Th
Pr ema‘u’c
Ogramimers

Rails
Angular
Postgres

Bootstrap

Powerful
Effective
Efficient

Full-Stack
Web Development

David Bryant Copeland

edited by Fahmida Y. Rashid
www.it-ebooks.info


http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

Early praise for Rails, Angular, Postgres, and Bootstrap

This book is a fantastic resource for anyone looking to gain a practical understand-
ing of full-stack development using contemporary, ubiquitous technologies. I was
particularly impressed by how well the author was able to cover so many different
software components in such a constructive and cohesive manner. As an engineer
who spends most of my time at the data layer, I walked away with a ton of helpful
insight into the other layers of the typical application stack.

» Matthew Oldham

Director of data architecture, Graphium Health

A book that deals with integrating Angular into Rails is something I've been
waiting a long time for, and what’s here is a definite step above existing online
tutorials. Like the author, I'm used to viewing different database management
systems as black boxes that are much like each other, and this book made me
reconsider that line of thinking. I highly recommend this book for Rails developers
who want to try Angular and make use of PostgreSQL’s advanced features.
>» Nigel Lowry

Company director, Lemmata

Rails, Angular, Postgres, and Bootstrap is a powerful resource for all software en-
gineers interested in full-stack development. No matter your proficiency at each
level in the stack, you'll acquire a new technique that’s immediately applicable to
your project.
» Simeon Willbanks

Lead software engineer, Stitch Fix

www.it-ebooks.info


http://www.it-ebooks.info/

This book provides beginner developers with solid steps to get “your” application
running and to be able to see/do it yourself. I recommend the book to Rails devel-
opers beginning their learning journey with Angular.

» Maricris Nonato

Senior Ruby on Rails developer, Premiere Speakers Bureau

www.it-ebooks.info


http://www.it-ebooks.info/

Rails, Angular,
Postgres, and Bootstrap

Powerful, Effective, and Efficient
Full-Stack Web Development

David Bryant Copeland

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

www.it-ebooks.info


http://www.it-ebooks.info/

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Fahmida Y. Rashid (editor)
Potomac Indexing, LLC (index)
Liz Welch (copyedit)

Dave Thomas (layout)

Janet Furlow (producer)

Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2016 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-68050-126-1

Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—January 2016

www.it-ebooks.info


https://pragprog.com
rights@pragprog.com
http://www.it-ebooks.info/

Contents

Acknowledgments
Introduction .

Create a Great-Looking Login with Bootstrap and Devise
Setting Up Devise for Authentication

Installing Bootstrap with Bower

Styling the Login and Registration Forms

Validating Registration

Next: Using Postgres to Make Our Login More Secure

Secure the Login Database with Postgres Constraints
Exposing the Vulnerability Devise and Rails Leave Open
Prevent Bad Data Using Check Constraints

Why Use Rails Validations?

Next: Using Postgres Indexes to Speed Up a Fuzzy Search

Use Fast Queries with Advanced Postgres Indexes
Implementing a Basic Fuzzy Search with Rails
Understanding Query Performance with the Query Plan
Indexing Derived and Partial Values

Next: Better-Looking Results with Bootstrap’s List Group

Create Clean Search Results with Bootstrap Components

Creating Google-Style Search Results Without Tables
Paginating the Results Using Bootstrap’s Components
Next: Angular!

Build a Dynamic Ul with AngulardS
Configuring Rails and Angular
Porting Our Search to Angular

www.it-ebooks.info

ix
Xi

10
16
22
23

25
25
26
31
32

33
34
45
46
50

51
52
57
60

61
62
65


http://www.it-ebooks.info/

10.

11.

Changing Our Search to Use Typeahead
Next: Testing

Test This Fancy New Code

Installing RSpec for Testing

Testing Database Constraints

Running Headless Acceptance Tests in PhantomdJS
Writing Unit Tests for Angular Components

Next: Level Up on Everything

Create a Single-Page App Using Angular’s Router

Using Angular’s Router for User Navigation

Serving Angular Templates from the Asset Pipeline
Adding a Second View and Controller to Our Angular App
Next: Design Using Grids

Design Great Uls with Bootstrap’s Grid and Components
The Grid: The Cornerstone of a Web Design

Using Bootstrap’s Grid

Adding Polish with Bootstrap Components

Next: Populating the View Easily and Efficiently

Cache Complex Queries Using Materialized Views
Understanding the Performance Impact of Complex Data
Using Materialized Views for Better Performance
Keeping Materialized Views Updated

Next: Combining Data with a Second Source in Angular

Asynchronously Load Data from Many Sources .
Understanding How Asynchronous Requests Work
Using Angular-Resource to Connect to Rails

Nesting Controllers to Organize Code

Using Bootstrap’s Progress Bar When Data Is Loading
Passing Data Between Controllers

Testing Controllers That Use Angular-Resource

Next: Sending Changes Back to the Server

Wrangle Forms and Validations with Angular
Managing Client-Side State with Bindings
Validating User Input with Angular Forms
Styling Invalid Fields with Bootstrap

Saving Data Back to the Server

www.it-ebooks.info

Contents ® vi

79
81

83
84
87
91
103
117

119
121
124
127
135

137
138
140
146
150

151
152
160
165
169

171
172
175
180
183
186
189
191

193
194
195
200
205


http://www.it-ebooks.info/

12.

Al.
A2,

Understanding the Role of Rails Validators
Next: Everything Else

Dig Deeper . e
Unlocking More of Postgres’s Power
Leveling Up with Angular

Getting Everything Out of Bootstrap

Full Listing of Customer Detail Page HTML .

Creating Customer Address Seed Data

Bibliography
Index

www.it-ebooks.info

Contents ® vii

209
211

213
213
225
234

249
253

257
259


http://www.it-ebooks.info/

Acknowledgments

I'd like to first thank my wife Amy, who gave me the encouragement and space
to spend time every morning writing this book.

I'd also like to thank my editor, Fahmida Rashid, who managed to take what
started as a functional requirements document for a customer service appli-
cation and helped me turn it into a useful book.

I'd further like to thank the many people who reviewed the in-progress book,
including Chris Hoffman, David McClain, J. Daniel Ashton, Jacob Chae, John
Cater, Maricris Nonato, Matthew Oldham, Nell Shamrell, Nigel Lowry, Simeon
Willbanks, and Jeremy Frens (who had particular insights that I hope I've
reflected well). And a huge thanks to the various readers who pointed out
errors in the beta version of the book (including some rather embarrassing
omissions): Andrea Bufalo Riva, Bradford Baker, Brent Nordquist, C. R. Myers,
Chris McCann, Harri Jauri, J. Daniel Ashton, Jamie Finlay, Jesus Alc, John
Lyons, Michael Pope, Narongsak Jirajaruwong, Nick Clyde, Patrick Joyce,
Russ Martin, Sernin van de Krol, Stephen Lloyd, and Volker Wiegand.

Finally, I'd like to thank the contributors to the software you're learning about
in this book. The people who have given their free time to make Ruby, Rails,
Postgres, Angular, Bootstrap, PhantomdJS, Teaspoon, Poltergeist, Devise,
Capybara, RSpec, Angular-Ul, Database Cleaner, Bower, and all other open
source software are far too numerous to list here, but without their work,
most developers would have a hard time doing their jobs.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Introduction

Think about what part of an application you’re most comfortable working
with. If you're a Rails developer, there’s a good chance you prefer the back
end, the Ruby code that powers the business logic of your application. What
if you felt equally comfortable working with the database, such as tweaking
queries and using advanced features of your database system? What if you
were also comfortable working with the JavaScript and CSS necessary to
make dynamic, usable, attractive user interfaces?

If you had that level of comfort at every level of the application stack, you
would possess great power as a developer to quickly produce high-quality
software. Your ability to solve problems would not be restricted by the tools
available via a single framework, nor would you be at the mercy of hard-to-
find specialists to help you with what are, in reality, simple engineering tasks.

The Rails framework encourages developers not to peer too closely into the
database. Rails steers you away from JavaScript frameworks in favor of its
sprinkling approach, where content is all rendered server-side. This book is
going to open your eyes to all the things you can accomplish with your
database, and set you on a path that includes JavaScript frameworks. With
Rails acting as the foundation of what you do, you’ll learn how to embrace
all other parts of the application stack.

The Application Stack

Many web applications—especially those built
. . . User Interface

with Ruby on Rails—use a layered architec-

ture that is often referred to as a stack, since

most diagrams (like the one we use in this

book) depict the layers as stacked blocks.

Rails represents the middle of the stack, and
is called middleware. This is where the core logic of your application lives.
The bottom of the stack—the data store—is where the valuable data saved

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Introduction * xii

and manipulated by your application lives. This is often a relational database
management system (RDBMS). The top of the stack is the user interface. In a
web application, this is HTML, CSS, and JavaScript served to a browser.

Each part of the stack plays a crucial role in making software valuable. The
data store is the canonical location of the organization’s most important
asset—its data. Even if the organization loses all of its source code, as long
as it retains its data, it can still survive. Losing all of the data, however, would
be catastrophic.

The top of the stack is also important, as it’s the way the users view and enter
data. To the users, the user interface is the database. The difference between
a great user interface and a poor one can mean the difference between happy
users and irritated users, accurate data and unreliable data, a successful
product and a dismal failure.

What's left is the part of the stack where most developers feel most comfort-
able: the middleware. Poorly constructed middleware is hard to change,
meaning the cost of change is high, and thus the ability of the organization
to respond to changes is more difficult.

Each part of the stack plays an important role in making a piece of software
successful. As a Rails developer, you have amassed many techniques for
making the middleware as high quality as you can. Rails (and Ruby) makes
it easy to write clean, maintainable code.

Digging deeper into the other two parts of the stack will have a great benefit
for you as a developer. You'll have more tools in your toolbox, making you
more effective. You’ll also have a much easier time working with specialists,
when you do have access to them, since you’ll have a good grasp of both the
database and the front end. That’s what you’ll learn in this book. When you're
done, you’ll have a holistic view of application development, and you’ll have
a new and powerful set of tools to augment your knowledge of Rails. With
this holistic view, you can build seemingly complex features easily, sometimes
even trivially.

You'll learn PostgreSQL, AngularJS, and Bootstrap, but you can apply many
of the lessons here to other data stores, JavaScript libraries, and CSS
frameworks. In addition to seeing just how powerful these specific tools can
be, you're going to be emboldened to think about writing software beyond
what is provided by Rails.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

The Application Stack ® xiii

PostgreSQL, Angular, and Bootstrap: The Missing Parts of Our Stack

If all you've done with your database is create tables, insert data, and query
it, you're going to be excited when you see what else you can do. Similarly, if
all you've done with your web views is sprinkle some jQuery calls to your
server-rendered HTML, you’ll be amazed at what you can do with very little
code when you have a full-fledged JavaScript framework. Lastly, if you've
been hand-rolling your own CSS, a framework like Bootstrap will make your
life so much simpler, and your views will look and feel so much better.

In this book, we’re going to focus on PostgreSQL (or simply Postgres) as our
data store—the bottom of the stack—and AngularJS (or just Angular) with
Bootstrap as our front end—the top of the stack. Each of these technologies
is widely used and very powerful. You're likely to encounter them in the real
world, and they each underscore the sorts of features you can use to deliver
great software outside of what you get with Rails.

With these chosen technologies, our application stack looks like this:

Angular Bootstrap
Postgres

In each chapter, we’ll highlight the parts of the stack we’ll be focusing on and
call out the various aspects of these technologies you’ll be learning. Not every
chapter will focus on all parts of the stack, so at the start of each chapter,
you’ll see a roadmap like this of what you’ll be learning;:

Feature we're
" working on

Not part of Focus of !
this chapter -, this chapter -, 12

v v

Focus of
this chapter

Bootstrap 7. Aspects of
' the technologies
we'll seein

" this chapter

Let’s get a taste of what each has to offer, starting with PostgreSQL.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Introduction ® xiv

PostgreSQL

PostgreSQL is an open source SQL database released in 1997. It supports
many advanced features not found in other popular open source databases
such as MySQL' or commercial databases such as Microsoft SQL Server.”
Here are some of the features you’ll learn about (and I'll show you how to use
them with Rails):

Checl constraints

You can create highly complex constraints on your table columns beyond
what you get with not null. For example, you can require that a user’s email
address be on a certain domain (which we’ll see in Chapter 2, Secure the
Login Database, on page 25), that the state in a U.S. address be written
exactly as two uppercase characters, or even that the state in the address
must already be on a list of allowed state codes.

While you can do this with Rails, doing it in the database layer means
that no bug in your code, no existing script, no developer at a console,
and no future program can put bad data into your database. This sort of
data integrity just isn’t possible with Rails alone.

Advanced indexing

In many database systems, you can only index the values in the columns
of the database. In Postgres, you can index the transformed values. For
example, you can index the lowercased version of someone’s name so that
a case-insensitive search is just as fast as an exact-match search. We'll
see this in Chapter 3, Use Fast Queries with, on page 33.

Materialized views

A database view is a logical table based on a SELECT statement. In Postgres
a materialized view is a view whose contents are stored in an actual
table—accessing a materialized view won’'t run the query again like it
would in a normal view. We'll use one in Chapter 9, Cache Complex
Queries, on page 151.

Advanced data types

N =

Postgres has support for enumerated types, arrays, and dictionaries (called
HSTOREs). In most database systems, you have to use separate tables to
model these data structures.

https://www.mysgl.com/
http://www.microsoft.com/en-us/server-cloud/products/sql-server/

www.it-ebooks.info


https://www.mysql.com/
http://www.microsoft.com/en-us/server-cloud/products/sql-server/
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

The Application Stack ¢ xv

Free-form JSON...that’s indexed
Postgres supports a JSON data type, allowing you to store arbitrary data
in a column. This means you can use Postgres as a document data store,
or for storing data that doesn’t conform to a strong schema (something
you’d otherwise have to use a different type of database for). And, by using
the JSONB data type, you ensure that the JSON fields can be indexed, just
like a structured table’s fields.

Although you can serialize hashes to JSON in Rails using the TEXT data
type, you can’t query them, and you certainly can’t index them. JSONB
fields can interoperate with many systems other than Rails, and they
provide great performance.

AngularJS

AngularJS3 is a JavaScript Model-View-Controller (MVC) framework created
and maintained by Google (Angular bills itself as a Model-View-Whatever
framework, but for this book, the Whatever will be a controller). Angular treats
your view not as a static bit of HTML, but as a full-blown application. By
adopting the mind-set that your front end is a dynamic, connected interface,
and not a set of static pages, you open up many new possibilities.

Angular provides powerful tools for organizing your code and lets you structure
your markup to create intention-revealing, testable, manageable front-end
code. It doesn’t matter how small or large the task—as your Ul gets more
complex, Angular scales much better than something more basic like jQuery.

As an example, consider showing and hiding a section of the DOM using
jQuery. You might do something like this:

jquery_example.html
<section>
<p>You currently owe: $123.45</p>
<button class="reveal-button">Show Details</button>
<ul style="display: none" class="details">
<li>Base fee: $120.00</li>
<li>Taxes: $3.45</li>
</ul>
</section>
<script>
$(".reveal-button").click(function($event) {
$(".details").toggle();
1)
</script>

3.  https://angularjs.org

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/jquery_example.html
https://angularjs.org
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Introduction ® xvi

It’s not much code, but if you've ever done anything moderately complex, your
markup and JavaScript becomes a soup of magic strings, classes starting
with js-, and oddball data- elements.

An Angular version of this might look like this:

angular_example.html
<section ng-app="account" ng-model="showDetails"
ng-init="showDetails = false">
<p>You currently owe: $123.45</p>
<button ng-click="showDetails = !showDetails">Show/Hide Details</button>
<ul ng-if="showDetails">
<li>Base fee: $120.00</li>
<li>Taxes: $3.45</li>
</ul>
</section>
<script>
var app = angular.module("account",[]);
</script>

Here, the view isn’t just a description of static content, but a clear indication
of how it should behave. Intent is obvious—you can see how this works
without knowing the underlying implementation—and there’s a lot less code.
This is what a higher-level of abstraction like Angular gives you that would
otherwise be a mess with jQuery or just plain JavaScript.

Unlike Postgres—where there are very few comparable open source alternatives
that match its features and power—there are many JavaScript frameworks
comparable to Angular. Many of them are quite capable of handling the fea-
tures we’ll cover in this book. We're using Angular for a few reasons. First,
it’s quite popular, which means you can find far more resources online for
learning it, including deep dives beyond what we’ll get to here. Second, it
allows you to compose your front end similarly to how you compose your back
end in Rails, but it’s flexible enough to allow you to deviate later if you need
to.

If you've never done much with JavaScript on the front end, or if you're just
used to jQuery, you’ll be pleasantly surprised at what Angular gives you:

Clean separation of code and views
Angular models your front end as an application with its own routes,
controllers, and views. This makes organizing your JavaScript easy and
tames a lot of complexity.

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/angular_example.html
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

The Application Stack ® xvii

Unit testing from the start
Testing JavaScript—especially when it uses jQuery—has always been a
challenge. Angular was designed from the start to make unit testing your
JavaScript simple and convenient.

Clean, declarative views
Angular views are just HTML. Angular adds special attributes called
directives that allow you to cleanly connect your data and functions to
the markup. You won’t have inline code or scripts, and a clear separation
exists between view and code.

Huge ecosystem
Because of its popularity, there’s a large ecosystem of components and
modules. Many common problems have a solution in Angular’s ecosystem.

It’s hard to fully appreciate the power of a JavaScript framework like Angular
without using it, but we’ll get there. We'll turn a run-of-the-mill search feature
into a dynamic, asynchronous live search, with very little code.

Bootstrap

Bootstrap® is a CSS framework created by Twitter for use in their internal
applications. A CSS framework is a set of CSS classes you apply to markup
to get a particular look and feel. Bootstrap also includes components, which
are classes that, when used on particular HTML elements in particular ways,
produce a distinct visual artifact, like a form, a panel, or an alert message.

The advantage of a CSS framework like Bootstrap is that you can create full-
featured user interfaces without writing any CSS. Why be stuck with an ugly
and hard-to-use form like this?

Amount (in dollars)

$

00

Transfer cash

By just adding a few classes to some elements, you can have something pol-
ished and professional like this instead:

4. http://getbootstrap.com

www.it-ebooks.info


http://getbootstrap.com
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Introduction ® xviii

In the next chapter we’ll do this to the login and registration forms provided
by the Devise gem. We’'ll have a great-looking user sign-up and sign-in expe-
rience, without writing any CSS.

Bootstrap includes a lot of CSS for a lot of different occasions.

Typography
Just including Bootstrap in your application and using semantic HTML
will result in pleasing content with good general typography.

Grid
Bootstrap’s grid makes it easy to lay out complex, multicolumn compo-
nents. It can’t be overstated how important and powerful this is.

Form styles
Styling good-looking forms can be difficult, but Bootstrap provides many
CSS classes that make it easy. Bootstrap-styled forms have great spacing
and visual appeal, and feel cohesive and inviting to users.

Components
Bootstrap also includes myriad components, which are CSS classes that,
when applied to particular markup, generate a visual component, like a
styled box or alert message. These components can be great inspiration
for solving simple design problems.

It's important to note that Bootstrap is not a replacement for a designer, nor
are all Uls created with Bootstrap inherently usable. There are times when a
specialist in visual design, interaction design, or front-end implementation
is crucial to the success of a project.

But for many apps, you don’t need these specialists (they are very hard to
find when you do). Bootstrap lets you produce a professional, appealing user
interface without them. Bootstrap also lets you realize visual designs that
might seem difficult to do with CSS. In Chapter 4, Create Clean Search Results,
on page 51 and Chapter 8, Design Great Uls with, on page 137, you’'ll see just
how easy it is to create a customized Ul without writing CSS, all thanks to
Bootstrap.

Even if you have a designer or front-end specialist, the skills you'll learn by
using Bootstrap will still apply—your front-end developer isn’t going to write
every line of markup and CSS. They are going to hand you a framework like
Bootstrap that enables you to do many of the things we’ll do in this book.

Now that you've gotten a taste of what we’ll be covering, let’s talk about how
you're going to learn it.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Postgres, Angular, and Bootstrap—At the Same Time ® xix

Postgres, Angular, and Bootstrap—At the Same Time

If you've already looked at the table of contents, you’ll see that this book isn’t
divided into three parts—one for Postgres, one for Angular, and one for
Bootstrap. That’s not how a full-stack developer approaches development. A
full-stack developer is given a problem to solve and is expected to bring all
forces to bear in solving it.

For example, if you're implementing a search, and it’s slow, you’ll consider
both creating an index in the database as well as performing the search with
Ajax calls to create a more dynamic and snappy UI. You should use features
at every level of the stack to get the job done.

SEARCH FEATURE

Bootstrap

Postgres

This holistic approach is how you're going to learn these technologies. We'll
build a Rails application together, adding features one at a time. These features
will demonstrate various aspects of the technologies we're using.

To keep things simple, each chapter will focus on a single technology, and
we’ll complete features over several chapters. For example, in the next chapter
we’ll set up a simple registration system for our application and use Bootstrap
to style the views. In Chapter 2, Secure the Login Database, on page 25, we'll
continue the feature but focus on using Postgres to add extra security at the
database layer. This will allow us to see each feature evolve as we bring in
relevant parts of the application stack. This will give you the confidence to

do the same for other features that you build in your own apps.

It's also worth emphasizing the role of Rails in all of this. Although Rails
doesn’t have built-in APIs for using Postgres’s advanced features, nor support
for Angular’s way of structuring code, it doesn’t outright prevent our using
them. And Rails is a great middleware; probably one of the best.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Introduction ® xx

So, in addition to learning Postgres, Angular, and Bootstrap, you're going to
learn how to get them working with Rails. You’ll see not just how to create
check constraints on columns in our tables, but how to do that from a Rails
migration. And you won'’t just learn how to style Angular components with
Bootstrap—you’ll do it using assets served up by the asset pipeline.

Let’s learn about the Rails application that we’ll be building in this book.

Shine, the Application We'll Build

In this book we’ll create and add features to a Rails application. We're creating
this application for the customer service agents at the hypothetical company
where we work. Our company has a public website that its customers use,
but we want a separate application for the customer service agents. You've
probably seen or heard about internal-facing apps like this. Perhaps you've
even worked on one (most software is internally facing).

The application will be called Shine (since it allows our great customer service
to shine through to our customers). The features that we’ll build for this
application involve searching for, viewing, and manipulating customer data.

For example, we’ll allow the user to search for customers.

QOO Shine: Customer 1234

@@MQ http://shine.example.com/customers/T234 ) @&

L0

‘ Bob ‘

Bob Jones  boberti234 JOINED 10/12/2014

bjones18@somewhere.net

Darrell Bobbins  gbob JOINED 1/13/2014

bjones18@somewhere.net

Bobby Smith  pbysmith JOINED 10/12/2014

bjones18@somewhere.net

<Pl

And they can click through and view or edit a customer’s data.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

How to Read This Book ® xxi

(oYY Shine: Customer 1234 [
(«]») (+[@ http://shine.example.com/customers/T234 )¢ )
Customer Info Billing Info
‘ Bob ‘ ‘ Jones ‘ ‘ @ H bobert1234 ‘ VISA  #xxx_xxxx_xx%%.1234  Expires 12/18
‘ bobbyj@somewhere.net ‘ JOINED 2/13/2014 ‘ View at Payment Processor... ‘
Shipping Address Billing Address D Same as Shipping?
123 Any St
‘ 123 Any St ‘

Hide if “"Same

Unit 101 as Shipping”
‘ Unit 101 ‘ m checked
- Washington ‘ ‘ DC ‘ ‘ 20002
‘Washlngton ‘ ‘DC ‘ ‘ 20002 ‘

<P

These features may seem simple on the surface, but there’s hidden complex-
ity that we’ll be able to tame with Postgres, Angular, and Bootstrap. In each
chapter, we’ll make a bit of progress on Shine, and you’ll learn features of
Postgres, Angular, Bootstrap, and Rails in the process.

How to Read This Book

As mentioned, each chapter will focus on one part of our stack as we build
a part of a feature. To help you keep track of where we are, each chapter will
start with a diagram that shows which parts of the stack we’ll be focusing
on, what feature we're building, and what aspects of each technology you're
going to be learning.

The first feature we’ll build is a registration and login system, which will allow
us to style the user interface with Bootstrap but also secure the underlying
database with Postgres. We'll get our Rails application set up and style the
login in Chapter 1, Create a Great-Looking Login with Bootstrap and Devise,
on page 1. We'll then tighten up the security by learning about check con-
straints in Chapter 2, Secure the Login Database, on page 25.

We’ll then move on to a customer search feature, which is a fertile ground for
learning about full-stack development. In Chapter 3, Use Fast Queries with,

www.it-ebooks.info

report erratum -

discuss


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Introduction ® xxii

on page 33, we’ll implement a basic fuzzy search, and youll learn how to
examine Postgres’s query plan to understand why our search is slow. We'll
then use Postgres’s advanced indexing features to make it fast. In Chapter
4, Create Clean Search Results, on page 51, you'll learn how to use some of
Bootstrap’s built-in components and helper classes to create nontabular
search results that look great.

Chapter 5, Build a Dynamic Ul with AngularJS, on page 61, is an introduction
to AngularJS, which we’ll use to make our customer search much more
dynamic. This chapter will explore how to set up and manage Angular as part
of the asset pipeline, as well as how to read user input and do Ajax calls to
our Rails application.

With a fully implemented customer search, we’ll take a pause at Chapter 6,
Test This Fancy New Code, on page 83 to discuss how to write tests for
everything you've learned. Testing has always been a big part of Rails, so
whenever we veer off Rails’s golden path, it’s important to make sure we have
a great testing experience.

Chapter 7, Create a Single-Page App, on page 119 will be our first step in
building a more complex feature that shows customer details. We’ll turn our
customer search into a client-side, single-page application that allows the
user to navigate from search results to customer details without reloading
the page. This will give you an opportunity to learn about Angular’s router
and navigation features.

In Chapter 8, Design Great Uls with, on page 137, you'll learn about a powerful
web design tool called the grid and how Bootstrap implements it. We'll use it
to create a dense Ul that’s clean, clear, and usable. In Chapter 9, Cache
Complex Queries, on page 151, we’ll implement the back end of our customer
details view by turning a query of highly complex joins into a simple auto-
updated cache using Postgres’s materialized views.

In Chapter 10, Asynchronously Load Data, on page 171, you'll learn how
Angular’s asynchronous nature allows us to keep our front end simple, even
when we need data from several sources. We'll finish off our customer detail
page feature, as well as our in-depth look at these technologies, in Chapter
11, Wrangle Forms and, on page 193, by exploring Angular’s data binding,
which will allow you to auto-save changes the user makes on the front end.

All of this is just a small part of what you can do with Bootstrap, Angular,
and Postgres, so in Chapter 12, Dig Deeper, on page 213, we’ll survey some of
the other features we don’t have space to get to.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

How to Read This Book ® xxiii

When it’s all said and done, you’ll have the confidence needed to solve prob-
lems by using every tool available in the application stack. You'll be just as
comfortable creating an animated progress bar as you will be setting up views
and triggers in the database. Moreover, you’ll see how you can use these sorts
of features from the comfort of Rails.

Example Code

The running examples in the book are extracted from fully tested source code
that should work as shown, but you should download the sample code from
https://pragprog.com/titles/dcbang/source_code. Each step of our journey through this
topic has a different subdirectory, each containing an entire Rails application.
While the book is showing you only the changes you need to make, the
downloadable code records a snapshot of the fully working application as of
that point in the book.

Command-Line Execution

We'll be running a lot of commands in this book. Rails development is heavily
command-line driven, and this book shows the commands you need to execute
as we go. It's important to understand how to interpret the way we're using
them in the book. Each time you see a command-line session, the text will
first show how you call the command line, followed by the expected output.

In the following example, we invoke the command line bundle exec rails generate
deviseiinstall. This is the command you’d type into your terminal and press
Return. The lines following the command line display expected or example
output.

$ bundle exec rails generate devise:install
create config/initializers/devise.rb
create config/locales/devise.en.yml

Sometimes I need to show a command-line invocation that won’t fit on one
line. In this case, I'll use backslashes to show the continuation of the command
(which is how you’d actually run a multiline command in a shell like bash).
The last line won’t have a backslash. For example, here we're typing everything
from rails to shine.

$ rails new --skip-turbolinks \
--skip-spring \
--skip-test-unit \
-d postgresql \
shine
create
create README.rdoc

www.it-ebooks.info


https://pragprog.com/titles/dcbang/source_code
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Introduction ® xxiv

create Rakefile
create config.ru
create .gitignore
create Gemfile

The sample output won't always match exactly what you see, but it should
be close. It’s included so you have a way to sanity-check what you’re doing
as you follow along.

A second form of command-line session is when we’re interacting with Post-
gres. We'll indicate this by executing rails dbconsole first and then showing SQL
commands inside the Postgres command-line interpreter. In the following
listing we're executing rails dbconsole; then we're executing select count(*) from users;
inside Postgres (note how the prompt changes slightly). After that we see the
expected or sample results of the command.

$ rails dbconsole

postgres> select count(*) from users;
| count |

Online Forum and Errata

While reading through the book, you may have questions about the material,
or you might find typos or mistakes. For the latter, you can add issues to the
errata for the book at https://pragprog.com/titles/dcbang/errata. Think of it as a bug-
reporting system for the book.

For the former—questions about the material—you should visit the online
forum at https://forums.pragprog.com/forums/389. There, you’ll be able to interact with
other readers and me to get the most out of the material.

What You Need to Know

This book covers a lot of advanced topics in web development. However, my
hope is that you can get a lot out of it regardless of your skill level. Neverthe-
less, the code and concepts are written assuming some basic exposure to the
topics at hand:

Ruby and Rails
Much of the Rails content in the book is in configuration, specifically to
get Rails to work with Angular, Bootstrap, and the ecosystem in which
they live. If you've created a simple Rails app, and you know what con-
trollers, models, views, migrations, and tests are, you should have no

www.it-ebooks.info


https://pragprog.com/titles/dcbang/errata
https://forums.pragprog.com/forums/389
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Getting Set Up ® xxv

problem understanding the Rails code. If you're new to Rails, check out
Agile Web Development with Rails 4 [Rub13].

SQL

We're also assuming you know some SQL. If you know the basics of how
to select, update, and insert data, along with how to do a join, you know
everything you need to understand the Postgres parts of this book. For
those of you new to SQL, there’s an online course called “Learn SQL the
Hard Way”® in development that will give you the necessary skills. As of
this writing, Exercises 0-6 should give you a grounding in the basics,
including joins.

JavaScript

You don’t need to be a JavaScript expert, but you should know the basics
of how JavaScript works as a language. JavaScript, the Good Parts [Cro08]
is a quick read and should give you these basics if you need them. You
don’t have to know any Angular. I'll cover what you need and assume
you've never seen any Angular code.

CSS

There’s no actual CSS code in this book. You just need to know what CSS
is and what it does. All the styling we’ll do will be using Bootstrap and
we won't assume any prior knowledge.

Getting Set Up

To get ready to follow along, you don’t have to do much to get yourself set up.
You'll just need to install Ruby, Rails, and Postgres.

Ruby and Rails

If you don’t have Ruby installed, follow the instructions on Ruby’s website.’
I recommend using an installer or manager, but as long as you have Ruby
2.2 installed and the ability to install gems you’ll be good to go.

With Ruby installed, you'll need to install Rails. This is usually as simple as

$ gem install rails

Be sure to get the latest version of Rails, which is 4.2 as of this writing.

5.  http://sql.learncodethehardway.org/book/

6.

https://www.ruby-lang.org/en/downloads/

www.it-ebooks.info


http://sql.learncodethehardway.org/book/
https://www.ruby-lang.org/en/downloads/
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Introduction ® xxvi

Postgres

Postgres is free and open source, and you can install it locally by looking at
the instructions for your operating system on their website.” Be sure you get
at least version 9.4, as some of the features we’ll discuss were introduced in
that version. In Chapter 2, Secure the Login Database, on page 25, we'll outline
how to set up a user to access the databases.

An alternative is to use a free, hosted version of Postgres, such as Heroku
Postgres.® You can sign up on their website, and they’ll give you the credentials
to access the hosted database from your computer (you’ll learn where to use
them in the first chapter).

Library and Tool Versions

For everything else you need, I'll show you how to set up and install as we
get to it. We'll be using a lot of third-party libraries and tools—integrating
them together is what this book is about. Pay particular attention to the ver-
sions of libraries in Gemfile and Bowerfile that are included in the example code
download. While I've tried to make the code future compatible, there’s always
a chance that a point release of a library breaks something.

I wrote the book with the following versions of the tools and libraries:

e Ruby 2.2 e Teaspoon 2

e Rails 4.2 e Devise 3.5

e Bootstrap 3 e Postgres 9.4 or 9.5
e Angular 1.4

I expect everything here to work with Rails 5. As of this writing, Angular 2 is
set to be a ground-up rewrite—essentially a totally new framework—but 1.4
is expected to be supported for quite some time. Bootstrap 4 is also on the
horizon, which will have breaking changes, but the team currently plans to
support 3.x for the foreseeable future.

I hope you're ready to start your journey in full-stack application development!
Let’s kick it off by creating our new Rails application and setting up a great-
looking, and secure, login system.

7. http://www.postgresql.org/download/
8.  https://www.heroku.com/postgres

www.it-ebooks.info


http://www.postgresql.org/download/
https://www.heroku.com/postgres
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

LOGIN

Bootstrap

CHAPTER 1

Create a Great-Looking Login with
Bootstrap and Devise

Applications aimed at a company’s employees require some sort of restrictions
as to who can access them. These internal apps are instrumental in running
the company’s operations, so we want to be careful about who has access to
them. This means we need an authentication system.

An authentication system is a great first step into thinking about problems
as a full-stack developer—we want the user experience to be great, but we
also want the back end to be secure, all the way down to the data layer. In
this chapter, we’ll use the Devise gem to handle the middleware bits of
authentication, and we’ll use Bootstrap to make the user experience great.

Because this is the first chapter, we’ll set up our fresh Rails application. But
we’ll also need to get Bootstrap installed. Since Shine (the name of our Rails
application) will eventually use AngularJS and other front-end components,
we’ll use the installation of Bootstrap as a way to learn about Bower, which
is like Bundler' but for JavaScript and CSS libraries.

The figure at the top of this page (and at the top of subsequent chapters)
shows where everything you’ll learn sits in our application stack.

Let’s get to it, and set up our fresh Rails application with a simple login system
powered by Devise.

1. http://bundler.io/

www.it-ebooks.info


http://bundler.io/
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 1. Create a Great-Looking Login with Bootstrap and Devise ® 2

Setting Up Devise for Authentication

Creating an authentication system from scratch is rarely a good idea. It’s
difficult to get every part of it correct since security controls can be subverted
in unusual and counterintuitive ways. Because of this, we're going to use a
tried-and-true Rails plugin called Devise.”

Devise is built to handle almost any sort of authentication requirement, and
will definitely suit our needs. Here’s what we want our authentication system
to do:

¢ Employees who need to use our app will sign up on their own.
e They must use their company email when signing up.
¢ Their password must be at least 10 characters long.

We aren’t going to require users to validate their email addresses, mostly to
keep things simple by avoiding email configuration. You should consider it
for a real app, and Devise makes it easy to use once you've fully configured
your mailers.’

Since adding a login is the first feature we're going to implement, we’ll start
by setting up our Rails application. Note that while we're adding Devise to a
brand-new Rails application, it’s just as simple to add Devise to an already-
in-development application.

Setting Up Our Rails App

We really don’t need much more than the basic Rails application we’ll generate
with rails new, but since we know we're using Postgres now and later in the
book we’ll be using AngulardS, there are a few options we want to set now.

Let’s call our new application shine (since it will allow our users to shine as
they do their work, assisted by all the wonderful features we’ll be able to add
for them). It will use Postgres instead of the default SQLite database.

We don’t want to use TurboLinks,* because it’s going to clash with the Java-
Script we’ll be writing later on when we start to use AngularJS. We're skipping
Spring® as well, mostly because it isn’t 100% reliable, and it could cause your
experience with these examples to not mimic the one we're describing in the
book. Finally, we're skipping Test::Unit as our testing framework, because we’re

https://github.com/plataformatec/devise
http://guides.rubyonrails.org/action_mailer_basics.html#action-mailer-configuration
https://github.com/rails/turbolinks

https://github.com/rails/spring

oLk N

www.it-ebooks.info


https://github.com/plataformatec/devise
http://guides.rubyonrails.org/action_mailer_basics.html#action-mailer-configuration
https://github.com/rails/turbolinks
https://github.com/rails/spring
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Setting Up Devise for Authentication ¢ 3

going to be using RSpec.® As you'll see in Chapter 6, Test This Fancy New
Code, on page 83, we have good reasons to use RSpec, so bear with me for

now.

Here’s the command to create a Rails app according to our specifications (if
you haven’t installed Rails, you’ll first need to issue gem install rails).

$ rails new --skip-turbolinks \

--skip-spring \
--skip-test-unit \
-d postgresql \
shine

This will create our new application as you’d expect. Since almost all of our
work will be in this Rails app, let’s go ahead and change our current directory
to the shine directory that contains our new Rails application:

$ cd shine

Before we run the Rails application, we’ll need to set up our database (if you
don’t have Postgres installed, review the setup instructions in Postgres, on
page xxvi). If you've installed Postgres locally, you’ll need to create a user (if
you're using Postgres-as-a-service, you should have a user created already
and should skip this step). Our user will be named shine and have the password
shine. We can create it using the command-line app installed with Postgres
called createuser.

$ createuser --createdb --login -P shine

You'll be prompted for a password, so enter shine twice, as requested. --createdb
tells Postgres that our user should be able to create databases (needed in a
later step). The --login switch will allow our user to log in to the database and
-P means we want to set our new user’s password right now (which is why
you were prompted for a password).

If the createuser Command Isn’t Found on Your System
In some Linux installations, the createuser command isn’t available.
While you should consult the installation documentation for your
operating system, you can create a user inside Postgres directly.
o You'll need to access the postgres schema, which you can usually
do with psql like so:

$ psql postgres

6.  http://rspec.info/

www.it-ebooks.info


http://rspec.info/
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

vy

Chapter 1. Create a Great-Looking Login with Bootstrap and Devise ® 4

If the createuser Command Isn’t Found on Your System
Doing this could be tricky, as you may need to be the postgres user
in your system. Again, the installation instructions for your oper-
ating system should show the way. Once you've done this, you
can create a user inside psql:

$ psql postgres
postgres> CREATE USER shine PASSWORD 'shine';

Next, modify config/database.yml so the app can connect to the database.

default: &default
adapter: postgresql
encoding: unicode
host: localhost
username: shine
password: shine
pool: 5

development:
<<: *default
database: shine_development

test:
<<: *default
database: shine_test

Note that if you're using Postgres-as-a-service, you'll need to use the creden-
tials you were given instead of what’s shown here. Typically, you'll get a URL,
so you’ll have to manually break it up into the pieces needed in con-
fig/database.yml. The URL is usually of the form postgres://some_user:their_pass-
word@some_host.com:PORT/database_name.

Next, we’ll set up our database.

$ bundle exec rake db:create
$ bundle exec rake db:migrate

We can now start the app to verify that everything worked. Although we don’t
have any database tables, Rails should complain if the database configuration
is wrong, so this is a decent test of our configuration.

$ bundle exec rails server

You can now visit http://localhost:3000 and see the familiar Rails welcome page
on page 5.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Setting Up Devise for Authentication ® 5

Welcome aboard

You're riding Ruby on Rails!

About your application’s environment

Getting started
Here’s how to get rolling:

1. Use bin/rails generate to create your
models and controllers

To see all available options, run it without parameters.

2. Set up a root route to replace this page

You're seeing this page because you're running in
development mode and you haven't set a root route yet.

Routes are set up in config/routes.rb.

3. Configure your database

If you're not using SQLite (the default), edit
config/database.ym/ with your username and password.

Browse the
documentation

Rails Guides

Rails AP

Ruby core

Ruby standard library

Lastly, we need to make a page in our app that will require authentication.
We'll call this the dashboard, and our initial version will have a simple, static

view.
Add the route to config/routes.rb.

login/create-dashboard/shine/config/routes.rb
root 'dashboard#index'

Next, create app/controllers/dashboard_controller.rb.

login/create-dashboard/shine/app/controllers/dashboard_controller.rb
class DashboardController < ApplicationController

def index
end
end

Finally, create app/views/dashboard/index.html.erb with some basic content.

login/create-dashboard/shine/app/views/dashboard/index.html.erb

<header>
<hl>
Welcome to Shine!
</h1l>
<h2>
We're using Rails <%= Rails.version %>
</h2>
</header>
<section>
<p>
Future home of Shine's Dashboard
</p>
</section>

www.it-ebooks.info

report erratum -

discuss


http://media.pragprog.com/titles/dcbang/code/login/create-dashboard/shine/config/routes.rb
http://media.pragprog.com/titles/dcbang/code/login/create-dashboard/shine/app/controllers/dashboard_controller.rb
http://media.pragprog.com/titles/dcbang/code/login/create-dashboard/shine/app/views/dashboard/index.html.erb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 1. Create a Great-Looking Login with Bootstrap and Devise ® 6

Restart your server, reload your app, you should see the page we've created.

Welcome to Shine!
We're using Rails 4.2.5

Future home of Shine's Dashboard

Now that we have a working Rails app, we can install Devise to get our login

going.

Installing Devise
First, we’ll add Devise to our Gemfile.

login/install-devise/shine/Gemfile
gem 'devise’

Next, we’ll install it using Bundler.

$ bundle install

Devise includes several generators’ we can use to simplify the setup and initial
configuration. The devise:install generator is the first one we’ll need to bootstrap
Devise in our app.

$ bundle exec rails generate devise:install
create config/initializers/devise.rb
create config/locales/devise.en.yml

This command will also output a fairly lengthy message about further actions
to take to set up Devise. We'll be addressing all of that advice in this section,
so don’t worry about it for now.

Next, we need to tell Devise what model and database table we’ll use for
authentication. Even though our company’s public website has a user
authentication mechanism for our customers, we want to use a separate
system for our internal users. This allows both systems to vary as needed for
different parts of the business. It also creates a much more explicit wall
between customers and users, and prevents customers from having access
to our internal systems.

Devise is part of that separate system, but we also need a separate database
table and model. Since we refer to our customers as “customers,” we’ll refer
to our internal users as simply “users.” Devise can create that table for us,
using a generator called devise. It will create a User Active Record model and
database table (called USERS) with the fields necessary for Devise to function.

7. http://guides.rubyonrails.org/command_line.html#rails-generate

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/login/install-devise/shine/Gemfile
http://guides.rubyonrails.org/command_line.html#rails-generate
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Setting Up Devise for Authentication ¢ 7

$ bundle exec rails generate devise user
invoke active record
create db/migrate/20150228234349 devise create users.rb
create app/models/user.rb
insert app/models/user.rb
route devise for :users

Let’s have a look at what it created by examining the migration.

login/install-devise/shine/db/migrate//20150228234349_devise_create_users.rb
class DeviseCreateUsers < ActiveRecord::Migration
def change
create table(:users) do |t
## Database authenticatable
t.string :remail, null: false, default: ""
t.string :encrypted password, null: false, default: ""

## Recoverable
t.string :reset_password_token

t.datetime :reset password sent at

## Rememberable
t.datetime :remember created at

## Trackable

t.integer :sign in count, default: 0, null: false
t.datetime :current_sign in at

t.datetime :last sign in at

t.inet rcurrent _sign in ip

t.inet :last sign in ip

t.timestamps

end

add index :users, :email, unique: true

add _index :users, :reset password token, unique: true
end

end

Each section that’s commented indicates which Devise modules the fields are
relevant to. Don’t worry about what those are for now. We also won’t add any
fields of our own at this point. If we need some later, we can always add them
with a new migration.

There’s one last step before we can finally see Devise in action. We need to
indicate which controller actions require authentication. Without that, Devise
won’'t do anything, as it will perceive all pages as being open to anonymous
users.

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/login/install-devise/shine/db/migrate//20150228234349_devise_create_users.rb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 1. Create a Great-Looking Login with Bootstrap and Devise ® 8

Devise provides a controller filter called authenticate_user!, and we can use that
in our ApplicationController, since we want all pages and actions to be restricted.

login/install-devise/shine/app/controllers/application_controller.rb

class ApplicationController < ActionController::Base
protect from forgery with: :exception
before_action :authenticate_user!

end

As a way for us to be certain we've actually authenticated the user, let’s show
the email address on the dashboard. Devise provides a helper method called
current_user, which returns the User instance of the currently authenticated
user. Since it’s a helper, we can use it directly in our view.

login/install-devise/shine/app/views/dashboard/index.html.erb
<header>
<hl>
Welcome to Shine, <%= current_user.email %>
</hl>
<h2>
We're using Rails <%= Rails.version %>
</h2>
</header>
<section>
<p>
Future home of Shine's Dashboard
</p>
</section>

Now, we're ready to see it working. We'll need to run migrations and then
start our server.

$ bundle exec rake db:migrate
== 20150228234349 DeviseCreateUsers: migrating

-- create table(:users)

-> 0.0538s

-- add_index(:users, :email, {:unique=>true})
-> 0.0043s

-- add_index(:users, :reset password token, {:unique=>true})
-> 0.0025s

== 20150228234349 DeviseCreateUsers: migrated (0.0608s)
$ bundle exec rails server

Navigating to http://localhost:3000 will no longer show the dashboard page, but
will instead ask us to log in or sign up.

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/login/install-devise/shine/app/controllers/application_controller.rb
http://media.pragprog.com/titles/dcbang/code/login/install-devise/shine/app/views/dashboard/index.html.erb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Setting Up Devise for Authentication ¢ 9

You need to sign in or sign up before continuing.
Login

Email

Password

—

[ Remember me

Log in

Sign up
Forgot your password?

Since we don’t have a user account yet, let’s create one by clicking “Sign up.”

Sign up
Email
Password (8 characters minimum)

Password confirmation

presword confiomaion
Signup

Login

If you fill in the fields, your account will be created and you’ll be automatically

logged in. You should be able to see your email address on the dashboard

page, just as we wanted.

‘Welcome! You have signed up successfully.
Welcome to Shine, user2392@example.com
We're using Rails 4.2.5

Future home of Shine's Dashboard

We can also see that Devise has created an entry in the USERS table by going
into the database directly. Use the Rails dbconsole® command.

$ bundle exec rails dbconsole
postgres> \x on

Expanded display is on.
postgres> select * from users;

-[ RECORD 1 J---------- o e i
id 1
email exampleuser@example.com

I
I
encrypted password | $2a$10$h60FdaL5FsYwoRTwUF.hCrSgTOXEiMUt1x40wk3Kge
reset password token |
reset password sent at |
remember created at |
| 1
| 2015-02-28 23:51:40.315758
| 2015-02-28 23:51:40.315758
| ::1

sign_in_count
current_sign in_ at
last sign in at
current_sign_in_ip

8. http://guides.rubyonrails.org/command line.html#rails-dbconsole

www.it-ebooks.info


http://guides.rubyonrails.org/command_line.html#rails-dbconsole
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 1. Create a Great-Looking Login with Bootstrap and Devise ® 10

last_sign_in_ip | ::1
created_at | 2015-02-28 23:51:40.302823
updated_at | 2015-02-28 23:51:40.322173

Note that you can exit dbconsole by typing \q and hitting Return.

This is an amazing amount of functionality just for installing a gem and adding
a few lines of code to our application. And, since Devise is tried and tested,
we know our authentication system is solid and dependable. But it’s ugly.

We could open up app/assets/stylesheets/application.css and start trying to make it
look better, but we don’t have to. Bootstrap provides a ton of styles we can
apply to our markup that will make our login look great, and we won’t have
to write any CSS.

Installing Bootstrap with Bower

We want our users’ experience with Shine to be good, but we don’t have hours
and hours to spend styling and perfecting it. We also might not even have
the expertise to do a good job. The reality of software development, especially
for internal tools, is that there’s rarely enough time or people to work on a
great design.

Fortunately, there are now many CSS frameworks available that can help us
produce a decent design. A framework is a set of reusable classes that we can
apply—without writing any actual CSS—to style our markup. For example,
a framework might set up a set of font sizes that work well when used
together. It may also provide classes we can apply to form fields to make them
lay out effectively on the page.

Bootstrap® is one of the most popular and widely used CSS frameworks, and
it will give users an immense amount of power to control the look and feel of
the app, without having to write any CSS ourselves. Bootstrap is no replace-
ment for an actual designer—its default visual style won't win any design
awards. But, for an internal application like Shine, it’s perfect. It will make
our app look good.

To turn our ugly login and sign-up forms into something we can be proud of,
we need to install Bootstrap, configure it in our Rails application’s asset
pipeline,'® and then make a few changes to the markup Devise provides for
those screens.

9.  http://getbootstrap.com
10. http://guides.rubyonrails.org/asset _pipeline.html

www.it-ebooks.info


http://getbootstrap.com
http://guides.rubyonrails.org/asset_pipeline.html
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Installing Bootstrap with Bower ® 11

Installing Bootstrap

There are three ways to install Bootstrap into a Rails application: as a Ruby
Gem, by referencing a publicly available version hosted on a CDN,'' or by
downloading it and storing it within our application’s source.

We're going to use the latter, assisted by a tool called Bower.'? Later in the
book, we’ll need to use some front-end assets (CSS and JavaScript libraries)
that aren’t available as RubyGems, so Bower will become our one-stop shop
for all things front-end (rather than having some assets managed via our
Gemfile and some managed by Bower; see the following sidebar for more
information about this decision).

It may seem easier to just use the gemified versions of front-end assets instead of
setting up Bower to download and manage everything. The problem is that RubyGems
becomes a needless middleman, obscuring the actual versions of the assets you are
using (as of this writing, the jquery-rails gem is at version 4.0.3, is compatible with
Rails 4.2, and bundles jQuery 2.1.3, which I find incredibly confusing).

Further, you end up relying on others to package assets you need, so you have to
hope that the asset you want is available, and that the latest version has been
packaged by the gem’s maintainer. If neither of those is the case, you have to find an
alternate solution, which means either you become the gem’s maintainer, or you just
download the assets manually.

This is a very real problem, since the world of front-end libraries is much larger than
Rails. The community around front-end asset frameworks like Bootstrap has chosen
Bower as the means to manage these assets. Even though it's a bit of extra work to
set up on our end, using Bower will give us flexibility and predictability in our
toolchain.

To install Bootstrap using Bower, we’ll first need to install Bower; then we’ll
instruct it to download and install Bootstrap; and, finally, we’ll configure the
asset pipeline to make Bootstrap available.

Install Bower

Bower bills itself as a package manager for the web. It was created by Twitter
and is analogous to RubyGems, but manages front-end assets (including CSS
frameworks like Bootstrap and JavaScript libraries like Angular). Bower is

11. http://en.wikipedia.org/wiki/Content delivery network
12. http://bower.io

www.it-ebooks.info

report erratum -« discuss


http://en.wikipedia.org/wiki/Content_delivery_network
http://bower.io
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 1. Create a Great-Looking Login with Bootstrap and Devise ® 12

written in JavaScript, and so it requires a JavaScript runtime in order to
work. That means you’ll have to install Node.js.

To install Node," simply visit http://nodejs.org and follow the instructions for
your operating system. In particular, you may want to check out the page on
installing Node via package managers,'* as it has extensive documentation
for various operating systems.

Once you have Node installed, you’ll have access to the npm command-line
application. This is a package manager for JavaScript, and we’ll use that to
install Bower.

$ npm install -g bower

It may seem comical to install a package manager just to install another
package manager that we’ll use alongside our existing, Ruby-based package
manager, but that’s how it is. Bower is going to make our lives easier by giving
us clear and complete control over our front-end assets. This initial setup is
going to be more than worth it.

With Bower installed, we could manage our dependencies using the bower
command-line application. However, there’s a Ruby gem called bower-rails
that makes our interaction with Bower a bit more “Rails-like,” so let’s install
that as well by adding it to our Gemfile.

login/install-bootstrap/shine/Gemfile
gem 'bower-rails'

We can install it with Bundler.
$ bundle install

The bower-rails gem does two things for us. First, it allows us to specify
dependencies in a simple file called Bowerfile, which will be easier to work with
than the JSON format'® required by the bower command-line app. Bower-rails
also provides rake tasks to run Bower for us.

$ bundle exec rake -T bower

rake bower:cache:clean # Clear the bower cache

rake bower:clean # Attempt to keep only files...
rake bower:install[options] # Install components from bower
rake bower:install:deployment[options] # Install components from bower. ..
rake bower:install:development[options] # Install both dependencies. ..

rake bower:install:production[options] # Install only dependencies, exc...

13. http:/nodejs.org
14. https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager
15. http://bower.io/docs/creating-packages/#bowerjson

www.it-ebooks.info


http://nodejs.org
http://media.pragprog.com/titles/dcbang/code/login/install-bootstrap/shine/Gemfile
http://nodejs.org
https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager
http://bower.io/docs/creating-packages/#bowerjson
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Installing Bootstrap with Bower ® 13

rake bower:list # List bower components

rake bower:resolve # Resolve assets paths in bower...
rake bower:update[options] # Update bower components

rake bower:update:prune[options] # Update existing components....

We'll see how Bowerfile works in the next section, when we download Bootstrap
into our application.

Download Bootstrap

Now that Bower is installed, we’ll add our first front-end dependency, which
is for Bootstrap. Bower-rails will look for Bowerfile to find our list of dependen-
cies. It looks very similar to a Gemfile and exposes the method asset for specifying
a front-end dependency. We'll create Bowerfile like so:

login/install-bootstrap/shine/Bowerfile
asset 'bootstrap-sass-official'

How did we know to use the string 'bootstrap-sass-official' to download Bootstrap?
We found it by searching the Bower central registry. Bower packages are
hosted in public git repositories (usually hosted on GitHub) and registered at
http://bower.io/search, which is analogous to http://rubygems.org. You can search that
registry for any package with the name “bootstrap” by running bower search
bootstrap.

$ bower search bootstrap | head
Search results:

bootstrap git://github.com/twbs/bootstrap.git

angular-bootstrap git://github.com/angular-ui/bootstrap-bower.git
bootstrap-sass-official git://github.com/twbs/bootstrap-sass.git
sass-bootstrap git://github.com/jlong/sass-bootstrap.git
bootstrap-datepicker git://github.com/eternicode/bootstrap-datepicker.git
bootstrap-select git://github.com/silviomoreto/bootstrap-select.git
angular-ui-bootstrap-bower git://github.com/angular-ui/bootstrap-bower
angular-ui-bootstrap git://github.com/angular-ui/bootstrap.git

The list of results is much longer than what we've shown here (Bootstrap has
a ton of add-ons in Bower’s registry), but the very first result shows a URL to
the official Bootstrap source code on GitHub. The string preceding that URL
is the name you need to use in your Bowerfile to bring down that asset.

In our case, we don’t want to use the first one, because that version is using
LESS' as a CSS preprocessor. Rails uses SASS for CSS preprocessing (this
will become useful in Glyphicons, on page 235, when we need to alter the asset
pipeline’s font handling).

16. http://lesscss.org

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/login/install-bootstrap/shine/Bowerfile
http://bower.io/search
http://rubygems.org
http://lesscss.org
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 1. Create a Great-Looking Login with Bootstrap and Devise ® 14

With our Bowerfile ready to go, we’ll use the bower:install rake task, provided by
bower-rails, to install Bootstrap.

$ bundle exec rake bower:install

bower.js files generated

/usr/local/share/npm/bin/bower install -p

bower bootstrap-sass-official#* cached git://github.com/twbs/bootstrap-...
bower bootstrap-sass-official#* validate 3.3.1 against git://github.co...
bower bootstrap-sass-official#* new version for git://github.com/...
bower bootstrap-sass-official#* resolve git://github.com/twbs/bootstr...
bower bootstrap-sass-official#* download https://github.com/twbs/boots...
bower bootstrap-sass-official#* extract archive.tar.gz

bower bootstrap-sass-official#* resolved git://github.com/twbs/bootstr...

bower jquery#>= 1.9.0 cached git://github.com/jquery/jquer...
bower jquery#>= 1.9.0 validate 2.1.3 against git://github.co...
bower bootstrap-sass-official#* install bootstrap-sass-official#3.3.3
bower jquery#>= 1.9.0 install jquery#2.1.3

bootstrap-sass-official#3.3.3 bower_ components/bootstrap-sass-official
L— jquery#2.1.3

jquery#2.1.3 bower components/jquery

Bower Uses git under the Covers
As you might guess from the output of bower search, Bower is a
wrapper around git and will git clone the repositories to pull them
down. If you're on an Internet connection that blocks certain ports,
you might experience an error here like “connection refused.” In
that case, try modifying your git configuration via git config --global
url."https://".insteadOf git://.

By default, bower-rails places files in vendor/assets/bower_components and if you
look in that directory, you'll see all of Bootstrap’s JS and CSS files have been
downloaded. You'll also notice that jQuery was installed. This is because the
JavaScript parts of Bootstrap require jQuery. Bower detects this transitive
dependency and handles downloading it, much as RubyGems would in a
similar situation.

We won'’t actually be using Bootstrap’s JavaScript, nor will we be using jQuery,
but there’s no easy way to avoid downloading them (no “CSS-only” version of
bootstrap-sass exists). Ultimately, it won’t matter because we won’t configure
the asset pipeline to serve them—they’ll essentially be inert files in our project.

Now that Bootstrap has been downloaded, we want to configure Rails to serve
it up as part of our application’s CSS assets.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Installing Bootstrap with Bower ¢ 15

Add Bootstrap to Our Asset Pipeline

The Rails asset pipeline manages the deployment of front-end assets to a
user’s browser. Essentially, it allows us to organize our JavaScript and CSS
however we’d like, but have all of it packaged up at runtime into only two
files: one for CSS, one for JavaScript.

By default the asset pipeline packages the files in app/assets/stylesheets and
app/assets/javascripts as application.css and application.js, respectively. Since Bower
adds CSS (and, eventually, JavaScript) outside of app/assets, we have to add a
bit more configuration for the asset pipeline to know about them.

Much like how we piece together a Ruby application by setting paths and
using require, the asset pipeline (which is powered by sprockets'’) is configured
with asset paths that contain directives, which describe all the files we want
to serve as assets.

Bower-rails will automatically add vendor/assets/bower_components to the asset
path for us, so there’s no need to do any additional configuration. To use
Bootstrap’s CSS files, we’ll use the require directive to tell it to bring them into
our application. Because the default application layout references application.css
we can add this directive in app/assets/stylesheets/application.css, which is where
Rails places that file by default.

login/install-bootstrap/shine/app/assets/stylesheets/application.css
/*

*= require tree .

*= require self

*= require 'bootstrap-sass-official'

*/
Generally, require will bring in a file named for the string following the directive,
which would be bootstrap-sass-official.css in this case. If you look in vendor/assets/bow-
er_components, you won't see that file, so how does this work?

Distributing assets for Bower requires creating a manifest file named bower.json
that describes the package. Bootstrap is packaged this way and if you look
at vendor/assets/bower_components/bootstrap-sass-official/bower.json, you can see its
manifest. Sprockets actually knows to look for that file.

Sprockets sees that we've required bootstrap-sass-official, sees that there’'s a
directory named that inside one of its asset paths (namely vendor/assets/bow-
er_components), and sees that that directory contains a bowerjson. It then reads
that file to figure out the actual files to serve up as assets.

17. https://github.com/sstephenson/sprockets

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/login/install-bootstrap/shine/app/assets/stylesheets/application.css
https://github.com/sstephenson/sprockets
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 1. Create a Great-Looking Login with Bootstrap and Devise ® 16

Let’s see it in action. When you navigate to the homepage, you'll see that the
font has changed from your browser’s default (likely Times New Roman) to
Helvetica, which is what Bootstrap uses by default.

Welcome! You have signed up successfully.

Welcome to Shine, user5262@example.com
We're using Rails 4.2.5

Future home of Shine's Dashboard

If you view the source being served, you'll see that our application has picked
up the assets in vendor/assets/bower_components/bootstrap-sass-official.

<link
rel="stylesheet"
media="all"

href="/assets/application-78386373b678ffd4f96d8483bd55b01c.css?body=1" />

<link rel="stylesheet"
media="all"
href="/assets/bootstrap-sass-official/assets/stylesheets)

/ _bootstrap-242cc2b1c4514d91448d4c8fdeb4662b.css?body=1" />

This has been reformatted to fit the page here, but you can see that Rails has
figured out from bowerjson that the CSS files are in vendor/assets/bower-compo-
nents/bootstrap-sass-official/assets/stylesheets.

With Bootstrap now installed, we can make use of the classes and components
it provides to make our login experience look great.

Styling the Login and Registration Forms

Bootstrap doesn’t do much to naked elements in our markup. It sets the
default font and makes a few color changes, but most of what Bootstrap does
requires us to add classes to certain elements in a particular way. This means
we’ll need access to the markup before we get started.

You might recall that we didn’t write any markup for our login screens—they
were all provided by Devise. Devise is packaged as a Rails Engine,'® so the
gem itself contains the views. But it also contains a generator called devise:views
that will extract those views into our application, allowing us to modify them.
$ bundle exec rails generate devise:views

invoke Devise::Generators::SharedViewsGenerator
create app/views/devise/shared

18. http://guides.rubyonrails.org/engines.html

www.it-ebooks.info


http://guides.rubyonrails.org/engines.html
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Styling the Login and Registration Forms ¢ 17

create app/views/devise/shared/ links.html.erb
invoke form for

create app/views/devise/confirmations

create app/views/devise/confirmations/new.html.erb
create app/views/devise/passwords

create app/views/devise/passwords/edit.html.erb

invoke erb

create app/views/devise/mailer

create app/views/devise/mailer/confirmation_instructions.html.erb
create app/views/devise/mailer/reset password instructions.html.erb
create app/views/devise/mailer/unlock instructions.html.erb

Now that we can edit these files, we can use Bootstrap’s CSS classes to make
them look how we’d like.

Since we’d like to style both the login screen and the registration screen, we
need a way to log ourselves out so we can see them. Devise set up all the
necessary routes for us, so we just need to create a link to the right path in
app/views/dashboard/index.html.erb.

login/use-bootstrap/shine/app/views/dashboard/index.html.erb
<section>
<p>
Future home of Shine's Dashboard
</p>
<%= link to "Log Out", destroy user session path, method: :delete %>
</section>

With that link in place, we can log out to see the screens we're going to style.
We're just going to be using the styles Bootstrap provides—we aren’t writing
any CSS ourselves. You'll be amazed at how much better our screens are with
just these simple changes.

First, we need to make sure all of our markup is in one of Bootstrap’s “con-
tainers,” which will “unlock” many of the features we need. We can apply this
to the body element in our application layout.

login/use-bootstrap/shine/app/views/layouts/application.html.erb
<body class="container">

<p class="notice"><%= notice %></p>

<p class="alert"><%= alert %></p>
<%= yield %>

</body>

Reloading our app, we can see that this class added some sensible margins
and padding.

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/login/use-bootstrap/shine/app/views/dashboard/index.html.erb
http://media.pragprog.com/titles/dcbang/code/login/use-bootstrap/shine/app/views/layouts/application.html.erb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 1. Create a Great-Looking Login with Bootstrap and Devise ® 18

Welcome! You have signed up successfully.

Welcome to Shine, user5881@example.com
We're using Rails 4.2.5

Future home of Shine's Dashboard

Log Out

Let’s start with the login screen.

Styling the Login Screen

Since Devise uses Rails’s RESTful routing scheme, the “resource” around
logging in is called a “user session.” Therefore, the view for the login screen
is in app/views/devise/sessions/new.html.erb.

For styling forms, Bootstrap’s documentation'® has several different options.
We'll use the first, most basic, one, which is perfect for our needs.

We'll wrap each label and input element in a div with the class form-group and
we'll add the class form-control to each control. The check box requires slightly
different handling—we put it inside its own label, which is inside an element
with the class checkbox—and the submit tag will need some classes to make it
look like a button.

Here’s what our revised template looks like:

login/use-bootstrap/shine/app/views/devise/sessions/new.html.erb
<header>

<hl>Log in</h1l>

</header>

<%= form for(resource, as: resource name,
url: session_path(resource name)) do |f| %>
<div class="form-group">
<%= f.label :email %>
<%= f.email field :email, autofocus: true, class: "form-control" %>
</div>

<div class="form-group">
<%= f.label :password %>

<%= f.password field :password, autocomplete: "off", class: "form-control" %>

</div>
<% if devise mapping.rememberable? -%>

<div class="checkbox">
<label>

19. http://getbootstrap.com/css/#forms

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/login/use-bootstrap/shine/app/views/devise/sessions/new.html.erb
http://getbootstrap.com/css/#forms
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Styling the Login and Registration Forms ¢ 19

<%= f.check_box :remember_me %> Remember Me
</label>
</div>
<% end -%>

<%= f.submit "Log in", class: "btn btn-primary btn-1g" %>
<% end %>
<%= render "devise/shared/links" %>

If you reload your browser, the form now looks a lot better than before.

You need to sign in or sign up before continuing.

Log in

Email
Password
[ Remember Me

Sign up
Forgot your password?

The spacing and “vertical rhythm” of the elements is more pleasing. The form
controls feel more spacious and inviting. The “Log in” button looks more
clickable. You’ll even notice a subtle animation and highlight when switching
the active form field. And all we did was add a few classes to our markup!

Before we move on to the registration screen, there’s one more thing to fix
here. If you submit the form without providing an email or password, you’ll
see the login form again and, up at the top, you'll see an error message:
“Invalid email or password.” It’s hard to see.

This message is placed into the Rails flash® by Devise, and we should be
styling it in a way that allows users to more easily see it. This will help users
better understand when they've messed something up.

Styling the Flash

In addition to classes designed to work with existing HTML entities like forms,
Bootstrap provides “components,” which are a set of classes that, when applied
to an element (or set of elements), create a particular effect. For the flash,
Bootstrap provides a component called an alert.”’

20. http://guides.rubyonrails.org/action_controller overview.html#the-flash
21. http://getbootstrap.com/components/#alerts

www.it-ebooks.info


http://guides.rubyonrails.org/action_controller_overview.html#the-flash
http://getbootstrap.com/components/#alerts
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

YYYYYYYYVYY

Chapter 1. Create a Great-Looking Login with Bootstrap and Devise ® 20

In our application’s default layout file, app/views/layouts/application.html.erb, there
are dummy placeholders for the flash messages.

<p class="notice"><%= notice %></p>
<p class="alert"><%= alert %></p>

Since there’s no styling for the notice or alert class, this is why our flash mes-
sages look so bad. Let’s re-create them using Bootstrap’s alert component,
which just requires using the class alert and then either alert-danger or alert-info,
for the alert and notice flash messages, respectively.

login/style-flash/shine/app/views/layouts/application.html.erb
<body class="container">
<% if notice.present? %>
<aside class="alert alert-info">
<%= notice %>
</aside>
<% end %>
<% if alert.present? %>
<aside class="alert alert-danger">
<%= alert %>
</aside>
<% end %>

<%= yield %>
</body>

Our markup got a bit more complex. We're using aside instead of div since it’s
more semantically correct (Bootstrap doesn’t generally care which type of
element styles are applied to). We've also had to wrap each alert component
in code to check whether that message was actually set. This is because even
without content, the Bootstrap alert component will still show up visually
and look strange.

With that done, we can navigate to a page requiring login, provide incorrect
login details, and see that the flash messages are styled appropriately. Users
can now easily see their mistakes and understand their successes, as shown
in the screenshots on page 21.

The only thing left to do is to style the registration page.

Styling the Registration Page

Devise refers to the resource for a user signing up as a registration, so the
registration form is located in app/views/devise/registrations/new.html.erb. We’'ll apply
the same classes to this page that we did to the previous.

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/login/style-flash/shine/app/views/layouts/application.html.erb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Styling the Login and Registration Forms ® 21

Invalid email or password.

Log in

Email
Password

I~ Remember Me

Log in

Sign up
Forgot your password?

Welcome! You have signed up successfully.

Welcome to Shine, user2346@example.com
We're using Rails 4.2.5

Future home of Shine's Dashboard

Log Out

login/style-registration/shine/app/views/devise/registrations/new.html.erb
<h2>Sign up</h2>
<%= form_for(resource, as: resource name,
url: registration path(resource name)) do |f| %>
<%= devise error messages! %>

<div class="form-group">

<%= f.label :email %><br />

<%= f.email field :email, autofocus: true, class: "form-control" %>
</div>

<div class="form-group">
<%= f.label :password %>
<% if @validatable %>
<em>(<%= @minimum password length %> characters minimum)</em>
<% end %><br />
<%= f.password field :password, autocomplete: "off", class: "form-control" %>
</div>

<div class="form-group">
<%= f.label :password confirmation %><br />
<%= f.password field :password confirmation, autocomplete: "off",
class: "form-control" %>
</div>

%>

<%= f.submit "Sign up", class: "btn btn-primary btn-lg
<% end %>

<%= render "devise/shared/links" %>

www.it-ebooks.info report erratum

« discuss


http://media.pragprog.com/titles/dcbang/code/login/style-registration/shine/app/views/devise/registrations/new.html.erb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 1. Create a Great-Looking Login with Bootstrap and Devise ® 22

Reload the page and navigate to the Sign Up screen. We can see it's now styled
similarly to the login page.

Sign up

Email
Password

Password confirmation

Log in
Devise also provides screens for resetting your password and for editing your
login details. We'll leave that as an exercise for you to style those pages, but
it will be just as simple as what we've seen already.

We now have a secure login system that looks great, and we've hardly written
any code at all. We still have a few login requirements left to implement that
aren’t provided by Devise by default. In the next section, we’ll see how to
configure Devise to meet these requirements.

Validating Registration

If we look at the User model that Devise created for us, we can see that a
Devise-provided method named devise is being used. This is how you can
control the behaviors Devise uses for registration and authentication on a
per-model basis.

login/add-devise-validations/shine/app/models/user.rb
class User < ActiveRecord: :Base
devise :database authenticatable,
:registerable,
:recoverable,
:rememberable,
:trackable,
:validatable
end

The :validatable module is what we’re interested in. By using this in our model,
Devise will set up various validations for the model, namely that the password
is at least eight characters and that the email address looks like an email
address. These defaults are set in the initializer Devise created when we ran
rails generate devise:install.

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/login/add-devise-validations/shine/app/models/user.rb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Next: Using Postgres to Make Our Login More Secure ® 23

The initializer, located in config/initializers/devise.rb, has copious documentation
about all of Devise’s configuration options. If we search for the string “validat-
able” we can find the options we want to change, which are password_length and
email_regexp. We'll change the minimum password length to 10 and require
that emails end in our company’s domain (which will be example.com).
login/add-devise-validations/shine/config/initializers/devise.rb

# ==> Configuration for :validatable

config.password length = 10..128
config.email regexp = /\A["@]+@example\.com\z/

Since we changed an initializer, we’ll need to restart our server. Once we do
that, if we try to register with a short password or an invalid email, we’ll get
an error message.

Sign up

2 errors prohibited this user from being saved:
« Email is invalid
« Password is too short (minimum is 10 characters)

Email

ser7889@rival-example.co

Password

Password confirmation

Log in
This covers the user experience and, because this is implemented using Active
Record validations, also covers most typical code paths that might change
the user’s email address. Most, but not all.

Next: Using Postgres to Make Our Login More Secure

Devise cannot absolutely prevent users from getting into our database that
do not meet our security criteria. For example, Active Record provides the
method update_attribute, which skips validations and could be used to insert a
user with any email address into the USERS table. What we need is for the data
layer itself to enforce our requirements.

Postgres’s check constraints can do this.

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/login/add-devise-validations/shine/config/initializers/devise.rb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

SECURING THE LOGIN

Check
Postgres @

CHAPTER 2

Secure the Login Database
with Postgres Constraints

Our registration and login system looks great, thanks to Bootstrap, and works
great, thanks to Devise. But it's not as secure as we’d like. As you recall, we
used validations to prevent users from registering with a non-company email
address. Because this is done in Rails, it’s easily circumventable using Rails’s
APIs or a direct database connection. Even something unintentional like bugs
in our code could introduce vulnerabilities.

What we’d like is to prevent non-company email addresses getting into the
database entirely. Most SQL databases do not have powerful features for
preventing bad data. With Postgres, however, we can, by using a feature called
check constraints. This chapter will be about setting up a check constraint
for Postgres as part of our Rails database migrations.

Before we see how Postgres can solve our vulnerability, let’s explore it briefly,
so we know exactly what problem we’re solving.

Exposing the Vulnerability Devise and Rails Leave Open

You can easily verify the security hole in our application by creating a new
user, signing out, changing that user’s email in the database, and logging
back in using the new email and previous password. This problem may seem
academic, but it’s more likely than you might think.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 2. Secure the Login Database with Postgres Constraints ® 26

Even in a small company, there could be processes that access the database
that aren’t part of our application, and so won’t benefit from the validations
in our User model. Further, Rails itself provides methods like update_attribute
that circumvent the validations, meaning a software bug could exist that used
one of these methods and introduce a vulnerability.

How could this issue become a real problem? Consider a new employee named
Sally. On Sally’s first day, her company email wasn’t set up properly, but she
needed access to Shine. Sally was recruited by one of the engineers, Bob. Bob
tries to help his friend Sally on her first day of work, and so creates a user
for her using her personal email address, so she can start using Shine.

Months later, Sally leaves the company and Aaron in HR goes to deactivate
her access to company systems. Aaron assumes that by deactivating Sally’s
email account, she won’t have access to any more internal systems. Aaron
doesn’t know that Sally is using her personal email account to do that, so we
are now in a situation where the company thinks Sally’s access has been cut
off, but it actually hasn’t been.

Although this is all hypothetical, it now feels more possible than it might have
seemed at first. When faced with security issues like this, you must weigh
the cost of the security breach against the cost of preventing it. This means
we need to figure out how much effort is required to prevent this vector of
attack.

If preventing it required even a few days, it might not be worth it. Since we're
using Postgres, it’'s a one-liner using check constraints.

Prevent Bad Data Using Check Constraints

If you've done any database work at all, you're no doubt familiar with a “not
null” constraint that prevents inserting null into a column of the database.

CREATE TABLE people (

id INT NOT NULL,
name VARCHAR(255) NOT NULL,

birthdate DATE NULL
)i

In this table, id and name may not be NULL, but birthdate may be. Postgres takes
the “null constraint” concept much further by allowing arbitrary constraints
on fields. Postgres also has support for regular expressions. This means we
can create a constraint on our email field that requires its value to match the
same regular expression we used in our Rails code. This would prevent non-
company email addresses from being inserted into the table entirely.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Prevent Bad Data Using Check Constraints ® 27

First, we’ll create a new migration where we can add this constraint.

$ bundle exec rails g migration add-email-constraint-to-users
invoke active record
create db/migrate/20150303133619 add email constraint to users.rb

The Domain-Specific Language (DSL) for writing Rails migrations doesn’t
provide any means of creating this constraint, so we have to do it in straight
SQ@QL. Although Postgres Data Definition Language (DDL) looks different from
what we normally use in our migrations, it’s still relatively straightforward
and well documented online.'

The basic structure of our constraint is that we want to “alter” the USERS to
“add” a constraint that will “check” the email column for invalid values. Here’s
what our migration will look like (see the following sidebar to learn why we're
using the older up and down methods).

login/add-postgres-constraint/shine/db/migrate/20150303133619_add_email_constraint_to_users.rb
class AddEmailConstraintToUsers < ActiveRecord::Migration
def up
execute %{
ALTER TABLE
users
ADD CONSTRAINT
email_must_be_company email
CHECK ( email ~* '~[~@]+@example\\.com' )
}
end
def down
execute %{
ALTER TABLE
users
DROP CONSTRAINT
email must be company email
}
end
end

The ~* operator is how Postgres does regular expression matching. Therefore
this code means that the email column’s value must match the regular
expression we've given or the insert or update command will fail. The regular
expression is more or less identical to the one we used when configuring
Devise.

Let’s see it in action. First we’ll run our migrations.

1.  http://www.postgresql.org/docs/9.5/static/ddI-constraints.html

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/login/add-postgres-constraint/shine/db/migrate/20150303133619_add_email_constraint_to_users.rb
http://www.postgresql.org/docs/9.5/static/ddl-constraints.html
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 2. Secure the Login Database with Postgres Constraints ® 28

Rails 3.1 introduced the concept of reversible migrations via the method change in the
migrations DSL. The Rails authors realized that most implementations of down were
to reverse what was done inside up and Rails could figure out how to reverse the code
in the up method automatically.

To make this work, programmers would need to constrain the contents of the change
method to only those migration methods that Rails knows how to reverse, which are
itemized in ActiveRecord::Migration::CommandRecorder.?

In most of the migrations we’ll write in this book, we aren’t using those methods, and
are typically just using execute, because we need to run Postgres-specific commands.
We could work within the Reversible Migrations framework by using reversible, but the
resulting code is somewhat clunky:

class AddEmailConstraintToUsers < ActiveRecord::Migration
def change
reversible do |direction|
direction.up {
execute %{

}

}

direction.down {
execute %{

}
}
end
end
end

Since up and down aren’t deprecated, it ends up being easier to stick with the older
syntax for the types of migrations we’ll be writing.

a. http://api.rubyonrails.org/classes/Active Record/Migration/CommandRecorder.html

$ bundle exec rake db:migrate
== 20150303133619 AddEmailConstraintToUsers: migrating
-- execute("
ALTER TABLE
users
ADD CONSTRAINT
email must be company email
CHECK ( email ~* '[A-Za-z0-9. %-]+@example\.com' )
")
-> 0.0012s
== 20150303133619 AddEmailConstraintToUsers: migrated (0.0013s) ========

www.it-ebooks.info

report erratum -« discuss


http://api.rubyonrails.org/classes/Active Record/Migration/CommandRecorder.html
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Prevent Bad Data Using Check Constraints ® 29

If you ran the migrations and saw something like the following error, you'll
need to do a bit more work to apply this change.

$ bundle exec rails db:migrate
ActiveRecord: :StatementInvalid: PG::CheckViolation: ERROR:
check constraint "email must be company email" is violated by some row:
ALTER TABLE
users
ADD CONSTRAINT
email must be company email
CHECK ( email ~* '[A-Za-z0-9. %-]+@example\.com' )

’

This means that at least one row in your development database has a value
for the email column that violates our new constraint. Postgres is refusing to
apply the constraint because it doesn’t know what to do.

In your development environment, you can easily change or remove those
rows that violate the constraint. If you were doing this to an active, production
data set, you wouldn’'t have that luxury. You'd need to get more creative.
There are several ways of handling this:

¢ Create a migration that deletes all users using a bad email address. This
is drastic, but would work.

e Create a migration to assign bogus company email addresses to the
existing bad accounts. This would prevent those users from logging in
but maintain their history. You could correct the accounts manually later
on, but the constraint would be satisfied.

* You could also do something more complex where you demarcate active
users with a new field, and prevent inactive users from logging in. Your
check constraint could then only check for active users, for example, active
= true AND email ~* '[A-Za-z0-9._%-]@example\.com'.

In any case, if you're adding constraints to a running production system,
you’ll have to be more careful.

The Constraint in Action

With the migration applied, let’'s see how it works. First, we’ll insert a user
whose email is on our company’s domain.

$ bundle exec rails dbconsole
shine_development> INSERT INTO
users (
email,
encrypted password,

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 2. Secure the Login Database with Postgres Constraints ® 30

created at,
updated at

)

VALUES (
' foo@example.com',
'$abcd’,
now(),
now ()

)

INSERT 0 1

This works as expected. Now let’s try to insert a user using a different domain.

shine_development> INSERT INTO
users (
email,
encrypted password,
created at,
updated_at
)
VALUES (
'foo@bar.com',
'$abcd’,
now(),
now ()
);
ERROR: new row for relation "users" violates
check constraint "email must be company email"
DETAIL: Failing row contains (4,
foo@bar.com,
$abcd,
null,
null,
null,
0,
null,
null,
null,
null,
'2015-03-03:12:12:14.000",
'2015-03-03:12:12:14.000'0) .

We can see that Postgres will refuse to allow invalid data into the table (and
that we get a pretty useful error message as well). This means that a rogue
application, bug in our code, or even a developer at a production console will
not be able to allow access to any user who doesn’t have a company email
address.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Why Use Rails Validations? ¢ 31

Given how little effort this was, and the peace of mind it gives us, it's a no-
brainer to add this level of security. Postgres makes it simple, meaning the
cost of securing our website is low.

There’s one last thing we’ll need to change, because we're using a feature
that’s Postgres-specific. By default, Rails stores a snapshot of the database
schema in db/schema.rb, which is a Ruby source file using the DSL for Rails
migrations. Rails creates this by examining the database schema and creating
what is essentially a single migration, in Ruby, to create the schema from
scratch. This is what tests use to create a fresh database.

The problem is that Rails doesn’t know about check constraints, so the one
we just added won’t be present in db/schema.rb. This is easily remedied by telling
Rails to use SQL, rather than Ruby, for storing the schema. We can do this
by adding one line to config/application.rb.

login/add-postgres-constraint/shine/config/application.rb
config.active record.schema format = :sql

We'll then need to remove the old db/schema.rb file, create db/structure.sql by run-
ning migrations, and finally reset our test database by dropping it and re-
creating it. We can do all this with rake.

$ rm db/schema.rb

$ bundle exec rake db:migrate

$ RAILS_ENV=test bundle exec rake db:drop
$ RAILS_ENV=test bundle exec rake db:create

You May Get Churn in db/structures.sql
Because dby/structure.sql is a Postgres-specific dump of the schema,
certain aspects of it are dependent on the local environment. For
example, if you use add_foreign_key, the names Postgres auto-gener-
ates might be different on different machines.

/ It’s not a big problem for your application’s behavior, since
_I db/structure.sql is not used in production, but it can make for
unnecessary churn in your version control history. You can combat
this by tightly controlling the versions of Postgres each developer
is using, providing explicit names for constraints and indexes, and
not committing spurious changes to the file.

Why Use Rails Validations?

Given the power that check constraints give us, why would we bother with
Rails validations at all? The answer is part of why taking a full-stack view of
development is so important—the user experience.

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/login/add-postgres-constraint/shine/config/application.rb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 2. Secure the Login Database with Postgres Constraints ® 32

Rails validations are an elegant and powerful way to give users a great expe-
rience when providing data via web forms. The validations API is incredibly
expressive, configurable, and extensible. If you remove the validations from
our code and attempt to register with an invalid email, you'll get an excep-
tion—not a good user experience.

This does result in some duplication, which is a chance for inconsistency to
creep into our app, but we can fight this by writing tests for each part of the
stack (which we’ll do in Chapter 6, Test This Fancy New Code, on page 83).

Next: Using Postgres Indexes to Speed Up a Fuzzy Search

Our registration and login feature is now secure and pleasant to use. By using
the best of both Postgres and Bootstrap, we've gotten a good taste of using
the full application stack to deliver a great feature. The power of these tools
allowed us to tackle an important part of any application—authentication—eas-
ily and quickly, without sacrificing security or user experience.

In the next chapter, we’ll start on a new feature: customer search. Search is
a great way to learn about all aspects of full-stack development. It's got
everything: user input, complex output, and complex database queries. We'll
start this feature by implementing a naive fuzzy search that we can then
examine and optimize using special indexes that Postgres provides.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

CUSTOMER SEARCH

Search
Logic
ndexing Query
ived Values Plans

Bootstrap

|
Der

Postgres

CHAPTER 3

Use Fast Queries with
Advanced Postgres Indexes

Our users can now securely log in to Shine using a well-designed login form,
which was a great way to get a taste of what Postgres and Bootstrap can offer.
In the next few chapters, we’ll implement a customer search feature, digging
deeper into Postgres and Bootstrap. We'll also start learning AngulardS in
Chapter 5, Build a Dynamic UI with AngularJS, on page 61.

In this chapter, we’ll implement the basics of our search, which will perform
poorly. This will allow you to learn about the advanced indexing features of
Postgres that will speed this search up without changing any code or setting
up new infrastructure. You'll also learn how to understand query performance
in Postgres, so you can be sure that the indexes you create have the perfor-
mance improvements you want.

Because this is the first bit of code we’re writing for this feature, we’ll also
need some Ul and middleware logic. Although this chapter is mostly about
Postgres, we’ll be working in all parts of the stack.

Specifically, we’ll write the basics of our search logic in Rails, and you’'ll learn
how to style forms in Bootstrap using input groups, as well as how Bootstrap
styles tables. In Chapter 4, Create Clean Search Results, on page 51, we'll
spend more time on the search results themselves.

First, we’ll implement a naive fuzzy search that allows our users to locate
customers based on first name, last name, or email. It'll look something like
the following:

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 3. Use Fast Queries with Advanced Postgres Indexes ® 34

[oYa)e) Shine: Customer 1234 o)
(<[> )(D) {4+ [® http://shine.example.com/customers/1234 D ¢
Bob ‘ Search...

Name Username Email Joined
Bob Jones bobert123  bjons@somewhere.net 12/2/2014
Bobby Smith bobs bobsandbobs@initech.edu 4/23/2013
Darrel Bobbins  dbobz dhbobbins@sector7g.com 3/7/2015

After that, we’ll look at the performance of Active Record’s SQL query using
Postgres’s query plan. We'll then use a special type of index on our tables to
speed up our search, which we’ll then verify by reexamining the new query
plan. This all might feel really low-level, but you’ll be surprised just how easy
it is to get great performance out of Postgres with just a few lines of code.

Let’s get to it by implementing a naive version of the search.

Implementing a Basic Fuzzy Search with Rails

As we mentioned in Introduction, on page xi, Shine will be sharing a database
with an existing customer-facing application. The customer-search feature
we're building will search one of the tables in that database.

In the real-world, our database would already exist and we’d hook up to it
directly. Since that’s not the case, we’ll need to simulate its existence by cre-
ating the table in Shine’s database. And, because we’ll use Postgres query
performance optimization, our table is going to need a lot of data in it.

Setting Up the New Table and Data

If we were using an existing table, we wouldn’'t need a migration—we could
just create the Customer model and be done. That’s not the case (since this is
an example in a book), so we’ll create the table ourselves. It will ultimately
look like the schema on page 35.

A customer has first and last names, an email address, a username, and
creation and last update dates. None of the fields allow null and the data in
the username and email fields must both be unique (that’s what the
"index_customers_on_email" UNIQUE, btree (email) bit is telling us). This is more or less
what we’d expect from a table that stores information about our customers.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

YYVYY

vy

Implementing a Basic Fuzzy Search with Rails ® 35

The Final Customer Table Schema
Table "public.customers"

Column | Type | Modifiers
____________ R
id | integer | not null default

| nextval('customers id seq')

first name | character varying | not null
last_name | character varying | not null
email | character varying | not null
username | character varying | not null
created at | timestamp without time zone | not null
updated at | timestamp without time zone | not null
Indexes:

"customers pkey" PRIMARY KEY, btree (id)
"index customers on email" UNIQUE, btree (email)
"index_customers_on_username" UNIQUE, btree (username)

Since this table doesn’t exist yet in our example, we can create it using Rails’s
model generator. This will create both the database migration that will create
this table as well as the Customer class that allows us to access it in our code.

$ bundle exec rails g model customer first_name:string \
last_name:string \
email:string \
username:string
invoke active record
create db/migrate/20150304140122 create customers.rb
create app/models/customer.rb

The migration file Rails created will define our table, column names, and their
types, but it won’t include the not null and unique constraints. We can add those
easily enough ourselves by opening up db/migrate/20150304140122_create_customers.rb.

search/setup-customer-data/shine/db/migrate/20150304140122_create_customers.rb
class CreateCustomers < ActiveRecord::Migration
def change
create _table :customers do |t|
t.string :first name, null: false

t.string :last name, null: false
t.string :email, null: false
t.string :username, null: false
t.timestamps null: false
end
add _index :customers, :email, unique: true
add_index :customers, :username, unique: true
end
end

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/search/setup-customer-data/shine/db/migrate/20150304140122_create_customers.rb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 3. Use Fast Queries with Advanced Postgres Indexes ® 36

With that created, we can go ahead and run the migrations.

$ bundle exec rake db:migrate
== 20150304140122 CreateCustomers: migrating
-- create _table(:customers)

-> 0.0193s

-- add_index(:customers, :email, {:unique=>true})
-> 0.0037s

-- add_index(:customers, :username, {:unique=>true})
-> 0.0029s

== 20150304140122 CreateCustomers: migrated (0.0262s)

Next, we’'ll need some customer data. Rather than provide you with a download
of a giant database dump to install (or include it in the code downloads for
this book), we’ll generate data algorithmically. We’ll aim to make 350,000
rows of “real-looking” data. To help us, we'll use a gem called faker,' which
is typically used to create test data. First, we’ll add that to our Gemfile.

search/setup-customer-data/shine/Gemfile
gem 'faker'

Then, we’ll install it.

$ bundle install
Installing faker 1.4.3

We can now use faker to create real-looking data, which will make it much
easier to use Shine in our development environment, since we’ll have real-
sounding names and email addresses. We'll create this data by writing a small
script in db/seeds.rb. Rails’s seed data® feature is intended to prepopulate a
fresh database with reference data, like a list of countries, but it'll work for
creating our sample data.

search/setup-customer-data/shine/db/seeds.rb
350 000.times do |1i|
Customer.create! (
first _name: Faker::Name.first_name,
last_name: Faker::Name.last_name,
username: "#{Faker::Internet.user name}#{i}",
email: Faker::Internet.user name + i.to s +
"@#{Faker::Internet.domain name}")
end

The reason we're appending the index to the username and email is to ensure
these values are unique. As we added unique constraints to those fields when
creating the table, faker would have to have over 350,000 variations, selected

1. https://github.com/stympy/faker
2.  http://guides.rubyonrails.org/active_record migrations.html#migrations-and-seed-data

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/search/setup-customer-data/shine/Gemfile
http://media.pragprog.com/titles/dcbang/code/search/setup-customer-data/shine/db/seeds.rb
https://github.com/stympy/faker
http://guides.rubyonrails.org/active_record_migrations.html#migrations-and-seed-data
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Implementing a Basic Fuzzy Search with Rails ¢ 37

with perfect random distribution. Rather than simply hope that’s the case,
we’ll ensure uniqueness with a number. With our seed file created, we’ll run
it (this will take a while—possibly 30 minutes—depending on the power of
your computer).

$ bundle exec rake db:seed

With our table filled with data, we can now implement the basics of our search
feature.

Building the Search Ul

When starting a new feature, it’'s usually best to start from the user interface,
especially if we didn’t have a designer design it for us ahead of time. Recall
that our requirements are to allow searching by first name, last name, and
email address. Rather than require users to specify which field they're
searching by, we’ll provide one search box and do an inclusive search of all
fields on the back end. We'll also display the results in a table, as that is
fairly typical for search results.

The search will be implemented as the index action on the customers resource.
First, we’ll add a route to config/routes.rb.

search/search-ui/shine/config/routes.rb
resources :customers, only: [ :index ]

That route will expect an index method on the CustomersController class, so let’s
create that next. We’ll implement it to just grab the first 10 customers in the
database, so we have some data we can use to style the view.

search/search-ui/shine/app/controllers/customers_controller.rb
class CustomersController < ApplicationController
def index
@customers = Customer.all.limit(10)
end
end

We can now start building the view in app/views/customers/index.html.erb. We’ll need
two main sections in our view: a search form and a results table. We’ll also
want a header letting users know what page they’re on.

search/search-ui/shine/app/views/customers/index.html.erb
<header>

<hl class="h2">Customer Search</hl>
</header>

Next, we’ll create the search form. Because there’s just going to be one field,
we don’t need an explicit label (though we’ll include markup for one that’s

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/search/search-ui/shine/config/routes.rb
http://media.pragprog.com/titles/dcbang/code/search/search-ui/shine/app/controllers/customers_controller.rb
http://media.pragprog.com/titles/dcbang/code/search/search-ui/shine/app/views/customers/index.html.erb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 3. Use Fast Queries with Advanced Postgres Indexes ® 38

only visible to screen readers). The design we want is a single row with both
the field and the submit button, filling the horizontal width of the container
(a large field will feel inviting and easy to use).

Bootstrap provides CSS for a component called an input group. An input group
allows you to attach elements for form fields. In our case, we’ll use it to attach
the submit button to the right side of the text field. This, along with the fact
that Bootstrap styles input tags to have a width of 100%, will give us what we
want.

search/search-ui/shine/app/views/customers/index.html.erb
<section class="search-form">
<%= form_for :customers, method: :get do |f| %>
<div class="input-group input-group-1lg">
<%= label tag :keywords, nil, class: "sr-only" %>
<%= text field tag :keywords, nil,
placeholder: "First Name, Last Name, or Email Address",
class: "form-control input-1g" %>
<span class="input-group-btn">
<%= submit_tag "Find Customers",
class: "btn btn-primary btn-1g" %>
</span>
</div>
<% end %>
</section>

The sronly class on our label is provided by Bootstrap and means “Screen
Reader Only.” You should use this on elements that are semantically “required”
(like form labels) but that, for aesthetic purposes, you don’t want to be visible.
This makes your Ul as inclusive as possible to users on all sorts of devices.

With our search form styled (we’ll see what it looks like in a moment), we’ll
create a simple table for the results. Applying the class table to any table
causes Bootstrap to style it appropriately for the table’s contents. Adding the
second class, table-striped, will create a “striped” effect where every other row
has a light gray background. This can help users visually navigate a table
with many rows.

search/search-ui/shine/app/views/customers/index.html.erb
<section class="search-results">
<header>
<hl class="h3">Results</hl>
</header>
<table class="table table-striped">
<thead>
<tr>
<th>First Name</th>
<th>Last Name</th>

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/search/search-ui/shine/app/views/customers/index.html.erb
http://media.pragprog.com/titles/dcbang/code/search/search-ui/shine/app/views/customers/index.html.erb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Implementing a Basic Fuzzy Search with Rails ® 39

<th>Email</th>
<th>Joined</th>
</tr>
</thead>
<tbody>
<% @customers.each do |customer| %>
<tr>
<td><%= customer.first_name %></td>
<td><%= customer.last name %></td>
<td><%= customer.email %></td>
<td><%= 1 customer.created at.to date %></td>
</tr>
<% end %>
</tbody>
</table>
</section>

Now that we've got the table styled, we can see the entire view. It looks pretty

good, and we still haven’t had to write any actual CSS.

Customer Search
First Name, Last Name, or Email Address

Results
First Name Last Name Email
Maritza Schaefer jaleel.prohaskaO@wiza.biz
Nicola Douglas brett1@crooksheidenreich.info
Noelia Considine gabriel.hickle2@graham.co
Jazmin Bailey jake_donnelly3@ferry.io
Armand Strosin linad@little.co
Phyllis Reynolds eula_hamill5@ratkeauer.biz
Deion Schumm katelynn6@hauck.io
Chyna Simonis flavie7@conroy.info
Rosetta Stoltenberg jefferey8@rogahn.org
Paul Cartwright harryS@weber.org

Find Customers

Joined

2016-01-

2016-01-

2016-01-

2016-01-

2016-01-

2016-01-

2016-01-

2016-01-

2016-01-

2016-01-

Now that we have our Ul, all we need to do to implement our search is replace
the implementation of index in CustomersController with the actual search.

Implementing the Search Logic

At a high level, our search should accept a string and do the right thing.
Because our users are interacting with customers via email, we want to search
by email, but because customers sometimes use multiple email addresses,
we also want to search by first name and last name. To more strictly state

our requirements:

www.it-ebooks.info

report erratum -

discuss


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 3. Use Fast Queries with Advanced Postgres Indexes ® 40

e If the search term contains a “@” character, search email by that term.

¢ Use the name part of the email to search first and last name (for example,
we’d search for “bob” if given the term “bob123@example.com”).

e If the search term does not contain an “@” character, don’'t search by
email, but do search by first and last name.

e The search should be case-insensitive.

e The first and last name search should match names that start with the
search term, so a search for “Bob” should match “Bobby.”

e The results should be ordered so that exact email matches are listed first,
and all other matches are sorted by last name.

This isn’t the most amazing search algorithm, but it’s sufficient for our pur-
poses here, which is to implement the feature, but also demonstrate the
performance problems present in an even moderately complex query.

There are two tricky things about the search we're running. The first is that
we want case-insensitive matches, and Active Record has no API to do that
directly. The second is that we want exact email matches first. Fortunately,
Postgres provides a means to do both of these things. We can use SQL like
lower(first_name) LIKE 'bob%' and we can use complex expressions in the order by
clause. Ultimately, we’ll want a query that looks like this:

SELECT
*

FROM
customers

WHERE
lower(first name) LIKE 'bob%' OR
lower(last name) LIKE 'bob%' OR

lower(email) = 'bob@example.com'
ORDER BY
email = 'bob@example.com' DESC,

last name ASC

The order by in Postgres can take a wide variety of expressions. According to
the documentation, it can “be any expression that would be valid in the query’s

select list.”®

In our case, we can order fields based on the results of matching
the email column value to bob@example.com. This will evaluate to true or false for

each row.

3.  http://www.postgresql.org/docs/9.5/static/queries-order.html

www.it-ebooks.info


http://www.postgresql.org/docs/9.5/static/queries-order.html
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Implementing a Basic Fuzzy Search with Rails ® 41

Because Postgres considers false less than true, an ascending sort would sort
rows that don’t match bob@example.com first, so we use desc to sort email
matches first.

To execute this query using Active Record, we’d need to write the following
code:

Customer.where("lower(first _name) LIKE :first_name OR " +
"lower(last name) LIKE :last name OR " +
"lower(email) = remail", {
first name: "bob%",
last name: "bob%",
email: "bob@example.com"
}).order("email = 'bob@example.com' desc, last name asc")

Note that we're appending % to our name search term and using like so that
we meet the “starts with” requirement. We have to do this because Active
Record has no direct API for doing this. To create this query in our code, let’s
create a class called CustomerSearchTerm that can parse params[:keywords] and
produce the arguments we need to where and order.

Our class will expose three attributes: where_clause, where_args, and order. These
values will be different depending on the type of search being done. If the
user’s search term included an @, we’ll want to search the email column, in
addition to last_ name and first_name. If there’s no @, we’ll just search first_name
and last_name.

Let’'s assume that two private methods exist called build_for_email_search and
build_for_name_search that will set the attributes appropriately, depending on the
type of search as dictated by the search term. We’ll see their implementation
in a minute, but here’s how we’ll use them in the constructor of Custom-
erSearchTerm:

search/naive-search/shine/app/models/customer_search_term.rb
class CustomerSearchTerm
attr_reader :where clause, :where args, :order
def initialize(search term)
search_term = search_term.downcase
@where clause = ""
@where_args = {}

if search term =~ /@/
build_for_email_search(search_term)
else
build for name search(search term)
end
end

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/search/naive-search/shine/app/models/customer_search_term.rb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 3. Use Fast Queries with Advanced Postgres Indexes ® 42

We're converting our term to lowercase first, so that we don’t have to do it
later, and we’re also initializing @where_clause and @where_args under the
assumption that they will be modified by our private methods.

Let’'s implement build for name search first. We’ll create a helper method
case_insensitive_search that will construct the SQL fragment we need and use that
to build up @where_clause inside build_for_name_search. We’ll also create a helper
method called starts_with that handles appending the % to our search term.
search/naive-search/shine/app/models/customer_search_term.rb

def build for name search(search term)

@where clause << case _insensitive search(:first name)
@where_args[:first name] = starts_with(search_term)

@where clause << " OR #{case insensitive search(:last name)}"

@where args[:last name] = starts with(search term)
@order = "last name asc"
end

def starts with(search term)
search _term + "%"
end

def case insensitive search(field name)
"lower(#{field name}) like :#{field name}"
end

Next, we’ll implement build_for_email_search, which is slightly more complex.
Given a search term of “bob123@example.com” we want to use that exact
term for the email part of our search. But because we want rows where
first_name or last_name starts with just “bob” we’ll create a helper method called
extract_name that uses regular expressions in gsub to remove everything after
the @ as well as any digits.

search/naive-search/shine/app/models/customer_search_term.rb

def extract name(email)
email.gsub(/@.*$/,'"').gsub(/[0-9]+/,"'")

end

There’s one last bit of complication, which is the ordering. To create the order
by clause we want, it may seem we’d have to do something like this:

@order = "email = '#{search term}' desc, last name asc"

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/search/naive-search/shine/app/models/customer_search_term.rb
http://media.pragprog.com/titles/dcbang/code/search/naive-search/shine/app/models/customer_search_term.rb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

YYVYY

Implementing a Basic Fuzzy Search with Rails ¢ 43

If building a SQL string like this concerns you, it should. Since search_term
contains data provided by the user, it could create an attack vector via SQL
injection.” To prevent this, we need to SQL-escape search_term before we send
it to Postgres for querying. Active Record provides a method quote, available
on ActiveRecord::Base’s connection object.

Armed with this knowledge, as well as our helper method extract_name_from_email,
we can now implement build_for_email_search.

search/naive-search/shine/app/models/customer_search_term.rb

def build for email search(search term)
@where clause << case _insensitive search(:first name)
@where_args[:first name] = starts_with(extract_name(search_term))

@where clause << " OR #{case insensitive search(:last name)}"
@where args[:last name] = starts with(extract name(search term))

@where clause << " OR #{case insensitive search(:email)}"
@where_args[:email] = search term

@order = "lower(email) = " +
ActiveRecord: :Base.connection.quote(search term) +
" desc, last name asc"
end

Note that we don’t need to use quote when creating our SQL fragment in
case_insensitive_search, because the strings involved there are from literals in our
code and not user input. Therefore, we know they are safe.

Now that CustomerSearchTerm is implemented, we can use it in CustomersController
to implement the search.

search/naive-search/shine/app/controllers/customers_controller.rb
class CustomersController < ApplicationController
def index
if params[:keywords].present?
@keywords = params]|:keywords]
customer search term = CustomerSearchTerm.new(@keywords)
@customers = Customer.where(
customer search term.where clause,
customer_search term.where args).
order(customer search term.order)
else
@customers = []
end
end
end

4. http://en.wikipedia.org/wiki/SQL injection

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/search/naive-search/shine/app/models/customer_search_term.rb
http://media.pragprog.com/titles/dcbang/code/search/naive-search/shine/app/controllers/customers_controller.rb
http://en.wikipedia.org/wiki/SQL_injection
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 3. Use Fast Queries with Advanced Postgres Indexes ® 44

This may have seemed complex, but it's important to note that this search is
quite simplified from what we might actually want. We might really need
something more complex; for example, a search term of “Bob Jones” would
result in a first name search for “bob” and a last name search for “jones.” The
point is that our simplistic search is still too complex for Active Record’s API
to handle. We had to create our own where clause and our own order by.

Now that our search is implemented, we can see the results by starting our
server (via rails server) and navigating to http://localhost:3000/customers. You'll see
that the email match is listed first, while the remaining ones are sorted by
last name.

Customer Search

bob123@somewhere.net Find Customers

Results

First Name Last Name Email Joined

Robert Jones bob123@somewhere.net 2015-12-02
Vivien Bob ashleigh_block0@muller.org 2015-12-02
Isobel Bob isaac.wyman1@morar.org 2015-12-02
Dariana Bob genesis2@west.net 2015-12-02
Isabel Bob makenna.tillman3@breitenberg.co 2015-12-02
Janelle Bobby darion_jacobsonS@herzogokon.info 2015-12-02
Bob O'Kon trevor1 @wiliamson.name 2015-12-02
Bob Padberg pansy_thiel4@connelly.org 2015-12-02
Bob Schulist katlynn2@huel.name 2015-12-02
Bob Skiles gennaro0@smithammorar.info 2015-12-02
Bob Ullrich caidy3@bechtelar.io 2015-12-02

Depending on the computer you're using, the search might seem fast enough.
Or it might seem a bit slow. If customers had more rows in it, or our database
were under the real stress of production, the search might be unacceptably
slow. It's popular to solve this problem by caching results in a NoSQL®
database like Elasticsearch.

While there may be a case made for caching, Postgres gives more options
than your average SQL database to speed up searches, which means we can
get a lot more out of a straightforward implementation before complicating
our architecture with additional data stores. In the next section, you’'ll learn
about the powerful indexing features Postgres provides. You'll see that they're
much more powerful than the indexes you get from most SQL databases.

5.  http://en.wikipedia.org/wiki/NoSQL

www.it-ebooks.info


http://en.wikipedia.org/wiki/NoSQL
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Understanding Query Performance with the Query Plan ¢ 45

Understanding Query Performance with the Query Plan

If you aren’t familiar with database indexes, Wikipedia has a pretty good
definition,® but in essence, an index is a data structure created inside the
database that speeds up query operations. Usually, databases use advanced
data structures like B-trees to find the data you're looking for without exam-
ining every single row in a table.

If you are familiar with indexes, you might only be familiar with the type of
indexes that can be created by Active Record’s Migrations API. This API pro-
vides a “lowest common denominator” approach. The best we can do is create
an index on last_name, first_name, and email. Doing so won’t actually help us
because of the search we are doing. We need to match values that start with
the search term and ignore case.

Postgres allows much more sophisticated indexes to be created. To see how
this helps, let’'s ask Postgres to tell us how our existing query will perform.
This can be done by preceding a SQL statement with EXPLAIN ANALYZE. The
output is somewhat opaque, but it’s useful. We’ll walk through it step by step.

$ bundle exec rails dbconsole
shine_development> EXPLAIN ANALYZE

SELECT *
FROM customers
WHERE

lower(first name) like 'bob%' OR

lower(last name) 1like 'bob%' OR

lower(email) = 'bob@example.com'
ORDER BY

email = 'bob@example.com' DESC,

last _name ASC ;

QUERY PLAN
Sort (cost=15479.51..15494.00 rows=5797 width=79)
(actual time=957.825..957.843 rows=234 loops=1)
Sort Key: (((email)::text = 'bob@example.com'::text)), last name
Sort Method: quicksort Memory: 57kB
-> Seq Scan on customers (cost=0.00..15117.17 rows=5797 width=79) #
(actual time=33.091..955.392 rows=234 loops=1)

Filter: ((lower((first name)::text) ~~ 'bob%'::text) OR
(Lower((last name)::text) ~~ 'bob%'::text) OR
(Llower((email)::text) = 'bob@example.com'::text))

Rows Removed by Filter: 388153
Total runtime: 957.945 ms

6. http://en.wikipedia.org/wiki/Database_index

www.it-ebooks.info


http://en.wikipedia.org/wiki/Database_index
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 3. Use Fast Queries with Advanced Postgres Indexes ® 46

This gobbledegook is the query plan and is quite informative if you know how
to interpret it. There are four parts to it that will help us understand how
Postgres will execute our query.

© Here, Postgres is telling us that it’s sorting the results, which makes sense
since we're using an order by clause in our query. The details (for example,
cost=15479.51) are useful for fine-tuning queries, but we’re not concerned
with that right now. Just take from this that sorting is part of the query.

©® This is the most important bit of information in this query plan. “Seq Scan
on customers” means that Postgres has to examine every single row in
the table to satisfy the query. This means that the bigger the table is, the
more work Postgres has to do to search it. Queries that you run frequently
should not require examining every row in the table for this reason.

© This shows us how Postgres has interpreted our where clause. It's more
or less what was in our query, but Postgres has annotated it with the
internal data types it’s using to interpret the values.

O Finally, Postgres estimates the runtime of the query. In this case, it's
almost a second. A second isn’t much time to you or me, but to a database,
it's an eternity.

Given all of this, it’s clear that our query will perform poorly. It’s likely that
it performs poorly on our development machine, and will certainly not scale
in a real-world scenario.

In most databases, because of the case-insensitive search and the use of like,
there wouldn’t be much we could do. Postgres, however, can create an index
that accounts for this way of searching.

Indexing Derived and Partial Values

Postgres allows you to create an index on transformed values of a column.
This means we can create an index on the lowercased value for each of our
three fields. Further, we can configure the index in a way that allows Postgres
to optimize for the “starts with” search we are doing. Here’s the basic syntax:
CREATE INDEX

customers_lower_last_name

ON
customers (lower(last name) varchar pattern ops);

If you're familiar with creating indexes in general, the varchar_pattern_ops might
look odd. This is a feature of Postgres called operator classes. Specifying an
operator class isn’t required; however, the default operator class used by

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Indexing Derived and Partial Values ¢ 47

Postgres will only optimize the index for an exact match. Because we're using
a like in our search, we need to use the nonstandard operator class varchar_pat-
tern_ops. You can read more about operator classes in Postgres’s documenta-
tion.”

Now that we've seen the SQL needed to create these indexes, we need to adapt
them to a Rails migration. Rails doesn’t provide a way to do this with Active
Record’s migrations API, but it does provide a method, execute, which will
execute arbitrary SQL. Let’s create the migration file using Rails’s generator.

$ bundle exec rails g migration add-lower-indexes-to-customers
invoke active record
create db/migrate/20150308225243 add lower indexes to customers.rb

Next, we'll edit the migration to use execute to create our methods.

search/add-indexes/shine/db/migrate/20150308225243_add_lower_indexes_to_customers.rb
class AddLowerIndexesToCustomers < ActiveRecord::Migration
def up
execute %{
CREATE INDEX
customers lower last name
ON
customers (lower(last name) varchar pattern ops)
}
execute %{
CREATE INDEX
customers lower first name
ON
customers (lower(first name) varchar pattern ops)
}
execute %{
CREATE INDEX
customers_lower_email
ON
customers (lower(email))
}
end
def down
remove index :customers, name: 'customers lower last name'
remove index :customers, name: 'customers lower first name'
remove_index :customers, name: 'customers lower_email'
end
end

Note that we aren’t using the operator class on the email index, since we’ll
always be doing an exact match. Sticking with the default operator class is

7. http://www.postgresql.org/docs/9.5/static/indexes-opclass.html

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/search/add-indexes/shine/db/migrate/20150308225243_add_lower_indexes_to_customers.rb
http://www.postgresql.org/docs/9.5/static/indexes-opclass.html
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 3. Use Fast Queries with Advanced Postgres Indexes ® 48

recommended if we don’t have a reason not to. Next, we’ll run this migration
(note that it may take over 30 seconds due to the volume of data being
indexed).

$ bundle exec rake db:migrate
== 20150308225243 AddLowerIndexesToCustomers: migrating
-- execute("CREATE INDEX
customers_lower last name
ON
customers (lower(last name) varchar pattern ops)

")
-> 9,8050s
-- execute("CREATE INDEX
customers lower first name
ON
customers (lower(first name) varchar pattern ops)
")
-> 10.1730s
-- execute("CREATE INDEX
customers lower email
ON
customers (lower(email))
")
-> 13.5807s
== 20150308225243 AddLowerIndexesToCustomers: migrated (33.5590s) =======

Before we try our app, let’s run the EXPLAIN ANALYZE again and see what it says.
Note the highlighted lines.

$ bundle exec rails dbconsole
shine_development> EXPLAIN ANALYZE

SELECT *
FROM customers
WHERE

lower(first name) like 'bob%' OR

lower(last name) 1like 'bob%' OR

lower(email) = 'bob@example.com'
ORDER BY

email = 'bob@example.com' DESC,

last name ASC

QUERY PLAN
Sort (cost=6308.33..6322.83 rows=5797 width=79)
(actual time=19.802..19.820 rows=234 loops=1)
Sort Key: (((email)::text = 'bob@example.com'::text)), last name
Sort Method: quicksort Memory: 57kB
-> Bitmap Heap Scan on customers
(cost=159.03..5945.99 rows=5797 width=79)
(actual time=15.437..17.333 rows=234 loops=1)

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Yy

vy

vy

Indexing Derived and Partial Values ® 49

Recheck Cond: ((lower((first name)::text) ~~ 'bob%'::text) OR
(lower((last name)::text) ~~ 'bob%'::text) OR
(lower((email)::text) = 'bob@example.com'::text))

Filter: ((lower((first_name)::text) ~~ 'bob%'::text) OR
(lower((last name)::text) ~~ 'bob%'::text) OR
(lower((email)::text) = 'bob@example.com'::text))
-> BitmapOr (cost=159.03..159.03 rows=5826 width=0)
(actual time=15.307..15.307 rows=0 loops=1)
-> Bitmap Index Scan on customers_lower_first_name
(cost=0.00..43.85 rows=1942 width=0)
(actual time=9.331..9.331 rows=234 loops=1)
Index Cond: ((lower((first name)::text) ~>=~ 'bob'::text) AND
(lower((first name)::text) ~<~ 'boc'::text))
-> Bitmap Index Scan on customers_lower_last_name
(cost=0.00..43.85 rows=1942 width=0)
(actual time=4.851..4.851 rows=0 loops=1)
Index Cond: ((lower((last name)::text) ~>=~ 'bob'::text) AND
(lower((last name)::text) ~<~ 'boc'::text))
-> Bitmap Index Scan on customers_lower_email
(cost=0.00..66.99 rows=1942 width=0)
(actual time=1.122..1.122 rows=0 loops=1)
Index Cond: (lower((email)::text) = 'bob@example.com'::text)
Total runtime: 20.027 ms

This time, there is more gobbledegook, but if we look closely, Seq Scan on customers
is gone, and we can see a lot of detail around our where clause. The highlighted
lines indicate index scans, in contrast to the Seq Scan we saw before. And
the index scan is using our index and thus not examining each row in the
table to find the correct results. We can see that it’s doing three lookups, one
for each field, using our indexes, and then or-ing the results together.

Setting aside the details of how Postgres does this, we can see that the results
are about 50 times faster—the query should complete in 20 milliseconds!

If we try our search in Shine now, the results come back almost instantly.
We've improved the performance of our search by more than a factor of 50,
all with just a few lines of SQL in a migration. And we didn’t have to change
a line of code in our Rails application. If we were using a less powerful
database, we’d need to set up new infrastructure for making this search fast,
and that could have a significant cost to development, maintenance, and
production support.

This sort of index is just the tip of the iceberg—Postgres has many advanced
features. Fortunately, Rails makes it easy for us to use these features via
execute, even if they aren’t baked directly into the Active Record API.

With our search performing better, let’s take a final pass at the user interface.
Bootstrap’s default table styling made it a snap to create a reasonable user

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 3. Use Fast Queries with Advanced Postgres Indexes ® 50

interface in no time. This then enabled us to focus on the Rails application’s
behavior and performance. If we stopped now, and shipped what we have,
we’d be shipping a feature we could be proud of. But, since we haven’'t spent
that much time on this feature, let’'s see if there’s any way to make the Ul
better for our users.

Next: Better-Looking Results with Bootstrap’s List Group

We've got a solid back end going for our search. It's now really fast and we
didn’t have to do anything other than add a few indexes to our database. The
user interface actually isn’t too bad, either, considering we didn’t spend much
time on it. But it could be better.

The next chapter will bring us back to the front end, as we redesign the
results. We'll see that Bootstrap’s many helper classes and components can
make it easy to try out new designs. This means we can provide better software
for our users without investing huge amounts of time in writing CSS.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

‘ CLEAN SEARCH RESULTS

List Pagination

CHAPTER4

Create Clean Search Results
with Bootstrap Components

The customer search we've implemented is using tables to display the results.
Tables are a common design component to use, but they aren’t always the
best. The reason they are so common isn’t because the results are necessarily
tabular, but because tables look decent by default. Everything lines up rea-
sonably well, and the rows and columns nature of tables tends to be usable
by default.

Bootstrap provides us with a lot more options than tables to get great-looking
results. That's what we'll learn in this chapter. We're going to re-style our
results to do two things: first, we're going to get rid of the tables and create
a more Google-like result that formats each customer in a component style,
rather than as a row in a table.

This will demonstrate how easy it is to build a seemingly complex design by
using Bootstrap’s list group, its typographic styles, and CSS floats. We're also
going to paginate the results using one of Bootstrap’s custom components.
And we aren’t going to write any CSS.

The UI we’ll build will look like the screenshot on page 52.

Let’s start by removing the table and replacing it with component-based
results.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 4. Create Clean Search Results with Bootstrap Components ® 52

[e)e]e) Shine: Customer 1234 )
@@m\a http://shine.example.com/customers/1234 W D)
4
‘ Bob ‘
« Prev Next p
Bob Jones  pobert1234 JOINED 10/12/2014

bjones18@somewhere.net

Darrell Bobbins  dgbob JOINED 1/13/2014

bjones18@somewhere.net

Bobby Smith  bbysmith JOINED 10/12/2014

bjones18@somewhere.net

<Pl

Creating Google-Style Search Results Without Tables

If we were styling this application on our own, the prospect of a customized,
nontabular search results page (like Google’s, for example) would not be very
appealing. We’'d need to figure out the layout, design, and CSS to get it just
right. Since we're always under pressure to ship our software and move on
to the next feature, we might not be able to spend the time to give the user a
better experience.

Bootstrap provides many components that make it easy to at least attempt
something different, without a huge time investment. Let’s try using the list
group component. This component renders information in a list, but allows
us to format what’s in each list item with more flexibility than a table.

You'll recall the original motivation for this feature—users want to search
customers by name or email to see if they signed up before a certain date.
That means that the sign-up date is fairly important. It’s also worth consider-
ing that our users will be getting emails from customers that will likely contain
their full name written out, such as Bob Jones. Finally, our users might include
their usernames in their email.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Creating Google-Style Search Results Without Tables ¢ 53

Perhaps the user interface would be better served with a mini component for
each user, instead of a row in a table?

Robert Jones bobby_kathiyn Joinep 2015-12-02

bob123@somewhere.net

Unless you write a lot of CSS, this layout will appear to be somewhat tricky
to pull off, especially if you consider how well aligned all the subcomponents
are. Fortunately, Bootstrap makes this simple. We'll use three features of
Bootstrap to do this: the list group component, the behavior of typography
inside a small HTML element, and some floating-element helper classes.

The list group component styles a list of elements so that the contents of each
element are set inside a bordered box, with appropriate spacing and padding
to work well in a list of similar elements. To use it, we’ll replace our table with
an ordered list that has the class list-group and give each list item the class list-
group-item. Inside each list element, we’ll put each bit of information inside the
appropriate “H” element, based on how important it is to the task at hand.

search/simple-list-group/shine/app/views/customers/index.html.erb
<section class="search-results">
<header>
<hl class="h3">Results</hl>
</header>
<ol class="list-group">
<% @customers.each do |customer| %>
<li class="list-group-item">
<h2><%= customer.first name %> <%= customer.last name %></h2>
<h3>Joined <%= 1 customer.created at.to date %></h3>
<h4><%= customer.email %></h4>
<h5><%= customer.username %></h5>
</1i>
<% end %>
</ol>
</section>

The results are a bit mixed, but we can see our design starting to form, since
Bootstrap’s list group does a reasonable job formatting the information. Have
a look at the screenshot on page 54.

Next, we want to change the position of the elements to match our earlier
design. The main challenge is getting the customer’s join date aligned to the
right side of the component. To do that, we’ll use some helper classes Boot-
strap provides for floats.

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/search/simple-list-group/shine/app/views/customers/index.html.erb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

YYVYY

Customer Search

bob123@somewhere.net

Results

Robert Jones
Joined 2015-12-02

bob123@somewhere.net
bobby_te

Easton Bob
Joined 2015-12-02

andres0@hamill.net
brionnal

Tillman Bob
Joined 2015-12-02

constance.blandal@kris.io
cortney_kreiger1

Chapter 4. Create Clean Search Results with Bootstrap Components ® 54

Floats in CSS are a way to shift content to the right or left and allow other
content to flow around it. For example, if we float some content to the left,
the markup that follows that float will render to the right of the floated content.
Floats are the basis of many advanced layout techniques in CSS.

Getting this working can be tricky, especially if you aren’t familiar with how
floats behave in various contexts. Bootstrap provides two classes that we’ll
use to help achieve our design: pull-right and clearfix (there’s also a pull-left, but
we don’t need it for this design).

search/list-group-positioned/shine/app/views/customers/index.html.erb

<section class="search-results">

<header>

<hl class="h3">Results</hl>

</header>

<ol class="list-group">

<% @customers.each do |customer| %>
<li class="list-group-item clearfix">
<h3 class="pull-right">

Joined <%= 1 customer.created at.to date %>

</h3>

<h2><%= customer.first name %> <%= customer.last name %></h2>
<h4><%= customer.email %></h4>

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/search/list-group-positioned/shine/app/views/customers/index.html.erb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Creating Google-Style Search Results Without Tables ¢ 55

<h5><%= customer.username %></h5>
</li>
<% end %>
</ol>
</section>

We moved the h3 that contains the join date above the h2 containing the cus-
tomer’s name because we want the name to flow to the left of the joined date.
If we kept the join date in its original position, only the username and email
would flow to the left.

The clearfix class is provided by Bootstrap to “reset” the floats. Because of the
way floats are implemented, our page will explode to the right if we don’t reset
them (it's hard to explain, but try removing the clearfix class and see what
happens). Now our design is pretty close to what we want to achieve.

Customer Search

bob123@somewhere.net
Results

Robert Jones Joined 2015-12-02

bob123@somewhere.net
bobby_franco_hagenes

Lulu Bob Joined 2015-12-02
emanuel0@kub.com

pearl_smith0

Florencio Bob Joined 2015-12-02

leanne_rutherford1@weinatthompson.co
maria.schuppe

The last thing we need to do is reduce the visual weight of both the username
as well as the label “Joined.” This allows the other information to be highlight-
ed in a subtle way. To do that, we’ll put both elements inside small tags, which
will trigger alternate typography from Bootstrap. We'll also use the class text-
uppercase on the “Joined” label so that it has a subtle, yet distinct visual
appearance from the more dynamic parts of our component.

search/better-ui/shine/app/views/customers/index.html.erb
<section class="search-results">
<header>
<hl class="h3">Results</h1l>
</header>

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/search/better-ui/shine/app/views/customers/index.html.erb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

YYYYYVYVYYVYY

Chapter 4. Create Clean Search Results with Bootstrap Components ¢ 56

<ol class="list-group">
<% @customers.each do |customer| %>
<li class="list-group-item clearfix">
<h3 class="pull-right">
<small class="text-uppercase">Joined</small>
<%= 1 customer.created at.to date %>
</h3>
<h2 class="h3">
<%= customer.first name %> <%= customer.last name %>
<small><%= customer.username %></small>
</h2>
<h4><%= customer.email %></h4>
</li>
<% end %>
</ol>
</section>

Note that we’'ve also added the h3 class to the user’s name. This will render
it visually identical to the h3 containing the join date. Doing this will ensure
that both elements’ text is horizontally aligned properly. It’s a subtle difference,
but polish like this will make Shine feel better to its users.

Now, the search looks pretty darn good!

Customer Search

bob123@somewhere.net Find Customers

Results

Robert Jones bobby_kathiyn Joinen 2015-12-02
bob123@somewhere.net

Clyde Bob celine_towneo Joineo 2015-12-02

sofia0@townekilback.info

Isac Bobby vemies Joinep 2015-12-02

miguel.schaden5@hauck.com

Bob Luettgen amos.kilbacko Joinep 2015-12-02

sedrick_heidenreichO@greenholt.org

Bob Schmidt meriin1 Joinen 2015-12-02

enrique_boyle1@metz.info

This layout is much trickier than you've seen before, but Bootstrap made it
simple to achieve, and we still haven’t written any CSS. This is the power of

www.it-ebooks.info report erratum - discuss


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Paginating the Results Using Bootstrap’s Components ® 57

a CSS framework like Bootstrap: if you have a design in mind, even if you
just want to quickly try it out, Bootstrap provides a lot of tools, at every level
of abstraction, to implement it.

There’s one last thing we should take care of before moving on. Ordinary
searches are returning a lot of results. This could be because our fake data
only had so many fake usernames to choose from, but even in a real data set,
common names could generate more results than a user will want to scroll
through. Let’'s paginate the results, so our users can see only ten results at
a time, under the assumption the result they want is in the first ten.

Paginating the Results Using Bootstrap’s Components

Adding pagination can be done in just two steps: adjusting the query to find
the right “page,” and adding pagination controls to the view. There are several
RubyGems out there that can help us, but it’s not that much code to just do
it ourselves. Since we’ll be porting our view over to Angular in the next
chapter, there’s little benefit to integrating a gem at this point.

We'll take it one step at a time. First, we'll adjust the controller to handle
pagination.

Handling Pagination in the Controller

For simplicity, we’ll hard-code the size of a page to ten results, and look for
a new parameter, :page, that indicates which page the user wants, with a
default of 0.

search/pagination/shine/app/controllers/customers_controller.rb
class CustomersController < ApplicationController
PAGE_SIZE = 10

def index
@page = (params[:page]l || 0).to i

# ...

end
end

Next, we’ll use both PAGE_SIZE and @page to construct parameters to Active
Record’s offset and limit methods. Since our results are sorted, we can rely on
these two methods to allow us to reliably page through the results without
the order changing between pages.

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/search/pagination/shine/app/controllers/customers_controller.rb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

vy

Chapter 4. Create Clean Search Results with Bootstrap Components ¢ 58

search/pagination/shine/app/controllers/customers_controller.rb
@customers = Customer.where(
customer _search term.where clause,
customer search term.where args).
order(customer search term.order).
offset (PAGE SIZE * @page).limit(PAGE SIZE)

That’s all there is to our controller. Now, we’ll adjust the view to allow paging.

Adding Pagination Controls to the View

To keep things simple, we’ll go with previous/next pagination. This means
we’ll need two links on the page, which we can create by adding or subtracting
1 to @page and passing that to the Rails-provided customers_path helper.

To style the links, Bootstrap provides a component we can use, called a pager.
Let’s set it up in a partial, which we’ll then use to place the pager before and
after the results list (this allows the user to always have the pager handy).
We've highlighted the markup and classes Bootstrap requires to style the
pager. Pay special attention to disabled, which will give our Previous button a
disabled look if we're on the first page.

search/pagination/shine/app/views/customers/_pager.html.erb

<nav>
<ul class="pager">
<li class="previous <%= page == 0 ? 'disabled' : '' %>">

<%= link to if page > 0, "&larr; Previous".html safe,
customers path(keywords: keywords, page: page - 1) %>
</1i>
<li class="next">
<%= link_to "Next &rarr;".html_safe,
customers path(keywords: keywords, page: page + 1) %>
</1li>
</ul>
</nav>

Now, we’ll include the partial in app/views/customers/index.html.erb.

search/pagination/shine/app/views/customers/index.html.erb
<section class="search-results">
<header>
<hl class="h3">Results</hl>
</header>
<%= render partial: "pager", locals: { keywords: @keywords, page: @page } %>

<ol class="list-group">
<l-- ... -->
</ol>
<%= render partial: "pager", locals: { keywords: @keywords, page: @page } %>
</section>

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/search/pagination/shine/app/controllers/customers_controller.rb
http://media.pragprog.com/titles/dcbang/code/search/pagination/shine/app/views/customers/_pager.html.erb
http://media.pragprog.com/titles/dcbang/code/search/pagination/shine/app/views/customers/index.html.erb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Paginating the Results Using Bootstrap’s Components ¢ 59

If we start our server and search, we’ll now only see ten results, and our pager
controllers work to allow us to step through them.

Customer Search
bob123@somewhere.net
Results
+ Previous Next —
Robert Jones bobby_brook.waters Joinen 2015-12-02
bob123@somewhere.net
Bob Aufderhar jackson4 Joinen 2015-12-02

shyanne4@towne.org

Celestine Bob breanneo Jomnep 2015-12-02

allan_barton0@leuschke.org

Ethelyn Bob ocie_om1 JoineD 2015-12-02

desmond_cormier1@friesen.biz

Scottie Bob avermz Joineo 2015-12-02
hal2@hintz.biz
Cathy Bob juia3 Joineo 2015-12-02

maude3@blickabbott.info

Erika Bobby crystel_itchies Joinep 2015-12-02
guido_huels5@pfannerstill.org

Bob Borer wilis2 Joinen 2015-12-02
flo_wiegand2@bogisichferry.biz

Bob Hermiston zoraturcottet Joinen 2015-12-02
carley.bode1@rath.name
Bob Kunze iorenza3 Jonep 2015-12-02

wilhelm.prosacco3@nader.name

«— Previous Next —

www.it-ebooks.info report erratum -« discuss


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 4. Create Clean Search Results with Bootstrap Components ¢ 60

Because of our indexes, Postgres’s powerful implementation of order by, and
Bootstrap’s premade components, we were able to add performant pagination
in just a few lines of code.

Next: Angular!

In the next chapter, we’ll add a third tool to our toolbox—AngularJS. Angu-
larJsS is a full-fledged Model-View-Controller (MVC) framework for JavaScript.
Unlike libraries like jQuery, Angular provides a higher level of abstraction for
designing interactive user interfaces.

Even though Angular might feel heavyweight for the features Shine currently
has, it’s not. Angular can be applied lightly, on a screen-by-screen basis, to
make interactive behavior far easier than it would using jQuery. Angular also
scales with the complexity of your views—where your jQuery code would start
to get messy, Angular keeps things simple.

Getting Angular working with Rails requires a bit more setup than simply
installing a gem, so in the next chapter, we’ll set up Angular and learn how
it works by implementing a “typeahead” search. Instead of requiring our users
to type a search term and click a search button, we’ll fetch results in real
time, as they type. Because our search is so fast now—thanks to our Postgres-
specific indexes—the user interface will feel snappy, and the code that powers
it will be clean, clear, and maintainable.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

ANGULAR SEARCH

Angular Ajax DOM
AngU|ar Contl’o"e Events

CHAPTER 5

Build a Dynamic Ul with AngularJS

We've seen some of what Postgres and Bootstrap can do, but our user interface
is still fairly static. It's now time to see what AngularJsS is all about and how
it can improve the experience for our users.

We're going to rework our search feature so that the system searches as our
users type, dynamically changing the results as they type out a user’s name.
For example, if a user wants to find a customer named Bobby Smith, a search
for just Bob may return more results than needed. The user would have to
search again with a more refined query. If the results were visible while typing,
the user could simply type Bobby and potentially get the desired record right
away, without having to wait for the browser to re-render the view. The
screenshot on page 62 shows this in practice. o

Angular makes it easy to implement this feature, although there’s a fair bit
of one-time setup we have to do to get there. That’s what this chapter is about.
We'll explore how to install and set up Angular in our Rails application. We'll
then use it to perform an asynchronous search as the user types, by listening
for the right DOM events and using Angular’s Ajax features.

First, we’ll get Angular set up in our application, validating that setup with
a simple Angular app. We'll then use Angular to power our existing search
feature, maintaining the existing user experience of entering a search term
and clicking a button. Finally, we’ll remove the button and make the search
happen while the user is typing.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 5. Build a Dynamic Ul with AngularJS ® 62

Shine: Customers

000
(DO

Bob

Bob Jones

bjones18@somewhere.net

bjones18@somewhere.net

bjones18@somewhere.net

JOINED 10/12/2014

Darrell Bobbins JOINED 1/13/2014

Bobby Smith JoiNED 1011212014

Shine: Customers

000
(DoEk X

Bobb

Darrell Bobbins JOINED 1/13/2014

bjones18@somewhere.net

Bobby Smith JoINED 1011212014

bjones18@somewhere.net

Shine: Customers

Bobby

Bobby Smith JOINED 10/12/2014

bjones18@somewhere.net

“App” vs. “Application”

One thing to keep in mind is that an Angular app is the front-end
code and templates, whereas a Rails application refers to our entire
Rails codebase, in this case Shine. Put another way, our Rails
application can (and will) power multiple Angular apps. We'll stick

to this convention throughout the book.

Configuring Rails and Angular

To start using Angular with Rails, we mostly just need to install Angular using
Bower, and arrange for Angular’s code to be served up by the asset pipeline.

First, we’ll add Angular to Bowerfile.

typeahead/install-angular/shine/Bowerfile
asset 'bootstrap-sass-official'

# START_HIGHLIGHT
# END HIGHLIGHT
asset 'angular',

resolution 'angular',

Note the use of the resolution keyword. Bower isn’t as sophisticated as Bundler
at handling dependencies, and when it isn’t 100% sure what version of
something to grab, it asks you, interactively. This is somewhat inconvenient,
so you can specify a specific version to use for a specific asset. In this case,
it does look confusing, because we really only have Bootstrap and Angular,
but later on, when we add more Angular modules, this will ensure our assets
are of predictable versions.

'~> 1.5"'
'1.5"

www.it-ebooks.info

report erratum

- discuss


http://media.pragprog.com/titles/dcbang/code/typeahead/install-angular/shine/Bowerfile
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Configuring Rails and Angular ® 63

Next, we’ll install it using the rake task provided by bower-rails.

$ bundle exec rake bower:install
bower.js files generated
/usr/local/share/npm/bin/bower install -p

not-cached git://github.com/angular/. ..
resolve git://github.com/angular/. ..
download https://github.com/angul. ..

bower angular#1.4.3
.3
.3
.3 extract archive.tar.gz
.3
.3

bower angular#1.
bower angular#I.
bower angular#I.
bower angular#I.
bower angular#1.

resolved git://github.com/angular. ..
install angular#l1.4.3

A DNDNDNDIDNDN

With Angular installed, we need to bring it into the asset pipeline by adding
it to app/assets/javascripts/application.js. This file is a manifest for all JavaScript in
our application, just like app/assets/stylesheets/application.css (which we modified
in Chapter 1, Create a Great-Looking Login with Bootstrap and Devise, on page
1 to bring in Bootstrap) is a manifest for CSS.

typeahead/install-angular/shine/app/assets/javascripts/application.js
//= require jquery

//= require jquery ujs

//= require angular

//= require tree .

As we mentioned, we want to validate that this configuration is working before
we delve into learning Angular. I find when learning a new technology, it’s
best to take very small steps to ensure that the setup and configuration is
working so that if it isn’t, I can easily narrow down where the problem is. In
this case, we'll create the world’s simplest Angular application. It will require
a four-line controller, a simple HTML template, and exactly one line of Java-
Script. But it will do the job—verifying that Angular is working in our appli-
cation.

First up is angular_test, a basic controller and view. We add the route to con-
fig/routes.rb:

typeahead/install-angular/shine/config/routes.rb
get "angular test", to: "angular test#index"

Then we create AngularTestController to serve up the index action.

typeahead/install-angular/shine/app/controllers/angular_test_controller.rb
class AngularTestController < ApplicationController
def index
end
end

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/typeahead/install-angular/shine/app/assets/javascripts/application.js
http://media.pragprog.com/titles/dcbang/code/typeahead/install-angular/shine/config/routes.rb
http://media.pragprog.com/titles/dcbang/code/typeahead/install-angular/shine/app/controllers/angular_test_controller.rb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 5. Build a Dynamic Ul with AngularJS ¢ 64

Next, we write our ERB template with certain custom HTML attributes to
activate Angular. These attributes bind the value of our header text to the
value inside an input field. Because of this binding, Angular will update the
header’s value as we change the text in the input field. Don’t worry too much
about how this works for the moment—we’re just testing our configuration.

Our template, in app/views/angular_test/index.html.erb, looks like this:

typeahead/install-angular/shine/app/views/angular_test/index.html.erb
<article ng-app="angular test">
<header>
<hl ng-if="name">Hello, {{name}}</hl>
</header>
<section>
<form class="form-inline">
<div class="form-group">
<label for="name">Name</label>
<input class="form-control"
name="name"

type="text"
placeholder="Enter your name"
autofocus
ng-model="name">
</div>
</form>
</section>
</article>

We'll explain more later, but the existence of the ng-app attribute will Angularize
this markup. The app name we gave to that attribute, angular_test, must be
defined somewhere. We'll create the file app/assets/javascripts/angular_test app.js to
define it (remember that the default configuration of Rails will pick up all files
in app/assets/javascripts, so there’s no need to add this file to application.js). Angular
provides the function module that allows us to declare our app.

typeahead/install-angular/shine/app/assets/javascripts/angular_test_app.js
angular.module('angular test',[ 1);

Start Shine with rails server and browse to http://localhost:3000/angular_test:
Name

If we (say) Bob into the text field, the header should appear and update live.

Hello, Bob

Name Bob

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/typeahead/install-angular/shine/app/views/angular_test/index.html.erb
http://media.pragprog.com/titles/dcbang/code/typeahead/install-angular/shine/app/assets/javascripts/angular_test_app.js
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Porting Our Search to Angular ® 65

This verifies that Angular has been installed and is working with our Rails
application. This tiny app that we’'ve created also gives us a sneak peak into
how our typeahead might work. You'll notice that we didn’t write any real
code to make this work—Angular is detecting our keypresses and updating
our Ul automatically. We'll see how that works when we implement the
typeahead feature, but for now, let’s reimplement our existing search as an
Angular app.

Porting Our Search to Angular

Although Angular works best when we have a dynamic user interface, it's
often easier to introduce new technology by using it to solve an existing
problem. That way, you aren’t wrestling to understand both the new feature
and technology. To that end, we’ll rewrite our existing search feature in Shine
using Angular. As before, the user will still type in a keyword and hit a submit
button to perform the search. The difference is that the search will be powered
by Angular, not by a browser submitting a form.

We'll write JavaScript code that grabs the search term the user entered,
submits an Ajax request to the server, receives a JSON response, and updates
the DOM with the results of the search, all without the page reloading.

This feels straightforward, at least conceptually. Again, this isn’'t the best
demonstration of Angular’s power, but it’s simple enough to get our feet wet
with some of Angular’s concepts. We'll need this grounding to see more pow-
erful features later. So, despite how simple this example seems, we're going
to take things step by step.

First, we’ll Angularize our view by removing all the Rails helpers and adding
some Angular-specific attributes (similar to the ones we used when validating
our configuration in the previous section). Next, we’ll write some JavaScript
that shows us how to respond to a click event. Then, we’ll update that Java-
Script to put canned data into the view when the user does a search—this
will demonstrate how we can manipulate the DOM. Finally, we’ll change our
code to get real results from the server by making an Ajax call.

Angularizing Our View

When we were verifying that Angular had been installed and configured
properly, we added the ng-app attribute to our HTML. In Angular parlance, ng-
app is called a directive. Even though it’s an attribute on a DOM element,
using directive allows us to distinguish between special attributes that control
our Angular app from plain attributes that are part of HTML.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 5. Build a Dynamic Ul with AngularJS ® 66

HTML with ng- Attributes Will Not Validate
Technically, an HTML document containing Angular’s ng- attributes
will not validate, as they are not recognized by the HTML spec.
You can get around this by prepending them with data-, as in
<article data-ng-app="angular_test'>.

=

;I Practically speaking, it doesn’t matter as browsers handle the
invalid elements just fine. Just using ng- also makes your markup
more compact, easier to read, and easier to write. But if you have
a strong need or desire to have your HTML validate, you’ll need to
use the data- versions.

The presence of this directive tells Angular to start managing the markup of
all child elements of the element that contains the ng-app directive. Managing
means two things. First, Angular creates a root scope to hold any data and
code that we write. Second, it compiles the DOM inside the element containing
the ng-app directive (this is analogous to how Rails processes our ERB tem-
plates).

To make our existing search form ready to be used with Angular, we’ll first
need to wrap it in an element where we can place ng-app. Unlike the situation
with our test app, this app will need some substantive code. Angular expects
that code to be in a controller, which is similar to a Rails controller.

Unlike Rails—which can derive the name of the controller from a
route—Angular requires that you explicitly name the controller you want to
use. That can be done using the ng-controller directive. This directive will also
be placed on the element we're using to wrap our markup.

We'll use an article element to wrap the markup in app/views/customers/index.html.erb
and to hold the ng-app and ng-controller directives.
<article ng-app="customers" ng-controller="CustomerSearchController">

<!-- rest of the existing markup -->
</article>

Before we see how to define CustomerSearchController, let’s flesh out the rest of
the search form. Previously, we were using the various Rails form helpers.
Those won’'t work with our Angular template, so we’ll need convert the form
back to HTML. There are a few new Angular directives in there that I'll explain
in a minute, but let’s see the code first.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Porting Our Search to Angular ® 67

typeahead/port-search-front-end/shine/app/views/customers/index.html.erb
<section class="search-form">
<form>
<div class="input-group input-group-lg">
<label for="keywords" class="sr-only">Keywords</label>
<input type="text"
name="keywords"
class="form-control input-1lg"
placeholder="First Name, Last Name, or Email Address"
ng-model="keywords">
<span class="input-group-btn">
<button class="btn btn-primary btn-1g"
ng-click="search(keywords)">
Find Customers
</button>
</span>
</div>
</form>
</section>

You'll notice we're using ng-model on the input field. We saw that directive previ-
ously in our simple test app. This directive tells Angular to bind the symbol
we’'ve provided—in this case keywords—to the value of the form field. This
variable lives in the scope Angular creates that we mentioned earlier (we'll
see it manifested as an object later on).

The other directive we're using is one we haven’t seen: ng-click. Like ng-model it
binds a DOM element to an object in code. In this case, however, it’s binding
a function and not a variable. Using ng-click like this tells Angular that when
the user clicks the button, call the function named search that’s defined in the
scope that was set up for us, passing the current value of keywords to it.

Now that we have our view ready for our Angular app, we need to define Cus-
tomerSearchController, which will contain an implementation of search.

Creating Our First Angular Controller

To keep things as simple as possible, we’ll write just enough code to see
something working. Our aim is to implement the search function so that it
records the user’s search term in a variable that we’ll expose in the view. This
way, we can see how to set up our controller and get it working, without
worrying too much about the specifics of the search feature itself.

First, we’ll need to define our Angular app using angularmodule, much like we
did before when we created our test app. We'll need to use the same string
we gave to ng-app in our view (customers) and well put the code in
app/assets/javascripts/customers_app.js (see the following sidebar for a brief explanation

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/typeahead/port-search-front-end/shine/app/views/customers/index.html.erb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 5. Build a Dynamic Ul with AngularJS ¢ 68

of why we aren’t using CoffeeScript). Our new file will be automatically picked
up by the asset pipeline, because it’s in app/assets/javascripts.

var app = angular.module('customers',[]);

Next we’ll define our controller. Since JavaScript has no real concept of
classes, Angular models everything as a function. Thus, our controller will
be a function. Angular will call this function one time when bootstrapping
the Angular app. Angular will pass the scope we've been referring to as an
argument to our controller function.

That scope is a Scope' and we’ll name the argument $scope. Angular-provided
objects are usually prepended with a $. We can then set properties on this
object (both data and functions), and those properties will be available to the
view.

CoffeeScript® is the default setting in Rails for writing front-end code. If you aren’t
familiar with it, CoffeeScript is a language that can be translated into JavaScript.
The theory is that CoffeeScript is easier to read and write, and using it helps us avoid
common mistakes developers make using JavaScript.

CoffeeScript is a fine language, and you can absolutely write your Angular apps using
it. We aren’t using it in this book for a couple of reasons. First, when you search
online for help with Angular, you’ll almost always see code written in JavaScript. By
learning Angular in JavaScript, it’ll be easier for you starting out.

Second, JavaScript reads better in print. CoffeeScript relies heavily on whitespace
for structure and meaning, and that makes it hard to format CoffeeScript code using
the narrow margins imposed by print. With JavaScript, and all of its commas,
parentheses, and curly braces, we can format our code for print more easily.

a. http://coffeescript.org/

For right now, we want to assign the property search to our search function.
Inside our search function, we’ll assign the property searchedFor to the keywords
passed to the search function.

var CustomerSearchController = function($scope) {
$scope.search = function(searchTerm) {
$scope.searchedFor = searchTerm;
}
}

1. https://docs.angularjs.org/api/ng/type/$rootScope.Scope

www.it-ebooks.info

report erratum -« discuss


http://coffeescript.org/
https://docs.angularjs.org/api/ng/type/$rootScope.Scope
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Porting Our Search to Angular ® 69

In our view we wrote ng-click="search(keywords)". When the user clicks that element,
Angular will look in $scope to find a function named search, which we've just
defined.

We aren’t quite done, however. Although we declared a function named Cus-
tomerSearchController, this isn’t sufficient for Angular to know that this function
is what we are referring to when we wrote ng-controller="CustomerSearchController".
Angular is not designed to look for variables of particular names, but instead
looks at an internal registry.

So, we need to register our controller with Angular so it can find it. The object
returned from module (that represents our app, and was assigned to the variable
app) is an angularModule® and has a function named controller that will register
our controller function.

Before we see the actual call, I want to show you a simplified use of controller
that demonstrates the concept but that won’t actually work in production.

// This code is conceptually correct, but won't work in production
app.controller("CustomerSearchController", CustomerSearchController);

We can see what controller does: it registers our CustomerSearchController function
under the string CustomerSearchController. These two values don’t have to be the
same—we could’ve called our controller CustomerSearchCtrl. Angular doesn’t care
that the names match, only that they are registered properly. But why won’t
this work in production?

Angular is highly flexible. As such, there is no formal contract for what a
controller function should accept as arguments. We wrote our controller
expecting to be passed the scope we needed to expose values and functions
to the view. Like everything in Angular, $scope is registered internally and
mapped to the string $scope. And, in our development environment, Angular
will actually inspect the names of our functions arguments, and use those to
locate the registered objects.

This may seem strange, so let me give a little more detail. Angular will see
that the name of the parameter we declared in our controller function is $scope.
It will then look in its internal registry for an object mapped to the string
$scope. Since Angular itself registered a Scope under that name, it will find it
and pass it to our controller function.

2. https://docs.angularjs.org/api/ng/type/angular.Module

www.it-ebooks.info


https://docs.angularjs.org/api/ng/type/angular.Module
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 5. Build a Dynamic Ul with AngularJS ¢ 70

You'll notice I said “in our development environment.” In production, the Rails
asset pipeline will minify® the JavaScript. If you've ever looked at minified
JavaScript, it’s pretty unreadable. Among other things that minification does,
it will change variable names to much shorter ones, all in an effort to save
space and bandwidth when users download the JavaScript in their browser.
Our $scope argument might be renamed a during minification.

When Angular examines the arguments to our controller function after
minification, the names of the arguments will be different. If $scope became a,
Angular will look in its registry for the string a, find nothing, and generate an
error.

We need to tell Angular what objects we want passed to our function by
putting that information somewhere where it won’t get minified away. To do
that, we can use an array as the second argument to controller. Earlier, we
simply passed in our controller function. Now, we’ll pass in an array that
contains a list of the names of all objects we want passed to our controller
function, with our controller function being the last element in that array.

app.controller("CustomerSearchController",
[ "$scope", CustomerSearchController ]

);

Now, when this code gets minified, the string "$scope" in the array won’t be
touched, since minification won’t change string literals. Angular will see that,
no matter what the name of the argument to our controller function actually
is, we want it to pass in the object mapped to the string "$scope" from its
internal registry.

Like I said, this is strange. The reasons for this are partly due to JavaScript’s
overall lack of sophisticated language features, partly due to the minification
issue, and partly a design decision by Angular to be as flexible as possible.
All I can say is that you'll get used to it. In fact, you'll find it easier to declare
your controllers like so:

typeahead/port-search-front-end/shine/app/assets/javascripts/customers_app.js
app.controller("CustomerSearchController", [
"$scope",
function($scope) {
$scope.search = function(searchTerm) {
$scope.searchedFor = searchTerm;

}

1);

3.  http://en.wikipedia.org/wiki/Minification %28programming%29

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/typeahead/port-search-front-end/shine/app/assets/javascripts/customers_app.js
http://en.wikipedia.org/wiki/Minification_%28programming%29
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Porting Our Search to Angular ® 71

The alignment of "$scope" and scope in the function definition will underscore
this strange-but-necessary way of setting up your code.

Now that we have our controller defined, let’s add some code to the view so
we can see the value of searchTerm. After our closing form tag, we’ll add an hl
that displays the value of searchedFor, if it has a value.
typeahead/port-search-front-end/shine/app/views/customers/index.html.erb

</form>

<hl class="searchedFor" ng-if="searchedFor">

<small>Searched for:</small> {{searchedFor}}
</hl>

We've seen the curly-brace syntax before in our test app. This is Angular’s
templating system, and will substitute the value for searchedFor into the view,
updating it as the value changes. It will expect to find the current value in

$scope.searchedFor, which you’ll recall is where we set the value in our controller,
inside the search function.

The ng-if directive works as you might imagine: it renders the element it's
applied to (the hl), and all its children, only if searchedFor has a value.

This template is analogous to the following ERB:

<% if searchedFor.present? %>
<hl>
<small>Searched for:</small> <%= searchedFor %>
</hl>
<% end %>

Start your server, navigate to http://localhost:3000/customers, enter a search term,
and click Find Customers. You should see the hl appear with your search
term.

Customer Search

bob123@somewhere.net Find Customers

Searched for: DOD123@somewhere.net
Results

« Previous Next —

« Previous Next —

What this demonstrates is that we can use Angular directives to access data
from form elements, and execute code that we write using that data. Now, we
need to render a list of results in our view. We'll do this by modifying search

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/typeahead/port-search-front-end/shine/app/views/customers/index.html.erb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 5. Build a Dynamic Ul with AngularJS ¢ 72

to return a canned set of results that look like what we’ll expect from the
server. This will allow you to learn a bit more without getting wrapped up in
Ajax requests and JSON responses from the server.

Rendering Canned Search Results

Now that we have our search form in place, let’s change the search method to
populate the results section with some canned results. This will accomplish
two things: it will allow us to understand how to render collections with
Angular, but it will also motivate us to figure out what sort of data we’ll need
to get back from the server, when we finally implement the search itself.

First, let’'s change search to assign a list of results to a new object in $scope
called customers. We'll use keys that map the fields of our Active Record object
—this will make it a snap to implement the back end later.

typeahead/canned-results/shine/app/assets/javascripts/customers_app.js

$scope.customers = [];

$scope.search = function(searchTerm) {
$scope.customers = [

{
"first_name":"Schuyler",
"last name":"Cremin",
"email":"gilesO@macgyver.net",
"username":"jillian0",
"created at":"2015-03-04",
}
{
"first name":"Derick",
"last name":"Ebert",
"email":"lupel@rennerfisher.org",
"username" :"ubaldo kaulkel",
"created at":"2015-03-04",
+
{
"first name":"Derick",
"last name":"Johnsons",
"email":"dj@somewhere.org",
"username":"djj",
"created at":"2015-03-04",
}

}

You'll notice on the first line of the listing that we've explicitly initialized
$scope.customers to an empty array. While this isn’t strictly necessary, it's good

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/typeahead/canned-results/shine/app/assets/javascripts/customers_app.js
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Porting Our Search to Angular © 73

form as it lets future readers of the code know what values we’re exposing to
the view. Now we need to modify our template to render these canned results.

In an Angular template, to render a collection we can use the ng-repeat directive.
This will repeat the markup it’s placed on (and its contents) once for each
element in the collection. For example, our canned customers array has three
elements in it. This Angular template:

<div ng-repeat="customer in customers">
{{customer.name}}
</div>

will render the following:

<div>
Schuyler
</div>
<div>
Derick
</div>
<div>
Derick
</div>

To convert our ERB template to Angular, remove @customers.each and replace
it with ng-repeat, and replace <%= .. %> with Angular’s curly-brace syntax.

typeahead/canned-results/shine/app/views/customers/index.html.erb
<section class="search-results">
<header>
<hl class="h3">Results</hl>
</header>
<%= render partial: "pager", locals: { keywords: @keywords, page: @page } %>

<ol class="list-group">
> <li class="list-group-item clearfix"
> ng-repeat="customer in customers">
<h3 class="pull-right">
<small class="text-uppercase">Joined</small>
{{ customer.created at }}
</h3>
<h2 class="h3">
{{ customer.first name }} {{ customer.last name }}
<small>{{ customer.username }}</small>
</h2>
<h4>{{ customer.email }}</h4>
</li>
</ol>
<%= render partial: "pager", locals: { keywords: @keywords, page: @page } %>
</section>

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/typeahead/canned-results/shine/app/views/customers/index.html.erb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 5. Build a Dynamic Ul with AngularJS ¢ 74

Now when we click Find Customers we can see our search results render on

the page.

Customer Search

bob123@somewhere.net

Results

+ Previous

Schuyler Cremin jiliano
gilesO@macgyver.net

Derick Ebert ubaido_kaulket
lupe1@rennerfisher.org

Derick Johnsons dij
dj@somewhere.org

+ Previous

Find Customers

Next —

Joinen 2015-03-04
Joinen 2015-03-04

Jomnep 2015-03-04

Next —

All that’s left is to have search make an Ajax request to the back end to get the

real results.

Making an Ajax Request to Complete the Circle

Our Rails controller currently just handles regular browser-based requests.
To serve results via an Ajax request, we’ll need to use a more JavaScript-
friendly format. JSON is the best fit, so we’ll modify our controller to serve

JSON if requested.

We need to use Rails’s respond_to method to indicate that we handle JSON and
then use the json method to specify the JSON we want to return.

typeahead/angularized-search/shine/app/controllers/customers_controller.rb
class CustomersController < ApplicationController

def index

# existing index method

respond_to do |format|

format.html {}

format.json { render json: @customers }

end
end
end

www.it-ebooks.info

report erratum

- discuss


http://media.pragprog.com/titles/dcbang/code/typeahead/angularized-search/shine/app/controllers/customers_controller.rb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Yy

Porting Our Search to Angular ® 75

Rails will handle converting our Customer instances into JSON,* which will be
in the format we used for our canned results, meaning we won’'t have to
change our template once we start using this now-JSON-ified endpoint.

To get this data into our view, we need to modify search to use this endpoint.
Angular provides a service called $http® that we can use to make Ajax requests.
Much like how $scope was registered under the name $scope, Angular also
registers $http under the name $http. This means that if we want access to it,
we add the string "$http" to our constructor initializer array, and add a second
argument to our initialization function.

typeahead/angularized-search/shine/app/assets/javascripts/customers_app.js
app.controller("CustomerSearchController", [
"$scope","$http",
function($scope , $http) {

To make our Ajax request using $http, we’ll use the get function it provides.

The get function takes a URL and some options (which is where we specify
the request parameters) and returns a promise object (we’ll talk more about
them in Promises, on page 174). This object exposes the function then, which
accepts two parameters, both functions. These functions allow us to specify
what to do on a successful or unsuccessful Ajax request, respectively. They're
called whenever the Ajax request completes. It can be slightly confusing, but
this is how almost all JavaScript code works—asynchronously. Let’s see the
code.

typeahead/angularized-search/shine/app/assets/javascripts/customers_app.js
$scope.search = function(searchTerm) {
$http.get("/customers. json",
{ "params": { "keywords": searchTerm } }
) .then(function(response) {
$scope.customers = response.data;
}, function(response) {
alert("There was a problem:

+ response.status);

This will make the Ajax request to the server and, when we get a successful
response, call the first function passed to then. If the response is not successful
(an HTTP error code of 400 or greater), the second function we passed to then
will be called instead.

4. http://guides.rubyonrails.org/v3.2.9/action_controller overview.html#rendering-xml-and-json-data
5.  https://docs.angularjs.org/api/ng/service/$http

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/typeahead/angularized-search/shine/app/assets/javascripts/customers_app.js
http://media.pragprog.com/titles/dcbang/code/typeahead/angularized-search/shine/app/assets/javascripts/customers_app.js
http://guides.rubyonrails.org/v3.2.9/action_controller_overview.html#rendering-xml-and-json-data
https://docs.angularjs.org/api/ng/service/$http
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

vy

Chapter 5. Build a Dynamic Ul with AngularJS ¢ 76

These functions both accept one argument called response. It has four properties
on it, but we only care about one of them: data. This will be an object repre-
senting the parsed JSON our server returned. Since that’s in the exact format
we used for our canned data, we can assign it to $scope.customers directly.

The function passed as the second argument—that handles our errors—works
similarly. Using alert to handle errors from the server isn't a great user experi-
ence, and we’ll make this better later on. But for now this will suffice, espe-
cially since we aren’t expecting any errors from the server.

If we start our server and navigate to http://localhost:3000/customers, we can now
perform a search just as it worked before, but entirely powered by Angular!

One thing you’ll notice is that created_at is a timestamp, not a date, so it’s not
rendering exactly how we’d like it. In our ERB template, we converted it to a
date using the | helper method. Angular has a different way to handle this.

In Angular there are filters that work more like Unix pipes than method calls.
In this case, Angular provides a filter named date that can be used inside the
curly brackets in our templates, like so:

typeahead/angularized-search/shine/app/views/customers/index.html.erb
<li class="list-group-item clearfix"
ng-repeat="customer in customers">
<h3 class="pull-right">
<small class="text-uppercase">Joined</small>
{{ customer.created at | date }}
</h3>
<h2 class="h3">
{{ customer.first name }} {{ customer.last name }}
<small>{{ customer.username }}</small>
</h2>
<h4>{{ customer.email }}</h4>
</1li>

The date® filter can take a lot of options to customize how the timestamp is
rendered, but for our purposes, the default behavior will work. Angular
includes other filters,” and it’s straightforward to write your own (as you’'ll
see later).

With that in place, our search looks just like it did before.

6.  https://docs.angularjs.org/api/ng/filter/date
7. https://docs.angularjs.org/api/ng/filter

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/typeahead/angularized-search/shine/app/views/customers/index.html.erb
https://docs.angularjs.org/api/ng/filter/date
https://docs.angularjs.org/api/ng/filter
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Porting Our Search to Angular ¢ 77

Customer Search

bob123@somewhere.net Find Customers

Results
+ Previous Next —
Robert Jones bobby_hank_johns Jomneo Jan 10, 2016

bob123@somewhere.net

Caesar Bob alex_iyncho Joinep Jan 10, 2016
celestine0@funk.net

Sarina Bob piercet ek e ST , 16

.« Heantae, nar

Bob Leannon rowano Jomneo Jan 10, 2016
omari0@effertz.net

Bob Raynor dustyz Joinen Jan 10, 2016
burdette3@funk.net
Bob Schaden reyna.mckenzie2 JOINED Jan 10, 2016

pablo.conroy2@senger.net

« Previous Next —

We still need to deal with the pagination, however.

Reimplementing the Pagination

In the original version of our search, our controller exposed @page to the view,
so the view would know what page was being viewed. This allowed us to pass
back either @page + 1 or @page - 1 as the page parameter in our links. Our
Angularized version is using Ajax, so we’ll need to send the right page number
with those requests.

To do this, we’ll need to keep track of what page we are on, and use it in our
call to $http.get. We'll also need to reimplement the pager buttons. First, let’s
modify the controller and Ajax request.

www.it-ebooks.info

report erratum -

discuss


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 5. Build a Dynamic Ul with AngularJS ¢ 78

typeahead/angularized-pagination/shine/app/assets/javascripts/customers_app.js
function($scope , $http) {

> var page = 0;

$scope.customers = [];
$scope.search = function(searchTerm) {
$http.get("/customers.json",
> { "params": { "keywords": searchTerm, "page": page } }
) .success(

Note that page is not part of $scope—it’s local to our controller function. As the
view doesn’t access this value, there’s no need to expose it. JavaScript’s
scoping rules mean $scope.search will have access to it, but the view won't.

Next, we’ll modify our pager partial to use ng-click instead of Rails link helpers.
We'll assume two functions on our controller named nextPage and previousPage
exist. We'll see their implementation in a moment.

typeahead/angularized-pagination/shine/app/views/customers/_pager.html.erb
<nav>
<ul class="pager">
<li class="previous">

> <a href="" ng-click="previousPage()">&larr; Previous</a>
</li>
<li class="next">
> <a href="" ng-click="nextPage()">Next &rarr;</a>
</1i>
</ul>
</nav>

Note how much simpler our template is. Instead of having links that we have
to remember will change the current page of results on the server, we have
shorter and more readable markup. Even if you didn’t know Angular at all,
you can immediately tell what the intention of this code is.

To implement previousPage, we need to grab the value of keywords from the view.
Because we used ng-model on our input element, $scope.keywords will always have
the value of the keywords in the field (which implies that we didn’t really need
to send it to search, but it will make testing this method easier later on). So,
we just need to decrement page (assuming it’s not zero) and call search.

typeahead/angularized-pagination/shine/app/assets/javascripts/customers_app.js
$scope.previousPage = function() {
if (page > 0) {
page = page - 1;
$scope.search($scope.keywords);
}
}

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/typeahead/angularized-pagination/shine/app/assets/javascripts/customers_app.js
http://media.pragprog.com/titles/dcbang/code/typeahead/angularized-pagination/shine/app/views/customers/_pager.html.erb
http://media.pragprog.com/titles/dcbang/code/typeahead/angularized-pagination/shine/app/assets/javascripts/customers_app.js
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

>
>
>

Changing Our Search to Use Typeahead ¢ 79

nextPage looks very similar.

typeahead/angularized-pagination/shine/app/assets/javascripts/customers_app.js
$scope.nextPage = function() {

page = page + 1;

$scope.search($scope.keywords);

}

Now, when we start our server and do a search, we can click Next, and the
next page of results will be fetched and displayed in our view.

Customer Search
bob123@somewhere.net
Results
+ Previous Next —
Bob Terry nigeia Jomeo Dec 1, 2015

melyna_harris3@marvincole.io

+ Previous Next —

Converting our search to use Angular is just a step toward our goal of making
the search feature work better for our users. By keeping the functionality the
same while converting to Angular, we were able to just focus on the Angular-
based aspects of the feature. Now that we've done that, we can change the
search so that it searches as we type.

Changing Our Search to Use Typeahead

Given everything we've done up to this point, changing the search from one
where you must click a button to search to one where the search happens
as you type will actually be fairly straightforward. Because Angular has allowed
us to separate our concerns, we have all the code we need in place. We’'ll just
need to connect it to the user interface in a different way.

First, let’s modify search so it will only hit the server if the user has typed three
or more characters. It's unlikely users will make sense of results based on
one or two characters, so we can save a couple of trips to the server.

typeahead/actual-typeahead/shine/app/assets/javascripts/customers_app.js
$scope.search = function(searchTerm) {
if (searchTerm.length < 3) {
return;

}

// ... rest of the function

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/typeahead/angularized-pagination/shine/app/assets/javascripts/customers_app.js
http://media.pragprog.com/titles/dcbang/code/typeahead/actual-typeahead/shine/app/assets/javascripts/customers_app.js
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

YYYVYYY

Chapter 5. Build a Dynamic Ul with AngularJS ¢ 80

We need to arrange for search to be invoked when the user is typing and not
when the user clicks the Find Customers button. Just as we used ng-click to
bind the click event on the button to our search function, we can use the ng-
change on the input field to invoke search when the text field contents change.

Let’s lose the search button. This makes our form simpler, as we no longer
need to put the text field and the submit button into a Bootstrap input-group.

typeahead/actual-typeahead/shine/app/views/customers/index.html.erb
<section class="search-form">
<form>
<label for="search.keywords" class="sr-only">Keywords</label>
<input type="text"
name="keywords"
class="form-control input-1g"
placeholder="First Name, Last Name, or Email Address"
ng-change="search(keywords)"
ng-model="keywords">
</form>
</section>

You'll note that we've highlighted the input tag, and you can see that we've
used ng-change to arrange for search to be called with keywords whenever the

typing changes.

Start the server and begin typing. In my test data, I have three users whose
last names start with bob, one of which has the last name Bobby. Typing just
bob, I see all three results.

Customer Search

bob

Results
+ Previous Next —
Tabitha Bob scoto Jomeo Dec 1, 2015

maximillian0@hilpert.net

Preston Bob mohammad1 Jomep Dec 1, 2015
deel@graham.info

Alison Bobby newtons Jonep Dec 1, 2015

naomieS@boscokuhic.info

« Previous Next —

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/typeahead/actual-typeahead/shine/app/views/customers/index.html.erb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Next: Testing ® 81

If I keep typing out bobby, the results automatically reduce to only those that
match.

Customer Search

bobby

Results

+ Previous Next —

Alison Bobby newtons Joineo Dec 1, 2015

naomie5@boscokuhic.info

+« Previous Next —

The typeahead works! The entire feature required very little code (once we
installed and configured Angular—a one-time cost), and instead of implement-
ing typeahead with a special-purpose library, we have set up a framework for
implementing any user interface we might need. Because of how Angular
works, we aren’t wrestling with how to attach our JavaScript to our DOM
elements or how to interact with the back end. Because of how Rails works,
our back end is almost identical to the original back end.

In other words, by using what Rails gives us, and using what Angular gives
us, we were able to create a fairly sophisticated feature quickly, without a lot
of code. And it’s fast, thanks to Postgres’s sophisticated indexing and ordering
features.

Next: Testing

It's one thing to get code working in a browser, but it’s another to have the
confidence in that code that you can ship it to your users. To get that confi-
dence, you need automated tests. We've completely avoided writing tests up
to this point, because it would complicate the tasks of learning about Angular,
Bootstrap, and Postgres.

Now that we've got a bit of confidence with these new technologies, we're at
a point where we can turn our attention to tests. In the next chapter, we’ll
build on the testing tools that Rails provides, and learn how to test database
constraints, write unit tests for our Angular code, and write acceptance tests
that execute our Angular app in a real browser.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

PhantomJS & Capybara end-to-end tests

test the entire stack
TESTING PARTS OF THE STACK
Rails testing support Jasmine
J covers this well AnQUIar Unit Tests

RSpec Custom
Postgres(_ " matchers

CHAPTER 6

Test This Fancy New Code

To be confident with new libraries and technologies, we need to do more than
just write working code—we have to be able to test it. Rails has a long history
of supporting and encouraging testing, providing many useful features for
testing every part of your application. We want the same experience testing
Angular and database constraints that we get with Rails models and con-
trollers. We also want a seamless experience testing end to end in a browser.

Rails has no built-in support for testing JavaScript, nor does it provide a
direct way to test database constraints. And there’s no Rails Way for running
an end-to-end test in a browser. But Rails is configurable enough to allow us
to set it up ourselves. That’s what we’ll focus on here.

You'll learn how to write a clean and clear test of the database constraint we
created in Exposing the Vulnerability Devise and Rails Leave Open, on page
25. You'll then learn how to create acceptance tests that run in a real
browser, executing our client-side code the same way a user’s browser would,
using Capybara, PhantomdJS, and Poltergeist.

Finally, I'll show you how to write a unit test for the Angular code we wrote
in Chapter 5, Build a Dynamic Ul with AngularJS, on page 61 using the
JavaScript-based test library Jasmine. This will allow us to write small,
focused tests for the individual pieces of our Angular app, without relying
entirely on the browser-based acceptance tests.

For the tests we’ll write in Ruby, we’ll use RSpec instead of Test::Unit, and this
requires some additional setup to our Rails application. So, before we get into
our actual tests, let’s get that set up, and understand why we want to use
RSpec.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 6. Test This Fancy New Code © 84

Installing RSpec for Testing

Rails ships with Test::Unit as the default testing framework. Test::Unit is a fine
choice, and demonstrates the concepts of testing in Rails quite well. Despite
that, RSpec is quite popular among Ruby developers. An annual survey con-
ducted by Hampton Catlin' shows that, of the developers polled, 69.4% prefer
RSpec for testing.

While this is a good reason to become familiar with RSpec, it’s not the main
reason we want to use it here. When we get to Writing Unit Tests for Angular
Components, on page 103, we’ll be using Jasmine for testing our JavaScript,
and both Jasmine and RSpec share a similar syntax. Here’s an RSpec test:

describe "a simple test" do
it "should test something" do
expect(number).to eq(10)
end
end

Here’s that same test in Jasmine:

describe("a simple test", function() {
it("should test something", function() {
expect(number).toEq(10);
1)
1)

As you can see, both tests have a similar shape and structure. This means
that when you're bouncing between Ruby and JavaScript tests, the mental
overload will be less, since you'll be looking at the same overall way of struc-
turing and organizing your tests. So, while RSpec has many virtues, our
reason for using it here is to reduce friction as we test throughout the stack
of our application.

With that said, setting it up is easy. First, add rspec-rails to the Gemfile. This
gem includes tight Rails integration for RSpec and will bring in the base RSpec
gems as dependents.

group :development, :test do
gem "rspec-rails", '~> 3.0'
end

Now, we bundle install.

$ bundle install

1.  http://www.askr.me/ruby

www.it-ebooks.info


http://www.askr.me/ruby
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

>

Installing RSpec for Testing ® 85

RSpec comes with a generator that will add the necessary configuration to
get RSpec working.

$ bundle exec rails g rspec:install
create .rspec
exist spec
create spec/spec_helper.rb
create spec/rails helper.rb

The majority of RSpec’s configuration is in spec/spec_helper.rb. It includes a set
of defaults, commented out, that it recommends you uncomment. We're going
to uncomment most of them so we can use them, but also add a few nonde-
fault configuration options. Here’s what the file should look like, with our
additions highlighted.

testing/install-rspec-from-blank/shine/spec/spec_helper.rb
RSpec.configure do |config]
config.expect with :rspec do |expectations|
expectations.include chain clauses in custom matcher descriptions = true
expectations.syntax = [:expect]
end

config.mock with :rspec do |mocks|
mocks.verify partial_doubles = true
mocks.verify doubled constant names = true
end

config.filter run :focus
config.run_all when_everything filtered = true

config.disable monkey patching!
config.expose dsl globally = true

if config.files to run.one?
config.default_formatter = 'doc'
end

config.profile examples = 10
config.order = :random

Kernel.srand config.seed
end

We're explicitly requiring the expect(..) syntax—we don’t want to use the .should
assertions because this would be counter to our desire for our Ruby and
JavaScript tests to be similar. We've set verify_doubled_constant names as an extra
safety measure if we should need to mock class behavior (this warns us if we
mock classes that don’t exist). Finally we're setting expose_dsl_globally, which

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/testing/install-rspec-from-blank/shine/spec/spec_helper.rb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 6. Test This Fancy New Code ® 86

will allow our tests to just use RSpec’s DSL methods like describe without
prefixing them with RSpec..

The Rails-specific configuration in spec/rails_helper.rb is fine as is for now. Let’s
create a dummy spec file to verify everything’s working in spec/dummy_spec.rb.

testing/install-rspec-from-blank/shine/spec/dummy_spec.rb
require "rails helper.rb"

describe "testing that rspec is configured" do
it "should pass" do
expect(true).to eq(true)
end
it "can fail" do
expect(false).to eq(true)
end
end

When we run rake, it will run this spec, and we should see one test pass and
the other fail.

$ bundle exec rake

testing that rspec is configured
should pass
can fail (FAILED - 1)

Failures:

1) testing that rspec is configured can fail
Failure/Error: expect(false).to eq(true)

expected: true
got: false

(compared using ==)
# ./spec/dummy spec.rb:8:in “block (2 levels) in <top (required)>'

Finished in 0.00388 seconds (files took 4.06 seconds to load)
2 examples, 1 failure

Failed examples:

rspec ./spec/dummy spec.rb:7 # testing that rspec is configured can fail

This looks good, and we're ready to test the new features and technologies
we've discussed. Note that we won't be going over the sorts of tests you'd
typically write for a Rails app. This isn’t because you shouldn’t write them
(you should), but because we want to focus on the new types of tests we need
for what we're discussing. The Rails code we've seen is tested, and you can

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/testing/install-rspec-from-blank/shine/spec/dummy_spec.rb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Testing Database Constraints ¢ 87

refer to the source included with the book if you want to see how we've done
that.

Let’s start by writing tests of our User model that exercise the database con-
straints we created in Exposing the Vulnerability Devise and Rails Leave Open,
on page 25.

Testing Database Constraints

When treating your SQL database as a “dumb store” (or when using an RDBMS
that lacks the sophisticated features of Postgres), you'd typically use various
features of Active Record to ensure database integrity and you’d naturally
want to test that code. Although we’re using constraints to enforce database
integrity (like the check constraint from Exposing the Vulnerability Devise and
Rails Leave Open, on page 25), we’'d still like to have test coverage that the
constraint is doing what we want.

We can easily test this constraint in RSpec, but it requires a somewhat
cumbersome assertion mechanism using exceptions. First, we’ll see how this
works, and then we’ll create an RSpec matcher to abstract the awkward
syntax away so our tests can be cleaner and clearer.

Asserting That Constraints Exist Using RSpec’s Matchers

To test our database constraint, we’ll need to force Active Record to insert
bad data into the database so that Postgres is generating the error about bad
data, not Active Record. You'll recall that we added Active Record validations
to assist in the registration process, which means it will be difficult to use
Active Record to insert bad data into the database. Difficult, but not impossi-
ble.

The method update_attribute is available on all Active Record instances and it
circumvents validations. We can use this in our test to attempt to insert bad
data and simulate a rogue agent that’s not using Active Record. It will attempt
to write to the database immediately, so invoking it with a non-example.com
email address should fail. Here’s what it looks like in the Rails console.

$ bundle exec rails ¢
2.2.0 :002 > User.first.update attribute(:email, "foo@somewhere.com")

User Load (0.7ms) SELECT ‘"users".* FROM "users"

ORDER BY "users"."id" ASC LIMIT 1
(0.1ms) BEGIN
SQL (1.8ms) UPDATE "users" SET "email" = $1,
"updated at" = $2
WHERE "users"."id" = $3
[

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

YYYVYY

vy

Chapter 6. Test This Fancy New Code * 88

["email", "foo@somewhere.com"],
["updated at", "2015-03-18 15:33:08.091547"],
["id”, 2]

|
PG::CheckViolation: ERROR: new row for relation "users" violates
check constraint "email must be company email"
ActiveRecord::StatementInvalid: PG::CheckViolation: ERROR:
new row for relation "users" violates
check constraint "email must_be company email"

I've reformatted the error message to show only what we're interested in, but
we can see that the internals of Rails raised a PG::CheckViolation, which Active
Record wrapped inside an ActiveRecord::Statementinvalid exception. To test that
this error occurs, we’ll need to use RSpec’s expect { ... }.to raise_error(...) form.

The raise_error matcher accepts two arguments: the exception we're expecting,
and the message it should contain (or a regular expression it should match).
Since ActiveRecord::Statementinvalid is so generic, if we just check that we've received
that exception, our test might pass if there are different errors happening.
We want the test to pass only when our constraint is violated. So, we’ll expect
both that an ActiveRecord::Statementlnvalid is raised and that the error message
names our constraint. This isn’t as precise as we’d like, but it’s the best we
can do, and it's a reasonable compromise.

testing/test-postgres-constraint/shine/spec/models/user_spec.rb
require 'rails helper'

describe User do
describe "email" do
let(:user) {
User.create! (email: "foo@example.com",
password: "qwertyuiop",
password confirmation: “"qwertyuiop")
}
it "absolutely prevents invalid email addresses" do
expect {
user.update attribute(:email, "foo@bar.com")
}.to raise_error(ActiveRecord::StatementInvalid,
/email must be company email/1i)
end
end
end

Note that we're using a regular expression as the second argument to raise_error
so that we aren’t too tightly coupled to the specific error message. Let’s run
our tests (note that we’re using rspec to run a single test file—rake still works
to run our entire test suite).

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/testing/test-postgres-constraint/shine/spec/models/user_spec.rb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Testing Database Constraints ® 89

$ rspec spec/models/user_spec.rb
Randomized with seed 16383
User
email
absolutely prevents invalid email addresses

Finished in 0.09785 seconds (files took 4.91 seconds to load)
1 example, 0 failures

Our test passes. This gives us a way to drive the addition of sophisticated
database constraints with tests. But it’s pretty ugly catching exceptions and
asserting that their messages match a regular expression. Unfortunately,
there’s not a better way to do it, but we can make our test code a bit cleaner
and more intention revealing by creating a custom RSpec matcher.

Using RSpec Matchers to Make Our Test Code Cleaner

Rspec uses the term matcher to describe the constructs it provides to evaluate
assertions. In a line of code like expect(2 + 2).to eq(4), the method eq is a matcher.
It’s matching the result of 2 + 2 against the constant 4.

We can create our own custom matchers to test attributes of our code that
are more particular to what we’'re doing. This saves us test code and can make
our tests clearer. Ideally, we’d be able to write our test like so:

testing/custom-rspec-matcher/shine/spec/models/user_spec.rb
it "absolutely prevents invalid email addresses" do
expect {
user.update attribute(:email, "foo@bar.com")
}.to violate check constraint(:email must be company email)
end

If we could create the matcher violate_check_constraint, it would not only make
our tests clearer, but would also allow us to abstract the method we're using
to test: catching an exception and checking its message. This means if we
could devise a better way of testing the constraint, we’d have to change it in
only one place—our matcher.

RSpec makes it easy to create such a matcher. The code to do so is quite
dense, but once you see how it works, you'll find it’s straightforward to create
your own custom matchers.

We'll create our custom matcher in spec/support/violate_check constraint_matcher.rb.
It's customary to put code that supports your specs in spec/support. Naming
the file violate_check_constraint_matcher.rb will make it easy to know what'’s in there
and where to find it, since it uses the name of the matcher with a _matcher
suffix.

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/testing/custom-rspec-matcher/shine/spec/models/user_spec.rb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 6. Test This Fancy New Code ® 90

Let’s see the code, and then we can walk through it line by line.

testing/custom-rspec-matcher/shine/spec/support/violate_check_constraint_matcher.rb

@ Rspec::Matchers.define :violate check constraint do |constraint name|
(2] supports block expectations
©® match do |code to test]

begin
0o code to test.()
e false
(6 ) rescue ActiveRecord::StatementInvalid => ex
(7] ex.message =~ /#{constraint name}/

end

end
end

Like I said, this code is dense, so we’ll take it one step at a time.

©® Here, we define our matcher and state its name. Since RSpec has an
English-like syntax, you’ll want your matcher to follow from the word “to.”
In this case we expect our code “to violate check constraint email_must_
be_company_email.” Any arguments given to the matcher are passed to
the block as arguments. We've named the argument we’re expecting con-
staint_name.

©® By default, custom matchers don’t support the block syntax we're using.
In that case, the match method (discussed next) would be given the result
of the code under test. Since we need to actually execute the code under
test ourselves—so we can detect the exception that was thrown—we must
use the block syntax. The supports_block_expectations method tells RSpec that
this is the case.

© This is where we define what passing or failing means. match takes a block
that is expected to evaluate to true or false if the actual value matches the
expected one, or not, respectively. Since we used supports_block_expectations,
the argument passed is the block used, unexecuted. Our job is to execute
it and see what happens.

O Here, we run the code under test.

O If we didn’t get an exception, this is where the flow of control will end up.
Since we want an exception, getting here means our test failed, so we
return false.

0O Here, we catch the exception we're expecting. If we get any other exception,
the test will fail. Catching the exception is only part of the test.

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/testing/custom-rspec-matcher/shine/spec/support/violate_check_constraint_matcher.rb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Running Headless Acceptance Tests in PhantomJS ¢ 91

@ The final part of the test is to examine the message of the caught exception.
Just as we did before, we’ll simply assert that it contains the name of the
constraint we're expecting should be violated.

We're almost ready to use our custom matcher. The last thing to do is to bring
it into our spec file. While it’s possible to configure RSpec to auto-require
everything in spec/support, doing so can make your specs much harder to
understand. Because RSpec plays so fast and loose with Ruby’s syntax, it
can be challenging to look at the use of a matcher and figure out where it's
defined.

To that end, we’ll explicitly require our customizations, like so:

testing/custom-rspec-matcher/shine/spec/models/user_spec.rb
require 'rails helper'
require 'support/violate check constraint matcher'

describe User do
describe "email" do

# ... rest of the test

end
end

Running our spec, we can see it still passes.

$ rspec spec/models/user_spec.rb
Randomized with seed 2818
User
email
absolutely prevents invalid email addresses

Finished in 0.15076 seconds (files took 5.78 seconds to load)
1 example, 0 failures

We've now seen how RSpec can allow us to test our database constraints and,
by using custom matchers, do so with clean and clear test code.

Now, let’s head to the total opposite end of our application stack and learn
how to write end-to-end acceptance tests that run in a real browser, thus
executing the Angular code we've written and simulating user behavior.

Running Headless Acceptance Tests in PhantomJS

Acceptance tests are the way in which we assure that our application meets
the needs of the users. In most Rails applications, an acceptance test performs
a black box test against the HTTP endpoints and routes.

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/testing/custom-rspec-matcher/shine/spec/models/user_spec.rb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 6. Test This Fancy New Code ® 92

When our application uses a lot of JavaScript—as our Angular-powered
typeahead search does—it’s often necessary for our acceptance tests to execute
the downloaded HTML, CSS, and JavaScript in a running browser, so we can
be sure that all of the DOM manipulation we are doing is actually working.

Typically, developers would use Selenium, which would launch an instrument-
ed instance of Firefox, running it on your desktop during the acceptance
testing phase. This is quite cumbersome and slow, and for running tests on
remote continuous integration servers, it requires special configuration to
allow a graphical app like Firefox to run.

Ideally, we’d want something that executes our front-end code in a real
browser—complete with a JavaScript interpreter—but that can run headless,
that is, without popping up a graphical application. PhantomJS® is such a
browser.

PhantomdJS describes itself as “a headless WebKit, scriptable with a JavaScript
APIL.” WebKit is the browser engine that powers Apple’s Safari (and was the
basis of Google’s Chrome). The “scriptable JavaScript API” means that we can
interact with it in our tests.

Most Rails acceptance tests use Capybara,’ which provides an API to inter-
acting with such an instrumented browser. To allow Capybara to talk to
PhantomJS, we're going to use Poltergeist, which is analogous to Selenium
if we were using Firefox.

This may sound like a ton of new technologies and buzzwords, but it’s all
worth it to get the kind of test coverage we need. We need to add the Phan-
tomdJS and Poltergeist gems to our Gemfile, do a bit of configuration, and start
writing acceptance tests as we normally would. Let’s get to it.

Installing and Setting Up PhantomJS and Poltergeist

First, you'll need to download and install PhantomdJS. The specifics of this
depend on your operating system, but the details for Mac, Windows, and
Linux are on PhantomJS’s download page.®

You can verify your install by running phantomjs and issuing some basic
JavaScript.

http://phantomjs.org/
https://github.com/jnicklas/capybara
https://github.com/teampoltergeist/poltergeist
http://phantomjs.org/download.html

oLk N

www.it-ebooks.info


http://phantomjs.org/
https://github.com/jnicklas/capybara
https://github.com/teampoltergeist/poltergeist
http://phantomjs.org/download.html
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

>

Running Headless Acceptance Tests in PhantomJS ¢ 93

$ phantomjs

phantomjs> console.log("HELLO!");
HELLO!

undefined

phantomjs>

This is the only time you’ll need to interact with PhantomdJS in this way, but
it’s enough to validate your install.

Now, we’ll install Poltergeist, which is an adapter between the Ruby code we’ll
write for our acceptance tests and the “scriptable JavaScript API” PhantomJS
provides. To do this, add it to the testing group in your Gemfile and then do
bundle install to install it.

testing/setup-poltergeist/shine/Gemfile
group :development, :test do

# other gems...

gem 'rspec-rails'

# START HIGHLIGHT

gem 'poltergeist'’

# END HIGHLIGHT
end

Installing Poltergeist will bring in Capybara as a dependency. If you aren’t
familiar with it, we’ll explain more when we see the acceptance tests.

To use Poltergeist now that it’s installed, we’ll need to do two things. First,
we have to configure Capybara to use it during test runs. Second, we must
configure RSpec to handle the testing database differently for acceptance
tests than for our unit tests. I'll explain more in a minute.

To connect Poltergeist and Capybara, we just need a few lines in
spec/rails_helper.rb. We’ll need to require Poltergeist and then set Capybara’s drivers
to use it. Capybara has two different drivers: one default and one for Java-
Script. This is handy if we don’t have a lot of JavaScript and want our
acceptance tests to normally run using a special in-process driver that won’t
execute JavaScript on the page. That’s not the case for Shine, so we’ll use
Poltergeist (which is powering PhantomdJS) for all acceptance tests.

Here are the changes to spec/rails_helper.rb:

ENV['RAILS ENV'] ||= 'test"
require 'spec helper!'
require File.expand_path('../../config/environment', _ FILE_ )

require 'rspec/rails'
require 'capybara/poltergeist'

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/testing/setup-poltergeist/shine/Gemfile
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 6. Test This Fancy New Code ® 94

» Capybara.javascript driver = :poltergeist
» Capybara.default driver :poltergeist

ActiveRecord: :Migration.maintain_test_schema!
RSpec.configure do |config|
# rest of the file ...

end

Note that we're using spec/rails_helper.rb and not spec/spec_helper.rb because these
tests require the full power of Rails to execute (namely, access to Active Record
and the path helpers).

Configuring Poltergeist is the easy part. The trickier part is how to deal with
the testing database. In a normal Rails unit test, the testing database is
maintained using database transactions.® At the start of a test run, Rails
opens a new transaction. Our tests would then write data to the database to
set up the test, run the test (which might make further changes to the
database), and then assert the results, which often require querying the
database. When the test is complete, Rails will roll back the transaction,
effectively undoing all the changes we made, restoring the test database to a
pristine state.

This works because the process that starts the transaction can see all of the
changes made to the database inside that transaction, even though no other
process can. Since Rails runs our tests in the same process that it uses to
execute them, using transactions is a clever and efficient way to manage test
data. But our acceptance tests will actually run two processes: our application
and our test code (which will use PhantomdJS to access our application).

This means that if our tests are setting up the test database inside a transac-
tion, our server won’t be able to see that data and our tests won’t work. What
we need to do is actually write the data to our database and commit those
changes permanently.

Doing this creates a new problem, which is that we now need a way to restore
the test database to a pristine state between test runs. For example, if we are
testing our search by populating the database with four users named “Bob,”
but we are also testing our registration by signing up a user named “Bob,”
our search test might fail if the registration test runs first, since there would
be five users named “Bob.”

6. http://en.wikipedia.org/wiki/Database_transaction

www.it-ebooks.info


http://en.wikipedia.org/wiki/Database_transaction
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

vy

Running Headless Acceptance Tests in PhantomJS ¢ 95

Fortunately, this is a common problem and has a relatively simple solution:
the DatabaseCleaner’ gem.

DatabaseCleaner works with RSpec and Rails to reset the database to a
pristine state without using transactions (although it can—it provides several
strategies). RSpec allows us to customize the database setup and teardown
by test type. This means we can keep the fast and efficient transaction-based
approach for our unit tests, but use a different approach for our acceptance
tests.

First, we’ll add DatabaseCleaner to our Gemfile and bundle install:

testing/setup-poltergeist/shine/Gemfile
group :development, :test do

# other gems...

gem 'database cleaner'
end

Now, we’ll configure it in spec/rails_helper.rb. To do this, we’ll disable RSpec’s
built-in database handling code by setting use_transactional_fixtures to false (note
that the generated rails_helper.rb will have it set to true). We’ll then use RSpec’s
hooks® to allow DatabaseCleaner to handle the databases. By default, we'll
use DatabaseCleaner’s :transaction strategy, which works just like RSpec and
Rails’s default. But for our acceptance tests (which RSpec calls “features”),
we’ll use :truncation, which means DatabaseCleaner will use the SQL truncate
keyword to purge data that's been committed to the database.

Here’s what we’ll add to spec/rails_helper.rb, with the most relevant parts high-
lighted.

testing/setup-poltergeist/shine/spec/rails_helper.rb
RSpec.configure do |config|
config.fixture path = "#{::Rails.root}/spec/fixtures"

config.use transactional fixtures = false
config.infer spec type from file location!

# rest of the file...
config.before(:suite) do

DatabaseCleaner.clean with(:truncation)
end

7. https://github.com/DatabaseCleaner/database cleaner
8.  https://www.relishapp.com/rspec/rspec-core/v/3-2/docs/hooks/before-and-after-hooks

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/testing/setup-poltergeist/shine/Gemfile
http://media.pragprog.com/titles/dcbang/code/testing/setup-poltergeist/shine/spec/rails_helper.rb
https://github.com/DatabaseCleaner/database_cleaner
https://www.relishapp.com/rspec/rspec-core/v/3-2/docs/hooks/before-and-after-hooks
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Yvy

Chapter 6. Test This Fancy New Code ® 96

config.before(:each) do
DatabaseCleaner.strategy = :transaction
end

config.before(:each, :type => :feature) do
DatabaseCleaner.strategy = :truncation
end

config.before(:each) do
DatabaseCleaner.start
end

config.after(:each) do
DatabaseCleaner.clean
end
end

Now that we've set up PhantomdS, Poltergeist, and DatabaseCleaner, we're
ready to write an acceptance test.

Writing Our First Acceptance Test

To validate that our testing setup is working and that PhantomdJs is properly
executing our JavaScript in the browser, let’s write a test for the test Angular
app we created in Chapter 5, Build a Dynamic Ul with AngularJS, on page 61.
As you recall, this Angular app had a text field where we could type a name.
As we typed, a heading would dynamically update with what we had entered.

Before we see the actual test, let’s plan how it will work. First, we have to log
in, since every page in Shine requires a login. That means we’ll need to set
up a test user and fill in that user’s name and password on the login screen.
Then, we’ll enter some text in the text field in our Angular test app. Finally,
we'll assert that the DOM updated with what we typed.

Way back in Chapter 2, Secure the Login Database, on page 25, we talked
about how Devise properly secures our user information, including passwords.
This means it will be very difficult for us to write a valid encrypted password
from our tests. Fortunately, the additions Devise made to our User model allow
us to do this directly.

User.create! (email: "bob@example.com"
password: "passwordl23",
password confirmation: "passwordl23")

This is what happens when a user registers, so we can just call code like this
in our test. RSpec provides the method before to allow us to run code before
any test runs (we saw something similar when setting up DatabaseCleaner).

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Running Headless Acceptance Tests in PhantomJS ¢ 97

We'll also use the method feature (instead of describe) to indicate that this is an
acceptance test.

Finally, we want to avoid duplicating the test user’s email and password, so
we’ll put those into variables using let. Here’s an outline of our acceptance
test so far, which is in spec/features/angular_test_app_spec.rb.

testing/setup-poltergeist/shine/spec/features/angular_test_app_spec.rb
require 'rails helper'

feature "angular test" do

let(:email) { "bob@example.com" }
let(:password) { "passwordl23" }

before do
User.create! (email: email,
password: password,
password confirmation: password)
end

# tests will go here...

end

Our test itself will need to log in, assert that we're on the Angular test app’s
page, fill in a name, and assert that the DOM was updated. This is where
we'll see Capybara’s DSL in action. A good reference for everything you can
do can be found on Capybara’s GitHub page,’ but I'll call out the methods
we're using.

Primarily we’ll simulate user behavior with visit (to navigate to a particular
URL), fill_in (to enter data into a text field), and click_button (to, you guessed it,
click a button). For asserting that our application is working, we’ll use the
have_content matcher, which checks for text within a given DOM element. By
default, it checks the entire page. We'll also use within, which will restrict the
part of the page where we're asserting content.

Let’s see the test.

testing/setup-poltergeist/shine/spec/features/angular_test_app_spec.rb
require 'rails helper'

feature "angular test" do

# setup from before...

9.  https://github.com/jnicklas/capybara#the-ds|

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/testing/setup-poltergeist/shine/spec/features/angular_test_app_spec.rb
http://media.pragprog.com/titles/dcbang/code/testing/setup-poltergeist/shine/spec/features/angular_test_app_spec.rb
https://github.com/jnicklas/capybara#the-dsl
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 6. Test This Fancy New Code * 98

scenario "Our Angular Test App is Working" do
visit "/angular test"

# Log In
fill in "Email", with: "bob@example.com"
fill in "Password", with: "passwordl23"

click button "Log in"

# Check that we go to the right page
expect(page).to have content("Name")

# Test the page
fill in "pame", with: "Bob"
within "header h1" do
expect(page).to have content("Hello, Bob")
end
end

Thanks to Capybara’s DSL, the test is pretty readable. When we run it, it
works, thus validating that PhantomdJS is executing the Angular app on the

page.

$ rspec spec/features/angular_test_app_spec.rb
angular test
Our Angular Test App is Working

Finished in 2.05 seconds (files took 4.43 seconds to load)
1 example, 0 failures

Before we move on, let’s write a test of our typeahead feature from the previous
chapter. Doing so will be a bit more involved and allow us to test an actual
feature of Shine as well as see how to use Capybara in light of a dynamic
page with a heavier client-side code.

Testing the Typeahead Search

There are two parts of the typeahead search we can test. The first is that
merely typing in the search field will perform the search. The second is that
our results are ordered according to our original specification from Chapter
3, Use Fast Queries with, on page 33.

To test the search, we’ll write two tests: one that searches by name, and a
second that searches by email. This will allow us to validate that matching
emails are listed first. Both tests will assert that merely typing in the search
term returns results.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Running Headless Acceptance Tests in PhantomJS ¢ 99

Unlike the test for our Angular test app, this test requires a bit more setup.
We need to create customers in the database, create a test user, log in as that
user, and navigate to the customer search page.

To create customers, we're going to create them manually inside our test file.
Although Rails provides test fixtures'® to do this, we're not going to use them
here. Because tests related to search require meticulous setup of many differ-
ent rows, we want that setup to be in our test file so that we (and future
maintainers of our code) can clearly see what we're setting up for our test.

To help us create customers, we’ll define a helper method, create_customer, that
will allow us to specify only those fields of a customer we want, using Faker
to fill in the remaining required fields.

testing/setup-poltergeist/shine/spec/features/customer_search_spec.rb
require 'rails helper'

feature "Customer Search" do
def create customer(first name: nil,
last _name: nil,
email: nil)

first name ||= Faker::Name.first name
last_name ||= Faker::Name.last_name
email | |= "#{Faker::Internet.user_name}#{rand(1000)}@" +
"#{Faker::Internet.domain name}"
Customer.create! (
first name: first_name,

last _name: last_name,

username: "#{Faker::Internet.user name}#{rand(1000)}",
email: email

)
end

We'll also re-create the user and password let statements from our Angular
test app test, since we’ll need to create a user here and log in before the test.

testing/setup-poltergeist/shine/spec/features/customer_search_spec.rb
let(:email) { "bob@example.com" }
let(:password) { "passwordl23" }

With create_customer, email, and password in place, we can now create the test
data we need to run our tests. As before, we’ll do this in a before block.

The before block is also useful for behavioral setup, like logging the user in
before the test. In our Angular test app test, we logged the user in as part of

10. http://guides.rubyonrails.org/testing.html#the-low-down-on-fixtures

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/testing/setup-poltergeist/shine/spec/features/customer_search_spec.rb
http://media.pragprog.com/titles/dcbang/code/testing/setup-poltergeist/shine/spec/features/customer_search_spec.rb
http://guides.rubyonrails.org/testing.html#the-low-down-on-fixtures
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

YYVYY

Chapter 6. Test This Fancy New Code ® 100

the test. Since we aren’t testing user login explicitly, this makes our test more
verbose than it needs to be. We can test login elsewhere, so for this test, we’d
like to avoid having login code in the actual test itself. But we still need to be
logged in to run our tests. This kind of behavioral setup can go in the before
block.

Our before block now looks like so (I've highlighted the login code copied from
the Angular test app test):

testing/setup-poltergeist/shine/spec/features/customer_search_spec.rb
before do
User.create! (email: email,
password: password,
password confirmation: password)

create customer first name: "Robert",
last_name: "Aaron"

create customer first name: "Bob",
last name: "Johnson"

create customer first name: "JR",
last name: "Bob"

create_customer first_name: "Bobby",
last name: "Dobbs"

create customer first name: "Bob",
last name: "Jones",
email: "bobl23@somewhere.net"
visit "/customers"

fill in "Email", with: "bob@example.com"
fill in "Password", with: "passwordl23"
click button "Log in"

end

Now we can start writing tests. Our first test will search by name. If we search
for the string "bob", given our test data, we should expect to get four results
back. Further, we should expect that the test user named “JR Bob” will be
sorted first, whereas the test user “Bob Jones” will be last (since our search
sorts by last name).

To assert this, we’ll use the all method of the page object Capybara provides
in our tests. all returns all DOM nodes on the page that match a given selector.
In our case, we can use a CSS selector to count all list items with the class
list-group-item (you’ll recall from Chapter 4, Create Clean Search Results, on
page 51 that we designed our results using Bootstrap’s List Group component).

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/testing/setup-poltergeist/shine/spec/features/customer_search_spec.rb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Running Headless Acceptance Tests in PhantomJS ¢ 101

We can also dereference the value returned by all to make assertions about
the content of a particular list item.

Here’s what our test looks like (note the use of scenario instead of it—this is
purely stylistic, but most RSpec acceptance tests use this for readability).

testing/setup-poltergeist/shine/spec/features/customer_search_spec.rb
scenario "Search by Name" do
within "section.search-form" do
fill_in "keywords", with: "bob"
end
within "section.search-results" do
expect(page).to have content("Results")
expect(page.all("ol li.list-group-item").count).to eq(4)

expect(page.all("ol li.list-group-item")[0]).to have content("JR")
expect(page.all("ol li.list-group-item")[0]).to have content("Bob")

expect(page.all("ol li.list-group-item")[3]).to have content("Bob")
expect(page.all("ol li.list-group-item")[3]).to have content("Jones")
end
end

It’s likely that this test will not pass. Despite the fact that the test makes
logical sense, if you look more closely, we are assuming that the back end
will respond (and results will be rendered) between the time after the fill_in,
but before the first expect. This is likely not enough time, meaning we’ll start
expecting results in our test before they've been rendered in the browser (this
is a form of race condition). Worse, if you try to debug it (see the following
sidebar for some tips), the test will pass.

What we want to do is have the test wait for the back end to complete. There
are many ways to do this, but the cleanest way, and the way Capybara is
designed, is to write our markup and tests so that a change in the DOM signals
the completion of the back end.

For the Capybara part, we are actually already set up to wait for the DOM.
within is implemented by using find,'' which is documented to wait a configured
amount of time for an element to appear in the DOM—exactly what we want!

The problem is that the results we are testing for (contained in <section
class='search-results'>) are always shown, even before we have results. This means
that the within won’t have to wait, since the element is there, and it will proceed
with the expectations, which fail. So, we’ll change our template to only show
this markup if there are search results by using ng-if like so:

11. http://www.rubydoc.info/github/jnicklas/capybara/master/Capybara/Node/Finders#find-instance_method

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/testing/setup-poltergeist/shine/spec/features/customer_search_spec.rb
http://www.rubydoc.info/github/jnicklas/capybara/master/Capybara/Node/Finders#find-instance_method
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 6. Test This Fancy New Code ® 102

testing/setup-poltergeist/shine/app/views/customers/index.html.erb
<section class="search-results" ng-if="customers.length > 0">
<header>
<hl class="h3">Results</hl>
</header>

<l-- ... -->

</section>

What ng-if really does is remove elements from the DOM if the expression
evaluates to false. This means that until we have results, there won’t be any
element that matches section.search-results, which means that within will wait on
that element to appear. As long as our back end returns in three seconds
(Capybara’s default wait time), our test will pass. If you find that adding calls
to sleep makes your tests pass, consider reexamining your use of within and
find and see if you can change your markup to use this approach.

In a Selenium-based testing setup, you can observe the browser during the tests.
This makes it possible to debug tests that are failing for features that are working
when executed manually. For headless tests, it's much more difficult. Here are two
techniques I've used to help debug these tests.

Printing the HTML  Capybara’s page object has a method called html that will dump
the HTML of the current browser. A simple call to puts page.html right before a
failing expectation can often be quite illuminating as to what the state of the
page is. If you combine this with debugging information in your view code, the
answer to your test woes often reveals itself.

Taking a Screenshot  Capybara can also take screenshots via the save_screenshot®
method (in fact, this feature is what has created most of the screenshots in this
book). You can give it a filename and it will show what the browser would render
at that moment—for example, save_screenshot("/tmp/screenshot.png").

a. http://www.rubydoc.info/github/jnicklas/capybara/master/Capybara/Session#save screenshot-
instance_method

Now that we understand the importance of within, let’s see our test for
searching by email. It will be structured similarly to our previous test, but
we want to check that the user with the matching email is listed first. We’ll
then check that the remaining results are sorted by last name, using a similar
technique to what we saw in our search-by-name test.

www.it-ebooks.info

report erratum -« discuss


http://media.pragprog.com/titles/dcbang/code/testing/setup-poltergeist/shine/app/views/customers/index.html.erb
http://www.rubydoc.info/github/jnicklas/capybara/master/Capybara/Session#save_screenshot-instance_method
http://www.rubydoc.info/github/jnicklas/capybara/master/Capybara/Session#save_screenshot-instance_method
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Writing Unit Tests for Angular Components ¢ 103

testing/setup-poltergeist/shine/spec/features/customer_search_spec.rb
scenario "Search by Email" do
within "section.search-form" do
fill in "keywords", with: "bobl23@somewhere.net"
end
within "section.search-results" do
expect(page).to have content("Results")
expect(page.all("ol li.list-group-item").count).to eq(4)

expect(page.all("ol li.list-group-item")[0]).to have content("Bob")
expect(page.all("ol li.list-group-item")[0]).to have content("Jones")

expect(page.all("ol li.list-group-item")[1]).to have content("JR")
expect(page.all("ol li.list-group-item")[1]).to have content("Bob")

expect(page.all("ol li.list-group-item")[3]).to have content("Bob")
expect(page.all("ol li.list-group-item")[3]).to have content("Johnson")
end
end

Now, let’s run our tests.

$ rspec spec/features/customer_search_spec.rb

Customer Search
Search by Email
Search by Name

Finished in 3.63 seconds (files took 7.08 seconds to load)
2 examples, 0 failures

They pass! We now have a way to test our features the way a user would use
them: using a real browser. Our tests can properly handle our extensive use
of JavaScript, but they don’t need to pop up a web browser, which makes
them easy to run in a continuous integration environment.

Of course, testing our Angular code purely in the browser is somewhat cum-
bersome, especially if it becomes complex with a lot of edge cases. To help us
get good test coverage without always having to go through a browser, we
need to be able to unit test our Angular code.

Writing Unit Tests for Angular Components

Browser-based acceptance tests are slow and brittle. Even though we've
eschewed starting an actual browser for each test by using PhantomdJS, we
still have to start our server and have it serve pages to the headless browser.
Further, our tests rely on DOM elements and CSS classes to locate content

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/testing/setup-poltergeist/shine/spec/features/customer_search_spec.rb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 6. Test This Fancy New Code * 104

used to verify behavior. We may need (or want) to make changes to the view
that don’t break functionality but break our tests.

Although we don’t want to abandon acceptance tests—alfter all, they are the
only tests we have that exercise the system end to end—we need a way to
test isolated bits of functionality (commonly called unit tests). In Rails, we
have model tests and controller tests that allow us to do that for our server-
side code. Unfortunately, Rails doesn’t provide any help for unit testing our
client-side code.

In a classic Rails app, there simply isn’t much client-side code, so we are
comfortable not explicitly testing it. In our more modern app, where a nontriv-
ial amount of logic is written in JavaScript, the lack of unit testing will be a
problem. For example, in our Angular app that powers the typeahead search
that we built in Chapter 5, Build a Dynamic Ul with AngularJS, on page 61,
the previousPage function has logic to prevent going to negative page numbers.
That should be tested, and it makes a lot more sense to test it as a unit test
than to set up an entire acceptance test to verify we can’'t go to a negative

page.

In this section we’ll set up a means of writing and running unit tests for our
Angular code. We'll use Jasmine, which is a commonly used JavaScript testing
framework. We’'ll also use Teaspoon, a Rails plugin, to help integrate Jasmine
into our workflow. With those in place, Angular provides everything else we
need for testing (in fact, testing is the reason Angular does all the dependency
injection we saw earlier). We'll start with a simple test of our code, and then
see how to use test spies to do more sophisticated tests.

First, let’s get Jasmine and Teaspoon installed so we have a place to write
unit tests for our Angular code.

Setting Up Jasmine and Teaspoon

Jasmine' is a JavaScript testing framework similar to RSpec. It has nothing
to do with Rails, and is designed to run either in the browser or on the com-
mand line. Teaspoon' is a JavaScript test-runner for Rails. It isn’t specific
to Jasmine, but it can run Jasmine tests. In this section we’ll get them both
working together in Shine so we can then write unit tests for our Angular
code.

12. http://jasmine.github.io/
13. https://github.com/modeset/teaspoon

www.it-ebooks.info


http://jasmine.github.io/
https://github.com/modeset/teaspoon
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Writing Unit Tests for Angular Components ¢ 105

First, we’ll add Teaspoon to our Gemfile and run bundle install. Note that we're
adding the gem teaspoon-jasmine and not just teaspoon. Teaspoon has a core gem
that requires a second gem specific to the test framework we're using. In our
case, that’'s Jasmine, and teaspoon-jasmine depends on the teaspoon gem, so we
just need to add teaspoon-jasmine.

testing/setup-jasmine-and-teaspoon/shine/Gemfile
group :development, :test do

# rest of gems...
gem 'teaspoon-jasmine'
end

After installing teaspoon-jasmine with bundle install, we can use a Rails generator
that Teaspoon provides that will get us set up. We’ll run it, telling it we don’t
want to use CoffeeScript (see Why Aren't We Using CoffeeScript?, on page 68
for some details on why we aren’t using CoffeeScript).

$ bundle exec rails generate teaspoon:install --no-coffee
create spec/teaspoon_env.rb
create spec/javascripts/support
create spec/javascripts/fixtures
create spec/javascripts/spec helper.js

Congratulations! Teaspoon was successfully installed. Documentation
and more can be found at: https://github.com/modeset/teaspoon

If you look at spec/javascripts/spec_helper.js, you can see a lot of comments in that
file, as well as what appear to be Sprockets directives like //= require application.
Teaspoon is using the asset pipeline to pull in our code. This is good news
for us Rails developers, because it means we don’t have to learn a second
means of bringing our JavaScript into scope to execute it and test it.

Note also that we don’t need to explicitly install Jasmine—Teaspoon brings
in the version it needs on its own.

To validate our setup we'll write a bare-bones test using Jasmine and make
sure it runs. Jasmine’s test syntax is similar to RSpec in that we use describe
to set up a test suite and it to write a single test. We’ll make the simplest test
we can in spec/javascripts/dummy_spec.js.

describe("Testing Jasmine", function() {
it("can run a test", function() {
expect(true).toBe(false);
1)
b

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/testing/setup-jasmine-and-teaspoon/shine/Gemfile
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 6. Test This Fancy New Code ® 106

You'll notice we're expecting true to be false. This will let us see a test fail, so
we can fix it and see it succeed.

To run our test, Teaspoon provides a rake task, teaspoon.

$ bundle exec rake teaspoon

Starting the Teaspoon server...

Puma 2.11.1 starting...

* Min threads: 0, max threads: 16

* Environment: test

* Listening on tcp://0.0.0.0:53430

Teaspoon running default suite at http://127.0.0.1:53430/teaspoon/default

F

Failures:
1) Testing Jasmine can run a test
Failure/Error: Expected true to be false.

Finished in 0.00600 seconds
1 example, 1 failure

Failed examples:

teaspoon -s default --filter="Testing Jasmine can run a test."
rake teaspoon failed

This is a good failure. This means that our test was executed and our assertion
failed. We can fix the test by changing toBe(false) to toBe(true).

testing/setup-jasmine-and-teaspoon/shine/spec/javascripts/dummy_spec.js
describe("Testing Jasmine", function() {
it("can run a test", function() {
expect(true).toBe(true);
1)
3

Now, we can run our tests again and see success.

$ bundle exec rake teaspoon
Starting the Teaspoon server...

Puma 2.11.1 starting...
*

Teaspoon running default suite at http://127.0.0.1:53459/teaspoon/default

Finished in 0.00400 seconds
1 example, 0 failures

This validates our JavaScript unit-testing setup. Next, we’ll use this setup to
write a test of our Angular code.

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/testing/setup-jasmine-and-teaspoon/shine/spec/javascripts/dummy_spec.js
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Writing Unit Tests for Angular Components ¢ 107

Writing a Unit Test for Our Angular Code

Testing Angular components is just like testing our Ruby code: we set up the
conditions of a test, execute one of the publicly exposed functions of our code,
and check the results. In the case of our Angular code, the setup is a bit more
complex, but once we start writing the tests, they will look familiar.

We'll approach our testing in three steps. In the first, we’ll walk through the
steps needed to set up our test. This is surprisingly involved but allows our
actual tests to be simple. In the second step, we’ll test that $scope.customers is
empty when the controller loads. That will let us examine the process for
setting up the test, but without worrying about simulating the Ajax calls.
Finally, we’ll use a function provided by Angular’s angular-mocks package to
simulate the Ajax calls.

Setting Up an Angular Controller Test

As you’ll recall from Chapter 5, Build a Dynamic Ul with AngularJS, on page
61, Angular stores our controller function in a repository, and Angular will
call it one time when starting up the app. Further, you'll recall that our con-
troller function’s arguments are expected to be passed by Angular during this
process.

testing/angular-unit-test/shine/app/assets/javascripts/customers_app.js
app.controller("CustomerSearchController", [
'$scope', '$http',
function($scope , $http) {

In the test context, we won’t be starting up the Angular app; instead, we need
to find our controller function and call it explicitly. Further, we need access
to $scope in order to write our tests. $scope is where our public functions live,
and where the values available to the view are available—it can be thought
of as the public interface of our controller.

Before we can think about accessing our controller, we need to instruct
Angular to load our app (which isn’'t the same as starting the app). Since all
of our Angular code is in callback functions, none of them are executed by
default. We can use the function module (provided by Angular) to load our app.

module("customers");

To create an instance of our controller, Angular provides a service function
named $controller.'* This function accepts two arguments: the name of the

14. https://docs.angularjs.org/api/ng/service/$controller

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/testing/angular-unit-test/shine/app/assets/javascripts/customers_app.js
https://docs.angularjs.org/api/ng/service/$controller
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 6. Test This Fancy New Code ® 108

controller to instantiate, and an object of variables to be injected into the
controller’s constructor function. We’'d use it like so:

module("customers");

var scope = {};

var controller = $controller("CustomerSearchController",
{ "$scope": scope });

This call will find our controller function and call it. For the first argument
(named $scope), the local variable scope will be passed in. For the second
argument (named $http), because we didn’t specify it in the second argument
to $controller, Angular will find the default implementation and pass it for us.

This is the mechanism we can use to exercise and examine the public members
of the controller. Because the values and functions get set on the passed-in
$scope, and we've overridden the default behavior to pass in our own scope, we
can then call functions like search and examine values like customers.

That said, we don’t want to pass in a vanilla object for $scope. We should pass
in the same sort of object that Angular would use. This is because our con-
troller might rely on getting an actual scope and not just an object. Passing
in an object could cause our tests to fail in unexpected ways.

In order to do pass in a real scope, we need access to $rootScope,'® which
exposes a function $new (note that preceding dollar sign). When we call $new,
we’ll get back a new $rootScope.Scope,'® which is the same type that Angular
passes in at runtime. The result will look something like this:

module("customers");

var scope = $rootScope.$new();

var controller = $controller("CustomerSearchController",
{ "$scope": scope });

You might be wondering how we get access to the $controller and $rootScope
functions. Here’s where it starts to feel like Inception."”

Our controller-declared arguments, along with the array of strings naming
them, allow Angular to find those registered objects and pass them into our
controller function. We can use this mechanism ourselves via the inject func-
tion. This function can be used to ask Angular to call a function with any
objects in its internal registry. So, we’ll ask Angular to pass both $controller
and $rootScope into a function in which we’ll set up our controller as outlined
earlier.

15. https://docs.angularjs.org/api/ng/service/$rootScope
16. https://docs.angularjs.org/api/ng/type/$rootScope.Scope
17. http://www.imdb.com/title/tt1375666/

www.it-ebooks.info


https://docs.angularjs.org/api/ng/service/$rootScope
https://docs.angularjs.org/api/ng/type/$rootScope.Scope
http://www.imdb.com/title/tt1375666/
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Writing Unit Tests for Angular Components ¢ 109

This is Angular’s flexibility rearing its head. It seems weird, and feels like
work Angular should be doing for us. All I can say is that you'll get used to
it. Here’s what our code will look like.

module("customers");
inject(function($controller, $rootScope) {
var scope = $rootScope.$new();
var controller = $controller("CustomerSearchController",
{ "$scope": scope });
b

If you're paying close attention, you’ll notice that our use of inject is a bit dif-
ferent than how we used controller in our production code, namely that we
aren’t using the array of strings argument. In Creating Our First Angular
Controller, on page 67, we went into great detail about why we have to keep
the names of arguments in a string so that Angular knew what to pass in at
runtime. Since our tests won’t be minified and served up through the asset
pipeline, there’s no concern that the arguments to inject will be minified away.
Therefore, we just use plain syntax and allow Angular to examine the argument
names directly.

A more pressing question might be where inject comes from. Do we have to
call another function to get that passed into our test?

The answer is “no.” inject is an alias to angularmock.inject,'® which is provided by
the angular-mocks module. This module adds inject to the global namespace,
specifically so we can write the code we've seen.

To install angular-mocks, we’ll need to add it to our Bowerfile and then run rake
bower:install.

testing/angular-unit-test/shine/Bowerfile
asset 'angular-mocks'

Once it’s installed, we need to bring it into our testing code using the
Sprockets require directive. Since we don’t want it in our production code, we’ll
add the require directive to spec/javascripts/spec_helperjs (instead of
app/assets/javascripts/application.js). Note that angular-mocks needs to be required
after other Angular modules have been brought in, so we’ll add the require
after we've required application.js (which is what brings our production JavaScript
into the tests):

testing/angular-unit-test/shine/spec/javascripts/spec_helper.js

//= require application
//= require angular-mocks

18. https://docs.angularjs.org/api/ngMock/function/angular.mock.inject

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/testing/angular-unit-test/shine/Bowerfile
http://media.pragprog.com/titles/dcbang/code/testing/angular-unit-test/shine/spec/javascripts/spec_helper.js
https://docs.angularjs.org/api/ngMock/function/angular.mock.inject
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 6. Test This Fancy New Code ® 110

With that done, our call to inject will work as described. The next question is
where to call it? Jasmine provides a function named beforeEach that works like
before in RSpec. We'll also need to call module("customers") in a beforeEach block,
so our app is always loaded.

Lastly, we want to hold a reference to our scope and controller so we can use
them in our tests. To do that, we’ll declare scope and controller outside our
beforeEach functions. This means our setup code will look like so:
testing/angular-unit-test/shine/spec/javascript ... p/controllers/customer_search_controller_spec.js

describe("CustomerSearchController", function() {
describe("Initialization", function() {

var scope = null,
controller null;

beforeEach(module("customers"));

beforeEach(inject(function ($controller, $rootScope) {
scope = $rootScope.$new();
controller = $controller("CustomerSearchController", {
$scope: scope
s
)

// tests go here...

1)
b

There’s no particular location where the test files themselves should go, so
we've defaulted to using a directory inside spec/javascripts based on our Angular
app name (customers_app) and, inside there, a directory for the type of component
(controllers). Further, we're naming our file using Rails’s convention of under-
scorizing the class name (customer_search_controller_spec.rb). Angular, Jasmine,
and Teaspoon don’t care one bit about this, so you can use whatever makes
sense to you.

Now that we've set everything up, writing the test is, as promised, straightfor-
ward.

Writing a Simple Test of Our Angular Code
For this test, we'll assert that the initial value of $scope.customers is the empty
array. It might seem like you should write the test this way:

it("defaults to an empty customer list", function() {
expect(scope.customers).toBe([1);

3

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/testing/angular-unit-test/shine/spec/javascript � p/controllers/customer_search_controller_spec.js
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Writing Unit Tests for Angular Components ® 111

This will fail with an oh-so-helpful error message:

$ bundle exec rake teaspoon
Teaspoon running default suite at http://127.0.0.1:65305/teaspoon/default
F.

Failures:

1) CustomerSearchController Initialization defaults to an empty customer list
Failure/Error: Expected [ ] to be [ 1.

Finished in 0.01700 seconds
2 examples, 1 failure

I don’t know about you, but [ ] sure looks equal to [ ], so what’s going on? The
issue is that toBe expects both objects being tested to be the exact same object,
not just two objects that have the same value.

While this issue isn’t a big deal for this particular test—we could just check
that the length of scope.customers is O0—we’ll write another test in a minute that
will expect scope.customers to have data in it. Unfortunately, Jasmine doesn’t
provide a matcher to compare the values inside arrays and objects. But, much
like RSpec, Jasmine allows us to create custom matchers. Further, Angular
provides the function angular.equals,'® which can do the comparison we want,
so all we need to do is create a custom Jasmine matcher using angular.equals.

Adding a custom matcher in Jasmine is a bit complex (see the documentation®
for a great walkthrough), but it’s not something we’ll be doing a lot in this
book, so we don’t have to worry about the details. All we need to do is add
this code to the end of spec/javascripts/spec_helper.js:

testing/angular-unit-test/shine/spec/javascripts/spec_helper.js
beforeEach(function(){
jasmine.addMatchers({
toEqualData: function(util,customEqualityTesters) {
return {
compare: function(actual,expected) {

var result = {};
result.pass = angular.equals(actual, expected);
return result;

19. https://docs.angularjs.org/api/ng/function/angular.equals
20. http://jasmine.github.io/2.3/custom matcher.html

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/testing/angular-unit-test/shine/spec/javascripts/spec_helper.js
https://docs.angularjs.org/api/ng/function/angular.equals
http://jasmine.github.io/2.3/custom_matcher.html
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 6. Test This Fancy New Code ® 112

We've highlighted the meat of the matcher, which is the call to angular.equals.
Jasmine looks for the returned result object’s pass property to be true or false.
We can now write our test like so:

testing/angular-unit-test/shine/spec/javascript ... p/controllers/customer_search_controller_spec.js
describe("CustomerSearchController", function() {
describe("Initialization", function() {

// setup code from before. ..

it("defaults to an empty customer list", function() {

expect(scope.customers).toEqualData([]);

s
1)

1)

And, our test passes!

$ bundle exec rake teaspoon

Starting the Teaspoon server...

Puma 2.11.1 starting...

* Min threads: 0, max threads: 16

* Environment: test

* Listening on tcp://0.0.0.0:65382

Teaspoon running default suite at http://127.0.0.1:65382/teaspoon/default

Finished in 0.02500 seconds
2 examples, 0 failures

Despite how cumbersome the setup was, our actual test—the code that’s
most important—is straightforward and readable. Next, let’s write a test for
search. We’ll want to see that calling search with a keyword makes an Ajax call
and populates $scope.customers with the results. Because this is a unit test,
we’ll need to fake the HTTP call to the server.

Simulating Ajax Calls in a Unit Test

You'll recall that we injected $http into our Angular controller in order to make
Ajax calls. We could pass in our own implementation of $http—much as we
did with $scope—but this would be a lot of work. $http packs a lot of features
and we’d need to mimic those in our test object to make sure the controller
could function when executed from the test. Instead, angular-mocks provides
a test-only version of $httpBackend, which is what $http uses under the covers.

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/testing/angular-unit-test/shine/spec/javascript � p/controllers/customer_search_controller_spec.js
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

YYVYY

Writing Unit Tests for Angular Components ® 113

The mocked version of $httpBackend®' lets us specify what Ajax requests might
get made, and to control what gets returned. The function when can be used
to configure an HTTP call, and the function respond controls the response:

testing/angular-unit-test/shine/spec/javascript ... p/controllers/customer_search_controller_spec.js
describe("Fetching Search Results", function() {
beforeEach(module("customers"));

beforeEach(function() {
httpBackend.when('GET"',"'/customers. json?keywords=bob&page=0") .
respond(serverResults);
1)
1)

As before, we need Angular to inject $httpBackend into our test code so we can
grab a reference to it. We do this by adding $httpBackend to our call to inject
when we set up our controller. While we're making changes, we’ll also populate
serverResults with the fake results passed back from the server.

testing/angular-unit-test/shine/spec/javascript ... p/controllers/customer_search_controller_spec.js
describe("Fetching Search Results", function() {

var scope = null,
controller = null,
httpBackend = null,
serverResults = [
{
id: 123,

first name: "Bob",
last name: "Jones",
email: "bjones@foo.net",
username: "jonesy"
+
{
id: 456,
first name: "Bob",
last name: "Johnsons",
email: "johnboy@bar.info",
username: "bobbyj"
}
1;
beforeEach(inject(function ($controller, $rootScope, $httpBackend) {
scope = $rootScope.$new();
httpBackend = $httpBackend;
controller = $controller("CustomerSearchController", {
$scope: scope
1)
)i

21. https://docs.angularjs.org/api/ngMock/service/$httpBackend

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/testing/angular-unit-test/shine/spec/javascript � p/controllers/customer_search_controller_spec.js
http://media.pragprog.com/titles/dcbang/code/testing/angular-unit-test/shine/spec/javascript � p/controllers/customer_search_controller_spec.js
https://docs.angularjs.org/api/ngMock/service/$httpBackend
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 6. Test This Fancy New Code ® 114

With that in place, we can now write our test. All our test needs to do is call
scope.search and then check that scope.customers has the right data in it. The only
catch is that HTTP calls in JavaScript are asynchronous. Therefore, we need
a way to tell $httpBackend to call our callback functions registered in our con-
troller. We can do that with the function flush.

Our test looks like so:

testing/angular-unit-test/shine/spec/javascript ... p/controllers/customer_search_controller_spec.js
// previous setup code

it("populates the customer list with the results", function() {
scope.search("bob");
httpBackend. flush();
expect(scope.customers).toEqualData(serverResults);

1
1)

If we run our tests again, we can see that our new test is passing.

$ bundle exec rake teaspoon

Starting the Teaspoon server...

Puma 2.11.1 starting...

* Min threads: 0, max threads: 16

* Environment: test

* Listening on tcp://0.0.0.0:49187

Teaspoon running default suite at http://127.0.0.1:49187/teaspoon/default

Finished in 0.02400 seconds
3 examples, 0 failures

With these building blocks, we can test all sorts of server interactions. The
respond function is highly flexible, allowing us to simulate different responses,
including errors from the server. If you recall, our error-handling code pops
up a JavaScript alert. While that’s not the greatest user experience of all time,
it’s (a) sufficient and (b) what our code is currently doing. It would be ideal if
we could test this. In the next section we’ll learn how to do that using test
spies.

Testing Browser-Provided Features Using Spies

If you've written a lot of tests for a Rails app, you've no doubt used (or at least
heard of) mock objects. A mock object is a stand-in for a real object that you
use for test isolation. The $httpBackend variable we used in the previous section
is an example. We don’t want our test making real HTTP calls; we can assume
that Angular’s $http service is working and just focus on our code.

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/testing/angular-unit-test/shine/spec/javascript � p/controllers/customer_search_controller_spec.js
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

vy

Writing Unit Tests for Angular Components ® 115

Jasmine provides a form of mock object called a test spy that allows us to
record interactions with an object and check those interactions later. It's
perfect for when we want to test the behavior of a function (as opposed to its
return value).

Our error-handling code for our customer search provides an example.

testing/angular-unit-test/shine/app/assets/javascripts/customers_app.js

}).error(
function(data,status,headers,config) {
alert("There was a problem: " + status);
1)

Here, we're calling alert with a particular message. Because alert pops up a
dialog, and our unit tests aren’t running in a real browser, we’'d like to spy
on window (which is the global scope where alert is defined) and verify that,
when we get an error, window.alert is called with the message we expect.

To test this, we’ll need to configure $httpBackend to return an error, instead of
a customers list. We'll also need to tell Jasmine to start spying on window’s
alert function by using the spyOn function. spyOn takes two arguments: the
object to spy on and the function to watch. Jasmine will capture any calls
made to that function on the spied-upon object, allowing us to check later if
the function was called and what arguments were passed.

testing/angular-unit-test/shine/spec/javascript ... p/controllers/customer_search_controller_spec.js
describe("Error Handling", function() {

// same setup as previous test...

beforeEach(function() {
httpBackend.when('GET"',"'/customers. json?keywords=bob&page=0") .
respond (500, 'Internal Server Error');
spyOn(window, "alert");

1)

The respond function’s arguments are quite flexible. Before, we passed an object
as the first argument. In that case, $httpBackend interprets that as an HTTP
200 response, returning the given object as JSON. Here, we're using a num-
ber—500—which is interpreted as an HTTP status code. This should trigger
the error callback in the search function in our controller.

To test that this is the case, we want to assert that our customers list is still
empty and that window.alert was called with the “There was a problem: 500"
string. We can test the latter with the matcher toHaveBeenCalledWith, which
asserts that a given function was called and that it was called with particular
arguments.

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/testing/angular-unit-test/shine/app/assets/javascripts/customers_app.js
http://media.pragprog.com/titles/dcbang/code/testing/angular-unit-test/shine/spec/javascript � p/controllers/customer_search_controller_spec.js
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

vy

Chapter 6. Test This Fancy New Code ® 116

testing/angular-unit-test/shine/spec/javascript ... p/controllers/customer_search_controller_spec.js
it("alerts the user on an error", function() {
scope.search("bob");
httpBackend. flush();
expect(scope.customers).toEqualData([]);
expect(window.alert).toHaveBeenCalledWith(
"There was a problem: 500");

1)
Running our test, we can see that it passes.

$ bundle exec rake teaspoon

Starting the Teaspoon server...

Puma 2.11.1 starting...

* Min threads: 0, max threads: 16

* Environment: test

* Listening on tcp://0.0.0.0:64968

Teaspoon running default suite at http://127.0.0.1:64968/teaspoon/default

Finished in 0.02400 seconds
4 examples, 0 failures

For completeness, let’s see it fail by expecting a different message.

it("alerts the user on an error", function() {
scope.search("bob");
httpBackend. flush();
expect(scope.customers).toEqualData([]);
expect(window.alert).toHaveBeenCalledWith("OH NOES! 500");

1)
$ bundle exec rake teaspoon
Teaspoon running default suite at http://127.0.0.1:64993/teaspoon/default
..F.
Failures:
1) CustomerSearchController Error Handling alerts the user on an error
Failure/Error: Expected spy alert to have been called with
[ '"OH NOES!' ]
but actual calls were
[ 'There was a problem: 500' ]

Finished in 0.04000 seconds
4 examples, 1 failure

You've now seen how to set up unit test running in your Rails apps using
Teaspoon and Jasmine. You learned how to write a unit test for your Angular
code, including using some mock objects provided by Angular. Finally, you
saw how to use Jasmine’s test spies to assert your code is calling the external
functions you expect it to. These are the building blocks you need to write
tests for your front-end code.

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/testing/angular-unit-test/shine/spec/javascript � p/controllers/customer_search_controller_spec.js
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Next: Level Up on Everything ® 117

Next: Level Up on Everything

You learned a ton in this chapter about testing our Rails application at every
level of the stack. Now that we can test anything from database constraints,
to JavaScript functions, to end-to-end user interactions, we're ready to move
on to more complex features.

Now it’s time to up our game on everything. Over the next several chapters,
we’ll build a complex customer detail view. This will be a great chance to learn
how to design a dense Ul with Bootstrap, wrangle multiple data sources with
Angular, and optimize complex queries inside Postgres. But first, we need to
turn our simple search screen into a single-page app by learning about
Angular’s router and navigation services.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

SINGLE-PAGE APP

T

Angular Rails
Templates

CHAPTER 7

Create a Single-Page App
Using Angular's Router

At this point, we are starting to feel confident. We experimented with some
powerful features of Postgres, quickly made great-looking screens with Boot-
strap, and created a dynamic user interface without a lot of code thanks to
Angular. We also have rock-solid tests for every part of it. Now, it’s time to
level up.

In this chapter, we're going to turn our simple customer search feature into
a full-fledged single-page app by using Angular’s router and navigating users
between pages, all within the browser. You'll learn how to manage your
Angular views in different templates—just like we do in Rails—and have them
play well with the asset pipeline.

We'll implement the first part of a feature we’ll be building over the next few
chapters. The feature is a detailed view of the customer’s information, which
includes more data than we saw on the result page, and requires pulling in
data from many different sources, all viewable on one screen, as shown in
the screenshot on page 120.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 7. Create a Single-Page App Using Angular’s Router ® 120

Q00 Shine: Customer 1234 =)
D@ + @ hitp://shine.example.com/customers/T234 x Google

Customer Info (Billing Info

| Bob | | Jones l | @ " bobert1234 | VISA  sxxx_xxxxx%%%x.1234  Expires 12/18

| bobbyj@somewhere.net | JOINED 2/13/2014 | View at Payment Processor... |
Shipping Address Billing Address [:] Same as Shipping?

123 Any St
| 123 Any St |
Hide if “Same
Unit 101 as Shipping”
| Unit 101 | " checked

| |Washington ||DC ||20002 |

| Washington | | DC | | 20002

<P

To get us started, we’ll turn our existing Angular app into a single-page
application that allows navigating from the search results to the detailed view
(which will initially just be bare-bones).

ot 1_1 kBees:  —

Bob

< Prev Next p

Customer Info illing Info

[—— |

- .| (Shipping Address

Bob Jones JOINED 10/12/2014

bjones18@somewhere.net

Details...

Darrell Bobbins JOINED 1/13/2014

bjones18@somewhere.net

Doing this will demonstrate how to use Angular’s router—which is at the
heart of any Angular app—as well as some Angular services for navigation
and URL parsing. You'll also learn how to serve up Angular templates using
the asset pipeline. Once we've done that, we can add a second view to our
Angular app, and set up navigation between the search results and the
fledgling details view.

First, let’s set up the router.

www.it-ebooks.info

report erratum -« discuss


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Using Angular’s Router for User Navigation © 121

Using Angular’s Router for User Navigation

Like Rails, Angular has a way to support navigation-by-URL. Because Angu-
lar’s design ethos is based around flexibility, an Angular app isn’t required
to use the router, though in most cases you would, and would set it up from
the start. We didn’t initially, just to keep our introduction to Angular as
simple as possible and reduce the number of new concepts you had to absorb.

Now, we’ll need to convert our existing Angular app to use the router.

Currently, our Angular app hard-codes both the view and the controller. The
view is hard-coded by virtue of having all the HTML inside <article ng-app="cus-
tomers'>. The controller is hard-coded by the use of the ng-controller directive.
We'll break that hard-coding with the router.

To accomplish this, we’ll do three things. First, we install the angular-route
module, which provides the router itself. Next, we’ll configure it with a single
route to match what we have now—a single slash (/) should render the cus-
tomer search view. Finally, we’ll extract our existing view code into a stan-
dalone template, which will require using a Rails plugin called angular-rails-
templates to help with asset pipeline integration.

Installing Angular’s Router

Because Angular is highly configurable and flexible, there’s no router installed
by default. Instead, we’ll need to install the module angular-route, which we
can do by adding it to Bowerfile and running rake bower:install.

complex-views/setup-angular-router/shine/Bowerfile
asset 'angular-route'

We'll need to bring it into the asset pipeline by adding it to
app/assets/javascripts/application.js.

complex-views/setup-angular-router/shine/app/assets/javascripts/application.js
//= require angular
//= require angular-route

Although we've installed angular-route and configured it to be available via the
asset pipeline, our Angular app won’'t be able to just start using it. Our
Angular app needs to explicitly bring the module in as a dependency. This is
more of Angular’s configurability and flexibility—even though most apps will
use Angular’s router, not all apps will, so Angular wants us to opt in to use
the router.

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/complex-views/setup-angular-router/shine/Bowerfile
http://media.pragprog.com/titles/dcbang/code/complex-views/setup-angular-router/shine/app/assets/javascripts/application.js
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 7. Create a Single-Page App Using Angular’s Router ® 122

Each Angular app, when declared, has a list of dependent modules. If you
recall, when we declared our app using angularmodule, the second argument
was an empty array:

var app = angular.module('customers',[]);

That argument is our app’s list of dependent modules. It’s currently empty,
because we haven’'t needed anything other than what’s provided by Angular.
Now, we’ll need to add angular-route to this array.

Unfortunately, it's not as simple as adding "angularroute" to the array. In
Angular, the module name for declaring dependencies doesn’t have to be the
same as the name of the module we downloaded. For official Angular-provided
modules this is unfortunately the case.

By convention, the name to use in code for an Angular module can be derived
by replacing the angular- with ng and camel-casing the remaining module name.
That means that angular-route becomes ngRoute and so "ngRoute" is the string to
add to our list of dependencies.

var app = angular.module(

‘customers',

[

‘ngRoute’

]
)i
Now that we've installed angular-route, the next step is to use the router to
configure a single route.

Configuring the Router

At a high level, configuring Angular’s router is similar to adding routes to
Rails’s config/routes.rb. But Angular’s router could be thought of as one level
lower in abstraction. Rails deals in resources and actions, deriving the names
of the controllers, URLs, and views. Angular’s router deals directly at that
level, requiring you to map URLs to controllers and views.

The route our app is using now is effectively /, even though we haven’t set it
anywhere. If you expected me to say that our Angular app was using the route
[customers, you are not alone in getting confused about Angular routes versus
Rails routes.

When talking about an Angular app with Rails, there are three routes in play:

e The full URL that users see in their browser. In our development environ-
ment, that’s http:/localhost:3000/customers.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Using Angular’s Router for User Navigation © 123

e The Rails route, which Rails uses to figure out which controller and view
to use. In our case, that’s /customers.

e The Angular route, which is relative to the URL that rendered the ng-app
directive. In our case, that’s /.

Because the Rails route /customers caused the CustomersController to render the
index action, which, in turn, rendered app/views/customers/index.html.erb, which
contains the ng-app directive, all routes visible to the Angular app are relative
to /customers and thus our app’s route is /.

This may seem confusing, but you’ll get used to it. It will make a bit more
sense when we add the route for our new view in the next section, but let’s
configure our existing view to use the router.

Converting Our Existing View to an Angular Template

To configure routes using angular-route, we need access to the object $routeProvider.
This object has a function named when that allows us to configure the controller
and template to use for a given URL.

Like $http and $scope in our Angular app, and $controller in our tests, we need
to arrange for Angular to pass $routeProvider into a function that we've defined,
so that we can call functions on it. Angular apps provide the function config
that will do just that.

In app/assets/javascripts/customers_app.js, you'll remember we assigned our Angular
app to the variable app. We can then call config on app, passing it an array
similar to the one we used to define our controller in Creating Our First
Angular Controller, on page 67. That array has two elements. The first is the
string "$routeProvider", which is the name Angular uses to store the object
$routeProvider in its internal registry. The second is our function that will be
given the actual $routeProvider as an argument.

complex-views/setup-angular-router/shine/app/assets/javascripts/customers_app.js
app.config([
"$routeProvider",
function($routeProvider) {

// configure our routes here...

}
1);

As you do more Angular, you'll find that most of your setup and configuration
of components happens inside the function you pass to config. That function

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/complex-views/setup-angular-router/shine/app/assets/javascripts/customers_app.js
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

YYVYY

Chapter 7. Create a Single-Page App Using Angular’s Router ¢ 124

is a general place for you to set up anything you need before the Angular app
starts.

Now that we've configured our function to get $routeProvider passed into it, we’ll
tell it that we’d like to use the controller CustomerSearchController for the URL /.
We also need to give it a view template, so well use the name "cus-
tomer_search.html" (which we’ll fill in later with our view code). We can register
this route using the when function.

complex-views/setup-angular-router/shine/app/assets/javascripts/customers_app.js
app.config([
"$routeProvider",
function($routeProvider) {

$routeProvider.when("/", {
controller: "CustomerSearchController",
templateUrl: "customer_search.html"
1)
}
1);

We're almost done. The last step is to move our view template code out of
app/views/customers/index.html.erb and into the file specified in our routing config,
customer_search.html. To do that, we need to know where that file goes, and how
Angular will access it at runtime. This requires configuring the asset pipeline
to serve Angular templates.

Serving Angular Templates from the Asset Pipeline

The way we've configured our routes, Angular will ask the server for the file
[customer_search.html, which will result in a 404. We could place our view file in
public, but most Rails deployments do not serve static assets from that direc-
tory, preferring to serve them from a CDN or a web server. Ideally, we want
our templates managed the same as all other assets—through the asset
pipeline.

That this is an HTML file poses a bit of a challenge, especially if we are using
a CDN. Because our assets would be served from a different server on a dif-
ferent domain than our Rails application, most browsers won't allow Angular
to fetch the HTML file without configuring the CDN server for cross-origin
resource sharing (CORS). That can be complicated to do and hard to debug.

Instead, we’ll arrange for our templates to be compiled into JavaScript, so
they’ll be bundled in our application’s asset bundle, the same as all our other
JavaScript. We can do this with the Rails plugin angular-rails-templates. This

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/complex-views/setup-angular-router/shine/app/assets/javascripts/customers_app.js
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

vy

Serving Angular Templates from the Asset Pipeline ® 125

gem will handle compilation of our HTML templates and the necessary config-
uration within Angular to make it all work.

First, we’ll add angular-rails-templates to the Gemfile:

complex-views/setup-angular-router/shine/Gemfile
gem "angular-rails-templates"
gem "sprockets", "~> 2.0"

Sprockets and angular-rails-templates Compatibility

You'll note that we've pinned Sprockets to 2.x. Sprockets is the

basis of the asset pipeline and a change in version 3.x breaks

angular-rails-templates. Currently, there is no workaround; however,
Q Sprockets 2.x is perfectly fine for our use. Specifying it in the

Gemfile ensures we get compatible versions. Note that you may need

to run bundle update after making this change so that Bundler will

update all dependent gems.

After we install it with bundle install, we’ll need to add it to
app/assets/javascripts/application.js. angular-rails-templates assumes our HTML templates
are in app/assets/javascripts/templates and requires us to add that directory to our
application’s JavaScripts bundle as well.

complex-views/setup-angular-router/shine/app/assets/javascripts/application.js
//= require angular-route

//= require angular-rails-templates

//= require tree ./templates

//= require tree .

app/assets/javascripts/templates may seem like an odd place for templates. angular-
rails-templates allows you configure this location, but it’s usually easier to stick
with defaults when learning something new. So, even though it doesn’t feel
like the right place, we’ll stick with it for now.

The JavaScript code included with angular-rails-templates is an Angular module
that our Angular app must depend on (much the way it had to depend on the
router). The name of the included module is templates, so we need to modify
our Angular app’s dependencies like so:

complex-views/setup-angular-router/shine/app/assets/javascripts/customers_app.js
var app = angular.module(
‘customers',
[
‘ngRoute’,
'templates’
]
)

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/complex-views/setup-angular-router/shine/Gemfile
http://media.pragprog.com/titles/dcbang/code/complex-views/setup-angular-router/shine/app/assets/javascripts/application.js
http://media.pragprog.com/titles/dcbang/code/complex-views/setup-angular-router/shine/app/assets/javascripts/customers_app.js
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 7. Create a Single-Page App Using Angular’s Router ® 126

With that configuration, we can move all the markup inside the outermost
<article> tags into app/assets/javascripts/templates/customer_search.html. We’'ll also remove
the use of ng-controller from app/views/customers/index.html.erb. Lastly, we need to
add an HTML element there with the ng-view directive. This allows Angular to
know where to put the view. Ultimately, app/views/customers/index.html.erb will look
like this:

complex-views/setup-angular-router/shine/app/views/customers/index.html.erb
<article ng-app="customers">

<div ng-view></div>
</article>

We'll also need to remove the use of the Rails partials for the pagination
controls, since Rails partials won’t work inside Angular. We can do this by
simply inlining the markup, like so:

<section class="search-results" ng-if="customers.length > 0">
<header>
<hl class="h3">Results</hl>
</header>
<nav>
<ul class="pager">
<li class="previous">

<a href="" ng-click="previousPage()">&larr; Previous</a>
</li>
<li class="next">
<a href="" ng-click="nextPage()">Next &rarr;</a>
</1i>
</ul>
</nav>
<!-- Rest of the markup -->

<nav>
<ul class="pager">
<li class="previous">
<a href="" ng-click="previousPage()">&larr; Previous</a>
</li>
<li class="next">
<a href="" ng-click="nextPage()">Next &rarr;</a>
</li>
</ul>
</nav>
</section>

With all that configuration out of the way, Shine should work the same way
it did before. We can verify this by running our test suite and verifying that
nothing has broken.

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/complex-views/setup-angular-router/shine/app/views/customers/index.html.erb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Adding a Second View and Controller to Our Angular App ® 127

$ bundle exec rake
Randomized with seed 46987

Finished in 6.4 seconds (files took 2.59 seconds to load)

26 examples, 0 failures

$ bundle exec rake teaspoon

Teaspoon running default suite at http://127.0.0.1:50159/teaspoon/default

Finished in 0.03000 seconds
4 examples, 0 failures

Now that we've refactored our Angular app to use the router, we can easily
add our detail view and the necessary links to let the user navigate to it.

Adding a Second View and Controller to Our Angular App

Now that we've installed and configured Angular’s router, we can add the
detail view. In this section, we’ll set up some navigation from our existing
search results view to the detail view, which will initially just be a bare-bones
view to validate that the navigation and back end are working.

Our initial back end will just expose the data we already have and do so in a
minimal way. We're just trying to get navigation working, so we don’t want
to get bogged down in UI design or complex back-end integrations—we’ll see
that in the chapters to come.

To make our bare-bones view, we'll need to do three things: add navigation
to a new route that uses a new view and controller, design the bare-bones
version of the view, and have its controller make an Ajax call to Rails to get
the customer details.

Navigating from One View to Another

In Rails, we create navigation by using a helper like link_to, which creates an
a element in HTML. We give link_to an argument, which is usually the result
of calling the Rails URL helper of the route you want the user to navigate to
—for example, customers_path. In Angular, it’s a bit different.

The Angular view is designed much more like a user interface than a docu-
ment, so to link the user from one route to another, we bind the click action
on an element to a function. We saw something similar in Chapter 5, Build
a Dynamic UI with AngularJS, on page 61, where we created a binding between
the change event of our text field and the search method of our controller, using

the ng-change directive.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

YYYYYVYY

Chapter 7. Create a Single-Page App Using Angular’s Router ¢ 128

Here, we’ll use the ng-click directive on a new button we’ll add to each search
result. That directive will bind to the function viewDetails, which will handle
the navigation. First, let’s see how that looks, and then we’ll see how to
implement viewDetails, before finally adding our new route.

Adding the Navigation Button

We want the button that navigates the detail view to be named View Details
and appear in the bottom right of the search result list view component. We
can do that using the pull-right class, provided by Bootstrap, the same as we
did for the last login field.

complex-views/navigation-to-new-view/shine/app/assets/javascripts/templates/customer_search.html
<ol class="list-group">
<li class="list-group-item clearfix"
ng-repeat="customer in customers">
<div class="pull-right">
<button class="btn btn-small btn-primary"
ng-click="viewDetails(customer)">
View Details..
</button>
</div>
<h4>{{ customer.email }}</h4>
</li>
</ol>

The search results now contain a button to allow viewing the customer details:

Customer Search
bobby

Results
+ Previous Next —
Berniece Bobby kiaras Jomeo Dec 1, 2015
zella5@ullrich.net View Detalls...
« Previous Next —

Note that we need to put the button before the email so that the email flows
to the left of the button (since this is what pull-right does). Note also that the
value for ng-click contains the call to viewDetails, including the argument customer.
When we click a button, Angular will pass in the right customer to our func-
tion, based on which result we clicked on.

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/complex-views/navigation-to-new-view/shine/app/assets/javascripts/templates/customer_search.html
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

vy

Adding a Second View and Controller to Our Angular App ¢ 129

Now, we’ll see how to implement viewDetails by using an Angular service to
navigate the user to a different route.

Navigating Between Routes

Angular has a service named $location that allows us to change the route that
the user is using. It has a function path, which takes, as an argument, the
new route we want the user to navigate to.

Unlike with Rails, where the view ultimately contains the route embedded in
an HTML attribute, Angular has a level of indirection between the user action
and the routing, namely the function we gave to ng-click. It results in a bit more
code, but keeps a better separation between the view and the code that
responds to user actions.

Like the other Angular service we've seen—S$http—S$location can be passed to
our controller function by placing the string "$location" in the argument list
and adding an argument to the function at the end of that list (see Creating
Our First Angular Controller, on page 67 for a refresher on how this argument
list works).

complex-views/navigation-to-new-view/shine/app/assets/javascripts/customers_app.js
app.controller("CustomerSearchController", [
'$scope', '$http', '$location',
function($scope , $http , $location) {

// rest of controller....

With the $location service getting passed in, we can now use it to route the user
to the new view.

Routing Using the $location Service

As we mentioned, the function path on $location is the function we can use to
route the user. path takes a string argument representing the path we want
to route to. Because of Angular’s flexibility, we can use any path we’d like.

Since we're getting a detail view of a single customer, the path should have
the customer ID in it, so that the controller we’ll write later can grab that ID
out of the URL (just like we would in Rails), and request the details for the
right customer. In Rails, we’d use the URL /customers/1234 for the detail view of
the customer with ID 1234.

Remember that the Rails portion of the URL for our Angular app is /customers/
That’s why the route for our customer search is just /—our Angular app is
just about customers. An additional /customers would be redundant. There’s
no sense in routing the user to the Angular route /customers/1234, because the

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/complex-views/navigation-to-new-view/shine/app/assets/javascripts/customers_app.js
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

YYVYY

Chapter 7. Create a Single-Page App Using Angular’s Router ¢ 130

URL in the user’s browser would be http://localhost:3000/customers#/customers/1234.
So, let’s use /1234 as the route to our detail view.

Given this, the implementation of viewDetails will simply create the URL using
the customer’s ID like so:

complex-views/navigation-to-new-view/shine/app/assets/javascripts/customers_app.js
$scope.viewDetails = function(customer) {
$location.path("/" + customer.id);

}

To make this URL actually route the user somewhere, when we pass it to path,
we’ll need to configure the route (similar to how we would configure a Rails
route in config/routes.rb). Just as in Rails, Angular routes can have dynamic
information in them. Angular even uses the same string format—:d. So, our
route for the detail view will be /:id, and we’ll use a new, unwritten, controller
named CustomerDetailController.

complex-views/navigation-to-new-view/shine/app/assets/javascripts/customers_app.js
app.config([
"$routeProvider",
function($routeProvider) {
$routeProvider.when("/", {
controller: "CustomerSearchController",
templateUrl: "customer search.html"
}) .when("/:1id",{
controller: "CustomerDetailController",
templateUrl: "customer detail.html"
s
}
1);

Now when we click the View Details button on one of our search results, say
customer 1234, Angular will set the user’s route to /1234 (which, remember,
results in a complete URL of http://localhost:3000/customers#/1234). Setting that
route will cause the router to display the view in app/assets/javascripts/templates/cus-
tomer_detail.html and use the controller CustomerDetailController.

Since neither of them exists yet, you’'ll see an error if you open the JavaScript
console in your browser. In the next section, we’ll create them.
Creating and Rendering the Bare-bones View

To close the loop on navigation and routing, we just want to create the most
basic view we can of the customer data we have. We'll design the full detail
view in the next section, and then learn how to retrieve the data it needs in
the next chapter. For now, we’ll just show the data we have.

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/complex-views/navigation-to-new-view/shine/app/assets/javascripts/customers_app.js
http://media.pragprog.com/titles/dcbang/code/complex-views/navigation-to-new-view/shine/app/assets/javascripts/customers_app.js
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Adding a Second View and Controller to Our Angular App ® 131

To do that, we need to create the view markup itself, and then create a new
controller to make the appropriate Ajax call to the server.

Creating the View Markup

Per our configuration of this route, the view markup should be in
app/assets/javascripts/templates/customer_detail.html. Since we're going to rework this
view in the next section, we just need something to show dynamic data in it.
So, we'll put each field we have on our customer inside the appropriate h tag.

complex-views/navigation-to-new-view/shine/app/assets/javascripts/templates/customer_detail.html
<article class="customer-details">
<h1>Customer {{customer.id}}</hl>
<h2>{{customer.first name}} {{customer.last name}}</h2>
<h3>{{customer.email}}</h3>
<h4>{{customer.username}}</h4>
<h5>
<small class="text-uppercase">Joined</small>
{{customer.created_at | date}}
</h5>
</article>

The way this view is written, it's expecting an object named customer to be
exposed on the scope from the controller. Let’s create the controller first, and
then we’ll make an Ajax call to the server to fill in $scope.customer.

Creating the Controller

Our controller ultimately needs to make an Ajax call to our Rails back end,
and to do that, it needs to extract the customer ID out of the route. Angular
provides a service named $routeParams that can do just that. Because we’ll be
making an Ajax call, we know we’ll also need the $http service, so we’ll create
our new controller, much as we did with CustomerSearchController, so that it
accepts these as parameters.

complex-views/navigation-to-new-view/shine/app/assets/javascripts/customers_app.js
app.controller("CustomerDetailController", [
"$scope","$http","$routeParams",
function($scope , $http , $routeParams) {

// Make the Ajax call and set $scope.customer. ..

}
1);

Our controller is all ready to be implemented.

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/complex-views/navigation-to-new-view/shine/app/assets/javascripts/templates/customer_detail.html
http://media.pragprog.com/titles/dcbang/code/complex-views/navigation-to-new-view/shine/app/assets/javascripts/customers_app.js
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 7. Create a Single-Page App Using Angular’s Router ® 132

Implementing the Detail View’s Controller

To implement the controller we’ll need to flesh out the function for our Cus-
tomerDetailController so that it makes an Ajax call to our Rails application, and
we’ll need to then implement the Rails side.

Since we know how to write unit tests for our controllers, let’s use test-driven
development (TDD) to drive this test. This will demonstrate a difference
between CustomerDetailController and CustomerSearchController, namely that CustomerDe-
tailController makes the Ajax call when it loads, not when the user initiates an
action.

First, we’ll set up the same sort of boilerplate we saw before. This is mostly
declaring variables we’ll need in the test, but we’ll also create the test customer
we’ll pretend is being sent to our controller from the back end.
complex-views/navigation-to-new-view/shine/spec ... p/controllers/customer_detail_controller_spec.js

describe("CustomerDetailController", function() {
describe("Initialization", function() {

var scope = null,
controller = null,
id = 42,
httpBackend = null,
customer = {
id: id,

first name: "Bob",

last_name: "Jones",

username: "bob.jones",

email: "bobbyj@somewhere.net",
created at: "2014-01-03T11:12:34"

b
beforeEach(module("customers"));

Next, we’ll set up the controller. Much of this code will look similar to what
we saw in Chapter 6, Test This Fancy New Code, on page 83, but I've high-
lighted a few differences. First, you'll notice we're injecting $routeParams into
our setup. This service allows our controller to access the dynamic parts of
the route. So, when our route indicated :id as part of the route, the value at
runtime will be available from $routeParams.id. So, we set that explicitly in our
test.

You'll also notice that we've set our expectations on httpBackend before we call
$controller. This is because calling $controller will execute the controller function,
and we want that function to make the Ajax call automatically. So, we need
to configure what call we're expecting and how it should respond first.

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/complex-views/navigation-to-new-view/shine/spec � p/controllers/customer_detail_controller_spec.js
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

YYVYY

Adding a Second View and Controller to Our Angular App ® 133

complex-views/navigation-to-new-view/shine/spec ... p/controllers/customer_detail_controller_spec.js
beforeEach(inject(function ($controller,
$rootScope,
$routeParams,
$httpBackend) {
$rootScope.$new();
$httpBackend;

scope
httpBackend

$routeParams.id = id;

httpBackend.when('GET','/customers/' + id + '.json').
respond(customer);

controller = $controller("CustomerDetailController", {
$scope: scope

b
)

Lastly, we conduct our test. Our test is that our controller has set $scope.customer
to have the same data as the customer we configured as a response to the Ajax
call.

complex-views/navigation-to-new-view/shine/spec ... p/controllers/customer_detail_controller_spec.js
it("fetches the customer from the back-end", function() {

httpBackend. flush();

expect(scope.customer).toEqualData(customer);
1)

When we run our test via rake teaspoon, we should see a failure.

$ bundle exec rake teaspoon

Starting the Teaspoon server...

* Listening on tcp://0.0.0.0:63241

Teaspoon running default suite at http://127.0.0.1:63241/teaspoon/default
Fo.o..

Failures:

1) CustomerDetailController Initialization fetches the customer
from the back-end
Failure/Error: Error: No pending request to flush ! in
http://127.0.0.1:63241/assets/angular-mocks/angular-mocks....

Finished in 0.03900 seconds
5 examples, 1 failure

This failure is expected, since we haven’t implemented the controller yet.

To do that, we use $http in a fashion similar to what we saw in CustomerSearch-
Controller. Since we’ll be hitting Rails to get the customer data, we’ll want to

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/complex-views/navigation-to-new-view/shine/spec � p/controllers/customer_detail_controller_spec.js
http://media.pragprog.com/titles/dcbang/code/complex-views/navigation-to-new-view/shine/spec � p/controllers/customer_detail_controller_spec.js
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 7. Create a Single-Page App Using Angular’s Router ¢ 134

trigger the show action of CustomersController, which means we want to build a
URL like /customers/1234.json.

As mentioned, $routeParams provides access to the specific ID from the Angular
route, so we’ll set that in the variable customerld. We then use that to build the
URL to pass to $http’s get method and, inside the success callback (which you’ll
recall is the first argument to then), we set $scope.customer to the value we get
(note also that we initialize it to {}, which is purely a stylistic choice to make
it clear what we’ll be exposing to the view).

complex-views/navigation-to-new-view/shine/app/assets/javascripts/customers_app.js
app.controller("CustomerDetailController", [
"$scope","$http","$routeParams",
function($scope , $http , $routeParams) {
var customerId = $routeParams.id;
$scope.customer = {};

$http.get(
"/customers/" + customerId +
) .then(function(response) {
$scope.customer = response.data;
}, function(response) {
alert("There was a problem: " + response.status);

}

.json"

);
}
1);

With this code in place, our controller should now work as expected when we
run our test.

$ bundle exec rake teaspoon
Starting the Teaspoon server...
Teaspoon running default suite at http://127.0.0.1:63375/teaspoon/default

Finished in 0.03300 seconds 5 examples, 0 failures

The last thing to do is to implement the actual endpoint on the Rails side.
Fortunately, this is Rails’s bread and butter, so it’s only a few lines of code.

First, we’ll add the :show route in config/routes.rb:

complex-views/navigation-to-new-view/shine/config/routes.rb
resources :customers, only: [ :index, :show ]

Then, we’ll implement the show method in CustomersController:

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/complex-views/navigation-to-new-view/shine/app/assets/javascripts/customers_app.js
http://media.pragprog.com/titles/dcbang/code/complex-views/navigation-to-new-view/shine/config/routes.rb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Next: Design Using Grids ® 135

complex-views/navigation-to-new-view/shine/app/controllers/customers_controller.rb
def show
customer = Customer.find(params[:id])
respond_to do |format|
format.json { render json: customer }
end
end

Now, when we run our app, search for users, and get the details of one of
them, our bare-bones view works as expected.

Customer 97
Robert Harber

brian_bruen@howell.name
alexzander

JoNeD Dec 1, 2015
Rails makes the middleware part of this dead simple. We had a few lines of
configuration for the new route, a line of code to navigate there from the
search results page, and a few more lines to fetch the customer details from
the server. Angular provided all the heavy lifting with $routeParams and $location.

We've now explored the basics of making a single-page application using
Angular. We can use Angular’s built-in router to configure various routes,
controllers, and views. We can serve those views up using the asset pipeline,
and make use of built-in Angular services like $routeParams and $location to allow
the user to navigate between them.

Next: Design Using Grids

With this scaffolding set up, we can now set about the more difficult task of
designing the actual detail view. In the next chapter, you'll learn about
Bootstrap’s grid, as well as various components Bootstrap provides.

These features of Bootstrap will unlock your inner web designer and allow
you to easily mock up, design, and implement complex user interfaces without
writing any CSS.

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/complex-views/navigation-to-new-view/shine/app/controllers/customers_controller.rb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

’ DETAIL VIEW PAGE DESIGN

Bootstrap Grid @@

CHAPTER 8

Design Great Uls with
Bootstrap’s Grid and Components

At the start of Chapter 7, Create a Single-Page App, on page 119, we saw a
mock-up of the customer detail view. We're going to build this page now to
learn about the true power of Bootstrap—its grid. We’'ll also examine some of
Bootstrap’s many components, which will allow us to create a polished and
visually appealing user interface.

We'll tackle this topic in three parts. First, I'll provide some background on
grid-based design. This will help you understand why Bootstrap is based on
a grid, and how you can break down any UI into grids, to make your work
easier. Next, you'll lay out the customer detail screen I hinted at in the previous
chapter, using Bootstrap’s grid to make it easy. Finally, you'll use various
Bootstrap components, such as panels and labels, to polish up our Ul. By
the end of the chapter you’ll have a solid foundation in building user interfaces
with Bootstrap, and even a bit of confidence in designing them yourself. You’ll
still be a far cry from being a “real” web designer, but you’ll be able to do
common, simple tasks on your own.

We saw the mock-up in the previous chapter, but here it is again, in a
slightly expanded form, so you know where we're headed:

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 8. Design Great Uls with Bootstrap’s Grid and Components ® 138

(oYY Shine: Customer 1234 [
(«]») (+[@ http://shine.example.com/customers/T234 )¢ )
Customer Info Billing Info
‘ Bob ‘ ‘ Jones ‘ ‘ @ H bobert1234 ‘ VISA  #xxx_xxxx_xx%%.1234  Expires 12/18
‘ bobbyj@somewhere.net ‘ JOINED 2/13/2014 ‘ View at Payment Processor... ‘
Shipping Address Billing Address D Same as Shipping?
123 Any St
‘ 123 Any St ‘
Hide if “"Same
Unit 101 as Shipping”
‘ Unit 101 ‘ checked
- Washington ‘ ‘ DC ‘ ‘ 20002
‘ Washington ‘ ‘ DC ‘ ‘ 20002 ‘

Let’s learn about the grid and how it helps us create user interfaces.

The Grid: The Cornerstone of a Web Design

I don’t know about you, but looking at a complex layout like the one we're
going to build gives me a bit of anxiety. It’s not just that CSS can be difficult
to use, but it’s also not immediately clear how to wrangle all the parts of this
design.

Like functional decomposition in programming, a grid is how we can decom-
pose a user interface into smaller parts. We can focus on each part of our
design, and rely on the grid to keep everything looking visually cohesive.

A grid is more or less what it sounds like—a means of aligning elements along
a fixed horizontal and/or vertical axis. You might not have realized it, but
you've been using a grid already. By just using Bootstrap’s default styles and
form classes, the forms we created in Chapter 1, Create a Great-Looking Login
with Bootstrap and Devise, on page 1 (as well as the search results from
Chapter 4, Create Clean Search Results, on page 51) are using a horizontal
grid. This means that each row of information is spaced in a particular way
to make the text and other elements pleasing and orderly.

www.it-ebooks.info

report erratum -

discuss


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

The Grid: The Cornerstone of a Web Design ¢ 139

For the view here, we need a vertical grid, which allows us to place content
into side-by-side columns. This is how we’ll achieve most of the layout we
want. Bootstrap provides a set of CSS classes that allow us to create a grid.
Under the covers, it uses CSS floats, which can get messy quickly, but Boot-
strap’s grid abstracts that away.

Bootstrap’s grid has 12 columns. You can combine columns in any way you
like to make larger columns, without disrupting the flow and spacing of the
grid. For example, you could have a two-column layout where the first column
is 25% of the entire width, leaving the remaining 75% for the second column,
or you could have three columns of equal size, each taking 33% of the available
width.

If you think about your design in terms of rows and columns, you can start
to see the grids pop out of our design. You can see two grid cells, each taking
50% of the available space, for the main columns of our design, but you can
also see a grid nested in each form. The city/state/zip part of the shipping
address could be thought of as a grid where the city takes 50% (six grid cells),
the state takes 17% (or two grid cells), and the zip code takes the remaining
33% (or four grid cells).

Q00 Shine: Customer 1234 (=)
EE)@& http://shine.example.com/customers/T234 Y C )
--------- GRID CELL 50% GRID CELL 50%
* [Customer Info * *Billing Info
Bob Jones @ | bobert1234 VISA  sxxx_xxxx_%%%¥%x.1234  Expires 12/18
bobbyj@somewhere.net JOINED 2/13/2014 ] View at Payment Processor...
- (Shipping Address Billing Address Same as Shipping?
123 Any St
123 Any St
Hide if "Same
d as Shipping”
- Unit 101
Unit 101 1 m checked
:'_ - - - == ]I— _'I_ P ] Washington DC 20002
NESTED 50%
L _.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 8. Design Great Uls with Bootstrap’s Grid and Components ¢ 140

What this means is that, if we have sufficiently generic CSS classes that allow
us to place content into grid cells, and to place those cells into rows, and to
nest grids within each other, all with proper padding, spacing, and margins,
we can break up any design into a series of grids.

This is exactly what Bootstrap’s grid system will do.

Using Bootstrap’s Grid

Bootstrap’s grid is quite powerful, especially if you've never used one before.
In this section, we’ll build the layout for our view using Bootstrap’s grid. As
we saw in the previous section, our layout starts with two equal-sized grid
cells: one that holds the customer information and shipping address, and the
other that holds the billing information.

First, we’ll create these cells, which will demonstrate the various CSS classes
needed to enable Bootstrap’s grid. Then, we’ll see how the grid can nest
within itself to lay out the customer information and shipping address as a
grid-within-a-grid.

Laying Out the Two Main Columns

The most obvious grid in our design is one that holds the two main columns,
each taking half the available space. To do this, we’ll create two nested div
tags inside a parent div, giving each the appropriate CSS class—provided by
Bootstrap—to lay it all out in a grid (see the sidebar on page 141 for some
details on why we’re using divs).

The outer div has the class row, which tells Bootstrap we're going to place
columns inside it. The divs inside the row has class col-md-X where X is the
number of columns, out of 12, that this particular column should take up.
As we want two equal-sized columns, we want each of our columns to take
up six of Bootstrap’s. Thus, each div will get the class col-md-6 (see Design for
Mobile Devices with Ease, on page 237 for what the -md- means).

We can add this markup to app/assets/javascripts/templates/customer_detail.html,
replacing the bare-bones markup we had there from the last section.

<form><div class="row">
<div class="col-md-6">
<h1>Customer</hl>
</div>
<div class="col-md-6">
<h1>Billing Info</h1l>
</div>
</div></form>

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Using Bootstrap’s Grid ® 141

Before HTML5, there weren'’t a lot of standard elements we could use to describe our
content. As a result, the div element came into favor as the way to organize content,
particularly for targeting by CSS styling. With the advent of HTML5, more meaningful
elements are available, such as article, section, header, and footer.

Because of this, the W3C recommends that div be used only as a last resort,? when
no other elements are available.

What this means is that we want to use the right tags when describing our content,
regardless of the visualization we are going for. We can then use div tags to achieve
the layouts that we want. Since div is semantically meaningless, it allows anyone
reading our view templates to see clearly what parts of the view are for styling and
layout and what parts are for organizing the content.

So, the general rule of thumb is to use divs in cases where you need an element to
style against, and not as a way to describe content.

a. http://www.w3.0rg/TR/html5/grouping-content.html#the-div-element

If you bring this up in your browser, you'll see that our two headings are
shown side by side.

Customer Billing Info

Now, let’s tackle the content inside these columns. As we saw earlier, we can
think of each section of our page as having a nested grid inside this one.
Bootstrap’s grid works exactly this way.

Building Forms Using a Grid-Within-a-Grid

Bootstrap’s grid is not a fixed width, so whenever you write <div class="row">,
Bootstrap will divide up the grid in that row based on the available space.
This is a powerful feature of the grid system. Much like how we decompose
complex objects into smaller ones to make our code easier to understand, we
can decompose larger views into smaller ones using the grid.

By thinking of each page’s component as a grid, we can design that component
without worrying about where it is on the page. Bootstrap’s grid components
will make sure it works.

Let’s style the customer info section using the grid. We can see from our
mock-up that we have three rows, and the first row has three columns. Since
the second and third rows just have one column that takes up the entire row,

www.it-ebooks.info

report erratum -« discuss


http://www.w3.org/TR/html5/grouping-content.html#the-div-element
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

vy

Chapter 8. Design Great Uls with Bootstrap’s Grid and Components ® 142

we don’t need to use the grid markup for them. So, we just need to create a
grid for the first row.

We'll be using the form classes we saw in Chapter 1, Create a Great-Looking
Login with Bootstrap and Devise, on page 1, so hopefully this will look
familiar. The first name, last name, and username are all about the same size
data-wise, so we can create three equal-sized columns for them. Because

Bootstrap’s grid is 12 columns, we want each of our columns to take up four
of Bootstrap’s columns, so we’ll use the class col-md-4 on each div.

<form><div class="row">
<div class="col-md-6">
<h1>Customer</hl>
<div class="row">
<div class="col-md-4">
<div class="form-group">
<label class="sr-only" for="first-name">First Name</label>
<input type="text" class="form-control"
name="first-name" value="Bob">
</div>
</div>
<div class="col-md-4">
<div class="form-group">
<label class="sr-only" for="last-name">Last Name</label>
<input type="text" class="form-control"
name="last-name" value="Jones">
</div>
</div>
<div class="col-md-4">
<div class="form-group">
<label class="sr-only" for="username">Username</label>
<input type="text" class="form-control"
name="username" value="bobert123">
</div>
</div>
</div>
<div class="form-group">
<label class="sr-only" for="email">Email</label>
<input type="text" class="form-control"
name="email" value="bobbyj@somewhere.net">
</div>
<label for="joined">Joined</label> 12/13/2014
<h2>Shipping Address</h2>

Note that we used form-group on a different element as col-md-4. This isn’t tech-
nically required but is commonly done to separate concerns. Generally, you
want classes used for your grid to be separate from classes used for styling
so that you can be sure your grid doesn’t get messed up by styling classes.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Using Bootstrap’s Grid ¢ 143

Also, we can add more styling later without worrying about how the grid will
affect it. If we look at what we’ve done in our browser, we can see that it looks
pretty good!

Customer Billing Info

Bob Jones bobert123

bobbyj@somewhere.net
Joined 12/13/2014

Shipping Address

Up to now, we've created grid cells that are all the same size. Let’s lay out the
shipping address part of our page, which requires that some of the grid cells
be larger than others.

Using Grid Cells of Different Sizes

The main columns of our view, as well as the user info, all used grid cells of
the same size. That won’t work for the address views, since the city, state,
and zip code are all different sizes. It also won’t work for the credit card info
view, because the card number and type can be quite long, but we still need
room for the button that will (eventually) take the user to the payment proces-
sor’s page for the customer’s card.

In this section, we’ll style both of these views using different grid sizes. The
result will be a cohesive, well-laid-out page, even though the grid cells aren’t
the same size.

First, we’ll start with the addresses.

Laying Out the Addresses

In a typical US address, the state code is very short—two characters—and
the zip code is typically five or nine characters. So, let’s make a column for
the city—which is usually longer—that takes up half the available space. In
the remaining half, we’ll give the zip code two-thirds of the remaining space,
leaving the last third for the state code.

That works out to six columns for the city, two for the state code (since 6 +
3 is 2), and the remaining four for the zip code (the two street address lines
can use up an entire row each, so we don’t need the grid markup for them).

<h2>Shipping Address</h2>
<div class="form-group">
<label class="sr-only" for="street-address">
Street Address

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

vy

>

Chapter 8. Design Great Uls with Bootstrap’s Grid and Components ® 144

</label>
<input type="text" class="form-control"
name="street-address" value="123 Any St">
</div>
<div class="form-group">
<label class="sr-only" for="street-address-extra">
Street Address Extra
</label>
<input type="text" class="form-control"
name="street-address-extra" value="Unit 101">
</div>
<div class="row">
<div class="col-md-6">
<div class="form-group">
<label class="sr-only" for="city">City</label>
<input type="text" class="form-control"
name="city" value="Washington">
</div>
</div>
<div class="col-md-2">
<div class="form-group">
<label class="sr-only" for="state">State</label>
<input type="text" class="form-control"
name="state" value="DC">
</div>
</div>
<div class="col-md-4">
<div class="form-group">
<label class="sr-only" for="zip">Zip</label>
<input type="text" class="form-control"
name="zip" value="20001">
</div>
</div>
</div>

We can repeat this markup for the billing address, which just leaves us the
credit card info to style.

Laying Out the Credit Card Info

The credit card area has two distinct parts: the card info itself, and the button
that will link the user to the payment processor’s page for that card. We'll
give the card info seven of the twelve columns, and use the remaining five for
the button (these values might seem somewhat magic, and they were arrived
at experimentally—feel free to change them and see how it affects the layout,
making sure everything in the row adds up to 12).

<div class="col-md-6">

<h2>Billing Info</h2>
<div class="row">

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Using Bootstrap’s Grid ¢ 145

<div class="col-md-7">
<p>
Skokskok | kokoksk | okckokk _ 1234
VISA
</p>
<p>
<label>Expires:</label> 04/19
</p>
</div>
<div class="col-md-5 text-right">
<button class="btn btn-lg btn-default">
View Details..
</button>
</div>
</div>
<h3>Billing Address <input type="checkbox"> Same as shipping? </h3>
<!-- Same markup as used for the shipping address -->

Note that we’ve used the helper class text-right on the button so that it aligns
to the right side of the grid, and thus stands apart from the card info. Previ-
ously, we used pull-right to achieve this in our search results. Thinking back
now, you might have more success using a grid for each result, rather than
using floats. Fortunately, it’s easy enough to try on your own!

Now that we’ve placed everything in a grid, we can see that the page is really
starting to come together.

Customer Billing Info
w1234 VISA
Bob Jones bobert123 View Details...
Expires: 04/19
bobbyj@somewhere.net
Joined 12/13/2014 Billing Address m Same as shipping?
. . 123 Any St
Shipping Address
123 Any 51 Unit 101
Unit 101 Washington DC 20001
Washington DC 20001

Bootstrap’s grid is probably its single most useful feature. Before I knew about
grids as design tools, and before I'd used one like Bootstrap’s for creating
them in CSS, a design like this would've taken me a very long time to create.
Depending on the time pressure I was under, I might've opted for a different,
less optimal design that was easier to build, simply because my ability to
create the right view was hampered by my lack of knowledge and lack of tools.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 8. Design Great Uls with Bootstrap’s Grid and Components ® 146

Now that the layout is solid, let’s go through our view and polish up a few of
the rough edges.

Adding Polish with Bootstrap Components

Our view looks pretty good—certainly better than what we might achieve in
the same amount of time without Bootstrap—but it could be better. For
example, the header text is a bit too large, no clear distinction exists between
the three sections of the view, and the credit card info is a bit jumbled, since
all the text uses the same size and weight font.

We'd like to distinguish parts of the view to make it easier for the user to
visually navigate. If you look through Bootstrap’s documentation, you can
get some inspiration as to how we can do this. The trick with complex forms
is allow users to navigate all the data with their eyes. We can get a long way
with the panel component, which is a box surrounding our content along
with a header and footer.

Using Panels

A panel looks like so:

Panel Header

Body of the panel

Panel Footer

It can be created with Bootstrap with markup like this:

<article class="panel panel-primary">

<header class="panel-heading">
<h1>Panel Header</hl>

</header>

<section class="panel-body">
Body of the panel

</section>

<footer class="panel-footer">
Panel Footer

</footer>

</article>

www.it-ebooks.info

report erratum -« discuss


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Adding Polish with Bootstrap Components ¢ 147

Let’s put each of the three sections of our screen inside its own panel. Panels
can be given different styles, so let's make the customer info panel styled
differently from the other two so that it stands out more clearly. Each panel
requires two classes: panel and then a second one that determines its style.

We’ll use panel-primary for the customer info, which will use an inverse color
scheme for the header, and panel-default for the other two. Finally, we’ll move
the joined field inside the customer panel’s footer. As we’ll see, this value
won't be editable by the user, so moving it to the footer will reinforce this fact.

The result looks pretty nice:

Billing Info

e _wen_vwen_1234 \/|SA ‘ ‘
Bob Jones @ bobert12 View Details...
Expires: 04/19

bobbyj@somewhere.net

Billing Address - same as

Joined 12/13/2014

shipping?
. . 123 Any St
Shipping Address
Unit 101
123 Any St
‘Washington DC 20001
Unit 101
‘Washington DC 20001

Next, let’s improve the credit card info section. If we could have the card type
more distinct from the card number and expiration, that would help users
quickly distinguish this information. We can do that using labels.

Highlight Information with Labels

A label is a Bootstrap component that renders text inside a colored box with
an inverse color scheme (not to be confused with the HTML element label,
which is used to label fields in a form). In lieu of finding and downloading
images for each credit card type, we can simply put the credit card type inside
a label, and it'll stand out.

Labels, like panels, take two classes: a label class, and a decorative one that
controls the color. We’'ll use label-success, which will create a green label.

www.it-ebooks.info

report erratum « discuss


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Yvy

Chapter 8. Design Great Uls with Bootstrap’s Grid and Components ® 148

<div class="col-md-7">
<p>
****_****_****_1234

<span class="label label-success">VISA</span>
</p>
<p>
<label>Expires:</label> 04/19
</p>
</div>

With just this markup, the credit card type stands out pretty well.

e wewv 1234 . .
View Details...
Expires: 04/19

Lastly, we’ll make a few adjustments to the typography—the headers are a
bit too large.

Using h Classes to Tame Typography

The headers in our view are all a bit too large, and although our markup is
semantically correct, some subheadings are larger than others. Further, the
masked credit card number is a bit too small.

We can use the h classes provided by Bootstrap to manage the size of our
headings (it may seem strange, but these classes allow us to keep the
semantically correct element without inheriting their visual size). We can also
use them on the p tag surrounding the credit card number to make it stand
out a bit.

We'll see the entire markup in a moment, but here’s an example of what I'm
talking about:

<article class="panel panel-default">
<header class="panel-heading">
<h2 class="h4">
Billing Info
</h2>
</header>
<l-- ... -->
<p class="h4">
****_****_****_1234
<span class="label label-success">VISA</span>
</p>

This sort of thing is a more art than science, so the values I've chosen here
represent what looks right to me. The great thing about Bootstrap is that it's
easy to play around with this stuff, and whatever you do will end up looking
pretty decent, thanks to the horizontal grid that underlies all of the type.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Adding Polish with Bootstrap Components ¢ 149

One last bit of polish we’d like to add is to distinguish the username from the
first and last names in the Customer Info section. You'll notice on our mock-
up, the username was preceded with an @ symbol. Bootstrap makes this easy
using form add-ons.

Form Add-ons

Often, a symbol prepended (or appended) to a value can give it enough context
for users to understand what it means, without using a label. This can be
handy on dense pages like our customer detail view. Since the first row of
the customer info section is just three equal-sized strings, it might not be
clear what they mean.

If we prepend the username with @ (similar to what Twitter does for mentioning
someone in a tweet), that can be enough context for users to know that the
third field is the username, and the first two are the first and last names,
respectively.

Bootstrap provides the class input-group-addon that will do this in a pleasing
way. We just surround the form element with an input-group and create an inner
div with the class input-group-addon that contains the text we’d like prepended
(you can place that div after the element to append it, instead).
<div class="input-group">

<div class="input-group-addon">@</div>

<input type="text" class="form-control"

name="username" value="bobertl123">
</div>

With all of these tweaks in place, the rendered form on page 150 looks polished
and professional, embodying the spirit of the mock-up.

HTML markup is quite verbose (especially since we have to heavily wrap it to
fit the margins in this book), so we've only seen bits and pieces. The entire
screen’s markup can be seen in Appendix 1, Full Listing of Customer Detail
Page HTML, on page 249, although it will be easier to examine it by downloading
the sample code.'

Note that we still haven’t written any CSS. We were able to create a highly
complex form, displaying a lot of data, in a clean and easy-to-read way, using
just a few simple classes, coupled with Bootstrap’s grid system.

In this chapter, we saw several new features of Bootstrap, notably its grid
system, but also some Ul components that allowed us to polish our Ul

1.  https://pragprog.com/titles/dcbang/source_code

www.it-ebooks.info


https://pragprog.com/titles/dcbang/source_code
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 8. Design Great Uls with Bootstrap’s Grid and Components ¢ 150

Billing Info

Bob Jones @ bobert12 Rt P2 visa | View Detalils...
Expires: 04/19
bobbyj@somewhere.net

Joined 12/13/2014
Billing Address I” same as shipping?

123 Any St
Shipping Address
Unit 101
123 Any St
Washington DC 20001
Unit 101
‘Washington DC 20001

quickly and easily. What you should take away from this is what we mentioned
at the start of the section: these are tools that allow you to design and build
in the browser.

This eliminates much of the friction in getting started on a new user interface.
Armed with just Bootstrap, you can create complex interfaces quickly, and
iterate on them as you find the most optimal design.

Next: Populating the View Easily and Efficiently

This chapter focused on the top of the stack: the view. You learned how to
configure our Angular app to allow for routing to different views, backed by
different controllers. You saw how easy it is to design a complex UI for our
customer detail view.

In the next chapter, you'll learn how to bring the actual data into the Ul we've
created. We'll use a feature of Postgres called materialized views to make
querying the data from Rails very easy. You'll also see how Angular’s asyn-
chronous nature allows us to easily implement our Ul using data from our
database as well as from our third-party payment processor’s system.

www.it-ebooks.info

report erratum -

discuss


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

QUERYING MULTIPLE TABLES

aterialized?
Postgres ( " views @

CHAPTER 9

Cache Complex Queries
Using Materialized Views

When we need to query data stored in several tables, there is a trade-off.
Either we keep our code simple by using Active Record—which makes several
queries to the database—or we make our code more complex by using a single,
efficient query specific to our needs. Performance is an issue in both cases
because we're pulling back a lot of data. Postgres solves this dilemma with
its materialized views feature, which provides clean code, accesses data with
a single query, and exhibits high performance.

In this chapter, we’ll continue to build on our running example where we
display a customer’s details. To do this, we need to fetch data from five differ-
ent tables. We'll see how the idiomatic Rails Way, using Active Record, actu-
ally results in our having to make seven queries to the database. In contrast,
a single, more direct query results in convoluted code but with potentially
better performance.

We'll then create a materialized view of our single query. A materialized view
is part view and part table. Like a view, it's backed by a query that is the
source of its data. Like a table, the data is stored on disk. The materialized
view provides a way to update the data on disk by rerunning the backing
query. This means we get to use Active Record in our Rails code in an
idiomatic way but still get extremely high performance: the best of both worlds!
We'll also see how we can use database triggers to automatically keep the
view up-to-date.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 9. Cache Complex Queries Using Materialized Views ® 152

First, let’s look at the performance characteristics of the two approach-
es—Active Record versus using a single, more complex query—by learning
about the tables we need to access.

Understanding the Performance Impact of Complex Data

In Chapter 8, Design Great Uls with, on page 137, we built the user interface
for the data we’ll be querying here. In addition to the data we've already seen
in the CUSTOMERS table, we need to display the customer’s billing address,
shipping address, and credit card information. The credit card information
is stored elsewhere (we’ll deal with that in the next chapter), so we're just
querying the customer’s billing and shipping addresses for now.

We've already seen the CUSTOMERS table, and we know it doesn’t include either
of these pieces of data. As you’ll recall from Chapter 3, Use Fast Queries with,
on page 33, our hypothetical company has tables in a shared database, which
Shine can access. In this case, we’ll assume that the tables we need to access
billing and shipping addresses are also available to us via the shared database.

Let’s look at how well both Active Record and a single query perform when
accessing all of these tables together. We start with the structure so we know
what we're dealing with.

The Tables We'll Query

The diagram on page 153 shows the tables we’ll be accessing, and their rela-
tionships to one another.

In our hypothetical system, all addresses are stored in the table ADDRESSES.
This table contains fields you’d expect in a US-style address, except for the
postal codes for US states. The states are stored in STATES, and ADDRESSES ref-
erences that table via the column STATE_ID (marked “1” on the diagram).

Since all addresses are stored in ADDRESSES, we need to know which of those
are for billing and which are for shipping. To determine that, we have two
join tables called CUSTOMERS BILLING_ADDRESSES and CUSTOMERS_SHIPPING_ADDRESSES.

In the diagram, we can see the relationship marked “2” references a customer
via CUSTOMER_ID, while the relationship marked “3” references an address via
ADDRESS_ID. This is how we join the two tables together.

CUSTOMERS_SHIPPING_ADDRESSES uses a similar structure, with the relationships
marked “4” and “5.” You’'ll notice, however, that there’s a column called PRIMARY.
This is because, in our hypothetical system, a customer may have more than

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Understanding the Performance Impact of Complex Data ® 153

CUSTOMERS
id
last_name
first_name
username
email
created_at
CUSTOMERS_BILLING_ADDRESSES CUSTOMERS_SHIPPING_ADDRESSES
customer_id customer_id
address_id address_id
primary
Yy
ADDRESSES
- STATES
id
street id
city _°_> code
state_id name
zipcode

one shipping address. PRIMARY denotes their primary shipping address, and
this is the one we’ll display in Shine.

Just as we did with CUSTOMERS in Setting Up the New Table and Data, on page
34, we'll set up these new tables for our local development. In the real world,
these would already exist, but we have to create them manually here in order
to follow this example.

Our migrations look like this:

materialized-views/data-model/shine/db/migrate/20150616120711_add_addresses.rb
class AddAddresses < ActiveRecord::Migration
def change
create table :states do |t]|
t.string :code, size: 2, null: false
t.string :name, null: false
end

create_table :addresses do |t|

t.string :Street, null: false

t.string :city, null: false

t.references :state, null: false

t.string :zipcode, null: false
end

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/materialized-views/data-model/shine/db/migrate/20150616120711_add_addresses.rb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 9. Cache Complex Queries Using Materialized Views ® 154

create table :customers billing addresses do |t]|
t.references :customer, null: false
t.references :address, null: false

end

create table :customers shipping addresses do |t|
t.references :customer, null: false

t.references :address, null: false
t.boolean :primary, null: false, default: false
end
end
end

With this in place, we can run rake db:migrate to create the tables. We'll need
to have data in them, so we’ll enhance db/seeds.rb to create data for us. Since
we need to create all 50 US states, as well as shipping and billing addresses
for all of our customers, it's going to be a bit of code. The full listing is in
Appendix 2, Creating Customer Address Seed Data, on page 253, or available
in the source code you can download from the book’s website."

There are two main ways to access this data: we can map these tables to
Active Record objects, model the relationships, and navigate them in our
controller, or we can pull the data back with one big query. Let’s examine the
performance of each of these approaches.

Performance Using Active Record

Since we're ultimately not going to use Active Record to model this data, I'm
going to skip the code you’'d need to do so, but you can imagine how it would
look. We would be able to write code like this to access all the data we need:

def show
customer = Customer.find(params[:id])
respond_to do |format|
format.json do
render json: {
customer: customer,
shipping address: customer.shipping address,
billing address: customer.billing address,
}
end
end
end

This code is going to run seven queries: one to pull back data from CUSTOMERS,
one to query CUSTOMERS BILLING ADDRESSES, followed by a query to ADDRESSES and

1.  https://pragprog.com/titles/dcbang/source_code

www.it-ebooks.info


https://pragprog.com/titles/dcbang/source_code
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Understanding the Performance Impact of Complex Data ® 155

STATES. It will then query CUSTOMERS_SHIPPING_ADDRESSES, followed by second
queries to ADDRESSES and STATES. Let’s use EXPLAIN ANALYZE to see how well these
will perform.

sql> EXPLAIN ANALYZE SELECT * FROM customers WHERE id = 2000;
QUERY PLAN
Index Scan using customers pkey on customers
(cost=0.42..8.44 rows=1 width=79)
(actual time=1.298..1.299 rows=1 loops=1)
Index Cond: (id = 2000)
Planning time: 5.120 ms
Execution time: 1.387 ms

sql> EXPLAIN ANALYZE SELECT * FROM customers_billing_addresses
WHERE customer_id = 2000;
QUERY PLAN
Index Scan using customers billing addresses customer id
on customers billing addresses
(cost=0.42..8.44 rows=1 width=12)
(actual time=0.105..0.106 rows=1 loops=1)
Index Cond: (customer id = 2000)
Planning time: 0.241 ms
Execution time: 0.130 ms

sql> EXPLAIN ANALYZE SELECT * FROM customers_shipping_addresses
WHERE customer id = 2000;
QUERY PLAN
Index Scan using customers shipping addresses customer id
on customers shipping addresses
(cost=0.42..8.48 rows=3 width=13)
(actual time=0.118..0.119 rows=2 loops=1)
Index Cond: (customer id = 2000)
Planning time: 0.519 ms
Execution time: 0.171 ms

sql> EXPLAIN ANALYZE SELECT * FROM addresses WHERE id = 2000;
QUERY PLAN
Index Scan using addresses pkey on addresses
(cost=0.43..8.45 rows=1 width=47)
(actual time=1.238..1.240 rows=1 loops=1)
Index Cond: (id = 2000)
Planning time: 0.984 ms
Execution time: 1.267 ms

sql> EXPLAIN ANALYZE select * FROM states WHERE id = 5;
QUERY PLAN

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 9. Cache Complex Queries Using Materialized Views ® 156

Seq Scan on states
(cost=0.00..7.48 rows=1 width=16)
(actual time=0.038..0.114 rows=1 loops=1)
Filter: (id = 5)
Rows Removed by Filter: 357
Planning time: 0.355 ms
Execution time: 0.143 ms

All of these queries perform well, which isn’t surprising as they are all
querying against the primary key of the tables in question. We can see this
by the information Index Scan in the query plan (though, interestingly, the
queries against STATES use a full table scan—Seq Scan—presumably because
this table is so small, it’s faster than using the primary key’s index). If we
assume the timing reported by our query plans is a reasonable average, this
means the total of these seven queries is about 13 milliseconds.

The query time isn’t the only time it takes to access this data, however. Each
request requires network time, as does each response. This is commonly
called the network round-trip.

Request Response
connect to DB, query data send data &
send query in database interpret response

We're running seven queries: that’s seven network round-trips. A slow network
can have a significant impact on our overall response time.

If we could get the data in a single query, our performance would be less tied
to the network’s performance, and our system would be more predictable
(and possibly faster, if our network is habitually slow). Let’s craft that query
and see how it performs.

Performance Using SQL
To get this data using one query, we’ll need to do a lot of joins. Let’s build up

the query first, and then see how it performs.

Crafting the Query

If you are comfortable with database joins, you can skip this section, but I've
found that joins across many tables (especially when we need to join the same

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Understanding the Performance Impact of Complex Data ® 157

table twice, as we will for ADDRESSES) can be tricky, so it might help to see the
query built piece by piece.

First, we need to itemize the fields we want back. In our case, we want all the
fields from CUSTOMERS that we've been using, all the fields in ADDRESSES for both
the billing and the shipping address, and the state codes from STATES for the
same. The SELECT part of our query looks like this:

materialized-views/data-model/shine/db/customer_detail_view.sql

SELECT
customers.id AS customer id,
customers.first name AS first name,
customers.last name AS last name,
customers.email AS email,
customers.username AS username,
customers.created at AS joined at,
billing address.id AS billing address id,
billing address.street AS billing street,
billing address.city AS billing city,
billing state.code AS billing state,
billing address.zipcode AS billing zipcode,
shipping address.id AS shipping address id,

shipping address.street AS shipping street,
shipping address.city AS shipping city,

shipping state.code AS shipping state,

shipping address.zipcode AS shipping zipcode
FROM

customers

Note a few things here. Because all addresses are stored in ADDRESSES, we’ll
need to join against that table twice (as we’ll see). That means that we need
to know which join we're referencing—the join that brings in the shipping
address, or the join that brings in the billing address. To know that, we’ll be
aliasing2 the ADDRESSES tables in each join to shipping_address and billing_address
so we know what we’re referring to.

Now that we know the data we’re bringing back, we need to add the necessary
joins to get it. First, we’ll join CUSTOMERS against CUSTOMERS_BILLING_ADDRESSES,
because that’s how we’ll eventually get to the actual address.
materialized-views/data-model/shine/db/customer_detail_view.sql

JOIN customers billing addresses ON
customers.id = customers billing addresses.customer id

Next, we’ll join CUSTOMERS_BILLING_ADDRESSES to ADDRESSES. Note that this is where
we alias ADDRESSES to billing_address.

2. https://en.wikipedia.org/wiki/Alias (SQL)

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/materialized-views/data-model/shine/db/customer_detail_view.sql
http://media.pragprog.com/titles/dcbang/code/materialized-views/data-model/shine/db/customer_detail_view.sql
https://en.wikipedia.org/wiki/Alias_(SQL)
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 9. Cache Complex Queries Using Materialized Views ® 158

materialized-views/data-model/shine/db/customer_detail_view.sql
JOIN addresses billing address ON
billing address.id = customers billing addresses.address id

Then, we'll need to join ADDRESSES to STATES so we can get the state code.

materialized-views/data-model/shine/db/customer_detail_view.sql
JOIN states billing_state ON
billing address.state id = billing state.id

Note again that we've had to alias STATES to billing_state.

Finally, we’ll repeat this structure for CUSTOMERS SHIPPING_ADDRESSES, with the
addition of restricting by primary in our join.

materialized-views/data-model/shine/db/customer_detail_view.sql
JOIN customers shipping addresses ON
customers.id = customers shipping addresses.customer id
AND customers shipping addresses.primary = true
JOIN addresses shipping address  ON
shipping address.id = customers shipping addresses.address id
JOIN states shipping state ON
shipping address.state id = shipping state.id

With our query constructed, let’s see how it fares.

Query Performance

We can use EXPLAIN ANALYZE on our query to see what sort of performance we
might expect.

sql> EXPLAIN ANALYZE SELECT

customers.id AS customer_id,
customers.first name AS first name,
customers.last name AS last name,
customers.email AS email,me,
customers.username AS username,
customers.created at AS joined at,dress id,
billing address.id AS billing address id,
billing address.street AS billing street,
billing address.city AS billing city,
billing state.code AS billing state,
billing address.zipcode AS billing zipcode, id,
shipping address.id AS shipping address id,

shipping address.street AS shipping street,
shipping address.city AS shipping city,

shipping state.code AS shipping state,

shipping address.zipcode AS shipping zipcode
FROM

customers

<remainder of the query»

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/materialized-views/data-model/shine/db/customer_detail_view.sql
http://media.pragprog.com/titles/dcbang/code/materialized-views/data-model/shine/db/customer_detail_view.sql
http://media.pragprog.com/titles/dcbang/code/materialized-views/data-model/shine/db/customer_detail_view.sql
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Understanding the Performance Impact of Complex Data ® 159

WHERE
customers.id = 2000

QUERY PLAN

Nested Loop (cost=1.12..169.81 rows=1 width=157)
(actual time=0.028..0.028 rows=0 loops=1)
-> Nested Loop (cost=0.98..169.64 rows=1 width=158)
(actual time=0.027..0.027 rows=0 loops=1l)

«&Tons of query plan details omitted>

Planning time: 20.192 ms
Execution time: 5.724 ms

The planning time is a bit longer, but if we assume this is reasonably repre-
sentative, at least as compared to the individual queries, it should take less
than around 26 milliseconds. This is still pretty fast, but it’s twice as slow as
all seven queries combined. But this query incurs only one network round-
trip. If we assume the network round-trip is 1ms, that means this query will
take 27ms, and our seven queries will take 20ms.

What this means is that our complex-but-slower query might be reasonable
to consider using, especially if we can speed that query up (which we’ll do
using a materialized view).

A Word on Optimizations
You should absolutely avoid optimizing your system like this until
you know that what you are optimizing is actually a problem,
based on your observations. The use of EXPLAIN ANALYZE is useful in

Q explaining poor performance, not in identifying it.

This chapter is about teaching you a technique to deal with poor
performance, and is not something you should use by default
every time you need to query more than one table. Always measure
your system’s performance before optimizing it.

Using This Query in Rails

It will be difficult, if not impossible, to use Active Record’s API to produce this
query. In these cases, it’s easier to just use a string of SQL and execute the
query. We can do that by using the method execute on the underlying connec-
tion object available via the connection method on ActiveRecord::Base.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 9. Cache Complex Queries Using Materialized Views ® 160

class CustomerDetail
QUERY = %{
«The big query from before»
}

def self.find(customer id)
ActiveRecord: :Base.connection.execute(
QUERY + " WHERE customers.id = #{customer id}"
).first
end
end

This code is not ideal, and we’'d like to avoid having code like this in our
application. First, it contains a SQL injection vulnerability, since we are
constructing SQL without escaping the value of customer id. We can work
around this using Postgres’s API directly, which would make the code even
more difficult to understand. Second, this code doesn’t return a nice object,
but instead returns a hash that we must reach into in order to access the
data.

It’s not the worst code in the world, but it’s not idiomatic Rails. This code,
along with any code that calls it, will stick out like a sore thumb, confusing
everyone who looks at it.

It may seem like a minor thing, but this sort of unnecessary complexity can
make a codebase hard to read, understand, and manage. Sometimes, we have
to live with code like this, but it’'s always worth trying to find a better way.
Even if the Active Record version of the code executed more queries, and
incurred a higher penalty for network round-trips, it looked like idiomatic
Rails code.

We've now seen that the default Rails Way of modeling our access to this data
will result in seven queries each time, and that those queries perform reason-
ably well, but incur a penalty in network round-trips. We've also seen that a
large single query using joins might perform better, but results in ugly, hard-
to-maintain code.

Now, we're going to see the third alternative—materialized views.

Using Materialized Views for Better Performance

Materialized views are a special form of database view that performs much
better. If you aren’t familiar with views, they are a table-like construct that
abstracts away a complex query. For example, we could create a view named
ADDRESSES_WITH_STATES that abstracts away the need to join ADDRESSES and STATES
together, like so:

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Using Materialized Views for Better Performance ¢ 161

CREATE VIEW addresses with states AS

SELECT
addresses.id,
addresses.street,
addresses.city,
states.code AS state,
addresses.zipcode

FROM
addresses

JOIN states ON states.id = addresses.state id;

Now, we can treat ADDRESSES_WITH_STATES just like a normal table for querying:

sql> select * from addresses_with_states where id = 12;

-[ RECORD 1 J-----------n-n--
id | 12

street | 11828 Kuhn Turnpike
city | Willmsmouth

state | WA

zipcode | 46419-7547

We can also treat this like a regular table for mapping with Active Record.

class AddressesWithState < ActiveRecord::Base
end

AddressesWithState.find(12).state
# => WA

But a view is just a place to store the query. It would make our Rails code
better-looking, but would still not necessarily outperform the seven simpler
queries, since we’d still be running the complex join underneath.

With most relational databases, we would not be able to use our database to
solve this problem. We’d need to set up some sort of caching solution, like
memcached® or Elasticsearch.* We’'d run our expensive query offline and
populate our cache with the data, then query that data at runtime.

Postgres provides this exact feature via materialized views. A materialized
view is basically an actual table with the actual data from the underlying
query. In effect, Postgres does what these alternative caching solutions
do—stores the results of the query in another table that can be quickly
searched.

The advantage is that, just like with a normal view, we can access the mate-
rialized view as if it were a regular table using Active Record, meaning our

3. http://memcached.org/
4. https://www.elastic.co/

www.it-ebooks.info


http://memcached.org/
https://www.elastic.co/
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 9. Cache Complex Queries Using Materialized Views ® 162

Rails code will still be idiomatic. But, since the materialized view isn’t doing
the expensive query each time, we can fetch the data very quickly (though
this does come at a cost of increased disk space, because the data for the
materialized view is stored on disk).

To create a materialized view, we simply use CREATE MATERIALIZED VIEW instead
of CREATE VIEW. Let’s do that now by creating a new migration.

$ bundle exec rails g migration create-customer-details-materialized-view
invoke active record
create db/migrate/20150625130204 create customer details materialized view.rb

Now, we’ll use execute in our migration to create the materialized view using
the large and complex query we were using before. Since a materialized view
creates a table under the covers, we're also going to create an index on cus-
tomer_id, because that’s the field we’ll be using to query the materialized view
(it will also allow us to keep the view up-to-date, as we’ll see).

materialized-views/actual-materialized-view/shi ... 204_create_customer_details_materialized_view.rb
class CreateCustomerDetailsMaterializedView < ActiveRecord::Migration
def up
execute %{
CREATE MATERIALIZED VIEW customer details AS

SELECT
customers.id AS customer 1id,
customers. first name AS first name,
customers.last name AS last name,
customers.email AS email,
customers.username AS username,
customers.created at AS joined at,
billing address.id AS billing address id,

billing address.street AS billing street,
billing address.city AS billing city,

billing state.code AS billing state,
billing address.zipcode AS billing zipcode,
shipping address.id AS shipping address id,

shipping address.street AS shipping street,
shipping address.city AS shipping city,

shipping state.code AS shipping state,

shipping address.zipcode AS shipping zipcode
FROM

customers

JOIN customers billing addresses ON

customers.id = customers billing addresses.customer id
JOIN addresses billing address ON

billing address.id = customers billing addresses.address id
JOIN states billing state ON

billing address.state id = billing state.id
JOIN customers shipping addresses ON

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/materialized-views/actual-materialized-view/shi � 204_create_customer_details_materialized_view.rb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Using Materialized Views for Better Performance ® 163

customers.id = customers shipping addresses.customer id
AND customers shipping addresses.primary = true
JOIN addresses shipping address  ON
shipping address.id = customers shipping addresses.address id
JOIN states shipping state ON
shipping address.state id = shipping state.id
}
execute %{
CREATE UNIQUE INDEX
customer details customer id
ON
customer details(customer id)
}
end
def down
execute "DROP MATERIALIZED VIEW customer details"
end
end

Next, we run the migration with rake db:migrate. It will take a while, as it's
basically running this query for every row of all these tables. When it’s done,
we’ll be able to query this data very quickly.

Let’s do an EXPLAIN ANALYZE on our new materialized view.

sql> EXPLAIN ANALYZE
SELECT * FROM customer details WHERE customer id = 2000;
QUERY PLAN

Index Scan using customer details customer id on customer details
(cost=0.42..8.44 rows=1 width=404)
(actual time=0.125..0.125 rows=1 loops=1)
Index Cond: (customer id = 2000)
Planning time: 1.750 ms
Execution time: 0.196 ms

This is pretty darn good! We're pulling back all of the data we need in under
2 milliseconds. That is far faster than both the canonical Rails Way using
Active Record and our complex query.

We can now create a CustomerDetail class and query it just as we would any
other Active Record object, keeping our code clean and idiomatic, but it will
be blazingly fast.

materialized-views/actual-materialized-view/shine/app/models/customer_detail.rb
class CustomerDetail < ActiveRecord::Base

self.primary key = 'customer id'
end

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/materialized-views/actual-materialized-view/shine/app/models/customer_detail.rb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 9. Cache Complex Queries Using Materialized Views ® 164

As our materialized view doesn’t have a field named ID, we need to use prima-
ry_key= to tell Active Record to use CUSTOMER_ID. With this in place, our controller
looks like a regular Rails controller.

materialized-views/simple-view/shine/app/controllers/customers_controller.rb
def show
customer detail = CustomerDetail.find(params[:id])
respond to do |format|
format.json { render json: customer detail }
end
end

It seems we've addressed our performance problem by creating a very fast
way to get our data, but without having to write complex code that looks out-
of-place or is hard to understand and maintain. Let’s see what happens when
we insert a new customer into our database.

sql> insert into customers(
first name,last name,email,username,created at,updated at)
values (
'Dave', 'Copeland', 'dave@dave.dave', 'davetron5000',now(),now());
INSERT 0 1
> select id from customers where username = 'davetron5000';
id |

388399 |
(1 row)

> insert into customers billing addresses(
customer id,address id)
values (388399,1);
INSERT 0 1
> insert into customers shipping addresses(
customer id,address id,"primary")
values (388399,1,true);
INSERT 0 1

Let’s query our materialized view for this new customer.

sql> select * from customer_details where customer_id = 388399;
(No rows)

Oops, it looks like something’s wrong. This is due to the implementation of
materialized views. Like any caching solution, the cache (in our case, the
materialized view) must be updated when data changes. This is the trade-off
of a cache and is why it’s able to be fast.

In the next section, we’ll see how to set up our database to keep the material-
ized view updated.

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/materialized-views/simple-view/shine/app/controllers/customers_controller.rb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Keeping Materialized Views Updated ® 165

Keeping Materialized Views Updated

The reason our materialized view is so much faster than the regular view is
because it essentially caches the results of the backing query into a real table.
The trade-off is that the contents of the table could lag behind what’s in the
tables that the backing query queries.

Postgres provides a way to refresh the view via REFRESH MATERIALIZED VIEW. Before
Postgres 9.4, refreshing materialized views like this was a problem, because
it would lock the view while it was being refreshed. That meant that any
application that wanted to query the view would have to wait until the update
was completed. Since this could potentially be a long time, it meant that
materialized views were mostly useless before 9.4.

As of Postgres 9.4, the refresh can be done concurrently in the background,
allowing users of the table to continue querying old data until the refresh is
complete. This is what we’ll set up here, and requires running the command
REFRESH MATERIALIZED VIEW CONCURRENTLY.

Let’s try it out.

sql> refresh materialized view concurrently customer_details;
sql> select * from customer_details where customer_id = 388399;
~L RECORD 1 J----nmsmmmmnmn- e

customer id 388399

first _name Dave

last _name Copeland

email dave@dave.dave

username davetron5000

joined at 2015-06-25 08:28:54.327645

I
I
I
I
|
I

billing street | 530 Nienow Stravenue

billing city | West Aniyah

billing state | RI

billing zipcode | 72842-8201

shipping address id | 1

shipping street | 530 Nienow Stravenue

shipping city | West Aniyah

shipping state | RI

shipping zipcode | 72842-8201

shipping address created at | 2015-06-20 16:51:06.891914-04

Now that we know how to refresh our view, the trick is when to do it. This
highly depends on how often the underlying data changes and how important
it is for us to see the most recent data in the view. We'll look at two techniques
for doing that here. The first is to create a rake task to refresh the view on a
schedule. The second is to use database triggers to refresh the view whenever
underlying data changes.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 9. Cache Complex Queries Using Materialized Views ® 166

Refreshing the View on a Schedule

The simplest way to refresh the view is to create a rake task, and then arrange
for that task to be run on a regular schedule. We can do this by creating
lib/tasks/refresh_materialized_views.rake and using the connection method on ActiveRe-
cord::Base, which will allow us to execute arbitrary SQL.

materialized-views/actual-materialized-view/shine/lib/tasks/refresh_materialized_views.rake
desc "Refreshes materialized views"
task refresh materialized views: :environment do
ActiveRecord: :Base.connection.execute %{
REFRESH MATERIALIZED VIEW CONCURRENTLY customer details
}

end

We can then run it on the command line via rake:

$ bundle exec rake refresh_materialized_views

With this in place, we can then configure our production system to run this
periodically, for example using cron. How frequently to run it depends on how
recent the data should be to users, as well as how long it takes to do the
refresh. If users need the data to be fairly up-to-date, we could try running
it every five minutes. If users can do their jobs without the absolute latest,
we could run it every hour or even every day.

If users need it to be absolutely up-to-date with the underlying tables, we can
have the database itself refresh whenever the underlying data changes by

using triggers.

Refreshing the View with Triggers

A database trigger is similar to an Active Record callback: it’s code that runs
when certain events occur. In our case, we’d want to refresh our materialized
view whenever data in the tables that view is based on changes.

To do this, we’ll create a database function that refreshes the materialized
view, and then create several triggers that use that function when the data
in the relevant tables changes. We can do this all in a Rails migration, so let’s
create one where we can put this code.

$ bundle exec rails g migration trigger-refresh-customer-details
invoke active record
create db/migrate/20150626120132 trigger refresh customer details.rb

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/materialized-views/actual-materialized-view/shine/lib/tasks/refresh_materialized_views.rake
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Keeping Materialized Views Updated ¢ 167

First, we’ll create a function to refresh the materialized view. This requires
using Postgres’s PL/pgSQL® language. It looks fairly archaic, but we don’t
need to use much of it.

materialized-views/actual-materialized-view/shi ... 150626120132_trigger_refresh_customer_details.rb
execute %{
CREATE OR REPLACE FUNCTION
refresh customer details()
RETURNS TRIGGER LANGUAGE PLPGSQL
AS 3%
BEGIN
REFRESH MATERIALIZED VIEW CONCURRENTLY customer details;
RETURN NULL;
EXCEPTION
WHEN feature not supported THEN
RETURN NULL;
END $3%;
}

The key part of this is RETURNS TRIGGER, which is what will allow us to use this
function in the triggers we’ll set up next. Also note the exception-handling
clause that starts with EXCEPTION. This is similar to Ruby’s rescue keyword and
is a way to handle errors that happen at runtime. We can provide any number
of WHEN clauses to indicate how to handle a particular exception. In this case,
we're handling feature_not_supported, which is thrown if we run this function
before the materialized view has been updated. In practice this won’t happen,
but in the our testing environment it can, since we are resetting the database
during our tests.

The form of a trigger we want will look like so:

CREATE TRIGGER
refresh_customer_details
AFTER
INSERT OR
UPDATE OR
DELETE
ON
customers
FOR EACH STATEMENT
EXECUTE PROCEDURE refresh customer details();

The code for this trigger reflects what it does: any insert, update, or delete on
the customers table causes the database to run refresh_customer_details. So, we just
need to set this up for each table that’s relevant.

5.  http://www.postgresqgl.org/docs/9.5/static/plpgsql.html

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/materialized-views/actual-materialized-view/shi � 150626120132_trigger_refresh_customer_details.rb
http://www.postgresql.org/docs/9.5/static/plpgsql.html
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 9. Cache Complex Queries Using Materialized Views ® 168

If we assume that the list of US states doesn’t change, we can set up triggers
for the other three tables: ADDRESSES, CUSTOMERS SHIPPING ADDRESSES, and CUS-
TOMERS BILLING_ADDRESSES. As the code is almost the same for each table, we’ll
loop over the table names and construct the SQL dynamically.

materialized-views/actual-materialized-view/shi ... 150626120132_trigger_refresh_customer_details.rb
%w(customers
customers shipping addresses
customers billing addresses
addresses) .each do |table|
execute %{
CREATE TRIGGER refresh customer details
AFTER
INSERT OR
UPDATE OR
DELETE
ON #{table}
FOR EACH STATEMENT
EXECUTE PROCEDURE
refresh customer details()
}

end

After we run rake db:migrate, we can insert new customers and see the view get
refreshed automatically.

sql> insert into customers(
first name,last name,email,username,created at,updated at)
values (
'Amy ', 'Copeland', 'amy@amy.dave', 'amytron',now(),now());
INSERT 0 1
sql> insert into customers_shipping_addresses
(customer id,address id,"primary")
values
(388400,1,true);
INSERT 0 1
sql> insert into customers_billing_addresses
(customer id,address id)

values
(388400,1);

INSERT 0 1
> select * from customer details where customer id = 388400;
-[ RECORD 1 ]------- LR T
customer_id | 2
first _name | Amy
last _name | Copeland
email | amy@amy.dave
username | amytron
joined at | 2015-06-26 08:17:17.536305
billing address id | 1

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/materialized-views/actual-materialized-view/shi � 150626120132_trigger_refresh_customer_details.rb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Next: Combining Data with a Second Source in Angular ® 169

billing street 123 any st
billing city washington
billing state DC

billing zipcode 20001

|
|
|
|
shipping address id | 1
|
|
|
|

shipping street 123 any st
shipping city washington
shipping state DC
shipping zipcode 20001

Using triggers, you don’'t have to worry about setting up an external process
to keep the materialized view refreshed. The downside is if your table will
have a high volume of writes or updates, you’ll be refreshing the view a lot,
and this could slow down your database. You'll have to evaluate which tech-
nique will be best, based on your actual usage.

The path that led us to materialized views was the promise of high performance
and code simplicity. It may have felt circuitous, but it’s a great demonstration
of the type of power you have as a full-stack developer. By understanding the
breadth of tools available to you, and how to use them, you can create solu-
tions that are simple.

Although we had to create a materialized view and triggers to keep it updated,
we were able to avoid setting up a new piece of infrastructure for caching and
can get more out of the database system we already have in place. Our Rails
code looks like regular Rails code (we're using Active Record to query data),
and we didn’t need to write a background process to keep our data updated.
Eventually, we’ll have complex enough query needs that we can’t use this
technique, but we're getting a lot further than we would with other RDBMSs.

Next: Combining Data with a Second Source in Angular

We're about to complete our journey in creating a high-performing, usable,
and clean way for our users to see a customer’s details. We have our Ul
designed and built, and our back end is now clean, simple, and fast. We now
need to bring them together in our Angular app.

With what we know about Angular, using this data in our view is pretty easy.
We've seen how we can request information from the server user $http and
we've seen how to show that data in our view using Angular’s templating
system, along with the ng-model directive.

One thing you might have noticed is that our CustomerDetail model doesn’t
expose some of the billing information, such as the last four digits and expi-
ration data of the customer’s credit card. We don’t store this data in our

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 9. Cache Complex Queries Using Materialized Views ® 170

database, but we need it in our view. In the next chapter you’ll see how
Angular manages that by learning more about how its asynchronous nature
works.

You'll learn how to can pull data from two separate sources and have it display
in the view, showing the data as it comes in, for the best user experience, all
without a whole lot of code.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

‘ AGGREGATING DATA FROM MANY SOURCES

Angular-, Nested o Progress
Angular cmm”ers Bootstrap( "

CHAPTER 10

Asynchronously Load Data
from Many Sources

In the last chapter, we saw how using a materialized view made it easy to
aggregate data from several different database tables. But what if data we
need comes from more than one source? Do we collect data from all sources
at the server, thus making the user wait for all of it to be available before
seeing any of it? Or is there a way to show the user data as it comes in,
updating the UI along the way?

The latter is a better user experience, and that’s what we're going to explore
here. We'll use Angular’s asynchronous design to show users data as it comes
in, rather than making them wait. We’ll use the angular-resource module to
keep our code clean and clear, and keep our code decoupled by using multiple
controllers for the view. We'll also use Bootstrap to make sure the user
experience is acceptable while the user is waiting for data.

As you recall, our running example shows a detailed view of a customer’s
information. It includes the data we’re pulling back from our materialized
view, but also data about their credit card, which is located inside a third-
party service (which we’ll simulate). We’'ll solve this problem in a clean way,
maintaining the best user experience we can.

We're going to take this in small steps. First, we’ll learn about angular-resource,
which makes it easier to manage asynchronous code, and enables the user
experience we want. We'll use this to fetch the customer details we made
available in Chapter 9, Cache Complex Queries, on page 151. Next, we’ll nest

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 10. Asynchronously Load Data from Many Sources ® 172

controllers in our view, so we can make a separate controller for fetching the
credit card details.

With the structure of our user interface in place, we’ll see how to use Boot-
strap’s progress component to show the user a loading animation that’s
connected to the Ajax call. With the user experience complete, we’ll see how
the two controllers can communicate so they can stay decoupled from one
another. Finally, we’ll revisit how to unit test our Angular controllers in light
of this new information.

First, though, let’s get an overview of how asynchronous code works in
Angular. Since asynchronous code isn’t something that is a part of Rails, you
might not have a lot of experience with it conceptually, and this can make it
hard to understand the code we're going to write. Let’s step through the life
cycle of some asynchronous requests.

Understanding How Asynchronous Requests Work

If you've done any JavaScript programming, you are familiar with callbacks.
These are functions that get called later. The simplest example is setTimeout,
which takes a callback function and a number of milliseconds. After the given
milliseconds have elapsed, the function is called.

In this code, we execute the function errorMessage one second later:

var errorMessage = function() {

alert("OH NOES!");
}
setTimeout(errorMessage, 1000);
We also saw this when using $http in Chapter 5, Build a Dynamic Ul with
AngularJS, on page 61, where we passed a callback to get that would execute
our code once we got a response from the server. We didn’t really talk about
why $http works that way. Now we will.

Why Asynchronous?

Contacting the server takes time. Even with all the improvements we’ve made
in the performance of our Rails controller, fetching data over the Internet is
not instantaneous. If our JavaScript were to make an Ajax call and simply
wait for a response (called a synchronous request), the entire browser would
be hung while it waited on the network.

In order to prevent this, we want to make the call in the background and let
our main bits of code (and the browser in general) continue to operate while
the networking request is happening. In many programming languages, this

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Line 1

0 N O U~ W N

Understanding How Asynchronous Requests Work ® 173

is done with threads. JavaScript does not expose the concept of threads to
the user, instead requiring programmers to use callbacks managed internally
by the runtime.

This means our code is often organized in three chunks: setup to make our
Ajax request, making the request, and code to run after the request has
completed. Where this can get tricky is when we have more than one request.
Consider this code:

var base = "http://billing.example.com"

$http.get(base + "/cardholder/123").then(function(response) {
alert("Got card details!");

1)

$http.get("/customer/123.json").then(function(response) {
alert("Got customer!");

1)
alert("Requests complete!");

Although this code looks like it runs top to bottom, it actually doesn’t. Lines
1 and 2 execute first. While that Ajax call is happening, the code proceeds to
line 5. After that, line 8 is called.

This means that lines 3 and 6 haven’t executed yet! They’ll execute when their
respective Ajax calls complete, and that could happen in any order. A big part
of our code—handling the responses from the server—cannot rely on any
particular ordering. The figure on page 174 shows the overall flow.

This can get confusing fast, especially if the code does need to run in a certain
order. Consider if we needed a credit card holder ID from our customer details
in order to fetch the customer’s card information from our third-party billing
service. We'd need to make our call to the billing service inside the callback
that’s called when our customer details are fetched, creating a nested structure
like so:

var base = "http://billing.example.com"
$http.get("/customer/123.json").then(function(response) {
alert("Got customer!");
var url = base + "/cardholder/" + data.cardholder id
$http.get(url).then(function(response) {
alert("Got card details!");
1)
1)
alert("Requests complete!");

This is called callback hell. It makes your client-side code hard to deal with.
Partly this is just the reality of programming with an asynchronous model.
But there are tools, called promises, to help us wrangle this complexity.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 10. Asynchronously Load Data from Many Sources ¢ 174

]
Payment

GET /cardholder/123 > Gateway
l L J
( A

GET /customers/123.json > Shine

J

“Requests
Completed!”

Waiting on
Callbacks
“Got
Customer!”

Control Flow

“Got Card
Details!”

Promises

You'll notice that we aren’t passing a function to $http.get like we did to setTime-
out. Instead, we're calling the function then on whatever $http.get returns. What
it’s returning a called a promise.

A promise is an object that represents a background call that may or may
not have completed. At its most basic, a promise contains a single function
that accepts a function to be called when the underlying call has completed.
When a promise is completed, it’s said to be resolved and, when that happens,
our function is called with the results.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Using Angular-Resource to Connect to Rails ® 175

All of Angular’s asynchronous code is build on its $q library,' which uses the
function then:

var promise = $http.get("/customers/123.json");
promise.then(function(response) {
// This is called when the Ajax call completed successfully

b

Promises are a deep topic that we won’t get too far into, but it’s important to
understand what they are. In the next section, we’ll see how promises allow
us to clean up our code quite a bit. The main thing you should take away is
that there are objects that represent background work that can be accessed
while the work is happening.

The code we've written thus far (using $http) uses the promises returned by
$http, but is still written in with a callback style. Now that you know about
promises, let’s focus on angular-resource, which makes more intelligent use
of the underlying promise, providing an API that does not require callbacks.

Using Angular-Resource to Connect to Rails

The Rails way of designing HTTP endpoints (which is a RESTful style®) isn’t
particular to Rails. It’s quite common outside the Rails world. Because of this,
it’s possible to use a higher level of abstraction than what $http gives us. The
Angular module angular-resource provides such an abstraction.

What it will allow us to do is to write code like so:

$scope.customer = Customer.get(customer id);

Although there are no callbacks, this code is still asynchronous. Execution
continues after the call; it doesn’t wait for the Ajax call to complete. This is
because the object returned by Customer.get is a promise that, when resolved,
will behave like a customer object, exposing the various fields from the call.

This lets us use customer in our view as if it were a populated object. When the
promise is resolved, the view automatically updates. Without callbacks, our
code is clean and easy to follow yet it won’t block on the remote HTTP call.

To be able to write our controller in this style, we’ll need to install and config-
ure angular-resource. It provides the $resource service, which we can use to
create an object like Customer. Customer can then be used to make our Ajax calls
as shown earlier.

1. https://docs.angularjs.org/api/ng/service/$q
2. https://fen.wikipedia.org/wiki/Representational state transfer

www.it-ebooks.info


https://docs.angularjs.org/api/ng/service/$q
https://en.wikipedia.org/wiki/Representational_state_transfer
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 10. Asynchronously Load Data from Many Sources ¢ 176

Installing Angular-Resource

You'll recall how we installed angular-route in Chapter 7, Create a Single-Page
App, on page 119, and we’ll do the same here for angular-resource. First, we’ll
add it to Bowerfile and run rake bower:install to download it.

angular-async/start/shine/Bowerfile
asset 'bootstrap-sass-official'
asset 'angular-mocks'

asset 'angular-route'

# START HIGHLIGHT

asset 'angular-resource'

# END HIGHLIGHT

asset 'angular', '~> 1.5'
resolution 'angular', '1.5'

Next, we’ll add it to app/assets/javascripts/application.js.

angular-async/start/shine/app/assets/javascripts/application.js
//= require angular

//= require angular-route

//= require angular-resource

//= require angular-rails-templates

//= require tree ./templates

//= require tree .

Finally, we’ll add angular-resource as a dependent module when setting up
our app. As before, we can’t use the string angular-resource, but have to translate
that to the module name ngResource.

angular-async/start/shine/app/assets/javascripts/customers_app.js
var app = angular.module(
‘customers',
[
‘ngRoute’,
‘ngResource',
'templates’
1
);

All this setup will allow us access to the $resource service.?

Using $resource

The $resource service is a factory® function that takes a URL fragment as a
parameter and returns an object we can use to make Ajax calls to our Rails
controller, without having to use callbacks.

3. https://docs.angularjs.org/api/ngResource/service/$resource
4. https://en.wikipedia.org/wiki/Factory (object-oriented programming)

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/angular-async/start/shine/Bowerfile
http://media.pragprog.com/titles/dcbang/code/angular-async/start/shine/app/assets/javascripts/application.js
http://media.pragprog.com/titles/dcbang/code/angular-async/start/shine/app/assets/javascripts/customers_app.js
https://docs.angularjs.org/api/ngResource/service/$resource
https://en.wikipedia.org/wiki/Factory_(object-oriented_programming)
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

vy

Using Angular-Resource to Connect to Rails ® 177

First, we’ll inject it into our CustomerDetailController by adding its name to the
parameter list and adding the argument $resource to our function definition
(see Creating Our First Angular Controller, on page 67 for a reminder on why
we have to do this).

angular-async/start/shine/app/assets/javascripts/customers_app.js
app.controller("CustomerDetailController", [

"$scope","$routeParams","$resource",
function($scope , $routeParams , $resource) {
1);

Now that it’s available to our controller, we can replace the innards of our
controller entirely with the following:

angular-async/start/shine/app/assets/javascripts/customers_app.js
var customerId = $routeParams.id;
var Customer = $resource('/customers/:customerId.json')

$scope.customer = Customer.get({ "customerId": customerId})

This code is a lot cleaner and a lot clearer. It looks like a simple, synchronous
call but it’s still asynchronous. This is because the object we get back from
Customer.get is a promise that, when resolved, will set properties on itself based
on the results of the call.

We can see this in action, but first we need to use $scope.customer in our view.

Populating the View

Rather than revisit the entire view we designed in Chapter 8, Design Great
UIs with, on page 137, we’'ll just show a few of the changes we need to make.
This shouldn’t be anything new if you've been following along.

We'll use the ng-model directive to bind our form elements to the values we get
back from the Ajax call.

angular-async/start/shine/app/assets/javascripts/templates/customer_detail.html
<article class="panel panel-primary">
<header class="panel-heading">
<hl class="h3">
Customer
</hl>
</header>
<section class="panel-body">
<div class="row">
<div class="col-md-4">
<div class="form-group
<label class="sr-only" for="first-name">
First Name
</label>

>

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/angular-async/start/shine/app/assets/javascripts/customers_app.js
http://media.pragprog.com/titles/dcbang/code/angular-async/start/shine/app/assets/javascripts/customers_app.js
http://media.pragprog.com/titles/dcbang/code/angular-async/start/shine/app/assets/javascripts/templates/customer_detail.html
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

vy vy

YYVYVYY

vy

Chapter 10. Asynchronously Load Data from Many Sources ¢ 178

<input type="text" class="form-control"
name="first-name" ng-model="customer.first name">
</div>
</div>
<div class="col-md-4">
<div class="form-group ">
<label class="sr-only" for="last-name">Last Name</label>
<input type="text" class="form-control"
name="last-name" ng-model="customer.last name">
</div>
</div>
<div class="col-md-4">
<div class="form-group ">
<label class="sr-only" for="username">Username</label>
<div class="input-group">
<div class="input-group-addon">@</div>
<input type="text" class="form-control"
name="username" ng-model="customer.username">
</div>
</div>
</div>
</div>
<div class="form-group">
<label class="sr-only" for="email">Email</label>
<input type="text" class="form-control"
name="email" ng-model="customer.email">
</div>
</section>
<footer class="panel-footer">
<label for="joined">Joined</label>
{{ customer.joined at | date }}
</footer>
</article>

The rest of the view will be similar. We should now be able to navigate to our
customer search, find a customer, click to view details, and see the data
populated into our form (except for the credit card information, which we’ll
get to in a moment). This is shown in the screenshot on page 179.

We can see the asynchronous promise in action by adding a call to sleep to
our controller method.

def show
customer detail = CustomerDetail.find(params[:id])
sleep 5
respond to do |format|
format.json { render json: customer detail }
end
end

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Using Angular-Resource to Connect to Rails ® 179

Billing Info
st _ibhie - )
Cyrus Blanda @ elwyno9 ST . View Detalils...
Expires: /
meta87@rau.com
Joined Dec 1, 2015 Billing Address ] Same as shipping?
517 Veda Square
Shipping Address
Dollystad xx 76690-3473

5641 Macie Motorway

Lake Aurelie XX 94748

This sleep call will make our controller artificially slow, which will make the
Ajax call take a long time. We can also add a call to alert in our Angular con-
troller that will execute right after the Ajax call is made, but before it's com-
pleted:

var customerId = $routeParams.id;
var Customer = $resource('/customers/:customerId.json')

$scope.customer = Customer.get({ "customerId": customerId})
alert("Ajax Call Initiated!");

If you reload the detail page now, you should see the alert pop up. If you
dismiss it quickly, the screen will show a blank form for a few seconds, and
when the sleep in our controller finishes, the data will populate in the view
automatically.

Angular knows to do this via binding. When we use ng-model or simply refer to
values from the scope in our view via the {{value}} syntax, Angular binds those
values to the view. It then begins to watch them for changes. When the Ajax
call completes and sets values for properties like customer.first name and cus-
tomer.joined_at, Angular notices and updates any parts of the DOM affected by
the new values.

We'll learn more about the bindings in Chapter 11, Wrangle Forms and, on
page 193, when we save the user’s changes back to the server.

Now that we've simplified access to the back end, and hooked everything up
to our new detail view, we can start to think about how to get the credit card
info into this view. Since that data will come from a different source than the
data we've been using so far, it’s worth considering if we can keep the code
separate.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 10. Asynchronously Load Data from Many Sources ¢ 180

We'll see how we can do this by placing our new code in a different controller,
and having that controller nested in our view, controlling only the part of it
that needs its data.

Nesting Controllers to Organize Code

So far, we've had a setup of one controller per view. We could continue doing
that here, and add the necessary code to CustomerDetailController to get the user’s
credit card info from the second source. Although for the task at hand it might
not be too complex to do so, you should learn how to do this a better way,
especially if things get complex later. It’s not much more code, and will make
our Angular app easier to work.

We can achieve this separation by using a second, nested controller, attached
to a subset of our view using ng-controller. We didn’t need to use ng-controller after
we introduced angular-route, because the controller to use is configured in
the routing configuration. But we can still use ng-controller in our view to
effectively override this configuration.

Implementing the controller itself will be straightforward: we just need know
the URL from which to fetch the credit card info. Since this is just a simula-
tion, we’ll create an endpoint in our Rails app to act as the payment proces-
sor’s website.

First, we’ll add a route called fake_billing to config/routes.rb:

angular-async/start/shine/config/routes.rb
Rails.application.routes.draw do

devise for :users

root 'dashboard#index'

resources :customers, only: [ :index, :show ]

get "angular test", to: "angular test#index"
get "fake billing", to: "fake billing#show"
end

FakeBillingController will then use Faker to return canned data based on a card-
holder ID.

angular-async/start/shine/app/controllers/fake_billing_controller.rb
class FakeBillingController < ApplicationController
skip_before_action :authenticate_user!
def show
if params[:cardholder id]
sleep 3
render json: {
lastFour: Faker::Business.credit card number[-4..-1],
cardType: Faker::Business.credit card type,

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/angular-async/start/shine/config/routes.rb
http://media.pragprog.com/titles/dcbang/code/angular-async/start/shine/app/controllers/fake_billing_controller.rb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

vy

Nesting Controllers to Organize Code * 181

expirationMonth: Faker::Business.credit_card_expiry_date.month,
expirationYear: Faker::Business.credit card expiry date.year,
detailslLink: Faker::Internet.url,
)
else
head :not found
end
end
end

We've used sleep to simulate a slow response from the payment processor.
This will allow us to see the effects of how we've designed our user interface.
We should see the customer details pop up quickly, followed later by the
credit card info. This will be more what it would like in the real world, and it
will also allow us to verify that our asynchronous handling of the various Ajax
calls is happening as we expect.

With our simulated payment processor set up, we can write our nested
Angular controller, which we’ll call CustomerCreditCardController. It will work simi-
larly to CustomerDetailController in that we’ll use $resource to create the object
CreditCardinfo, which will access the credit card endpoint we created earlier,
and then use it to fetch the info.

Despite the fact that we are simulating the third-payment processor with
Rails, $resource isn’t restricted to just Rails endpoints. It works with any HTTP
endpoint that is RESTful. Were we integrating with a real payment processor,
and their API was similar to how Rails works, our code would work just as it
does here (of course $resource is highly flexible and can be configured to deal
with just about anything).

Here’s what CustomerCreditCardController will look like (we’ll use a hardcoded
cardholder ID for now and see how to get the real value in a later section of
this chapter):

angular-async/start/shine/app/assets/javascripts/customers_app.js
app.controller("CustomerCreditCardController", [
"$scope","$resource",
function($scope , $resource) {
var CreditCardInfo = $resource('/fake billing.json')
$scope.creditCard = CreditCardInfo.get({ "cardholder id": 1234})
}
1);

This is enough for us to get things working in the Ul To do that, we’ll use ng-
controller on the element whose children should be managed by CustomerCredit-
CardController. Doing this will make anything placed into CustomerCreditCardController's

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/angular-async/start/shine/app/assets/javascripts/customers_app.js
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

vy

Chapter 10. Asynchronously Load Data from Many Sources ® 182

$scope available to that markup, but not available outside of it, thus achieving
the separation we were going for.

Here’s our template, including how we are using the exposed creditCard object.

angular-async/start/shine/app/assets/javascripts/templates/customer_detail.html
<div class="col-md-6">
<article class="panel panel-default billing-info">
<header class="panel-heading">
<h2 class="h4">
Billing Info
</h2>
</header>
<section class="panel-body">
<article ng-controller="CustomerCreditCardController">
<div class="row">
<div class="col-md-7">
<p class="h4">
Fokorck kokokx tokokk _ ffcreditCard. lastFour}}
<span class="label label-success">
{{creditCard.cardType}}
</span>
</p>
<p class="h5">
<label>Expires:</label>
{{creditCard.expirationMonth}}/{{creditCard.expirationYear}}
</p>
</div>
<div class="col-md-5 text-right">
<a href="{{creditCard.detailsLink}}"
class="btn btn-1g btn-default">
View Details..
</a>
</div>
</div>
</article>

<!-- rest of the billing address markup... -->

</article>
</section>
</article>
</div>
</div></form>

With our UI connected to our nested controller, we can reload the page and
see it all in action. Everything will look the same, but you should see that the
customer details load quickly and, after a pause, the credit card info will
appear. This demonstrates that we have the building blocks to get the user
the best experience we can and keep our code organized in doing so.

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/angular-async/start/shine/app/assets/javascripts/templates/customer_detail.html
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Using Bootstrap’s Progress Bar When Data Is Loading ® 183

You'll note I said “building blocks.” There are two problems with the current
implementation. First is that while the request is happening, the app just sits
there, providing no indication of what it’s doing. The second is that while
users are waiting for the data, they see the credit card info in a weird empty
state. For example, why should the “View Details” button even be displayed
if we don’t have the link available?

Billing Info
R View Details...
Expires: /
Billing Address [ Same as shipping?
517 Veda Square
Daollystad XX 76690-3473

While we still need to get the actual value for cardholder id into our controller,
let’s fix the Ul issue first. We can do this by combining a property Angular
exposes about the state of a promise’s resolution, along with Bootstrap’s
progress component.

Using Bootstrap’s Progress Bar When Data Is Loading

In a traditional application, where the views are generated on the server, you
get a reasonable user experience during slow-loading pages for free. Most
browsers have some sort of loading animation or messaging while the page
is being rendered. It’s not great, but it’'s something.

When making heavy use of a front-end framework like Angular, we no longer
get that bit of UL. As we are seeing with the customer detail page, there’s no
indication that anything is happening. It may appear to users that the app
is broken or hung. We'd like to fix that.

There are two things we’ll need to do. First, we need to know how to detect if
the Ajax call is still in progress or if it's completed. We'll use that for the second
step, which is to render a loading animation if the call is still in progress.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 10. Asynchronously Load Data from Many Sources ¢ 184

Dynamically Rendering Content Based on the Ajax Call’s Status

We've seen how we can show or hide parts of the DOM by using the ng-if
directive. What we need to know is what expression to use to show or hide
our Ul while the Ajax call is happening. As you'll recall, $resource creates a
factory (in our case, CreditCardinfo) that returns a promise, meaning that
$scope.creditCard is a promise that gets resolved when the Ajax call completes.

In the documentation for $resource you’ll see that all such objects include the
property $resolved, which will be false while the Ajax call is happening and true
when it’s done.

To use it, create two divs. The first contains our loading animation. It's shown
when $resolved is false. The second contains the existing credit card info UI.

angular-async/progress/shine/app/assets/javascripts/templates/customer_detail.html
<article ng-controller="CustomerCreditCardController">
<div class="row">
<div ng-if="!creditCard.$resolved">

<!-- loading animation will go here -->

</div>
<div ng-if="creditCard.$resolved">

<!-- Credit Card info component -->

</article>

Because Angular is watching $resolved, when it changes from false to true, the
loading animation will get hidden and the Ul, populated with all the data we
got back from the server, will be shown.

We just need to create a loading animation.

Using an Animated Progress Bar as a Loading Animation

There are countless loading animations across the web, some in pure CSS
and some requiring JavaScript. To keep with our theme of not writing any
CSS, we're going to use Bootstrap’s progress bar component.’ It has many
features, including animation.

Although the progress of our Ajax call is indeterminate, Bootstrap’s progress
bar can function as an indeterminate progress indicator or loading animation.
We'll simply create a progress bar that’s at 100%, and animate it, overlaying

5.  http://getbootstrap.com/components/#progress

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/angular-async/progress/shine/app/assets/javascripts/templates/customer_detail.html
http://getbootstrap.com/components/#progress
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Using Bootstrap’s Progress Bar When Data Is Loading ® 185

the label “Loading.” With custom CSS, we could probably do better, but this
will be pretty good, given the tools at hand.

We'd like to give the progress bar some space so it doesn’t crowd the panel.
We can do this using the grid we discussed in Chapter 8, Design Great Uls
with, on page 137. We'll have the progress bar take up ten of the twelve available
grid cells, and use a helper class, col-md-offset-1, which will offset the cell con-

taining the progress bar by one cell, effectively centering it in the panel, with
a padding of one cell on each side.

Inside our cell, we’ll put the progress bar’s code, which looks like so:

angular-async/progress/shine/app/assets/javascripts/templates/customer_detail.html
<div class="col-md-10 col-md-offset-1">
<aside class="progress">
<div class="progress-bar progress-bar-striped active"
style="width: 100%">
Loading..
</div>
</aside>
</div>

You’'ll notice that we're cheating a little on our “no CSS” rule, because there
is a style element on the inner div of the progress bar. This is the way Bootstrap
knows how much progress to render. It’s not very sophisticated, but it was
designed before widespread use of the HTMLS5 progress element (which we can’t
use, because its default styling conflicts with Bootstrap’s, and will eliminate
the animation we need for this feature). But, it looks pretty good and solves
our problem. This is a great example of bending our tools to meet our needs
without introducing complexity.

As the screenshot on page 186 shows, loading the detail page now displays an
animated progress bar.

After a few seconds, the Ajax call completes and you should see the credit
card info UI, with all the data from the back end.

It’s pretty amazing what we've been able to accomplish for ourselves and our
users with very few lines of code. We're fetching data from the back end,
asynchronously, without callback hell, and we give the user a decent experi-
ence while a slow-loading resource becomes available. We display the customer
details almost immediately, and use a loading animation to let the user know
the credit card info is coming.

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/angular-async/progress/shine/app/assets/javascripts/templates/customer_detail.html
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 10. Asynchronously Load Data from Many Sources ® 186

Billing Info
Loading...
Billing Info
Biling Address [ samead =~ ****-*eroee_ 1914 View Details...
3451 Rory Lane Expires: 11/2020

F|at|€ych33ter
Billing Address [ same as shipping?

3451 Rory Lane

Flatleychester XX 61392

With our user interface locked down, we now need to get the actual value for
cardholder_id. We can do this by passing data from our outer controller to our
inner, nested controller.

Passing Data Between Controllers

At this point, we're using a hardcoded value for cardholder_id, but we haven’t
explained what it is. In our simulated payment processor back end, we need
to pass an identifier of whose credit card information we want to show.

For the sake of simplicity, let’s assume that, elsewhere in our hypothetical
system, when we create credit card info with our payment processor, we
explicitly state that the cardholder’s ID is the same as our internal ID used
in the CUSTOMERS table. Thus, the value we get back from our controller as
customer_id should be the value to use for the cardholder id.

Given that, how can we get the ID of the customer we're viewing inside Cus-
tomerCreditCardController? We could extract it from the route parameters like we
do in CustomerDetailController, but this feels wrong, as it’s copying code. It also
makes our CustomerCreditCardController more tightly coupled to the view and
routing configuration.

www.it-ebooks.info

report erratum - discuss


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

YYYVYY

Passing Data Between Controllers ¢ 187

Another option is to reach into $scope. Because we've configured CustomerCredit-
CardController to be nested in the view that is powered by CustomerDetailController,
Angular will pass in a scope that has the same data in it that CustomerDetailCon-
troller has. This means that if we access $scope.customer inside CustomerCreditCard-
Controller, it will be the same object that CustomerDetailController is dealing with.

This approach isn’t great because it maintains tight coupling between our
two controllers. CustomerCreditCardController shouldn’t require being nested inside
a view related to CustomerDetailController if we can help it. The more CustomerCredit-
CardController can be decoupled the better, both for understanding the code and
for testing it.

What we can do instead is make the dependency between the two controllers
more explicit. This means CustomerCreditCardController and CustomerDetailController
do not have to know about each other at all, which allows us to more easily
work with both classes.

To do this, we’ll use the directive ng-init. ng-init is used on the same element as
ng-controller and allows you to execute code that has access to both scopes. In
effect, we can use data exposed by CustomerDetailController and pass it to a func-
tion exposed by CustomerCreditCardController, like so:

<article ng-controller="CustomerCreditCardController"
ng-init="setCardholderId(customer id)">

It might seem odd to put this logic inside the view, and the Angular docs do
warn against excessive use of this directive, but it's a great solution to our
problem. It puts the code that couples the two controllers where the coupling
actually exists: the view.

First, we’ll create a function in CustomerCreditCardController that we can use in ng-
init to set the customer ID. This function will initiate the call to the payment
processor back end.

angular-async/ng-init/shine/app/assets/javascripts/customers_app.js
app.controller("CustomerCreditCardController", [
"$scope","$resource",
function($scope , $resource) {
var CreditCardInfo = $resource('/fake billing.json')
$scope.setCardholderId = function(cardholderId) {
$scope.creditCard = CreditCardInfo.get(
{ "cardholder id": cardholderId}

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/angular-async/ng-init/shine/app/assets/javascripts/customers_app.js
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

YVYY

Chapter 10. Asynchronously Load Data from Many Sources ¢ 188

Notice how we use the name setCardholderld instead of setCustomerld. This rein-
forces the de-coupled nature of these two pieces of code—CustomerCreditCardCon-
troller should not have to know that we are using the customer’s ID as the
cardholder ID in the payment processor’s system.

It might seem like we could call this function in ng-init, like so:

<article
ng-controller="CustomerCreditCardController"
ng-init="setCardholderId(customer.customer id)">

This won’t work, however, because customer is a promise, and so won't initially
have a value for customer_id. Fortunately, the customer’s ID isn’t a value we
have to wait on from the Ajax response. Since it’s part of the routeParams, Cus-
tomerDetailController already has access to it without hitting the back end. We
can simply expose this value from CustomerDetailController and then use it in ng-
init.

First, we’ll expose the customer ID to the view via $scope.

angular-async/ng-init/shine/app/assets/javascripts/customers_app.js
app.controller("CustomerDetailController", [

"$scope","$routeParams","$resource",
function($scope , $routeParams , $resource) {
$scope.customerId = $routeParams.id;
var Customer = $resource('/customers/:customerId.json')

$scope.customer = Customer.get({ "customerId": $scope.customerId})
// rest of the controller...

}
1);

Now, we can use it in ng-init:

angular-async/ng-init/shine/app/assets/javascripts/templates/customer_detail.html
<article
ng-controller="CustomerCreditCardController"
ng-init="setCardholderId(customerId)">
<div class="row">
<div ng-if="I!creditCard.$resolved">

With this in place, we're passing the cardholder ID to the fake payment pro-
cessor, thus keeping all of our code separate and decoupled, but still able to
handle getting data from all the right places. This wraps up our feature to
view a customer’s details, but it’s worth revisiting our testing setup in light
of this new way of making Ajax calls.

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/angular-async/ng-init/shine/app/assets/javascripts/customers_app.js
http://media.pragprog.com/titles/dcbang/code/angular-async/ng-init/shine/app/assets/javascripts/templates/customer_detail.html
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Yvy

Testing Controllers That Use Angular-Resource ¢ 189

Testing Controllers That Use Angular-Resource

Before Chapter 6, Test This Fancy New Code, on page 83, our Angular code
was using $http to make Ajax calls. Our tests used $httpBackend to mock out
the HTTP interactions between our controller and the server. Will that still
work, now that we are using angular-resource?

The short answer is yes. Because angular-resource is using $http under the
covers, the same techniques apply. In fact, you can use this information to
refactor CustomerSearchController to use angular-resource.

Because angular-resource requires us to understand promises, let's walk
through a basic test of the CustomerCreditCardController, so it’s clear how promises
interact with our tests.

First, we’ll set up our tests in the usual way:

angular-async/ng-init/shine/spec/javascripts/cu ... trollers/customer_credit_card_controller_spec.js
describe("CustomerCreditCardController", function() {
describe("Initialization", function() {

var scope = null,
cardholderId = 42,
controller = null,
httpBackend = null,
cardInfo = { lastFour: '4321"',

cardType: 'visa',
expirationMonth: 3,
expirationYear: 2018,
detailsLink: 'http://billing.example.com/foo' };

beforeEach(module("customers"));

beforeEach(inject(function ($controller,
$rootScope,
$httpBackend) {
scope $rootScope.$new();
httpBackend = $httpBackend;

httpBackend.when('GET"',
'/fake billing.json?cardholder id=' + cardholderId
) .respond(cardInfo);

controller = $controller("CustomerCreditCardController", {
$scope: scope
1)
)
// tests will go here...
1)
1)

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/angular-async/ng-init/shine/spec/javascripts/cu � trollers/customer_credit_card_controller_spec.js
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

0000

Chapter 10. Asynchronously Load Data from Many Sources ¢ 190

You can see from the highlighted section that we're using $httpBackend the same
way we did before, despite the fact that our controller isn’t actually using
$http.

To write the tests, we’ll first write one that asserts that nothing happens when
the controller is initialized—that no Ajax calls are initiated if setCardholderld has
not been called.

angular-async/ng-init/shine/spec/javascripts/cu ... trollers/customer_credit_card_controller_spec.js
it("does not hit the backend initially", function() {
expect(scope.creditCard).not.toBeDefined();

b

This test may seem spared, but it will fail if any Ajax calls are made during
initialization of the controller. The next test is for the actual behavior of the
controller, and this is where we’ll walk through when the promises get resolved
so it’s clear how all this works.

angular-async/ng-init/shine/spec/javascripts/cu ... trollers/customer_credit_card_controller_spec.js

it("when setCardholderId is called, hits back-end", function() {
scope.setCardholderId(cardholderId);
expect(scope.creditCard).toBeDefined();
expect(scope.creditCard.lastFour).not.toBeDefined();
httpBackend. flush();

expect(scope.creditCard) .toEqualData(cardInfo);

1)

©® Here we simulate what’s going on in ng-init by calling the public function
setCardholderld directly. After this call the Ajax call would be in-flight and
the promise underlying $scope.creditCard would not be resolved.

©® Although we wouldn’t normally test Angular’s underlying promise system,
we can see it in action in our tests. Here we see scope.creditCard is defined.

© Here, we can see that although scope.creditCard is defined, it doesn’t have
any properties set on it. Again, you probably wouldn’t test this for real,
but it does demonstrate the order of operations.

O This line simulates the completion of the Ajax call by using httpBackend.flush()
as we've seen before. At this point the promise is resolved, and we’d expect
$scope.creditCard to have data in it.

© Finally, we can assert that we got data back from the server. scope.creditCard
is now populated with all of the data we expect.

Promises can be somewhat confusing in your production code, and in test
code it’s even more confusing because you have to push each step through
manually to see promises get created and then resolved.

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/angular-async/ng-init/shine/spec/javascripts/cu � trollers/customer_credit_card_controller_spec.js
http://media.pragprog.com/titles/dcbang/code/angular-async/ng-init/shine/spec/javascripts/cu � trollers/customer_credit_card_controller_spec.js
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Next: Sending Changes Back to the Server ¢ 191

It is worth pointing out how the separation of controllers made our tests
simpler. If you imagine that we’d put all the code from CustomerCreditCardController
in CustomerDetailController instead, our tests would be more complex. They would
have to simulate two HTTP calls to make sure everything was working prop-
erly. By separating concerns and decoupling, our controllers are easier to
test.

Next: Sending Changes Back to the Server

In this chapter, you learned how to use angular-resource to easily fetch data
from our Rails app (as well as a third-party payment processor), and to display
it to the user as it became available using promises. But viewing data is only
part of what you need to learn.

In the next chapter, we’ll add the functionality to let the user edit some of the
data and have it sent back to the server and updated automatically. You'll
learn more about Angular’s bindings and see how to handle the disparity
between our materialized view of a customer’s details and the actual database
model that backs it.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

FORMS FOR USER INPUT

2-Way Validation
Angular Bootstrap @

CHAPTER 11

Wrangle Forms and
Validations with Angular

So far, we've treated our application as a producer of information, as it shows
data quickly, easily, and in a usable way. But applications need to consume
information as well, and that's what we're going discuss in this chapter. So
far, we've designed a complex form that shows the user some information
about a customer, and the next step is to let the user modify that information.

A typical Rails application has access to various helpers, both in Active Record
and in the view, to give the user a good experience. You can specify that a
field is required or must match a certain format (for example, the validators
we used with Devise in Chapter 1, Create a Great-Looking Login with Bootstrap
and Devise, on page 1). Since we're relying on Angular to render our form,
we don’t have access to all of Rails’s features to let users update the data.

This chapter shows you how to get the same benefits and give the user the
same great experience but using Angular’s form support, along with Boot-
strap’s styles for field validation. This will be a true test of your abilities as a
full-stack developer, because Angular and Bootstrap were not designed to
work in concert, so it'll be a bit tricky making it all work.

To understand how to do this, you'll first learn about bindings, which is the
core of how Angular manages dynamic values and is the underpinning of ng-
model. You’'ll then build on this to explore Angular’s form support. Angular
Forms provide various hooks into the binding life cycle, which will allow you

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 11. Wrangle Forms and Validations with Angular ¢ 194

to detect when values have changed, inject validations, and generally manage
your code for the front end.

From there, you'll learn how to use Angular Forms with Bootstrap’s styles so
that your form fields properly indicate their valid or invalid states to the user.
Then, you'll see how to save the data back to the server. You'll also see how
Rails’s validators relate to all of this.

But first, let’s explore bindings.

Managing Client-Side State with Bindings

In Chapter 10, Asynchronously Load Data, on page 171 we saw how Angular
uses bindings to detect changes in our model, and how it can update those
changes in the view. Angular’s bindings are two-way, meaning that changes
on the form are also reflected back on the model.

We saw this in action when we created our Angular test app in Chapter 5,
Build a Dynamic UI with AngularJS, on page 61. If you recall, our app rendered
whatever was typed in a text field as the value for an hl tag. It was Angular’s
bindings that made this happen.

Now that we are going to allow users to edit the fields in our form, we’ll need
to understand more details about how bindings work. On the surface, it may
seem that when a user is editing a form field, the value of that field is copied
back to the model. While true, there’s much more to it.

Angular’s bindings keep track of detailed states of the control:

Valid vs. invalid
Angular will keep track of the validity of a field and will not sync invalid
values back to the model. It can do this using HTML5 validations (like
required'), or custom validators that you write.

Dirty vs. pristine
A control is pristine if the user has yet to interact with it and dirty other-
wise. Angular tracks this, which you can use to avoid showing a user a
fresh, blank form with a bunch of error flags for required fields.

Touched vs. untouched
A control has been touched if it's been blurred (for example, the user has
tabbed away from it) and untouched otherwise. Angular can track this,
too (which you can use to sync only values or show errors after the user
is done interacting with the control).

1.  http://www.w3.0rg/TR/2011/WD-htmI5-20110525/common-input-element-attributes.html#attr-input-required

www.it-ebooks.info


http://www.w3.org/TR/2011/WD-html5-20110525/common-input-element-attributes.html#attr-input-required
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Validating User Input with Angular Forms ¢ 195

Asynchronous validation
Angular allows you to write validations that are the result of external,
asynchronous calls. This can be useful when you need to hit the server
for validations.

This feature list should come as no surprise to you at this point, because it's
complex, yet powerful—a great description of Angular in general. In the next
section, we’ll use these features by applying HTML5 validators to our markup.
This will add Angular’s validations to our form.

Validating User Input with Angular Forms

In addition to the properties of a binding we discussed earlier, Angular provides
sophisticated features to interact with form data.> We can use these features
to implement various validations on our input fields using HTML5’s valida-
tions. For example, we can indicate a field is required using required like so:

<input type="text" name="first name" required>

HTMLS5 validations, and thus Angular’s form validations, can do more than
just require values. Here are the validations we're going to implement, and it
won’t require very much code to make them work:

¢ First name, last name, and username are required.

e Email is required and should look like an email address.
e Address and city are required.

e State should be exactly two uppercase letters.

e Zip code should be exactly five digits.

To implement these validations, we’ll first add the necessary markup to indi-
cate what the validations on each field are. Next, we’ll see exactly how this
information is exposed to our JavaScript code, before finally adding a submit
button that is only enabled if all fields are valid. This will demonstrate how
the mechanics of Angular’s form validation work, so we’ll be ready to style
our validated fields in the next section.

Adding Validation Markup

Angular’s built-in validations are documented on each of the input components
to which they apply.® Since we're using almost entirely text fields, we’ll use
the validators for input type="text".*

2.  https://docs.angularjs.org/guide/forms
3.  https://docs.angularjs.org/api/ng/input
4. https://docs.angularjs.org/api/ng/input/input%5Btext%5D

www.it-ebooks.info


https://docs.angularjs.org/guide/forms
https://docs.angularjs.org/api/ng/input
https://docs.angularjs.org/api/ng/input/input%5Btext%5D
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

vy

vy

Chapter 11. Wrangle Forms and Validations with Angular ® 196

Of course, our email field should use the new HTMLS5 input type="email", because
that will trigger Angular’s email pattern-matching validation. So, let’s convert
that field:

angular-forms/start/shine/app/assets/javascripts/templates/customer_detail.html
<div class="form-group">
<label class="sr-only" for="email">Email</label>
<input type="email" class="form-control" required
name="email" ng-model="customer.email">
</div>

You'll also notice that we used the HTML5 required attribute. Angular will pick
this up, too, and use it to validate that this field has a value.

Using HTML5 validations creates a problem, because the browser will try to
validate these values, too. Because Angular is going to handle that, we need
to disable browser validation on the form element using the novalidate attribute:

<form novalidate><div class="row">
<!-- rest of the markup -->
</div></form>

With that out of the way, we can proceed to add validations for the remaining
fields. For the first name, last name, username, two address, and two city
fields, we just need to use required like so:

angular-forms/start/shine/app/assets/javascripts/templates/customer_detail.html
<div class="form-group" >

<label class="sr-only" for="first-name">

First Name
</label>
<input type="text" class="form-control" required
name="first name" ng-model="customer.first name">

</div>

The markup should look similar for the other fields.

For the state and zip code fields, we’ll still use required, but we’ll also use the
HTMLS5 pattern attribute, which will allow us to specify a regular expression
that the value of the field must match. For the two state fields, the regular
expression [A-Z][A-Z] should suffice to capture a two-letter state code. For the
zip code field, \d\d\d\d\d will capture the five digits required for a U.S. zip code.

angular-forms/start/shine/app/assets/javascripts/templates/customer_detail.html
<div class="col-md-2">
<div class="form-group">
<label class="sr-only" for="state">State</label>
<input type="text" class="form-control"

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/angular-forms/start/shine/app/assets/javascripts/templates/customer_detail.html
http://media.pragprog.com/titles/dcbang/code/angular-forms/start/shine/app/assets/javascripts/templates/customer_detail.html
http://media.pragprog.com/titles/dcbang/code/angular-forms/start/shine/app/assets/javascripts/templates/customer_detail.html
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

vy

YVYY

YYVYVY

Validating User Input with Angular Forms ¢ 197

required pattern="[A-Z][A-Z]"
name="shippingState" ng-model="customer.shipping state">
</div>
</div>
<div class="col-md-4">
<div class="form-group">
<label class="sr-only" for="zip">Zip</label>
<input type="text" class="form-control"
required pattern="\d\d\d\d\d"
name="shippingZip" ng-model="customer.shipping zipcode">
</div>
</div>

Now that we've added markup for validations to our fields, let’s add a submit
button for users to use to save their changes. We’ll add the button at the
bottom of the grid cell that holds the billing info.

angular-forms/start/shine/app/assets/javascripts/templates/customer_detail.html
<form novalidate name="form"><div class="row">

<!-- rest of the markup -->
<div class="col-md-6">
<!-- customer info & shipping markup -->

</div>
<div class="col-md-6 billing-info">
<article class="panel panel-default">

<!-- billing info markup -->

</article>

<div class="text-right">
<button ng-click="save()" class="btn btn-lg btn-primary">

Save Changes

</button>

</div>

</div>
</div></form>

The result is shown in the screenshot on page 198.

You’'ll note that we used ng-click to bind this button to the save function. We
haven’t written that function yet, but we will in the next section, where we’ll
see how this validation works.

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/angular-forms/start/shine/app/assets/javascripts/templates/customer_detail.html
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 11. Wrangle Forms and Validations with Angular ¢ 198

Billing Info

p e LAl diners_club View Detalils...
Expires: 11/2017

Billing Address [ same as shipping?

3616 Aiden Glen

DuBuquebury XX 89897

Accessing and Handling Validation Results

With the small changes we've made to the markup, we could prevent invalid
submissions. When the value of a bound field is invalid, Angular will set that
field’s corresponding model property to undefined. We could check that all
properties of $scope.customer are defined and submit to the server only in this
case.

This is bad for two reasons: it would be a lot of code that would need changing
if we changed the form fields, and it wouldn’t afford a great user experience.
We’d like to show the user, on the form, where the problems are, as the user
is making mistakes, as well as some messaging about what the user needs
to do to fix them. Angular provides all of this for us, on an instance of an
NgFormController.

The NgFormController can be queried at any time to get the current state of the
form’s validations (and other information). To get access to it, we just need
to give our form element a name attribute:

angular-forms/start/shine/app/assets/javascripts/templates/customer_detail.html
<form novalidate name="form"><div class="row">

<!-- rest of the markup -->

</div></form>

www.it-ebooks.info

report erratum -

discuss


http://media.pragprog.com/titles/dcbang/code/angular-forms/start/shine/app/assets/javascripts/templates/customer_detail.html
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Validating User Input with Angular Forms ¢ 199

Now, we can access an object named $scope.form in our controller. We can ask
it if the form is valid by calling the $valid function (note the leading $, which
Angular uses frequently to indicate an Angular-provided function). This
function is similar to the valid? method provided by Active Record, with a small
exception: $valid is a property that becomes true or false as the data becomes
valid or invalid. As you'll recall, valid? is a method that checks for validity only
when called.

Let’s try it out. In app/assets/javascripts/customers_app.js, implement save like so:

$scope.save = function() {
alert($scope.form.$valid);

}

If you search for a customer and then click Save Changes, you should see a
JavaScript alert with the message true. If you then modify the data to be
invalid—based on our rules and markup—and click again, you'll see false.
This is already a much better way to check for validity than iterating through
each of the values looking for undefined.

The NgFormController gives us much more, however. As with Active Record’s Errors
class, we can access detailed information about what'’s wrong with each field.
For each field in our form, there is a corresponding object on the NgFormController.
Those objects expose a lot of data about the field, including the property $valid
indicating if the field’s value is valid, and $error, which is an object describing
the errors.

Let’s see this in action. We’ll update our save function to show us information
about the email field’s validity.

$scope.save = function() {
if ($scope.form.email.$valid) {
alert("Email is valid");
} else if ($scope.form.email.$error.required) {
alert("Email is required");
} else if ($scope.form.email.$error.email) {
alert("Email must look like an email");
}
}

With this in place, let’s play around with different values for the email field.
Angular is setting keys in the $error object on our field that indicate what the
problem is. We’ll see how to use these keys in the next section.

In addition to showing the user the errors from $error, we’ll make the user
experience better using Bootstrap. The JavaScript alerts we're currently using
aren’t a great experience, so we’ll make them better.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 11. Wrangle Forms and Validations with Angular ¢ 200

Styling Invalid Fields with Bootstrap

Now that we can detect which fields are invalid (and why), we want to show
our users this information so they can correct the issue. We could just display
a list of errors at the top of the screen, but we can do better. Bootstrap pro-
vides classes that allow us to highlight valid and invalid fields as well as show
error messages:

Error State

| blah@

'This should be an email address

Valid State

l blah@user.com l

Bootstrap refers to this as _feedback. To display the error state shown earlier,
we’ll add the classes has-feedback and has-error to the div containing our form
elements. To make sure the error message text picks up the same red styling,
we’ll put it inside a p that uses the help-block class:

<div class="form-group has-feedback has-error">
<input type="email" class="form-control">
<p class="help-block">
This should be an email address
</p>
</div>

For the valid state, we’ll use the classes has-feedback and has-success on the div:

<div class="form-group has-feedback has-success">
<input type="email" class="form-control">
</div>

To use these features, we must know two things: where the messages will
come from and how to conditionally style our form elements.

Displaying Error Messages

With the knowledge we currently have, we could conditionally display error
messages like so:
<p class="help-block" ng-if="form.email.$invalid">

<span ng-if="form.email.$error.required">Email is required</span>

<span ng-if="form.email.$error.email">Email must look like an email</span>
</p>

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Styling Invalid Fields with Bootstrap ¢ 201

Angular has a module, called Angular Messages, that makes this a bit easier
and allows us to write this:

<p class="help-block" ng-messages="form.email.$error">

<span ng-message="required">Email is required</span>

<span ng-message="email">Email must look like an email</span>
</p>

We'll install it by adding angular-messages to our Bowerfile:

angular-forms/bootstrap/shine/Bowerfile
asset 'bootstrap-sass-official’
asset 'angular-mocks'

asset 'angular-route'

asset 'angular-resource'

# START _HIGHLIGHT

asset 'angular-messages'

# END HIGHLIGHT

asset 'angular', '~> 1.5'
resolution 'angular', '1.5'

We'll then install it with rake bower:install and add it to app/assets/javascripts/applica-
tion.js:

angular-forms/bootstrap/shine/app/assets/javascripts/application.js
//= require angular

//= require angular-route

//= require angular-resource

//= require angular-messages

//= require angular-rails-templates

//= require tree ./templates

//= require tree .

As we saw in Installing Angular's Router, on page 121, we must translate the
module’s name so we can add it to our code to indicate it is a dependency of
our Angular app. The translated name we’ll use is ngMessages:

angular-forms/bootstrap/shine/app/assets/javascripts/customers_app.js
var app = angular.module(
‘customers',
[
‘ngRoute’,
‘ngResource',
‘ngMessages"',
'templates’
1
)

Now we can add this code to each form element:

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/angular-forms/bootstrap/shine/Bowerfile
http://media.pragprog.com/titles/dcbang/code/angular-forms/bootstrap/shine/app/assets/javascripts/application.js
http://media.pragprog.com/titles/dcbang/code/angular-forms/bootstrap/shine/app/assets/javascripts/customers_app.js
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

YYVYY

YYVYY

Chapter 11. Wrangle Forms and Validations with Angular ¢ 202

angular-forms/bootstrap/shine/app/assets/javascripts/templates/customer_detail.html
<label class="sr-only" for="email">Email</label>
<input type="email" class="form-control" required
name="email" ng-model="customer.email">

<p class="help-block" ng-messages="form.email.$error">

<span ng-message="required">Email is required</span>

<span ng-message="email">Email must look like an email</span>
</p>

Note that we’ll have to use different values for ng-message depending on the
validations we added on that field. For example, the shipping zip code field
will look like this:

angular-forms/bootstrap/shine/app/assets/javascripts/templates/customer_detail.html
<label class="sr-only" for="shippingZip">Zip</label>
<input type="text" class="form-control"
required pattern="\d\d\d\d\d"
name="shippingZip" ng-model="customer.shipping zipcode">
<p class="help-block" ng-messages="form.shippingZip.$error">
<span ng-message="required">Zip is required</span>
<span ng-message="pattern">Zip must be five digits</span>
</p>

Once we add this code to the rest of the form fields, our users will get great
feedback on what they’ve done wrong. But we’ll want to visually highlight the
errors as well, using the has-feedback classes we talked about earlier.

Conditionally Styling Form Elements

We'd like to show invalid fields in red and valid fields in green, but we don’t
want to show any special highlighting for fields whose values haven’'t been
touched or changed.

The reason for this is that for a split second when our view template loads,
there will be no values in the fields as the controller fetches them from the
back end. Since we've configured most fields to be required, they’d be consid-
ered invalid until the Ajax call completed. This is why $pristine exists.

Further, we don’t want to show a field as green unless the user has actually
done something to the field. This is where $touched comes into play.

This means that the logic for showing the error/invalid state would require
that both form.email $invalid and form.email.$dirty be true. Similarly, the logic for
showing the green success state would require that both form.email.$valid and
form.email.$touched be true.

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/angular-forms/bootstrap/shine/app/assets/javascripts/templates/customer_detail.html
http://media.pragprog.com/titles/dcbang/code/angular-forms/bootstrap/shine/app/assets/javascripts/templates/customer_detail.html
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Styling Invalid Fields with Bootstrap ® 203

So, how do we connect that logic to the classes Bootstrap provides? The
answer is ng-class. The ng-class directive® allows us to conditionally add classes
to an element.

The value you’ll use for the directive depends on what you're trying to do. For
simple uses, we can provide an expression that evaluates to a string. For
example:

<div ng-class=
</div>

email-' + form.email.$valid">

The expression we gave to ng-class is 'email-' + form.email.$valid, which, if the email
field is invalid, evaluates to 'email-false'. Thus, the browser will see this:

<div class="email-false">
</div>

Unfortunately, the Bootstrap feedback classes don’'t work in a way that allows
us to build a class name dynamically like this (or at least, not in a way that
doesn’t involve a lot of convoluted code). So, we’ll use the second form that
ng-class accepts, which is an object syntax.

In this syntax, the value is a JavaScript object, where the keys represent dif-
ferent classes that might be applied to the element. For each key, if its value
evaluates to true, that key is applied as a class on the element. The previous
example using the object syntax would look like so:
<div ng-class="{ 'email-false': form.email.$invalid,

‘email-true': form.email.$valid }">
</div>

This syntax is much cleaner for our purposes. To mark up the email field,
we’ll do this:

angular-forms/bootstrap/shine/app/assets/javascripts/templates/customer_detail.html
<div class="form-group has-feedback" ng-class="{
'has-error': form.email.$invalid && form.email.$dirty,
'has-success': form.email.$valid && form.email.$touched
>

<!-- form markup from before... -->
</div>

Try it out by clearing the email address, then changing the value to a non-
email, then changing it to a valid email address. You'll see that the field will

5.  https://docs.angularjs.org/api/ng/directive/ngClass

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/angular-forms/bootstrap/shine/app/assets/javascripts/templates/customer_detail.html
https://docs.angularjs.org/api/ng/directive/ngClass
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 11. Wrangle Forms and Validations with Angular ¢ 204

be red or green, depending on the value, and the error messages will change
dynamically, depending on what the issue is.

Billing Info
Loading...
Mikayla Jacobs @  daisha99
foo@bar.com
Billing Address [+ same as shipping?
Joined Dec 1, 2015 77417 Langworth Curve
L New Cassandreside XX 47551

Shipping Address

77417 Langworth Gurve

e Gosemareace ” :]

Zip must be five
digits

This is exactly what we want! We’ll need to add these lines of code to each
field’s form-group. It might feel a bit repetitive, and there is a way to extract this
boilerplate using custom directives. This is an advanced topic that we’ll go
over briefly in Chapter 12, Dig Deeper, on page 213 but for now, we’ll just deal
with a bit of duplication.

The last thing we should do is to disable the Save button if the form is invalid.

Disabling the Save Button if Data Is Invalid

As a last indicator to users that something is wrong, we don’t want them to
be able to click the Save Changes button if there are any validation errors.
We can do this in two steps. First, we’ll disable the button using the ng-disabled
directive. This will add disabled="disabled" to the button, which Bootstrap will
see; it will then render the button in a lighter disabled state.

angular-forms/bootstrap/shine/app/assets/javascripts/templates/customer_detail.html
<div class="text-right">
<button ng-click="save()"
class="btn btn-1lg btn-primary"
ng-disabled="form.$invalid || form.$pristine">
Save Changes
</button>
</div>

Note that we've also disabled it if the form is pristine. In this case no data
has changed, and there’s nothing to save to the server.

We'll also change our save function to no-op if the form is invalid.

www.it-ebooks.info

report erratum -

discuss


http://media.pragprog.com/titles/dcbang/code/angular-forms/bootstrap/shine/app/assets/javascripts/templates/customer_detail.html
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Yvy

Saving Data Back to the Server ® 205

angular-forms/bootstrap/shine/app/assets/javascripts/customers_app.js
$scope.save = function() {
if ($scope.form.$valid) {
alert("Save!");
}
}

This isn’t strictly necessary, because the browser should disable the button.
But it can’t hurt, and it prevents our controller code from breaking because
of changes in the view.

Our form now works and looks great. Users can see clear indicators when
fields are valid or invalid, and get messages explaining the problem, right at
the fields in question. The last thing we need to do is actually save the data
back to the server.

Saving Data Back to the Server

Normally, saving back to the server wouldn'’t be terribly interesting, since we
could just post a JSON blob that Rails expects to be given to an Active Record’s
update method. If you'll recall, our CustomerDetail class is backed by a materialized
view and not a regular table. That means that we can’t call update on it, since
you can’t update a materialized view.

That means we’ll have to figure out how to get the data out of our denormalized
CustomerDetail and into the right places in the database. But first, let’s get our
Angular app and Rails back end set up to receive the data.

Sending Data Back to the Server

First, let’s set up the update action for CustomersController, which is what will
receive the payload from our Angular app to update the customer details.
We'll modify the route in config/routes.rb like so:

angular-forms/save/shine/config/routes.rb
resources :customers, only: [ :index, :show, :update ]

# AAAAAAN

We'll also add a simple controller action that just prints out the parameters:

class CustomersController < ApplicationController
# rest of the controller...
def update
puts params.inspect

end
end

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/angular-forms/bootstrap/shine/app/assets/javascripts/customers_app.js
http://media.pragprog.com/titles/dcbang/code/angular-forms/save/shine/config/routes.rb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

YVvYy

Chapter 11. Wrangle Forms and Validations with Angular ¢ 206

Lastly, we’ll modify the save function in CustomerDetailController to post data to
the server. As you recall, we used angular-resource to fetch data from the
back end. The object we got back from Customer.get contains functions provided
by angular-resource to save to the server. The function we want for this case
is $save(). Note the preceding $ that indicates this is an Angular-provided
function.

Calling $save() will send the data inside $scope.customer to the server by POSTing
it to /customers.json. This isn’t quite what we want. The route we set up in our
Rails application wants the data sent via PUT or PATCH, and it wants it sent
to a URL with the customer’s ID in it, such as /customers.12345.json.

Fortunately, these are easy to handle by adjusting our call to $resource. Cur-
rently, it looks like this:

var Customer = $resource('/customers/:customerId.json');

When we called Customer.get, we supplied the value for :customerld as the second
argument. Since we're calling $save() on $scope.customer, Angular can derive the
proper value with a little help. The second argument to $resource is an object
that describes how to do this.

That object’s keys should be all the dynamic bits of the URL. The values are
strings that explain how to get those values. If the values for the object’s keys
start with @, that tells Angular to look for that attribute on the object itself.
So, { "customerld": "@customer_id" } instructs Angular to fill in :customerld with
whatever the value of customer_id is on the object on which we're calling $save().

To handle the HTTP method, we can use the third optional argument to
$resource. This object is highly flexible, allowing anything from customizing the
HTTP method (what we need) to adding custom functions and actions. In our
case, we just need to indicate that the save action uses the HTTP method
PUT. We can do this with { "save": { "method": "PUT" }}. Bringing it all together
looks like this:

angular-forms/save/shine/app/assets/javascripts/customers_app.js
app.controller("CustomerDetailController", [
"$scope","$routeParams" ,"$resource",
function($scope , $routeParams , $resource) {
$scope.customerId = $routeParams.id;
var Customer = $resource('/customers/:customerId.json',
{"customerId": "@customer id"},
{ "save": { "method": "PUT" }});

// rest of the controller...

}
1);

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/angular-forms/save/shine/app/assets/javascripts/customers_app.js
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

YYYYYYYVYYVYY

Saving Data Back to the Server ¢ 207

Now, when we call $save() on $scope.customer, Angular will look in $scope.customer.cus-
tomer_id to create the URL to send back to the server, using the PUT HTTP
method.

$save() takes two parameters: a success callback and an error callback. For
now, let’'s keep them simple and just alert the user about what happened.
We'll also call $setPristine and $setUntouched on $scope.form to reset it to its normal
state. That will clear any green highlights due to successfully changing form
values.

angular-forms/save/shine/app/assets/javascripts/customers_app.js
$scope.save = function() {
if ($scope.form.$valid) {
$scope.customer. $save(
function() {
$scope.form.$setPristine();
$scope.form.$setUntouched();
alert("Save Successful!");

}I
function() {
alert("Save Failed :(");

We can restart our app, navigate to a detail page, modify one of the fields,
and click Save. If we look at the Rails server log, we’ll be somewhat disappoint-
ed in the results.

"PUT /customers/217689.json HTTP/1.1" 422 98873 0.2421

Instead of seeing the parameters printed out, we just get a lonely 422, which
means “Unprocessable Entity.” This is Rails Cross-Site Request Forgery (CSRF)
protection® getting in our way. CSRF protection is a feature of Rails that pre-
vents malicious entities from trying to hack our systems by exploiting non-
GET endpoints. While we could integrate this into our Angular app,’ the Rails
documentation for RequestForgeryProtection® recommends turning it off for Ajax
requests like ours.

We can do this by conditionally skipping the request forgery protection in our
ApplicationController:

6.  http://guides.rubyonrails.org/security.html#cross-site-request-forgery-csrf

7. http://stackoverflow.com/questions/14734243/rails-csrf-protection-angular-js-protect-from-forgery-makes-me-
to-log-out-on

8. http://api.rubyonrails.org/classes/ActionController/RequestForgeryProtection.html

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/angular-forms/save/shine/app/assets/javascripts/customers_app.js
http://guides.rubyonrails.org/security.html#cross-site-request-forgery-csrf
http://stackoverflow.com/questions/14734243/rails-csrf-protection-angular-js-protect-from-forgery-makes-me-to-log-out-on
http://stackoverflow.com/questions/14734243/rails-csrf-protection-angular-js-protect-from-forgery-makes-me-to-log-out-on
http://api.rubyonrails.org/classes/ActionController/RequestForgeryProtection.html
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Yvy

Chapter 11. Wrangle Forms and Validations with Angular ¢ 208

angular-forms/save/shine/app/controllers/application_controller.rb

class ApplicationController < ActionController::Base
protect from forgery with: :exception
skip_before action :verify_ authenticity token, if: :json request?
before action :authenticate_user!

protected

def json request?
request.format.json?
end

end

If we try to save our changes again, we should see our log output the
parameters we passed:

{ "customer id"=>217689, "first name"=>"Bobby", "last name"=>"Abernathy", "e...

Now, we just need to save them to the database.

Saving Data from Our Materialized View to the Database

As you recall, this data comes from the CustomerDetail class, which is backed
by a materialized view. As such, we can’t just call update because we can’t
update a materialized view using the SQL UPDATE command. But we’d still like
our controller code to look as Rails-like as possible. So, let’s plan to override
update on CustomerDetail to handle the necessary logic so our controller will look
like a canonical Rails controller.

angular-forms/save/shine/app/controllers/customers_controller.rb
def update
customer detail = CustomerDetail.find(params[:id])
customer detail.update(params)
head :ok
end

Note that we're just returning an HTTP HEAD of 200 (:0k). There really isn’t
any data to report back to the caller, so this will be sufficient to let our
Angular app know that everything was saved properly.

Now, we need to implement update in CustomerDetail. To keep this simple, we’ll
use the IDs in our payload to find the Customer and two Address records and
then use their update methods to update them.

We'll need a helper method to translate keys like billing_street to street, since
both addresses are the same class.

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/angular-forms/save/shine/app/controllers/application_controller.rb
http://media.pragprog.com/titles/dcbang/code/angular-forms/save/shine/app/controllers/customers_controller.rb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Understanding the Role of Rails Validators ¢ 209

angular-forms/save/shine/app/models/customer_detail.rb
class CustomerDetail < ActiveRecord::Base
# rest of the class...
def update(params)
Customer.find(self.customer id).update(
params.permit(:first name, :last name, :username, :email))

Address.find(self.billing address id).update(
address_attributes(params,"billing"))

Address.find(self.shipping address id).update(
address_attributes(params, "shipping"))
end

private
def address attributes(params, type)

{
street: params["#{type} street"l],
city: params["#{type} city"],
state: State.find by code(params["#{type} state"]),
zipcode: params["#{type} zipcode"],
}

end
end

We're not going to dwell too much on this, since this is simple Rails code that
you are likely used to. It is worth pointing out that code like this is the
downside to what we've done with the materialized view. This is the price
we’re paying to make our query super fast.

If we reload our page, modify some data, and click Save Changes, we should
see an alert indicating success, and our green highlights should disappear.
If we reload the page again (forcing our Angular app to hit the server), we
should see that the data saved successfully.

Our customer detail feature is done! But you may be wondering about Rails
validators. We aren’t using them at all and, in fact, have done all validation
on the client side. Usually, you don’t want the client to be the only place
where you validate data, because it doesn’t prevent malicious users (or buggy
code) from submitting invalid data to the server.

Understanding the Role of Rails Validators

In a normal Rails application, the use of validators is crucial, as they integrate
with Rails form helpers and provide a similar experience to the one we provided
with Angular’s form support. Given that we aren’t using Rails views, where
do validators fit it?

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/angular-forms/save/shine/app/models/customer_detail.rb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 11. Wrangle Forms and Validations with Angular ® 210

There are a few strategies and schools of thought here, and you will need to
apply some combination of them to your day-to-day features.

One school of thought is that, given the power of Postgres, there’s no need
for Rails validators when using Angular for our front end. We would implement
all validation on the front end, so the user gets a great experience and
understands what the data should look like. We’d then use Postgres check
constraints (like the one we created in Chapter 2, Secure the Login Database,
on page 25) to ensure bad data never gets written to the database.

This is the most ideal situation because it’s the least duplication of code and
puts everything closest to where it matters: user-friendly validations are in
the view, where they are helpful to users, and database constraints are in
the database, making it difficult or impossible for anyone to put bad data
there. Further, your database will most likely outlive your application code,
so having it be the canonical store of what is and isn’t valid data makes the
most sense.

That said, we aren’t always starting from scratch, or might not be able to
easily encode all of our constraints as database check constraints. For
example, we might insist that the user’s email address resides in a third-
party system we use for managing marketing campaigns. The database can’t
check that. It could also be difficult to have our Angular app check that, so
it would need to reside in our middleware—that is, Rails.

In these cases, you can use Rails validators (or any middleware mechanism
you want) by using the $asyncValidators attribute of your form. This object’s keys
are the names of custom validations you want to run against the server. Their
value is a function that takes the new and old values and is expected to return
a promise that, when resolved, succeeds or fails if the validation passes or
fails. The Angular docs for NgFormController’ contain some good examples.

With this mechanism, you can have your server-side code do the complex
checks for you.

A final school of thought is to just use Rails to do all validations. In this case,
you’ll need to do more work on the Angular app side. You'll need to implement
a failure callback to $save that extracts the Active Record error object out of
the response and marks up each field with the errors that came back. This
is probably not worth it unless you have a lot of Rails-powered views that will
share this code.

9. https://docs.angularjs.org/api/ng/type/ngModel.NgModelController

www.it-ebooks.info


https://docs.angularjs.org/api/ng/type/ngModel.NgModelController
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Next: Everything Else ¢ 211

Next: Everything Else

At this point, our work is done! We've created a highly complex page with a
clean design, one that performs well and gives a great user experience. It took
expertise in Bootstrap, Angular, and Postgres to make it happen. Take a
moment to click around Shine and reflect on what we’ve done.

Although we've done a lot of setup and installed a lot of software, we've
hardly written any code and every layer of our application is clean. We didn’t
write any CSS, and we've only written the JavaScript specific to the problems
we're solving: no hacky data- attributes or code tightly coupled to the DOM.
Our Rails controller code looks like a regular Rails controller, even though
it’s backed by a powerful, self-updating materialized view of our complex data.

There is so much more we could cover. We've only hit the tip of the iceberg
with these technologies, but hopefully you are starting to see how employing
Angular, Bootstrap, and Postgres together with Rails allows you to get a lot
of great work done with little effort. You can keep leveling yourself up by
opening the documentation and getting inspired.

But before I send you on your way, I want to take one last trip through these
technologies to show some of the other possibilities and amazing things you
can do with them. The next chapter is a grab bag of everything we didn’t have
space to get into earlier.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

CHAPTER 12

Dig Deeper

Throughout the book, we implemented a simple feature to search for, view,
and edit customer details. This was a great framing example to learn a lot
about full-stack development, from optimizing our database to creating a
great user experience. Hopefully, this has emboldened you to dig deeper into
the tools you're using, where you'll find easy solutions to the problems you
face day to day.

And Angular, Postgres, and Bootstrap are deep tools. This section is going to
expose you to more features that youll find handy but that we don’t have
space to delve into deeply. Unlike the previous chapters, we won’t wind these
into a tale of feature development, but rather show terse examples with links
for more information. Think of this section as inspiration for the work you’ll
be doing.

Unlocking More of Postgres’s Power

For most of my career, I viewed SQL databases as dumb stores for simplistic
data. Postgres has shattered that view, and this section will do the same for
you. We'll talk about many advanced column types, like JSON, arrays, and
enumerated types. We'll then see that Postgres supports full-text search out
of the box before finishing up with the most mundane yet frequently needed
tasks: CSV export.

Modeling Your Data with Advanced Column Types

Most databases store numbers and strings. For storing more advanced
structures, like arrays or maps, you typically have to create them using tables.
Postgres provides more advanced types to avoid doing that, and they can be
a huge time-saver. Let’s go over a few of them and show how they might be
useful.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 12. Dig Deeper ® 214

Arrays

Suppose we want to add role-based security to Shine. That is, a user can
have zero or more roles, and each action in Shine requires that the user has
a certain role. You might need the view_billing role to view a customer’s billing
info, or the edit_customer role to edit a customer’s data.

In most SQL databases, you would need to create two new tables. The first
would be the table of roles, and the second would be a join table that joins
users to roles (USERS_ROLES).

USERS USERS_ROLES ROLES
id user_id id
- role_id - ~1 name

In Postgres, you can avoid all this and add an array on customers. This works
pretty much like you’d expect. Active Record supports this datatype by using
array: true when defining the column. Here’s how we’d add this to our existing
USERS table:

grab-bag/one/shine/db/migrate/20150820224152_add_roles.rb
class AddRoles < ActiveRecord::Migration
def change
add column :users, :roles, :string, array: true, default: []
end
end

We can then use this like a normal array in Ruby:

$ rails c
1001 > u = User.first

User Load (0.8ms) SELECT “"users".* FROM "users" ORDER BY "users"."id"..
=> #<User id: 1, email: "dave@example.com", encrypted password: "$2a$l0%aa..
1002 > u.roles = [ "admin", "edit customers" ]
=> ["admin", "edit customers"]
:003 > u.save!

SQL (0.5ms) UPDATE "users" SET "roles" = $1, "updated at" = $2 WHERE "us..
=> true
1004 > u.reload

User Load (0.6ms) SELECT "users".* FROM "users" ORDER BY "users"."id"..
=> #<User id: 1, email: "dave@example.com", encrypted password: "$2a$l0%aa..
1005 > u.roles

=> ["admin", "edit customers"]
:006 > u.roles.include?("admin")
=> true

But that’s not all. An array can be searched with SQL. Suppose we want to
find all the users with the role edit_shipment. Postgres provides the @> operator
to do just that.

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/grab-bag/one/shine/db/migrate/20150820224152_add_roles.rb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Unlocking More of Postgres’s Power ® 215

SELECT
*

FROM
users
WHERE
roles @ ARRAY['edit shipment'::varchar];

The ::varchar is needed to allow Postgres to compare the values in our array
with the literal 'edit_shipment' we used. Postgres treats string literals as the type
TEXT, but Rails declared our array to be an array of VARCHAR.

This is already quite handy, but it gets better. We can index this array so that
a query like the one shown earlier can be optimized. If we have a large USERS
table, we’ll see that the query is somewhat slow. If we use EXPLAIN ANALYZE on
the query, we’ll see the dreaded Seq Scan. As long as we're using the @>
operator, however, we can improve the query by creating an index.

We can’t just create a normal index, though. Postgres can only index arrays
if you use a different index type. In Chapter 3, Use Fast Queries with, on page
33, we created an index using a special operator class. There’s an additional
dimension to indexes we can control in the same way called the index type.'
The default, a B-Tree index, cannot index an array value. But the GIN type
can. GIN? stands for General Inverted Index, and this index will take up more
disk space and will be slower to create than a B-tree—but it indexes arrays.

CREATE INDEX
users _roles

ON
users

USING GIN (roles)

The key part of this is USING GIN. With this in place, the query is now quite
fast, and our EXPLAIN ANALYZE indicates the index is being used:

sql> EXPLAIN ANALYZE
SELECT * FROM users
WHERE roles @> ARRAY['edit shipment'::varchar];
QUERY PLAN
Bitmap Heap Scan on admin users (cost=9.12..268.20 rows=145 width=..
(actual time=0.073..0.175 rows=145..
Recheck Cond: (roles @ '{edit shipment}'::character varying[])
Heap Blocks: exact=93
-> Bitmap Index Scan on admin_users_roles
(cost=0.00..9.09 rows=145 width=0)

1. http://www.postgresql.org/docs/9.1/static/indexes-types.html
2.  http://www.postgresql.org/docs/9.1/static/textsearch-indexes.html

www.it-ebooks.info


http://www.postgresql.org/docs/9.1/static/indexes-types.html
http://www.postgresql.org/docs/9.1/static/textsearch-indexes.html
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 12. Dig Deeper ® 216

(actual time=0.056..0.056 rows=145 loops=1)
Index Cond: (roles @ '{edit shipment}'::character varyingl..
Planning time: 0.235 ms
Execution time: 0.219 ms

This means that you can use an array on a very large table and still get great
performance out of it—performance that would certainly surpass using a join
table.

HSTORE

Another common need we have when modeling data is to store key/value
pairs. In most SQL databases, you would need to set up a generalized set of
tables to do this, likely a table of possible keys, a table of possible values,
and a join table to connect them to the table that needs them. An example
might be user settings.

USERS USER_SETTINGS SETTINGS
id user_id id
<«—>»| settings_key_id <«—»| settings_key_id
value

A

A/
SETTINGS_KEYS

id
name

The HSTORE® type can solve this with a single field on USERS called settings. An
HSTORE is a single-depth key/value store. Active Record supports it and will
treat it like a Ruby hash in your code.

This type isn’t available in Postgres by default but can be enabled via the
command enable_extension, which we can do in our Rails migration via execute.
Once we've done that, we can create the column using the :hstore type:

grab-bag/one/shine/db/migrate/20150820231159_add_settings.rb
class AddSettings < ActiveRecord::Migration
def up
enable extension :hstore
add _column :users, :settings, :hstore, default: {}
end
def down
remove column :users, :settings
disable _extension :hstore
end
end

3.  http://www.postgresql.org/docs/9.5/static/hstore.html

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/grab-bag/one/shine/db/migrate/20150820231159_add_settings.rb
http://www.postgresql.org/docs/9.5/static/hstore.html
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Unlocking More of Postgres’s Power ® 217

Now, the settings attribute behaves like a Ruby hash:

$ rails c
1001 > u = User.first

User Load (2.2ms) SELECT ‘"users".* FROM "users" ORDER BY "users"...
=> f#<User id: 1, email: "dave@example.com", encrypted password: "$2a$..
1002 > u.settings[:page size] = 20
= 20
:003 > u.save!

SQL (0.4ms) UPDATE "users" SET "settings" = $1, "updated at" = $2 W..
=> true
1004 > u.settings[:page size]
=> 20

To query this in SQL, use the -> operator, which works like Ruby’s square
brackets.

sql> select id,settings from users where (settings->'page size')::int > 0;
<[ RECORD 1 J---------- e

id |1

settings | "page size"=>"20"

sql> select * from users where (settings->'page size')::int > 40;
(No rows)

Note that we need to cast the result of settings->'page_size' to an int, because
Postgres stores the values as strings. You can also check if an HSTORE field
contains a key via the ? operator:

sql> select id,settings from users where (settings?'page size');

<[ RECORD 1 J--=------- .

id |1

settings | "page size"=>"20"

sql> select * from users where (settings?'foo');
(No rows)

Indexing options for HSTOREs are limited. You can use a GIN index to assist
with the ? operator, and you can use a B-tree index to help with testing for
equality, but there isn’t currently a way to index particular keys and values
in an HSTORE.

Still, this is a useful data type for storing key/value data, especially if you

aren’t sure what keys you might need.

JSON and JSONB

Sometimes, you need to store complex, structured data but it won't fit into
the relational model. Either it’s hierarchical or it doesn’t have a small defined
set of attributes. If you were using a normal SQL database, you wouldn’t be

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 12. Dig Deeper ® 218

able to store this data in a useful way. You’'d likely need to use a document-
oriented database like CouchDB or MongoDB. Postgres, however, can store
such data types using the JSON type.*

Although you can store JSON in a TEXT field (and even configure Rails to parse
it for you), you can'’t really query a TEXT field in a useful way (for example,
querying for rows that have a certain value for a JSON key). This is why many
turn to document-oriented databases, because they can delve into the
structure of the JSON document for querying.

Let’s suppose we want to allow our data science team to store arbitrary
insights about our customers in the database. They don’t know what format
they’ll need, so we can just give them a JSON column. Active Record supports
this via the :json type, so we can create the column as we normally would
other columns.

grab-bag/one/shine/db/migrate/20150820233327_add_insights_to_customers.rb
class AddInsightsToCustomers < ActiveRecord::Migration
def change
add column :customers, :insights, :json, default: {}
end
end

You can interact with this field exactly as you'd expect:

$ rails c
1001 > ¢ = Customer.first

Customer Load (2.3ms) SELECT "customers".* FROM "customers" ORDER BY..
=> #<Customer id: 1, first name: "Toby", last name: "McKenzie", email:
1002 > c.insights[:spendiness] = 4.5

=> 4.5
1003 > c.insights[:curiosity] = { shoes: 3, hats: 99, accessories: true }
=> {:shoes=>3, :hats=>99, :accessories=>true}
:004 > c.save!

SQL (7.7ms) UPDATE "customers" SET "insights" = $1, "updated at" = $2 ..
=> true
1005 > c.insights
=> {:spendiness=>4.5, :curiosity=>{:shoes=>3, :hats=>99, :accessories=>t..
1006 > c.insights[:curiosity][:hats]
=> 99

JSON columns support the -> operator (just like an HSTORE does), but this
operator returns values that are also JSON types. This makes it hard to query
for specific values, and requires complex casting. To address this, the ->>
operator is also available, and this produces a TEXT value, which is much
easier to deal with:

4. http://www.postgresql.org/docs/9.5/static/datatype-json.html

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/grab-bag/one/shine/db/migrate/20150820233327_add_insights_to_customers.rb
http://www.postgresql.org/docs/9.5/static/datatype-json.html
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Unlocking More of Postgres’s Power ¢ 219

sql> SELECT
id,insights
FROM
customers
WHERE
(insights->>'spendiness')::decimal > 4;
= RECORD 1 J---mmmmmmmmm oo i m e m oo
id |
insights |
I

o

"spendiness":4.5,
"curiosity":{"shoes":3,"hats":99, "accessories":true}}

sql> SELECT
id,insights
FROM
customers
WHERE
(insights->'curiosity'->>'shoes')::decimal > 2;
= RECORD 1 J-mmmmmmmmm oo oo oo o oo oo
id |
insights |
I

e

"spendiness":4.5,
"curiosity":{"shoes":3,"hats":99,"accessories":true}}

You can also query for equality, at a deeply nested level. Suppose we want to
find all customers who are curious about accessories. We can use the @>
operator, which checks for containment.

sql> select id,insights from customers

where insights@>'{ "curiosity": { "accessories": true }}';

[ RECORD 1 J--mmmmmmmmmmmm e

id |

insights |
|

~—

spendiness":4.5,
"curiosity":{"shoes":3,"hats":99,"accessories":true}}

This code returns all rows where the insights column contains a key, curiosity,
which contains an object that in turn contains a key, accessories, that has a
value of true.

This is obviously pretty handy. But it gets better. There is an alternate JSON
type called JSONB that allows you to index the JSON. You can create a field
like this in Active Record using :jsonb instead of :json. By doing so, we can now
create a GIN index that will assist in some queries.

sql> EXPLAIN ANALYZE
SELECT * FROM customers
WHERE insights@>'{ "curiosity": { "accessories": true }}';
QUERY PLAN
Seq Scan on customers (cost=0.00..9586.00 rows=350 width=111) (actua
Filter: (insights @ '{"curiosity": {"accessories": true}}'::jsonb)
Rows Removed by Filter: 349999

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 12. Dig Deeper ® 220

Planning time: 0.116 ms
Execution time: 77.494 ms
(5 rows)

sql> create index on customers using GIN (insights);
CREATE INDEX

sql> EXPLAIN ANALYZE
SELECT * FROM customers
WHERE insights@>'{ "curiosity": { "accessories": true }}';
QUERY PLAN

Bitmap Heap Scan on customers (cost=74.71..1175.69 rows=350 width=11
Recheck Cond: (insights @ '{"curiosity": {"accessories": true}}'::
Heap Blocks: exact=1
-> Bitmap Index Scan on customers_insights_idx (cost=0.00..74.62

Index Cond: (insights @ '{"curiosity": {"accessories": true}

Planning time: 0.169 ms

Execution time: 0.043 ms

(7 rows)

It’s hard to overstate how powerful this is. This gives you the flexibility of a
document-oriented database but the performance of a relational database’s
queries. It also means you can write features that store both relational and
free-form data that take advantage of transactional integrity, which would be
impossible if you were using multiple data stores. This means that you can
use Postgres for a wide variety of data-storage applications.

Active Record supports this type, but you’ll still need to write SQL using these
operators to do the advanced querying. For example, to perform the query we
looked at earlier in Rails, you'd need to do this:

Customer.where("insights @> ?", { curiosity: { accessories: true }}.to json)

Since very few databases support features like this, Active Record has no
native API for this. Fortunately, where is flexible enough for us to make it work.

Enums

Rails 4 added support for the enum, short for enumerated type,” which is
essentially a field that has a small number of possible values. A common use
for this is for status codes. For example, we might give our customers a status

of “signed_up,” “verified,” or “inactive.”

Before Rails’s support for enums, you'd need to use a string field in the
database, and then something like validates_inclusion_of to make sure only the

5.  https://en.wikipedia.org/wiki/Enumerated type

www.it-ebooks.info


https://en.wikipedia.org/wiki/Enumerated_type
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Unlocking More of Postgres’s Power ® 221

allowed types were being used. With Rails 4’s enum support,’ you can now
do this more explicitly:

class Customer < ActiveRecord::Base
enum status: [ :signed up, :verified, :inactive ]
end

¢ = Customer.first
c.status

# => signed up
c.signed up?
# => true
c.status = :foo

ArgumentError: "foo" is not a valid status

The problem with this is that, by default, Rails stores this in the database as
a number corresponding to the index where the value falls in this array. Not
only is this brittle, but it makes the data impossible to interpret without the
Ruby code.

We can tell Rails to use strings instead:

class Customer < ActiveRecord::Base
enum status: {
signed up: "signed up",
verified: "verified",
inactive: "inactive",

}

end

It’'s a bit repetitive, but it makes the data easier to understand. But it only
enforces valid values from within Rails. To enforce valid values at the database,
we could use a check constraint:

ALTER TABLE
customers
ADD CONSTRAINT
allowed statuses
CHECK
(status in ('signed up', 'verified', 'inactive'))

Postgres also has support for enumerated types,” eliminating the need for
check constraints like this. We can create a custom type named customer_status
and Postgres will handle everything at the database layer, and it’s all compat-
ible with Rails.

6.  http://api.rubyonrails.org/classes/Active Record/Enum.html
7. http://www.postgresql.org/docs/9.5/static/datatype-enum.html

www.it-ebooks.info


http://api.rubyonrails.org/classes/Active Record/Enum.html
http://www.postgresql.org/docs/9.5/static/datatype-enum.html
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 12. Dig Deeper ® 222

grab-bag/one/shine/db/migrate/20150821123732_add_status_to_customer.rb
class AddStatusToCustomer < ActiveRecord::Migration
def up
execute %{
CREATE TYPE
customer status
AS ENUM
('signed up', 'verified', 'inactive' )
}
add column :customers, :status, "customer status",
default: "signed up",
null: false
end
def down
remove column :customers, :status
execute %{
DROP TYPE customer status
}

end
end

The only downside is having to repeat the values in our Active Record model,
but this is a small price to pay for an explicitly modeled field in our code and
database.

Postgres also has rich support for range types, various date and time types,
geometric types, and even IP addresses. The documentation® should provide
inspiration for what you can store, and how you can index it, in your database.

In addition to having advanced data types available, we can use Postgres as
a full-text search engine.

Searching Free-Form Text

In Chapter 3, Use Fast Queries with, on page 33 we used LIKE to do a fuzzy
search of a text field. Postgres actually supports a complete full-text search
engine’ that you can use for searching large swaths of text.

To do this, Postgres has two data types: tsvector, which represents a searchable
document, and tsquery, which represents a query of some document. To perform
a full-text search, you use the @@ operator. The left-hand side should be a
tsvector (you can turn any string type into one via the to_tsvector function) and
the right-hand side is a tsquery (similarly, you can use to_tsquery to turn a string
into a tsquery).

8.  http://www.postgresql.org/docs/9.5/static/datatype.html
9.  http://www.postgresql.org/docs/9.5/static/textsearch-intro.html

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/grab-bag/one/shine/db/migrate/20150821123732_add_status_to_customer.rb
http://www.postgresql.org/docs/9.5/static/datatype.html
http://www.postgresql.org/docs/9.5/static/textsearch-intro.html
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Unlocking More of Postgres’s Power ® 223

Here’s an example that searches the given string to see if it contains both
“perform” and “search.”

> SELECT to_tsvector('Postgres can perform a full-text search') @@
to_tsquery('perform & search');
?column?

You can also give to_tsquery a config name, which can help it better match the
text to a query. A config is often a language, so we can use the config english
and Postgres will know that if we search for performs instead of perform that the
string still matches, since both words are the same normalized lexeme."

> SELECT to_tsvector('english','Postgres can perform a full-text search') @@
to tsquery('performs & search');
?column?

Suppose we want to allow customers to write an open-ended bio for themselves
and then allow other customers to search those bios to find like-minded
shoppers. We can add a new TEXT field to CUSTOMERS and create a special index
on it.

The GIN index we talked about earlier is mostly intended for full-text search
(it just happens to be useful for arrays and JSON). Let’s see what it looks like.

grab-bag/one/shine/db/migrate/20150822194126_add_bio_to_customers.rb
class AddBioToCustomers < ActiveRecord::Migration
def up
add column :customers, :bio, :text
execute %{
CREATE INDEX
customers bio index ON customers
USING
gin(to_tsvector('english', bio));
}
end
def down
remove_column :customers, :bio
end
end

10. https://en.wikipedia.org/wiki/Lexeme

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/grab-bag/one/shine/db/migrate/20150822194126_add_bio_to_customers.rb
https://en.wikipedia.org/wiki/Lexeme
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 12. Dig Deeper © 224

With this in place, our full-text, fuzzy search of CUSTOMERS by the bio field will
be indexed.

sql> EXPLAIN ANALYZE
SELECT * FROM customers
WHERE to tsvector('english',bio) @@ to tsquery('widgets');
QUERY PLAN

Bitmap Heap Scan on customers (cost=209.57..4015.82 rows=1750 width=..
Recheck Cond: (to tsvector('english'::regconfig, bio) @@ to tsquery..
-> Bitmap Index Scan on customers_bio_index (cost=0.00..209.13 ro..

Index Cond: (to_tsvector('english'::regconfig, bio) @@ to_ tsq..

Planning time: 0.131 ms

Execution time: 0.036 ms

Note that if you omit the config from the call to to_tsvector, Postgres will not be
able to use the index, since that’s the config we used when setting it up.

sql> EXPLAIN ANALYZE
SELECT * FROM customers
where to tsvector(bio) @@ to tsquery('widgets');
QUERY PLAN

Seq Scan on customers (cost=0.00..12033.00 rows=1750 width=147) (actu..
Filter: (to _tsvector(bio) @@ to tsquery('widgets'::text))
Rows Removed by Filter: 350000

Planning time: 0.136 ms

Execution time: 529.359 ms

We can see here that it did a Seq Scan instead of using the index.

Full-text search in Postgres is extremely powerful. You can do much more
than what we've just seen. You can create stop words that are not
searched/indexed. You can do full-text search on concatenated fields. You
can create synonyms so that, for example, a search for “database” could find
strings containing “data store.” You can also control how search results are
ranked. All within your database!

Exporting Data to the Outside World as CSV

It’s often handy to query the database and produce a comma-separated values
(CSV) version of the results. This can be useful for sharing the results with
nontechnical members of your team, or for pulling into a system that doesn’t
support SQL. Postgres makes it very simple to do this via the COPY'' command.

Suppose we wanted to get the names, emails, and IDs of all of our customers.
We could do something like this:

11. http://www.postgresql.org/docs/9.5/static/sql-copy.html

www.it-ebooks.info


http://www.postgresql.org/docs/9.5/static/sql-copy.html
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Leveling Up with Angular ¢ 225

sql> COPY (
SELECT
id, first name, last name, email
FROM
customers
) TO '/tmp/customers.csv' WITH CSV HEADER;

This will run the given query, format it as CSV, and save it to /tmp/customers.csv
on the server. This isn’t always convenient, but you can use \COPY to save it
to the client. If we run the same command, but using \COPY (note the back-
slash), it will save the CSV locally:
sql> \COPY (

SELECT

id, first name, last name, email
FROM

customers
) TO '/tmp/customers.csv' WITH CSV HEADER;

Then /tmp/customers.csv on our computer will have the CSV.

This completes our whirlwind tour of some of Postgres’s other useful features.
The documentation'’contains more gems like these, and is quite readable, so
be sure to check it out.

Leveling Up with Angular

Angular is a deep technology, and what you've mostly seen here is how to
use it for tasks you’d normally use JQuery for, and how it makes that code
simpler and cleaner. As you create more advanced user interfaces, you'll
benefit from additional features Angular provides for organizing your code.

Creating Reusable Markup with Directives

Suppose we want to add a header to our customer details page that looks
like the search results component we created in Chapter 4, Create Clean
Search Results, on page 51. In Rails, we can accomplish this via a partial. In
Angular, we can create our own directive that can act as a partial.

Angular directives are highly complex. They aren’t just for sharing markup,
but this is the simplest use case that’s useful in practice and demonstrates
the concept. Let’s see how it works.

First, we’ll extract the markup to a new template, customer_ summary.html. It uses
floats, so we’ll wrap the entire thing in a div that has the clearfix class on it.

12. http://www.postgresql.org/docs/9.5/static/index.html

www.it-ebooks.info


http://www.postgresql.org/docs/9.5/static/index.html
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 12. Dig Deeper ® 226

<div class="clearfix">
<!-- original markup -->
</div>

Our directive will be called customerSummary and we’ll use it like so (note
that our markup uses the dasherized version, customer-summary):

<customer-summary cust="customer" view-details-function="viewDetails">
</customer-summary>

You'll see that we have to pass in the two dynamic parts of the template,
which is the customer object itself and the function to be called when View
Details is clicked. We do this so that our component won’t be tightly coupled
to the code where it's used.

To make it work, we’ll use the directive function on app that takes the name of
our directive and a function. That function is expected to return an object
that describes our directive.

Angular recognizes many attributes on the object our function returns, as a
directive is highly flexible. In our case, we need only two attributes: scope and
templateUrl. templateUrl is the name of our template file, and scope is the object
containing what we want exposed to that template.

As a simple example, suppose our template just looked like this:
Hello {{some name}}!

If our scope contained { "some_name": "Bob" }, then our template would work as
expected and render Hello Bob!. The scope object can recognize special values
to make things simpler. If the value is =, that tells Angular to grab the value
from the attributes declared on the directive.

Let’s see the code—this will make it easier to understand.

grab-bag/one/shine/app/assets/javascripts/customers_app.js
app.directive("customerSummary", function() {

return {
"scope": {
"cust": "=",
"viewDetailsFunction": "="
I
"templateUrl": "customer_summary.html"
}

1)

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/grab-bag/one/shine/app/assets/javascripts/customers_app.js
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

YYVYY

Leveling Up with Angular ® 227

Recall that we're passing the attributes cust and view-details-function to our
directive. By indicating that the scope values for both cust and viewDetailsFunction
are =, we ensure that Angular will grab the values from what we specified.

In other words, cust will be the same as $scope.customer and viewDetailsFunction will
be the same as $scope.viewDetails. This means that if we use our new customer-
summary directive elsewhere, we can have control over the values we pass into
the reusable directive.

Say we change our results code to use it:

grab-bag/one/shine/app/assets/javascripts/templates/customer_search.html
<ol class="list-group">
<li class="list-group-item"
ng-repeat="customer in customers">
<customer-summary
cust="customer"
view-details-function="viewDetails">
</customer-summary>
</li>
</ol>

Now when we try our search, it should look and work just the same as it did
before.

Now, we can add it to our customer details page to create the header we want:

grab-bag/one/shine/app/assets/javascripts/templates/customer_detail.html
<header>
<customer-summary cust="customer"></customer-summary>
<hr>
</header>
<form novalidate name="form"><div class="row">

<!-- rest of the markup -->
</div></form>

You'll note that we've omitted view-details-function. For this use case, it’s not
needed, so we don’'t want it to show up if not specified. We can do that by
using ng-if in customer_summary.html.

<div class="pull-right" ng-if="viewDetailsFunction">
<button class="btn btn-small btn-primary"
ng-click="viewDetailsFunction(cust)">
View Details..
</button>
</div>

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/grab-bag/one/shine/app/assets/javascripts/templates/customer_search.html
http://media.pragprog.com/titles/dcbang/code/grab-bag/one/shine/app/assets/javascripts/templates/customer_detail.html
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 12. Dig Deeper © 228

Now, our detail page has a header that uses the same markup as the results
page!

Davon Bednar jaymes Jomneo Dec 1, 2015
alek.west3@weimannwaters.co

Billing Info
Davon Bednar @ jayme3
alek.west3@weimannwaters.co
Billing Address [T same as shipping?
Joined Dec 1, 2015 6584 Mateo Isle
. Blandabury XX 17005-6174
Shipping Address

Zip must be five
digits
615 Wilderman Light

Lake Albinaland XX 86692

This is the most bare-bones means of creating reusable components using
Angular directives. There is a lot more you can do with it to keep your code
clean and reduce duplication. We’ll see some open source directives in Using
Bootstrap-Powered Components with Angular, on page 240 that are designed
to work with Bootstrap. They are a great source of inspiration in terms of
what you can do with directives.

Format View Content Using Filters

In Chapter 5, Build a Dynamic Ul with AngularJS, on page 61, we used the
date filter to format our timestamp as a human-readable date. As a reminder,
filters are Angular’s equivalent of Rails view helpers, but work more like Unix
pipes:

<span class="date">{{ customer.joined at | date }}</span>

You can create filters yourself using the filter function available on Angular
modules. Suppose that the names in our CUSTOMERS table aren’t well normal-
ized, and are a mix of all lowercase, all uppercase, and mixed case. We want
to display those names properly capitalized, but only if the name is either all
lowercase or all uppercase (so as to not mess up names like McAvoy or
O’Drudy).

We'll create a filter called name. We can do this by calling filter on app in cus-
tomers_app.js.

www.it-ebooks.info

report erratum -

discuss


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Leveling Up with Angular ® 229

grab-bag/one/shine/app/assets/javascripts/customers_app.js
app.filter("name", function() {
return function(input) {
if (!input) {
return input;

}
if ( (input.toLowerCase() === input) || (input.toUpperCase() === input) ) {

return input.charAt(0).toUpperCase() + input.slice(1l).toLowerCase();
}
else {

return input;

}
1)

We can then use it like we did our date filter:

grab-bag/one/shine/app/assets/javascripts/templates/customer_summary.html
<h2 class="h3">
> {{ cust.first_name | name }} {{ cust.last_name | name }}
<small>{{ cust.username }}</small>
</h2>

Now, when we search, we can see that users’ names are formatted properly.

Customer Search
bob

Results
+ Previous Next —
Bob McJones cameloo Joineo Dec 1, 2015
larry.cormier0@wyman.co
Bob McJones sheridan.guigowskit Jomeo Dec 1, 2015
dominique.kemmer1@hane.com
Lucius Bobby ians Joiweo Dec 1, 2015
miles5@walter.co
+ Previous Next —

Filters are a great way to create view logic for formatting that you would nor-
mally use Rails helpers for.

www.it-ebooks.info report erratum -« discuss


http://media.pragprog.com/titles/dcbang/code/grab-bag/one/shine/app/assets/javascripts/customers_app.js
http://media.pragprog.com/titles/dcbang/code/grab-bag/one/shine/app/assets/javascripts/templates/customer_summary.html
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 12. Dig Deeper ® 230

Organize Code in Different Files

Up to this point, all of our Angular code has gone into customers_app.js. Angular
has no opinions on what files code lives in, and there’s no set standard for
how to organize it. That said, having all code in one big file isn’t recommended
in any software system.

To make this happen in Rails requires two things. First, we have to move our
code into different files, but, more importantly, we have to make sure the
asset pipeline picks them in the right way.

As to what code goes in what files, you can essentially do whatever you want.
I tend to follow the pattern Rails uses for the middleware code, and make a
directory for each type of component. Therefore, I'll have, in app/assets/javascripts,
controllers, directives, and filters. For Shine, that would mean we’d have controllers/cus-
tomer_search_controller.js, controllers/customer_detail_controllerjs, controllers/customer_cred-
it card_controllerjs, filters/name filter.js, and directives/customer summary_directive.js. This
would leave customers_app.js as just declaring our module dependencies and
setting up the routes.

To make them work with the asset pipeline, we have to do two things. First,
because Rails wraps all code in JavaScript inside an immediately invoked
function, ' the app variable isn’t available outside the file where it’s declared.
Think of our code in customers_app.js as actually being like this:

function() {
var app = angular.module(
‘customers"',
[
‘ngRoute’,
‘ngResource’,
‘ngMessages"',
'templates’
1
)
HO;

This means that app is private to this file. So, in each file that contains our

Angular code, we have to look up our Angular app via angularmodule. Here’s
how it looks for CustomerCreditCardinfoController's source:

grab-bag/two/shine/app/assets/javascripts/controllers/customer_credit_card_controller.js

var app = angular.module('customers');

app.controller("CustomerCreditCardController", [
"$scope","$resource",

13. https://en.wikipedia.org/wiki/lmmediately-invoked function_expression

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/grab-bag/two/shine/app/assets/javascripts/controllers/customer_credit_card_controller.js
https://en.wikipedia.org/wiki/Immediately-invoked_function_expression
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Yvy

Leveling Up with Angular ® 231

function($scope , $resource) {
var CreditCardInfo = $resource('/fake billing.json')
$scope.setCardholderId = function(cardholderId) {
$scope.creditCard = CreditCardInfo.get(
{ "cardholder id": cardholderId}
)

1);

You'll note that we're using module with only one argument. Invoked this way,
Angular will generate an error if the module we want doesn't exist (when using
the two-arg version, as we do in customers_app.js, Angular will create the module
if it doesn’t exist, which we don’t want to do in our controller files). This means
that we must ensure the code in customers_app.js runs first. We can do that by
changing the asset pipeline’s configuration in application.js.

Our current version has, as its last line, //=require_tree . (note the period, which
indicates the current directory). The require_tree directive to the asset pipeline
will tell it to recursively bring in all the JavaScript it finds. The documenta-
tion'* says that the order in which files are required is unspecified and that
we cannot rely on it.

So, we just need to explicitly require customers_app.js first, before the require_tree
directive:

grab-bag/two/shine/app/assets/javascripts/application.js
//= require jquery

//= require jquery ujs

//= require angular

//= require angular-route

//= require angular-resource

//= require angular-messages

//= require angular-rails-templates
//= require customers app

//= require tree ./templates

//= require tree .

Our app should still work the same, and all our tests will still pass (because

Teaspoon uses the asset pipeline to bring in files for testing).

Extract Reusable Code into Services

In addition to breaking our code down into separate files, it might be nice to
extract logic out of our controllers. In Ruby and Rails we can easily extract
classes to accomplish this. In Angular, we can do this by creating services.

14. http://guides.rubyonrails.org/asset pipeline.html#manifest-files-and-directives

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/grab-bag/two/shine/app/assets/javascripts/application.js
http://guides.rubyonrails.org/asset_pipeline.html#manifest-files-and-directives
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Yy

YYYYVYYVYY

Chapter 12. Dig Deeper ® 232

A service is a function defined like we've been defining controllers, but it has
no special purpose other than to hold code we want to organize.

What makes an Angular service different from a regular JavaScript object is
that we can arrange for it to have dependencies injected via Angular’s
dependency injection. For example, we can extract all the search logic out of
CustomerSearchController into a service called customerSearch. We can then inject
customerSearch into CustomerSearchController like so:

grab-bag/two/shine/app/assets/javascripts/controllers/customer_search_controller.js
var app = angular.module('customers');
app.controller("CustomerSearchController", [
'$scope', '$location', "customerSearch",
function($scope , $location , customerSearch) {

$scope.customers = [1;
customerSearch.successCallback(function(customers) {
$scope.customers = customers;

3

$scope.search customerSearch.search
$scope.previousPage customerSearch.previousPage;
$scope.nextPage = customerSearch.nextPage;

$scope.viewDetails = function(customer) {
$location.path("/" + customer.id);

}

1);

We're assuming that customerSearch works as follows: we configure a success
callback that will be given data based on a search term, and that it has three
functions available: search, previousPage, and nextPage. search handles searching
for customers and giving the results to our success callback declared with
successCallback. Both previousPage and nextPage will paginate as before, but they
will remember the search term last used, so we don’t have to pass it in again.

Note how clean our controller is. All it’s doing is surfacing data and functions
to the view, but all actual logic has been extracted to the service. This is the
sort of thing we strive for in our Rails controllers, so it’s nice to be able to do
it with our Angular controllers, too.

To set up a service to hold our search logic, we declare a function that will
be given all the needed dependencies and is expected to return an object.
That object is what is injected into CustomerSearchController as the object custom-
erSearch. The basic outline looks like so:

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/grab-bag/two/shine/app/assets/javascripts/controllers/customer_search_controller.js
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Leveling Up with Angular ® 233

grab-bag/two/shine/app/assets/javascripts/services/customer_search.js
var app = angular.module('customers');
app.factory("customerSearch", [
"$http",
function($http) {

/.

return {
"successCallback": successCallback,
"search": search,
"previousPage": previousPage,
"nextPage": nextPage
}
s

The returned object is the public interface to our service. All we have to do is
implement these functions. First, let’s declare some private variables to store
the current page, most recent search term, and success callback:

grab-bag/two/shine/app/assets/javascripts/services/customer_search.js
var page = 0;

var mostRecentSearchTerm = undefined;

var success = function() {};

The definition of successCallback is straightforward:

grab-bag/two/shine/app/assets/javascripts/services/customer_search.js
var successCallback = function(newCallback) {
success = newCallback;

};

The implementations of nextPage and previousPage look more or less like their
old counterparts, but they use mostRecentSearchTerm:

grab-bag/two/shine/app/assets/javascripts/services/customer_search.js
var previousPage = function() {
if ( (page > 0) && mostRecentSearchTerm) {
page = page - 1;
search(mostRecentSearchTerm);
}
b

var nextPage = function() {
if (mostRecentSearchTerm) {
page = page + 1;
search(mostRecentSearchTerm);
}
b

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/grab-bag/two/shine/app/assets/javascripts/services/customer_search.js
http://media.pragprog.com/titles/dcbang/code/grab-bag/two/shine/app/assets/javascripts/services/customer_search.js
http://media.pragprog.com/titles/dcbang/code/grab-bag/two/shine/app/assets/javascripts/services/customer_search.js
http://media.pragprog.com/titles/dcbang/code/grab-bag/two/shine/app/assets/javascripts/services/customer_search.js
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 12. Dig Deeper ® 234

This leaves search, which looks similar to what it did before; however, it defers
to the success callback provided by the caller. Note that we aren’t passing
through the response object we get from $http, but instead just passing the
resulting data via response.data:

grab-bag/two/shine/app/assets/javascripts/services/customer_search.js
var search = function(searchTerm) {
if (searchTerm.length < 3) {
return;

}

mostRecentSearchTerm = searchTerm;
$http.get("/customers. json",
{ "params": { "keywords": searchTerm, "page": page } }
) .then(function(response) {
success(response.data);

+
function(response) {
alert("There was a problem:

+ response.status);

)i
}
Notice how the code in both places is fairly cohesive, and focuses on just one
part of the whole. Also notice how our controller no longer depends on $http,
because it’s only needed to do the customer search.

At their core, services in Angular are just how you decompose code into
smaller bits. We can write tests for services, the same as we have for our
controllers. This allows us to manage complexity in our front end in the same
way we would in the middleware.

As I've mentioned many times, Angular is a rich, deep, flexible, complex
framework. Its popularity means that there are many add-ons and extensions
to help you with common tasks. This popularity also means that Angular is
highly Googleable—you can find answers to common problems easily.

Getting Everything Out of Bootstrap

Unlike Angular and Postgres, Bootstrap is smaller and more focused in its
scope. Its documentation is a great place to find inspiration on solving common
layout and design problems. One handy part of Bootstrap that we can’t easily
use is the section titled “JavaScript.” This section contains more interactive
components like modal dialogs and tooltips. These are invaluable tools for
creating rich client-side applications, but because they’re based on JQuery,

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/grab-bag/two/shine/app/assets/javascripts/services/customer_search.js
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Getting Everything Out of Bootstrap ® 235
it’s difficult to use them with an Angular app. Fortunately, the Angular UI'®
project has reimplemented many of them as Angular components.

But first, let’s discuss another handy thing that comes with Bootstrap: icons.

Glyphicons

Bootstrap includes some of the icons that are part of the Glyphicons'® icon
font. This allows you to add icons to your UI by just applying CSS classes to
empty elements. Bootstrap’s documentation'” lists the icons that are included.

Our customer detail page is complex, so we used panels to create separation
between the elements. But they could be made easier to navigate by adding
icons to the panel titles. Let’'s put a person icon next to the Customer title,
an envelope icon next to Shipping Address, a credit card icon next to Billing
Info, and a save icon on the Save Changes button:

Aliya Murazik rebaz Joineo Dec 1, 2015

yesenia_reilly3@bauch.io

B Billing Info

Aliya Murazik @  rebad ok ok k1234 [FL View Detalils...
Expires: 11/2016
yesenia_reilly3@bauch.io

Joined Dec 1, 2015 Billing Address [T Same as shipping?

2851 Rowe Expressway

= Shipping Address Addiehaven XX 62550

64820 Amani Alley

West Orlandoport XX 54555-81¢

Zip must be five @ Deactivate Customer | X Save Changes
digits

Create empty elements with the glyphicon class and a class for the icon.

<button ng-click="save()"
class="btn btn-1lg btn-primary"
ng-disabled="form.$invalid || form.$pristine">
<i class="glyphicon glyphicon-save" aria-hidden="true"></i>
Save Changes
</button>

15. https://angular-ui.github.io/
16. http://glyphicons.com/
17. http://getbootstrap.com/components/#glyphicons

www.it-ebooks.info

report erratum - discuss


https://angular-ui.github.io/
http://glyphicons.com/
http://getbootstrap.com/components/#glyphicons
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

vy

Chapter 12. Dig Deeper ® 236

Since the icons are purely for decoration, we use the i tag as well as aria-hid-
den="true" so that screen readers don’'t get confused and read this markup to
users. The aria- tags are part of the Web Accessibility Initiative.

If you reload the page, you should see the icons. One thing worth pointing
out is that icons are a tricky subject in user experience design. Most research
indicates that icons without text are extremely difficult for users to under-
stand. We're using them here as a demonstration, but as with all design
choices, be cognizant of the problem you are solving when adding icons.
Purely aesthetic reasons can be valid sometimes, but they are not necessarily
paramount in making a great experience for your users.

There’s a nasty technical problem with our implementation: the icons won’t
work outside our development environment. The Rails asset pipeline is noto-
riously opaque when things don’t work. Fonts, in particular, are problematic.
You can see the troubles if you try to run a test that hits this page. You should
get an error like No route matches [GET] "/fonts/bootstrap/glyphicons-halflings-regular.ttf".

To fix this, we need to do three things: change how the fonts are configured
in CSS, add Bootstrap’s font path as an asset path, and configure the asset
pipeline to precompile all fonts. It’s unclear why fonts are treated differently
than CSS or JavaScript in this regard, but this is what we have to do.

First, we have to rename our application.css file to application.scss because we're
going to need to use SASS’s'® @import directive to bring in an auxiliary file that
ships with Bootstrap that will fix how the fonts are referred to in our CSS.

$ mv app/assets/stylesheets/application.css app/assets/stylesheets/application.scss

By default, Bootstrap uses the path ../fonts, but relative paths don’t work reli-
ably in production. Rails provides a SASS function named font-path that
dynamically figures out the right URL to use for referencing fonts at runtime.
We can tell Bootstrap to use this by including the file bootstrap-sprockets that
comes with Bootstrap.

Now, we need to remove the use of = require and replace it with @import:

grab-bag/three/shine/app/assets/stylesheets/application.scss
@import "bootstrap-sass-official/assets/stylesheets/bootstrap-sprockets";
@import "bootstrap-sass-official/assets/stylesheets/bootstrap";

/*

*= require tree .

*= require self

*/

18. http://sass-lang.com/

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/grab-bag/three/shine/app/assets/stylesheets/application.scss
http://sass-lang.com/
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

YYYYVYYY

Getting Everything Out of Bootstrap ® 237

What's going on here is that bootstrap-sprockets adds configuration to tell Boot-
strap to use the Rails asset pipeline helpers, instead of hard-coding ../fonts.
This helper tells Rails to look in app/assets/fonts for the fonts. But that’s not
where they are—they’re in vendor/bower_components/bootstrap-sass-official/assets/fonts/boot-
strap.

So, in config/application.rb we have to do a few things. We must add that path to
our asset paths, and we must also specify that all fonts be precompiled. For
whatever reason, any font not in app/assets/fonts just won’t be served up properly
unless it’s precompiled.

grab-bag/three/shine/config/application.rb
module Shine
class Application < Rails::Application
config.assets.paths << Rails.root.join("vendor",
"assets",
"bower components")
config.assets.paths << Rails.root.join("vendor",
"assets",
"bower components",
"bootstrap-sass-official",
"assets",
"fonts")
config.assets.precompile << /\|.(?:svg|eot|woff|ttf|woff2)\z/
end
end

Now we can confidently use glyphicons in our application! Note that if you
use other icon fonts like Font Awesome,'® you’ll need to do a similar configu-
ration.

Design for Mobile Devices with Ease

Responsive Web Design is a technique for designing for many different screen
sizes and devices. If you've been to a website on your mobile phone that looks
great but different from how it looks on your desktop computer, this is
responsive design in action.

Bootstrap provides some basic tools to help with responsive design. If you
recall from Chapter 8, Design Great Uls with, on page 137, when we were dis-
cussing grid-based design, we used CSS classes that had md in them, such
as col-md-6. That md means this is the column size I want on medium-sized

19. https://fortawesome.github.io/Font-Awesome/

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/grab-bag/three/shine/config/application.rb
https://fortawesome.github.io/Font-Awesome/
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 12. Dig Deeper © 238

devices. But there are other options, as outlined in Bootstrap’s grid options™
documentation.

Let’'s suppose our complex customer detail view will be used on a mobile
phone. We can quickly simulate this by resizing our browser to a narrow
width. Because we used the md form of our grid, when the screen shrinks to
below the medium-sized device width (992px), each grid cell takes up the full
width, since this is the default.

Generally, this is fine, but for addresses, it’s a bit extreme.

2 Shipping Address
532 Lucio Green
New Darryl
AZ

99988

Suppose for mobile devices we're fine with the city being 100% of the width,
but we want the state and zip code to be on the same line. With Bootstrap’s
responsive grid, making this happen is simple. In addition to the col-md
classes we've used, we can add col-xs classes (xs for extra-small devices below
768px in width—that is, most smartphones).

For the city, we’ll use col-xs-12, meaning we want the city’s grid to be full width
(this is somewhat redundant, but it’s good to be explicit about our design
decisions, since we’ll be using other xs classes). State will be given the col-xs-4
class, meaning it should take up four grid cells at the xs size, while zip gets
the remaining eight cells, which means we need the col-xs-8 class.

20. http://getbootstrap.com/css/#grid-options

www.it-ebooks.info


http://getbootstrap.com/css/#grid-options
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

YYVYY

Getting Everything Out of Bootstrap ¢ 239

grab-bag/three/shine/app/assets/javascripts/templates/customer_detail.html
<div class="row">
<div class="col-md-6 col-xs-12">

<!-- city form markup -->

</div>
<div class="col-md-2 col-xs-4">

<!-- state form markup -->

</div>
<div class="col-md-4 col-xs-8">

<!-- zip form markup -->

</div>
</div>

The result is as expected:

= Shipping Address
532 Lucio Green

New Darryl

AZ 99988

With just a few extra CSS classes, we've made drastically different layouts
work on different screen sizes. You can even resize your browser to a larger
width and watch the screen change layouts back to our original design.

In addition to a responsive grid, Bootstrap has helper classes®' for use when
doing responsive design. For example, we can use a class like hidden-xs to hide

21. http://getbootstrap.com/css/#responsive-utilities

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/grab-bag/three/shine/app/assets/javascripts/templates/customer_detail.html
http://getbootstrap.com/css/#responsive-utilities
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 12. Dig Deeper ® 240

elements on small screens. This could be useful for nonessential elements
that can be omitted for mobile users (like icons).

Responsive design is a deep topic, but Bootstrap gives you a few useful fea-
tures to help do it more easily and without making radical changes to your
markup.

Using Bootstrap-Powered Components with Angular

Bootstrap has components, which are JavaScript-powered features such as
modal dialogs and tab controls. The problem is that they don’t work well with
an Angular app, since they rely on JQuery, which operates on the DOM dif-
ferently than Angular and could create conflicts. Fortunately, the Angular Ul
project® includes most of these components in its Bootstrap subproject.?

These components are made to use Bootstrap’s styles and templates, but use
Angular instead of JQuery, so you can more easily integrate them into your
Angular app. We'll look at two examples that will help you with the most
common Ul tasks. The first is alert messages, followed by modal dialogs, both
of which will enhance Shine’s ability to edit customer data.

First, we’ll install it and get it all set up.

Install Angular Ul Bootstrap

We've been through this a few times already, so it should be old hat by now.
First we’ll add asset 'angular-bootstrap' to Bowerfile and run rake bower:install. Then,
we’ll add //=require 'angular-bootstrap' to app/assets/javascripts/application.js. Finally, we’ll
add uibootstrap to the list of dependent modules in app/assets/javascripts/cus-
tomers_app.js:

grab-bag/three/shine/app/assets/javascripts/customers_app.js
var app = angular.module(
‘customers"',
[
‘ngRoute’,
‘ngResource',
‘ngMessages"',
'ui.bootstrap',
'templates'

22. https://angular-ui.github.io/
23. http://fangular-ui.github.io/bootstrap/

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/grab-bag/three/shine/app/assets/javascripts/customers_app.js
https://angular-ui.github.io/
http://angular-ui.github.io/bootstrap/
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

YYYVYY

Getting Everything Out of Bootstrap ¢ 241

To know what value to use in the modules list, we have to look at the docu-
mentation® for Angular UI Bootstrap (flexibility comes at a price).

With that in place, let’'s add a dismissable alert.

Alerts

Bootstrap has support for creating static alert components,” so we could
hack up a basic alerting system with what we know right now. Bootstrap also
includes a more dynamic alert component® that can be dismissed. We're
going to use the Angular Ul equivalent to create an alert after we successfully
save a customer’s information.

Bobby Abernathy cesar kerluke217688 Jomeo Aug 9, 2015
elmira217688@walterwolf.com

Customer successfully saved.

2 Customer & Billing Info

Angular Ul Bootstrap includes the uib-alert directive, which we can use as if it
were an HTML element. We can use the attribute type to indicate what sort of
alert it is (success vs. danger), and close to provide a function we’ll implement
that removes the alert when the user clicks the close button.

grab-bag/three/shine/app/assets/javascripts/templates/customer_detail.html
<header>
<customer-summary cust="customer"></customer-summary>
<hr>
</header>
<section>
<uib-alert ng-show="alert"
type="{{alert. type}}"
close="closeAlert()">
{{alert.message}}
</uib-alert>
</section>
<form novalidate name="form"><div class="row">

<!-- rest of the markup -->

To make it work, we need to set $scope.alert to the alert we want to show the
user, and implement closeAlert. Previously, our save function used the alert

24. http://angular-ui.github.io/bootstrap/#/getting started
25. http://getbootstrap.com/components/#alerts
26. http://getbootstrap.com/javascript/#alerts

www.it-ebooks.info

report erratum

- discuss


http://media.pragprog.com/titles/dcbang/code/grab-bag/three/shine/app/assets/javascripts/templates/customer_detail.html
http://angular-ui.github.io/bootstrap/#/getting_started
http://getbootstrap.com/components/#alerts
http://getbootstrap.com/javascript/#alerts
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

YYVYY

YYVYY

Chapter 12. Dig Deeper ® 242

function to show the user the results of the save. We'll replace that and instead
populate $scope.alert:

grab-bag/three/shine/app/assets/javascripts/controllers/customer_detail_controller.js
$scope.save = function() {
if ($scope.form.$valid) {
$scope.customer.$save(
function() {
$scope.form.$setPristine();
$scope.form.$setUntouched();
$scope.alert = {
type: "success",
message: "Customer successfully saved."
+i
+
function(data) {
$scope.alert = {
type: "danger",
message: "Customer couldn't be saved"
+

Because $scope.alert is bound to the alert component provided by Angular Ul
Bootstrap, just setting the value will cause it to show up to the user. We'll
also need to clear $scope.alert inside closeAlert:

grab-bag/three/shine/app/assets/javascripts/controllers/customer_detail_controller.js
$scope.closeAlert = function(index) {
$scope.alert = undefined;

}

Now, when we save the customer details, we see a pleasant message like we
saw earlier telling us everything worked.

We can also see the error message by loading the page, making a change,
stopping our server, and clicking Save Changes. Since the server can’t respond
to our Angular app’s Ajax request, the error callback will be called and we’ll
see an error message instead.

Bobby Abernathy cesar kerluke217688 JoiNeD Aug 9, 2015
elmira217688@walterwolf.com

Customer couldn't be saved

2L Customer & Billing Info

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/grab-bag/three/shine/app/assets/javascripts/controllers/customer_detail_controller.js
http://media.pragprog.com/titles/dcbang/code/grab-bag/three/shine/app/assets/javascripts/controllers/customer_detail_controller.js
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

YYYVYY

Getting Everything Out of Bootstrap © 243

Modal Dialogs

Suppose we want to allow Shine’s users to deactivate a customer (perhaps
they are unhappy with the service and don’t want to be a part of it any more).
Since this is a destructive action, we’d want Shine’s users (who you’ll recall
are CSRs) to confirm a customer deactivation. We could do this with the
JavaScript confirm function to get a confirmation, but that control has some
problems. First it’s ugly. More importantly, it’s inflexible. The buttons can
only say OK and Cancel, and we have limited options for formatting text.

Instead, let’s create an easy-to-use modal dialog that fits with our design.

Deactivate Customer

This will permanently deactivate the customer. They will not be able to log in or use our

service.

Bootstrap provides the CSS to create this dialog, and Angular Ul Bootstrap
provides the code. We'll need to do a few things to make this work. First, we’ll
add a button to our view that will initiate the deactivation. Next, we’ll inject
$uibModal into CustomerDetailController, which is how we can launch and interact
with the modal dialog. We can then use that to launch the modal inside our
deactivation function. To make the modal itself work, we’ll need a new view
and controller for the modal.

Our Deactivate button will live right next to our Save Changes button (notice
we're using a Glyphicon as well as the btn-danger class to indicate that this
action is more dangerous):

grab-bag/three/shine/app/assets/javascripts/templates/customer_detail.html
<div class="text-right">
<button ng-click="deactivate()"
class="btn btn-1g btn-danger">
<i class="glyphicon glyphicon-ban-circle"></i>
Deactivate Customer
</button>
<button ng-click="save()"
class="btn btn-1lg btn-primary"
ng-disabled="form.$invalid || form.$pristine">
<i class="glyphicon glyphicon-save"></i>
Save Changes
</button>
</div>

www.it-ebooks.info

report erratum -

discuss


http://media.pragprog.com/titles/dcbang/code/grab-bag/three/shine/app/assets/javascripts/templates/customer_detail.html
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

vy

YYVYY

Chapter 12. Dig Deeper ® 244

To implement the function we used for ng-click, deactivate, we’ll need access to
the $uibModal service provided by Angular Ul Bootstrap. We inject that into our
controller in the normal way:

grab-bag/three/shine/app/assets/javascripts/controllers/customer_detail_controller.js
var app = angular.module('customers');
app.controller("CustomerDetailController", [

"$scope","$routeParams","$resource","$uibModal",
function($scope , $routeParams , $resource , $uibModal) {

With this done, we can use the function open on $uibModal to open our modal
dialog. This function returns a modal instance that is a promise. We'll call
then on it with two parameters, both functions. The first is the function to run
if the user confirmed the dialog. The second is the function to run if the user
dismissed or canceled the dialog. In both cases, we’ll just set an alert related
to the results (actually building customer deactivation is out of scope for our
discussion here).

grab-bag/three/shine/app/assets/javascripts/controllers/customer_detail_controller.js
$scope.deactivate = function() {
var modalInstance = $uibModal.open({
templateUrl: 'confirm deactivate.html',
controller: 'ConfirmDeactivateController'

1)

modalInstance.result.then(function () {
$scope.alert = {
type: "success",
message: "Customer deactivated"
}
}, function (reason) {
$scope.alert = {
type: "warning",
message: "Customer still active"

b
};

You'll note that open takes an object and we've defined two keys: templateUrl
and controller. These indicate the view and controller for the modal.

For the view, we can use Bootstrap’s modal markup®’ to create a modal spe-
cific to deactivation:

27. http://getbootstrap.com/javascript/#modals

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/grab-bag/three/shine/app/assets/javascripts/controllers/customer_detail_controller.js
http://media.pragprog.com/titles/dcbang/code/grab-bag/three/shine/app/assets/javascripts/controllers/customer_detail_controller.js
http://getbootstrap.com/javascript/#modals
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Getting Everything Out of Bootstrap ® 245

grab-bag/three/shine/app/assets/javascripts/templates/confirm_deactivate.html
<header class="modal-header">
<button type="button" class="close" ng-click="nevermind()">
<span aria-hidden="true">&times;</span>
</button>
<hl class="modal-title">Deactivate Customer</hl>
</header>
<section class="modal-body">
This will <strong>permanently</strong> deactivate the customer.
They <strong>will not</strong> be able to log in or use our service.
</section>
<footer class="modal-footer">
<button class="btn btn-danger" type="button" ng-click="deactivate()">
<i class="glyphicon glyphicon-ok"></i>
Deactivate
</button>
<button class="btn btn-info" type="button" ng-click="nevermind()">
<i class="glyphicon glyphicon-remove"></i>
Nevermind
</button>
</footer>

You'll notice we have a close button in the header, as well as a Nevermind
button that both call the function nevermind when clicked. We also have a
Deactivate button that calls deactivate when clicked. These labels, along with
the rich formatting available for the header and body text, are a big reason
why we're going through all this to create a modal dialog instead of using
JavaScript’s confirm.

We can craft a message that helps users understand what they're doing, and
we can give the buttons semantically meaningful labels. Instead of the user
having to mentally translate that clicking OK means Deactivate, we can just
put the word Deactivate right on the button. This makes the feature harder
to misuse and easier to understand.

With the view done, we just need to implement the controller for the modal.
Since Angular Ul Bootstrap is handling the mechanics of launching and hiding
the modal, as well as calling our callbacks, the modal’s controller looks like
a run-of-the-mill Angular controller—which is great!

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/grab-bag/three/shine/app/assets/javascripts/templates/confirm_deactivate.html
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Chapter 12. Dig Deeper ® 246

grab-bag/three/shine/app/assets/javascripts/controllers/confirm_deactivate_controller.js
var app = angular.module('customers');
app.controller("ConfirmDeactivateController", [

"$scope", "$modalInstance",
function($scope , $modalInstance) {
$scope.deactivate = function () {

$modalInstance.close();

+i

$scope.nevermind = function () {
$modalInstance.dismiss('cancel');

The only thing different is that we're injecting $modalinstance. This is the same
value returned by $uibModal.open in CustomerDetailController. It exposes two functions,
close and dismiss. When close is called, this resolves the promise, which will call
the first function we passed to then. If we call dismiss, this rejects the promise,
which will trigger the second function we passed to then.

With it all done, when we click the Deactivate Customer button, we get the
nice-looking dialog we saw earlier.

If we click Deactivate in the dialog we see a success message, using the
alerting system we set up previously:

Bobby Abernathy cesar kerluke217688 JoiNeD Aug 9, 2015

elmira217688@walterwolf.com

Customer deactivated

2 Customer & Billing Info

Clicking Nevermind shows us a warning message that the customer is still
active:

Bobby Abernathy cesar.kerluke217688 Joinep Aug 9, 2015

elmira217688@walterwolf.com

Customer still active

2 Customer & Billing Info

These are just two of the many Ul components available from Angular Ul As
you've seen, they save us a lot of work in managing potentially complex Ul
interactions, but still afford us great flexibility in how we design for our users.

www.it-ebooks.info

report erratum

- discuss


http://media.pragprog.com/titles/dcbang/code/grab-bag/three/shine/app/assets/javascripts/controllers/confirm_deactivate_controller.js
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Getting Everything Out of Bootstrap ® 247

You can also create components like these yourself. The source code for
Angular Ul Bootstrap provides examples of how to do this. Angular’s directives
documentation® is also a great place to start to get an overview.

This brings us to the end of our journey. Hopefully, you've learned not just
how to use Angular, Postgres, and Bootstrap, but also the value of
approaching each software problem with a holistic view of the tools you are
using. Some problems are best solved with a better user experience, some
with improved database performance, and some require bringing all parts of
the stack together.

The information here is just the beginning. The documentation for everything
we've used is excellent, and with the grounding you've got, you can now dig
deeper with Angular, Postgres, and Bootstrap. And I'm willing to help if I can;
just post to our forums.>

With the knowledge you've gained in this book, you now have the confidence
to explore your toolset more deeply—and the curiosity to discover new and
better ways to solve problems.

28. https://docs.angularjs.org/guide/directive
29. https://forums.pragprog.com/forums/389

www.it-ebooks.info


https://docs.angularjs.org/guide/directive
https://forums.pragprog.com/forums/389
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

APPENDIX 1

Full Listing of Customer Detail Page HTML

This is the full listing of markup for the Ul we designed and built in Chapter
8, Design Great Uls with, on page 137. It’s included for completeness, but you
will find it much easier to work with the source code, which you can download
from the book’s website. '

complex-views/ui/shine/app/assets/javascripts/templates/customer_detail.html
<form>
<div class="row">
<div class="col-md-6">
<article class="panel panel-primary">
<header class="panel-heading">
<hl class="h3">
Customer
</h1l>
</header>
<section class="panel-body">
<div class="row">
<div class="col-md-4">
<div class="form-group">
<label class="sr-only" for="first-name">
First Name
</label>
<input type="text" class="form-control"
name="first-name" value="Bob">
</div>
</div>
<div class="col-md-4">
<div class="form-group">
<label class="sr-only" for="last-name">Last Name</label>
<input type="text" class="form-control"
name="last-name" value="Jones">
</div>

1.  https://pragprog.com/titles/dcbang/source_code

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/complex-views/ui/shine/app/assets/javascripts/templates/customer_detail.html
https://pragprog.com/titles/dcbang/source_code
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Appendix 1. Full Listing of Customer Detail Page HTML ® 250

</div>
<div class="col-md-4">
<div class="form-group">
<label class="sr-only" for="username">Username</label>
<div class="input-group">
<div class="input-group-addon">@</div>
<input type="text" class="form-control"
name="username" value="bobert123">
</div>
</div>
</div>
</div>
<div class="form-group">
<label class="sr-only" for="email">Email</label>
<input type="text" class="form-control"
name="email" value="bobbyj@somewhere.net">
</div>
</section>
<footer class="panel-footer">
<label for="joined">Joined</label> 12/13/2014
</footer>
</article>
<article class="panel panel-default">
<header class="panel-heading">
<h2 class="h4">
Shipping Address
</h2>
</header>
<section class="panel-body">
<div class="form-group">
<label class="sr-only" for="street-address">
Street Address
</label>
<input type="text" class="form-control"
name="street-address" value="123 Any St">
</div>
<div class="row">
<div class="col-md-6">
<div class="form-group">
<label class="sr-only" for="city">City</label>
<input type="text" class="form-control"
name="city" value="Washington">
</div>
</div>
<div class="col-md-2">
<div class="form-group">
<label class="sr-only" for="state">State</label>
<input type="text" class="form-control"
name="state" value="DC">
</div>

www.it-ebooks.info report erratum

- discuss


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Appendix 1. Full Listing of Customer Detail Page HTML © 251

</div>
<div class="col-md-4">
<div class="form-group">
<label class="sr-only" for="zip">Zip</label>
<input type="text" class="form-control"
name="zip" value="20001">
</div>
</div>
</div>
</section>
</article>
</div>
<div class="col-md-6">
<article class="panel panel-default">
<header class="panel-heading">
<h2 class="h4">
Billing Info
</h2>
</header>
<section class="panel-body">
<article>
<div class="row">
<div class="col-md-7">
<p class="h4">
dokkok _kokkok _kkkx 7234
<span class="label label-success">VISA</span>
</p>
<p class="h5">
<label>Expires:</label> 04/19
</p>
</div>
<div class="col-md-5 text-right">
<button class="btn btn-1lg btn-default">
View Details..
</button>
</div>
</div>
</article>
<hr>
<article class="well well-sm">
<header>
<hl class="h5">
Billing Address
<small>
<input type="checkbox"> Same as shipping?
</small>
</hl>
</header>
<div class="form-group">
<label class="sr-only" for="street-address">

www.it-ebooks.info

report erratum

- discuss


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Appendix 1. Full Listing of Customer Detail Page HTML ® 252

Street Address
</label>
<input type="text" class="form-control"
name="street-address" value="123 Any St">
</div>
<div class="row">
<div class="col-md-6">
<div class="form-group">
<label class="sr-only" for="city">City</label>
<input type="text" class="form-control"
name="city" value="Washington">
</div>
</div>
<div class="col-md-2">
<div class="form-group">
<label class="sr-only" for="state">State</label>
<input type="text" class="form-control"
name="state" value="DC">
</div>
</div>
<div class="col-md-4">
<div class="form-group">
<label class="sr-only" for="zip">Zip</label>
<input type="text" class="form-control"
name="zip" value="20001">
</div>
</div>
</div>
</article>
</section>
</article>
</div>
</div>
</form>

www.it-ebooks.info

report erratum - discuss


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

APPENDIX 2

Creating Customer Address Seed Data

This is the full listing for db/seeds.rb needed to create sample address data for
all the fake customers we’'ve been using to try out Postgres features. This is
covered in Chapter 9, Cache Complex Queries, on page 151. It’s included for
completeness, but you will find it much easier to work with the source code,
which you can download from the book’s website. '

Also note that for this code to work, you'll have to create the State, Address,
CustomersBillingAddress, and CustomersShippingAddress models. You’ll also need to
create necessary ActiveRecord associations inside the Customer class. Although
none of these are needed for Shine to function, they are for the seed data to
work. Their code follows the seed data code.

Note that we've added a guard around our initial code that creates cus-
tomers—we don’t to create 350,000 customers again if we already have some.
Also note that when you run rake db:seed, it will take a long time—several hours.

materialized-views/data-model/shine/db/seeds.rb
# Guard against re-creating customers if we already have some

» if Customer.all.count ==

>

350 000.times do |1i|
email = Faker::Internet.user name + i.to s +
"@#{Faker::Internet.domain name}"
Customer.create! (
first name: Faker::Name.first name,
last name: Faker::Name.last name,
username: "#{Faker::Internet.user name}#{i}",
email: email)
end
end

# Create all 50 states in the US

1.  https://pragprog.com/titles/dcbang/source_code

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/materialized-views/data-model/shine/db/seeds.rb
https://pragprog.com/titles/dcbang/source_code
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State

.create! (name:
.create! (name:
.create! (name:
.create! (name:
.create! (name:
.create! (name:
.create! (name:
.create! (name:
.create! (name:
.create! (name:
.create! (name:

.create! (name:
.create! (name:
.create! (name:
.create! (name:
.create! (name:
.create! (name:
.create! (name:
.create! (name:
.create! (name:
.create! (name:
.create! (name:
.create! (name:
.create! (name:
.create! (name:
.create! (name:

.create! (name:
.create! (name:
.create! (name:
.create! (name:
.create! (name:
.create! (name:
.create! (name:
.create! (name:
.create! (name:
.create! (name:
.create! (name:
.create! (name:
.create! (name:
.create! (name:
.create! (name:
.create! (name:
.create! (name:
.create! (name:
.create! (name:
.create! (name:
.create! (name:
.create! (name:
.create! (name:
.create! (name:

"Alabama" , code:
"Alaska" , code:
"Arizona" , code:
"Arkansas" , code:
"California" , code:
"Colorado" , code:
"Connecticut" , code:
"Delaware" , code:
"Dist. of Columbia" , code:
"Florida" , code:
"Georgia" , code:
"Hawaii" , code:
"Idaho" , code:
"Illinois" , code:
"Indiana" , code:
"Iowa" , code:
"Kansas" , code:
"Kentucky" , code:
"Louisiana" , code:
"Maine" , code:
"Maryland" , code:
"Massachusetts" , code:
"Michigan" , code:
"Minnesota" , code:
"Mississippi" , code:
"Missouri" , code:
"Montana" , code:
"Nebraska" , code:
"Nevada" , code:
"New Hampshire" , code:
"New Jersey" , code:
"New Mexico" , code:
"New York" , code:
"North Carolina" , code:
"North Dakota" , code:
"Ohio" , code:
"Oklahoma" , code:
"Oregon" , code:
"Pennsylvania" , code:
"Rhode Island" , code:
"South Carolina" , code:
"South Dakota" , code:
"Tennessee" , code:
"Texas" , code:
"Utah" , code:
"Vermont" , code:
"Virginia" , code:
"Washington" , code:
"West Virginia" , code:
"Wisconsin" , code:

www.it-ebooks.info

Appendix 2. Creating Customer Address Seed Data ® 254


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Appendix 2. Creating Customer Address Seed Data ® 255

State.create! (name: "Wyoming" , code: "WYy")

# Helper method to create a billing address for a customer
def create billing address(customer id,num states)

billing state State.all[rand(num states)]

billing address = Address.create! (

street: Faker::Address.street address,
city: Faker::Address.city,
state: billing state,
zipcode: Faker::Address.zip
)

CustomersBillingAddress.create! (customer id: customer id,
address: billing address)
end

# Helper method to create a shipping address for a customer
def create shipping address(customer id,num states,is primary)

shipping state = State.all[rand(num states)]

shipping address = Address.create!(

street: Faker::Address.street address,
city: Faker::Address.city,
state: shipping state,
zipcode: Faker::Address.zip

CustomersShippingAddress.create! (customer id: customer id,
address: shipping address,
primary: is primary)

end

# Cache the number of states so we don't have to query
# ecah time through
num_states = State.all.count

# For all customers
Customer.all.pluck(:1id).each do |customer id]|

# Create a billing address for them
create billing address(customer id,num states)

# Create a random number of shipping addresses, making
# sure we create at least 1
num_shipping addresses = rand(4) + 1

num_shipping addresses.times do |i]
# Create the shipping address, setting the first one
# we create as the "primary"
create shipping address(customer id,num states,i == 0)

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

Appendix 2. Creating Customer Address Seed Data ® 256

end
end

materialized-views/actual-materialized-view/shine/app/models/customer.rb
class Customer < ActiveRecord::Base
has many :customers shipping address

def primary shipping address
self.customers shipping address.find by(primary: true).address
end
has one :customers billing address
has one :billing address, through: :customers billing address,
source: :address
end

materialized-views/actual-materialized-view/shine/app/models/address.rb
class Address < ActiveRecord::Base

belongs to :state
end

materialized-views/actual-materialized-view/shine/app/models/state.rb
class State < ActiveRecord::Base

has_many :addresses
end

materialized-views/actual-materialized-view/shine/app/models/customers_billing_address.rb
class CustomersBillingAddress < ActiveRecord: :Base

belongs to :address

belongs to :customer
end

materialized-views/actual-materialized-view/shine/app/models/customers_shipping_address.rb
class CustomersShippingAddress < ActiveRecord::Base

belongs to :address

belongs to :customer
end

www.it-ebooks.info


http://media.pragprog.com/titles/dcbang/code/materialized-views/actual-materialized-view/shine/app/models/customer.rb
http://media.pragprog.com/titles/dcbang/code/materialized-views/actual-materialized-view/shine/app/models/address.rb
http://media.pragprog.com/titles/dcbang/code/materialized-views/actual-materialized-view/shine/app/models/state.rb
http://media.pragprog.com/titles/dcbang/code/materialized-views/actual-materialized-view/shine/app/models/customers_billing_address.rb
http://media.pragprog.com/titles/dcbang/code/materialized-views/actual-materialized-view/shine/app/models/customers_shipping_address.rb
http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

[Cro08]

[Rubl3]

Bibliography

Douglas Crockford. JavaScript: The Good Parts. O’Reilly & Associates, Inc.,
Sebastopol, CA, 2008.

Sam Ruby. Agile Web Development with Rails 4. The Pragmatic Bookshelf,
Raleigh, NC, and Dallas, TX, 2013.

www.it-ebooks.info


http://pragprog.com/titles/dcbang/errata/add
http://forums.pragprog.com/forums/dcbang
http://www.it-ebooks.info/

SYMBOLS
$ symbol, prepending Angular
objects, 68
% symbol, appending, 41-42
-> operator, 217-218
->> operator, 218
/ route, 122, 129
? operator, 217
@ symbol
form add-ons, 149
searching, 39, 41
@> operator, 214, 219
@@ operator, 222
{} (curly-braces) syntax, 71,
73
~* operator, 27

A

abstracting methods with
RSpec matchers, 89

acceptance testing, see al-
so testing
headless, 91-103
typeahead searching, 98-
103
Active Record, see alsomigra-
tions; Postgres; queries
arrays, 214
case-sensitive matching,
40
complex data queries
with SQL, 159
Devise, 6
forcing bad data, 87
HSTORE, 216-217
indexes and Migrations
API, 45

;json type, 218

;jsonb type, 219

limit, 57

materialized views, 151,
161

offset, 57

performance in complex
data queries, 154-156

SQL-escaping in search,

43
update, 208
valid?, 199

validations, 22, 87
add-ons, form, 149

addresses
caching queries with ma-
terialized views, 160-
170
icons, 235
primary, 152, 164
queries of complex data,
152-160
queries with Active
Record, 154-156
queries with SQL, 156-
160
seed data, 154, 253
styling forms for mobile
devices, 238
styling forms with Boot-
strap components, 147
styling forms with Boot-
strap grid, 143
validating, 195-199
Agile Web Development with
Rails 4, xxiv
Ajax
adding second controller,
131-135

www.it-ebooks.info

Index

asynchronous requests,
178, 175, 177
dynamic alerts, 242
loading animation, 172,
183-186
making requests, 74-77
pagination, 77-79
porting search to Angu-
lar, 65
rendering content based
on status, 184
simulating calls for unit
tests, 112
skipping forgery protec-
tion, 207
testing controllers for
loading data asyn-
chronously, 189-191
typeahead searching, 61,
79-81
alert
Ajax request errors, 76
dynamic alerts, 241
loading data asyn-
chronously, 179
styling flash, 20
testing with spies, 115
alert-danger, styling flash, 20
alert-info, styling flash, 20
alerts
dynamic, 241
loading data asyn-
chronously, 179
modal dialogs, 244
styling flash, 20
testing with spies, 115
aliasing, tables, 157
aligning, buttons, 145

all, 100


http://www.it-ebooks.info/

Angular, see also Angular
app; directives

about, xv—xvii, 60

adding modules, 122

adding second view and
controller, 127-135

advantages, xvi

app vs. Rails application,
62

binding values to views,
179

Bootstrap components,
240-247

configuring, 62-65

converting view to Angu-
lar template, 123

creating controller, 67-72

displaying error mes-
sages, 201

extracting reusable code
into services, 231-234

filters, 76, 228-229

installing, 62

installing and configuring
router, 121-124

loading data asyn-
chronously, 171-191

managing forms, 193—
211

modal dialogs, 243-246

navigating between views,
127-130

organizing code, 230-231

other features, 225-234

porting search to, 65-79

rendering canned search
results, 72-74

reusable markup, 225-
228

role in stack, xiii

saving data back to serv-
er, 205-209

single-page app with
router, 119-135

templates from asset
pipeline, 124-127

typeahead searching, 61,
65, 79-81, 98-103

unit testing components,
103-116

user navigation with
router, 121-124

validating forms, 194-
199

versions, Xxvi

Angular app, see also Angular
acceptance testing, 96-98
adding modules, 122

adding second view and
controller, 127-135
creating controller, 67-72
loading, 107
looking up, 230
routes, 122
setup, 61, 63-65
setup for controller test-
ing, 107-110
single-page app with
router, 119-135
vs. Rails application, 62
Angular Ul project, 234, 240-
247
angular-messages, 201
angular-mocks, 109, 112
angular-rails-templates, 124-127
angular-resource
about, 171
connecting to Rails, 175—
180
installing, 176
loading data asyn-
chronously, 171-191
testing controllers, 189-
191
angular-route, 121-124
AngularJS, see Angular
animation, loading, 172, 183-
186
application stack
about, xi
holistic learning, xix
roles, xii-xiii
applications, Rails, vs. Angu-
lar apps, 62
apps, see also Angular app:
Shine
initial Rails setup, 2-6
internal, xx, 1
Rails application vs. Angu-
lar app, 62
aria- tags, 236
arrays, xiv, 214-216
article element, 66
aside vs. div, 20
asset method, 13
asset path, 15, 236
asset pipeline
adding Bootstrap, 15
Angular app, 67
angular-route, 121
configuring Angular, 62
fonts, 236
minification, 70

www.it-ebooks.info

Index ® 260

organizing code with files,
230
serving templates from,
124-127
Teaspoon, 105
using, Xx
$asyncValidators, 210

asynchronous requests
advantages, 172
controllers, 175-180,
189-191
diagram, 173
loading data, 171-191
promises, 174-180
testing controllers, 172
understanding, 172-175
asynchronous validation,
195, 210

authenticate_user!, 8
authentication, see login

B

B-Tree index, 215, 217
before, 96, 99

beforeEach, 110
behavioral setup, 99

billing addresses, see address-
es
binding
functions, 67, 197
headers, 64
navigating between views,
127
symbols to form fields, 67
validating forms, 194-
199
values to views, 179

black box tests, acceptance
tests as, 91

block syntax, custom RSpec
matchers, 90
blurring, 194
Bootstrap, see also compo-
nents, Bootstrap; forms;
grid, Bootstrap; styling
about, xvii-xviii, 10
adding to asset pipeline,
15
advantages, xvii
clean search results, 51—
60
downloading, 13
glyphicons, 235-237
h class, 148
installing, 10-16
list group, 51-57, 100


http://www.it-ebooks.info/

login and registration
forms, 1, 16-22

mobile devices, 237-240

other features, 234-247

progress bar, 172, 183-
186

resources, 18

role in stack, xiii

tables, 38
typography, xviii, 51, 53,
55, 148, 236

versions, Xxvi

Bower
advantages, 11
installing, 11
installing Angular, 62
installing Bootstrap, 11
registry, 13

bower search bootstrap, 13

bower-rails, 12

Bowerfile, xxvi, 12

browsers
disabling validations, 196
headless acceptance test-

ing, 91-103

buttons
acceptance testing, 97
aligning, 145
binding functions, 67,

197

credit card payment, 144
deactivate customer, 243
disabling, 204
form submit, 195, 197
fuzzy search form, 38
icons, 235
login, 18
navigation, 128
nevermind, 245
pagination, 58, 77
removing, 80
save changes, 204, 235
styling disabled, 58, 204

C

caching
queries with materialized
views, 44, 151, 160-
170
updating materialized
views, 165-169
callbacks
asynchronous requests,
172-173
callback hell, 173
dynamic alerts, 242

extracting reusable code
into services, 232
saving data back to serv-
er, 207
Capybara, 92-103
case
converting, 42
filter, 228
indexing for searches, xiv
matching, 40-44
search logic, 39, 42
styling search results, 55
casting, 218
CDN, 11, 124
change, 28
check box, 18
check constraints
about, xiv
enums, 221
failing migrations, 29
securing login with, 25—
32
testing, 89-91
checkbox class, 18
churn, 31
classes, separating grid and
styling, 142
clearfix class, 55, 225
click_button, 97
close, 241, 246
closeAlert, 241
code
for this book, xxiii, 249
extracting reusable code
into services, 231-234
HTML markup for cus-
tomer detail page, 149,
249
organizing by nesting
controllers, 180-183
organizing with files,
230-231
seed data, 154, 253
separation from views, xvi
CoffeeScript, 68, 105
col-md-X, 140
col-md-offset-1, 185
col-xs class, 238
collections, rendering, 73
color, 147
column types, advanced
Postgres, 213-222
columns, see grid, Bootstrap

www.it-ebooks.info

Index ® 261

comma-separated values,
see CSV

command line, reading exam-
ples for this book, xxiii

components, Angular, unit
testing, 103-116
components, Bootstrap
clean search results, 51—
60
defined, xvii—xviii, 240
dynamic alerts, 241
flash, 20
Google-style search re-
sults, 52-57
headless acceptance test-
ing, 100
input group, 38
modal dialogs, 243-246
pager, 58, 77
panels, 146-147
progress bar, 172, 183-
186
search result pagination,
51, 57-60
user interface, 137, 146-
150
using with Angular, 240-
247
concatenated fields, search-
ing, 224
config, 123
config names, 223
confirm, 243
connection
complex data queries
with SQL, 159
refreshing materialized
views, 166
constraints
about, xiv
enums, 221
failing migrations, 29
securing login with, 25—
32
testing, 87-91
containment, checking for,
219
$controller
accessing, 108
adding second controller,
132
unit testing controllers,
107-108
controller key, 244
controller method, 67-72, 110


http://www.it-ebooks.info/

controllers
adding second, 127-135
asynchronous requests,
175-180, 189-191
calling explicitly, 107
creating Angular, 67-72
decoupling, 172, 180-
183, 187
filters, 8
as functions, 68
index method and fuzzy
search, 37
indicating which need
authentication, 7
modal dialogs, 243
nesting, 171, 180-183
pagination, 57
passing data between,
186-188
porting search to Angu-
lar, 66
registering, 69-71, 124
testing asynchronous da-
ta loading, 172
testing setup, 107-110
testing simple, 110-112
typeahead searching, 61,
79-81
user navigation with
router, 121-124
controls
state and bindings, 194
styling basic login, 18
COPY, 224

CORS (cross-origin resource
sharing), 124
CREATE MATERIALIZED VIEW, 162
create_customer, 99
created_at, 76
--createdb, 3
createuser, 3
credit card info
icons, 235
loading data asyn-
chronously, 171-191
materialized views, 169
passing data between
controllers, 186-188
simulating, 180
styling forms with Boot-
strap components, 147
styling forms with Boot-
strap grid, 144
cron, 166

cross-origin resource sharing
(CORS), 124

CSREF (Rails Cross-Site Re-
quest Forgery) protection,
207

CSS, see also Bootstrap

about, xxv

fonts, 236

frameworks, xvii, 10

glyphicons, 235-237

selectors and headless
acceptance testing, 100

CSS floats, see floats
CSV, exporting data as, 224
curly-braces syntax, 71, 73
current_user, 8
custom directives, 204
custom matchers

Jasmine, 111

RSpec, 89-91
custom validators, 210
customers, see Shine

D
dashboard
creating page, 5
showing current user, 8
data, see also Postgres
check constraints, 26
complex queries with Ac-
tive Record, 154-156
complex queries with
SQL, 156-160
creating customer table,
34
exporting as CSV, 224
forcing bad, 87
generating, 36, 99
loading asynchronously,
171-191
passing between con-
trollers, 186-188
Postgres advanced col-
umn types, 213-222
saving back to server,
205-209
seeding, 36, 154, 253
using multiple data
sources in a single-
page app, 119
Data Definition Language
(DDL), Postgres, 27

data property of response, 76

data store, role in stack, xii,
see also databases

data- keyword, prepending ng-
attributes, 66

www.it-ebooks.info

Index ® 262

database triggers, 151, 165—
169
DatabaseCleaner, 95-96
databases, see also check
constraints; indexes; Post-
gres
document-oriented, 218
headless acceptance test-
ing, 94-96
joins, 156-160, 214
role in stack, xii
separation, 6
testing constraints, 87-
91
date filter, 76
date types, 222
dbconsole, 9
DDL (Data Definition Lan-
guage), Postgres, 27
deactivate, 244
deactivate button, 243

deactivating customers, 243-
246
debugging, 101-102
dependencies, specifying, 13
dependency injection, ser-
vices, 232
derived values, indexing, 46—
50
desc keyword, 41
design, responsive web de-
sign, 237-240, see al-
so Bootstrap; grid, Boot-
strap; styling
Devise
about, 1
creating login, 1-10
creating logout, 17
editing login details and
passwords, 22
extracting views to modi-
fy, 16
installing and setup, 6—
10
styling registration page,

validating registration,
22, 96
versions, xxvi
vulnerability, 25
devise generator, 6
devise method, 22
dialogs, modal, 243-246
dictionaries (HSTORE), xiv, 216—
217


http://www.it-ebooks.info/

directive function, 226

directives
advantages, xvii
Angularizing markup, 65
asset pipeline, 15
creating reusable
markup, 225-228
custom, 204
ng-app, 64-65, 123
ng-change, 80
ng-class, 203
ng-click, 67, 78, 128, 197,
244
ng-controller, 66, 126
ng-disabled, 204
ng-if, 71, 101
ng-init, 187-188, 190
ng-message, 202
ng-model, 67, 78, 177
ng-repeat, 73
ng-view, 126
require_tree, 231
uib-alert, 241
directories
organizing code with files,
230
public, 124
dirty controls, 194
disabled, 58, 204
disabling
save changes button, 204
styling buttons, 58
validations, 196
dismiss, 246
div
vs. aside, 20
using, 141
document-oriented databas-
es, 218
documents, searching, 222-
224
DOM
porting search to Angu-
lar, 65
showing/hiding, xv
typeahead searching, 61,
98-103
down method, 27-28
drivers, Capybara, 93
DSL methods, allowing
RSpec’s, 85
dynamic alerts, 241

E
Elasticsearch, 161

email addresses
acceptance testing of ty-
peahead searching, 98-

103

clean search results, 51—
60

creating Devise login, 1-
10

failing migrations, 29
fuzzy search, 33-50
icons, 235
rendering canned search
results, 72-74
search logic, 39, 41-44
seed data, 36
test data, 99
validating, 2, 22, 25-32,
195-199
email_regexp, 23
enable_extension, 216
enum types, xiv, 220-222
equality, querying for, 219
equals, 111
ERB templates
configuring Angular, 64
converting timestamp to
date, 76
converting to Angular, 73

$error, 199

errors
Ajax requests, 75
displaying invalid form
fields, 200-202
dynamic alerts, 242
form validation, 199
saving data back to serv-
er, 207
testing error handling
with spies, 114-116
testing with RSpec
matchers, 88, 90
execute
complex data queries
with SQL, 159
materialized views, 162
migrating indexes, 47
Postgres advanced fea-
tures, 49

expect(..), 85, 88

EXPLAIN ANALYZE, 45
Active Record perfor-
mance in complex
queries, 154

www.it-ebooks.info

Index ® 263

avoiding optimizations,
159
free-text search, 224
indexed search, 48
materialized views, 163
querying arrays, 215
SQL performance in
complex queries, 158
using, 45
exporting data as CSV, 224
expose_ds|_globally, 85
extract_name, 42
extracting
email addresses for
searching, 42
reusable code into ser-
vices, 231-234

F
factories, $resource service,
176, 184
faker gem, 36, 99, 180
feature, 96
feedback, 200, 202
fields, see also forms
binding symbols to, 67
invalid, 194, 198, 200-
205
primary_key=, 164
validating, 194-199
files, organizing code, 230-
231
fill_in, 97
filter, 228
filters
controller, 8
creating, 228
date, 76
formatting view content,
228-229
find method, 101
flash, styling login, 19
floats
Bootstrap grid, 139
clean search results, 51,
53
creating reusable
markup, 225
resetting, 55
flush, 114, 190
Font Awesome, 237
font path, 236
font-path function, 236
fonts, 236


http://www.it-ebooks.info/

footer, panels, 147
forcing bad data, 87
forgery protection, 207
form element
accessing state of form
validations, 198
disabling validations, 196

form-control class, 18
form-group class, 18, 142, 204

forms

add-ons, 149

binding symbols to fields,
67

Bootstrap documenta-
tion, 18

building with Bootstrap
grid, 141-143

custom directives, 204

fuzzy search, 37

managing with Angular,
193-211

save changes button, 204

saving data back to serv-
er, 205-209

styling invalid fields,
200-205

styling with Bootstrap,
xviii, 16-22, 146-150

submit button, 195, 197

validating, 194-199

forums, xxiv, 247

free-form text, searching,
222-224
functions
binding, 67, 197
controllers as, 68
fuzzy search, 33-44

G

Gemfile, versions, xxvi

General Inverted Index,
see GIN

generators
Devise, 6, 16
Rails, 35
geometric types, 222
get
adding second controller,
134
Ajax requests, 75, 77
saving data back to serv-
er, 206
GIN
arrays, 215
full-text search, 223

HSTORE, 217
JSON, 219
GitHub, Bower packages, 13
glyphicon class, 235
glyphicons, 235-237
Google, xv
Google-style search results,
52-57
grid, Bootstrap
about, 138
advantages, xviii
building forms, 141-143
different sized cells, 143—
146
horizontal, 138
mobile devices, 237-240
progress bar loading ani-
mation, 185
submit button, 197
user interfaces, 137-150
using, 140-146
vertical, 139
gsub, 42
guard, seed data, 253

H
h classes, typography, 148
has-error, 200
has-feedback classes, 200, 202
has-success, 200
have_content, 97
headers
binding, 64
creating reusable
markup, 225-228
styling with Bootstrap’s h
classes, 148
headless acceptance testing,
91-103
helper classes, responsive
design, 239
hidden-xs, 239
holistic learning approach, xix
hooks, DatabaseCleaner, 95
horizontal grid, 138
HSTORE, xiv, 216-217
:hstore type, 216
HTML
activating Angular, 64
Angular templates, 124
converting back from An-
gular, 66
HTML5 validations, 194-
199

www.it-ebooks.info

Index ® 264

markup for customer de-
tail page, 149, 249

printing HTML to debug
tests, 102

html method, 102

HTTP
asynchronous requests
with angular-resource,
175-180
$resource service, 181
saving data back to serv-
er, 206
$http service
adding second controller,
133
Ajax requests, 75, 77,
131
callbacks, 172
unit testing Angular con-
trollers, 108

httpBackend
adding second controller,
132
simulating Ajax calls, 112
test spies, 115

I

i tag, icons, 236
icons, 235-237
index method, 37, 39

index scans
Active Record perfor-
mance in complex
queries, 156
performance, 49
indexes
B-Tree, 215, 217
defined, 45
GIN, 215, 217, 219
materialized views, 162
migrations, 45, 47
types, 215
indexing
advanced, xiv, 33-50
arrays, 215
derived and partial val-
ues, 46-50
full-text search, 223
fuzzy search, 33-44
HSTORE, 217
index types, 215
JSON, xv, 219
query plan, 45-46
inject, 108
input, typeahead searching, 80
input group component, 38


http://www.it-ebooks.info/

input type="email", 196
input type="text", 195
input-group-addon, 149
install generator, 6
installing
Angular, 62
Angular Ul Bootstrap,
240
Angular’s router, 121-
124
angular-messages, 201
angular-mocks, 109
angular-resource, 176
angular-route, 121-124
Bootstrap, 10-16
Bower, 11
Capybara, 93
DatabaseCleaner, 95-96
Devise, 6-10
Jasmine, 104-106
Node, 12
PhantomdsS, 92
Poltergeist, 93
Postgres, xxvi
Rails, xxv
RSpec, 84-87
Ruby, xxv
Teaspoon, 104-106
internal apps, about, xx, 1
invalid fields
handling invalid form
submissions, 198
state and bindings, 194
styling, 200-205
inverse color, 147
IP address types, 222

J

Jasmine

beforeEach, 110

custom matchers, 111

installing, 104-106

matchers, 111, 115

simple Angular controller
test, 110-112

syntax and RSpec, 84,
105

test spies, 114-116

JavaScript, see also Angular
CoffeeScript, 68
confirm, 243
downloading, 14
minification, 70
resources, Xxv
JavaScript, the Good Parts,
XXV

join tables, 152, 156-160,
214
jQuery
downloading, 14
showing/hiding DOM, xv
JSON
converting, 74
indexing, xv, 219
making Ajax requests,
74-77
Postgres support, 217-
220
json method, 74
;json type, 218
JSONB
indexing, xv, 219
Postgres support, 217-
220

;jsonb type, 219

K

key/value pairs, HSTORE, 216-
217

keywords variable, 78

L
| helper method, 76
label class, 147

labels
modal dialogs, 245
screen readers, 38
styling forms, 147

layout, with Bootstrap grid,
140-146

“Learn SQL the Hard Way”,
XXV

learning approach, holistic,
xix

LESS, 13

let, 97, 99

libraries, versions, xxvi

like, 41

limit, 57

Linux and createuser command,
3

list group, Bootstrap
Google-style search re-
sults, 51-57
headless acceptance test-
ing, 100
list-group class, 53
list-group-item class, 53, 100
loading
Angular apps, 107

www.it-ebooks.info

Index ® 265

animation, 172, 183-186
data asynchronously,
171-191
$location service, navigating
between routes, 129
login
creating with Bootstrap
and Devise, 1-10
editing details, 22
installing Bootstrap, 10—
16
securing with Postgres
constraints, 25-32
styling, 10, 16-20
--login switch, 3
logout, adding, 17

M
manifest file, 15
markup
Angularizing, 64-66
bare-bones view, 131
creating reusable, 225-
228
extracting, 16
HTML markup for cus-
tomer detail page, 149,
249
modal, 244
ng-repeat directive, 73
validating forms, 195-
197
match method, 90

matchers
Jasmine, 111, 115
RSpec, 87-91, 97
matching case, 40-44
materialized views
about, xiv, 151, 161
caching queries, 44, 151,
160-170
creating, 162
database triggers, 151,
165-169
saving data back to serv-
er, 205-209
updating, 165-169
md grid form, 238
memcached, 161
middleware, Rails as, xi

migrations
check constraints, 27
creating customer table,
35
database triggers, 166
failing, 29


http://www.it-ebooks.info/

indexes, 45, 47
materialized views, 162
querying complex data,
153
reversible, 28
minification, 70
mobile devices
designing for, 237-240
form elements, 38
icons, 236
mocks
angular-mocks, 109, 112
mock classes warnings,
85
spies, 114-116
modal dialogs, 243-246
modal markup, 244
$modallnstance, 246
model generator, 35

Model-View-Controller (MVC)
framework, xv, 60

module
defining Angular app, 67
loading Angular app, 107
looking up Angular app,

230
mostRecentSearchTerm, 233

MVC (Model-View-Controller)
framework, xv, 60

N
name attribute, 198

names

Angular controllers, 66

clean search results, 51—
60

creating Devise login, 1-
10

custom RSpec matchers,
89

filter, 228

fuzzy search, 33-50

icons, 235

rendering canned search
results, 72-74

search logic, 39, 41-44

seed data, 36

styling forms with Boot-
strap components, 147

styling forms with Boot-
strap form add-ons,
149

styling forms with Boot-
strap grid, 142

to_tsquery, 223

validating, 195-199

navigation
Angular router, 121-124
between views, 127-130
button, 128

nesting
asynchronous requests,
173
controllers, 171, 180-183

network round-trip, 156, 159
nevermind button, 245

$new, 108

nextPage, 78-79, 232

ng- attributes, validating
HTML documents, 66
ng-app, 64-65, 123
ng-change, 80
ng-class, 203
ng-click
binding functions, 67,
197
deactivate button, 244
navigating between views,
128
pager buttons, 78

ng-controller
naming controllers, 66
nesting controllers, 180
removing, 126

ng-disabled, 204

ng-if, 71, 101

ng-init, 187-188, 190
ng-message, 202

ng-model
binding symbols to form
fields, 67
loading data asyn-
chronously, 177
pager buttons, 78

ng-repeat, 73

ng-view, 126

ngMessages, 201
ngResource, 176

ngRoute, 122
NgFormController, 198, 210
Node, 11

normalized lexeme, 223
not null constraint, 26, 35
notice class, 20

novalidate, 196

npm, 12

www.it-ebooks.info

Index ® 266

(0)
object keys, Rails validators,
210
object syntax, ng-class, 203
offset method, 57
offsets, 57, 185
open, 244
operator classes, varchar_pat-
tern_ops, 46
optimizations, avoiding, 159
order by, 40, 42, 46
order method, 41
ordering
asynchronous requests,
173
EXPLAIN ANALYZE, 46
require_tree, 231
search logic, 39-44
organizing code
by nesting controllers,
180-183
with files, 230-231

P

-P command, 3
@page, 57, 77
page object, acceptance test-
ing, 100, 102
PAGE_SIZE, 57
pager component, 58, 77
pagination
Angular search, 77-79
controls, 58
Google-style search re-
sults, 51, 57-60
services, 232
panel-default, 147
panel-primary, 147
panels, 146-147
partials
Angular directives, 225-
228
indexing, 46-50
removing, 126
passing data between con-
trollers, 186-188
password_length, 23
passwords
creating Devise login, 1-
10
Devise vulnerability, 25
Postgres login, 3
resetting with Devise, 22


http://www.it-ebooks.info/

test data, 99
validating, 22, 96

PATCH, 206
path, $location service, 129

paths
asset path, 15, 236
font path, 236
$location service, 129
pattern, 196

performance
acceptance testing, 92
advanced indexing, 45-50
asynchronous requests,
172
caching queries with ma-
terialized views, 151,
160-170
complex data queries
with Active Record,
154-156
complex data queries
with SQL, 156-160
complex data, under-
standing tables, 152-
154
fuzzy search, 44
GIN, 215
network round-trip, 156,
159
query plan, 45-46
querying arrays, 215
PhantomdJ$S, headless accep-
tance testing, 91-103
phantomjs command, 92
PL/pgSQL language, 167
Poltergeist, 92-94, 98-103
porting, search to Angular,
65-79
POST, 206

Postgres, see also check con-
straints; materialized views

about, xiv

advanced data types, xiv,
213-222

advanced indexing, xiv,
33-50

arrays, xiv, 214-216

basic search setup, 33—
50

caching queries with ma-
terialized views, 44,
151, 160-170

case-sensitive matching,
40-44

command-line, xxiv

connecting to, 4

creating users, 3
DDL, 27
enum data type, xiv, 220-
222
exporting data as CSV,
224
HSTORE, xiv, 216-217
indexing derived and
partial values, 46-50
initial setup, 3-6
installing, xxvi
JSON, xv, 217-220
JSONB, xv, 217-220
login, 3
operator classes and var-
char_pattern_ops, 46
other features, 213-225
PL/pgSQL language, 167
query plan, 45-46
regular expressions in
constraints, 26
role in stack, xiii
searching free-form text,
222-224
securing login with con-
straints, 25-32
services, 4
using advanced features
with execute, 49
versions, xxvi, 31, 165
postgres schema, accessing, 3
PostgreSQL, see Postgres
previousPage, 78, 232
primary addresses, 152, 164
primary_key=, 164
printing HTML to debug tests,
102

$pristine, 202

pristine controls, 194, 202,
207

progress bar, loading anima-
tion, 172, 183-186

progress element, 185

promises
Ajax requests, 75
asynchronous requests,
174-180
controllers for loading
data asynchronously,
189-191
modal dialogs, 244
progress bar animation,
184
properties, Angular objects,
68

www.it-ebooks.info

Index ® 267

psql, accessing postgres schema
with, 3

public directory, 124

pull-left, 54

pull-right, 54, 128

PUT, 206

Q

$q library, 175
queries, see also EXPLAIN ANA-
LYZE, searching

Active Record perfor-
mance in complex,
154-156

advanced indexing, xiv,
33-50

arrays, 214

caching, 151, 160-170

caching with materialized
views, 44

equality, 219

exporting data as CSV,
224

free-form text, 222-224

fuzzy searching, 33-44

HSTORE, 217

JSON and JSONB, 218

materialized views, xiv,
151, 160-170

query plan, 45-46

SQL performance in
complex, 156-160

quote, 43
R

race condition, 101

Rails

Angular app route, 123

application vs. Angular
app, 62

as middleware, xi

command-line execution,
xxiii

complex data queries
with SQL, 159

configuring Angular, 62—
65

connecting to with angular-
resource, 175-180

CSREF (Rails Cross-Site
Request Forgery) protec-
tion, 207

enum support, 220

fuzzy search, 34-44

initial Shine setup, 2-6

installing, xxv

model generator, 35


http://www.it-ebooks.info/

resources, Xxiv
role, xix
role of validators, 209
seed data, 36, 154, 253
sprinkling approach, xi
test fixtures, 99
validations, 25-32
validators, 209
versions, xxv, 28, 220

Rails Cross-Site Request

Forgery (CSRF) protection,
207

raise_error, 88

rake db:migrate, 163

rake db:seed, 253

rake tasks
Bower, 12, 14
migrations, 163
refreshing materialized

views, 165
seeding data, 253
storing schema with SQL,
31
range types, 222

RDBMS (relational database
management system), xi

REFRESH MATERIALIZED VIEW, 165
REFRESH MATERIALIZED VIEW CON-
CURRENTLY, 165
refreshing, materialized views,
165-169
registering
controllers, 69-71, 124
routes, 124

registration
styling, 20
validating, 22, 96
registry, Bower, 13
regular expressions
check constraints, 26
searching email address-
es, 42
testing with RSpec
matchers, 88
validating email address-
es, 23, 26
validating form fields,
196
relational database manage-
ment system (RDBMS), xi
removing
buttons, 80
customers, 243-246

rendering
canned search results,
72-74
content based on Ajax
call's status, 184
require directive
adding, 15
angular-mocks, 109
organizing code, 231
Poltergeist, 93
require_tree, 231
required attribute, 196
$resolved, 184
$resource service
asynchronous requests,
175-181
progress bar animation,
184
saving data back to serv-
er, 206
resources
for this book, xxiv, 249
Bootstrap, 18
Capybara, 97
custom validators, 210
filters, 76
JavaScript, xxv
Postgres, 222
Rails, xxiv
Ruby, xxiv
SQL, xxv
respond, 113-115
respond_to, 74
response argument, 76
responsive web design, 237-
240
RETURNS TRIGGER, 167
reusable code, extracting into
services, 231-234
reusable markup, creating,
225-228
reversible, 28
reversible migrations, 28
rolling back transactions, 94
root scope
Angularizing views, 66
unit testing Angular con-
trollers, 108
$routeParams, 131-132, 134,
188

$routeProvider, 123

router, Angular
installing and configur-
ing, 121-124

www.it-ebooks.info

Index ® 268

serving templates from
asset pipeline, 124-127
single-page app with,
119-135
user navigation, 121-124
routes
Angular apps, 122
$location service, 129
navigating between views,
127-130
registering, 124
row class, 140
RSpec
auto-require, 91
headless acceptance test-
ing, 91-103
installing, 84-87
matchers, 87-91, 97
syntax, 84, 105
testing database con-
straints, 87-91
testing with, 2, 83
rspec command, 88
rspec-rails gem, 84
Ruby
installing, xxv
resources, xxiv
storing schema, 31
RubyGems, 11

runtime, query, 46

S

sample code, xxiii, 249
SASS, 13, 236

save

dynamic alerts, 241
forms, 197-199, 204
saving data back to serv-
er, 206
save changes button, 204,
235

$save(), 206-208
save_screenshot, 102
saving
data back to server, 205—
209
forms, 197-199, 204
scenario, 101
schedule, refreshing material-
ized views on, 166
schema
accessing, 3
churn, 31
storing with SQL vs. Ru-
by, 31


http://www.it-ebooks.info/

scope
adding second controller,
134
Angular, 66
Angular controllers, 68—
71, 108, 110, 114
dynamic alerts, 241
form validation, 199
passing data between
controllers, 187-188
reusable markup, 226
root, 66, 108
testing controllers, 107,
110-112, 190
scope attribute, reusable
markup, 226

Scope class, Angular app, 68

scope variable, Angular con-
trollers, 108, 110
$scope
adding second controller,
134
Angular app, 68-71
dynamic alerts, 241
form validation, 199
testing controllers, 107,
110-112, 190
screen readers
form elements, 38
icons, 236

screenshots, debugging tests
with, 102
search method
defining, 68
extracting reusable code
into services, 232
making Ajax requests,
74-77
rendering canned search
results, 72-74
typeahead searching, 79—
81
unit testing, 112-114
searchTerm value, 71
search_term, SQL-escaping, 43
searchedFor property, 68, 71
searching
Active Record perfor-
mance in complex
queries, 154-156
advanced indexing, xiv,
33-44
arrays, 214
Bower registry, 13
caching queries, 44, 151,
160-170
case, xiv, 39, 42

clean search results with
Bootstrap, 51-60
equality, 219
exporting data as CSV,
224
extracting reusable code
into services, 232
free-form text, 222-224
fuzzy, 33-44
Google-style search re-
sults, 52-57
HSTORE, 217
JSON and JSONB, 218
logic for basic search, 39
making Ajax requests,
74-77
materialized views, xiv,
151, 160-170
ordering by exact match,
40-44
pagination, 57-60
porting to Angular, 65-79
rendering canned results,
72-74
single-page app with An-
gular router, 119-135
SQL performance in
complex, 156-160
testing error handling
with spies, 114-116
typeahead, 61, 65, 79—
81, 98-103
security
Devise vulnerability, 25
Rails Cross-Site Request
Forgery (CSRF) protec-
tion, 207
role of Rails validators,
209
role-based, 214
securing login with Post-
gres constraints, 25-32
SQL vulnerability, 43,
160
validating registration, 96
seeding data, 36, 154, 253
SELECT, 157

separation

of code and views, xvi

customer and user
databases, 6

grid and styling classes,
142

nesting controllers, 171,
180-183

www.it-ebooks.info

Index ® 269

Seq Scan
Active Record perfor-
mance in complex
queries, 156
free-text search, 224
performance, 46
server, saving data back to,
205-209

serverResults, 113

services
extracting reusable code
into, 231-234
Postgres, 4
testing, 234

$setPristine, 207
setTimeout, 172
$setUntouched, 207

Shine

about, xx

advanced indexing, 45-50

caching queries with ma-
terialized views, 151,
160-170

clean search results, 51—
60

creating login with Boot-
strap and Devise, 1-23

creating reusable
markup, 225-228

deactivating users, 243-
246

designing for mobile de-
vices, 237-240

dynamic alerts, 241

exporting data as CSV,
224

extracting reusable code
into services, 231-234

formatting with filters,
228-229

fuzzy search, 33-44

glyphicons, 235-237

headless acceptance test-
ing, 91-103

loading data asyn-
chronously, 171-191

modifying and validating
forms, 193-211

organizing code with files,
230-231

Postgres advanced col-
umn types, 213-222

Rails setup, 2-6

role-based security, 214

searching free-form text,
222-224


http://www.it-ebooks.info/

securing login with con-
straints, 25-32

single-page app with
router, 119-135

styling user interface with
Bootstrap grid, 137-

150

testing constraints, 87—
91

typeahead searching, 61,
65, 79-81

unit testing Angular
components, 103-116
shipping addresses, see ad-
dresses
.should assertions, 85
show method, 134
:show route, 134
single-page app with Angular
router, 119-135
skipping forgery protection,
207
sleep, 102, 178, 181
small tags, 53, 55
spies, testing with, 114-116
Spring, 2
sprinkling approach, xi
Sprockets
asset pipeline, 15
font-path function, 236
require, 109
versions, 125
spyOn, 115
SQL, see also Postgres
arrays, 214
HSTORE, 216-217
performance in complex
data queries, 156-160
refreshing materialized
views, 166-167
resources, Xxv
storing schema, 31
truncate keyword, 95
vulnerability, 43, 160
sr-only class, 38
stack, see application stack
starts_with, 42
state
conditionally styling form
elements, 202
saving data back to serv-
er, 207
validating forms with
bindings, 194-199

states
Active Record perfor-
mance in complex
queries, 156
seed data, 154, 253
SQL performance in
complex queries, 157
styling forms for mobile
devices, 238
styling forms with Boot-
strap grid, 139, 143
validating in forms, 195-
196, 198
status codes, enums, 220
stop words, 224
strings
converting to tsvector and
tsquery, 222
enums, 221
style element, 185
styling
clean search results, 51—
60
conditional, 202-205
disabled buttons, 58
flash, 19
forms with Bootstrap
components, 146-150
forms with Bootstrap
grid, 141-143
fuzzy search form, 38
glyphicons, 235-237
Google-style search re-
sults, 52-57
invalid form fields, 200-
205
login and registration
forms, 10, 16-22
for mobile devices, 38,
236-240
modal dialogs, 243-246
panels, 147
progress bar loading ani-
mation, 185
tables, 38

submit button, 195, 197
submit tag, 18
supports_block_expectations, 90

symbols
binding to form fields, 67
form add-ons, 149

synchronous requests, 172
synonyms, searching, 224

www.it-ebooks.info

Index ¢ 270

T
table class, styling, 38
table-striped class, 38

tables
aliasing, 157
creating for fuzzy search,
34-37
creating separate with
Devise, 6
diagram of querying com-
plex data, 152
fuzzy search results, 37
join tables, 152, 156—
160, 214
querying complex data,
152-160
refreshing materialized
views, 165-169
striped, 38
styling, 38
TDD (test-driven develop-
ment), 132
Teaspoon
installing, 104-106
simple Angular controller
test, 110-112
testing second controller,
133
versions, xXxvi
teaspoon gem, 105
teaspoon rake task, 106, 133
teaspoon-jasmine gem, 105
templateUrl, 226, 244
templates
configuring Angular, 64
converting views to Angu-
lar, 123
curly-brace syntax, 71,
73
ERB, 64, 73, 76
rendering collections, 73
serving from asset
pipeline, 124-127
templates module, 125
test fixtures, 99
test spies, see spies
test-driven development
(TDD), 132
Test::Unit, 2, 84
testing, see also unit testing
about, 83
Angular components,
103-116
Angular configuration,
63-65


http://www.it-ebooks.info/

controller testing setup,
107-110
controllers for loading
data asynchronously,
172, 189-191
controllers, second, 132-
134
controllers, simple, 110-
112
database configuration,
4
database constraints, 87—
91
debugging, 101-102
headless acceptance, 91—
103
RSpec, 2, 83
services, 234
with spies, 114-116
test-driven development
(TDD), 132
typeahead searching, 98-
103
TEXT data type, xv, 218
text-right, 145
text-uppercase, 55
then method
adding second controller,
134
Ajax requests, 75
time types, 222
timestamps, 76
toBe, 111
toHaveBeenCalledWith, 115
to_tsquery, 222
to_tsvector, 222, 224
$touched, 202
touched controls, 194, 202
transaction, 95
transactions, headless accep-
tance testing, 94-96
transformed values, indexing,
xiv, 46-50
triggers, database, 151, 165-
169
truncate, 95
:truncation, 95
tsquery, 222
tsvector, 222
TurboLinks, 2
Twitter, xvii, 11
type alert attribute, 241
typeahead searching, 61, 65,
79-81, 98-103

typography
Bootstrap advantages,
xviii
clean search results, 51,
53, 55
h classes, 148
icons, 236

8]

Ul, see user interface
$uibModal service, 244
undefined, 198
unique constraint, 35
unit testing
advantages of Angular,
Xvii
Angular components,
103-116
controller testing setup,
107-110
controllers for loading
data asynchronously,
172, 189-191
controllers, second, 132—
134
simple Angular controller
test, 110-112
simulating Ajax calls, 112
untouched controls, 194, 207
up method, 27-28
update, 205, 208
update_attribute, 87
updating
materialized views, 165-
169
saving data back to serv-
er, 205-209
URLs
Angular app route, 122
saving data back to serv-
er, 206

use_transactional_fixtures, 95

user interface

Bootstrap components,
137, 146-150

Bootstrap grid, 137-150

clean search results, 51—
60

fuzzy search, 37-39

navigation with Angular
router, 121-124

role in stack, xii

search result pagination,
57-60

www.it-ebooks.info

Index ® 271

styling invalid form fields,
200-205
typeahead searching, 61,
65, 79-81, 98-103
usernames
styling forms with Boot-
strap form add-ons,
149
styling forms with Boot-
strap grid, 142
users
creating, 3
creating account, 9
form modifications, 193-
211
showing current, 8
validating with check
constraints, 27

USERS table
arrays, 214
creating, 6
validating with check
constraints, 27
viewing new users, 9

USING GIN, 215

\Y

$valid function, 199
valid? method, 199
:validatable module, 22

validating

accessing and handling
results, 198-199

Active Record, 22, 87

addresses in forms, 195-
199

Angular configuration,
63-65

asynchronous, 195, 210

custom validators, 210

email addresses in forms,
195-199

email addresses with De-
vise, 2

email addresses with
check constraints, 26

forms, 194-199

HTML with ng- attributes,
66

login with Postgres con-
straints, 25-32

names in forms, 195-199

registration, 22, 96

role of Rails validators,
209

values
arrays, 215


http://www.it-ebooks.info/

binding views to, 179
enums, 221
indexing derived and
partial, 46-50
::varchar, 215
VARCHAR class, 215
varchar_pattern_ops, 46
verify_doubled_constant_names, 85
versions
Angular, xxvi
Bootstrap, xxvi
Devise, xxvi
libraries and tools, xxvi
Postgres, xxvi, 31, 165
Rails, xxv, 28, 220
RubyGems, 11
Sprockets, 125
Teaspoon, xxvi
vertical grid, 139
viewDetails, 127-135
views, see also materialized
views
adding second view, 127-
135

Angular, xvii, 65

binding values to, 179

converting to Angular
template, 123

creating bare-bones, 130-
135

extracting with Devise, 16

formatting with filters,
228-229

fuzzy search UI, 37

loading data asyn-
chronously, 177-180

markup for bare-bones
view, 131

modal dialogs, 243

navigating between views,
127-130

pagination controls, 58

separation from code, xvi

serving from asset
pipeline, 124-127

views (Devise), 16
visit, 97

www.it-ebooks.info

Index ® 272

w

WebKit, 92

when, 113, 123
where, 41, 46, 220
where_args, 41
where_clause, 41
window, 115

within, 97, 101

X
xs grid form, 238

Z

zip codes

displaying error message

for invalid, 202
styling forms for mobile
devices, 238
styling forms with Boot-
strap grid, 139, 143

validating in forms, 195-

196


http://www.it-ebooks.info/

Seven in Seven

From Web Frameworks to Concurrency Models, see what the rest of the world is doing with
this introduction to seven different approaches.

Seven Web Frameworks in Seven Weeks

Whether you need a new tool or just inspiration, Seven PR mers
Web Frameworks in Seven Weeks explores modern
options, giving you a taste of each with ideas that will

Seven Web Frameworks
help you create better apps. You'll see frameworks that

in Seven Weeks
leverage modern programming languages, employ Adventures in Better Web Apps

unique architectures, live client-side instead of server- £Z0% o T
side, or embrace type systems. You'll see everything
from familiar Ruby and JavaScript to the more exotic
Erlang, Haskell, and Clojure.

Jack Moffitt, Fred Daoud
(302 pages) ISBN: 9781937785635. $38 and Fred Daoud

Sertes editor: Bruce A. Tate

https://pragprog.com/book/7web Deslopment cator: Jaequelyn Carter

Jack Moffitt

Seven Concurrency Models in Seven Weeks

The

Your software needs to leverage multiple cores, handle )
thousands of users and terabytes of data, and continue
working in the face of both hardware and software Seven Concurrency Models
failure. Concurrency and parallelism are the keys, and in Seven Weeks

Seven Concurrency Models in Seven Weeks equips you When Threads Unravel

for this new world. See how emerging technologies
such as actors and functional programming address
issues with traditional threads and locks development.
Learn how to exploit the parallelism in your computer’s
GPU and leverage clusters of machines with MapRe-
duce and Stream Processing. And do it all with the
confidence that comes from using tools that help you
write crystal clear, high-quality code.

Paul Butcher
(296 pages) ISBN: 9781937785659. $38
https://pragprog.com/book/pb7con

www.it-ebooks.info


https://pragprog.com/book/7web
https://pragprog.com/book/pb7con
http://www.it-ebooks.info/

The Modern Web

Get up to speed on the latest JavaScript techniques.

Deliver Audacious Web Apps with Ember 2

It’s time for web development to be fun again, time to
write engaging and attractive apps - fast — in this brisk
tutorial. Build a complete user interface in a few lines
of code, create reusable web components, access
RESTful services and cache the results for perfor-
mance, and use JavaScript modules to bring abstrac-
tion to your code. Find out how you can get your cru-
cial app infrastructure up and running quickly, so you
can spend your time on the stuff great apps are made
of: features.

Matthew White
(154 pages) ISBN: 9781680500783. $24
https://pragprog.com/book/mwjsember

Reactive Programming with RxJS

Reactive programming is revolutionary. It makes
asynchronous programming clean, intuitive, and ro-
bust. Use the RxJS library to write complex programs
in a simple way, unifying asynchronous mechanisms
such as callbacks and promises into a powerful data
type: the Observable. Learn to think about your pro-
grams as streams of data that you can transform by
expressing what should happen, instead of having to
painstakingly program how it should happen. Manage
real-world concurrency and write complex flows of
events in your applications with ease.

Sergi Mansilla
(142 pages) ISBN: 9781680501292. $18
https://pragprog.com/book/smreactjs

Deliver Audacious
Web Apps with

Ember 2

Matthew White
edited by Katharine D vorak

The

-

Reactive Programmin
with RxJ!

Untangle Your

Asynchronous

JavaScript Code

%\E

Sergi Mansilla
it by Rebecea Guiick

www.it-ebooks.info


https://pragprog.com/book/mwjsember
https://pragprog.com/book/smreactjs
http://www.it-ebooks.info/

Secure and Better JavaScript

Secure your Node applications and make writing JavaScript easier and more productive.

Secure Your Node.js Web Application

Cyber-criminals have your web applications in their
crosshairs. They search for and exploit common secu-
rity mistakes in your web application to steal user data.
Learn how you can secure your Node.js applications, Secure Your Node.js
database and web server to avoid these security holes. Web Application
Discover the primary attack vectors against web appli- SRR by
cations, and implement security best practices and
effective countermeasures. Coding securely will make
you a stronger web developer and analyst, and you’'ll
protect your users.

O

-@i’

Karl Duitina
(230 pages) ISBN: 9781680500851. $36
https://pragprog.com/book/kdnodesec

Diitina
hmida Y. Rashid

CoffeeScript

Over the last five years, CoffeeScript has taken the web
development world by storm. With the humble motto
“It’s just JavaScript,” CoffeeScript provides all the
power of the JavaScript language in a friendly and ele-
gant package. This extensively revised and updated
new edition includes an all-new project to demonstrate
CoffeeScript in action, both in the browser and on a
Node.js server. There’s no faster way to learn to write
a modern web application.

Trevor Burnham
(124 pages) ISBN: 9781941222263. $29
https://pragprog.com/book/tbcoffee2

www.it-ebooks.info


https://pragprog.com/book/kdnodesec
https://pragprog.com/book/tbcoffee2
http://www.it-ebooks.info/

Pragmatic Programming

We’ll show you how to be more pragmatic and effective, for new code and old.

Your Code as a Crime Scene

Jack the Ripper and legacy codebases have more in B
common than you’d think. Inspired by forensic psychol-

ogy methods, this book teaches you strategies to pre-
Your Code as a

dict the future of your codebase, assess refactoring Crime Scene

direction, and understand how your team influences

the design. With its unique blend of forensic psychology o Acvest Detote, Botionsoks and
and code analysis, this book arms you with the e Cint 3 = 0 3 < loci o) ,..( . b..un.
strategies you need, no matter what programming i ¢ ;'e'? To T ¢
language you use. b ﬂ"! 11 = checkRe 13,

Adam Tornhill e | gecodeMeiRaRES B huuu
(218 pages) ISBN: 9781680500387. $36 i

1
e

=120 ceny ¢/ tiidhe e 0
1,'2 buflloe”

https://pragprog.com/book/atcrime

The Nature of Software Development

The

You need to get value from your software project. You P aforers

need it “free, now, and perfect.” We can’t get you there,

but we can help you get to “cheaper, sooner, and bet- The Nature
ter.” This book leads you from the desire for value down of Software
to the specific activities that help good Agile projects Development

deliver better software sooner, and at a lower cost.
Using simple sketches and a few words, the author

Keep It Simple,
Makelt Valuable,
Build It Piece by Piece

invites you to follow his path of learning and under-
standing from a half century of software development
and from his engagement with Agile methods from their
very beginning.

PLANNING
[EFLG LI S
ORGANIZING

GUIDING

Ron Jeffries
Ron Jeffries i by MchaelSune

(178 pages) ISBN: 9781941222379. $24
https://pragprog.com/book/rjinsd

)

www.it-ebooks.info


https://pragprog.com/book/atcrime
https://pragprog.com/book/rjnsd
http://www.it-ebooks.info/

The Joy of Mazes and Math

Rediscover the joy and fascinating weirdness of mazes and pure mathematics.

Mazes for Programmers

A book on mazes? Seriously?
Yes!

Not because you spend your day creating mazes, or
because you particularly like solving mazes.

But because it’s fun. Remember when programming
used to be fun? This book takes you back to those days
when you were starting to program, and you wanted
to make your code do things, draw things, and solve
puzzles. It’'s fun because it lets you explore and grow
your code, and reminds you how it feels to just think.

Sometimes it feels like you live your life in a maze of
twisty little passages, all alike. Now you can code your
way out.

Jamis Buck
(286 pages) ISBN: 9781680500554. $38
https://pragprog.com/book/jbmaze

Good Math

Mathematics is beautiful—and it can be fun and excit-
ing as well as practical. Good Math is your guide to
some of the most intriguing topics from two thousand
years of mathematics: from Egyptian fractions to Tur-
ing machines; from the real meaning of numbers to
proof trees, group symmetry, and mechanical compu-
tation. If you've ever wondered what lay beyond the
proofs you struggled to complete in high school geom-
etry, or what limits the capabilities of the computer on
your desk, this is the book for you.

Mark C. Chu-Carroll
(282 pages) ISBN: 9781937785338. $34
https://pragprog.com/book/mcmath

www.it-ebooks.info

for Hogrémmers

Code Your Own
Twisty Little Passages

Jamis Buck
Edited by Jacquelin Carter

Good Math

A Geek's Guide Lo the Beauty of
Numbers, Logic. and Computation

%..‘ . ﬁ
.\s,/// \/
tz B:vy/”

Mark C. Chu-Carroll
Edited by John Osborn



https://pragprog.com/book/jbmaze
https://pragprog.com/book/mcmath
http://www.it-ebooks.info/

Long Live the Command Line!

Use tmux and Vim for incredible mouse-free productivity.

tmux

Your mouse is slowing you down. The time you spend
context switching between your editor and your con-
soles eats away at your productivity. Take control of
your environment with tmux, a terminal multiplexer
that you can tailor to your workflow. Learn how to
customize, script, and leverage tmux’s unique abilities
and keep your fingers on your keyboard’s home row.

Brian P. Hogan
(88 pages) ISBN: 9781934356968. $16.25
https://pragprog.com/book/bhtmux

Practical Vim, Second Edition

Vim is a fast and efficient text editor that will make
you a faster and more efficient developer. It’s available
on almost every OS, and if you master the techniques
in this book, you’ll never need another text editor. In
more than 120 Vim tips, you'll quickly learn the editor’s
core functionality and tackle your trickiest editing and
writing tasks. This beloved bestseller has been revised
and updated to Vim 7.4 and includes three brand-new
tips and five fully revised tips.

Drew Neil
(354 pages) ISBN: 9781680501278. $29
https://pragprog.com/book/dnvim2

www.it-ebooks.info

tmux

Productive
Mouse-Free
Development

=Y

Practi.cal
Vim

Second Edition

Edit Text at the
Speed of Thought

Drew Neil
Foreword by Tim Pope

PP it


https://pragprog.com/book/bhtmux
https://pragprog.com/book/dnvim2
http://www.it-ebooks.info/

Put the “Fun” in Functional

Elixir puts the “fun” back into functional programming, on top of the robust, battle-tested,
industrial-strength environment of Erlang.

Programming Elixir 1.2

The

José Valim,
Creator of Elixir

You want to explore functional programming, but are PR Smers
put off by the academic feel (tell me about monads just
one more time). You know you need concurrent appli- Programming
cations, but also know these are almost impossible to Ethr 12 ‘
get right. Meet Elixir, a functional, concurrent language S Concunent P
built on the rock-solid Erlang VM. Elixir's pragmatic b prgmati P W
syntax and built-in support for metaprogramming will =
make you productive and keep you interested for the \
long haul. This book is the introduction to Elixir for
experienced programmers. ¥ 5

Dave Thomas &' 4
Maybe you need something that’s closer to Ruby, but Foreword by S %

with a battle-proven environment that’s unrivaled for
massive scalability, concurrency, distribution, and
fault tolerance. Maybe the time is right for the Next
Big Thing. Maybe it’s Elixir.

This edition of the book has been updated to cover
Elixir 1.2, including the new with expression, the exrm
release manager, and the removal of deprecated types.

Dave Thomas
(340 pages) ISBN: 9781680501667. $38
https://pragprog.com/book/elixir12

Metaprogramming Elixir

Write code that writes code with Elixir macros. Macros e
make metaprogramming possible and define the lan-

guage itself. In this book, you’ll learn how to use Metaprogramming
macros to extend the language with fast, maintainable E

code and share functionality in ways you never thought Geliline e
possible. You'll discover how to extend Elixir with your fond e fun)
own first-class features, optimize performance, and

create domain-specific languages.

Chris McCord
(128 pages) ISBN: 9781680500417. $17
https://pragprog.com/book/cmelixir Chris McCord € ™

fauthor of the Phoenix framework)

po—. [

www.it-ebooks.info


https://pragprog.com/book/elixir12
https://pragprog.com/book/cmelixir
http://www.it-ebooks.info/

The Pragmatic Bookshelf

The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online

This Book’s Home Page
https://pragprog.com/book/dcbang
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
https://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community

https://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book

If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: https:/pragprog.com/book/dcbang

Contact Us

Online Orders: https://pragprog.com/catalog
Customer Service: support@pragprog.com

International Rights: translations@pragprog.com

Academic Use: academic@pragprog.com
Write for Us: http://write-for-us.pragprog.com
Or Call: +1 800-699-7764

www.it-ebooks.info


https://pragprog.com/book/dcbang
https://pragprog.com/updates
https://pragprog.com/community
https://pragprog.com/news
https://pragprog.com/book/dcbang
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com
http://www.it-ebooks.info/

	Cover
	Table of Contents
	Acknowledgments
	Introduction
	The Application Stack
	Postgres, Angular, and Bootstrap—At the Same Time
	How to Read This Book
	What You Need to Know
	Getting Set Up

	1. Create a Great-Looking Login with Bootstrap and Devise
	Setting Up Devise for Authentication
	Installing Bootstrap with Bower
	Styling the Login and Registration Forms
	Validating Registration
	Next: Using Postgres to Make Our Login More Secure

	2. Secure the Login Database with Postgres Constraints
	Exposing the Vulnerability Devise and Rails Leave Open
	Prevent Bad Data Using Check Constraints
	Why Use Rails Validations?
	Next: Using Postgres Indexes to Speed Up a Fuzzy Search

	3. Use Fast Queries with Advanced Postgres Indexes
	Implementing a Basic Fuzzy Search with Rails
	Understanding Query Performance with the Query Plan
	Indexing Derived and Partial Values
	Next: Better-Looking Results with Bootstrap's List Group

	4. Create Clean Search Results with Bootstrap Components
	Creating Google-Style Search Results Without Tables
	Paginating the Results Using Bootstrap's Components
	Next: Angular!

	5. Build a Dynamic UI with AngularJS
	Configuring Rails and Angular
	Porting Our Search to Angular
	Changing Our Search to Use Typeahead
	Next: Testing

	6. Test This Fancy New Code
	Installing RSpec for Testing
	Testing Database Constraints
	Running Headless Acceptance Tests in PhantomJS
	Writing Unit Tests for Angular Components
	Next: Level Up on Everything

	7. Create a Single-Page App Using Angular's Router
	Using Angular's Router for User Navigation
	Serving Angular Templates from the Asset Pipeline
	Adding a Second View and Controller to Our Angular App
	Next: Design Using Grids

	8. Design Great UIs with Bootstrap's Grid and Components
	The Grid: The Cornerstone of a Web Design
	Using Bootstrap's Grid
	Adding Polish with Bootstrap Components
	Next: Populating the View Easily and Efficiently

	9. Cache Complex Queries Using Materialized Views
	Understanding the Performance Impact of Complex Data
	Using Materialized Views for Better Performance
	Keeping Materialized Views Updated
	Next: Combining Data with a Second Source in Angular

	10. Asynchronously Load Data from Many Sources
	Understanding How Asynchronous Requests Work
	Using Angular-Resource to Connect to Rails
	Nesting Controllers to Organize Code
	Using Bootstrap's Progress Bar When Data Is Loading
	Passing Data Between Controllers
	Testing Controllers That Use Angular-Resource
	Next: Sending Changes Back to the Server

	11. Wrangle Forms and Validations with Angular
	Managing Client-Side State with Bindings
	Validating User Input with Angular Forms
	Styling Invalid Fields with Bootstrap
	Saving Data Back to the Server
	Understanding the Role of Rails Validators
	Next: Everything Else

	12. Dig Deeper
	Unlocking More of Postgres's Power
	Leveling Up with Angular
	Getting Everything Out of Bootstrap

	A1. Full Listing of Customer Detail Page HTML
	A2. Creating Customer Address Seed Data
	Bibliography
	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– X –
	– Z –


