Rust Essentials

Discover how to use Rust to write fast, secure, and concurrent
systems and applications

Rust Essentials

Discover how to use Rust to write fast, secure,
and concurrent systems and applications

Ilvo Balbaert

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

Rust Essentials

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2015

Production reference: 1220515

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78528-576-9

www . packtpub.com

www.packtpub.com

Credits

Author Copy Editor
Ivo Balbaert Jasmine Nadar
Reviewers Project Coordinator
Alfie John Suzanne Coutinho

Anthony Miyaguchi

Bharadwaj Srigiriraju Proofreaders
Syed Omar Faruk Towaha Stephen Copestake
Tony Zou Safis Editing
i . Indexer
Commissioning Editor
Tejal Soni

Akram Hussain

Acquisition Editor Production Coordinator

Rebecca Youé Aparna Bhagat

Content Development Editor Cover Work

Manasi Pandire Aparna Bhagat

Technical Editors
Tanmayee Patil

Shiny Poojary
Mohita Vyas

About the Author

Ivo Balbaert is currently a lecturer of (web) programming and databases at CVO
Antwerpen (www . cvoantwerpen.be), a community college in Belgium. He received
a PhD in applied physics from the University of Antwerp in 1986. He worked in the
software industry as a developer and consultant for several companies for 20 years
and as a project manager at the University Hospital of Antwerp for 10 years. From
2000 onwards, he switched to partly teaching and partly developing software
(KHM Mechelen, CVO Antwerp).

He wrote an introductory book in Dutch about developing in Ruby and Rails,
Programmeren met Ruby en Rails, Van Duuren Media.

In 2012, he authored a book on the Go programming language, The Way To Go,
ilniverse.

In 2013, in collaboration with Dzenan Ridzanovic, he wrote Learning Dart
and Dart Cookbook, both by Packt Publishing.

In 2014, he wrote Getting Started with Julia, Packt Publishing.

I would like to thank the technical reviewers, especially Brian
Anderson, Alfie John, and Anne-Marie Mission, for their many
useful remarks that improved the text, and my wife, Christiane,
for her support.

http://www.cvoantwerpen.be

About the Reviewers

Anthony Miyaguchi is a computer science and engineering student at UCLA.
He is active in the open source community and has worked on a variety of different
projects, from embedded programming to web technologies. If he finds free time,
he would like to make a dent in his collection of books.

Bharadwaj Srigiriraju is a computer science graduate from IIITDM, Jabalpur,
who now works as a software developer at Chumbak, Bangalore. He is a technology
enthusiast who loves to develop web apps and hack on (shiny) new technologies.
He specializes in Python and firmly believes that Rust will replace C very soon.

You can reach him at krishna.bharadwaj6@gmail . com or visit his GitHub to

know more github.com/bharadwaijs.

github.com/bharadwaj6

Syed Omar Faruk Towaha is a programmer and physicist from Shahjalal
University of Science and Technology, Sylhet, Bangladesh. He is involved with the
Rust development team and writes and reviews books on several programming
languages. He is an Oracle Certified Professional (OCP) developer and loves open
source technology. He has been working with several science projects and some
research projects at his university as well as in international laboratories. He enjoys
designing algorithms and circuit theory. He volunteers at Mozilla by arranging
events as a Mozilla representative (http://reps.mozilla.org/).

He is the president of a famous astronomical organization, CAM-SUST
(http://camsust.org/). He loves working in teams and being associated
with interesting projects.

His recent books include How You Should Design Algorithms, Easy Circuits for Kids,
Wonder in Quantum Physics, and Fundamentals of Ruby.

You can contact him at soft@hotmail.co.uk. To find out more details about him,
go tohttp://towaha.me/.

I would like to thank the author of this wonderful book and also
Suzanne Coutinho and Nikita Michael for their help. This is a pretty
good book on Rust, and I will recommend it to anyone who wants
to learn Rust. I hope that the author writes more books on Rust,
especially by developing games and some exciting things to let

the common people know how rich the rust language is.

Tony Zou is currently pursuing his undergraduate studies at the University of
Waterloo. He has been programming for 4 years and has worked on a few projects.
He enjoys competitive programming and working with exciting new languages
such as Rust.

http://reps.mozilla.org/
http://camsust.org/
mailto:soft@hotmail.co.uk
http://towaha.me/

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www. PacktPub. com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at servicee@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

@ PACKT! i1°

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
* Fully searchable across every book published by Packt

* Copy and paste, print, and bookmark content

* On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www. PacktPub . com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/

Table of Contents

Preface \'
Chapter 1: Starting with Rust 1
The advantages of Rust 2
The trifecta of Rust — safety, speed, and concurrency 3
Comparison with other languages 5
Using Rust 5
Servo 6
Installing Rust 7
The Rust compiler — rustc 7
Our first program 8
Working with Cargo 10
The developer tools 13
Using Sublime Text 14
Other tools 15
Summary 16
Chapter 2: Using Variables and Types 17
Comments 17
Global constants 18
Printing with string interpolation 20
Values and primitive types 22
Consulting Rust documentation 23
Binding variables to values 23
Mutable and immutable variables 25
Scope of a variable and shadowing 26
Type checking and conversions 27
Aliasing 28

Expressions 29

[il

Table of Contents

The stack and the heap 30
Summary 34
Chapter 3: Using Functions and Control Structures 35
Branching on a condition 35
Looping 37
Functions 39
Documenting a function 41
Attributes 42
Conditional compilation 43
Testing 43
Testing with cargo 45
Summary 45
Chapter 4: Structuring Data and Matching Patterns 47
Strings 48
Arrays, vectors, and slices 50
Vectors 52
Slices 53
Strings and arrays 54
Tuples 55
Structs 56
Enums 58
Result and Option 59
Getting input from the console 60
Matching patterns 62
Summary 65
Chapter 5: Generalizing Code with Higher-order Functions
and Parametrization 67
Higher-order functions and closures 67
Iterators 70
Consumers and adapters 72
Generic data structures and functions 74
Error handling 77
Panics 78
Failures 78
Methods on structs 79
Traits 82
Using trait constraints 84
Built-in traits and operator overloading 87
Summary 87

Lii]

Table of Contents

Chapter 6: Pointers and Memory Safety 89
Pointers and references 89
The stack and the heap 89
Lifetimes 90
Copying values and the Copy trait 93
Pointers 95
References 96
Using ref in a match 98
Ownership and borrowing 99
Boxes 102
Reference counting 105
An overview of pointers 107
Summary 107
Chapter 7: Organizing Code and Macros 109
Modules and crates 109
Building crates 110
Defining a module 111
The visibility of items 112
Importing modules and file hierarchy 114
Importing external crates 115
Exporting a public interface 117
Adding external crates to a project 118
The test module 119
Macros 121
Why do we use macros? 121
Developing macros 122
Repetition 124
Creating a new function 124
Using macros from crates 127
Summary 127
Chapter 8: Concurrency and Parallelism 129
Concurrency and threads 129
Creating threads 130
Starting a number of threads 131
Panicking threads 133
Thread-safety 134
The shared mutable state 135
The Sync trait 137
Communication through channels 138
Sending and receiving data 139
Synchronous and asynchronous communication 141
Summary 142

[iii]

Table of Contents

Chapter 9: Programming at the Boundaries 143
Program arguments 143
Unsafe code 145
Raw pointers 146
Interfacing with C 147

Using a C library 149
Inlining assembly code 150
Calling Rust from other languages 151
Summary 152

Appendix: Exploring Further 153
Stability of Rust and the standard library 153
The ecosystem of crates 153
Other resources for learning Rust 154

Files and databases 154
Graphics and games 155
Web development 155

Index

157

[iv]

Preface

Rust is the new open source and compiled programming language that finally
promises software developers the utmost safety —not only type safety but memory
safety as well. The compiler carefully checks all uses of variables and pointers so that
common problems from C / C++ and other languages, such as pointers to wrong
memory locations or null references, are a thing of the past. Potential problems

are detected at compilation time so that Rust programs execute at speeds that are
comparable with their C++ counterparts.

Rust runs with a very light runtime, which does not perform garbage collection.
Again the compiler takes care of generating code that frees all resources at the right
time. This means Rust can run in very constrained environments, such as embedded
or real-time systems. When executing code concurrently no data races can occur,
because the compiler imposes the same memory safety restrictions as when the
code executes consecutively.

From the preceding description, it is clear that Rust is applicable in all use cases where
C and C++ were the preferred languages until now and that it will do a better job.

Rust is a very rich language; it has concepts (such as immutability by default) and
constructs (such as traits) that enable developers to write code in a highly functional
and object-oriented style.

The original goal of Rust was to serve as the language to write a new safe browser
engine that was devoid of the many security flaws that plague existing browsers.
This is the Servo project from Mozilla Research.

The goal of this book is to give you a firm foundation so that you can start to
develop in Rust. Throughout the book, we emphasize the three pillars of Rust:
safety, performance, and concurrency. We discuss the areas and the reasons why
Rust differs from other programming languages. The code examples are not chosen
ad hoc, but they are oriented as part of an ongoing project to build a game so that
there is a sense of cohesion and evolution in the examples.

[v]

Preface

Throughout the book, I will urge you to learn by doing things; you can follow along
by typing in the code, making the requested modifications, compiling, testing, and
working out the exercises.

What this book covers

Chapter 1, Starting with Rust, discusses the main reasons that led to the development
of Rust. We compare Rust with other languages and indicate the areas in which it is
most appropriate. Then, we guide you through the installation of all the necessary
components for Rust's development environment.

Chapter 2, Using Variables and Types, looks at the basic structure of a Rust program.
We discuss the primitive types, how to declare variables and whether they have
to be typed, and the scope of variables. Immutability, which is one of the key
cornerstones of Rust's safety strategy, is also illustrated. Then, we look at basic
operations, how to do formatted printing, and the important difference between
expressions and statements.

Chapter 3, Using Functions and Control Structures, shows you how to define functions
and the different ways to influence program execution flow in Rust.

Chapter 4, Structuring Data and Matching Patterns, discusses the basic data types
for programming, such as strings, vectors, slices, tuples, and enums. Then, we
show you the powerful pattern matching that is possible in Rust and how values
are extracted by de-structuring patterns.

Chapter 5, Generalizing Code with Higher-order Functions and Parametrization,
explores the functional and object-oriented features of Rust. You will see how
data structures and functions can be defined in a generic way and how traits
can be used to define behavior.

Chapter 6, Pointers and Memory Safety, exposes the borrow checker, which is Rust's
mechanism to ensure that only memory safe operations can occur. We discuss
different kinds of pointers as well as how to handle runtime errors.

Chapter 7, Organizing Code and Macros, discusses the bigger code-organizing
structures in Rust. We will also touch upon how to build macros in order
to generate code and save time and effort.

Chapter 8, Concurrency and Parallelism, delves into Rust's concurrency model with its
basic concepts of threads and channels. We also discuss a safe strategy for working
with shared mutable data.

[vil

Preface

Chapter 9, Programming at the Boundaries, looks at how Rust can take command-line
parameters to process. Then, we go on to look at situations where we have to leave
the safety boundaries, such as when we interface with C or use raw pointers, and
how Rust minimizes potential dangers when we do so.

Appendix, Exploring Further, talks about the Rust ecosystem and where the reader
can find more information about certain topics, such as working with files, databases,
games, and web development.

What you need for this book

To run the code examples in the book, you will need the Rust system for your
computer, which can be downloaded from http://www.rust-lang.org/install.
html. This also contains the Cargo project and the package manager. To work more
comfortably with the Rust code, a development environment such as Sublime Text
can also be of use. Chapter 1, Starting with Rust, contains detailed instructions on how
to set up your Rust environment.

Who this book is for

This book is intended for developers who have some programming experience in
C/C++, Java/C#, Python, Ruby, Dart, or a similar language and a basic knowledge
of general programming concepts. It will get you up and running quickly, giving
you all you need to start building your own Rust projects.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"We can see that main () is a function declaration because it is preceded by the
keyword f£n, which is short and elegant like most Rust keywords."

A block of code is set as follows:

let tricks = 10;
let reftricks = &mut tricks;

[vii]

http://www.rust-lang.org/install.html
http://www.rust-lang.org/install.html

Preface

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

let nl = {
let a = 2;
let b = 5;
a+b // <-- no semicolon!

};
Any command-line input or output is written as follows:

[root]
name = "welcomec"
version = "0.0.1"

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "When
working with Rust code, select Tools | Build System | Rust."

%j%‘\ Warnings or important notes appear in a box like this.
Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important
for us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

[viii]

www.packtpub.com/authors

Preface

Customer support

Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http: //www.
packtpub. com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http: //www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyrightepacktpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

[ix]

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
mailto:copyright@packtpub.com

Preface

Questions

You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[x]

Starting with Rust

Rust is a programming language that is developed by Mozilla Research and

backed up by a big open source community. Its development started in 2006 by
language designer Graydon Hoare. Mozilla began sponsoring it in 2009, and it was
first presented officially in 2010. The work on it went through a lot of iterations,
culminating on May 15 2015 with the first stable production version 1.0.0, which
was made by the Rust Project Developers who consisted of the Rust team at Mozilla
and an open source community of over 900 contributors. Rust is based on clear and
solid principles. It is a systems programming language, equaling C and C++ in its
capabilities. It rivals idiomatic C++ in speed, but it lets you work in a much safer
way by forbidding the use of code that could cause program crashes due to memory
problems. Moreover, Rust has the built-in functionality necessary for concurrent
execution on multicore machines; it makes concurrent programming memory safe
without garbage collection —it is the only language that does this. Rust also eliminates
the corruption of shared data through concurrent access, also known as data races.

This chapter will present you with the main reasons why Rust's popularity and
adoption are steadily increasing. Then, we'll set up a working Rust development
environment.

We will cover the following topics:

* The advantages of Rust

* The trifecta of Rust: safety, speed, and concurrency
* Using Rust

* Installing Rust

* The Rust compiler - rustc

* Building our first program

* Working with Cargo

* Developer tools

[11]

Starting with Rust

The advantages of Rust

Mozilla is the company that is known for its mission to develop tools for and drive
the evolution of the Web based on open standards, most notably through its flagship
browser Firefox. Every browser today, including Firefox, is written in C++ by using
some 12,900,992 lines of code for Firefox and 4,490,488 lines of code for Chrome.
This enables programs to be fast, but it is inherently unsafe because the memory
manipulations allowed by C and C++ are not checked for validity. If the code is
written without the utmost programming discipline on the part of the developers,
then program crashes, memory leaks, segmentation faults, buffer overflows, and null
pointers can occur at program execution. Some of these can result in serious security
vulnerabilities, which are all too well-known in existing browsers. Rust is designed
from the ground up to avoid these kinds of problems.

On the other side of the programming-language spectrum, we have Haskell, which
is widely known to be a very safe and reliable language, but with very little or no
control of the level of memory allocation and other hardware resources. We can
plot different languages along this control —safety axis, and it seems that when a
language is safer, it loses low-level control; the inverse is also true: a language that
gives more control over resources provides much less safety, shown as follows:

C/C++ Java/C# Python/Ruby Haskell
R u s t
Control Safety

Rust (http://www.rust-lang.org/) is made to overcome this dilemma by
providing the following features:

* High safety through its strong type system

* Deep but safe control over low-level resources (as much as C/C++) so that it
runs close to the hardware

Rust lets you specify exactly how your values should be laid out in memory and
how that memory should be managed; this is why it works well at both ends of

the control and safety line. This is the unique selling point of Rust: it breaks the
safety-control dichotomy that, before Rust, existed in programming languages.
With Rust, control and safety can be achieved together without losing performance.

[2]

http://www.rust-lang.org/

Chapter 1

Rust can accomplish both these goals without a garbage collector, in contrast to most
modern languages such as Java, C#, Python, Ruby, Go; in fact Rust doesn't even
have a garbage collector yet (though one is planned). Rust is a compiled language:
the strict safety rules are enforced by the compiler so that they do not cause runtime
overhead. As a consequence, Rust can work with minimal runtime or even no
runtime at all; so, it can be used for real time or embedded projects, and it can

easily integrate with other languages or projects.

Rust is meant for developers and projects where not only performance and low-level
optimizations are important, but where there is also a need for a safe and stable
execution environment. Moreover, Rust adds a lot of high-level functional
programming techniques within the language so that it feels like a low-level

and a high-level language at the same time.

The trifecta of Rust — safety, speed, and
concurrency

Rust is not a revolutionary language with new cutting-edge features, but it
incorporates a lot of proven techniques from older languages while massively
improving upon the design of C++ in matters of safe programming.

The Rust developers designed Rust to be a general-purpose and multi-paradigm
language. Like C++, it is an imperative, structured, and object-oriented language.
Besides this, it inherits a lot from functional languages and also incorporates
advanced techniques for concurrent programming.

In Rust, the typing of variables is static (because Rust is compiled) and strong.
However, unlike Java or C++, the developer is not forced to indicate the types
for everything as the Rust compiler is able to infer the types in many cases.

C and C++ are known to be haunted by a series of problems that often lead to
program crashes or memory leaks which are notoriously difficult to debug and solve.
Think about dangling pointers, buffer overflows, null pointers, segmentation faults,
data races, and so on. The Rust compiler (called rustc) is very intelligent and can
detect all these problems while compiling your code, thereby guaranteeing memory
safety during execution. This is done by the compiler by retaining complete control
over memory layout, without needing the runtime burden of garbage collection

(see Chapter 6, Pointers and Memory Safety). In addition, its safety also implies much
less possibilities for security breaches.

[31]

Starting with Rust

Rust compiles native code like Go and Julia. However, in contrast to these two, Rust
doesn't need runtime with garbage collection. In this respect, it also differs from Java
JVM and the languages that run on the JVM, such as Scala and Clojure. Most other
popular modern languages such as .NET with C# and F#, JavaScript, Python, Ruby,
Dart, and so on, all need a virtual machine and garbage collection.

As one of its mechanisms for concurrency, Rust adopts the well-known actor model
from Erlang. Lightweight processes called threads perform work in parallel. They
do not share heap memory but communicate data through channels, and data races
are eliminated by the type system (see Chapter 8, Concurrency and Parallelism). These
primitives make it easy for programmers to leverage the power of many CPU cores
that are available on current and future computing platforms.

The rustc compiler is completely self hosted, which means that it is written in
Rust and can compile itself by using a previous version. It uses the LLVM compiler
framework as its backend (for more information on LLVM compiler framework, go
tohttp://en.wikipedia.org/wiki/LLVM) and produces natively executable code
that runs blazingly fast because it compiles to the same low-level code as C++ (To
see an example of its speed, go to http://benchmarksgame.alioth.debian.org/
u64g/rust.php.).

Rust is designed to be as portable as C++ and run on widely used hardware and
software platforms; at present, it runs on Linux, Mac OS X, Windows, FreeBSD,
Android, and iOS. It can call C's code as simply and efficiently as C can call its own
code, and conversely, C can also call Rust code (see Chapter 9, Programming at the
Boundaries). The following is the logo of Rust:

Other Rust characteristics that will be discussed in more detail in later chapters are
as follows:

* Its variables are immutable by default (see Chapter 2, Using Variables
and Types)

* Enums (see Chapter 4, Structuring Data and Matching Patterns)

* Pattern matching (see Chapter 4, Structuring Data and Matching Patterns)

[4]

http://en.wikipedia.org/wiki/LLVM
http://benchmarksgame.alioth.debian.org/u64q/rust.php
http://benchmarksgame.alioth.debian.org/u64q/rust.php

Chapter 1

* Generics (see Chapter 5, Generalizing Code with Higher-order Functions and
Parametrization)

* Higher-order functions and closures (see Chapter 5, Generalizing Code with
Higher-order Functions and Parametrization)

* The interface system called traits (see Chapter 5, Generalizing Code with
Higher-order Functions and Parametrization)

* A hygienic macro system (see Chapter 7, Organizing Code and Macros)

* Zero-cost abstractions, which means that Rust has higher-language
constructs, but these do not have an impact on performance

In conclusion, Rust gives you ultimate power over memory allocation as well as
removing many security and stability problems that are commonly associated
with native languages.

Comparison with other languages

Dynamic languages such as Ruby or Python give you the initial coding speed, but
you pay the price later when you have to write more tests, runtime crashes, or even
production outages. The Rust compiler forces you to get a lot of things right at
compile-time, which is the least expensive place to identify and fix bugs.

Rust's object orientation is not that explicit or evolved as common object-oriented
languages such as Java, C#, and Python as it doesn't have classes. Compared with
Go, Rust gives you more control over memory and resources, so lets you code

on a lower level. Go also works with a garbage collector, and it has no generics

or a mechanism to prevent data races between its goroutines that are used in
concurrency. Julia is focused on numerical computing performance; it works
with a JIT compiler and doesn't give you that low-level control that Rust gives.

Using Rust

It is clear from the previous sections that Rust can be used in projects that normally
use C or C++. Indeed, many regard Rust as a successor or a replacement of C and
C++. Although Rust is designed to be a systems language, it has a broad range of
possible applications due to its richness of constructs, making it an ideal candidate
for applications that fall into one or all of the following categories:

* Client applications, such as browsers

* Low-latency, high-performance systems, such as device drivers, games, and
signal processing

* Highly distributed and concurrent systems, such as server applications

[51]

Starting with Rust

* Real-time and critical systems, such as operating systems or kernels

Embedded systems (that require a very minimal runtime footprint) or
a resource-constrained environment, such as a Raspberry Pi, Arduino,
or robotics

* Tools or services that can't support the long warm-up delays that are common
in Just In Time (JIT) compiler systems and need instantaneous startup

e Web frameworks
* Large-scale, high-performance, resource intensive, and complex
software systems

Rust is especially suited when code quality is important, that is for:

* Modestly-sized or larger developer teams
* Code for long-running production use
* Code with a longer lifetime that requires regular maintenance and refactoring

* Code for which you would normally write a lot of unit tests to safeguard it
Even before the appearance of Rust 1.0, two companies already use it in production:

* OpenDNS (http://labs.opendns.com/2013/10/04/zeromg-helping-us-
block-malicious-domains/) is a middleware tool for blocking malware
and malicious domains

» Skylight (https://www.skylight.io/) from the company Tilde (http://
www.tilde.io/)is a tool for monitoring the execution of Rails apps.

Servo

Mozilla uses Rust as the language for writing Servo, its new web browser engine that
is designed for parallelism and safety (https://github.com/servo/servo).

Due to the design of Rust's compiler, many kinds of browser security bugs are
prevented automatically. In 2013, Samsung got involved, porting Servo to Android
and ARM processors. Servo itself is an open source project with more than 200
contributors. It is under heavy development, and among other things, it has already
implemented its own CSS3 and HTMLS5 parser in Rust. It passed the web compatibility
browser test ACID2 in March 2014 (http://en.wikipedia.org/wiki/Acid2/).

[6]

http://labs.opendns.com/2013/10/04/zeromq-helping-us-block-malicious-domains/
http://labs.opendns.com/2013/10/04/zeromq-helping-us-block-malicious-domains/
https://www.skylight.io/
http://www.tilde.io/
http://www.tilde.io/
https://github.com/servo/servo
http://en.wikipedia.org/wiki/Acid2/

Chapter 1

Installing Rust

The Rust compiler and tools can be downloaded from http://www.rust-lang.
org/install.html in the binary (that is, executable) form. The platform comes for
the three major operating systems (Linux 2.6.18 or a later version, OS X 10.7 or a
later version, and Windows 7, Windows 8, and Windows Server 2008 R2) in both the
32- and 64-bit formats, and it is delivered as an installer or in an archive format. You
should use the current official stable release 1.0 when you engage in professional
work with Rust. If you would like to investigate or use the latest developments,
install the nightly build version.

For Windows, double-click on the . exe installer to install the Rust binaries and
dependencies. Adding Rust's directory to the search path for executables is an
optional part of the installation, so make sure that this option is selected.

For Linux and Mac OS X, the simplest way is to run the following command in
your shell:

curl -sSL https://static.rust-lang.org/rustup.sh | sh

Verify the correctness of the installation by showing Rust's version with rustc -v or
rustc - -version, which produces an output like rustc 1.0.0-beta (9854143chb
2015-04-02) (built 2015-04-02).

Rust can be uninstalled by running ¢: \Rust\unins001.exe on Windows or /usr/
local/lib/rustlib/uninstall.sh on Linux.

Rust has also been ported to Android OS on ARM processors and iOS.

A bare metal stack called zinc for running Rust in embedded environments can be
found at http://zinc.rs/. However, at this moment, only the ARM architecture is
supported by it.

The source code resides on GitHub (https://github.com/rust-lang/rust/) and
if you want to build Rust from source, we refer you to https://github.com/rust-
lang/rust#building-from-source.

The Rust compiler — rustc

The Rust installation directory containing rustc can be found on your machine in
the following folder:

* In Windows, at C:\Program Files\Rust 1.0\bin or a folder of your choice

* On Linux or Mac OS X, it can be found by navigating to /usr/local/bin

[71

http://www.rust-lang.org/install.html
http://www.rust-lang.org/install.html
http://zinc.rs/
https://github.com/rust-lang/rust/
https://github.com/rust-lang/rust#building-from-source
https://github.com/rust-lang/rust#building-from-source

Starting with Rust

If the Rust home folder was added to the search path for executables, rustc can be
run from any command-line window. The Rust libraries can be found in the rustlib
subfolder of the bin directory on Windows, or in /usr/local/lib/rustlib on
Linux. Its HTML documentation can be found at C: \Rust\share\doc\rust\html
on Windows or /usr/local/share/doc/html on Linux.

The rustc command has the following format: rustc [options] input.

The options are one letter directives for the compiler after a dash, such as -g or -w, or
words prefixed by a double dash, such as - -test or - -no-analysis. All the options
with some explanation are shown when invoking rustc -h. In the next section, we
will verify our installation by compiling and running our first Rust program.

Our first program

Let's get started by showing a welcome message to the players of our game:

1. Open your favorite text editor (such as notepad or gedit) for a new file and
type in the following code:

// code in Chapterl\code\welcome.rs
fn main() {
println! ("Welcome to the Game!");

}
2. Save the file as welcome.rs.

rs is the standard extension of Rust code files. Source file names may not
contain spaces; if they contain more than one word, use an underscore _ as
a separator; for example, start_game.rs.

3. Then, compile it to native code on the command line with the following:

rustc welcome.rs

This produces an executable program welcome . exe on Windows or welcome
on Linux.

4. Run this program with welcome or . /welcome to get the following output:

Welcome to the Game!

The output executable gets its name from the source file. If you want to give the
executable another name, such as start, compile it with the -o output_name option:

rustc welcome.rs -o start

[8]

Chapter 1

The rustc -0 command produces a native code that is optimized for execution
speed (which is equivalent to rustc -C opt-level=2; the most optimized code
is generated for rustc -C opt-level = 3).

Compiling and running are separate, consecutive steps, contrary to dynamic
languages such as Ruby or Python where these are performed in one step.

Let's explain the code a bit to you. If you have already worked in a C/Java/C# like
environment, this code will seem quite familiar. As in most languages, execution of
the code starts in a main () function, which is mandatory in an executable program.

In a larger project with many source files, the file containing the main () function
would be called main.rs by convention.

We can see that main () is a function declaration because it is preceded by the
keyword £n, which is short and elegant like most Rust keywords. () after main
denotes the parameter list, which is empty here. The function's code is placed in a
code block, which is surrounded by curly braces ({ }) where the opening brace is put
by convention on the same line as the function declaration, but it is separated by one
space. The closing brace appears after the code here, right beneath £n.

Our program has only one line, which is indented by four spaces to improve
readability (Rust is not whitespace sensitive). This line prints the string, "Welcome to
the Game!". Rust recognizes this as a string because it is surrounded by double quotes
(™ m). This string was given as an argument to the print1n! macro (! indicates that it
is a macro and not a function). The code line ends with a semicolon (;), as most, but
not all, code lines in Rust do (see Chapter 2, Using Variables and Types).

Perform the following exercises:

* Write, compile, and execute a Rust program name . rs that prints out
your name.

* What is the smallest possible program in Rust in terms of code size?
The print1ln! macro has some nice formatting capabilities and at the same time

checks when compiling whether the type of variables is correct for the applied
formatting (see Chapter 2, Using Variables and Types).

[o]

Starting with Rust

Working with Cargo

Cargo is Rust's package and dependency manager, and it is similar to Bundler, npm,
pub, or pip for other languages. Although you can write Rust programs without it,
Cargo is nearly indispensable for any large project; it works the same whether you
work on a Windows, Linux, or a Mac OS X system. The installation procedure from the
previous section includes the Cargo tool, so Rust is shipped with tooling included.

Cargo does the following things for you:

It makes a tidy folder structure and some templates for your project with the
cargo new command

It compiles (builds) your code by using the cargo build command
It runs your project by using cargo run

If your project contains unit tests, it can execute them for you by using
cargo test

If your project depends on packages, it will download them and build these
packages according to the needs of your code by using cargo update

We'll introduce how to use Cargo now, and we'll come back to it later, but you can
find more info here: http://doc.crates.io/guide.html.

Let's remake our first project welcomec using Cargo by performing the
following steps:

1.

Start a new project welcomec using the following command:

cargo new welcomec --bin

The --bin option tells Cargo that we want to make an executable program (a
binary). This creates the following directory structure:

A folder with the same name as the project is created; in this folder, you can
put all kinds of general information such as a License file, a README file, and
so on. In addition, a src subfolder is created that contains a template source
file named main.rs. (This contains the same code as our welcome.rs file,
but it prints out the string "Hello world!".)

[10]

http://doc.crates.io/guide.html

Chapter 1

The file cargo. toml (with capital C) is the configuration file or manifest of
your project; it contains all the metadata that Cargo needs to compile your
project. It follows the so-called TOML format (for more details about this
format, go to https://github.com/toml-1lang/toml) and contains the
following text with information about our project:

[package]

name = "welcomec"

version = "0.0.1"

authors = ["Your name <you@example.com>"]"

This file is editable, so other sections can be added. For example, you can add
a section to tell Cargo that we want a binary with the name welcome:

[[bin]]
name = "welcome"

We can build our project (no matter how many source files it contains) using
the following command:

cargo build

This gives us the following output (on Linux):

Compiling welcomec v0.0.1 (file:///home/ivo/Rust Book/
welcomec)

Now, the following folder structure is produced:

The directory target contains the executable welcome.

[11]

https://github.com/toml-lang/toml

Starting with Rust

3. To execute this program, run the following command:
cargo run
This produces the following output:

Running ~“target/welcome”

Hello, world!

Step 2 has also produced a file named cargo. lock; this is used by Cargo to
keep track of dependencies in your application. At the moment, the application
only contains:

[root]
name = "welcomec"
version = "0.0.1"

The same file format is used to lock down the versions of libraries or packages that
your project depends on. If your project is built in the future when updated versions
of the libraries are available, Cargo will make sure that only the versions recorded in
Cargo.lock are used so that your project is not built with an incompatible version of
a library. This ensures a repeatable build process.

Perform the following exercise:
* Make, build, and run a project name that prints out your name with Cargo.

The website at https://crates.io/ is the central repository for Rust packages or
crates (as they are called) and contained 1700 crates as of the end of March 2015. You
can search for crates using specific terms or browse them alphabetically or according
to the number of downloads:

[12]

https://crates.io/

Chapter 1

P CARGO CEENENEEED ovctoU lef

The Rust community's crate host

* Install Cargo # Getting Started

Instantly publish your crates and install them. Use the 972’471 Downloads
API to interact and find out more information about

available crates. Become a contributor and enhance 2 1 ,71 4 Crates in stock
the site with your work.

New Crates Most Downloaded Just Updated

elmesque (0.0.3) rustc-serialize (0.3.10) chor (0.3.4)
clog (0.3.0) log (0.3.1) elmesque (0.0.3)

tinycdb-sys (0.0.1) gec (0.3.3) postgres_large_object
(0.3.0)

debug-builders (0.1.0) libe (0.1.4)
postgres_range (0.7.0)

The developer tools

Since Rust is a systems programming language, the only thing that you need is

a good text editor (but not a word processor!) for writing the source code, and
everything else can be done by commands in a terminal session. However, some
developers appreciate the functionalities offered by more fully fledged text editors
which are specifically for programming or IDE's (short for integrated development
environments). Rust is still young but a lot of possibilities have already come up on
this front although some of them need to be updated in the latest Rust version.

Rust plugins exist for a host of text editors, such as Atom, Brackets, BBEdit, Emacs,
Geany, GEdit, Kate, TextMate, Textadept, Vim, NEdit, Notepad++, and SublimeText.
Most Rust developers work with Vim or Emacs. These come with a syntax
highlighting, and code completion tool called racer; go to https://github.com/
phildawes/racer.

[13]

https://github.com/phildawes/racer
https://github.com/phildawes/racer

Starting with Rust

Using Sublime Text

The plugins for the popular Sublime Text editor (http://www.sublimetext.com/3)
are particularly pleasant to work with, and they don't get in your way. After you
have installed Sublime Text (you might want to get a registered version), you must
also install the Package Control package. (For instructions on how to do this, go to
https://packagecontrol.io/installation).

Then, to install the Sublime Text Rust plugin, open the palette in Sublime Text

(Ctrl + Shift + P or cmd + Shift + P on Mac OS X) and select Package Control | Install
Package. Then, select Rust from the list, you will see something like the following
screenshot:

a8 FA\RustM\Rust book\Chapter 1 - Starting with Rust\code\wel
FE S0 namers . v welcomers % \

x | 1 fn main() {

e 2 println!("wWelcome to the Game!");

¥ = S-rabbitsfoxes o }

Welcome to the Game!
[Finished in 29.65]

Sublime Text is a very comprehensive text editor, which includes color schemes. The
Rust plugin provides syntax highlighting and auto-completion. Type one or more
letters, choose an option from the list that appears with an arrow key and press Tab
to insert the code snippet, or simply select a list-option through a mouse click. To
compile and execute Rust code, follow these steps:

1. Mark Tools | Build System | Rust in the menu.

2. Then, you can compile a source file by pressing Ctrl + B. Warnings or errors
will appear in the lower pane; if everything is okay, a message similar to
[Finished in 0.6s] will appear.

[14]

http://www.sublimetext.com/3
https://packagecontrol.io/installation

Chapter 1

3. Then, you can run the program by pressing Ctrl + Shift + B; again the output
will appear beneath the code. Alternatively, you can use the menu items:
Tools | Build and Tools | Run.

A SublimeLinter plugin exists that provides an interface to rustc, which is called
SublimeLinter-contrib-rustc. It does additional checks on your code for stylistic
or programming errors. You can install it, as explained earlier, through Package
Control and then use it from the menu Tools | SublimeLinter. (For more details, go
tohttps://github.com/oschwald/SublimeLinter-contrib-rustc.) There is also
a code completion tool called racer; you can find the information on how to install it
at https://packagecontrol.io/packages/RustAutoComplete.

Other tools

RustDT (http://rustdt.github.io/) is a new and promising Rust IDE based on
Eclipse. On top of all the editing functionality offered by Eclipse, it is project-based
using Cargo. Moreover it has code completion and debugging functionality (using
the GDB debugger).

There are also plugins such as the following ones for IDEs at different states
of completion:

* The RustyCage plugin (https://github.com/reidarsollid/RustyCage)
for Eclipse

* The idea-rust plugin (http://plugins.jetbrains.com/plugin/7438)
for IntelliJ

* The rust-netbeans plugin (https://github.com/azazar/rust-netbeans)
for NetBeans

* The VisualRust plugin (https;/github.com/PistonDevelopers/VisualRust) for
Visual Studio

You can test out the Rust code even without local installation with the Rust Play
Pen: http://play.rust-lang.org/. Here you can edit or paste your code, and
evaluate it.

The rusti is an interactive shell or Read-Evaluate-Print-Loop (REPL) that is being
developed for Rust; this is common for dynamic languages, but it is remarkable
for a statically compiled language. You can find it at https://github.com/
murarth/rusti.

[15]

https://github.com/oschwald/SublimeLinter-contrib-rustc
https://packagecontrol.io/packages/RustAutoComplete
http://rustdt.github.io/
https://github.com/reidarsollid/RustyCage
http://plugins.jetbrains.com/plugin/7438
https://github.com/azazar/rust-netbeans
http://play.rust-lang.org/
https://github.com/murarth/rusti
https://github.com/murarth/rusti

Starting with Rust

Summary

In this chapter, we gave you an overview of Rust's characteristics, where Rust
can be applied, and compared it to other languages. We made our first program,
demonstrated how to build a project with Cargo, and gave you choices to make a
more complete development environment.

In the next chapter, we look at variables and types and explore the important concept
of mutability.

[16]

Using Variables and Types

In this chapter, we look at the basic building blocks of a Rust program: variables and
their types. We discuss variables of primitive types, whether their type has to be
declared or not, and the scope of variables. Immutability, one of the cornerstones

of Rust's safety strategy, is also discussed and illustrated.

We will cover the following topics:

* Comments

* Global constants

* Values and primitive types

* Binding variables to values

* Scope of a variable and shadowing
* Type checking and conversions

* Expressions

* The stack and the heap

Our code examples will center on building a text-based game called Monster Attack.

Comments

Ideally, a program should be self-documenting by using descriptive variable names
and easy to read code, but there are always cases where additional comments about
a program's structure or algorithms are needed. Rust follows the C convention and
has the following convention for marking comments:

* Line comments (//): Everything on the line after // is commentary and
not compiled

* Block or multi-line comments (/* */): Everything between the start /* and
the end */ is not compiled

[17]

Using Variables and Types

However, the preferred Rust style is to use only line comments even for multiple
lines, like the following code:

// see Chapter 2/code/comments.rs

fn main() {
// Here starts the execution of the Game.
// We begin with printing a welcome message:
println! ("Welcome to the Game!");

}

Use the block comments only to comment out code.

Rust also has a doc comment (///) that is useful in larger projects that require an
official documentation for customers and developers. Such comments have to appear
before an item (like a function) on a separate line to document that item. In these
comments, you can use Markdown formatting syntax; for more information, go to
https://en.wikipedia.org/wiki/Markdown.

Here is a doc comment:

/// Start of the Game
fn main() {

}

We'll see more relevant uses of doc comments in later code snippets. The rustdoc tool
can compile these comments into a project's documentation.

Global constants

Often, an application needs a few values that are in fact constants; they do not
change in the course of the program. For example: the name of our game, which

is "Monster Attack", is a constant, as is the maximum value of health, which is the
number 100. We must be able to use them in main () or any other function in our
program, so they are placed at the top of the code file. They live in the global scope
of the program. Such constants are declared with the static keyword as follows:

// see Chapter 2/code/constantsl.rs
static MAX HEALTH: i32 = 100;
static GAME NAME: &'static str = "Monster Attack";

fn main() {

}

[18]

https://en.wikipedia.org/wiki/Markdown

Chapter 2

Names of constants must be in uppercase and underscores can be used to separate
words. Their type must also be indicated; MAX HEALTH is a 32-bit integer (132) and
GAME_NAME is a string (str). As we will discuss further, the declaration of types for
variables is done in exactly the same way although this is often optional when the
compiler can infer the type from the code's context.

Don't worry too much about the &' static indication for now. Remember that Rust
is a low-level language, so many things must be specified in detail. The & annotation
is a reference to something (it contains the memory address of a value); here it
contains the reference to the string. However, if we only use &str and compile,

we get an error for that line. Have a look at the following snippet:

// warning: incorrect code!
static GAME NAME: &str = "Monster Attack";

This will give you the following error:

2:22 error: missing lifetime specifier [E0106]

Here, 2 : 22 means that we have an error on line 2 and position 22, so we must set the
line numbering in our editor. We must add the lifetime specifier 'static to the type
annotation so that we get &' static str. The lifetime of an object in Rust is very
important because it says how long the object will live in the program's memory. The
Rust compiler adds the code to remove an object when its lifetime is over, freeing the
memory that it occupied. The 'static lifetime is the longest possible lifetime; such
an object stays alive throughout the entire application, and so it is available to all

of its code.

Even when we add this specifier, the compiler gives us the warning: static item
is never used: “MAX HEALTH, #[warn(dead_code)] on by default warning
and an analogous warning for GAME_NAME.

These warnings do not prevent the compilation, so at this stage, we have an
executable. However, the compiler is right. These objects are never used in the
program's code; so, in a complete program, you should either use them or throw
them out.

[19]

Using Variables and Types

It takes a while before an aspiring Rust developer starts to regard the Rust
compiler as his or her friend and not an annoying machine that keeps
spitting out errors and warnings. As long as you see this message at the
end of the compiler output, error: aborting due to previous
errors, no (new) executable is made. But remember, correcting the
errors eliminates runtime problems, so this can save you a lot of time

N that would be otherwise wasted tracking nasty bugs. Often, the error

~ messages are accompanied with helpful notes on how to eliminate the

Q error. Even the warnings can point you to flaws in your code. Rust also
warns us when something is declared but not used in the code that
follows, such as unused variables, functions, imported modules, and so
on. It even warns us if we make a variable mutable (which means that its
value can be changed) when it should not be or when code doesn't get
executed. The compiler does such a good job that when you reach the
stage where all errors and warnings are eliminated, your program will
most likely run correctly! -

Besides static values, we can also use simple constant values whose value never
changes. Constants always have to be typed, for example, const PI: £32 = 3.14;
they are more local in scope than static values.

The compiler automatically substitutes the value of the constant everywhere in
the code.

Printing with string interpolation

An obvious way to use variables is to print out their values, as we have done here:

// see Chapter 2/code/constants2.rs
static MAX HEALTH: i32 = 100;
static GAME NAME: &'static str = "Monster Attack";

fn main() {
const PI: £32 = 3.14;
println! ("The Game you are playing is called {}.", GAME NAME) ;
println! ("You start with {} health points.", MAX HEALTH) ;

}
This gives the following output:

The Game you are playing is called Monster Attack.

You start with 100 health points.

The constant PI exists in the standard library, to use this value insert this
statement at the top: use std: :£32: :consts; and then use the PI value as follows:
println! ("{}", consts::PI);

[20]

Chapter 2

The first argument of print1n! is a literal format string that contains a {}
placeholder. The value of the constant or variable after the comma is converted
to a string and replaces the {}. There can be more than one placeholder, and
they can be numbered in order so that they can be used repeatedly, as shown in
the following code:

println! ("In the Game {0} you start with {1} % health, yes you read it
correctly: {1} points!", GAME NAME, MAX HEALTH) ;

The output is as follows:

In the Game Monster Attack you start with 100 % health, yes you read it
correctly: 100 points!

The placeholder can also contain one or more named arguments, as follows:

)

println! ("You have {points} % health", points=70);

This will give you the following output:

You have 70 % health

Special ways of formatting can be indicated inside {} after a colon (:), as follows:

println! ("MAX HEALTH is {:x} in hexadecimal", MAX HEALTH); // 64
println! ("MAX HEALTH is {:b} in binary", MAX HEALTH); // 1100100
println! ("pi is {:e} in floating point notation", PI); // 3.14e0

The following formatting possibilities exist according to the type that must be printed:

* o for octal

* x for lower hexadecimal

* xfor upper hexadecimal

* pfora pointer

* D for binary

* e for lower exponential notation
* E for upper exponential notation
* 2 for debugging purposes

The format! macro has the same parameters and works in the same way as
println!, but it returns a string instead of printing out.

Go to http://doc.rust-lang.org/std/fmt/ for an overview of all the possibilities.

[21]

http://doc.rust-lang.org/std/fmt/

Using Variables and Types

Values and primitive types

Constants that have been initialized have a value. Values exist in different types: 70
is an integer, 3 .14 is a float, and z and 6 are of the char type (they are characters).
Characters are unicode values that take 4 bytes of memory each. Godzilla is a string
of type &str (which is a Unicode UTF8 by default), true and false are of the bool
type; they are Boolean values. Integers can be written in different formats:

* Hexadecimal format with 0x (for example, 0x46 for 70)
* Octal format with oo, (for example, 00106 for 70)

* Binary format with ob, (for example, 0b1000110)

Underscores can be used for readability, as in 1_000_000. Sometimes, the compiler
will urge you to indicate more explicitly the type of number with a suffix. For example,
the number after u or i is the number of memory bits used, namely 8, 16, 32, or 64:

* 1ousize denotes an unsigned integer of machine word size usize, which can
be any of the us, uis, u32, or ue4 types

* 10isize denotes a signed integer of machine word size isize, which can be
any of the types among i8, i16, 132, and i64

* In the preceding cases, for a 64-bit operating system usize is in fact u64 and
isize is equivalent to 164

* 3.14f32 denotes a 32-bit floating point number

* 3.14f64 denotes a 64-bit floating point number

The numeric types i32 and £64 are the defaults if no suffix is given, but in that
case, to differentiate between them, you must end an £64 value with . o, like
this: let e = 7.0;.

Indicating a specific type is only needed when the compiler signals that it cannot
infer the type of the variable.

Rust is like any other C-like language when it comes to the different operators that
exist on values and their precedence (go to http://doc.rust-lang.org/reference.
html#binary-operator-expressions for more information on this). However, note
that Rust does not have increment (++) or decrement (- -) operators. To compare two
values for equality, use == and to test whether they are different use ! =.

There is even the empty value () of zero size, which is the only value of the so-
called unit type (). This is used to indicate the return value when an expression or
a function returns nothing (no value), as is the case for a function that only prints to
the console. () is not the equivalent of a null value in other languages; () means no
value, whereas null is a value.

[22]

http://doc.rust-lang.org/reference.html#binary-operator-expressions
http://doc.rust-lang.org/reference.html#binary-operator-expressions

Chapter 2

Consulting Rust documentation

The quickest way to find more detailed information about a Rust topic is to browse
the documentation screen of the standard library at http://doc.rust-lang.org/
std/. On its left-hand side, you can find a listing of all the available crates that you
can browse for more details. However, the most useful feature is the search box at
the top; you can type in a few letters or a word to get a number of useful references.
Have a look at the following screenshot:

@ Crate std | stable [stability] [-] [+][src]

The Rust Standard Library

Crates
The Rust Standard Library provides the essential runtime funetionality for building portable Rust software. [t is linked to all Rust
alloc - : & :
srates by default
arena
collections Intrinsic types and operations §
corg
The ptr and 1 ts, and
flate ;
the
fmt_macros
graphviz Math on primitive types and math traits

libe ;
Although basic implemented directly by the compiler, the standard library additionally defines many

rand
DETITON

roml

The following is an exercise for you:

* Try to change the value of a constant. This is of course not allowed.
What error do you get? Have a look at Chapter2/exercises/change_
constant.rs.

* Look up the println! macro in the documentation.

* Read the fmt specification and write a program that will print the 3.2£32
value as +003.20. Refer to Chapter2/exercises/formatting.rs.

Binding variables to values

Storing all values in constants is not an option. It is not good because constants live
as long as the program and therefore be changed, and often we want to change
values. In Rust, we can bind a value to a variable by using a 1et binding:

// see Chapter 2/code/bindings.rs
fn main() {
let energy = 5; // value 5 is bound to variable energy

}

[23]

http://doc.rust-lang.org/std/
http://doc.rust-lang.org/std/

Using Variables and Types

Unlike many other languages such as Python or Go, the semicolon (;) is needed here
to end the statement. Otherwise, the compiler will throw the error: expected one
of *.%, 7;°, or an operator, found ° } = error at us.

We also want to create bindings only when they are used in the rest of the program,
but you needn't worry because the Rust compiler warns us about that:

values.rs:2:6: 2:7 warning: unused variable: “energy”, #[warn(unused
variables)] on by default

M For prototyping purposes, you can suppress the warning by prefixing the
Q variable name witha _,likein let _ energy = 5;.Ingeneral, _is
used for variables that we don't need.

Note that in the preceding declaration, we didn't need to indicate the type; Rust
inferred the type of energy to be an integer, which the let binding triggered. If the
type is not obvious, the compiler searches in the code context to check from where
the variable gets a value or how it is used.

However, giving type hints like 1et energy = 5ulé; is also okay; this way you
help the compiler a bit by indicating the type of energy, which is a 2-byte unsigned
integer in this case.

We can use the energy variable by using it in an expression; for example, by
assigning it to another variable or by printing it:

let copy energy = energy;
println! ("Your energy is {}", energy););

Here are some other declarations:

let level title = "Level 1";

let dead = false;

let magic number = 3.14£32;

let empty = (); // the value of the unit type ()

The value of magic_number could also be written as 3.14_£32; the _ separates the
digits from the type to improve readability.

Declarations can replace previous declarations of the same variable. A statement
like let energy = "Abundant"; would now bind energy to the value Abundant
of string type. The old declaration can no longer be used and its memory is freed.

[24]

Chapter 2

Mutable and immutable variables

Suppose we get a boost from swallowing a health pack and our energy rises to value
25. However, if we write energy = 25;, we getan error: re-assignment of
immutable variable “energy error.So, what is wrong here?

Well, Rust applies a programmer's wisdom here; a lot of bugs come from inadvertent
or wrong changes made to variables, so don't let the code change a value unless you
have deliberately allowed it!

Variables are by default immutable in Rust, which is very similar to what
% functional languages do. In pure functional languages, mutability is not
s even allowed.

If you want a mutable variable because its value can change during code execution,
you have to indicate that explicitly with mut. Have a look at the following
code snippet:

let mut fuel = 34;
fuel = 60;

Simply declaring a variable as 1let n; is also not enough. If we do this, we will

geterror: unable to infer enough type information about ~_~; type
annotations required. The compiler needs a value to infer its type.

We can give the compiler this information by assigning a value to n, liken = -2;,
but as the message says, we could also indicate its type as follows:

let n: 1i32;
Alternatively, you can even use the following;:

let n: i32 = -2; // n is a binding of type 132 and value -2

The type (here 132) follows the variable name after a colon (:) (as we already
showed for global constants), optionally followed by an initialization. In general,
the type is indicated like n: T, where n is a variable and T is a type, and it is read as
variable n is of the type T. So, this is the inverse of what is done in C/C++, Java, or
C#, where one would write T n.

For primitive types, this can be done simply with a suffix, like this:

let x = 42u8;
let magic_number = 3.14f64;

[25]

Using Variables and Types

Trying to use an uninitialized variable results in the error: use of possibly
uninitialized variable error (try it out). Local variables have to be initialized
before they can be used in order to prevent undefined behavior.

You can experiment with a mutable global constant. What do you have to do to
allow it? Why would that be? (For an example code, see mutable_constant.rs.)

When the compiler does not recognize a name in your code, you will get an
unresolved name error. This may probably be just a typo, but it will be caught
early on at compilation and not at runtime!

Scope of a variable and shadowing

All variables defined in bindings.rs have local scope delimited by { } of the
function, which happens to be main () here, and this applies to any function.
After the ending }, they go out of scope and their memory allocation is freed.

We can even make a more limited scope inside a function by defining a code
block that contains all the code within a pair of curly braces ({ }), as in the
following snippet:

// see Chapter 2/code/scope.rs
fn main() {
let outer = 42;
{ // start of code block
let inner = 3.14;
println! ("block variable: {}", inner);
let outer = 99; // shadows the first outer variable
println! ("block variable outer: {}", outer);
} // end of code block
println! ("outer variable: {}", outer);

}
This gives the following output:

block variable: 3.14
block variable outer: 99

outer variable: 42

A variable defined in the block (like inner) is only known inside that block. A
variable in the block can also have the same name as a variable in an enclosing
scope (like outer), which is replaced (shadowed) by the block variable until the
block ends. What do you think will happen when you try to print inner after the
block? Try it out.

[26]

Chapter 2

So, why would you want to use a code block? In the Expressions section, we will see
that a code block can return a value that can be bound to a variable with let. A code
block can also be empty ({ }).

Type checking and conversions

Rust has to know the type of each variable so that it can check (at compile time)
whether they are only used in the manner in which their type permits. This way
programs are type safe and a whole range of bugs can be avoided.

This also means that we cannot change the type of a variable during its lifetime
because of static typing; for example, the score variable in the following snippet
cannot change from an integer to a string:

// see Chapter 2/code/type_ errors.rs
// warning: this code does not work!

fn main() {
let score: 132 = 100;
score = "YOU WON!"

}

We get the compiler error, error: mismatched types: expected ~int>, found
“&'static str” (expected int, found &-ptr.

However, we are allowed to write the following code:
let score = "YOU WON!";

Rust lets us redefine variables; each 1et binding creates a new variable score that
hides the previous one, which is freed from memory. This is actually quite useful
because variables are immutable by default.

Adding strings with + (like the players in the following code) is not defined in Rust:

let playerl = "Rob";
let player2 = "Jane";
let player3 = playerl + player2;

We then get error: binary operation “+° cannot be applied to type
T&str.

In Rust, you can use the to_string () method to convert the value to a String type
like this: let player3 = playerl.to string() + player2;.

Otherwise, you could use the format ! macro:

let player3 = format! ("{}{}", playerl, player2);

[27]

Using Variables and Types

In both the cases, player3 has the value "RobJane".

Let's find out what happens when you assign a value from a variable of a certain
type to another variable of a different type:

// see Chapter 2/code/type conversions.rs

fn main() {
let points = 10i32;
let mut saved points: u32 = 0;

saved points = points; // error !

}

This is again not allowed; we get the same error (error: mismatched types:
expected “u32>, found “i32° (expected u32, found i32)).To enable
maximal type checking, Rust does not permit automatic (or implicit) conversions of
one type to another like C++ does; therefore, it avoids a lot of hard-to-find bugs. For
example, the numbers after the decimal point are lost when a £32 value is converted
to an 132 value; this could lead to errors when done automatically.

We can, however, do an explicit conversion (a casting) with the as keyword:

saved points = points as u32;

When points contain a negative value, the sign would be lost after conversion.
Similarly, when casting from a wider value like a float to an integer, the decimal
part is truncated:

let f2 = 3.14;
saved points = f2 as u32; // truncation to value 3 occurs here

In addition, the value must be convertible to the new type as a string cannot be
converted to an integer, as shown in the following example:

let mag = "Gandalf";
saved points = mag as u32; // error: non-scalar cast: &str as u32"

Aliasing
It can be useful sometimes to give a new, more descriptive or a shorter name to an

existing type. This can be done with the type keyword, as in the following example
where we needed a specific (but size-limited) variable for MagicPower:

// see Chapter 2/code/alias.rs
type MagicPower = ulé6;

fn main() {
let run: MagicPower= 7800;

}

[28]

Chapter 2

A type name starts with a capital letter, as does each word that is part of the name.
What happens when we change the value 7800 to 78000? The compiler detects this
with the following warning, warning: literal out of range for its type.

Expressions

Rust is an expression-oriented language, which means that most pieces of code
are in fact expressions, that is, they compute a value and return that value (in that
sense, values are also expressions). However, expressions by themselves do not
form meaningful code; they must be used in statements.

The 1et bindings like the following are declaration statements; they are not
expressions:

// see Chapter 2/code/expressions.rs

let a = 2; // a binds to 2
let b = 5; // b binds to 5
let n = a + b; // n binds to 7

However, a + bis an expression, and if we omit the semicolon at the end, the
resulting value (here 7) is returned. This is often used when a function needs to return
its value (see examples in the next chapter). Ending an expression with a semicolon
like a + b; suppresses the value of an expression, thereby throwing away the return
value and making it an expression statement that returns the unit value (). A code is
usually a sequence of statements, one on each code line, and Rust has to know when a
statement ends; this is why nearly every Rust code line ends with a semicolon.

What do you think the assignment m = 42; is? This is not a binding because there is
no let. That should have happened on a previous code line. It is an expression that
returns the unit value (). A compound binding like let p = g = 3; is not allowed
in Rust; it returns the error: unresolved name g error. However, you can chain
let bindings like this:

let mut n = 0;
let mut m = 1
n; n = t;

let £t =m; m ;
("{} {}*, n, m, t); // which prints out 1 0 1

{3
Here is an exercise for you. Print out the values of a, b, and n after this code snippet
and explain the value of a (for example code, see compound_1let.rs):

println!

let mut a = 5;
let mut b = 6;
let n = 7;

let a = b = n;

[29]

Using Variables and Types

A code block is also an expression, which will return the value of its last expression if
we omit the semicolon. For example, in the following code snippet, n1 gets the value
7, but n2 gets no value (or rather the unit value ()) because the return value of the
second code block was suppressed:

let nl = {
let a = 2;
let b = 5;
a+b // <-- no semicolon!
}:
println! ("nl is: {}", nl); // prints: nl is 7
let n2 = {
let a = 2;
let b = 5;
a + b;
Vi
println! ("n2 is: {:?}", n2); // prints: n2 is ()

Here, the variables a and b are declared in a code block and live only as long as

the block itself lives as they are local to the block. Note that the semicolon after the
closing brace of the block (} ;) is needed. To print the unit value (), we need {: ?} as
the format specifier.

The stack and the heap

Since memory allocation is very important in Rust, we must have a good picture of
what is going on. A program's memory is divided into the stack and heap memory
parts; to get more background on these concepts, read the information on the classic
web page at https://stackoverflow.com/questions/79923/what-and-where-
are-the-stack-and-heap. Primitive values such as numbers (like 32 in the figure),
characters, and true/false values are stored on the stack, while the value of more
complex objects that could grow in size are stored in the heap memory. Heap values
are referenced by a variable on the stack, which contains the memory address of the
object on the heap:

[30]

https://stackoverflow.com/questions/79923/what-and-where-are-the-stack-and-heap
https://stackoverflow.com/questions/79923/what-and-where-are-the-stack-and-heap

Chapter 2

= ’”
reference __/

)

While the stack has a limited size, the size of the heap can grow as and when more
space is needed.

Now, we will run the following program and try to visualize the program's memory:

// see Chapter 2/code/references.rs
let health = 32;
let mut game = "Space Invaders";

Values are stored in memory and so they have memory addresses. The health
variable contains an integer value 32 that is stored in the stack at location 0x23fba4,
while the variable game contains a string, which is stored in the heap starting at
location 0x23£b90. (These were the addresses when I executed the program, but they
will be different when you run the program.)

The variables to which the values are bound are pointers or references to the values.
They point to them; game is a reference to Space Invaders. The address of a value is
given by the & operator. So, &health is the address where value 32 is stored, and
&game is the address where the Space Invaders' value is stored.

We can print these addresses by using the format string { :p} for pointers like this:

println! ("address of health-value: {:p}", &health);

// prints 0x23fba4

println! ("address of game-value: {:p}", &game); // prints 0x23fb90
println! ("game-value: {}", game); // prints "Space Invaders"

[31]

Using Variables and Types

Now, we have the following situation in memory (memory addresses will be
different at each execution):

: memory location name value
| H 0x23fbo0 "Space Invaders”
| E
A
| P
S
| T 0x23fbad 32
A 0x08 health 0x23{had
C 0x04 game 0x23fho0
K game?2 0x231b90

We can make an alias, which is another reference that points to the same place in
memory, like this:

let game2 = &game;
println! ("{:p}", game2); // prints 0x23£fb90

To get the value that is being referred to rather than the game2 reference itself,
dereference it with the asterisk * operator like this:

println! ("{}", *game2); // prints "Space Invaders"

The (println! is clever, so println! ("{}", game2); line will also print the
same value as println! ("game: {}", &game) ;.

The preceding code is a bit simplified because Rust will allocate values to the stack
that will not change in size as much as it is possible, but this is meant to give you a
better idea of what a reference to a value means.

We know already that a 1et binding is immutable, so the value cannot be changed:

health = 33; // error: re-assignment of immutable variable “health™.

If v is declared with 1let y = &health;, then *y is the value 32. Reference
variables can also be given a type like let x: &i64; and such references can be
passed around in code. After this let binding, x does not really point yet to a
value and it does not contain a memory address. In Rust, there is no way to create
a null pointer as you can in other languages; if you try to assign a nil, null, or
even a unit value () to x, this will result in an error. This feature alone saves Rust
programmers from countless bugs. Furthermore, trying to use x in an expression;
for example, println! ("{:?}", x); will resultin the error: use of possibly
uninitialized variable: “x error error.

[32]

Chapter 2

A mutable reference to an immutable variable is forbidden; otherwise, the immutable
variable could be changed through its mutable reference:

let tricks = 10;
let reftricks = &mut tricks;

This gives the error: cannot borrow immutable local variable “tricks> as
mutable error.

A reference to a mutable score variable can either be immutable or mutable
respectively, such as score2 and score3 in the following example:

let mut score = 0;

let score2 = &score;

// error: cannot assign to immutable borrowed content *score2
// *score2 = 5;

let mut score = 0;
let score3 = &mut score;
*scoreld = 5;

The value of score can be only changed through a mutable reference such as score3s.

For reasons that we will see later, you can only make one mutable reference to a
mutable variable:

let score4 = &mut score;

This throws the error: cannot borrow “score~ as mutable more than once
at a time error.

Here, we touch the heart of Rust's memory safety system, where borrowing a
variable is one of its key concepts. We will explore this in more detail in Chapter 6,
Pointers and Memory Safety.

The heap is a much larger memory part than the stack, so it is important that
memory locations are freed as soon as they are no longer needed. The Rust compiler
sees when a variable ends its lifetime (or in other words, goes out of scope) and
inserts a code at compile time to free its memory when the code is executed. This
behavior is unique to Rust and is not present in other commonly used languages.
Stack values can be boxed, that is, allocated in the heap by creating a Box around
them, as is the case for the value of x in the following code:

let x = Box::new(51i32);

Box is an object that references a value on the heap. We'll also look at this more
closely in the Boxes section of Chapter 6, Pointers and Memory Safety.

[33]

Using Variables and Types

Summary

In this chapter, you learned how to work with variables in Rust and got acquainted
with many of the common compiler error messages. We explored types and the
default immutability of variables that are the cornerstones of Rust's safety behavior.
In the following chapter, we will start writing some useful code by using program
logic and functions.

[34]

Using Functions and
Control Structures

This chapter concentrates on how we can control the execution flow of our code and
modularize our code through functions. We will also learn how to get input from the
console, and how to document and test our code.

We will cover the following topics:

* Branching on a condition
* Looping

* Functions

* Attributes

* Testing

Branching on a condition

Branching on a condition is done with a common if, if-else, or if-else if-else
construct, as shown in this example:

// from Chapter 3/code/ifelse.rs
fn main() {
let dead = false;
let health = 48;
if dead {
println! ("Game over!");
return;
}
if dead {
println! ("Game over!");

[35]

Using Functions and Control Structures

return;
} else {
println! ("You still have a chance to win!");

}

if health >= 50 {

println! ("Continue to fight!");
} else if health >= 20 {

println! ("Stop the battle and gain strength!");
} else {

println! ("Hide and try to recover!");

}
}

This gives the following output:

Stop the battle and gain strength!

The condition after if has to be a Boolean. However, unlike in C, the condition must
not be enclosed within parentheses. Code blocks surrounded by { } (curly braces)
are needed after if, else if, or else. The first example shows that we can get out
of a function with return.

Another feature of if-else, as it is an expression, is that it returns a value. This
value can be used as a function call parameter in a print ! statement, or it can be
assigned to a let binding like this:

let active =

if health >= 50 {
true

} else {
false

}i

println! ("Am I active? {}", active);

The output is as follows:

Am I active? false

The code blocks can contain many lines. However, you need to be careful when you
return a value to ensure that you omit ; (the semicolon) after the last expression in
the if or else block. (For more information on this, see the Expressions section of
Chapter 2, Using Variables and Types). Moreover, all branches must always return a
value of the same type. This alleviates the need for a ternary operator (? :) that is
needed in C++; you can simply use if as follows:

let adult = true;
let age = if adult { "+18" } else { "-18" };
println! ("Age is {}", age); // Age is +18

[36]

Chapter 3

As an exercise, try the following:

1. Try addinga ; (semi-colon) after +18 and -18, like this {"+18"; } and find
out what value will be printed for age. What happens if you type annotate

age as &str?

2. See whether you can omit { } (the curly braces) if there is only one statement

in the block.

3. Also, verify whether this code is okay:

let result =

How would you correct this statement, if necessary? (Refer to code in

if health <=0 { "Game over man!" };

Chapter 3/exercises/iftest.rs)

4. Simplify the following function:

fn verbose (x:

if x < 10 {

result = "less than 10";
} else {
result = "10 or more";

}

return result;

}

i32) -> &'static str {

let mut result: &'static str;

(See the code in Chapter 3\exercises\ifreturn.rs.)

Pattern matching, which we will examine in the next chapter, also branches code, but
it does this based on the value of a variable.

Looping

For repeating pieces of code, Rust has the common while loop, again without

parentheses around the condition:

// from Chapter

fn main() {

let max_ power

let mut power

while power <

3/code/loops.rs

= 10;
= 1;
max_power {

print! ("{} ", power); // prints without newline

power += 1;

// increment counter

[37]

Using Functions and Control Structures

This prints the following output:
123456789

To start an infinite loop, use 1oop, which is syntactic sugar for while true:

loop {

power += 1;

if power == 42 {
// Skip the rest of this iteration
continue;

}

print! ("{} ", power);

if power == 50 {

print! ("OK, that's enough for today");
break; // exit the loop

}

Here, all power values including 50 are printed; then the loop stops with break.
However, the power value 42 is not printed because of the continue statement. So,
loop is equivalent to a while true, and a loop with a conditioned break simulates

a do while in other languages.

When loops are nested inside each other, break and continue apply to the immediate
enclosing loop. Any loop statement (also while and for that we'll see next) can be
preceded by a label (which is denoted as 'label:) to allow us to jump to the next or
outer enclosing loop, as shown in this code snippet:

'outer: loop
println! ("Entered the outer dungeon - ");
"inner: loop f{
println! ("Entered the inner dungeon - ");
// break; // this would break out of the inner loop
break 'outer; // breaks to the outer loop

}

println! ("This treasure can sadly never be reached - ");

}

println! ("Exited the outer dungeon!");

The code prints the following output:

Entered the outer dungeon -
Entered the inner dungeon -

Exited the outer dungeon!

[38]

Chapter 3

The infamous goto from C does not exist in Rust!

Looping where a var variable begins from a start value a to an end value b
(exclusive) is done with for over a range expression for var in a..b statement.
Here is an example that prints the squares of the numbers from 1 to 10:

for n in 1..11 {
println! ("The square of {} is {}", n, n * n);

}

In general, for inloops over an iterator, which is an object that gives back a
series of values one by one. The range a. .b is the simplest form of iterator. Each
subsequent value is bound to n and used in the next loop iteration. The for loop
ends when there are no more values, and n then goes out of scope. If we don't
need the value of n in the loop, we can replace it with _ (an underscore) like this:
for _ in 1..11 { }.The many bugs in the C-style for loops, like the off-by-one
error with the counter, cannot occur here because we loop over an iterator.

Variables can also be used in a rangg, like in the following snippet that prints
nine dots:

let mut x = 10;
for in1 .. x { x -= 1; print!("."); }

We'll examine iterators in more detail in Chapter 5, Generalizing Code with Higher-order
Functions and Parametrization.

Functions

The starting point of every Rust program is a £n function called main (), which

can be further subdivided into separate functions to reuse code or for better code
organization. Rust doesn't care about the order in which these functions are defined,
but it is nice to put main () at the start of the code to get a better overview. Rust has
incorporated many features of traditional functional languages; we will see examples
of this in Chapter 5, Generalizing Code with Higher-order Functions and Parametrization.

Let's start with an example of a basic function:

// from Chapter 3/code/functions.rs

fn main() {
let herol = "Pac Man";
let hero2 = "Riddick";

greet (hero2) ;
greet both(herol, hero2);

[39]

Using Functions and Control Structures

fn greet (name: &str)
println! ("Hi mighty {}, what brings you here?", name);

}

fn greet both(namel: &str, name2: &str) {
greet (namel) ;
greet (name2) ;

}
The output is as follows:

Hi mighty Riddick, what brings you here?
Hi mighty Pac Man, what brings you here?

Hi mighty Riddick, what brings you here?

Like variables, functions also have snake case names that must be unique, and
their parameters (which have to be typed) are separated by commas. In this code
snippet, the examples are namel: &str and name2: &str (it looks like a binding,
but without let).

Mandating a type to the parameters was an excellent design decision: this documents
the function for use by its caller code and allows type inference inside the function.
The type here is &str because strings are stored on the heap (see the The stack and the
heap section of Chapter 2, Using Variables and Types).

The functions in the preceding code don't return anything useful (in fact, they return
the unit value ()), but if we want a function to actually return a value, its type must
be specified after an arrow(- >), as shown in this example:

fn increment power (power: i32) -> i32 {
println! ("My power is going to increase:");
power + 1

fn main() {
let power = increment power(l); // function is called
println! ("My power level is now: {}", power);}

}
When executed this prints the following;:

My power is going to increase:

I am now at power level: 2

[40]

Chapter 3

The return value of a function is the value of its last expression. Note that in order

to return a value, the final expression must not end with a semicolon. What happens
when you do end it with a semicolon? Try this out. In this case, the unit value () will
be returned, and the compiler will give you the error, not all control paths return a
value error.

We could have written return power + 1; as the last line, but this is not idiomatic
code. If we wanted to return a value from the function before the last code line,
we have to write a return value; as shown in here:

if power < 100 { return 999; }

If this was the last line in the function, you would write it like this:

if power < 100 { 999 }

A function can return only one value, but this isn't a limitation. If we have, for
example, three values a, b, and c to return, make one tuple (a, b, c) with them
and return this. We will examine tuples in more detail in the next chapter. In Rust,
you can also write a function inside another function (a so-called nested function),
contrary to C or Java. However, this should only be used for small helper functions
that are needed locally.

The following is an exercise for you:

What is wrong with the following function that returns the absolute value of a given
number x?
fn abs(x: 132) -> i32 {
if x > 0 {
X
} else {
-X
}
}

You need to correct and test it. (See the code in Chapter 3/exercises/absolute.rs.)

Documenting a function

Let's show you an example of documentation. In exdoc . rs, we have documented a
cube function as follows:

fn main() {

println! ("The cube of 4 is {}", cube(4));
}
/// Calculates the cube “val * val * wval~.

/1/

[41]

Using Functions and Control Structures

/// # Examples

/77

/77 T°°

/// let cube = cube(wval);

/77 T°°

pub fn cube(val: u32) -> u32 {
val * val * val

}

If we now invoke rustdoc exdoc.rs on the command line, a doc folder will be
created. This contains an exdoc subfolder with index.html that is the starting point
of a website that provides a documentation page for each function. For example,
fn.cube. html shows the following;:

exdoc

Functions Function exdoc:cube [-1[+] [sre]

Crates
alculates the cube val * val « val

Examples

By clicking on the exdoc link, you can return to the index page. For a project that is
made with the cargo package manager, issue the cargo doc command to obtain
its documentation.

Documentation comments are written in markdown. They can contain the following
special sections preceded by #: Examples, Panics, Failures, and Safety. A code
appears between ~~ . For a function to be documented, it must be prefixed with
pub so that it belongs to the public interface (see Chapter 7, Organizing Code and
Macros). For more information on this, go to http://doc.rust-1lang.org/book/
documentation.html.

Attributes

You may have already seen examples of warnings within #[..] signs, such

as # [warn (unused_variables)], in compiler output. These are attributes that
represent metadata information about the code and are placed right before an item
(such as a function) about which they have something to say. They can, for example,
disable certain classes of warnings, turn on certain compiler features, or mark
functions as being part of unit-tests or benchmark code.

[42]

http://doc.rust-lang.org/book/documentation.html
http://doc.rust-lang.org/book/documentation.html

Chapter 3

Conditional compilation

If you want to make a function that only works on a specific operating system then
annotate it with the # [cfg (target_os = "xyz")] attribute (where xyz can be either
windows, macos, linux, android, freebsd, dragonfly, bitrig, or openbsd). For
example, the following code works fine and runs on Windows:

// from Chapter 3/code/attributes cfg.rs
fn main() {
on_windows () ;

}

#[cfg(target os = "windows")]
fn on_windows () {
println! ("This machine has Windows as its 0S.")

}

This produces the output, This machine has Windows as its OS. If we try to build
this code on a Linux machine, we get the error: unresolved name “on_windows"
error, as the code does not build on Linux because the attribute prevents it

from doing so!

Furthermore, you can even make your own custom conditions; go to http://
rustbyexample.com/attribute/cfg/custom.html for more information on this.

Attributes are also used when testing and benchmarking code.

Testing

We can prefix a function with the # [test] attribute to indicate that it is part of the
unit tests for our application or library. We can then compile with rustc --test
program.rs. This will replace the main () function with a test runner and show
the result from the functions marked with # [test]. Have a look at the following
code snippet:

// from Chapter 3/code/attributes testing.rs

fn main()
println! ("No tests are compiled,compile with rustc --test! ");
}
#[test]
fn arithmetic()
if 2 + 3 == {

println! ("You can calculate!");

}
}

[43]

http://rustbyexample.com/attribute/cfg/custom.html
http://rustbyexample.com/attribute/cfg/custom.html

Using Functions and Control Structures

Test functions, such as arithmetic () in the example, are black boxes; they have no
arguments or returns. When this program is run on the command line, it produces
the following output:

running 1 test
test arithmetic ... ok

test result: ok. 1 passed; 0 failed; O +ignored; 0 measured

However, even if we change the testto if 2 + 3 == 6, the test passes! Try it out.

It turns out that test functions always pass when their execution does not cause a
crash (called a panic in Rust terminology), and it fails when it does panic. This is why
testing (or debugging) uses the assert_eq! macro (or other similar macros):

assert_eq! (2, power) ;

This statement tests whether power has the value 2. If it does, nothing happens, but
if power is different from 2, an exception occurs and the program panics with, thread
'<main>' panicked at 'assertion failed.

In our first function, we will write the assert_eq! (5, 2 + 3); test that will pass.
We can also write this as assert! (2 + 3 == 5); by using the assert ! macro.

A test fails when the function panics, as is the case with the following example:

#[test]
fn badtest () {
assert_eq! (6, 2 + 3);

}

This produces the following output:

failures:
badtest

test result: FAILED. 1 passed; 1 failed; O ignored; O measured

thread "<main>' panicked at 'Some tests failed', C:\bot\slave\nightly-dist-rustc
win-64\build\src\libtest\1ib.rs:265

Unit test your functions by comparing the actual function result to the expected
result with an assert_eq! (actual, expected) macro call. In a real project,
the tests will be collected in a separate tests module. (Have a look at Chapter 7,
Organizing Code and Macros, for more information.)

[44]

Chapter 3

Testing with cargo

An executable project, or a crate as it is called in Rust, needs to have amain () startup
function, but a library crate, to be used in other crates, does not need a main ()
function. Create a new mylib library crate with cargo as cargo new mylib.

This creates a src subfolder with a 1ib. rs source file that contains the following code:

#[test]
fn it _works () {

}

So a library crate is created with no code of its own, but it does contain a test
template to augment with the unit tests that you write on the functions of your
library. You can then run these tests with cargo test, which will produce an output
similar to that produced in the previous section. The cargo test command runs
tests in parallel whenever it is possible.

Summary

In this chapter, you learned how to make basic programs by using the if conditions,
while and for loops, and functions to structure our code. We were also able to
accept input to a program. Lastly, we saw the immense power that attributes

give to widen Rust's possibilities, and we applied this in conditional compilation
and testing.

In the next chapter, we will start using composite values and explore the powers
of pattern matching.

[45]

Structuring Data and
Matching Patterns

Until now we have only used simple data, but to do real programming, more
composite and structured data values are needed. Among them are flexible arrays
and tuples, enums, and structs that represent more object-like behavior, similar to
that found in classical object-oriented languages. Options are another important type
that are used to ensure that cases where no value is returned are accounted for. Then,
we will look at pattern matching, which is another typical functional construct in
Rust. However, we will start by looking more carefully at strings. We will cover the
following topics:

* Strings
* Arrays, vectors, and slices
* Tuples
* Structs
* Enums

* Getting input from the console

* Matching patterns

[47]

Structuring Data and Matching Patterns

Strings
The way Rust works with strings differs a bit to how strings work in other languages.

All strings are valid sequences of Unicode (UTF-8) bytes. They can contain null bytes,
but they are not null terminated as in C. Rust distinguishes two types of strings:

* Literal strings, which we have used until now, are string slices whose type
is &str. The & character points out that the string slice is a reference to a
string. They are immutable and have a fixed size. For example, the following
bindings declare string slices:
// from Chapter 4/code/strings.rs
let magicianl = "Merlin";
let greeting = "Hello, tHFR!";

Otherwise, we care to explicitly annotate the string variable with its type:

let magician2: &'static str = "Gandalf";

The &' static command denotes that the string is statically allocated.
We saw this notation earlier in Chapter 2, Using Variables and Types, when
we declared global string constants. In that case, indicating the type was
mandatory, but for a let binding, it is superfluous because the compiler
infers the type:
println! ("Magician {} greets magician {} with {}",

magicianl, magician2, greeting) ;

Prints out: Magician Merlin greets magician Gandalf with Hello,
R
These strings live as long as the program; they have the lifetime of the

program, which is the static lifetime. They are described in the std: :str
module.

* A string on the other hand can grow dynamically in size (it is in fact a
buffer), and so it must be allocated on the heap. We can create an empty
string with the following snippet:

let mut strl = String::new();

Each time the string grows, it has to be reallocated in the memory. So, for
example, if you know that it will start out as 25 bytes, you can create the
string by allocating this amount of memory as follows:

let mut str2 = String::with capacity(25);

[48]

Chapter 4

This type is described in the std: : string module. To convert a string slice
into a String, use the to_string method:

let mut str3 = magicianl.to string():;

The to_string () method can be used to convert any object into a String
(more precisely, any object that implements the Tostring trait; we will talk
about traits in the next chapter). This method allocates memory on the heap.

If str3 is a String, then you can make a string slice from it with &str3 or
&str3[..]:

let sll = &str3;

A string slice created this way can be considered as a view into the String. Itisa
reference to the interior of the String and making it has no cost involved.

I prefer this way instead of to_string () when comparing strings because using
&[..] doesn't consume resources while to_string() allocates heap memory:

if &str3[] == magicianl {
println! ("We got the same magician alright!")

}

To build a String, we can use a number of methods, which are as follows:

* The push method: This appends a character to the String
* The push_str method: This appends another string to the String

You can see them in action in the following code snippet:

let ¢1 = '0'; // character cil

strl.push(cl);

println! ("{}", str1l); // ©

strl.push str(" Level 1 is finished - ");

println! ("{}", strl); // 6 Level 1 is finished -

strl.push str("Rise up to Level 2");

println! ("{}", strl); // 6 Level 1 is finished - Rise up to Level 2

If you need to get the characters of a Sstring one by one and in order, use the
chars () method. This method returns an Iterator, so we can use the for in loop
(see the Looping section of Chapter 2, Using Variables and Types):

for ¢ in magicianl.chars() {
printl("{} - ", c);

}

Which printsout:™M - e - r - 1 - i - n -.

[49]

Structuring Data and Matching Patterns

To loop over the parts of a string that are separated by whitespace, we can use the
split () method, which also returns an Iterator:

for word in strl.split(" ") {
print! ("{} / ", word);

Which printsout: 6 / Level / 1 / is / finished / - / Rise / up / to /
Level / 2 /.

To change the first part of a string that matches with another string, use the
replace method:

let str5 = strl.replace("Level", "Floor");
This code allocates new memory for the modified strs string.

When you write a function that takes a string as an argument, always declare it as a
string slice, which is a view into the string, as shown in the following code snippet:

fn how long(s: &str) -> usize { s.len() }
The reason for this is that passing a String str1 as argument allocates memory, so
we better pass it as a slice. The easiest and most elegant way to do this is as follows:
println! ("Length of strl: {}", how long(&strl));
Or:
println! ("Length of strl: {}", how long(&strl[..]));
Consult the documentation at http://doc.rust-lang.org/std/str/ and http://

doc.rust-lang.org/std/string/ for more functionality. Here is a schema to see
the difference between the two string types more clearly:

String String slice (&str)
mutable - heap memory fixed size - view on String - reference(&)
allocation

module: std::str

module: std::string

Arrays, vectors, and slices

Suppose we have a bunch of alien creatures to populate a game level, then we would
probably want to store their names in a handy list. Rust's array is just what we need:

// from Chapter 4/code/arrays.rs
let aliens = ["Cherfer", "Fynock", "Shirack", "Zuxu"];
println! ("{:?}", aliens);

[50]

http://doc.rust-lang.org/std/str/
http://doc.rust-lang.org/std/string/
http://doc.rust-lang.org/std/string/

Chapter 4

To make an array, separate the different items by commas and enclose the whole
thing within [1 (rectangular brackets). All the items must be of the same type. Such
an array must be of a fixed size (this must be known at compile time) and cannot be
changed; this is stored in one contiguous piece of memory.

If the items have to be modifiable, declare your array with 1let mut; however, even
then the number of items cannot change. The aliens array could be of the type that
is annotated as [&str; 4] where the first parameter is the type of the items and the
second is their number:

let aliens: [&str; 4] = ["Cherfer", "Fynock", "Shirack", "Zuxu"];
If we want to initialize an array with three Zuxus, that's easy too:

let zuxus = ["Zuxu"; 3];
How would you then make an empty array? This is shown as follows:

let mut empty: [i32; 0] = [];
println! ("{:?}", empty); // [I

We can also access individual items with their index, starting from 0:

println! ("The first item is: {}", aliens[0]); // Cherfer
println! ("The third item is: {}", aliens[2]); // Shirack

The number of items in the array is given by aliens.len(); so, how would you get
the last item? Exactly! By using aliens[aliens.len() - 1]. Alternatively, this can
be found by using aliens.iter () .last () .unwrap() ;.

Pointers to arrays use automatic dereferencing so that you do not need to use *
explicitly, as demonstrated in this code snippet:

let pa = &aliens;
println! ("Third item via pointer: {}", pal2]);

Which prints: Third item via pointer: Shirack. What do you think will happen
when we try to change an item as follows:

aliens[2] = "Facehugger";

Hopefully, you didn't think that Rust would allow this, did you? Unless you told it
explicitly that aliens can change with let mut aliens = [..]; thenitis alright!

The index is also checked at runtime to be within the array bounds of 0 and aliens.
len() ; if it is not, the program will crash with a runtime error or panic:

println! ("This item does not exist: {}", aliens[10]);
// runtime error:

[51]

Structuring Data and Matching Patterns

It gives the following output:

thread '<mains>' panicked at 'index out of bounds: the len is 4 but the
index is 10'

If we want to go through the items successively one by one and print them out or do
something useful with them, we can do it as follows:

for ix in 0..aliemns.len() {
println! ("Alien no {} is {}", ix, aliensl[ix]);

}

This works and it gives us the index for each item, which might be useful. However,
when we use the index to fetch each consecutive item, Rust also has to check each
time whether we are still within the bounds of the array in memory. That's why this
is not very efficient, and in the Iterators section of Chapter 5, Generalizing Code with
Higher-order Functions and Parametrization, we will see a much more efficient way by
iterating over the items as follows:

for a in aliemns.iter() {
println! ("The next alien is {}", a);

}
The for loop can be written even shorter as follows:

for a in &aliens { .. }

Vectors

Often, it is more practical to work with a kind of array that can grow (or shrink) in
size because it is allocated on the heap. Rust provides this through the vec vector
type from the std: : vec module. This is a generic type, which means that the items
can have any T type, where T is specified in the code; for example, we can have
vectors of the Vec<i32> type or the Vec<astrs> type. To indicate that this is of the
generic type, it is written as Vec<T>. Again, all elements must be of the same T type.
We can make a vector in two ways, with new () or with the vec! macro. These are
shown here:

let mut numbers: Vec<i32> = Vec::new() ;
let mut magic numbers = vec! [7i32, 42, 47, 45, 54];

In the first case, the type is indicated explicitly with vec<i32>; in the second case,
this is done by giving the first item an 132 suffix, but this is usually optional.

[52]

Chapter 4

We can also make a new vector and allocate an initial memory size to it, which
can be useful if you know in advance that you will need at least that many items.
The following initializes a vector for signed integers with a memory allocated for
25 integers:

let mut ids: Vec<i32> = Vec::with capacity(25);

We need to provide the type here, otherwise the compiler would not be able to
calculate the amount of memory needed.

A vector can also be constructed from an iterator through the collect () method
with a range, such as in this example:

let rgvec: Vec<u32> = (0..7).collect();
println! ("Collected the range into: {:?}", rgvec);

which prints out: Collected the range into: [0, 1, 2, 3, 4, 5, 6]

Indexing, getting the length, and looping over a vector works the same as with
arrays. For example, a for loop over a vector can be written simply as follows:

let values = vec![1, 2, 3];
for n in values {
println! ("{}", n);

}
Add a new item to the end of a vector with push (), remove the last item with pop () :

numbers.push (magic_numbers[1]) ;
numbers.push (magic numbers([4]);

println! ("{:?}", numbers); // [42, 54]

let fifty four = numbers.pop();// fifty four now contains 54
println! ("{:?}", numbers); // [42]

If a function needs to return many values of the same type, you can make an array or
vector with these values and return that object.

Slices

What would you do if you want to do something with a part of an array or a vector?
Perhaps, your first idea is to copy that part out to another array, but Rust has a safer
and more efficient solution; take a slice of the array. No copy is needed, instead you
get a view into the existing array, similar to how a string slice is a view into a string.

[53]

Structuring Data and Matching Patterns

As an example, suppose I only need the numbers 42, 47, and 45 from our
magic_numbers vector. Then, I can take the following slice:

let slc = &magic numbers[l..4]; // only the items 42, 47 and 45

The starting index 1 is the index of 42, the last index 4 points to 54, but this item is
not included. The & shows that we are referencing an existing memory allocation.
Slices share the following with vectors:

* They are generic and have the & [T] type for a T type

* Their size does not have to be known at compile time

Strings and arrays

Back in the first section of this chapter, we saw that the sequence of characters in a
String is given by the chars () function. Doesn't this look like an array to you? A
String is backed up by an array if we look at the memory allocation of its characters;
it is stored as a vector of bytes vec<u8s.

This means that we can also take a slice of the &str type from a String:

let location = "Middle-Earth";
let part = &location[7..12];
println! ("{}", part); // Earth

We can collect the characters of a slice into a vector and sort them as follows:

let magician = "Merlin";
let mut chars: Vec<char> = magician.chars() .collect();
chars.sort () ;
for c in chars.iter() {
print! ("{} ", c);

}

This printsoutM e i 1 n r (capital letters come before small letters in the sort
order). Here are some other examples of using the collect () method:

let v: Vec<é&str> = "The wizard of Oz".split (' ').collect();
let v: Vec<&str> = "abcldef2ghi".split(|c: char| c.is numeric()).
collect () ;

[54]

Chapter 4

Here, split () takes a closure to determine on which character to split. Both the slice
types, &str and &[T], can be seen as views into strings and vectors respectively.
The following scheme compares the types that we just encountered (T denotes a
generic type):

Fixed-size Slices Dynamic size (growable)
(stack allocated) (heap allocated)

&str isaviewinto | String

type: &[u8]
array type: [T;size] | slicetype: & [T] | isa view into | Vector type: Vec<T>

Perform the following exercise by referring to Chapter 4/exercises/chars_
string.rs:

* Try out whether you can get the first or the fifth character of a string by using
[0] or [4]

e Compare the bytes () method with chars () on the let greeting =
"Hello, W& !"; string

Tuples

If you want to combine a certain number of values of different types, then you can
collect them in a tuple, which is enclosed between parentheses (()) and separated
by commas, as follows:

// from Chapter 4/code/tuples.rs
let thor = ("Thor", true, 3500u32);
println! ("{:?}", thor); // ("Thor", true, 3500)

The type of thoris (&str, bool, u32), thatis: the tuple of the item's types. To
extract an item on an index, use a dot-syntax:

println! ("{} - {} - {}", thor.0, thor.l, thor.2);
Another way to extract items to other variables is by destructuring the tuple:

let (name, _, power) = thor;
println! ("{} has {} points of power", name, power) ;

Which prints out: Thor has 3500 points of power.

Here the 1et statement matches the pattern on the left with the right-hand side. The
_indicates that we are not interested in the second item of thor.

[55]

Structuring Data and Matching Patterns

Tuples can only be assigned to one another or compared with each other if they are
of the same type. A one-element tuple needs to be written: let one = (1,);.

A function that needs to return some values of different types can collect them in a
tuple and return that tuple as follows:

fn increase power (name: &str, power: u32) -> (&str, u32) {
if power > 1000 {
return (name, power * 3);
} else {
return (name, power * 2);
}
}

If we call this with the following code snippet:

let (god, strength) = increase power (thor.0, thor.2);
println! ("This god {} has now {} strength", god, strength);

The output is: This god Thor has now 10500 strength.

Perform the following exercise by referring to the code at Chapter 4/exercises/
tuples ex.rs):

* Try to compare the tuples (2, 'a') and (5, false) and explain the error message.

* Make an empty tuple. Haven't we encountered this before? So, the unit value
is in fact an empty tuple!

Structs

Often, you might need to keep several values of possibly different types together in
your program; for example, the scores of the players. Let us assume that the score
contains numbers that indicate the health of the players and the level at which they
are playing. The first thing that you can then do to clarify your code is to give these
tuples a common name, such as struct Score or better still, you can indicate the types
of the values: struct Score (i32, u8) and we can make a score as follows:

let scorel = Score (73, 2);

These are called tuple structs because they resemble tuples very much. The values
contained in them can be extracted as follows:

// from Chapter 4/code/structs.rs
let Score(h, 1) = scorel; // destructure the tuple
println! ("Health {} - Level {}", h, 1);

[56]

Chapter 4

Which prints out: Health 73 - Level 2.

A tuple struct with only one field (called a newtype) gives us the possibility to
create a new type that is based on an old one so that both have the same memory
representation. Here is an example:

struct Kilograms (u32) ;

let weight = Kilograms (250) ;

let Kilograms (kgm) = weight; // extracting kgm
println! ("weight is {} kilograms", kgm) ;

This prints: weight is 250 kilograms.

However, we will still have to remember what these numbers mean and to which
players they belong. We can make coding much simpler by defining a struct with
named fields:

struct Player ({
nname: &'static str, // nickname
health: i32,
level: u8

}

This could be defined inside main () or outside it, although the latter is preferred.
Now, we can make player instances or objects as follows:

let mut pll = Player{ nname: "Dzenan", health: 73, level: 2 };

Note the curly braces ({ }) around the object and the key: value syntax. The nname
field is a constant string, and Rust requires that we indicate its lifetime, how long this
string will be needed in the program. We used the global scope, &'static, from the
Global constants section in Chapter 2, Using Variables and Types.

We can access the fields of the instance with the dot-notation:
println! ("Player {} is at level {}", pll.nname, pll.level);

The struct variable has to be declared as mutable if the field values can change; for
example, when the player enters a new level:

pll.level = 3;

By convention, the name of a struct always starts with a capital letter and follows
CamelCase. It also defines a type of its own, which is composed of the types of
its items.

[57]

Structuring Data and Matching Patterns

Like tuples, structs can also be destructured in a 1et binding, for example:

let Player{ health: ht, nname: nn, .. } = pll;
println! ("Player {} has health {}", nn, ht);

Which prints out: Player Dzenan has health 73.This shows that you can rename
fields, reorder them if you want, or leave fields out with.

Pointers carry out automatic dereferencing when accessing data structure elements,
as follows:

let ps = &Player{ nname: "John", health: 95, level: 1 };
println! ("{} == {}", ps.nname, (*ps).nname);

Structs are quite similar to the records or structs in C or even classes in other
languages. In Chapter 5, Generalizing Code with Higher-order Functions and
Parametrization, we will see how we can define methods on structs.

Perform the following exercise by referring to the code in Chapter 4/exercises/
monster.rs:

* Define a Monster struct with the health and damage fields. Then, make a
Monster and show its condition.

Enums

If something can be only one of a limited number of named values, then define it as
an enum. For example, if our game needs the compass directions, we could define it
as follows:

// from Chapter 4/code/enums.rs
enum Compass {
North, South, East, West

}
And then use it as shown in main () or another function:
let direction = Compass::West;

The enum's values can also be of other types or structs, as in this example:

type species = &'static str;

enum PlanetaryMonster
VenusMonster (species, 1i32),
MarsMonster (species, 1i32)

}

let martian = PlanetaryMonster::MarsMonster ("Chela", 42);

[58]

Chapter 4

Enums are sometimes called union types or algebraic data types in other languages.
If we make a use function at the start of the code file:

use PlanetaryMonster::MarsMonster;

Then, the type can be shortened, as follows:

let martian = MarsMonster ("Chela", 42);

Enums are really nice to bring clarity in your code, and they are used a lot in Rust.
To apply them usefully in code, see the Matching patterns section of this chapter.

Result and Option

Here, we look at two kinds of enums that are pervasive in a Rust code. A Result is
a special kind of enum that is defined in the standard library. It is used whenever
something is executed, that can either end:

* Successfully, then an ok value (of a certain type T) is returned

* With an error, then an Err value (of type E) is returned

Since this situation is so common, provision is made so that the value T and error E
types can be as general or generic as possible. The Result enum is defined as follows:

enum Result<T, E> {
Ok (T),
Err (E)

}

An Option is another enum that is defined in the standard library. It is used
whenever there is a value, but there can also be a possibility that there is no value.
For example, suppose our program expects to read a value from the console.
However, when it is run as a background program by accident, it will never get an
input value. Rust wants to be on the safe side whenever it is possible, so in this case,
it is better to read the value as an Option enum with two possibilities:

* some, if there is a value
* None, if there is no value
This value can be of any type T, so option again is defined as a generic type:

enum Option<T> {
Some (T) ,
None

[59]

Structuring Data and Matching Patterns

Getting input from the console

Suppose we want to capture the nicknames of our players before starting the game;
how would we do that? Input/output functionality is handled by the io module in
the std crate. It has a stdin () function to read input from the console. This function
returns an object of the stdin type, which is a reference to the input stream. stdin
has a read_line (buf) method to read a full line of input that ends with a new line
character (when the user hits Enter). This input is read into a String buffer, buf. A
method is a name for a function that is defined for a certain type, and it is called
using dot notation, such as object .method (see Chapter 5, Generalizing Code with
Higher-order Functions and Parametrization).

So, our code will look as follows:

let mut buf = String::new();
io::stdin() .read line (&mut buf) ;

However, this is not good enough for Rust; it gives us the warning, unused result
which must be used. Rustis foremost a safe language and we must be ready

to cope with everything than can occur. Reading a line might work and supply

the input value, but it can also fail; for example, if this code was running in the
background on a machine so that no console was available to get input from.

How will you cope with this? Well, read_1line () returns a Result value, which can
either be a real value (an ok) when everything works fine or an error value (an Err)
when there is a problem. To cope with a possible error, we need an ok () function
and an expect () function; ok () converts the Result into an Option value (which
contains how many bytes were read) and expect () gives this value or shows its
message when an error occurs. In Rust, a program panics when an error occurs that
cannot be recovered from, and the string argument from expect () is displayed

to tell us where it occurred.

This is written in Rust in a chained form (and is a bit unusual the first time you see it)
as follows:

io::stdin() .read_ line (&mut buf) .ok () .expect ("Error!") ;

Rust allows us to write these successive calls on separate lines, which clarifies the
code a lot for most people:

// from Chapter 4/code/input.rs
use std::io;

fn main() {
println! ("What's your name, noble warrior?");
let mut buf = String::new() ;

[60]

Chapter 4

io::stdin() .read line (&mut buf)

.ok ()
.expect ("Failed to read line");
println! ("{}, that's a mighty name indeed!", buf);

}

When we run this code from the command line, we get the following conversation:

What's your name, noble warrior?
Riddick
Riddick

, that's a mighty name indeed!

Can you guess why that's a mighty name indeed! appears on a new line? This
is because the input buf still contains a newline character, \n! Luckily, we have a
trim() method to remove trailing and leading whitespace from a string. If we insert
the line shown in the following snippet:

let name = buf.trim();
println! ("{}, that's a mighty name indeed!", name);

We now get a correct output: Riddick, that's a mighty name indeed!

In case the input does not succeed, our program will crash with the following output:

What's your name, noble warrior?
thread '<mains>' panicked at 'Failed to read line

How would we read in a positive integer number from the console?

// from Chapter 4/code/pattern match.rs
let mut buf = String::new();
io::stdin() .read line(&mut buf)
.ok ()
.expect ("Failed to read number");
let input num: Result<u32, > = buf.trim().parse();

We read the number in from the console in a buf String buffer and trim() the value;
expect () will show us the message if something goes wrong. However, what we
have read in is still a String, so we must convert the String to a number.

The parse () method tries to convert the input to an unsigned 32-bit integer in this
case. What it returns is in fact a Result value again; this can either be an integer
(0k<u32>) or an error (Err) when the conversion fails.

We will encounter more examples of Option and Result in the Generics section of
Chapter 5, Generalizing Code with Higher-order Functions and Parametrization.

[61]

Structuring Data and Matching Patterns

Matching patterns

But how will we test whether input_num from the previous section, which is of
the Result type, contains a value or not? When the value is an ok (T) function, the
unwrap () function can extract T like this:

println! ("Unwrap found {}", input num.unwrap());

Which prints: Unwrap found 42. However, when the result is an Err value, this lets
the program crash with a panic, which is thread '<main>' panicked at 'called
“Result::unwrap ()~ on an “Err> value'. Thisis bad!

To solve this, no complex if - else constructs will be enough; we need Rust's magical
match here, which has a lot more possibilities than the switch in other languages,
and is used frequently when handling errors:

match input num {
Ok (num) => println! ("{}", num),
Err (ex) => println! ("Please input an integer number! {}", ex)

}i

The match function tests the value of an expression against all possible values. Only
the code (which can be a block) after the => of the first matching branch is executed.
All branches are separated by commas. In this case, the same number that is given as
input is printed out. There is no fall through from one branch to the next, so a break
statement is not necessary; this enables us to avoid a common bug in C++.

In order to continue working with the return value of match, we have to bind that
value to a variable, which is possible because match itself is an expression:

let num = match input num {
Ok (num) => num,
Err() =>0

bi

This match extracts the number from input_num so that we can compare it with other
numbers or calculate with it. Both branches must return a value of the same type; this
is why we returned o in the Err case (supposing we expect a number greater than 0).

An alternative way to get the Result or Option value is by using the if let construct
as follows:

if let Ok(val) = input_num {
println! ("Matched {:?}!", wval);
} else {
println! ("No match!");

}

[62]

Chapter 4

The input_ num function is destructured and if it contains a value val, this is
extracted. In certain cases, this can simplify the code, but you lose the exhaustive
match check. The same principle can be applied inside a while loop as follows:

while let Ok(val) = input num {
println! ("Matched {:?}!", val);
if val == 42 { break }

}

With match, all possible values must be covered, which is the case if we match with a
Result, Option (Some or None is pretty exhaustive), or some other enum value.

However, look what happens when we test on a string slice for example:

// from Chapter 4/code/pattern match2.rs
let magician = "Gandalf";
match magician {
"Gandalf" => println! ("A good magician!"),

"Sauron" => println! ("A magician turned bad!")

}

This match on magician gives us an error: non-exhaustive patterns: _not covered.
After all, there are other magicians besides "Gandalf" and "Sauron"! The compiler

even gives us the solution: use an underscore (_) for all other possibilities; so, this
is a complete match:

match magician {
"Gandalf" => println! ("A good magician!"),
"Sauron" => println! ("A magician turned bad!"),

_ => println! ("No magician turned up!")

1
~ To be always on the safe side, use match when testing on the possible
values of a variable or expression!

The left-hand side of a branch can contain several values if they are separated by

a | sign or an inclusive range of values written as start ... end. The following code
snippet shows this in action:

let magical number: i32 = 42;
match magical number {
// Match a single value
1 => println! ("Unity!"),
// Match several values

2] 3] 5| 7| 11 => println! ("Ok, these are primes"),

[63]

Structuring Data and Matching Patterns

// Match an inclusive range

40...42 => println! ("It is contained in this range"),
// Handle the rest of cases

_ => println! ("No magic at all!"),

}

This prints out: It is contained in this range. The matched value can be
captured in a variable (here num) using the @ symbol as follows:

num @ 40...42 => println! ("{} is contained in this range", num)
Which prints: 42 is contained in this range.

Matches are even more powerful than this; the expression that is being matched can
be destructured on the left-hand side, and this can even be combined with the if
conditions that are called guards:

let loki = ("Loki", true, 800u32);
match loki {
(name, demi,) if demi => {
print! ("This is a demigod ") ;
println! ("called {}", name);
b
(name, ,) if name == "Thor" =>
println! ("This is Thor!"),
(., , pow) if pow <= 1000 =>
println! ("This is a powerless god"),
_ => println! ("This is something else")

}

Which prints out: This is a demigod called Loki.

Note that since demi is a Boolean, we don't have to write if demi == true. If you
want to do nothing in a branch, then write => {}. Destructuring works not only for
tuples, like this example, but it can also be applied for structs.

Perform the following exercise:

What happens if you move the _ branch from the last position upwards? See an
example in Chapter 4/exercises/pattern match.rs.

The use of the .. and ... notations can be confusing, so here is a summary of the
situations in Rust 1.0:

What works Does not work
for in . . exclusive
Match . .. inclusive

[64]

Chapter 4

Summary

In this chapter, we increased our capabilities for working with composite data in
Rust, from strings, arrays and vectors, and slices of both, to tuples, structs, and
enums. We also discovered that pattern matching, combined with destructuring
and guards, is a very powerful tool for writing clear and elegant code.

In the following chapter, we will see that functions are much more powerful than
we expected. Furthermore, we will discover that structs can have methods by
implementing traits, almost like classes and interfaces in other languages.

[65]

Generalizing Code with
Higher-order Functions and
Parametrization

Now that we have the data structures and control constructs in place, we can start to
discover the functional and object-oriented features of Rust, which make it a really
expressive language. We will cover the following topics in this chapter:

* Higher-order functions and closures

¢ [terators

* Consumers and adapters

* Generic data structures and functions

* Error handling

* Methods on structs

¢ Traits

* Using trait constraints

* Built-in traits and operator overloading

Higher-order functions and closures

By now, we know how to use functions, as shown in the following example where
the triples function changes our strength, but only if the return value of triples
is assigned to strength:

// see code in Chapter 5/code/higher functions.rs
let mut strength = 26;
println! ("My tripled strength equals {}",triples(strength)); // 78

[67]

Generalizing Code with Higher-order Functions and Parametrization

println! ("My strength is still {}", strength); // 26
strength = triples(strength) ;
println! ("My strength is now {}", strength); // 78

With triples defined as fn triples(s: i32) -> i32 { 3 * s }, s represents
strength.

Suppose our player smashes an amazing power stone so that his strength is tripled
and the resulting strength is tripled again, so we could write triples (triples(s)).
We can also write a function to do this, but it would be even more general to have a
function, let's call it again, that could apply a certain function £, of the F type upon its
result, enabling us to create all kinds of new game tricks, as follows:

fn again (f: F, s: 132) -> i32 { £(f(s)) }

However, this is not enough information for Rust; the compiler will ask us to explain
what the F type is. We can make this clear by adding <F: Fn(i32) -> i32> before
the parameter list:

fn again<F: Fn(i32) -> i32>(f: F , s: i32) -> i32 {
£(£(s))

}

The expression between < > (angle brackets) tells us that F is a function, Fn ,that
takes 132 as a parameter and returns an i32 function.

Now look at the definition of triples. that's exactly what this function does (triples
has the signature of type F), so we can call again with triples as the first parameter:

strength = again(triples, strength);
println! ("I got so lucky to turn my strength into {}", strength); //
702 (= 3 * 3 * 78)

The again function is a higher-order function, which means that it is a function that
takes another function (or more than one function) as a parameter.

Often, simple functions such as triples are not even defined as a named function:

strength = 78;

let triples = |n| { 3 * n };

strength = again(triples, strength);

println! ("My strength is now {}", strength); // 702

[68]

Chapter 5

Here, we have an anonymous function or closure, |[n| { 3 * n }, thattakesann
parameter and returns its tripled value. The | | (vertical bars) mark the start of

a closure, and they contain the parameters that are passed to it (when there are
no parameters, it is written as | |). There is no need to indicate the type of the
parameters or the return value as a closure can infer their types from the context
in which it is called.

The triples function is only a binding to a name so that we can refer to the closure
in another code. We can even leave that name out and put the closure inline,
as follows:

strength = 78;
strength = again(|n| { 3 * n }, strength);
println! ("My strength is now {}", strength); // 702

The closure is called with the n parameter that takes the value of s, which is a copy of
strength. The braces can also be left out to simplify the closure as follows:

strength = again(|n| 3 * n , strength);
So, why is it called a closure? This becomes more apparent in the following example:

let x: 132 = 42;
let print_add = |s]| {
println! ("x is {}", x);
X + s
Vi
let res = print_add(strength) ;
// here the closure is called and "x is 42" is printed
assert_eq! (res, 744); // 42 + 702

The print_add () closure has one argument and returns a 32-bit integer. The
print_add closure knows the value of x and all other variables that are available in
its surrounding scope —it closes them in. A closure with no arguments has the empty
parameter list, | |.

There is also a special kind of closure called a moving closure, which is indicated by
the move keyword. A normal closure only needs a reference to the variables that it
encloses, but a moving closure takes ownership of all the enclosing variables.

[69]

Generalizing Code with Higher-order Functions and Parametrization

The preceding example would be written with a moving closure as follows:

let m: 132 = 42;
let print add move = move |s| {

println! ("m is {}", m);
m+ s
}i
let res = print add move (strength); // strength == 702

assert _eq! (res, 744); // 42 + 702

Moving closures are mostly used when a program works with different concurrent
threads (You can see this in Chapter 8, Concurrency and Parallelism).

As you will see in the following sections, higher-order functions and closures are
used throughout Rust because they can make code much more concise and readable,
and they are useful to generalize a computation.

Iterators

An Iterator is an object that returns the items of a collection in sequence, from the
first item to the last one. To return the following item, it uses a next () method. Here,
we have an opportunity to use Option: because an iterator can have no more values
at a certain next () call, next () returns Option: a Some (value) when there is a
value, and None when there are no more values.

The simplest object that has this behavior is a range of numbers, 0. . .n. Every time
we used a for loop, such as for i in 0. . .n, the underlying iterator mechanism was
put to work. Let's see an example:

// see code in Chapter 5/code/iterators.rs
let mut rng = 0..7;
println! ("> {:?}", rng.next()); // prints Some (0)
println! ("> {:?}", rng.next()); // prints Some (1)
for n in rng {
print! ("{} - ", n);
} // prints 2 - 3 - 4 - 5 - 6 -

Here, we see next () at work, which produces 0, 1, and so on; the for loop continues
until the end.

[70]

Chapter 5

Perform the following exercise:

In the previous example, we saw that next () returns a Some object, a variant of

the option type (see the Result and Option section of Chapter 4, Structuring Data and
Matching Patterns). Write an endless loop over rng with next () and see what happens.
How would you break the endless loop? Use a match on the option value. (for an
example, see Chapter 5/exercises/range next.rs). In fact, the for loop that we
saw right before this exercise is syntactic sugar for this 1oop - match construct.

Iterators are also the preferred way to loop over arrays or slices. Let's revisit the
aliens array, let aliens = ["Cherfer", "Fynock", "Shirack", "Zuxu"];",
from Chapter 4, Structuring Data and Matching Patterns. Instead of using the index to
show all the items one by one, let's do it the iterator way with the iter () function:

for alien in aliemns.iter() {
print! ("{} / ", alien)
// process alien

}

Which prints out: Cherfer / Fynock / Shirack / Zuxu /. The alien variable is
of the &str type, which is a reference to each of the items in turn. (Technically, it is
of the &&str type here because the items themselves are of the &str type, but this is
not relevant to the point being made here.) This is much more performant and safe
because Rust doesn't have to do index-bounds checking, we're always certain to
move within the memory of the array.

An even shorter way is to write:

for alien in &aliens ({
print! ("{} / ", alien)

}

An alien array is also of the &str type, but the print ! macro automatically
dereferences this. If you want them to print out in the reverse order, do aliens.
iter () .rev (). The other iterators that we encountered in the previous chapter
were the chars () and split () methods on Strings.

Iterators are lazy by nature; they do not generate values unless asked, and we ask
them by calling the next () method or applying for in the loop. This makes sense
as we don't want to allocate one million integers in the following binding;

let rng = 0..1000_000; // _ makes the number 1000000 more readable

We want to allocate memory only when we need it.

[71]

Generalizing Code with Higher-order Functions and Parametrization

Consumers and adapters

Now, we will see some examples that show why iterators are so useful. Iterators are
lazy and have to be activated by invoking a consumer to start using the values. Let's
start with a range of the numbers from 0 to 999. To make this into a vector, we apply
the collect () consumer:

// see code in Chapter 5/code/adapters_consumers.rs
let rng = 0..1000;

let rngvec = rng.collect::<Vec<i32>>();

println! ("{:?}", rngvec);

Which prints out the range (we shortened the output with ...): [0, 1, 2, 3, 4, ..., 999]

The collect () loops through the entire iterator and collects all of the elements into
a container, here in the vec<i32> type. That container does not have to be an iterator.
Notice that we indicate the item type of the vector with vec<i32>, but we could have
also written it as Vvec<_>. The collect: :<Vec<i32>> () notation is new; it indicates
that collect is a parametrized method that can work with generic types, as you will
see in the next section. That line could also have been written as:

let rngvec: Vec<i32> = rng.collect() ;

The £ind () consumer gets the first value of the iterator that makes its condition
(here, >= 42) true and returns it as an option function, for example:

let forty two = rng.find(|n| *n >= 42);
println! ("{:?}", forty two); // prints out Some(42)

The value of find is an Option function because the condition could be false for all
items and then it would return a None value. The condition is wrapped ina |n| *n
>= 42 closure, which is applied on every item of the iterator through an n reference;
this is why we have to dereference *n to get the value.

Suppose we only want even numbers in our range, producing a new range by testing
a closure condition on each item. This can be done with the filter () function,
which is an adapter because it produces a new iterator from the old one. Its result
can be collected just like any iterator:

let rng even = rng.filter(|n| is even(*n))
.collect::<Vec<i32>>();
println! ("{:?}", rng even);

Here, is_even is the following function:

fn is_even(n: 1i32) -> bool {

)

ns 2 ==

}

[72]

Chapter 5

This prints out: [0, 2, 4, ..., 996, 998] showing that odd integers are
filtered out.

Notice how we can chain our consumers/adapters by just applying collect () on
the result of filter () with .collect ().

Now, what would we do if we wanted to cube (n * n * n) with every item in the
resulting iterator? We can produce a new range by applying a closure to each item in
it with the map () function:

let rng even pow3 = rng.filter(|n| is even(*n))
.map(|n| n * n * n)
.collect::<Vec<i32>>() ;
println! ("{:?}", rng even pow3);

Which now prints out: [0, 8, 64, ..., 988047936, 994011992].

If you only want the first five results, insert a take (5) adapter before the collect
function. The resulting vector will then contain [0, 8, 64, 216, 512].

So, if you see the warning, unused result which must be used: iterator
adaptors are lazy and do nothing unless consumed message while
compiling, you know what to do—call a consumer!

To see all the consumers and adapters, consult the documentation of the std: :iter
module.

Perform the following exercise:

Another very powerful consumer is the fold () function. The following example
calculates the sum of the first hundred integers. It starts with a base value 0, which is
also the initial value of the sum accumulator, and then iterates and adds every n item
to sum:

let sum = (0..101).fold(0, |sum, n| sum + n);

0
println! ("{}", sum); // prints out 5050

Now, calculate the product of all the cubes of the integers in the range from 1 to 6.

The result should be 1,728,000, but look out for the base value! As the second exercise,
subtract all the items from the [1, 9, 2, 3, 14, 12] array, starting from O (that is, O,
1,9, 2, and so on). This should result in 41. (As a hint, remember that an iterator item is
a reference; for some example code, refer to Chapter 5/exercises/fold.rs).

[73]

Generalizing Code with Higher-order Functions and Parametrization

Generic data structures and functions

Genericity is the capacity to write code once, without or partly specified types,
so that the code can be used for many different types. Rust has this capacity in
abundance and applies it for both data structures and functions.

A composite data structure is generic if the type of its items can be of a general <T>
type. T can be an 132, an f64, a String, or a struct type such as Person that we
coded ourselves. So, we can have not only vec<f64> but also Vec<Persons. If you
make T a concrete type, then you must substitute T with that type everywhere T
appears in the definition of the data structure.

Our data structure can be parametrized with a generic <T> type, so it has multiple
concrete definitions —it is polymorphic. Rust makes extensive use of this concept,

which we already encountered in Chapter 4, Structuring Data and Matching Patterns
when we talked about arrays, vectors, slices, and the Result and Option types.

Suppose you want to define a struct with two fields, first and second, but you want
to keep the type of these fields generic. We can define this as follows:

// see code in Chapter 5/code/generics.rs
struct Pair<T> {

first: T,

second: T,

}

We can now define a pair of magic numbers, or a pair of magicians, or whatever we
want, as follows:

let magic _pair: Pair<u32> = Pair { first: 7, second: 42 };
let pair of magicians: Pair<&str> = Pair { first: "Gandalf", second:
"Sauron" };

What if we wanted to write functions that work with generic data structures? They
would also have to be generic, right? As a simple example, how would we write a
function that returns the second item of a pair? We can do it as follows:

fn second<T>(pair: Pair<T>) {
pair.second;

}

We could callit as let a = second(magic_pair) ; producing 42.

Note the <T> character right after the function name; this is how generic functions
are declared.

[74]

Chapter 5

Let's now investigate why Option and Result are so powerful. Here is the definition
of the option type again:

enum Option<Ts> {
Some (T) ,
None

}
From this, we can define multiple concrete types as follows:

let x: Option<i8> = Some(5) ;

let pi: Option<f64> = Some(3.14159265359) ;
let none: Option<fé64> = None;

let none2 = None::<f64>;

let name: Option<&str> = Some ("Joyce") ;

When the type does not correspond with the value, a mismatched types error occurs,
similar to that in 1et magic: Option<f32s> = Some (42).

We can define a Person struct as follows:

struct Person ({
name: &'static str,
id: i32

}
We can also define a few Person objects as follows:

let pl = Person{ name: "James Bond", id: 7 }

7

let p2 = Person{ name: "Vin Diesel", id: 12 };
let p3 = Person{ name: "Robin Hood", id: 42 }

Then, using these, we can make Option or a vector for Person:

let opl: Option<Person> = Some (pl) ;
let pvec: Vec<Person> = vec! [p2, p3];

You should use the option type in a situation where you expect to get a value,
but there is a possibility that no value will be given. A typical scenario would
be user input.

[75]

Generalizing Code with Higher-order Functions and Parametrization

Somewhat related is the Result type that we first encountered in the Result and
Option section of Chapter 4, Structuring Data and Matching Patterns. This is used when
a computation should return a result, but it can also return an error if something
goes wrong. Result is defined with two generic types —T and E —as follows:

enum Result<T, E> {
Ok (T),
Err (E)

}

It again shows Rust's commitment to be on the safe side; if it's 0k, it will give back
a value of the T type, if there is a problem, then it will give back the error that will
be a value of the E type (which is usually an error message string). So, we could
read them also as Ok (what) and Err (why), where what has the T type and why
has the E type.

So, why are Option and Result killer features of Rust? Remember from Chapter 4,
Structuring Data and Matching Patterns in the section Result and Option how we used
Option when getting a number input? Here, it is given again:

let input num: Result<u32, > = buf.trim() .parse();

In other languages such as Java or C#, parsing the input to a number could result
in an exception (when the input contains non-numeric characters or when it

has nothing or null), and you would have to use a resource heavy try/catch to
construct to deal with it.

In Rust, the result of parse () is a Result, and we just test the Result return value
with a match, which is a much simpler mechanism:

match input num {
Ok (num) => println! ("{}", num),
Err (ex) => println! ("Please input an integer number! {}", ex)

Vi

Here is another example of how we can use Result to return an error
condition. We calculate the square root of a floating point number with the
std: :num: :Float: : sqrt () function:

fn sqgroot(r: £32) -> Result<f32, String> {
if r < 0.0 {
return Err ("Number cannot be negative!".to string());
}
Ok (Float: :sqrt (r))

}

[76]

Chapter 5

We guard against taking the square root of a negative number (which would give
NaN short for Not a Number) by returning an Err value.

let m = sgroot (42.0) ;
This prints out: The square root of 42 is 6.480741.

In the calling code, we use our trusted pattern match mechanism to distinguish
between the two cases:

match m {
Ok (sg) => println! ("The square root of 42 is {}", sq),
Err (str) => println! ("{}", str)

}

With let m = sgroot (-5.0) ;, the error message is printed as Number cannot be

negativel.

The use of match for both Opt ion and Result values ensures that

% no null values or errors can propagate through your code, which
= leaves no room for null pointer runtime errors or other exceptions to

crash your program.

Error handling

A Rust program must be maximally prepared to handle unforeseen errors, but
unexpected things can always happen, such as the division of an integer by zero:

// see code in Chapter 5/code/errors.rs

let x = 3;
let yv = 0;
x / vyi

When this happens, the program stops with the following message: thread
'<main>' panicked at 'attempted to divide by zero'.

[77]

Generalizing Code with Higher-order Functions and Parametrization

Panics

A situation could occur that is so bad (like when dividing by zero) that it is no longer
useful to continue running the program, that is, we cannot recover from the error. In
this case, we can invoke the panic! ("message") macro, which will release all the
resources owned by the thread, report the message, and then make the program exit.
We could improve the previous code as follows:

if (y == 0) { panic!("Division by 0 occurred, exiting"); }
println! ("{}", div(x, y));

Here, div is the following function:

fn div(x: i32, y: i32) -> £32 {
(x / y) as £32

}

A number of other macros such as the assert ! family can also be used to signal such
unwanted conditions:

assert! (x == 5); //thread <main> panicked at assertion failed: x ==
assert!(x == 5, "x is not equal to 5!");
// thread <main> panicked at "x is not equal to 5!"

assert_eq! (x, 5); // thread '<mains>' panicked at 'assertion failed:
(left: 3%, right: “57)',

When the condition is not true, they result in a panic situation and exit. The error
message that is given as the second parameter of assert! will be printed out if it
is present, otherwise the general message, assertion failed, will be given. The
assert! function is mostly useful to test for pre- and post-conditions.

Portions of code that would not be normally executed can contain the unreachable!
macro, which will panic when it is executed:

unreachable! () ;
// thread '<main>' panicked at 'internal error: entered unreachable
code'

Failures

In most cases, we would like to attempt to recover from the error and let the program
continue. Fortunately, we have already seen the basic handling techniques to do

just this in the Result and Option section of Chapter 4, Structuring Data and Matching
Patterns and the Generic data structures and functions section of this chapter.

[78]

Chapter 5

The option<T> enum can be used when we expect a value; at this point, a Some (T)
enum is given and a None value is returned when there was no value or in case of
failure. In this way, Rust forces nothingness to appear in a clear and syntactically
identifiable form, leaving no room for null pointer runtime errors.

The Result<T, E>enum can be used to return an ok (T) value in the normal
(success) case and an Err (E) value in the failure case, containing information about
the error. In the examples in the previous section, we used Result to safely read a
value from the keyboard and make a safe function to calculate the square root

of a number.

Methods on structs

Now, we'll see how Rust caters for more object-oriented developers who are used
to the object .method () type of notation instead of function (object). In Rust,
we can define methods on a struct, which pretty much compares to the traditional
class concept.

Suppose we are building a game in which the action takes place on a planet in a
distant solar system that is inhabited by hostile aliens. For this game, let's define
an Alien struct as follows:

// see code in Chapter 5/code/methods.rs
struct Alien {

health: u32,

damage: u32

}

Here, health is the alien's condition, and damage is the amount your health is
decreased when it attacks. We can make an alien as follows:

let mut bork = Alien{ health: 100, damage: 5 };

The health parameter cannot be more than 100, but we cannot impose this constraint
when we make a struct instance. The solution is to define a new method for aliens
where we can test the value:

impl Alien {
fn new(mut h: u32, d: u32) -> Alien {
// constraints:
if h > 100 { h = 100; }
Alien { health: h, damage: d }
}
}

[79]

Generalizing Code with Higher-order Functions and Parametrization

We can then construct a new Alien array as follows:

let mut berserk = Alien::new (150, 15);

We define the new method (and all other methods) inside an impl Alien block,
which is separate from the Alien struct definition. It returns an Alien object after all
constraints have been applied. We call it on the Alien struct itself as Alien: :new().
Since it is a static method, we don't call it on an Alien instance. Such a new method
closely resembles a constructor from object-oriented languages. The fact that it is
called new is merely by convention since we could have called it create () or
give_birth (). Another static method could be a warning that is given by all aliens:

fn warn() -> &'static str {
"Leave this planet immediately or perish!"

}
This can be called as follows:

println! ("{}", Alien::warn());

When a specific alien attacks, we can define a method for that alien as follows:

fn attack(&self) {
println! ("I attack! Your health lowers with {} damage points.",
self .damage) ;

}

And call it on the alien berserk as follows: berserk.attack () ;. A reference to
berserk (the Alien object on which the method is invoked) is passed as &self to
the method. In fact, self is similar to the self in Python or this in Java or C#. An
instance method always has &self as parameter, in contrast to a static method.

Here, the object is passed immutably, but what if attacking you also lowers the
alien's own health? Let's add a second attack method:

fn attack (&self)
self.health -= 10;

}

However, Rust rejects this with two compiler errors. First, it says, cannot assign
to immutable field self.health. We canremedy this by passing a mutable
reference to self like this: fn attack (&mut self).But now Rust complains,
duplicate definition of value 'attack'.This means that Rust does not allow
two methods with the same name; there is no method overloading in Rust. This is
because of the way type inference works.

[80]

Chapter 5

By changing the name to attack_and_suffer, we get this:

fn attack and suffer (&mut self, damage from other: u32) {
self.health -= damage from other;

}

After calling berserk.attack_and_suffer (31) ;, berserk's health is now 69
(where 31 is the number of damage points inflicted upon berserk by another
attacking alien).

No method overloading means that we can only define one new function (which
is optional anyway). We could invent different names for our constructors, which
is good from the point of view of code documentation. Otherwise, you could go
for what is called the Builder pattern on which you can find more information at
http://doc.rust-lang.org/book/method-syntax.html#builder-pattern.

[Note that, in Rust, methods can also be defined on tuples and enums.]

Perform the following exercise:

Complex numbers such as 2 + 5i (i is the square root of -1) have a real part (here 2)
and an imaginary part (5); both are floating point numbers. Define a Complex struct
and some methods for it:

* A new method to construct a complex number.

* A to_string method that prints a complex number such as 2 + 5i or 2 - 5i
(As a hint, use the format ! macro that works in the same way as println!
but returns a String.)

* An add method to add two complex numbers; this is a new complex number
where the real part is the sum of the real parts of the operands and the same
is applicable for the imaginary part as well.

* A times_ten method that changes the object itself by multiplying both parts
by 10 (As a hint, think carefully about the method's argument.)

e Asabonus, make an abs method that calculates the absolute value of a
complex number. (go to http://en.wikipedia.org/wiki/Absolute_
value.)

Now, test your methods! (for an example code, refer to Chapter 5/exercises/
complex.rs.) Rust defines a Complex type in crate num.

[81]

http://doc.rust-lang.org/book/method-syntax.html#builder-pattern
http://en.wikipedia.org/wiki/Absolute_value
http://en.wikipedia.org/wiki/Absolute_value

Generalizing Code with Higher-order Functions and Parametrization

Traits

What if our game is really diversely populated? That is, besides aliens, we also have
zombies and predators and, needless to say, they all want to attack. Can we abstract
their common behavior into something they all share? Of course, in Rust, we say that
they have a trait in common, which is analogous to an interface or a super class in
other languages. Let's call this trait Monster and because they all want to attack,

the first version could be as follows:

// see code in Chapter 5/code/traits.rs
trait Monster {
fn attack(&self);

}

A trait only contains a description of methods, that is, their type declarations or
signatures, but it has no real implementation. This is logical because zombies,
predators, and aliens could each have their own method of attack. So, there is no body
of code between {} after the function signature, but don't forget the ; to close it off.

When we want to implement the Monster trait for the Alien struct, we write the
following code:

impl Monster for Alien {

}

When we compile this, Rust throws the not all trait items implemented,
missing: 'attack' error. This is nice because Rust reminds us which methods
from a trait we have forgotten to implement. The following code would make it pass:

impl Monster for Alien (
fn attack (&self)
println! ("I attack! Your health lowers with {} damage points.",
self.damage) ;
}
}

So, the trait implementation for a type must provide the real code, which will be
executed when that method is called on an Alien object. If a Zombie attack is twice
as bad, its Monster implementation could be as follows:

impl Monster for Zombies {
fn attack (&self)
println! ("I bite you! Your health lowers with {} damage points.",
2 * gelf.damage) ;
}
}

[82]

Chapter 5

We could add other methods to our trait, such as a new method, a noise method,
and an attack with sound method:

trait Monster {
fn new(hlt: u32, dam: u32) -> Self;
fn attack(&self) ;
fn noise(&self) -> &'static str;
fn attacks with sound(&self) {
println! ("The Monster attacks by making an awkward sound {}",
self.noise());

}

Note that in the new method, the resulting object is of the self type, which becomes
the Alien or zZombie implementer type in a real implementation of the trait.

The functions that appear in a trait are called methods. Methods differ from
functions because they have &self as a parameter; this means that they have the
object on which they are invoked as a parameter, for example, fn noise (&self) ->
&'static str. When we call it with zmb1 .noise (), the zmb1 object becomes self.

A trait can provide default code for a method (similar to the attack_with sound
method here). The implementer type can choose to take this default code or override
it with its own version. Code in a trait method can also call upon other methods in
the trait with self.method (), similar to attack with sound where self.noise ()
is called.

The full implementation of the Monster trait for the Zombie type could then be
as follows:

impl Monster for Zombie {

fn new(mut h: u32, d: u32) -> Zombie ({
// constraints:
if h > 100 { h = 100; }
Zombie { health: h, damage: d }

}

fn attack (&self) ({
println! ("The Zombie bites! Your health lowers with {} damage

points.", 2 * self.damage) ;

}

fn noise(&self) -> &'static str {
"Aaargh!"

}
}

[83]

Generalizing Code with Higher-order Functions and Parametrization

Here is a short fragment of our game scenario:

let zmbl = Zombie { health: 75, damage: 15 };
println! ("Oh no, I hear: {}", zmbl.noise());
zmbl.attack () ;

It prints out: Oh no, I hear: RAaargh!
The Zombie bites! Your health lowers with 30 damage points.

Traits are not limited to structs; they can be implemented on any type. A type can
also implement many different traits. All the different implemented methods are
compiled to a version that is specific for their type, so after compilation, there exists,
for example, a new method for Alien, Zombie, and Predator.

Implementing all of the methods in a trait can be tedious work. For example, we
probably want to be able to show our creatures in this way:

println! ("{:?}", zmbl);

Unfortunately, this gives us the trait 'core::fmt::Debug' is not
implemented for the type 'Zombie' compiler error.So, from the message,
we can infer that this { : 2} uses a Debug trait. If we look this up in the docs, we
will find that we must implement an £mt method (specifying a way to format the
object). However, the compiler once again helps us here; if we prefix our Zombie
struct definition with the attribute # [derive (Debug)], then a default code version
is generated automatically:

[derive (Debug)]
struct Zombie { health: u32, damage: u32 }

The println! ("{:?}", zmbl); snippet now shows this: Zombie { health: 75,
damage: 15 }.

This also works for a whole list of other traits. (see the Built-in traits and Operator
Overloading section in this chapter and http://rustbyexample.com/trait/
derive.html.)

Using trait constraints

Back in the Generic data structures and functions section, we made a sqroot function
to calculate the square root of a 32-bit floating point number:

fn sgroot (r: £32) -> Result<f32, String> {
if r < 0.0 {
return Err ("Number cannot be negative!".to string());

[84]

http://rustbyexample.com/trait/derive.html
http://rustbyexample.com/trait/derive.html

Chapter 5

}

Ok (£32::sqrt (r))

}

What if we want to calculate the square root of an £64 number? It would be very
unpractical to make a different version for each type. The first attempt would be
to just replace £32 with a generic type <T>:

// see code in Chapter 5/code/trait constraints.rs
extern crate num;
use num::traits::Float;
fn sgroot<T>(r: T) -> Result<T, String>
if r < 0.0 {
return Err ("Number cannot be negative!".to string());
}
Ok (num: :traits: :Float: :sqgrt (r))

}

However, Rust would not agree because it doesn't know anything about T, and it
will give multiple errors (num is an external library which is imported with extern
crate num, see Chapter 7, Organizing Code and Macros):

binary operation "<~ cannot be applied to type "T~
the trait “core::marker::Copy~ is not implemented for the type "T~
the trait “core::num::NumCast~ is not implemented for the type "T~

All the traits that are missing are implemented by the Float trait. We can assert that
T must implement this trait as £n sqroot<T: num::traits::Floats>. This is called
putting a trait constraint or a trait bound on the T type, and this ensures that the
function can use all the methods of the specified trait.

To be as general as possible, we also use the special indicator for 0, which exists in
the num: :traits: :Float trait and is named num: : zero () ; so, our function now
becomes as follows:

fn sgroot<T: num::traits::Float>(r: T) -> Result<T, String> {
if r < num::zero() {
return Err ("Number cannot be negative!".to string());

}

Ok (num: :traits: :Float::sqgrt (r))

}
This works for both the following calls:

println! ("The square root of {} is {:?}", 42.0£32, sgroot(42.0£32));
println! ("The square root of {} is {:?}", 42.0f64, sgroot (42.0f64));

[85]

Generalizing Code with Higher-order Functions and Parametrization

This gives the output as:

The square root of 42 is Ok(6.480741)
The square root of 42 is Ok(6.480741)

However, we will get an error if we try to call sqroot on an integer as follows:
println! ("The square root of {} is {:?}", 42, sgroot (42));

We get an error, the trait “std::num::Float”™ is not implemented for the
type °_° [E0277], because an integer is not a Float type.

Our sqgroot function is generic and works for any Float type. The compiler creates
a different executable sqroot method for any type that it is supposed to work

with —in this case, £32 and f£64. Rust applies this mechanism when a function call

is polymorphic, that is, when a function can accept arguments of different type.

This is called static dispatch and no runtime overhead is involved. This should be
contrasted with how Java interfaces work where the dispatching is done dynamically
at runtime by the Java Virtual Machine. However, Rust also has a form of dynamic
dispatch; for more details on this, go to http://doc.rust-lang.org/1.0.0-beta/
book/static-and-dynamic-dispatch.html.

Another way to write the same trait constraint is with a where clause as follows:

fn sqroot<T>(r: T) -> Result<T, String> where T: num::traits::Float {

-}

Why does this other form exist? Well, there can be more than one generic T and U
types. In addition, each type can be constrained to multiple traits (which is indicated
by a + between the traits) such as Trait1, Trait2, and so on, like in this fictitious
example:

fn multe<T: Traitl, U: Traitl + Trait2s>(x: T, y: U) {}

With the where syntax, this can be made much more readable as follows:

fn multc<T, Us(x: T, y: U) where T: Traitl, U: Traitl + Trait2 {}
Perform the following exercise:

Define a Draw trait with a draw method. Define the s1 struct type with an integer
field and the s2 struct type with a float field.

Implement the Draw trait for s1 and s2 (draw prints the values and is surrounded
by ***)‘

Make a generic draw_object function that takes any object that implements Draw.

Test these! (see the example code in Chapter 5/exercises/draw_trait.rs)

[86]

http://doc.rust-lang.org/1.0.0-beta/book/static-and-dynamic-dispatch.html
http://doc.rust-lang.org/1.0.0-beta/book/static-and-dynamic-dispatch.html

Chapter 5

Built-in traits and operator overloading

The Rust standard library is packed with traits, which are used all over the place.
For example, there are traits for:

* Comparing objects (the Eq and pPartialEq traits).

* Ordering objects (the 0rd and Partialord traits).

* Creating an empty object (the Default trait).

* Formatting a value using { :?} (the Debug trait, which defines a fmt method).
* Copying an object (the Clone trait).

* Adding objects (the add trait, which defines an add method)

The + operator is just a nice way to use; add: n + mis the
same as nn.add (m) . So, if we implement the Add trait, we can
%“ use the + operator; this is called operator overloading. A lot
’ of other traits can also be used to overload operators, such as
Sub (-),Mul (*),Deref (*v),Index([]),and soon.

* Freeing the resources of an object when it goes out of scope (the Drop trait in
other words, the object has a destructor)

In the Iterators section, we described how an iterator works and used it on ranges
and arrays. In fact, iterator is also defined as a trait in Rustin std: :iter::Iterator.
From the docs for iterator (refer to http://doc.rust-lang.org/core/iter/
trait.Iterator.html), we see that we only need to define the next () method,
which advances the iterator to return the next value as an option. When next () is
implemented for the type of your object, we can then use a for in loop to iterate
over the object.

Summary

In this chapter, we learned all kinds of techniques to make our code more flexible
by using higher-order functions, closures, iterators, and generic types and functions.
We then reviewed the basic error-handling mechanisms that make good use of
generic types.

We also discovered the object-oriented nature of Rust, by defining methods on
structs and implementing traits. Finally, we saw that traits are the structuring
concept of Rust.

In the next chapter, we will expose the crown jewels of the Rust language, which
form the foundation of its memory safety behavior.

[87]

http://doc.rust-lang.org/core/iter/trait.Iterator.html
http://doc.rust-lang.org/core/iter/trait.Iterator.html

Pointers and Memory Safety

This is probably the most important chapter of this book. Here, we describe in detail
the unique way in which the Rust borrow-checker mechanism detects problems at
compile time to prevent memory safety errors. This is fundamental to everything else
in Rust as the language is focused on these concepts of ownership and borrowing.
Some of the material has already been discussed earlier, but here, we will strengthen
that foundation. We will cover the following topics:

¢ Pointers and references
* Ownership and borrowing
e Boxes

* Reference counting

Trying out and experimenting with the examples is the key here as there are many
concepts that you may not be familiar with yet.

Pointers and references

The The stack and the heap section of Chapter 2, Using Variables and Types gave us the
basic information that we needed to understand memory layout of Rust. Let's recap
the information and fill in some gaps.

The stack and the heap

When a program starts, by default a 2 MB chunk of memory called the stack is
granted to it. The program will use its stack to store all its local variables and
function parameters; for example, an 132 variable takes 4 bytes of the stack. When
our program calls a function, a new stack frame is allocated to it. Through this
mechanism, the stack knows the order in which the functions are called so that the
functions return correctly to the calling code and possibly return values as well.

[89]

Pointers and Memory Safety

Dynamically sized types, such as strings or arrays, can't be stored on the stack. For
these values, a program can request memory space on its heap, so this is a potentially
much bigger piece of memory than the stack.

1
~ When possible, stack allocation is preferred over heap allocation because
accessing the stack is a lot more efficient.
Lifetimes

All variables in a Rust code have a lifetime. Suppose we declare an n variable with
theletn = 42u32; binding. Such a value is valid from where it is declared to when it
is no longer referenced, which is called the lifetime of the variable. This is illustrated
in the following code snippet:

// see code in Chapter 6/code/lifetimes.rs

fn main() {

let n = 42u32;

let n2 = n; // a copy of the value from n to n2

life(n) ;
println! ("{}", m); // error: unresolved name “m .
println! ("{}", o); // error: unresolved name ‘o .

}

fn life(m: u32) -> u32 {
let o = m;
o

}

The lifetime of n ends when main () ends; in general, the start and end of a lifetime
happen in the same scope. The words lifetime and scope are synonymous, but we
generally use the word lifetime to refer to the extent of a reference. As in other
languages, local variables or parameters declared in a function do not exist anymore
after the function has finished executing; in Rust, we say that their lifetime has
ended. This is the case for the m and o variables in the preceding code snippet,
which are only known in the 1ife function.

Likewise, the lifetime of a variable declared in a nested block is restricted to that
block, like phi in the following example:

{
}

println! ("The value of phi is {}", phi); // is error

let phi = 1.618;

Trying to use phi when its lifetime is over results in an error: unresolved name
1 11
phi'.

[90]

Chapter 6

The lifetime of a value can be indicated in the code by an annotation, for example 'a,
which reads as lifetime where a is simply an indicator; it could also be written as 'b,
'n, or 'life. It's common to see single letters being used to represent lifetimes. In
the preceding example, an explicit lifetime indication was not necessary since there
were no references involved. All values tagged with the same lifetime have the same
maximum lifetime. We already know this notation from 'static, which, as we saw
in the Global constants section of Chapter 2, Using Variables and Types, is the lifetime of
things that last for the entire length of the program, so only use 'static when you
need the value that long.

In the following example, we have a transform function that explicitly declares the
lifetime of its s parameter to be 'a:

fn transform<'a>(s: &'a str) { /* ... */ }

Note the <'a> indication after the name of the function. In nearly all cases, this
explicit indication is not needed because the compiler is smart enough to deduce
the lifetimes, so we can simply write this:

fn transform without lifetime(s: &str) { /* ... */ }

Here is an example where even when we indicate a lifetime specifier 'a, the compiler
does not allow our code. Let's suppose that we define a Magician struct as follows:

struct Magician {
name: &'static str,
power: u32

}
We will get an error message if we try to construct the following function:

fn return magician<'a>() -> &'a Magician {
let mag = Magician { name: "Gandalf", power: 4625};
&mag

}

The error message is error: 'mag' does not live long enough. Why does this
happen? The lifetime of the mag value ends when the return_magician function
ends, but this function nevertheless tries to return a reference to the Magician value,
which no longer exists. Such an invalid reference is known as a dangling pointer. This
is a situation that would clearly lead to errors and cannot be allowed.

The lifespan of a pointer must always be shorter than or equal to than that of the
value which it points to, thus avoiding dangling (or null) references.

[91]

Pointers and Memory Safety

In some situations, the decision to determine whether the lifetime of an object has
ended is complicated, but in almost all cases, the borrow checker does this for

us automatically by inserting lifetime annotations in the intermediate code; so,
we don't have to do it. This is known as lifetime elision.

For example, when working with structs, we can safely assume that the struct
instance and its fields have the same lifetime. Only when the borrow checker is not
completely sure, we need to indicate the lifetime explicitly; however, this happens
only on rare occasions, mostly when references are returned.

One example is when we have a struct with fields that are references. The following
code snippet explains this:

struct MagicNumbers {
magnl: &u32,
magn2: &u32

}

This won't compile and will give us the following error: missing lifetime
specifier [E0106]

Therefore, we have to change the code as follows:

struct MagicNumbers<'as> {
magnl: &'a u32,
magn2: &'a u32

}
This specifies that both the struct and the fields have the lifetime as 'a.

Perform the following exercise:

Explain why the following code won't compile:

// see code in Chapter 6/exercises/dangling pointer.rs:
fn main() {
let m: &u32 = {
let n = &5u32;
&*n
Vi

let o = *m;

[92]

Chapter 6

Answer the same question for this code snippet as well:

let mut x = &3;
let mut y = 4;
X = &y;

Copying values and the Copy trait

In the code that we discussed in earlier section (see Chapter 6/code/lifetimes.
rs) the value of n is copied to a new location each time n is assigned via a new let
binding or passed as a function argument:

let n = 42u32;
// no move, only a copy of the value:
let n2 = n;
life(n) ;
fn life(m: u32) -> u32 {
let o = m;
o

}

At a certain moment in the program's execution, we would have four memory
locations that contain the copied value 42, which we can visualize as follows:

STACK
n 42
n2 42
m 42
0 42

Each value disappears (and its memory location is freed) when the lifetime of its
corresponding variable ends, which happens at the end of the function or code block
in which it is defined. Nothing much can go wrong with this Copy behavior, in which
the value (its bits) is simply copied to another location on the stack. Many built-in
types, such as u32 and i64, work similar to this, and this copy-value behavior is
defined in Rust as the copy trait, which u32 and i64 implement.

[93]

Pointers and Memory Safety

You can also implement the Copy trait for your own type, provided all of its fields or
items implement Copy. For example, the MagicNumber struct, which contains a field
of the us4 type, can have the same behavior. There are two ways to indicate this:

* One way is to explicitly name the copy implementation as follows:

struct MagicNumber {
value: u64

}

impl Copy for MagicNumber {}

e Otherwise, we can annotate it with a Copy attribute:

[derive (Copy)]
struct MagicNumber {
value: u64

}

This now means that we can create two different copies, mag and mag2, of a
MagicNumber by assignment:

let mag = MagicNumber {value: 42};
let mag2 = mag;

They are copies because they have different memory addresses (the values shown
will differ at each execution):

println! ("{:?}", &mag as *const MagicNumber); // address is 0x23fa88
println! ("{:?}", &mag2 as *const MagicNumber); // address is 0x23fa80

The (*const function is a so-called raw pointer; refer to Chapter 9, Programming at the
Boundaries for more details about it). A type that does not implement the copy trait is
called non-copyable.

Another way to accomplish this is by letting MagicNumber implement the Clone trait:

#[derive (Clone)]
struct MagicNumber {
value: u64

}

Then, we can use clone () mag into a different object called mag3s, effectively making
a copy as follows:

let mag3 = mag.clone() ;
println! ("{:?}", &mag3 as *const MagicNumber); // address is 0x23fa78

mag3 is a new pointer referencing a new copy of the value of mag.

[94]

Chapter 6

Pointers

The n variable in the let n = 42i32; binding is stored on the stack. Values on the
stack or the heap can be accessed by pointers. A pointer is a variable that contains
the memory address of some value. To access the value it points to, dereference the
pointer with *. This happens automatically in simple cases such as in println! or
when a pointer is given as a parameter to a method. For example, in the following
code, mis a pointer containing the address of n:

// see code in Chapter 6/code/references.rs:
let m = &n;

println! ("The address of n is {:p}", m);
println! ("The value of n is {}", *m);
println! ("The value of n is {}", m);

This prints out the following output, which differs for each program run:

The address of n is 0x23fb34
The value of n is 42
The value of n is 42

So, why do we need pointers? When we work with dynamically allocated values,
such as a String, that can change in size, the memory address of that value is not
known at compile time. Due to this, the memory address needs to be calculated at
runtime. So, to be able to keep track of it, we need a pointer for it whose value will
change when the location of string in memory changes.

The compiler automatically takes care of the memory allocation of pointers and the
freeing up of memory when their lifetime ends. You don't have to do this yourself
like in C/C++, where you could mess up by freeing memory at the wrong moment
or at multiple times.

The incorrect use of pointers in languages such as C++ leads to all kinds of problems.

However, Rust enforces a strong set of rules at compile time called the borrow
checker, so we are protected against them. We have already seen them in action, but
from here onwards, we'll explain the logic behind their rules.

Pointers can also be passed as arguments to functions, and they can be returned from
functions, but the compiler severely restricts their usage.

When passing a pointer value to a function, it is always better to use the reference-
dereference &* mechanism, as shown in this example:

let g = &42;
println! ("{}", square(q)); // 1764

[95]

Pointers and Memory Safety

fn square(k: &i32) -> i32 {
*k * xk

}

Rust has many kinds of pointers, which we will explore in this chapter. All pointers
(except raw pointers, which are discussed in Chapter 9, Programming at the Boundaries)
are guaranteed to be non-null (that is, they point to a valid location in the memory)
and are automatically cleaned up.

References

In our previous example, m, which had the &n value, is the simplest form of pointer,
and it is called a reference (or borrowed pointer); m is a reference to the stack-allocated
n variable and has the &i32 type because it points to a value of the 132 type.

In general, when n is a value of the T type, then the &n reference
= 1is of the &T type.

Here, n is immutable, so m is also immutable; for example, if you try to change the
value of n through m with *m = 7; you will get a cannot assign to immutable
borrowed content '*m' error. Contrary to C, Rust does not let you change an
immutable variable via its pointer.

Since there is no danger of changing the value of n through a reference, multiple
references to an immutable value are allowed; they can only be used to read the
value, for example:

let o = &n;
println! ("The address of n is {:p}", o);
println! ("The value of n is {}", *o);

It prints out as described earlier:

The address of n is 0x23fb34
The value of n is 42

We could represent this situation in the memory as follows:

42

=

=}

[96]

Chapter 6

It is clear that working with pointers such as this or in much more complex situations
necessitates much stricter rules than the copy behavior. For example, the memory
can only be freed when there are no variables or pointers associated with it anymore.
And when the value is mutable, can it be changed through any of its pointers? These
stricter rules, described by the ownership and borrowing system discussed in the
next section, are enforced by the compiler.

Mutable references do exist, and they are declared as 1et m = &mut n. However,
n also has to be a mutable value. When n is immutable, the compiler rejects the

m mutable reference binding with the error, cannot borrow immutable local
variable 'n' as mutable. This makes sense since immutable variables cannot be
changed even when you know their memory location.

To reiterate, in order to change a value through a reference, both the variable and
its reference have to be mutable, as shown in the following code snippet:

let mut u = 3.14f64;

let v = &mut u;

*v = 3.15;

println! ("The value of u is now {}", *v);

This will print: The value of u is now 3.15.
Now, the value at the memory location of u is changed to 3. 15.

However, note that we now cannot change (or even print) that value anymore by
using theu: u = u * 2.0; variable gives us a compiler error: cannot assign

to 'u' because it is borrowed (we explain why this is so in the Ownership and
Borrowing section of this chapter). We say that borrowing a variable (by making a
reference to it) freezes that variable; the original u variable is frozen (and no longer
usable) until the reference goes out of scope.

In addition, we can only have one mutable reference: let w = &mut u; which
results in the error: cannot borrow 'u' as mutable more than once at a
time. The compiler even adds the following note to the previous code line with:
let v = &mut u; note: previous borrow of 'u' occurs here; the mutable

<.~

borrow prevents subsequent moves, borrows, or modification of “u
until the borrow ends. This is logical; the compiler is (rightfully) concerned that
a change to the value of u through one reference might change its memory location
because u might change in size, so it will not fit anymore within its previous location
and would have to be relocated to another address. This would render all other
references to u as invalid, and even dangerous, because through them we might
inadvertently change another variable that has taken up the previous location of u!

[97]

Pointers and Memory Safety

A mutable value can also be changed by passing its address as a mutable reference
to a function, as shown in this example:

let mut m = 7;
add_three to magic(&mut m) ;
println! ("{}", m); // prints out 10

With the function add_three to _magic declared as follows:

fn add three to magic(num: &mut i32) {
*num += 3; // value is changed in place through +=

To summarize, when n is a mutable value of the T type, then only
one mutable reference to it (of the &mut T type) can exist at any time.
A .
Through this reference, the value can be changed.

Using ref in a match

If you want to get a reference to a matched variable inside a match function, use the
ref keyword, as shown in the following example:

// see code in Chapter 6/code/ref.rs
fn main() {
let n = 42;
match n {
ref r => println! ("Got a reference to {}", r),
}
let mut m = 42;
match m {
ref mut mr => {

println! ("Got a mutable reference to {}", mr);
*mr = 43;
b
}
println! ("m has changed to {}!", m);
}
Which prints out:

Got a reference to 42
Got a mutable reference to 42
m has changed to 43!

[98]

Chapter 6

The r variable inside the match has the &i32 type. In other words, the ref keyword
creates a reference for use in the pattern. If you need a mutable reference, use
ref mut.

We can also use ref to get a reference to a field of a struct or tuple in a destructuring
via a let binding. For example, while reusing the Magician struct, we can extract
the name of mag by using ref and then return it from the match:

let mag = Magician { name: "Gandalf", power: 4625};

let name = {
let Magician { name: ref ref to name, power: _ } = mag;
*ref to_name

Vi

println! ("The magician's name is {}", name);
Which prints: The magician's name is Gandalf.

References are the most common pointer type and have the most possibilities; other
pointer types should only be applied in very specific use cases.

Ownership and borrowing

In the previous section, the word borrowed was mentioned in most error messages.
What's this all about? What is the logic behind this borrow-checker mechanism?

Every program, whatever it does, whether reading data from a database or making
a computation, is concerned with handling resources. The most common resource in
a program is the memory space allocated to its variables. Other resources could be
files, network connections, database connections, and so on. Every resource is given
a name when we make a binding to it with 1et; in Rust's language, we say that the
resource gets an owner, for example, in the following code snippet, klaatu owns a
piece of memory that is taken up by the Alien struct instance:

// see code in Chapter 6/code/ownershipl.rs
struct Alien {

planet: String,

n_tentacles: u32

}

fn main() {
let mut klaatu = Alien{ planet: "Venus".to string(),
n_tentacles: 15 };

}

[99]

Pointers and Memory Safety

Only the owner can change the object it points to, and there can only be one owner
at a time, because the owner is responsible for freeing the object's resources. When
a reference goes out of scope, it will not deallocate the underlying memory, because
the reference is not the owner of the value. This makes sense; if an object could have
many owners, its resources could be freed more than once, which would lead to
problems. When the owner's lifetime has passed, the compiler frees the memory
automatically.

The owner can move the ownership of the object to another variable as follows:
let kl2 = klaatu;

Here, the ownership has moved from klaatu to k12, but no data is actually copied.
The original owner klaatu cannot be used anymore:

println! ("{}", klaatu.planet);
It gives the compiler error as: use of moved value 'klaatu.planet'.

On the other hand, we can borrow the resource by making a (in this example
mutable) reference k12 to klaatu with let k12 = &mut klaatu;.A borrow isa
temporary reference that passes the address of the data structure through s.

Now, k12 can change the object, for instance, when our alien loses a tentacle in
a battle:

kl2.n tentacles = 14;

println! ("{} - {}", kl2.planet, kl2.n tentacles);

This prints out: Venus - 14.

However, we will get an error message if we try to change the alien's planet through
the following code:

klaatu.planet = "Pluto".to_ string();

The error message is error: cannot assign to “klaatu.planet™ because it
is borrowed; it was indeed borrowed by k12. Similar to everyday life, while an
object is borrowed, the owner does not have access to it as it is no longer in their
possession. In order to change the resource, klaatu needs to own it, without the
resource being borrowed at the same time.

Rust even explains this to us with the note that it adds: borrow of 'klaatu.
planet' occurs here ownership.rs:8 let k12 = &mut klaatu;.

Since k12 borrows the resource, Rust also even forbids us to access the instance with
its former name, klaatu:

println! ("{} - {}", klaatu.planet, klaatu.n_tentacles);

[100]

Chapter 6

The compiler then throws this error message: error: cannot borrow 'klaatu.
planet' as immutable because 'klaatu' is also borrowed as mutable.

When a resource is moved or borrowed, the previous owner can no longer use it.
This prevents the memory problem that is known as a dangling pointer, which is
the use of a pointer that points to an invalid memory location.

But here is a revelation: if we isolate the borrowing by k12 in its own block,
as follows:

// see code in Chapter 6/code/ownership2.rs
fn main() {
let mut klaatu = Alien{ planet: "Venus".to string(), n tentacles: 15
}i
{
let k12 = &mut klaatu;
kl2) .n tentacles = 14;
println! ("{} - {}", kl2.planet, kl2.n tentacles);
// prints: Venus - 14
}
}

The former problems have disappeared! After the block, we can now do for example:

println! ("{} - {}", klaatu.planet, klaatu.n_tentacles); klaatu.
planet = "Pluto".to_ string();

println! ("{} - {}", klaatu.planet, klaatu.n_tentacles);

This prints:
Venus - 10
Pluto - 10.

Why does this happen? Because after the closing } of the code block in which

k12 was bound, its lifetime ended. The borrowing was over (a borrow has to end
sometime) and klaatu reclaimed full ownership, and thus the right to change. When
the compiler detects that the lifetime of the original owner, klaatu, has eventually
ended, the memory occupied by the struct instance is automatically freed.

In fact, this is a general rule in Rust; whenever an object goes out of scope and

it doesn't have an owner anymore, its destructor is automatically called and

the resources owned by it are freed so that there can never be any memory (or

other resource) leaks. In other words, Rust obeys the Resource Acquisition Is
Initialization (RAII) rule. For more information, go to http://en.wikipedia.org/
wiki/Resource Acquisition Is Initialization.

[101]

http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization
http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization

Pointers and Memory Safety

As we experimented in the References section, a resource can be immutably
borrowed many times, but while it is immutably borrowed, the original data
can't be mutably borrowed.

Another way to move a resource (and transfer the ownership) is to pass it as an
argument to a function; try this out in the following exercise:

* Examine the situation (1et k12 = s&klaatu;) when k12 is not a mutable
reference. Can you change the instance through k12? Can you change the
instance through klaatu? Explain the error with what you know about
ownership and borrowing (refer to Chapter 6/exercises/ownership3.rs).

* What will happen in the previous program if we do let klaatuc =
klaatu; before we define the 1et k12 = s&klaatu; binding?

* Examine if you can change the mutability of a resource by moving from an
immutable owner to a mutable owner.

* Forour Alien struct, write a grow_a_tentacle method that increases
the number of tentacles by one (refer to Chapter 6/exercises/grow_a_
tentacle.rs).

Boxes

Another pointer type in Rust is called the boxed pointer, Box<T>, which can be
defined for a value of a generic T type. A box is a non-copyable value. This pointer
type is used to allocate objects on the heap. For example, here we allocate an Alien
value on the heap by using the following code:

// see code in Chapter 6/code/boxesl.rs

let mut al = Box::new(Alien{ planet: "Mars".to string(), n tentacles:
4 3});

println! ("{}", al.n tentacles); // 4

The a1 variable is the only owner of this memory resource that may read from and
write to it.

We can make a reference to the value pointed to by the box pointer, and if both the
original box and this new reference are mutable, we can change the object through
this reference:

let a2 = &mut al;
println! ("{}", a2.planet); // Mars
a2.n_tentacles = 5;

[102]

Chapter 6

After such a borrowing, the usual ownership rules as specified earlier hold,
since a1 no longer has access, not even for reading;:

// error: cannot borrow “al.n_ tentacles” as immutable because ~al” 1is
also borrowed as mutable

// println! ("{}", al.n_tentacles); // is error!
// error: cannot assign to “al.planet” because it is borrowed
al.planet = "Pluto".to string(); // is error!

We can also use this mechanism to put simple values on the heap as follows:
let n = Box::new(42);

As always, n points by default to an immutable value and any attempt to change
this with:

*n = 67;
Provokes the error: cannot assign to immutable 'Box' content '*n'
Another reference can also point to the dereferenced Box value:

let g = &*n;
println! ("{}", q); // 42

In the following example, we again see a boxed value pointed to by n, but the
ownership of the value is now given to a mutable pointer, m:

// see code in Chapter 6/code/boxes2.rs

let n = Box::new(42);

let mut m = n;

*m = 67;

// println!("{}", n); // error: use of moved value: “n
println! ("{}", m); // 67

By dereferencing m and assigning a new value to m, this value is entered into the
memory location that was originally pointed to by n. Of course, n cannot be used
anynnore;mngettheerror:use of moved value: 'n' message because n is no
longer the owner of the wvalue.

Here is another example where the ownership has clearly has moved from a1 to a2:

let mut al = Box::new(Alien{ planet: "Mars".to_string(), n_tentacles:
4 });

let a2 = al;

println! ("{}", a2.n tentacles); // 4

[103]

Pointers and Memory Safety

No data being copied here, except the address of the struct value. After the move, a1
can no longer be used to access the data, and a2 is responsible for freeing the memory.

If a2 is given as an argument to a function such as use_alien in the following code
snippet, a2 also gives up the ownership, which is then transferred to the function:

use_alien(a2) ;

// Following line gives the error: use of moved value: “a2.n_
tentacles”

// println! ("{}", a2.n_tentacles);

} // end of main() function

fn use _alien(a: Box<Aliens) {
println! ("An alien from planet {} is freed after the closing brace",
a.planet) ;

}

This prints out: An alien from planet Mars is freed.

Indeed, when use_alien () has finished executing, the memory allocation for that
value is freed. However, in general, you must always let your function take a simple
reference as a parameter (in a similar way to the square function explained earlier),
rather than take a parameter of the Box type. We could improve our example by
calling a use_alien2 function as follows:

fn use_alien2(a: &Alien) {
println! ("An alien from planet {} is freed", a.planet);

}
And calling it with: use_alien2 (&*a2) ;.

Sometimes, your program may need to manipulate a recursive data structure that
refers to itself, as shown in the following struct:

struct Recurs ({
list: Vec<u8>,
rec_list: Option<Box<Recurss>>

}

This represents a list of lists of bytes. The rec_1list function is either a
Some<Box<Recurs>> function containing a Box pointer to another list or a None
value, which means that the list of lists ends there. Since the number of items in

this list (and thus its size) is only known at runtime such structures must be always
constructed as a Box type. For other use cases, you must prefer references over Boxes.

[104]

Chapter 6

Reference counting

Sometimes, you need several references to an immutable value at the same time; this
is also called shared ownership. Box<T> can't help us out here because this type has a
single owner by definition. For this, Rust provides the generic reference counted box,
Rc<T>, where multiple references can share the same resource. The std: : rc module
provides a way to share ownership of the same value between different rRc pointers;
the value remains alive as long as there is least one pointer referencing it.

In the following example, we have aliens that have a number of tentacles. Each
Tentacle has to indicate to which Alien it belongs; besides this, it also has other
properties (such as a degree of poison), so we define it also as a struct. A first attempt
at this could be the following code, which however does not compile (from Chapter
6/code/refcount_not_good.rsy

struct Alien {
name: String,
n_tentacles: u8

struct Tentacle {
poison: u8,
owner: Alien

fn main() {
let dhark = Alien { name: "Dharkalen".to_string(), n_tentacles: 7 };
// defining dhark's tentacles:
for i in 1lu8..dhark.n tentacles
Tentacle { poison: i * 3, owner: dhark }; // <- error!

}

The compiler gives the following error for the line in the for loop: error: use of
moved value 'dhark' - note: 'dhark' moved here because it has type

'Alien', which is non-copyable

When it is defined, each Alien Tentacle seemingly tries to make a copy of the
Alien instance as its owner, which makes no sense and is not allowed.

The correct version defines the owner in the Tentacle struct to have the
Rc<Aliens type:

// see code in Chapter 6/code/refcount.rs
use std::rc::Rc;
[derive (Debug)]

[105]

Pointers and Memory Safety

struct Alien ({
name: String,
n tentacles: u8
}
[derive (Debug)]
struct Tentacle ({
poison: u8,
owner: Rc<Alien>

fn main() {
let dhark = Alien { name: "Dharkalen".to string(), no_tentacles: 7

}i

let dhark master = Rc::new(dhark);

for i in 1u8..dhark master.n tentacles {
let t = Tentacle { poison: i * 3, owner: dhark master.clone() };
println! ("{:?2}", t);

}

}

This prints the following:

Tentacle { poison: 3, owner: Alien { name: "Dharkalen", n_tentacles: 7

I

Tentacle { poison: 6, owner: Alien { name: "Dharkalen", n_tentacles: 7

I

Tentacle { poison: 18, owner: Alien { name: "Dharkalen", n tentacles:

7} }

We envelop our Alien instance in an Re<T> type with Rc: :new (dhark). Applying
the clone () method on this Rc object provides each Tentacle with its own reference
to the Alien object. Note that clone () here copies the Rc pointer, not the Alien
struct. We also annotate the structs with # [derive (Debug)] so that we can print out
their instances through a printlnt ("{:?}", t);.

If we want mutability inside our Rc type, we have to either use a Cell pointer if the
value implements the Copy trait or a RefCell pointer. Both these smart pointers are
found in the std:cell module.

However, the Rc pointer type can only be used inside one thread of execution. If you
need shared ownership across multiple threads, you need to use the Arc<T> pointer
(short for atomic reference counted box), which is the thread-safe counterpart of rRc
(refer to the Atomic reference counting section of Chapter 8, Concurrency and Parallelism).

[106]

Chapter 6

An overview of pointers

In the following table, we summarize the different pointers used in Rust. T represents
a generic type. We haven't yet encountered the Arc, *const, and *mut pointers, but
they are included here for completeness.

Pointers Pointer names

Description

&T Reference This allows one or more references to read T.
&mut T Mutable reference This allows a single reference to read and write T.
This is a heap-allocated T with a single owner that
Box<T> Box p
may read and write T.
Rc<T> Rc pointer This is a heap-allocated T with many readers.

Arc<T> Arc pointer

This is like Re<T>, but enables safe mutable sharing
across threads (refer to Chapter 8, Concurrency and
Parallelism).

*const .
Raw pointer

This allows unsafe read access to T (refer to Chapter 9,
Programming at the Boundaries).

*mut T Mutable raw pointer

This allows unsafe read and write access to T (refer to
Chapter 9, Programming at the Boundaries).

Summary

In this chapter, we learned the intelligence behind the Rust compiler, which is
embodied in the principles of ownership, moving values, and borrowing. We saw
the different pointers that Rust advocates: references, boxes, and reference counters.
Now that we have a grasp on how this all works together, we will understand the
errors, warnings, and messages the compiler may throw at us in a much better way.

In the following chapter, we will expose the bigger units of code organization in
code, such as modules and crates, and how we can write macros to make coding

less repetitive.

[107]

Organizing Code and Macros

We start this chapter by discussing the large-scale code-organizing structures in
Rust, namely modules and crates. We will look at the following topics:

* Building crates

* Defining a module

* Visibility of items

* Importing modules and file hierarchy

* Importing external crates

* Exporting a public interface

* Adding external crates to a project

e The test module
We will also touch upon how to build macros in order to generate code and save
time and effort, particularly in these topics:

* The reason for using macros

* Developing macros

* Using macros from crates

Modules and crates

Until now, we only looked at the situation where our code fitted in one file.
However, when a project evolves, we will want to split the code across several
files, for example, if we put all the data structures and methods that describe a
certain functionality in the same file, how will the main code file be able to call
these functions in other files?

[109]

Organizing Code and Macros

In addition, when we start using multiple functions in varied files, it sometimes
happens that we want to use the same name for two different functions. How can
we properly differentiate between such functions? How can we make it so that some
functions are callable everywhere and others are not? For this, we need what other
languages call namespaces and access modifiers; in Rust, this is done through the
module system.

Building crates

At the highest level of building crates, there is the crate. The Rust distribution
contains a number of crates, such as the std crate of the standard library, which we
have already used often. Other built-in crates are the collections crate, with the
functionality to work with strings, vectors, lists, and key-value maps, and the test
crate, with unit-testing and micro-benchmarking functionalities.

A crate is the equivalent of a package or library in other languages. It is also the unit
of compilation; rustc only compiles one crate at a time. What does this mean? When
our project has a code file containing a main () function, then it is clear that our
project is an executable program (which is also called a binary) that starts execution
inmain (). For example, if we compile structs.rs as rustc structs.rs, a .exe
file structs.exe will be produced in Windows (and equivalent formats on other
operating systems) that can be executed on its own. This is the standard behavior
when you invoke rustc. When working with Cargo (refer to Chapter 1, Starting with
Rust), we have to indicate that we want a binary project at its creation with the --bin
ﬂag: cargo new projname --bin.

However, often your intention is to write a project whose code will be called from
other projects, a so-called shared library (thisisa .d11 file in Windows, a . so file in
Linux, and a .dy1ib file in Mac OS X.) In this case, your code will only contain the
data structures and functions to work on them. Then, you must explicitly indicate
this to the compiler using the - -crate-type flag with the 1ib option: rustc
--crate-type=1ib structs.rs.

The resulting file is far smaller in size and is called 1ibstructs.rlib; the suffix is
now .rlib (for the Rust library) and 1ib is prepended before the filename. If you
want the crate to have another name such as mycrate, then use the --crate-name
flag as follows:

rustc --crate-type=1lib --crate-name=mycrate structs.rs

[110]

Chapter 7

This creates a 1ibmycrate.rlib as the output file. An alternative to using the rustc
flags is to put this information as an attribute at the top of the code file, as follows:

// from Chapter 7/code/structs.rs
#! [crate type = "lib"]
#! [crate name = "mycrate"]

The crate_type attribute can take the bin, 1ib, r1ib, dylib, or staticlib values,
according to whether you want an executable binary or a library of a certain type
that is dynamic or statically linked. (In general, when an attr attribute applies to a
whole crate, the syntax to use in the code is #! [crate_attr].)

Each library used in an application is a separate crate. In any case, you need an
executable (binary) crate that uses the library crates.

Cargo's job is to handle crates (for more information on Cargo, refer to the Working
with Cargo section of Chapter 1, Starting with Rust); it creates a library project by
default. You can install other crates into your project from the crates repository at
https://crates.io; in the Adding external crates to a project section of this chapter,
we will see how this is done.

Defining a module

Crates are the compiled entities that get distributed on machines to execute. All of
the code of a crate is contained in an implicit root module. This code can then be split
up by the developer into code units called modules, which in fact, form a hierarchy
of submodules under the root module. This way the organization of our code can be
greatly improved. An evident candidate for a module is the test code —we'll use this
in the The test module section.

Modules can also be defined inside other modules as the so-called nested modules.
Modules do not get compiled individually; only crates get compiled. All the
module's code is inserted into the crate's source file before compilation starts.

In the previous chapters, we used built-in modules, such as io, str, and vec from
the std crate. The std crate contains many modules and functions that are used
in real projects; the most common types, traits, functions, and macros (such as
println!) are declared in the prelude module.

[111]

https://crates.io

Organizing Code and Macros

A module typically contains a collection of code items such as traits, structs,
methods, other functions, and even nested modules. The module's name defines
a namespace for all the objects that it contains. We define a module with the mod
keyword and a lowercase name (such as game1) as follows:

mod gamel
// all of the module's code items go in here

}

Similar as in Java each file is a module, for every code file the compiler defines an
implicit module, even when it does not contain the mod keyword. As we will see in
the Importing modules and file hierarchy section, such a code file can be imported into
the current code file with mod filename. Suppose game1 is the name of a module that
contains a func2 function. If you want to use this function in a code that is external
to this module, you would address it as gamel: : func2. However, whether this is
possible will depend on the visibility of func2.

The visibility of items

Items in a module are by default, only visible in the module itself; they are private
to the module. If you want to make an item callable from a code that is external to
the module, you must explicitly indicate this by prefixing the item with pub (which
stands for public). In the following code, trying to call funci () is not allowed by
the compiler: error: function “funcl® is private:.

// from Chapter 7/code/modules.rs
mod gamel
// all of the module's code items go in here
fn funcl() {
println! ("Am I visible?");
}
pub fn func2()
println! ("You called func2 in gamel!");

}

fn main() {
// gamel::funcl(); // <- error!
gamel: :func2() ;

}

However, if you call func2 (), it will work without any problem because it is public,
and this prints out: You called func2 in gamel!

[112]

Chapter 7

A function in a nested module can only be called if it is public, provided the nested
module itself is declared public, as shown in this code snippet:

mod gamel
// other code
pub mod subgamel
pub fn subfuncl()
println! ("You called subfuncl in subgamel!") ;

}
}
}

fn main() {
// other code
gamel: : subgamel: : subfuncl () ;

}

It prints out: You called subfuncl in subgamel!

A function in a module must be prefixed with its module name when it is called.
This distinguishes it from another function with the same name so that no name
conflicts occur.

When a struct is accessed from outside the module in which it is defined, it is only
visible when it is declared with pub. Moreover, its fields are private by default, so
you have to explicitly declare as pub the fields that you want to be visible outside.
This is the encapsulation property (also called information hiding) from traditional
object-oriented languages. In the following example, the name and age fields of the
Magician struct belong to the public interface but power does not:
pub struct Magician {

pub name: String,

pub age: i32,

power: 132

}

So this statement:
let magl = gamel::Magician { name: "Gandalf".to string(), age: 725,
power: 98};
This leads to the compiler error: field 'power' of struct 'gamel::Magician'
is private

Perform the following exercise:

Does this mean that we cannot make instances from a struct with private fields? Try
to think of a way around this. (As a hint, think about a constructor-like new function;
refer to Chapter 7/code/priv_struct.rs.)

[113]

Organizing Code and Macros

Importing modules and file hierarchy

The use keyword in use gamel::func2; imports a func2 function from the gamel
module so that it can be simply called with its name, func2 (). You can even give it a
shorter name with use gameil::func2 as gf2; so that it can be called as gf2 ().

When the game1 module contains two (or more) functions such as func2 and func3
that we want to import, this can be done with use gamel::{func2, func3};.

If you want to import all the (public) functions of the game1 module, you can do it
with *: use gamel::*;.

However, using such a global import is not the best practice, except in modules for
testing. The main reason for this is that a global import makes it harder to see where
names are bound. Furthermore, they are forwards-incompatible, since new upstream
exports can clash with existing names.

Inside a module, self:: and super: : can be prepended to a path similar to
gamel: : func2 to distinguish between a function in the current module itself
and a function in the parent scope, outside of the module. The use statements
are preferably written at the top of the code file, so that they work for the whole
of the code.

In the previous example, the module was defined in the main source file itself; in
most cases, a module will be defined in another source file. So, how do we import
such modules? In Rust, we can insert the entire contents of a module's source file
into the current file by declaring the module at the top of the code (but after any
use statements) like this: mod modul1l;, this can be optionally preceded by pub. This
statement will look for a modulil.rs file in the same folder as the current source file
and import its code within the current code inside a modul1 module. If a modull.rs
file is not found, it will look for a mod. rs file in the modul1 subfolder and insert

its code.

Here is a simple import_modules.rs example that contains the following code:

// from Chapter 7/code/import modules.rs
mod modull;
mod modul2;
fn main() {
modull: : funcl () ;
modul2: : funcl () ;

}

[114]

Chapter 7

In the modul1 subfolder, we have the mod. rs file that contains the following
code snippet:

pub fn funcl() {
println! ("called funcl from modull") ;

}

The modul2.rs file in the same folder as import _modules.rs contains the
following code:

pub fn funcl() {
println! ("called funcl from modul2") ;

}

Note that these source files of the module don't contain the mod
% declaration anymore because they were already declared in
e import modules.rs.

Executing import_modules prints out the following output: called funcl from
modull and called funcl from modul2.

What happens if you simply call func1 () inmain () ? Now, the compiler doesn't
know which func1 to call, from modull or from modulz2, resulting in the error:
unresolved name 'funcl' message. However, if we add use modull::funcl
and then call func1 (), it will work as the ambiguity is resolved.

Importing external crates

In the Traits section of Chapter 5, Generalizing Code with Higher-order Functions and
Parametrization, we developed the traits.rs structs for Alien, Zombie, and Predator
characters that implemented a Monster trait. The code file contained a main () function
to make it executable. We will now incorporate this code (without the main () part)ina
library project called monsters and see how we can call this code.

Create the project with cargo new monsters and create a folder structure in the
monsters/src/lib.rs file with the template code:

#[test]
fn it works () {

}

[115]

Organizing Code and Macros

Remove this code and replace it with the code from traits.rs, but omit the main ()
function. In addition, add a simple print_from monsters () function to test
whether you can call it from the library:

// from Chapter 7/code/monsters/src/lib.rs:
fn print from monsters() {
println! ("Printing from crate monsters!");

}

Then, compile the library with cargo build, producing a 1ibmonsters-hash.rlib
library file in the target/debug folder (where hash is a random string similar to
547968b7c0a4d435).

Now, we create a main.rs file in the src folder to make an executable file that can
call into our monsters library and copy the original main () code from traits.rsin
it, adding a call to print_from_monsters():

// from Chapter 7/code/monsters/src/main.rs:
fn main() {
print from monsters() ;
let zmbl = Zombie {health: 75, damage: 15};
println! ("Oh no, I hear: {}", zmbl.noise());
zmbl.attack () ;
println! ("{:?}", zmbl);

This is a common design pattern—a library project containing an
= executable program that can be used to demonstrate or test the library.

The cargo build function will now compile both the projects if there are no
problems. However, the code will not compile, and the compiler will give the error:
unresolved name 'print_from monsters' message, clearly the code for the
function is not found.

The first thing that we have to do is make the library code available to our program,
which can be done by placing the following statement at the start:

extern crate monsters;

[116]

Chapter 7

This statement will import all the (public) items contained in the crate monsters
under a module with the same name. However, this is not enough; we must also
indicate that the print from monsters function can be found in the monsters
module. Indeed, the monsters crate creates an implicit module with the same name.
So, we have to call our function as follows:

monsters::print from monsters();

Now, we get the error: function 'print_from monsters' is private message,
which tells us that the function is found, but it is inaccessible. This is easy to fix. In
the Visibility of Items section, we saw how to remedy this; we must prefix the function
header with pub, as follows:

pub fn print from monsters() { .. }

Now, this part of our code works! Open a terminal, go (cd) to the target/debug
folder and start the monsters executable. This will give the output as Printing
from crate monsters!.

You will see that extern crate abc (with abc a crate name) is often used in code,
but you will never see extern crate std; why does this happen? The reason is
that std is imported by default in every other crate. For the same reason, the contents
of the prelude module are imported by default in to every module.

Exporting a public interface

The compiler throws the following error at us: error: Zombie does not name a
structure. Clearly, the code for the Zombie struct is not found. Since this struct also
resides in the monsters module, the solution to fix this is easy; prefix Zombie with
monsters: : as follows:

let zmbl = monsters::Zombie {health: 75, damage: 15};

Another error: struct 'Zombie' is private, makes it clear that we must mark the
Zombie struct with pub, that is, pub struct Zombie { .. }.

Now, we will get an error on the line that contains zmb1.noise (): error: type
'monsters: : Zombie' does not implement any method in scope named 'noise’

The accompanying help note explains to us what to do and why we should do

it: help: methods from traits can only be called if the trait is in
scope; the following trait is implemented but not in scope, perhaps
add a “use” for it:

[117]

Organizing Code and Macros

help: candidate #1: use 'monsters::Monster'.So, let's add this to the
following code:

extern crate monsters;

use monsters: :Monster;

The last error —error: trait 'Monster' is private - source trait is
private— that we have to solve occurs at the use line. Again very logical; if we
want to use a trait, it must be publicly visible: pub trait Monster { .. }.

Now, cargo build is successful, if we execute monsters the output will be as follows:

Printing from crate monsters!

Oh no, I hear: Aaargh!

The Zombie bites! Your health lowers with 30 damage points.
Zombie { health: 75, damage: 15 }

This makes it clear that the things we want to make visible in our module (or put
in another way, that we want to export) must be annotated with pub; they form the
interface that our module exposes to the outside world.

Adding external crates to a project

How to use libraries written by others (that is, choose from the multitude of libraries
available at https://crates.io) in our project? Cargo makes this very easy.

Suppose we want to use both the 1og and the mac libraries in the monsters project.
The 1log function is a simple logging framework by the Rust Project Developers that
gives us a number of macros such as info!, warn!, and trace! to log information
messages. The mac function is an amazing collection of useful macros, which is
maintained by Jonathan Reem.

To get these libraries, we need to edit our Cargo. toml configuration file and add
a [dependencies] section when it isn't already present. Beneath it, we specify the
versions of the libraries that we want to use:

[dependencies]
log = "0.2.5"
mac = "*xn

A * character denotes that any version is okay, and the most recent version
will be installed.

[118]

https://crates.io

Chapter 7

Save the file and, in the monsters folder, issue the cargo build command. Cargo
will take care of locally installing and compiling the libraries:

ke Opdr.
:'-\monsters,‘:-cargo bui I ¢
Updating registry °
Downloading mac v0.0.
Compiling Tog vO0.2.

Compiling mac v0.0.

Compiling monsters
src\1lib.rs:35:16: 35:
d_code)] on by default

It will also automatically update the cargo. lock file to register the installed versions
of the libraries so that subsequent project builds will always use the same versions
(here, 1og v0.3.1and mac vo0.0.1).If you later want to update to the most recent
version of a library, for example for the 1og library, do a cargo update -p logora
cargo update to update all libraries. This will download the latest crate versions for
the crates that are indicated with the * version. If you want a higher version for a
crate, change its version number in Cargo. toml.

Start using the libraries by importing their crates in the code:

[macro_use]
extern crate log;
extern crate mac;

The # [macro_use] attribute allows the use of macros defined in the external crate.
(See the next section for more information). Then, we can for example, use the info!
macro from crate mac as follows:

info! ("Gathering information from monster {:?}", zmbl);

The test module

Let's apply this code organization to a module that contains our tests. In a larger
project, tests are separated from the application code as follows:

e Unit tests are collected in a test module

* Integration tests are collected in a 1ib. rs file in a tests directory

[119]

Organizing Code and Macros

Let's make a concrete example by using our cube function from Chapter 3, Using

Functions and Control Structures, and start its project with cargo new cube. We must

replace the code in src\1ib. rs with this:

// from Chapter 7/code/cube/src/lib.rs:
#[cfg(test)]
mod test;
pub fn cube(val: u32) -> u32 {
// implementation goes here
val * val * val

}

[cfg (test)] ensures that the test module is only compiled when testing. In the

second line, we declare our test module, which is preceded by the test attribute.

The code of this module goes into a test . rs file in the same folder:

// from Chapter 7/code/cube/src/test.rs:
use super::¥*;
#[test]
fn cube of 2 is 8() {
assert_eq! (cube(2), 8);

}

// other test functions:

//

We need to use super: : * to import all the functions that need to test; here,
this is cube.

Integration tests go into a 1ib. rs file in a tests folder:

// from Chapter 7/code/cube/tests/lib.rs:
extern crate cube;

#[test]
fn cube of 4 is 64() {
assert eq! (cube::cube(4), 64);

}

// other test functions:

//

Here, we need to import the cube crate with an extern command and qualify the
cube function name with its module name, cube (or else do a use cube: :cube;).

[120]

Chapter 7

The test code will only be compiled and run when we give the cargo test
command, which will give these results:

F:\Rust\Rust book\Chapter 7 - Organizing code and macros\cod argo test
ing cube v0.0.1 (file:///F:/Rust/Ru 20book/Chapter%207)-%200rganizir
! Omacros/code/cube)
Running target\debug\cube-9df08137b1193fbc.exe

running 1 st
test test::cube_of_2_is_8 ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured
Running target\debug\1ib-96e9f24771964202.exe

running 1 tes

t
test cube_of_4_1is_64 ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured
Doc-tests cube
running 0 tests

test result: ok. O passed; 0 failed; 0 ignored; 0 measured

We can see that our two tests passed. The end of the output also shows that tests in
the documentation are also executed if they are present.

Macros

Macros are not new to you as we have already used them. Every time we called an
expression that ended with an exclamation mark (!), we called a built-in macro; the
1 sign distinguishes it from a function. In our code until now, we have already used
println!, assert_eq!, panic!, and vec! macros.

Why do we use macros?

Macros make powerful language or syntax extensions; therefore, they make
metaprogramming possible. For example, Rust has a regex! macro that allows you
to define regular expressions in your program, which are compiled while your code
is compiled. This way the regular expressions are verified, they can be optimized at
compile time, and there is no runtime overhead.

[121]

Organizing Code and Macros

Macros can capture repetitive or resembling code patterns and replace them

with other source code: the macro expands the original code into new code. This
expansion happens early in compilation, before any static checking is done, so

the resulting code is compiled together with the original code. In this sense, they
resemble Lisp macros much more than C macros. Rust macros allow you to write
Don't Repeat Yourself (DRY) code by factoring out the common parts of functions.
However, a macro is at a higher level than a function because a macro allows you
to generate the code for many functions at compile time.

A Rust developer can also write his/her own macros, replacing repetitive code with
much simpler code and thereby automating tasks. On the other side of the spectrum, it
could even make it possible to write domain-specific languages. Macro coding follows
a specific set of declarative pattern-based rules. Rust's macro system is also hygienic,
which means that no conflict is possible between the variables used in the macro and
those outside the macro. Each macro expansion happens in a distinct syntax context,
and each variable is tagged with the syntax context where it was introduced.

Macro code itself is harder to understand than normal Rust code, so it is not that easy
to make. However, you won't code macros every day; if a macro is tested, just use

it. The full story of macro writing extends into advanced regions of Rust, but in the
following sections, we will discuss the basic techniques to develop macros.

Developing macros

The basic structure of a macro definition for a macro with the mac1 name is of the
following form:

macro rules! macl {
(pattern) => (expansion) ;
(pattern) => (expansion) ;

The definition of a macro is also done through a macro, that is, the macro_rules
macro! As you can see a macro is similar to a match block as it defines one or more
rules for pattern matching, and each rule ends with a semicolon. Every rule consists
of a pattern before the => sign (which also called a matcher) that is replaced with the
expansion part during compilation, and not while executing the code.

[122]

Chapter 7

The following welcome! macro expects no pattern and expands into a print
statement by using the print1n! macro; this is simple, but it demonstrates
how macros work:

// from Chapter 7/code/macros.rs
macro_rules! welcome {
() => (

println! (""Welcome to the Game!");

}
It is invoked by adding an exclamation sign (!) to its name:

fn main() {

welcome! ()

}

This prints out: welcome to the Gamel!.
A matcher can contain an expression of the $arg: frag form:

* The $arg function binds an arg meta-variable to a value when the macro is
called. Variables used inside a macro such as $arg, are prefixed with a $ sign
to distinguish them from normal variables in the code.

* The frag function is a fragment specifier and can be either expr, item, block,
stmt, pat, ty (type), ident, path, or tt.

(You can find more information on the meaning of these fragments in the
official documentation at http://doc.rust-lang.org/1.0.0/book/advanced-
macros.html.)

Any other Rust literals (tokens) that appear in a matcher must match exactly. For
example, the following mac1 macro:

macro_rules! macl {
($arg:expr) => (println! ("arg is {}", $arg));

}

When you call mac1! (42) ;, it will print out arg is 42. The mac1 function looks at
its argument, 42, as an expression (expr) and binds arg to the value.

[123]

http://doc.rust-lang.org/1.0.0/book/advanced-macros.html
http://doc.rust-lang.org/1.0.0/book/advanced-macros.html

Organizing Code and Macros

Perform the following exercises:

* Write a mac2 macro that triples its argument. Test it out for these arguments:
5and 2 + 3.

* Write a mac3 macro that takes an identifier name and replaces it with
a binding of that name to 42. (As a hint, use $arg:ident instead of
$arg:expr; ident is used for variable and function names.)

* Write a mac4 macro that when invoked like mac4! ("Where am 1?");, prints
out start - Where am I? - end. (Refer to the example code in Chapter
7/exercises/macro_ex. rs.)

Repetition

What would we do if there is more than one argument? We will enclose the pattern
witha $(...)*, where * means zero or more (instead of *, you can use +, which
means one or more). For example, the following printall macro invokes println!
on each of its arguments, which can be of the arbitrary type and are separated by a:

macro_rules! printall {
($($arg:expr), *) => ({$(print! ("{} / ", $arg)); *});

}

When called with printall! ("hello", 42, 3.14); it will print out: hello / 42
/ 3.14 /.

In the example, each argument (separated by commas) is substituted by a
corresponding invocation of print ! that is separated by a /. Note that on the
right-hand side, we have to make a code block of the resulting print statements
by enclosing them in { }.

Creating a new function

Here is a create_fn macro to create a new function at compile time:

macro_rules! create fn {

(Sfname:ident) => (
fn $fname()
println! ("Called the function {:?} ()", stringify! ($fname))

}

[124]

Chapter 7

The stringify! macro simply makes a string from its argument. Now, we can
invoke this macro with create fn! (£n1) ;. This statement does not sit inside

main () or another function; it is transformed during compilation into the function
definition. Then, a normal call to the £n1 () function will call it, here printing called
the function "fnl" ().

In the following massert macro, we mimic the behavior of the assert ! macro,
which does nothing when its expression argument is true but panics when it is false:

macro rules! massert {

(sarg:expr) => (
if $arg {}
else { panic! ("Assertion failed!"); }
) ;
}
For example, massert! (1 == 42); will print out thread '<main>' panicked at

'Assertion failed!'.

In the following statements, we test whether the v vector contains certain elements:

let v = [10, 40, 30];
massert! (v.contains (&30)) ;
massert! (!v.contains (&50)) ;

The unless macro mimics an unless statement where a branch is executed if the arg
condition is not true. For example:

unless! (v.contains (&25), println! ("v does not contain 25"));
This should print out v does not contain 25 because the condition is not true.

This is also a one-line macro:

macro_rules! unless {
(Sarg:expr, S$branch:expr) => (1f !S$Sarg { Sbranch };) ;

}

The last example combines the techniques that we have seen so far. In the Attributes
- Testing section of Chapter 3, Using Functions and Control Structures, we saw how to
make a test function with the # [test] attribute. Let us create a test eq macro that
generates a test function when it is invoked with this:

test eq! (seven times six is forty two, 7 * 6, 42);

[125]

Organizing Code and Macros

The test function is as follows:

#[test]
fn seven times six is forty two() {
assert _eq! (7 * 6, 42);

}
We also want a test that fails:
test eq! (seven times six is not forty three, 7 * 6, 43);

The first argument of test_eq is the test's name and the second and third
arguments are values to be compared for equality, so in general, the format is:
test eq! (name, left, right);.

Here, name is an identifier; 1eft and right are expressions. Like the create fn
invocation, the test_eq! calls are written outside a function.

Now, we can compose our macro as follows:

macro_rules! test eqg {
($name:ident, $left:expr, $right:expr) => {
#[test]
fn $name () {
assert eq! (sleft, S$right);

}
You can create the test runner by calling rustc --test macros.rs.
When the macros executable is run, it prints out:

running 2 tests
test seven times six is forty two ... ok
test seven times six is not forty three ... FAILED

A macro can also be recursive and call itself in the expansion branch. This is useful
for processing tree-structured input, for example, when parsing HTML code.

[126]

Chapter 7

Using macros from crates

As we demonstrated at the end of the Adding external crates to a project section,
loading all the macros from an external crate should done by preceding the extern
crate abc with the # [macro_use] attribute. If you only need the mac1 and mac2
macros, you can write this:

[macro use(macl, mac2)]
extern crate abc;

If the attribute is not present, no macros are loaded from abc. Moreover, inside the
abc module, only macros defined with the # [macro_export] attribute can be loaded
in another module. To distinguish macros with the same name in different modules,
use the $crate variable in the macro. Within the code of a macro imported from an
abc crate, the special scrate macro variable will expand to : :abc.

Summary

In this chapter, we learned how to structure modules into crates to make our code
more flexible and modular. Now, you also know the basic rules for writing macros
for more compact and less repetitive code.

In the following chapter, we will explore the power of Rust when it comes to the
concurrent and parallel execution of code, and how Rust also preserves memory
safety in this area.

[127]

Concurrency and Parallelism

As a modern systems-level programming language, Rust has to have a good story for
executing code concurrently and parallely on many processors simultaneously. And
indeed, it does; Rust provides a wide selection of concurrency and parallel tools. Its
type system is strong enough to write concurrent primitives that have properties
unlike anything that existed before. Particularly, it can encode a wide selection of
memory safe parallel abstractions that are also guaranteed to be data-race free while
not employing a garbage collector. This is mind blowing as no other language can do
this. All these features are not ingrained in the language itself, but they are provided
by libraries, so improved or new versions can always be built. Developers should
choose the tool that is right for the job at hand, or they can improve on or develop
new tools.

We will discuss the following topics in this chapter:

* Concurrency and threads
* Shared mutable state
* Communication through channels

* Synchronous and asynchronous communication

Concurrency and threads

A system is concurrent when several computations are being executed at the same
time and are potentially interacting with each other. The computations can only run
in parallel (that is, simultaneously) when they are being executed on different cores
Or processors.

An executing Rust program consists of a collection of native operating system (OS)
threads; the OS is also responsible for their scheduling. The unit of computation in
Rust is called a thread, which is a type that is defined in the std: : thread module.
Each thread has its own stack and local state.

[129]

Concurrency and Parallelism

Until now, our Rust programs only had one thread, the main thread, corresponding
with the execution of the main () function. However, a Rust program can create
lots of threads to work simultaneously when this is needed. Each thread (not only
main ()) can act as a parent and generate any number of child threads.

The following action can be done on the data:

* It can be shared across threads (refer to the Shared mutable state through
atomic types section)

* It can be sent between threads (refer to the Communication through
channels section)

Creating threads

A thread can be created by spawning it; this creates an independent detached child
thread that can generally outlive its parent. This is demonstrated in the following
code snippet:

// code from Chapter 8/code/thread spawn.rs:

use std::thread;

fn main() {
thread: :spawn (move || {
println! ("Hello from the goblin in the spawned thread!");
R

}

The spawn argument is a closure (here without parameters, so | |), which is
scheduled to execute independently from the parent (here, this is the main ()) thread.
Note that this is a moving closure, which takes ownership of the variables in context.
Our closure here is a simple print statement, but in a real example, this could be
replaced by a heavy and/or time-consuming operation.

However, when we execute this code, we normally don't see any output; why

does this happen? It turns out that main () is a bad parent (as far as threading is
concerned) and doesn't wait for its children to end properly; when the end of main ()
shuts down the program, it terminates other threads even if they are still running,.
The output of the spawned thread becomes visible if we let main () pause for a brief
moment before it terminates. This can be done with the thread: : sleep ms method,
which takes an unsigned 32-bit integer in milliseconds:

fn main() {
thread: :spawn (move || { .. });
thread::sleep ms(50);

[130]

Chapter 8

This now prints out: Hello from the goblin in the spawned thread!.

In general, this period of pause is not needed; children threads that are spawned can
live longer than their parent thread and continue to execute when their parent has
already stopped.

A better practice in this case, however, is to capture the join handle that spawn
returns in a variable. Calling the join () method on handle will block the parent
thread and make it wait until the child thread has finished its execution. It returns a
Result instance; unwrap () will take the value from ok and return the result of the
child thread (whichis () in this case because it is a print statement) or panic in the
Err case:

fn main() {
let handle = thread::spawn(move || {
println! ("Hello from the goblin in the spawned thread!");
R
// do other work in the meantime
let output = handle.join() .unwrap() ;
println! ("{:?}", output); // ()

}

If no other work has to be done while the child thread is executing, we can also
write this:

thread: :spawn (move || {
// work done in child thread
}) .join();

In this case, we are waiting synchronously for the child thread to finish, so there is no
good reason to start a new thread.

Starting a number of threads

Each thread has its own stack and local state, and by default, no data is shared
between threads unless it is immutable data. Generating threads is a very lightweight
process since starting tens of thousands of threads only takes a few seconds. The
following program does just that and prints out the numbers from 0 to 9,999:

// code from Chapter 8/code/many threads.rs:
use std::thread;
static NTHREADS: 132 = 10000;

fn main() {
for i in 0..NTHREADS ({
let _ = thread::spawn(move || {

[131]

Concurrency and Parallelism

println! ("this is thread number {}", i)

3N
}

Since the numbers are printed in independent threads, the order is not preserved in
the output; so, for example, it could start with:

this is thread number
this is thread number
this is thread number
this is thread number
this is thread number
this is thread number

o U1l oY N B W

this is thread number

A question that often arises is: how many threads do I have to spawn? The basic
rule is that CPU-intensive tasks have the same number of threads as CPU cores.
This number can be retrieved in Rust by using the num_cpus crate. Let's make

a new project with cargo new many_threads --bin:

* Add the crate dependency to Cargo.toml:

[dependencies]
num_cpus = "*"

* Then, change main.rs to the following code:

extern crate num cpus;
fn main() {
let ncpus = num cpus::get();
println! ("The number of cpus in this machine is: {}", ncpus);

}

* From within the many threads folder, do a cargo build to install the crate
and compile the code. Executing the program with cargo run gives the
following output (dependent on the computer): The number of cpus in
this machine is: 8.

Now, you can start this (or any other) number of threads in a pool. This functionality
is provided by the threadpool crate, which we can get by adding the threadpool =
"% to the cargo. toml dependency and doing a cargo build. Add the following code
to the start of the file:

extern crate threadpool;

use std::thread;
use threadpool: :ThreadPool;

[132]

Chapter 8

And, this code to the main () function:

let pool = ThreadPool: :new(ncpus) ;
for i in 0..ncpus {
pool.execute (move || {
println! ("this is thread number {}", i)
P i
}

thread: :sleep ms (50) ;

When executed, the preceding code yields the following output:

this is thread number 0
this is thread number
this is thread number
this is thread number
this is thread number
this is thread number
this is thread number

N O R WU,

this is thread number

A thread pool is used for running a number of jobs on a fixed set of parallel worker
threads; it creates the given number of worker threads and replenishes the pool if
any thread panics.

Panicking threads

What happens when one of the spawned threads gets into a panic? This causes no
problem as the threads are isolated from each other; only the panicking thread will
crash after it frees its resources, but the parent thread is not affected. In fact, the
parent can test the is_err return value from spawn as follows:

// code from Chapter 8/code/panic_ thread.rs:
use std::thread;

fn main() {
let result = thread::spawn(move || {
panic! ("I have fallen into an unrecoverable trap!");
}) .join() ;
if result.is err() {

println! ("This child has panicked") ;

}

[133]

Concurrency and Parallelism

The preceding code prints out:

thread '<unnameds>' panicked at 'I' have fallen into an unrecoverable
trap!'
This child has panicked

Otherwise, to put it another way, the thread is the unit of failure isolation.

Thread-safety

Traditional programming with threads is very difficult to get right if you allow the
different threads to work on the same mutable data, the so-called shared memory.
When two or more threads simultaneously change data, then data corruption (also
called data racing) can occur due to the unpredictability of the threads' scheduling.
In general, data (or a type) is said to be thread-safe when its contents will not be
corrupted by the execution of different threads. Other languages offer no such help,
but the Rust compiler simply forbids non thread-safe situations to occur. The same
ownership strategy that pervades Rust to prevent memory safety errors also makes
you write safe concurrent programs. Consider the following program:

// code from Chapter 8/code/not_shared.rs:
use std::thread;
fn main() {
let mut health = 12;
for i in 2..5 {
thread: :spawn (move || {
health *= 1i;
I
}

thread::sleep ms(2000) ;
println! ("{}", health); // 12

}

Our initial health is 12, but there are 3 fairies who can double, triple, and quadruple
our health. We let each of them do this in a different thread, and after the threads

are finished, we expect a health of 288 (which equates to 12 * 2 * 3 * 4). However,
after their magical actions, our health is still at 12, even if we wait long enough to
ensure that the threads are finished. Clearly, the three threads worked on a copy of
our variable and not on the variable itself. Rust does not allow the health variable to
be shared among the threads to prevent data corruption. In the next section, we will
explore how we can use mutable variables that are shared between threads.

[134]

Chapter 8

The shared mutable state

So, how can we make the not_shared.rs program give us the correct result? Rust
provides tools, the so-called atomic types from the std: : sync: :atomic submodule,
to handle shared mutable state safely. In order to share data, you need to wrap the
data in some of the sync primitives, such as Arc, Mutex, RwLock, AtomicUSize,

and so on.

Basically, the principle of locking is used, which is similar to that used by operating
systems and database systems —exclusive access to a resource is given to the thread
that has obtained a lock (which is also called a mutex and comes from mutually
exclusive) on the resource. A lock can only be obtained by one thread at a time. In
this way, two threads cannot change this resource at the same time, so no data races
can occur; locking atomicity is enforced when required. When the thread that has
acquired the lock has done its work, the lock is removed and another thread can then
work with the data. In Rust, this is done with the generic Mutex<T> type from the
std: : sync module; sync comes from synchronize, which is exactly what we want
to do with our threads. The Mutex ensures that only one thread can change the
contents of our data at a time. We must make an instance of this type by wrapping
our data as follows:

// code from Chapter 8/code/thread safe.rs:
let data = Mutex::new(health);

Now, within the for loop, immediately after we spawn the new thread, we place a
lock on the health object:

for i in 2..5 {
thread: : spawn (move || {
let mut health = data.lock() .unwrap();
// do other things
}
}

The call to 1ock () will return a reference to the value inside the Mutex and block any
other calls to lock () until that reference goes out of scope, which will happen at the
end of the thread closure. Then, the thread does its work and the lock is automatically
removed. However, we still get an error: capture of moved value: 'data’
message. This means that data cannot be moved to another thread multiple times.

[135]

Concurrency and Parallelism

This problem can be solved by using an equivalent of the Rc pointer from the Reference
counting section of Chapter 6, Pointers and Memory Safety. Indeed, the situation here

is very similar; all the threads need a reference to the same data, which is our health
variable. So, we apply the same techniques from Chapter 6, Pointers and Memory

Safety here —we make an Rc pointer to our data, and then we make a clone () of the
pointer for each reference that is needed. However, a simple Rc pointer is not thread-
safe; therefore, we need a special version of it that is thread-safe, the so called atomic
reference counted pointer or Arc<T>. Atomic means that it is safe across threads, and it
is also generic. So, we envelop our health variable inside an Arc pointer as follows:

let data = Arc::new(Mutex::new(health));

And, in the for loop, we make a new pointer to the Mutex with clone:

for i in 2..5 {
let mutex = data.clone() ;
thread: : spawn (move || {
let mut health = mutex.lock() .unwrap() ;
*health *= 1;
1)
}

So, each thread now works with a copy of the pointer obtained by clone (). The Arc
instance will keep track of the number of references to health. A call to clone () will
increment the reference count on health. The mutex reference goes out of scope at the
end of the thread closure, which will decrement the reference count. Arc will free the
associated health resource when that reference count becomes zero.

Calling 1ock () gives the active thread exclusive access to the data. In principle,
acquiring the lock might fail, so it returns a Result<T, E> object. In the preceding
code, we assume that everything is okay. The unwrap () function is a quick means
to return a reference to the data, but in the case of a failure, it panics.

Quite a few steps were involved here. So, we will repeat the code in its entirety
again, but this time, we will provide robust error handling by replacing unwrap ().
Digest each line with the explanations explained earlier:

// code from Chapter 8/code/thread safe.rs:
use std::thread;
use std::sync::{Arc, Mutex};
fn main() {
let mut health = 12;
println! ("health before: {:?}", health);
let data = Arc::new(Mutex: :new(health)) ;
for i in 2..5 {

[136]

Chapter 8

let mutex = data.clone() ;
thread: :spawn (move || {
let health = mutex.lock() ;
match health {
// health is multiplied by 1i:
Ok (mut health) => *health *= i,
Err(str) => println! ("{}", str)
}
}) .join() .unwrap () ;
}i
health = *data.lock() .unwrap() ;
println! ("health after: {:?}", health);

}
This prints out:

health before: 12
health after: 288

(288 is indeed equal to 12 *2* 3 * 4). We join the threads to give them time to do their
work; data is a reference, so we need to dereference it to obtain the health value:

health = *data.lock() .unwrap() ;

The mechanism outlined in the preceding section using a combined Mutex and Arc

is advisable when the shared data occupies a significant amount of memory; this is

because with an Arc, the data will no longer be copied for each thread. The Arc acts
as a reference to the shared data and only this reference is shared and cloned.

The Sync trait

An Arc<T> object implements the Sync trait (while Rc does not), which indicates to
the compiler that it is safe to use concurrently with multiple threads. Any data that
has to be shared simultaneously among threads must implement the sync trait. A T
type is sync if there is no possibility of data races when the &T references are passed
between threads; in short &T is thread-safe. All simple types such as the integer

and floating point types are sync, as well as all composite types (such as structs,
enums, and tuples) built with simple types; any type that only contains things that
implement sync is automatically sync.

[137]

Concurrency and Parallelism

Communication through channels

Data can also be exchanged between threads by passing messages among them. This
is implemented in Rust by channels, which are like unidirectional pipes that connect
two threads —data is processed first-in, first-out. Data flows over this channel
between two end-points, from the sender<T> to the Receiver<T>; both are generic
and take the T type of the message to transfer (which obviously must be the same
for the sender and Receiver channels). In this mechanism, a copy of the data to be
shared is made for the receiving thread, so you shouldn't use this for very large data:

channel

Sender Receiver
tx datatype Send I
thread 1 thread 2

To create a channel, we need to import the mpsc submodule from std: : sync (mpsc
stands for multi-producer, single-consumer communication primitives) and then
use the channel () method:

// code from Chapter 8/code/channels.rs:
use std::thread;
use std::sync::mpsc::channel;
use std::sync::mpsc::{Sender, Receiver};
fn main() {
let (tx, rx): (Sender<i32>, Receiver<i32>) = channel();

}

This creates a tuple of endpoints; tx (t from transmission) is the Sender and rx (r
from receiver) is the Receiver. We have indicated that we will send 132 integers
over the channel, but the type annotations are not needed if the compiler can deduce
the channel's data type from the rest of the code.

[138]

Chapter 8

Sending and receiving data

So, which data types can be sent over a channel? Rust imposes the requirement that
data to be sent over a channel must implement the send trait, which guarantees the
safe transfer of ownership between threads. Data that does not implement Send
cannot leave the current thread. An i32 is Send because we can make a copy,

so let's do that in the following code snippet:

fn main() {
let (tx, rx) = channel();
thread: : spawn (move| | {

tx.send (10) .unwrap () ;

I3F;
let res = rx.recv() .unwrap();
println! ("{:?}", res);

}

This, of course, prints 10.

Here, tx is moved inside the closure. A better way to write tx.send (10) .unwrap ()
is as follows:

tx.send(10) .ok () .expect ("Unable to send message");
This will ensure that, in case of a problem, a message is sent.

The send () is executed by the child thread; it queues a message (a data value; here,

it is 10) in the channel and does not block. The recv () is done by the parent thread;

it picks a message from the channel and blocks the current thread if there are no
messages available. (If you need to do this in a non-blocking fashion, use try recv().)
If you don't process the received value, this blocking can be written as follows:

let = rx.recv();

The send () and recv () operations return a Result, which can be of the ok (value)
type or an Err error. Full error-handling is omitted here because in the case of Err,
the channel does not work anymore, and it is better for the thread to fail (panic)
and stop.

In a general scenario, we could make a child thread execute a long computation and
then receive the result in the parent thread as follows:

// code from Chapter 8/code/channels2.rs:
use std::thread;
use std::sync::mpsc::channel;
fn main() {
let (tx, rx) = channel();

[139]

Concurrency and Parallelism

thread: : spawn (move| | {
let result = some expensive computation() ;
tx.send(result) .ok () .expect ("Unable to send message") ;

3N

some_other expensive computation() ;

let result = rx.recv();

println! ("{:?}", result);
}
fn some expensive computation() -> i32 { 1 }
fn some_other expensive computation() { }

The result function here has the ok (1) value.

An elegant code pattern is shown in the following code snippet where the channel
is created in a make_chan () function, which returns the receiving endpoint for the
calling code:

// code from Chapter 8/code/make channel.rs:
use std::sync::mpsc::channel;
use std::sync::mpsc::Receiver;
fn make chan() -> Receiver<i32s> {
let (tx, rx) = channel();
tx.send(7) .unwrap () ;

rx
}
fn main() {
let rx = make chan();
if let Some(msg) = rx.recv().ok() {
println! ("received message {}", msg);

}i
}

This prints out: received message 7.
Perform the following exercise:

Construct a shared_channel.rs program that lets any number of threads share a
channel to send in a value and has one receiver that collects all the values. As a hint,
use clone () to give each thread access to the sending tx endpoint. (Refer to the
example code in Chapter 8/exercises/shared channel.rs.)

[140]

Chapter 8

Synchronous and asynchronous
communication

The kind of sending channel we used until now is asynchronous; this means that it
does not block the executing code. Rust also has a synchronous channel type called
sync_channel where the send () blocks if its internal buffer becomes full —it waits
until the parent thread starts receiving the data. In the following code, this type of
channel is used to send a value of the Msg struct over the channel:

// code from Chapter 8/code/sync_channel.rs:
use std::sync::mpsc::sync_channel;
use std::thread;
type TokenType = 1i32;
struct Msg {
typ: TokenType,
val: String,

fn main() {
let (tx, rx) = sync_channel(l); // buffer size 1
tx.send(Msg {typ: 42, val: "Rust is cool".to string()}) .unwrap() ;
println! ("message 1 is sent");

thread: :spawn (move| | {
tx.send(Msg {typ: 43, val: "Rust is still cool".to_string()}).
unwrap () ;

println! ("message 2 is sent");
P
println! ("Waiting for 3 seconds ...");
thread::sleep _ms (3000) ;

if let Some(msg) = rx.recv().ok() {
println! ("received message of type {} and val {}", msg.typ, msg.
val) ;
i
if let Some(msg) = rx.recv().ok() {

println! ("received second message of type {} and val {}", msg.
typ, msg.val);

Vi
}

Which prints:

message 1 is sent
Waiting for 3 seconds

[141]

Concurrency and Parallelism

Then, after 3 seconds, prints:

received message of type 42 and val Rust is cool
message 2 is sent
received second message of type 43 and val Rust is still cool

This clearly shows that the second message could only be sent when the buffer was
emptied by receiving the first message.

Perform the following exercise:

Explain what happens when the second message is also sent from within the main
thread and not in a separate thread.

Summary

In this chapter, we explored Rust's lightweight thread processes —how to create
them, how to let them share data, and how to let them pass data through channels.

In the following chapter, we will have a look at the boundaries — we will see how a
Rust program can take arguments to work with them. We will also examine what
we have to do in Rust when we go to so such a low level that the compiler cannot
guarantee safety anymore and how we can interface with other languages such as C.

[142]

Programming at the
Boundaries

In this chapter, we look at how we can start up a Rust program with command-line
parameters. Then, we go on to look at situations where we have to leave the safety
boundaries, such as when interfacing with C programs, and how Rust minimizes
potential dangers when doing so.

We will discuss the following topics:

* Program arguments

* Unsafe code

* Raw pointers

* Interfacing with C

* Inlining assembly code

* Calling Rust from other languages

Program arguments

Reading program parameters from the command line at startup is easy in Rust; just
use the std: :env: :args () method. We can collect these parameters into a vector of
String like this:

// code from Chapter 9/code/arguments.rs:
use std::env;

fn main() {
let args: Vec<String> = env::args() .collect();
println! ("The program's name is: {}", args([0]);

[143]

Programming at the Boundaries

for arg in args.iter() {
println! ("Next argument is: {}", arg)

}
println! ("I got {:?} arguments: {:?}.", args.len() - 1);
for n in 1..args.len() {
println! ("The {}th argument is {}", n, argsinl);

}

Call the program in the following format:

* arguments argl arg2 on Windows

* ./arguments argl arg2 on Linux and Mac OS X

The following is the output from a real call:

f:\>arguments Merlin Gandalf Sauron
The program's name is: arguments
Next argument is: arguments

Next argument is: Merlin

Next argument is: Gandalf

Next argument is: Sauron

I got 3 arguments:

[The 1th argument is Merlin
The 2th argument is Gandalf
[The 3th argument is Sauron

The program's name is args [0]; the next arguments are the command-line
parameters. We can iterate through the arguments or access them by index.
The number of parameters is given by args.len() - 1.

For more complex parsing with options and flags, use the getopts or docopt
crate. To get started, there is an example at http: //rustbyexample.com/arg/
getopts.html.

Now, env: :vars () returns the operating system's environment variables:

let osvars = env::vars();
for (key, value) in osvars {
println! ("{}: {}", key, value);

}

This starts with printing out the following on Windows:

HOMEDRIVE: C:
USERNAME: CVO
LOGONSERVER: \\MicrosoftAccount

[144]

http://rustbyexample.com/arg/getopts.html
http://rustbyexample.com/arg/getopts.html

Chapter 9

Unsafe code

There are situations in which even the Rust compiler cannot guarantee us that our
code will behave in a safe manner. This can occur in the following scenarios:

* When we have to program against the "metal", close to the operating system,
processors, and hardware

* When we want to work with the same amount of control that is possible in C

* When we delegate a part of program execution to an unsafe language
such as C

* When we want to inline assembly language

Rust allows us to code for these scenarios, but we have to envelop this possibly
dangerous code in an unsafe block:

unsafe {
// possibly dangerous code

}

Now, the programmer takes full responsibility. The unsafe block is a promise to the
compiler that the unsafety will not leak out of the block. The compiler will check the
code areas that are marked as unsafe more loosely and allow otherwise forbidden
manipulations, but a number of rules from the ownership system (refer to Chapter 6,
Pointers and Memory Safety, for more information) will still remain in place.

The clear advantage is that problem areas will now appear very well isolated; if a
problem occurs, we will know that it can only occur in these marked code areas.
Having a code base where 99 percent of the code is safe and 1 percent is unsafe is
much easier to maintain than a code base with 100 percent unsafe code, as in C!

Here is what we can do in an unsafe block:
* Work with raw pointers, especially by dereferencing them. For more
information, refer to the Raw pointers section of this chapter.

* (Call a function in another language through a Foreign Function Interface
(FFI). For more information, see the Interfacing with C section of this chapter.

* Inline assembly code

* Use std: :mem: : transmute to convert simple types bitwise; here is an
example of its use in which a string is transformed into a slice of bytes:

// code from Chapter 9/code/unsafe.rs:
use std::mem;

[145]

Programming at the Boundaries

fn main() {
let v: &[u8] = unsafe {
mem: : transmute ("Gandalf")

}i

println! ("{:?}", v);

}
This prints the following output:
[71, 97, 110, 100, 97, 108, 102]

An unsafe block can also call the unsafe functions that perform these dangerous
operations and are marked as unsafe fn dangerous() { }.

In unsafe code, the use of the std: :mem module (which contains functions to work
with memory at a low level) and the std: : ptr module (which contains functions to
work with raw pointers) is common.

We recommend that you use assert ! statements abundantly inside

M unsafe code to check at runtime whether it is doing what you expect it to.
Q For instance, before dereferencing a raw ptr pointer of unknown origin,
always call assert! (!ptr.is_null()) ; to ensure that the pointer

points to a valid memory location.

Raw pointers

In unsafe code blocks, Rust allows the use of a new kind of pointers called raw
pointers. For these pointers, there is no built-in security, and you can work with
them with the same freedom as C pointers. They are written as follows:

* xconst T:Thisis used for a pointer of an immutable value or the T type

* mut T: This is used as a mutable pointer

They can point to invalid memory, and the memory resource needs to be manually
freed. This means that a raw pointer could inadvertently be used after freeing the
memory that it points to. In addition, multiple concurrent threads have nonexclusive
access to mutable raw pointers. Since we're not sure of the contents (at least we have
no compiler guarantee of valid content), dereferencing a raw pointer can also lead to
program failure.

[146]

Chapter 9

That's why dereferencing a raw pointer can only be done inside an unsafe block, as
illustrated in the following code fragment:

// code from Chapter 9/code/raw pointers.rs:
let p raw: *const u32 = &10;
// let n = *p raw; // compiler error!
unsafe
let n = *p raw;
println! ("{}", n); // prints 10

}
If you try to do this in normal code, you will get the following output:

error: dereference of unsafe pointer requires unsafe function or block
[E0133]

We can make raw pointers safely out of references, implicitly or explicitly, with & as
*const, as shown in the following snippet:

let gr: £32 = 1.618;

let p_imm: *const £32 = &gr as *const £32; // explicit cast
let mut m: £32 = 3.14;

let p mut: *mut £32 = &mut m; // implicit cast

However, converting a raw pointer into a reference, which should be done through
a &* (address of a dereference) operation, must be done within an unsafe block:

unsafe
let ref imm: &£32 = &*p imm;
let ref mut: &mut £32 = &mut *p mut;

}

Raw pointers could also be useful when defining other more intelligent pointers;
for example, they are used to implement the Rc and Arc pointer types.

Interfacing with C

Due to the vast functionality that exists in C's code, it can sometimes be useful to
delegate processing to a C routine, instead of writing everything in Rust.

You can call all functions from the C standard library by using the 1ibc crate, which
must be obtained through Cargo. To do this, simply add the following to your
Rust code:

#! [feature (libc)]
extern crate libc;

[147]

Programming at the Boundaries

To import C functions and types, you can sum them up like this:
use libc::{c _void, size t, malloc, free};

Alternatively, you can use a * wildcard, such as use libc::*;, to make them all
available.

To work with C (or another language) from Rust, you will have to use the FFI,
which has its utilities in the std: : ££1 module.

Here is a simple example to call C for printing out a Rust string with the puts
function in C:

// code from Chapter 9/code/calling libc.rs:
#! [feature (1libc)]

extern crate libc;

use libec::puts;

use std::ffi::CString;

fn main() {
let sentence = "Merlin is the greatest magician!";
let to print = CString::new(sentence) .unwrap() ;
unsafe {
puts(to_print.as ptr());

}
}

This prints out the following sentence:
Merlin is the greatest magician!

The new () method of cstring will produce a string (ending with a 0 byte) that is
compatible with C from the Rust string. The as_ptr () method returns a pointer
to this C string.

The #! [feature (1ibc)] attribute (a so called feature gate) is (temporarily)
necessary to enable the use of 1ibc. It does not work with Rust from the beta
channel, you need to take the Rust compiler from the nightly channel.

Feature gates are common in Rust to enable the use of a certain
% functionality, but they are not available in stable Rust; they are only
s . . .
available in the current development branch (the nightly release).

[148]

Chapter 9

Using a C library

Suppose we want to calculate the tangents of a complex number. The num crate offers
basic operations on complex numbers, but at this time, the tangents function is not
yet included, so we will call the ctanf function from the C library 1ibm, which is a
collection of mathematical functions that are implemented in C.

The following code does just that and defines a complex number as a simple struct:

// code from Chapter 9/code/calling clibrary.rs:
#[repr(C)]
[derive (Copy, Clone)]
[derive (Debug)]
struct Complex {
re: £32,
im: £32,

#[link (name = "m")]
extern {
fn ctanf(z: Complex) -> Complex;

}

fn tan(z: Complex) -> Complex {
unsafe { ctanf(z) }

fn main() {
let z = Complex { re: -1., im: 1. }; // z is -1 + 1
let z_tan = tan(z);
println! ("the tangens of {:?} is {:?}", z, z tan);

}
This program prints the following output:

the tangens of Complex { re: -1, im: 1 } is Complex { re: -0.271753, im:
1.083923 }

The # [derive (Debug)] attribute is necessary because we want to show the number
ina {:?} format string. The # [derive (Copy, Clone)] attribute is needed because
we want to use z in the println! statement, after we have moved it by calling
ctanf (z). The function of # [repr (C)] is to reassure the compiler that the type we
are passing to C is foreign function-safe, and it tells rustc to create struct with the
same layout as C.

[149]

Programming at the Boundaries

The signatures of the C functions that we want to use must be listed in an extern {}
block. The compiler cannot check these signatures, so it is important to specify them
accurately to make the correct bindings at runtime. This block can also declare global
variables that are exported by C to use in Rust. They must be marked as static or
static mut, for example, static mut version: libc::c_int.

The extern block must be preceded by a # [1ink (name = "m")] attribute to link the
libmlibrary. This instructs rustc to link to that native library so that symbols from
that library are resolved.

The C call itself must evidently be done inside an unsafe {} block. This block is
enveloped inside a tan (z) wrapper function, which only uses Rust types. This way
this wrapper can be exposed as a safe interface, by hiding the unsafe calls and type
conversions between Rust and C types, especially C pointers. When the C code
returns a resource, the Rust code must contain destructors for these values to assure
their memory release.

Inlining assembly code

In Rust, we can embed assembly code. This should be extremely rare, but we can
think of situations where this might be useful, for example, when you have to get the
utmost performance or very low-level control. However, the portability of your code
and perhaps its stability are decreased when you do this. The Rust compiler will
probably generate better assembly code than you could write, so it isn't worth the
effort most of the time.

\ This feature is not yet enabled in Rust 1.0 on the stable release
~ channel. To use this mechanism (or other unstable features) in the
Q meantime, you have to use Rust from the master branch (which is
the nightly release).

The mechanism works by using the asm! macro, like this example where we
calculate b in the subtract function by calling assembly code:

// code from Chapter 9/code/asm.rs:
#! [feature (asm)]

fn subtract(a: i32, b: i32) -> i32 {
let sub: 132;
unsafe
asm! ("sub $2, $1; mov $1, S$O"
"=r" (sub)
"r"(a), "r"(b)

[150]

Chapter 9

sub

}

fn main() {
println! ("{}", subtract (42, 7)) }

}

This prints out the result as 35.
We can only use asm! with a so-called feature gate, which is #! [feature (asm)] here.

The asm! macro has a number of parameters separated by :. The first is the assembly
template, containing the assembly code as a string, then the output and input
operands follow.

You can indicate the kind of processor your assembly code is meant to execute on
with the c£g attribute and its target_arch value, for example:

#[cfg(any(target arch = "x86", target arch = "x86 64"))]

The compiler will then check whether you have specified valid assembly code
for that processor.

For more detailed information about the use of asm!, refer to the Inline Assembly
section of this chapter at http://doc.rust-lang.org/book/unsafe.html.

Calling Rust from other languages

A Rust code can be called from any language that can call C. However, the Rust
library should have the dylib crate type value. When rust£ni is the Rust function
to be called, this must be declared as follows:

[no_mangle]
pub extern "C" fn rustfnl() { }

Here, # [no_mangle] serves to keep the function names plain and simple so that
they are easier to link to. C exports the function to the outside world with the
C calling convention.

Examples of calling Rust from C, Python, Haskell, and Node.js can be found in the

article at https://siciarz.net/24-days-of-rust-calling-rust-from-other-

languages/. Calling Rust from Perl and Julia is shown at http://paul.woolcock.
us/posts/rust-perl-julia-£ffi.html.

[151]

http://doc.rust-lang.org/book/unsafe.html
https://siciarz.net/24-days-of-rust-calling-rust-from-other-languages/
https://siciarz.net/24-days-of-rust-calling-rust-from-other-languages/
http://paul.woolcock.us/posts/rust-perl-julia-ffi.html
http://paul.woolcock.us/posts/rust-perl-julia-ffi.html

Programming at the Boundaries

Summary

In this chapter, we showed you how to process parameters for your program that
are read from the command line at startup. Then, we proceeded to unsafe territory
where raw pointers point the way. We covered how to use assembly code, how to
call C functions from Rust, and how to call Rust functions from other languages.

This chapter concludes our essential tour of Rust. In the Appendix, Exploring Further,
that follows this chapter, we provide you with pointers (no pun intended!) to pursue
your Rust journey.

[152]

Exploring Further

Rust is a very rich language. In this book, we did not discuss each and every concept
of Rust, and also not in every detail. Here, we will talk about what has been left out
and where the reader can find more information or details about the topics.

Stability of Rust and the standard library

The Rust 1.0 production version comes with a commitment for stability; if your
code compiles on Rust stable 1.0, it will compile with Rust stable 1.x with no or
minimal changes.

The development of Rust follows a train model with three release channels (nightly,
beta, and stable), and every six weeks a new stable release will take place. Production
users will prefer to stick with the stable branch. Every six weeks, a new beta version
is published; this excludes all unstable code, so you know that if you are using beta
or stable, your code will continue to compile. Simultaneously, the existing beta
branch is promoted to be a stable release. The nightly channel is what you use if you
want the latest changes and additions; it includes unstable features and libraries that
may still change in backwards incompatible ways.

The vast majority of functionality in the standard library is now stable. For in-depth
information, refer to the documentation at http://doc.rust-lang.org/std/.

The ecosystem of crates

There is a general tendency to move less-used or more experimental Application
Programming Interfaces (APIs) out of the language and the standard library and
into their own crates. An ever-growing ecosystem of crates for Rust is at your
disposal at https://crates.io/, with over 2,000 crates in stock at the time of
writing (May 2015).

[153]

http://doc.rust-lang.org/std/
https://crates.io/

Exploring Further

At Awesome Rust (https://github.com/kudling/awesome-rust), you can find a
curated list of Rust projects. This site only contains useful and stable projects and
indicates whether they compile in the latest Rust version. In addition, it is worth
to search Rust Kit (http://rustkit.io/), as well as the Rust-CI repository at
http://www.rust-ci.org/projects/.

In general, it is advisable that you search for crates that are already available
whenever you embark on a project that requires specific functionality. There is a
good chance that a crate that conforms to your needs already exists, or perhaps, you
can find some usable starting code upon which you can build what you exactly need.

Other resources for learning Rust

This book has nearly covered all the topics of the so-called Book (http://doc.rust-
lang.org/book/), and sometimes, it even went beyond. Nevertheless, the Book on
the Rust website can still be a good resource to find the latest information, together
with the fine collection of Rust code examples at http://rustbyexample.com/,
which can be reached through the More examples link on Rust's homepage. For the
most complete, in-depth information, refer to the reference at http://doc.rust-
lang.org/reference.html.

Asking questions or following and commenting on the discussions on

Reddit (https://www.reddit.com/r/rust) and Stack Overflow (https://
stackoverflow.com/questions/tagged/rust) can also help you. Last but not

the least, when you have an urgent Rust question, you can chat with the friendly
experts on the IRC channel at https://client01.chat.mibbit.com/?server=irc.
mozilla.org&channel=%23rust.

A resource with coding guidelines on Rust can be found at http://doc.rust-lang.
org/nightly/style/.

24 days of Rust is a highly recommended article series by Zbigniew Siciarz on
a multitude of advanced Rust subjects; you can take a look at the index at
https://siciarz.net/24-days-of-rust-conclusion/.

Files and databases

The standard library offers the std: :io: : £s module for filesystem manipulation:

* If you have to work with comma separated values (CSV) files, use one
of the available crates, such as simple csv, csv, or xsv. The articles at
https://siciarz.net/24-days-of-rust-csv/ can get you started.

[154]

https://github.com/kud1ing/awesome-rust
http://rustkit.io/
http://www.rust-ci.org/projects/
http://doc.rust-lang.org/book/
http://doc.rust-lang.org/book/
http://rustbyexample.com/
http://doc.rust-lang.org/reference.html
http://doc.rust-lang.org/reference.html
https://www.reddit.com/r/rust
https://stackoverflow.com/questions/tagged/rust
https://stackoverflow.com/questions/tagged/rust
https://client01.chat.mibbit.com/?server=irc.mozilla.org&channel=%23rust
https://client01.chat.mibbit.com/?server=irc.mozilla.org&channel=%23rust
http://doc.rust-lang.org/nightly/style/
http://doc.rust-lang.org/nightly/style/
https://siciarz.net/24-days-of-rust-conclusion/
https://siciarz.net/24-days-of-rust-csv/

Appendix

* For working with JSON files, use a crate such as rustc-serialize or json_
macros; start with reading the information at https://siciarz.net/24-
days-of-rust-working-json/.

* For the XML format, there are plenty of possibilities, such as the rust-xml
and the xml-rs crates.

For databases, there are crates available for working with the following technologies:

* SQLite3 (the rust-sqlite crate)

* PostgreSQL (the postgres and r2d2_postgres crates); get started using it
with https://siciarz.net/24-days-of-rust-postgres/

* MySQL (the mysqgl crate)

* For MongoDB, there is the mongo crate, built by the MongoDB developers;
for more information on this, go to http://blog.mongodb.org/
post/56426792420/introducing-the-mongodb-driver-for-the-rust

e For Redis, there are the redis, redis-rs, or rust-redis crates; see
https://siciarz.net/24-days-of-rust-redis/ for a quick start

* If you are interested in object relational mapper (ORM) frameworks, look at
the deuterium crate

Graphics and games

Its high performance and low-level capabilities make Rust an ideal choice in the field
of graphics and games. Searching for graphics reveals bindings for OpenGL (with
packages gl-rs, glfw-sys), Core Graphics (with packages gfx, gdk), and others.

On the game front, there are game engines for Piston and chipmunk 2D and bindings
for SDL1, SDL2, and Allegro5. A crate for a simple 3D game engine is kiss3d. A
number of physics (ncollide) and math (nalgebra and cgmath-rs) crates exist

that can be of use here.

Web development

A general overview of the status in this domain can be found at http://
arewewebyet . com/. The most advanced and stable crate for developing HTTP
applications at this moment is hyper. It is fast and contains both an HTTP client
and a server to build complex web applications. To get started with it, read the
introductory article at https://siciarz.net/24-days-of-rust-hyper/.

[155]

https://siciarz.net/24-days-of-rust-working-json/
https://siciarz.net/24-days-of-rust-working-json/
https://siciarz.net/24-days-of-rust-postgres/
http://blog.mongodb.org/post/56426792420/introducing-the-mongodb-driver-for-the-rust
http://blog.mongodb.org/post/56426792420/introducing-the-mongodb-driver-for-the-rust
https://siciarz.net/24-days-of-rust-redis/
http://arewewebyet.com/
http://arewewebyet.com/
https://siciarz.net/24-days-of-rust-hyper/

Exploring Further

The HTTP client libraries built on top of hyper are rust-request and rest_client.
A new Rust HTTP Toolkit project is emerging under the name teepee (http://
teepee.rs/). It looks promising, but it was in its infancy at the time of writing

this book.

For web frameworks, the best usable project is iron. If you only need a light micro
web framework, rustful could be your choice. If you need a Representational State
Transfer (REST) framework, go for rustless. Another useful web framework, which
is still under active development, is nickel (http://nickel.rs/).

And of course, you must not ignore the new servo browser that is emerging!

Furthermore, crates exist for a lot of other categories such as functional and
embedded programming (http://spin.atomicobject.com/2015/02/20/rust-
language-c-embedded/), data structures, image processing (the image crate),

audio, compression, encoding and encryption (rust-crypto and crypto), regular
expressions, parsing, hashing, tooling, testing, template engines, and so on. You can
take a look at the Rust-CI repository or the Awesome Rust compilation; you can refer
to the links in the The ecosystem of crates section to get an idea of what is available.
Zinc (http://zinc.rs/) is an example of a project that uses Rust to write a code
stack for processors (at the moment, for ARM).

This brings us to the end of our Rust journey in this book. We hope you enjoyed it as
much as we enjoyed writing it. You now have a firm foundation to start developing
using Rust. We also hope that this quick overview has shown you why Rust is

a rising star in the software development world, and that you will use it in your
projects. Join the Rust community and start using your coding talents. Perhaps

we'll meet again in the Rust(un)iverse.

[156]

http://teepee.rs/
http://teepee.rs/
http://nickel.rs/
http://spin.atomicobject.com/2015/02/20/rust-language-c-embedded/
http://spin.atomicobject.com/2015/02/20/rust-language-c-embedded/
http://zinc.rs/

A

absolute value
reference link 81
ACID2
URL 6
adapters 72,73
Application Programming Interfaces
(APIs) 153
arrays
about 50-52
and strings 54, 55
asm! macro
URL 151
atomic reference counted box 106
attributes
about 42
conditional compilation 43
Awesome Rust
URL 154

binary operator expressions
URL 22

borrowing 99-102

boxes 102-104

branching, on condition 35-37

Builder pattern
reference link 81

built-in traits 87

C

C

C

Index

assembly code, inlining 150, 151
interfacing with 148

argo

URL, for guide 10

working with 10-12

library

using 149, 150

closures 67-69
comma separated values (CSV)

URL 154

comments

about 17,18
block or multi-line comments (/* */) 17
line comments (//) 17

communication, through channels

about 138
asynchronous 141, 142
data, receiving 139, 140
data, sending 139, 140
synchronous 141, 142

composite data structure 74
concurrency 129
console

input, obtaining from 60, 61

consumers 72,73

C

opy trait 93,94

crates

about 109
building 110

[157]

ecosystem 153, 154
macros, using from 127

public interface, exporting 117, 118

URL 111
custom conditions
reference link 43

D

developer tools

about 13

Sublime Text 14
Don't Repeat Yourself (DRY) 122
dynamic dispatch

reference link 86

E

enums
about 58, 59
Option 59
Result 59
error handling
about 77
failures 78
panics 78
expressions 29, 30
external crates
adding, to project 118, 119
importing 115-117

F

failures 78
file hierarchy
importing 114, 115

Foreign Function Interface (FFI) 145

format! macro
URL 21

functional and embedded programming

URL 156
functions

about 39-41, 74-77

documenting 41, 42

G

generic data structures 74-77
getopts

URL 144

global constants

about 18-20
printing, with string interpolation 20, 21

H

heap 89
higher-order functions 67, 68

idea-rust plugin

reference link 15

input

obtaining, from console 60, 61

IRC channel

URL 154

iterators 70, 71

J

JSON files

URL 155

Just In Time (JIT) 6

L

learning resources, Rust

databases 154, 155

files 154,155

games 155

graphics 155

on IRC channel, URL 154
on Reddit, URL 154

on Stack Overflow, URL 154
web development 155, 156

lifetime, of variable 90-92
literal strings 48
LLVM compiler framework

URL 4

looping 37-39

[158]

macros
about 121
developing 122,123
need for 121,122

new function, creating 124, 125

reference link 123
repetition 124
using, from crates 127

Markdown formatting syntax

URL 18
match 98, 99
matching patterns 62-64
metadata information 42
methods, on structs 79-81
modules

about 109

defining 111

importing 114

items, visibility 112, 113
MongoDB

URL 155
multi-producer 138

N

nickel
URL 156

(0

object relational mapper (ORM) 155

OpenDNS

URL 6
operator overloading 87
Option enum 59
ownership 99-102

P

Package Control package
reference link 14
panics 78
pointers
about 89, 95, 107

PostgreSQL
URL 155
primitive types 22
project
external crates, adding to 118, 119

R

racer
URL 13-15
raw pointers 146, 147
Read-Evaluate-Print-Loop (REPL) 15
Reddit
URL 154
Redis
URL 155
ref 98,99
reference counting 105, 106
references 89, 96-98
Representational State Transfer (REST) 156
Resource Acquisition Is Initialization (RAII)
URL 101
Result enum 59
Rust
about 1
advantages 2,3
calling, from other languages 151
calling, references 151
characteristics 3-5
code examples, URL 154
coding guidelines, URL 154
comparing, with other languages 5
first program 8, 9
homepage, URL 154
installing 7
learning, resources 154
reference link, for code 15
stability 153
standard library 153
URL 2
URL, for downloading 7
URL, for source code 7
using 5, 6
variable type, checking 27, 28
variable type, conversions 27

[159]

rustc command 8
Rust-CI repository
URL 154
Rust documentation
consulting 23
URL 23
rusti
about 15
reference link 15
Rust Kit
URL 154
rust-netbeans plugin
reference link 15
Rust program
arguments 143, 144
unsafe scenarios 145, 146
RustyCage plugin
reference link 15

S

Servo
about 6
URL 6
shared mutable state
about 135-137
Sync trait 137
single-consumer communication
primitives 138
Skylight
URL 6
slices 53
stack 89
stack and heap memory
about 30-33
URL 30
Stack Overflow
URL 154
standard library, Rust
about 153
URL 153
strings
about 48
and arrays 54, 55
literal strings 48
reference link 50
string slice 49

struct 56-58, 98, 99
Sublime Text
URL 14
using 14
Sync trait 137

T

teepee
URL 156
testing
about 43, 44
with cargo 45
test module 119-121
threads
about 129
creating 130, 131
panicking 133
starting 131-133
thread-safety 134
Tilde
URL 6
TOML format
reference link 11
trait constraints
using 84, 86
traits
about 82-84
reference link 84
tuples 55, 56

\'

values
about 22
copying 93, 94
immutable values 25
mutable values 25, 26
variables, binding to 23, 24
variable
aliasing 28, 29
binding, to values 23, 24
conversions 27, 28
scope 26,27
shadowing 26, 27
type, checking 27, 28
vectors 52,53

[160]

VisualRust plugin
reference link 15

w

web development
URL 155

Y4

zinc
URL 7

[161]

open source

community experience distilled

PUBLISHING

Thank you for buying
Rust Essentials

About Packt Publishing

Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www . packtpub . com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to authorepacktpub. com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

open source

community experience distilled

PUBLISHING

Go Programming Blueprint
ISBN: 978-1-78398-802-0 Paperback: 274 pages

Build real-world, production-ready solutions in Go
using cutting-edge technology and techniques

1. Learn to apply the nuances of the Go language,
and get to know the open source community
that surrounds it to implement a wide range
of start-up quality projects.

2. Write interesting, and clever but simple code,
and learn skills and techniques that are directly
transferrable to your own projects.

3. Discover how to write code capable of
delivering massive world-class scale
performance and availability.

Mastering Concurrency
in Go

Mastering Concurrency in Go
ISBN: 978-1-78398-348-3 Paperback: 328 pages

Discover and harness Go's powerful concurrency
features to develop and build fast, scalable network
systems

1. Explore the core syntaxes and language
features that enable concurrency in Go.

2. Understand when and where to use
concurrency to keep data consistent and
applications non-blocking, responsive,
and reliable.

3. A practical approach to utilize application
scaffolding to design highly-scalable programs
that are deeply rooted in go routines
and channels.

Please check www.PacktPub.com for information on our titles

open source

community experience distilled

PUBLISHING

Getting Started with C++ Audio
Programming for Game Development

Getting Started with C++
Audio Programming for Game

Development
ISBN: 978-1-84969-909-9 Paperback: 116 pages

A hands-on guide to audio programming in game
development with the FMOD audio library and toolkit

1. Add audio to your game using FMOD and
wrap it in your own code.

2. Understand the core concepts of audio
programming and work with audio at
different levels of abstraction.

3. Work with a technology that is widely
considered to be the industry standard
in audio middleware.

..........

C# 5 First Look

Joel Martinez [PACKT] =nterer e

C# 5 First Look
ISBN: 978-1-84968-676-1 Paperback: 138 pages

Write ultra responsive applications using the new
asynchronous features of C#

1. Learn about all the latest features of C#,
including the asynchronous programming
capabilities that promise to make apps
ultra-responsive.

2. Examine how C# evolved over the years
to be more expressive, easier to write, and
how those early design decisions enabled
future innovations.

3. Explore the language's bright future building
applications for other platforms using the
Mono Framework.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Starting with Rust
	The advantages of Rust
	The trifecta of Rust – safety, speed, and concurrency
	Comparison with other languages

	Using Rust
	Servo

	Installing Rust
	The Rust compiler – rustc
	Our first program
	Working with Cargo
	Developer tools
	Using Sublime Text
	Other tools

	Summary

	Chapter 2: Using Variables and Types
	Comments
	Global constants
	Printing with string interpolation

	Values and primitive types
	Consulting Rust documentation

	Binding variables to values
	Mutable and immutable variables

	Scope of a variable and shadowing
	Type checking and conversions
	Aliasing

	Expressions
	The stack and the heap
	Summary

	Chapter 3: Using Functions and Control Structures
	Branching on a condition
	Looping
	Functions
	Documenting a function

	Attributes
	Conditional compilation

	Testing
	Testing with cargo

	Summary

	Chapter 4: Structuring Data and Matching Patterns
	Strings
	Arrays, vectors, and slices
	Vectors
	Slices
	Strings and arrays

	Tuples
	Structs
	Enums
	Result and Option

	Getting input from the console
	Matching patterns
	Summary

	Chapter 5: Generalizing Code with Higher-order Functions and Parametrization
	Higher-order functions and closures
	Iterators
	Consumers and adapters
	Generic data structures and functions
	Error handling
	Panics
	Failures

	Methods on structs
	Traits
	Using trait constraints
	Built-in traits and operator overloading
	Summary

	Chapter 6: Pointers and Memory Safety
	Pointers and references
	The stack and the heap
	Lifetimes
	Copying values and the Copy trait
	Pointers
	References
	Using ref in a match

	Ownership and borrowing
	Boxes
	Reference counting
	Overview of pointers
	Summary

	Chapter 7: Organizing Code and Macros
	Modules and crates
	Building crates
	Defining a module
	Visibility of items
	Importing modules and file hierarchy
	Importing external crates
	Exporting a public interface
	Adding external crates to a project
	The test module

	Macros
	Why do we use macros?
	Developing macros
	Repetition
	Creating a new function
	Using macros from crates

	Summary

	Chapter 8: Concurrency and Parallelism
	Concurrency and threads
	Creating threads
	Starting a number of threads
	Panicking threads
	Thread-safety

	Shared mutable state
	The Sync trait

	Communication through channels
	Sending and receiving data
	Synchronous and asynchronous communication

	Summary

	Chapter 9: Programming at the Boundaries
	Program arguments
	Unsafe
	Raw pointers
	Interfacing with C
	Using a C library
	Inlining assembly code

	Calling Rust from other languages
	Summary

	Appendix: Exploring Further
	Stability of Rust and the standard library
	The ecosystem of crates
	Other resources for learning Rust
	Files and databases
	Graphics and games
	Web development

	Index

