, but ultimately, the choice 
of the number of factors extracted often involves some subjective judgment based on the researcher’s interpretation 
of the factor loadings. PCA uses an eigendecompostion of the square correlation or covariance matrix to produce 
uncorrelated (orthogonal) factors (represented by eigenvectors). The vector of eigenvalues represents the proportion 
of the total variance explained by each component, and of necessity, must sum to the number of original items as 
there are 1’s on the diagonal of the correlation matrix. Let us convert our laptop survey item responses to a matrix and 

Table 16-1.  11-Item Scale of Students’ Attitudes Toward Laptop Computers in Class

Item Statement

1 I pay better attention in class when I use my laptop for note-taking.

2a Using a laptop in class does not increase my learning.

3a It is a hassle to bring my laptop to class.

4 Using a laptop in the classroom makes me more efficient by reducing my study time outside of class.

5a The weight of my laptop makes it hard to carry to class.

6 Using a laptop in class will help prepare me for a job or for advanced studies in my field.

7a I find it distracting when others use their laptops in class.

8 Using a laptop in the classroom will make my grades higher.

9 I am more likely to attend classes where laptops are required or permitted.

10 Using a laptop in class makes class more interesting.

11 I think students should be permitted to use their laptops in all their classes.
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use the eigen() function to study the eigenvalues and eigenvectors. We simply subset the laptop data by selecting the 
11 columns of item responses, and then use the cor function to produce our correlation matrix:
 
Items <- as.matrix(laptops[2:12])
 
> corMat <- cor(Items)
> corMat
           Item1     Item2     Item3     Item4      Item5     Item6     Item7
Item1  1.0000000 0.4231445 0.0511384 0.4632248 0.16643381 0.2183705 0.2547533
Item2  0.4231445 1.0000000 0.3432559 0.5255746 0.29104875 0.5608472 0.3984790
Item3  0.0511384 0.3432559 1.0000000 0.3186916 0.73461102 0.3065492 0.4264412
Item4  0.4632248 0.5255746 0.3186916 1.0000000 0.27198596 0.4911948 0.2528662
Item5  0.1664338 0.2910488 0.7346110 0.2719860 1.00000000 0.2568671 0.3633775
Item6  0.2183705 0.5608472 0.3065492 0.4911948 0.25686714 1.0000000 0.3198655
Item7  0.2547533 0.3984790 0.4264412 0.2528662 0.36337750 0.3198655 1.0000000
Item8  0.5146774 0.6398297 0.3175904 0.5751981 0.28702317 0.6802546 0.4252158
Item9  0.2245341 0.3846825 0.2548962 0.4542136 0.31866815 0.3373920 0.2738553
Item10 0.1668403 0.3887571 0.1902351 0.3770664 0.11772733 0.4267274 0.2666067
Item11 0.3247979 0.4227840 0.1262275 0.3682178 0.04660024 0.3849067 0.2605502
           Item8     Item9    Item10     Item11
Item1  0.5146774 0.2245341 0.1668403 0.32479793
Item2  0.6398297 0.3846825 0.3887571 0.42278399
Item3  0.3175904 0.2548962 0.1902351 0.12622747
Item4  0.5751981 0.4542136 0.3770664 0.36821778
Item5  0.2870232 0.3186681 0.1177273 0.04660024
Item6  0.6802546 0.3373920 0.4267274 0.38490670
Item7  0.4252158 0.2738553 0.2666067 0.26055018
Item8  1.0000000 0.3550858 0.4997211 0.45178437
Item9  0.3550858 1.0000000 0.5822105 0.30319201
Item10 0.4997211 0.5822105 1.0000000 0.44632809
Item11 0.4517844 0.3031920 0.4463281 1.00000000
 

Here are the eigenvalues and eigenvectors. We see that three components have eigenvalues greater than 1,  
as discussed earlier: 
 
> eigen(corMat)
$values
 [1] 4.6681074 1.5408803 1.0270909 0.7942875 0.7335682 0.5896213 0.4394996
 [8] 0.4240592 0.3663119 0.2118143 0.2047596
 
$vectors
            [,1]        [,2]        [,3]         [,4]        [,5]        [,6]
 [1,] -0.2462244  0.22107473  0.58114752  0.447515243 -0.25136101 -0.02506555
 [2,] -0.3595942  0.06915554  0.16927109 -0.127637015  0.11454822 -0.07828474
 [3,] -0.2506909 -0.58829325 -0.04217347 -0.058873014  0.06611702  0.28137063
 [4,] -0.3390437  0.10370137  0.12366386  0.346201739  0.31534535  0.06486155
 [5,] -0.2334164 -0.60038263  0.03159179  0.203807163  0.04681617  0.19067543
 [6,] -0.3365345  0.08027461 -0.03125315 -0.419702484  0.47974475 -0.15637109
 [7,] -0.2681116 -0.23657580  0.10141271 -0.331553795 -0.65831805 -0.41855783
 [8,] -0.3854329  0.13565320  0.18437972 -0.175408233  0.14521421 -0.16420035
 [9,] -0.2898889  0.02672144 -0.50324733  0.497063117 -0.11046030 -0.19075495
[10,] -0.2947311  0.21566774 -0.55816283  0.008082903 -0.11482431 -0.09832977
[11,] -0.2705290  0.31780613 -0.07405850 -0.233659252 -0.32814554  0.77514458
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              [,7]         [,8]        [,9]       [,10]        [,11]
 [1,] -0.348837008 -0.006217720 -0.06016296 -0.32343802 -0.242340463
 [2,]  0.288701437 -0.788357274  0.28749655 -0.06086925  0.102473468
 [3,]  0.005269449  0.076511614  0.30203619 -0.02857311 -0.635889572
 [4,]  0.552818181  0.484383586  0.21064937 -0.03194788  0.223311571
 [5,] -0.294511458 -0.091790248 -0.21930085 -0.03416408  0.599625476
 [6,] -0.087058677  0.109537971 -0.49618779 -0.40890910 -0.124819321
 [7,]  0.281105085  0.218739682 -0.06533240 -0.05651648  0.095040577
 [8,] -0.362175484  0.133992368  0.08834002  0.75050977 -0.005736071
 [9,]  0.159102079 -0.200051674 -0.42913546  0.22679185 -0.255745814
[10,] -0.389241570  0.108029551  0.49528135 -0.31485066  0.156660772
[11,]  0.089435341  0.007522468 -0.20566674  0.06668854  0.049009955
 

Now, let us use the principal function in the psych package, extract three components, and rotate them to a 
varimax solution. The varimax solution rotates the axes of the factors while retaining their orthogonality. Rotations 
usually assist in the interpretation of factor or component loadings.
 
> pcaSolution <- principal(corMat, nfactors = 3, rotate = "varimax")
> pcaSolution$loadings
 
Loadings:
        RC1    RC2    RC3
Item1   0.835
Item2   0.675  0.284  0.323
Item3          0.897  0.133
Item4   0.631  0.225  0.347
Item5          0.894
Item6   0.519  0.246  0.458
Item7   0.356  0.529  0.161
Item8   0.753  0.237  0.366
Item9   0.126  0.252  0.758
Item10  0.185         0.872
Item11  0.502         0.495
 
                 RC1   RC2   RC3
SS loadings    2.830 2.205 2.201
Proportion Var 0.257 0.200 0.200
Cumulative Var 0.257 0.458 0.658
> pcaSolution$values
 [1] 4.6681074 1.5408803 1.0270909 0.7942875 0.7335682 0.5896213 0.4394996
 [8] 0.4240592 0.3663119 0.2118143 0.2047596
 

Although we are warned by some authorities that we should not attempt to interpret the factor loadings or the 
underlying variables in principal components, this is still routinely done by many researchers, including myself. The 
factor loadings are the correlations of the individual items with the rotated factors. The examination of the highest 
loadings shows that the first factor RC1 is related to learning and performance, the second factor RC2 is related 
to convenience and concentration, and the third factor RC3 is related to motivation and interest. Figure 16-2 is a 
structural diagram produced by the fa.diagram function in the psych package, which shows only the highest-loading 
items for each component. This diagram shows the latent structure and the loadings of the items on the factors.
 
> fa.diagram(pcaSolution) 
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Recipe 16-2. Finding Clusters of Individuals or Objects
Problem
We often have data that lend themselves to dimension-reduction techniques, as you saw in Recipe 16-1. The question 
then becomes, “So what? Now that I have a three-component solution explaining about 2/3 of the variance in students’ 
attitudes toward the use of laptop computers in class, how can that help me?” Often the answer is that the components 
can be used to create groupings of the individuals or objects we are measuring. This is just as true of people as it is of 
animals or manufactured goods. These groupings may be useful for both empirical and theoretical purposes.

Figure 16-2.  Structural diagram of the rotated three-component solution
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Solution
There are many ways to cluster objects or individuals. We will continue with our example and develop subgroups 
of the individuals who completed the survey described in Recipe 16-1. As with factor analysis, deciding on the 
appropriate number of subgroups or clusters is part art and part science. To use clustering, we need some metric.  
One of the most commonly used is the distance (difference) between objects or individuals. For my dissertation,  
I clustered insurance agents on the basis of the distance or similarity in their profiles based on factor scores.  
The distance matrix was used to develop a hierarchical clustering solution. Such solutions are commonly shown 
in a dendrogram (tree diagram). The algorithm starts with each object or individual as a separate entity, and then 
combines the objects or individuals into clusters by combining the two most similar clusters with each successive 
iteration until there is one cluster that contains all the objects or individuals. At some point, the researcher decides 
that there is a balance between the number of clusters and the specificity with which the differences between the 
clusters are interpretable. This is a classic problem in statistics, that of classifying objects or individuals.

We will continue with our laptop survey data, and extract the scores for each of the 61 students for whom we 
have complete data. Each person will have a score for each component. The principal function uses the traditional 
regression method by default to produce factor scores, and these are saved as an object in the PCA. We will then 
compute a 61 × 61 distance matrix, which will give us the distances between each pair of individuals. Next, we will 
use hierarchical clustering to group the individuals and plot the dendrogram to see what a good solution might be 
regarding the number of clusters to retain. Finally, on the basis of some demographic data and GPA, which were 
collected at the time the survey was administered, we will determine if the clusters of individuals are different from 
each other in any significant and meaningful ways. We will have to use the raw data rather than a correlation matrix 
for the purpose of producing the component scores, so we must run the PCA again using raw scores:
 
> Items <- as.data.frame(Items)
> head(Items)
  Item1 Item2 Item3 Item4 Item5 Item6 Item7 Item8 Item9 Item10 Item11
1     4     3     3     4     2     2     5     2     4      4      4
2     2     5     2     4     1     5     5     5     3      5      5
3     3     2     1     3     2     2     2     2     3      4      3
4     5     5     4     4     4     5     3     5     5      5      5
6     2     2     2     2     3     3     2     2     2      3      2
7     2     2     4     2     4     2     4     2     3      4      3
> pcaSolution <- principal(Items, nfactors = 3, rotate = "varimax")
> pcaScores <- pcaSolution$scores
> head(pcaScores)
         RC1        RC2        RC3
1  0.6070331 -0.1135057  0.2163606
2  1.5849366 -0.8321524  1.4991802
3 -0.2064288 -1.1233926  0.1235260
4  2.1816945  0.3399202  1.2432899
6 -0.6549734 -0.1209022 -0.6975968
7 -1.1428872  1.0286981  0.1273299
> distMat <- dist(as.matrix(pcaScores))
> hc <- hclust(distMat)
> plot(hc)
 

The dendrogram is shown in Figure 16-3. The numbers shown are the id numbers of the subjects, so that we can 
identify the cluster membership. 
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The examination of the clustering reveals that three clusters may be a good starting point. To add rectangles 
surrounding the proposed clusters, use the rect.hclust function and specify the model name and the number of 
clusters as follows. After playing around with various solutions, I stuck with three clusters. The updated dendrogram 
appears in Figure 16-4. 
 
> rect.hclust(hc, 3)
 

Figure 16-3.  Hierarchical clustering dendrogram for the laptop data
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We can then save the cluster memberships using the cutree function, and append the cluster numbers to the 
laptop dataset as follows:
 
> cluster <- cutree(hc, 3)
> laptops <- cbind(laptops, cluster)
> head(laptops)
  id Item1 Item2 Item3 Item4 Item5 Item6 Item7 Item8 Item9 Item10 Item11 Sex
1  1     4     3     3     4     2     2     5     2     4      4      4   1
2  2     2     5     2     4     1     5     5     5     3      5      5   1
3  3     3     2     1     3     2     2     2     2     3      4      3   0
4  4     5     5     4     4     4     5     3     5     5      5      5   1
6  6     2     2     2     2     3     3     2     2     2      3      2   1
7  7     2     2     4     2     4     2     4     2     3      4      3   1

Figure 16-4.  Updated dendrogram with clusters identified
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  Status  GPA cluster
1      4 2.60       1
2      4 3.70       1
3      3 3.64       1
4      3 3.00       1
6      3 2.80       2
7      3 3.60       3
 

Let’s see if the clusters are useful for determining differences in GPA, sex, or status. We will use chi-square 
analyses for sex and status, and an analysis of variance for GPA. To make our analyses easier, we can attach the data 
frame so that we can call the variables directly. We determine from our chi-square tests that there are no significant 
associations between cluster membership and sex or status.
 
> attach(laptops)
> chisq.test(cluster, status)
 
        Pearson's Chi-squared test
 
data: cluster and status
X-squared = 8.9984, df = 6, p-value = 0.1737
 
Warning message:
In chisq.test(cluster, status) : Chi-squared approximation may be incorrect
> chisq.test(cluster, sex)
 
        Pearson's Chi-squared test
 
data: cluster and sex
X-squared = 3.0361, df = 2, p-value = 0.2191
 
Warning message:
In chisq.test(cluster, sex) : Chi-squared approximation may be incorrect
 
> oneway.test(GPA ~ cluster) 
 

However, the three clusters of students have significantly different GPAs, and this would be worth examination 
to determine what other characteristics besides their attitudes toward laptops might be different for these groups of 
students. For those interested in knowing, my dissertation was based on a large-scale project for which I was a graduate 
research assistant at the University of Georgia. The principal investigator, the late Dr. William A. Owens, who was also my 
dissertation chair, was fond of saying, “You never really understand factor analysis until you do one by hand.” I am sure 
that is true, but by the time I got around to learning it, there were computer programs available, so I never personally did 
a factor analysis by hand, even though I am quite positive Doc Owens was sure that it would have benefitted me greatly. 
Here are the results of the one-way test of cluster differences in GPA:
 
        One-way analysis of means (not assuming equal variances)
 
data:  GPA and cluster
F = 7.2605, num df = 2.000, denom df = 34.025, p-value = 0.002366
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> aggregate(GPA ~ cluster, data = laptops, mean)
  cluster      GPA
1       1 2.992593
2       2 3.466111
3       3 3.193125

Recipe 16-3. Looking for Associations
Problem
Often, we use data mining to find previously undiscovered associations. In one common but most likely anecdotal 
example, a large retailer found that beer and diaper sales both increased on Friday. The story is told about other stores 
and other days, but the gist is always the same. By discovering a hitherto unknown association through data mining, 
the retailer was able to take advantage of the information and place displays of beer close to the disposable diapers. 
Presumably, because diapers come in large bundles, women asked their husbands to buy diapers, and with the weekend 
imminent, the man also decided to stock up on beer for the weekend. The location of beer and diapers in close proximity 
caused beer sales to increase. Moreover, the retailer could also charge full price for the beer because of the higher 
demand. This often-repeated tale is one of those that, as my former college provost said, “Should be true if it isn’t.”

Solution
In Recipe 16-3, we will examine association rule learning. In contrast to sequence mining, association rule mining is 
typically not concerned with the order of items within transactions or across transactions. One major consideration 
is that with large datasets, we often see associations that appear to be important, but are spurious and due to chance 
only. With large numbers of items, we must control the risk of interpreting such associations as meaningful or useful 
by establishing a higher standard for statistical soundness than we might employ in a controlled experiment.

Association analysis is especially useful for finding patterns and relationships to assist retailers, whether online or 
in stores. At a simplified level, imagine a shopping basket (or online shopping cart) that could have any of a collection 
of items in it. The aim of association rule analysis is to identify collections of items that appear together in multiple 
baskets. We can model a general association rule as

LHS RHS®

where LHS is the left-hand side and RHS is the right-hand side of a grouping of items. Often we think of LHS as an 
antecedent and RHS as a consequent, but we are not strict on that because we are looking at correlations or associations 
rather than causation. Either the LHS or the RHS could consist of multiple items. For a grocery, a common pattern 
might be as follows:

cheese taco shells salsa& ®

We will explore association rule analysis using the arules package. This package uses the apriori algorithm that 
is now part of IBM’s proprietary SPSS Model Builder (formerly Clementine). Our example will be what is known as 
basket analysis. Think of a basket as representing a collection of items, such as a basket of shopping items, a panel of 
blood test results, a portfolio of stocks, or an assortment of medications prescribed to a patient. Each “basket” has a 
unique identifier, and the contents of the basket are the items contained in the basket listed in a column next to the 
identifier, which could literally be a shopping basket, but could also be a particular customer, a patient, an online 
shopping cart, or some other unit of analysis. The contents of the baskets are the target variable in the association rule 
analysis.

In association rule analysis, the search heuristic looks for patterns of repeated items, such as the examples given 
earlier. We want to find combinations of items that are “frequent enough” and “interesting enough” to control the 
number of association rules to something manageable. The two primary measures used in association analysis are 
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support and confidence. Support is expressed as some minimum percentage of the time two or more items appear 
together. It must typically be set fairly low, because obvious transactions that appear together frequently  
(say chips and dip) are of less interest than unusual ones (such as beer and diapers). Confidence is also expressed as a 
proportion, but more formally, it is a conditional probability; that is, the probability of RHS given LHS, which equals

Confidence( ) ( | )
( )

( )
LHS RHS P RHS LHS

P RHS LHS

P LHS
® = =

Ç

Another measure of interest is lift, which we can define as the improvement in the occurrence of RHS given the 
LHS. Lift is the ratio of the conditional probability of RHS given LHS and the unconditional probability of RHS:

Lift
Confidence

Support
( )

( | )

( )

( )

(
LHS RHS

P RHS LHS

P RHS

LHS RHS
® = =

®
RRHS)

Let us use the arules package and perform an apriori rules analysis of the dataset called “marketBasket.csv.”  
The data consist of 16 different items that might be bought at a grocery store, and 8 separate transactions (baskets). 
The data are as follows:
 
> basket <- read.csv("marketBasket.csv")
> basket
   basket    item
1       1   bread
2       1  butter
3       1    eggs
4       1    milk
5       2 bologna
6       2   bread
7       2  cheese
8       2   chips
9       2    mayo
10      2    soda
11      3 bananas
12      3   bread
13      3  butter
14      3  cheese
15      3 oranges
16      4    buns
17      4   chips
18      4 hotdogs
19      4 mustard
20      4    soda
21      5    buns
22      5   chips
23      5 hotdogs
24      5 mustard
25      5 pickles
26      5    soda
27      6   bread
28      6  butter
29      6  cereal
30      6    eggs
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31      6    milk
32      7 bananas
33      7  cereal
34      7    eggs
35      7    milk
36      7 oranges
37      8 bologna
38      8   bread
39      8    buns
40      8  cheese
41      8   chips
42      8 hotdogs
43      8    mayo
44      8 mustard
45      8    soda
 

To use the apriori function in the arules package, we must first convert the dataset into a transaction data 
structure: 
 
> library(arules)
> newBasket <- new.env()
> newBasket <- as(split(basket$item, basket$basket), "transactions")
> newBasket
transactions in sparse format with
 8 transactions (rows) and
 16 items (columns)
 

Now, we can use the apriori function to find the associations among the items in the eight shopping baskets.  
We will save the rules as an object we can query for additional information. We specify the parameters for the association 
rule mining as a list. We will look for rules that have support of at least .20, confidence of .80, and minimum length of 2,  
which means that there must be both a LHS and a RHS. The default is a length of 1, and because RHS must always 
have 1 (and only 1) item, this would result in a rule in which the LHS is empty, as in {empty} ® {beer}.
 
> rules <- apriori(newBasket, parameter = list(supp = .2, conf = .8, minlen = 2, target = "rules"))
 
parameter specification:
 confidence minval smax arem  aval originalSupport support minlen maxlen target
        0.8    0.1    1 none FALSE            TRUE     0.2      1     10  rules
   ext
 FALSE
 
algorithmic control:
 filter tree heap memopt load sort verbose
    0.1 TRUE TRUE  FALSE TRUE    2    TRUE
 
Warning in apriori(newBasket, parameter = list(supp = 0.2, conf = 0.8, target = "rules")) :
  You chose a very low absolute support count of 1. You might run out of memory! Increase minimum 
support.
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apriori - find association rules with the apriori algorithm
version 4.21 (2004.05.09)        (c) 1996-2004   Christian Borgelt
set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[16 item(s), 8 transaction(s)] done [0.00s].
sorting and recoding items ... [15 item(s)] done [0.00s].
creating transaction tree ... done [0.00s].
checking subsets of size 1 2 3 4 5 6 done [0.00s].
writing ... [246 rule(s)] done [0.00s].
creating S4 object ... done [0.00s]. 
 

Although we were warned about potential memory limitations, none materialized. The algorithm located  
246 rules fitting our criteria. As a point of reference, if we had accepted the defaults, we would have had more than 
2,000 rules to consider.
 
> rules
set of 246 rules
> summary(rules)
set of 246 rules
 
rule length distribution (lhs + rhs):sizes
 2  3  4  5  6
32 89 84 35  6
 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
  2.000   3.000   4.000   3.569   4.000   6.000
 
summary of quality measures:
    support         confidence      lift
 Min.   :0.2500   Min.   :1    Min.   :1.600
 1st Qu.:0.2500   1st Qu.:1    1st Qu.:2.000
 Median :0.2500   Median :1    Median :2.667
 Mean   :0.2866   Mean   :1    Mean   :2.582
 3rd Qu.:0.3750   3rd Qu.:1    3rd Qu.:2.667
 Max.   :0.5000   Max.   :1    Max.   :4.000
 
mining info:
      data ntransactions support confidence
 newBasket             8     0.2        0.8
 

We can use inspect() to find the rules with high confidence (or support or lift) as follows:
 
> inspect(head(sort(rules, by = "confidence")
+ )
+ )
  lhs          rhs       support confidence     lift
1 {cereal}  => {eggs}      0.250          1 2.666667
2 {cereal}  => {milk}      0.250          1 2.666667
3 {bananas} => {oranges}   0.250          1 4.000000
4 {oranges} => {bananas}   0.250          1 4.000000
5 {butter}  => {bread}     0.375          1 1.600000
6 {eggs}    => {milk}      0.375          1 2.666667
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Let us use the rattle package for this same application to illustrate how to do the association rule analysis. 
Install the rattle package, and then load and launch it using the following commands: 
 
> install.packages("rattle")
> library("rattle")
Rattle: A free graphical interface for data mining with R.
Version 3.3.0 Copyright (c) 2006-2014 Togaware Pty Ltd.
Type 'rattle()' to shake, rattle, and roll your data.
> rattle()
 

The Rattle GUI() opens in a new window. Every operation in Rattle requires that you execute it. For example, 
if you choose a dataset but do not click the Execute icon, the data will not be loaded into Rattle. We will load the 
marketBasket data and then use Rattle to “shake, rattle, and roll” the data, as the package advertises. Several example 
datasets come with Rattle, the most complex of which is the “weather” dataset. Rattle uses the arules package and the 
apriori function for the association rule analysis, just as we have done. Rattle will install any additional packages it 
requires on the fly, which is a nice feature, but which can be disconcerting when you first begin using Rattle.

We will load the CSV version of our basket dataset(), and compare the output of Rattle to that of the arules 
package. There are eight data types supported by Rattle (see Figure 16-1). We will use the “spreadsheet” format for our 
source, which is really CSV. 

	 1.	 Click the little folder icon, navigate to the required directory, and then click the file name 
to open the data (see Figure 16-5).

	 2.	 Click Open and then click Execute in the Rattle icon bar (or use the shortcut F2). Failure to 
execute will mean the file will not be loaded.

	 3.	 In the Data tab, change the role of the basket variable to Ident and the role of the item 
variable to Target.

	 4.	 Rattle can be used for two kinds of association rule analysis. The simpler of these is market 
basket analysis, and it uses only two variables—an identifier and a list of items, as we have 
been doing. The second approach is to use all the input variables to find associations. 
To select basket analysis, check the box labeled Baskets on the Associate tab in Rattle. 
Remember that clicking Open will not actually load the data. You must also click Execute 
to bring the dataset into R.  
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Let us use the same settings in Rattle that we did in arules, and compare the results. Because Rattle uses the 
same R packages and functions we used, our results should be the same. Remember to click Execute after specifying a 
basket analysis and changing the settings in Rattle to match the ones we used in arules (see Figure 16-6). 

Figure 16-5.  Opening a CSV file in Rattle()
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We did get the same results with Rattle that we did using the R functions, but Rattle packaged the results very 
nicely and added features to view plots and sort the rules, which we had to do manually in R. 

Recipe 16-4. Mining Text: A Brief Introduction
You learned about working with strings earlier in this book in Recipes 2-3 and 5-2, and you were briefly introduced to 
the concept of text mining. In Recipe 16-4, we will cover text mining in enough depth to get you started mining text on 
your own. One of the “coolest” things you can do with text mining, at least in my opinion, is to produce “word clouds,” 
so we will do that as well.

Figure 16-6.  The Rattle summary of our association rule analysis()
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Problem
Written and spoken words are everywhere, and are being recorded, stored, and mined with greater frequency than 
ever before. Although the focus of data mining is on finding patterns, associations, trends, and differences between 
and among data values that are primarily numeric, the greater majority of the information in the world is text rather 
than numbers, as we discussed previously.

Text mining is used in a number of different fields, just as data mining is, and there are many ways to go about 
mining text. Finding patterns and associations among words becomes very important when such patterns and 
associations help solve practical problems. I am a quantitative researcher by training and preference, but qualitative 
research, which uses narratives the way quantitative researchers use numbers, is growing both in importance and 
popularity. Interpreting the results of interviews, written narratives, and other text-based data is becoming pervasive, 
and qualitative research is seen by many, if not most, as being on a par with quantitative research. In fact, many 
research projects now combine both quantitative and qualitative methods in what is known as mixed-methods research.

As with all of the techniques discussed in this chapter, there are elements of judgment and subjectivity in text 
mining, just as in data mining. Those analysts with keener (and often more intuitive) judgment are obviously more 
effective than those who simply follow heuristic rules dogmatically. At present, computers are still relatively “dumb” 
when it comes to understanding what words spoken or written by humans really mean. For example, what would a 
computer program “think” of the sentence, “Time flies like an arrow.”? Most humans know intuitively that this is a 
simile, and that we are saying that time passes swiftly, just as an arrow flies (relatively) swiftly. But a computer could 
just as easily take this as an instruction to time the flight speed of houseflies in the same way that it would time the 
speed of the flight of an arrow.

As of today, computers don’t really have much of a sense of humor, or much intuition, though advances are 
being made every day, and the day may soon come when a computer program can pass the Turing test, in which a 
human judge cannot determine reliably, whether he or she is talking to a computer or to another human. Alan Turing 
posed the question in 1950 as to whether machines can “think,” though his question was presaged by Descartes in his 
musings about automata centuries earlier.

The year 2012 marked the 100th anniversary of Turing’s birth, and as of today, the Turing test has not been 
passed with anything better than a 33% rate of a computer program convincing a human that it is another human 
in conversations facilitated by keyboards and computer monitors rather than face-to-face communication. Text 
mining combines analytics with natural language processing (NLP). Until the 1980s, NLP systems were based mostly 
on human-supplied rules, but the introduction of machine learning algorithms revolutionized the field of NLP. A 
discussion of NLP and statistical machine learning to the contrary notwithstanding, text mining is still a viable and 
valuable endeavor, assisted by computer programs that allow us to mine the depths of text in ways we only imagined 
previously. 

Solution
The tm package in R is very widely used for text mining. There are many other tools used by text miners as well. We 
will experiment with several of these. In text mining, we are interested in mining one or more collections of words, or 
corpora. Inspection of Rattle’s interface (see Figure 16-1) reveals that two of the input types supported are corpus and 
script. A corpus is a collection of written works. In text mining, some of the more mundane tasks are removing “stop 
words” and stripping suffixes from word stems so that we can mine the corpus more efficiently.

Text mining is also known as text data mining or text analytics. Just as in data mining in general, we are 
looking for information that is novel, interesting, or relevant. We might categorize or cluster text, analyze sentiment, 
summarize documents, or examine patterns or relationships between entities.

We will use the tm package to mine a web post about Clemson University and CUDA (Compute Unified Device 
Architecture), which is a parallel computing platform developed by NVIDIA and implemented by using the graphics 
processing units (GPUs produced by NVIDA). Clemson (where I teach part-time) was recently named a CUDA 
teaching institution and a CUDA research center. The announcement was published online, and I simply copied the 
text from the web page into a text editor and saved it. The article is used with the permission of its author, Paul Alongi.
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To get the text into shape for mining, we must read the text into R, convert it to a character vector, and then 
convert the vector to a corpus. Next, we need to perform a little “surgery” on the corpus, converting everything to 
lowercase, removing punctuation and numbers, and removing the common English “stop words” and extra spaces. 
We can use the tm_map function to create and revise the corpus. First, we need the tm package and the SnowballC 
package: 
 
library(tm)
library(SnowballC)
text.corpus <- readLines("CLEMSON.txt")
text.corpus <- Corpus(VectorSource(text.corpus))
text.corpus <- tm_map(text.corpus, tolower)
text.corpus <- tm_map(text.corpus, removePunctuation)
text.corpus <- tm_map(text.corpus, removeNumbers)
text.corpus <- tm_map(text.corpus, removeWords, stopwords("english"))
text.corpus <- tm_map(text.corpus, stripWhitespace)
text.corpus <- tm_map(text.corpus, PlainTextDocument)
 

Now, we can “mine” our corpus, which is seen by tm as 19 separate documents (these are the paragraphs in the 
article), by finding frequent terms and associations in a fashion similar to what we did in data mining. To do this, 
we need to convert the corpus to a term document matrix, and then we can find the frequent terms and associations 
as follows. We set the correlation limit, which is a minimum value, to 0.5. We specify the search term and the text 
document matrix as well.
 
> tdm <- TermDocumentMatrix(text.corpus)
> findAssocs(x = tdm, term = "clemson", corlimit = 0.5)
              clemson
university       0.66
advancing        0.51
announced        0.51
commitment       0.51
david            0.51
distinguished    0.51
educate          0.51
education        0.51
forward          0.51
generations      0.51
inventor         0.51
leader           0.51
look             0.51
luebke           0.51
monday           0.51
senior           0.51
state            0.51
using            0.51
visual           0.51
working          0.51
world            0.51
> findFreqTerms(x = tdm, lowfreq = 10, highfreq = Inf)
[1] "clemson"   "computing" "cuda"      "nvidia"   
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If we wanted to continue mining, we might want to “stem” the corpus, which will truncate words to a common 
stem, so that “compute,” “computer,” and “computing” would all become “comput.” This operation requires the 
SnowballC package we loaded earlier. We can then use the tm_map function in the tm package to find the specific stem 
elements and where they occur within the corpus. We examine only the first few of these terms, namely the first 20 rows 
and the first 5 columns (which correspond to the first 5 paragraphs of the article).
 
> myStems <- tm_map(text.corpus, stemDocument)
> myCorpus <- TermDocumentMatrix(myStems)
> inspect(myCorpus[1:20,1:5])
<<TermDocumentMatrix (terms: 20, documents: 5)>>
Non-/sparse entries: 3/97
Sparsity           : 97%
Maximal term length: 7
Weighting          : term frequency (tf)
 
         Docs
Terms     character(0) character(0) character(0) character(0) character(0)
  acceler            0            0            0            1            0
  access             0            0            0            0            0
  accord             0            0            0            0            0
  across             0            0            0            0            0
  advanc             0            0            0            0            0
  aim                0            0            0            0            0
  air                0            0            0            0            0
  alreadi            0            0            0            0            0
  also               0            0            0            0            0
  analyz             0            0            0            0            0
  announc            1            0            0            0            0
  applic             0            0            0            0            0
  array              0            0            0            0            0
  assist             0            0            0            0            0
  automot            0            0            0            0            0
  base               0            0            0            0            0
  benefit            0            0            0            0            0
  better             0            1            0            0            0
  build              0            0            0            0            0
  calcul             0            0            0            0            0
 

I mentioned word clouds earlier. The wordcloud package will create a nice-looking word cloud from a corpus or a 
text document. Figure 16-7 shows a word cloud (also known as a tag cloud) from the text we have been mining. 
 
> library(wordcloud)
> wordcloud(text.corpus)
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Figure 16-7.  A word cloud developed from our corpus
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mode() function, 81
Modern portfolio theory (MPT)

computational finance, 198
constituent assets, 196
description, 196
global minimum variance portfolio, 199

Multiple regression
academic and motivational variables, 152–153
confidence interval, interpretation, 155
lm() function, 153, 155
multiple linear regression model, 152
predictors, 154
regression coefficients, 152

MyPieLife, 61

N�       �
Nominal and ordinal data, 120–123

O�       �
One-sample tests

description, 117
for means, 118–120
nominal and ordinal data  

(see Nominal and ordinal data)
One-way tests, 133–136
Oscars, 79

P�       �
Parallel R

clusters, 206
doParallel package, 204
doSNOW package works, 207
embarrassingly parallel\perfectly  

parallel processing, 201
master processor, 201
message passing interface (MRI), 202
parallel computing, 202
proof of concept, 204
purposes, 206
quad-core processor, 205
snow package, 203
standard network name, 202–203
toy example, 205
vectorized operations and functions, 205

Pearson’s product-moment  
correlation, 145, 148, 150, 152

Permutation tests, 165–166
phi coefficient

and chi-square, 150
description, 146, 150

Pearson’s product-moment correlation, 150
with Spearman’s Rho, 151

Pie chart representation
argument col = FALSE, 90
copy, save and print graphics, 91
description, 90
graphical representations, 90
par() function, 90

Plastic Omnium’s environmental policy, 24
PMF. See Probability mass function (PMF)
Poisson probabilities

characteristics, 110
description, 110
probabilities of events, 111

prettyR, 84–85
Probability mass function (PMF), 109
p values, 112
p values for F distribution, 113–115

Q�       �
Quantiles

problem, 87
solution, 87–88

R�       �
Rattle package running under R 3.1.2, 216
Relationship between variables

correlation coefficient, 146–150
multiple regression, 152–155
scale variables, correlation, 143–146
Spearman’s rank correlation, 151–152
the phi coefficient, 150

Repeated-measures designs, 138–141
Resampling techniques, traditional hypothesis testing

bootstrapping method, 160
histogram, medians, 159
hypothetical scores, 157–158
sample medians, distribution, 158

Reshaping datasets
longScores dataset, 51
measurement, 50
reshape() function, 50
timevar argument, 51

Reusable functions writing
arguments, 167
BMI function, 176–177
BSDA package, 174
“cover all outcomes” approach, 171
description, 167
environment, 167
‘fBasics’, 171
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histogram, 172
input and output, 167
interface script, 178
length() function, 170
median, 168
null hypothesis, 169
return() statement, 175
Run App, 179
sample means, 173
scale function, 173
server script, 177
Shiny application, 180
Shiny apps, 179, 181
source code, 168
squareX, 175
take.root, 175
two-sided hypothesis test, 170
user interface script, 177
web-based server, 177
z.test function, 169

S�       �
Scale variables

brain volume and intelligence, 143
correlation coefficient, 143
covariance, 144
heights and weights, measurement, 144–145
“scalelessness” property, 144
slope coefficient, 146

Scatterplot
description, 99
ggplot2, 95
of Starbucks volume by date, 96
with line of best fit added, 100

Scheirer-Ray-Hare (SRH) test, 138
Side-by-side boxplots, 97
Simple frequency distributions

problem, 79
solution, 79–80

Skewed, 82
Spearman’s rank correlation, 151
SPSS output, 87
Standard graphs

bar charts, 93–94
histograms, 92–93
line graphs, 94–95
scatterplots (see Scatterplot)
Tufte’s principles, 92

Standard normal curves, 107–109
Statistical functions

problem, 81
solution, 81–87

Stem-and-leaf plots, 100–101
Stock returns analysis

growth pattern, 189
investment decisions, 187
Netflix stock, 188–191

Stocks comparison
CumReturns function, 194–195
Netflix stocks, 192
PerformanceAnalytics, 192–193
R packages, 192

stringr package
advantages, 63
description, 63
extracting words, 66
install.packages() function, 63
padding, 65
str_c() function, 64
str_dup() function, 64
str_length() function, 64
str_sub() function, 64
trim strings, 66
wrapping, 65–66

T, U, V�       �
Tables

description, 67
HairEyeColor data, 67
one-and two-way tables analyzing

problem, 72
solution, 72–74

working with higher-order
problem, 74–75
solution, 75–77

working with one-way
problem, 68
solution, 68–69

working with two-way
problem, 69
solution, 70–72

t distribution, 112–113
Trimmed means, Welch t test

memory-enhancing  
supplement, 162

memory scores, groups, 162–163
Mann-Whitney U test, 165
variance, calculation, 161
Wilcox’s WRS package, 161
Winsorizing, 160
Yuen’s robust t test, 163–164

Two-sample tests
cbind() function, 124
chi-square with 1 degree of freedom, 127
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histograms, word recognition data, 125–126
hypothetical airbag data, 131
independent-samples t test, 123
McNemar test, 123, 127
paired-samples t test, 124
parametric tests, 128
pooled-variance t test, 130
z.test function, 128–129

Two-way tests, 136–138

W, X�       �
Welch t test, 160–161, 164
Wilcoxon signed rank test, 123
wilcox.test function, 130
Winsorizing, 160

Y, Z�       �
Yuen’s robust t test, 163–164

Two-sample tests (cont.)
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