BLISS LANGUAGE GUIDE

Order No. AA-H275B-TK

Second Edition

January 1980

This document is a combined tutorial and reference man-
ual for the BLISS programming language, which consists
of the dialects BLISS-16, BLISS-32, and BLISS-36. This
language, designed for transportable system-level pro-
gramming, is primarily intended for knowledgeable users
of its target systems: the PDP-11, VAX-11, DECsys-
tem-10, and DECSYSTEM-20.

SUPERSESSION/UPDATE INFORMATION: This document supersedes the
following manuals:

BLISS-32 LANGUAGE GUIDE
Order No. AA-H323A-TE

BLISS LANGUAGE GUIDE
Order No. AA-H275A-RK

OPERATING SYSTEMS AND VERSIONS: VAX/VMS V02

TOPS-10 V6.03A
TOPS-20 VO3A

SOFTWARE VERSIONS: BLISS-16 V02
BLISS-32 V02
BLISS-36 V02

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard. massachusetts

First Printing, October 1978
Second Printing, January 1980

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a 1license

and may only be used or copied in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or
reliability of its software on equipment that is not supplied by
DIGITAL.

NOTE

The BLISS-16 software and documentation
referred to in this document 1is for
proprietary use within DIGITAL only and
is not available as a product of Digital
Equipment Corporation.

Copyright C) 1979 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the wuser's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0S/8

DECUS EDUSYSTEM PHA

UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-10
DECCOMM DECSYSTEM-20 TYPESET-11
ASSIST-11 RTS-8 T™MS-11

VAX VMS ITPS-10
DECnet IAS SBI

DATATRIEVE TRAX PDT

CONTENTS

Preface
Acknowledgement

Chapters

Introduction
Lexical Definitions and Syntax Notation

3. BLISS Values and Data Representations
4, Primary Expressions

5. Computational Expressions

6. Control Expressions

7. Constant Expressions

8. Blocks and Declarations

9. Attributes

10. Data Declarations

11. Data Structures

12. Routines

13. Linkages

14. Binding

15. Lexical Processing

16. Macros

17. Condition Handling

18. Special Features

19. Modules and Programs

20. Character Handling Functions
Appendices

A. Predefined Identifiers

B. String Encodings

C. Transportability Checking
Index

NOTE: Each chapter 1is preceded by a detailed

table of contents for that chapter.

iii

PREFACE

MANUAL OBJECTIVES

The objective of this manual is to provide (1) a complete description
of the BLISS programming language and (2) tutorial information on its
use. This manual documents the three dialects of +the language:
BLISS-16, BLISS-32, and BLISS-36. It is intended as a self-teaching
manual for experienced high-level language users, and as a reference
tool. It does not describe the BLISS compilers (except in overview
fashion) or their operation; this is done in separate User's Guides.

INTENDED AUDIENCE

This manual is primarily intended for system programmers, including
those whose programming tasks would traditionally imply the use of
assembly language. It is also addressed to other programmers for whom
the transportability of programs between several BLISS target systems
is of prime concern. Familiarity with the basic architecture of one
or more of the target systems is assumed; familiarity with the
relevant assembly language is not assumed, however. The BLISS target
systems are the VAX-11, PDP-11, DECsystem-10, and DECSYSTEM-20.

STRUCTURE OF THIS DOCUMENT

The manual begins with three chapters that lay the foundation for the
definition of BLISS. Chapter 1 discusses the BLISS dialects,
introduces fundamental concepts, and illustrates the main features of
the language. (It is an essential part of the manual.) Chapter 2
discusses the organization of the language definition and describes
the syntax notation used in this manual. Chapter 3 is an introduction
to the data and program structure of BLISS.

The next seventeen chapters of the manual, Chapters 4 through 20,
provide a complete description of the language. This description
includes not only the rules for interpreting BLISS programs, but also
examples, explanations, and programming guidelines.

The manual has three appendices. Appendix A is a 1list of the
identifiers that have predefined meanings 1in BLISS. Appendix B
defines the several string encodings available in BLISS. Appendix C

describes the transportability checking that is optionally provided by
the BLISS compilers.

ASSOCIATED DOCUMENTATION

The following documents relate specifically to BLISS and the use
its compilers:

e BLISS Pocket Guide

A syntax and command summary for all dialects and host
systems

e BLISS-16 User's Guide

For BLISS-16 compiler usage on the VAX-11, DECsystem-10,
or DECSYSTEM-20
Target system - PDP-11

e BLISS-32 User's Guide

For BLISS-32 compiler usage on the VAX-11
Target system - VAX-11

e BLISS-36 User's Guide

For BLISS-36 compiler usage on the DECsystem-10 or
DECSYSTEM-20
Target system — DECsystem-10 or DECSYSTEM-20

Each User's Guide provides machine-specific programming
information as well as basic information about 1linking and
executing BLISS programs on the target system.

For VAX-11 users: The following documents provide additional
information relating to the linking, execution, and debugging of
BLISS-32 programs under the VAX/VMS operating system:

e VAX-11 Linker Reference Manual
e VAX/VMS Command Language User's Guide

e VAX-11 Symbolic Debugger Reference Manual

The VAX-11 Information Directory lists and describes all other
documents that you may need to refer to in the course of building
and executing a BLISS-32 program.

ACKNOWLEDGEMENT

The BLISS system described in this manual is based
on concepts and experience drawn from earlier
versions of BLISS, known as BLISS-10 and BLISS-11.
These earlier versions were conceived and
developed by members of the Department of Computer
Science at Carnegie-Mellon University. Digital
Equipment Corporation gratefully acknowledges the
significant contribution provided by these prior
developments.

vi

CHAPTER 1 INTRODUCTION

1.1 BLISS DIALECTS e R |
1.2 LANGUAGE OBJECTIVES AND CHARACTERISTICS e s e o s 1-2
1.2.1 Design Objectives . . . v ¢ ¢« v ¢ &« o o o o + o 1=2
1.2.2 Language OVerview . . « o o o o o o o o o o o o 1=2
1.3 PROGRAM DEVELOPMENT . . & ¢« « & o s o o o o o o+ o+ 1-3
1.4 THE MAIN FEATURES OF BLISS . &« ¢ ¢« ¢ o &+ o o o o« » 1-4
1.4.1 Dat@ o ¢ & v 4 4 o o 4 s o o s o s s o e s+ 2 . . 1-4
1.4.2 Memory Addressing+ o o o o ¢ o o « o o o 1=5
1.4.3 Fetching Values . . . ¢« « & ¢ &« ¢ « o « o« o o« o 1=5
1.4.4 Assigning Values . . + & v ¢ &« « ¢« o o o o o « » 1-6
1.4.5 EXpPressions . .« & & 4 ¢ o o o o o o « o « o« « o« 1-6
1.4.6 BIOCKS &« v ¢ & ¢ o o ¢ o o o o o o o o o o o o o 1=7
1.4.7 Declarations . . o« & & o o o o o s o = s+ « « + o 1-8
1.4.8 Structures . . . ¢ & 4 4« 4 4« ¢« ¢ ¢ o o o o o « o« 1-9
1.4.9 Flow of Control + ¢ ¢« + « &« « « « o 1-10
1.4.10 LOOPS v o 4 o o o o o o o o o o s o o o o o« » 1-11
1.4.11 Binding of Names . B e e b |
1.5 PROGRAM TRANSPORTABILITY e o & s s e & o o e o = 1-12
1.6 EFFECTS OF OPTIMIZATION . & ¢ o o o o o o o o o 1-13
1.7 THE BLISS PROGRAMMING SYSTEM . . . ¢ « &« « « o+ =« 1-14
1.7.1 System Components . « « « « « o o o« s o « + o 1-14
1.7.2 Constant Expressions . . . « + « « ¢ &+ « o« « o« 1-15
1.8 A COMPLETE PROGRAM . . ¢ ¢ & & ¢ & o o o s o » o« 1-16

CHAPTER 1

INTRODUCTION

BLISS is a system implementation language for three DIGITAL computer
families:

e The 16-bit PDP-11 1line,
® The 32-bit VAX-11 line, and
e The 36-bit DECsystem-10 and DECSYSTEM-20 lines.

Because of the dissimilarities among these target systems, BLISS has
three dialects: BLISS-16, BLISS-32, and BLISS-36. The numeric suffix
indicates the word length, in bits, of the respective target system.

BLISS is classified as a system implementation language - rather than
an application-oriented language - because BLISS is primarily intended
for building system software, such as operating - systems, compilers,
utilities, and real-time processors. Such software is often large and
complicated, is often close to the hardware, and is usually very

sensitive to efficiency. In addition, most system software is very.

frequently wused by many individuals (in some cases wilth an

unpredictable wvariety of input data), and therefore must be highLy‘

dependable.

1.1 BLISS DIALECTS

Each BLISS dialect is supported by a separate compiler. The BLISS-16
compiler is a cross-compiler, that is, it executes on & VAX-dl, a
DECsystem-10, or a DECSYSTEM-20 but <compiles code for 1its target
system, the PDP-11. The BLISS-32 and BLISS-36 compilers are native:

they execute on their own target system. Each BLISS compiler . is,.

described in a BLISS User's Guide for that dialect:

BLISS-16, BLISS-32, and BLISS-36 are dialects of a single language.
Each dialect consists of a body of identical language features called
Common BLISS (which forms the bulk of each dialect), plus a number of
features either wunique to one dialect or shared by only two of the
three. Common BLISS constitutes the transportable language base.

The dlalect-specific features reflect architectural characteristics of .

one target system that are not found in each of the others, for
instance byte-addressing capability, found in the 16- and 32-bit
target systems but not in the 36-bit systems. While it is possible to
implement most programs in Common BLISS only, without reference to
system-specific functions or characteristics, it is not always
desirable to do so. This point is discussed further under the topic
of transportability.

1-1

Introduction
LANGUAGE OBJECTIVES AND CHARACTERISTICS

1.2 LANGUAGE OBJECTIVES AND CHARACTERISTICS
1.2.1 Design Objectives

Because of the system-software orientation of BLISS, a number of its
primary objectives differ from those of application-oriented languages
such as COBOL, FORTRAN, and PL/I. Foremost among those objectives
are:

1. Highly optimizable object code.
2. Simple and consistent facilities for operating on addresses.

3. Control constructs which encourage well structured source
code, in the interests of program reliability, clarity, and
maintainability.

4., Pacilities for defining both the representation of a user-
designed data structure and the manner of accessing the data
in that structure.

5. Optional access to specific features of the target-system
hardware or operating system.

6. Facilities for defining, at an appropriately high level, the
linkage conventions used in calling routines or procedures.

Because the language supports three different computer systems, an
additional objective 1is program transportability across the target
systems. BLISS, therefore, 1includes many features specifically
designed to facilitate transportable programming. These features are
discussed later in this chapter (Section 1.5).

1.2.2 Language Overview

BLISS has many of the features of other modern high-level languages.
It has block structure, an automatic stack, and mechanisms for
defining and calling (recursive) routines. It uses algebraic notation
for calculations and has operations for arithmetic, shifting,
comparison, and logic. It provides a variety of predefined data
structures and permits the programmer to define additional data
structures. It has facilities for testing and iteration that support
clear and reliable programming. (These same facilities also allow the
compiler to perform extensive flow optimizations.)

Oon the other hand, BLISS omits certain features of other high-level
languages. It does not have built-in facilities for input/output,
because a system-software project usually develops its own
input/output or builds upon basic monitor I/0 services. It avoids
certain kinds of automation of the programming process which introduce
inefficiency for the sake of convenience. It is machine dependent to
the extent that it permits access to machine-specific features, since
system software often requires this.

BLISS has characteristics that are unusual among high level languages.
A name representing a data segment (that is, a storage location) is
uniformly interpreted as the address of that segment rather than the

value of the segment, and the language includes an explicit fetch
operator that denotes "contents of".

Introduction
LANGUAGE OBJECTIVES AND CHARACTERISTICS

Also, BLISS is an ‘'expression language' rather than a 'statement
language’'. This means that every construct of the language that is
not a declaration is an expression. Expressions produce a value as
well as possibly causing an action such as modification of storage,
transfer of control, or execution of a program loop. For example, the
counterpart of an assignment "statement" in BLISS 1is, strictly
speaking, an expression that itself has a value. The value of an
expression can either be used or discarded in BLISS. When the value
of an expression is discarded, the expression is said to be used in a
"statement like" way, i.e., used solely for the action or side-effect
that it produces. (See Section 1.4.5 for further discussion.)

Finally, BLISS includes a macro facility that provides a 1level of
capability usually found only in macro-assemblers.

The remainder of this introduction provides a first 1look at some
specifics of the language. The several steps involved 1in the
development of a BLISS program are outlined, the main features of
BLISS are described, the components of the BLISS software system are
discussed, and finally a simple but complete BLISS program is given.

1.3 PROGRAM DEVELOPMENT

The typical development of a BLISS program, from inception to
successful execution, is outlined below in order to introduce certain
concepts and terms used later in this manual:

1. Design. To provide a logical structure for the program, it
is organized into a set of routines and associated data
Structures. In general, each routine corresponds to a
clearly identified, relatively independent function or
subfunction of the program. One of the routines is the main
routine. Later, when the program is executed, this routine
is called by the operating system. The main routine controls
the overall flow of the program, calling other routines which
may in turn call yet other routines, and so on, until every
routine has done its assigned job.

2. Programming. Once the routines and data structures have been
designed, they are programmed in the BLISS language. The
routines are grouped into modules for the purposes of
compilation. The routines grouped into a given module might,
for example, consist of those programmed by one member of a
project team. They might also reflect a logical grouping
that aids overall system understanding and facilitates
structured testing. Each module 1is a text file that is
called a BLISS source file.

3. Compilation. Once the modules have been programmed, each
module is compiled. Each module can be compiled
individually, and this is one practical advantage of dividing
a large program into several modules. The result of each
compilation is an object file. An object file is a sequence
of encoded machine instructions and linker directives that is
equivalent to the corresponding source module.

4. Linking. When all the modules of a program have been
compiled, they are 1linked. The linker effectively "binds
together" the various object modules, supplies any routines
requested from a common-routine 1library, and converts the
compiler-encoded relative addresses to actual machine

1-3

Introduction
PROGRAM DEVELOPMENT

addresses. (Section 1.7.1 gives further details.) The result
of linking is a single file that contains the executable
program image.

5. Execution. The program image is executed. The first
executions are normally done with the assistance of a
debugging package. As bugs are found, the development
process cycles back to compilation, programming, or, most
unfortunately, to design. Eventually, the program is ready
for useful execution.

This manual provides the information necessary for the second step in
the development process, programming. The BLISS user's guides (one
for each dialect) provide complete information about the third step,
compilation, plus guidelines for linking, executing, and debugging.

The user's guides also contain detailed information about certain
dialect-specific features, such as machine-specific functions and
module switches that describe the target-system environment, and about
transportable programming.

1.4 THE MAIN FEATURES OF BLISS

This section contains a brief description of BLISS. Those aspects of
BLISS that are different from other high level programming languages
are emphasized. The description is informal and omits many details;
its purpose 1is to provide the reader with an intuitive understanding
of BLISS that will be useful in further study of the language.

1.4.1 Data

All BLISS calculations are performed on values that correspond, in
size, to the 1largest efficiently-accessible unit of memory in each
target system. This value, called a BLISS fullword, is 16 bits long
for BLISS-16 (PDP-11 word), 32 bits 1long for BLISS-32 (VAX-11
longword), and 36 bits long for BLISS-36 (DECSYSTEM-10/20 word). A
fullword can be viewed as a sequence of single-bit logical values
(true or false), as a sequence of ASCII <character codes, or as a
unitary value. As a unitary value, it can be interpreted as a signed
integer, an unsigned integer, or a memory address.

In many high level languages, a specific interpretation or "“type" is
permanently associated with each program variable. For example, one
variable might be declared as containing an address value while
another contains an unsigned integer. In BLISS, however, an
interpretation is not associated with a wvariable. Instead, the
interpretation of the value 1is specified by the operator that is
applied to it. For example, BLISS has three operators for equality:
EQL, EQLU, and EQLA. These operators interpret their operands as
signed integers, unsigned integers, and memory addresses,
respectively.

In order to conserve storage, data is often stored 1in fields, which
are units of data that are less than a fullword in length. One field
of special importance in all three dialects is the bit, which can be
used to store a single logical value. 1In both BLISS-16 and BLISS-32,
the 8-bit byte can be efficiently accessed and manipulated, and wused

for instance to store an ASCII character. 1In BLISS-32, the 16-bit

1-4

Introduction
THE MAIN FEATURES OF BLISS

word (which is the fullword of BLISS-16) <can also be manipulated
efficiently by the target hardware. No matter what field size is
involved, however, a field wvalue is always extended to a fullword
value whenever it is fetched from memory.

1.4.2 Memory Addressing

Although calculations are always performed on fullwords, memory is
addressed in fullword wunits only in the case of BLISS-36, where the
target system's addressable unit is the full machine word. In both
BLISS~-16 and BLISS-32, the basic addressable unit is the byte. That
is to say, if a memory address is incremented by 1 in either of these
dialects, the location pointed to by the resulting address value is
the next byte, not the next fullword.

Therefore, in order to precisely describe the interpretation of an
address expression such as X+8 in a dialect-specific fashion, several
different formulations would be required for the same expression. For
example, assuming a fullword-reference context, the interpretation of
the expression X+8 for BLISS-16 or BLISS-32 would be: "Locate the
fullword of memory that begins eight bytes after the byte whose
address is X"; whereas the interpretation for BLISS-36 would be:
"Locate the fullword of memory that 1is eight fullwords after the
fullword whose address is X".

In the interest of both generality and brevity, the non-specific term

"addressable unit" is wused instead of "byte" or "fullword" in such
descriptions, so that the two formulations given above reduce to the
equivalent one: "Locate the fullword that begins eight addressable

units after the unit whose address is X".

1.4.3 Fetching Values

In many programming languages, the interpretation of the name of a
storage location depends on its context. Consider FORTRAN, for
example., If the name appears as the left-hand side of an assignment,
it represents the address of the storage Jlocation. If the name
appears within an expression, it represents the contents of the
storage location.

In BLISS, however, the interpretation of the name of a storage
location does not depend on the context. 1Instead, the name always
represents the address of the storage location. For example,

X+3

is evaluated by adding 3 to the address that is associated with X.

When the content of a storage location is needed, the fetch operator,
".", is used. For example:

<X+3

This expression is evaluated by adding 3 to the content of storage-
unit X. More exactly, the wvalue of the expression is obtained as
follows: Locate and fetch the fullword of memory that begins with the
addressable unit whose address is X, and add 3 to the fetched value.

1-5

Introduction
THE MAIN FEATURES OF BLISS

The fetch operator is an unusual feature of BLISS; it is not present
in such languages as ALGOL, COBOL, FORTRAN, and PL/I. The omission of
a fetch operator here and there 1is a frequent error among most
beginning BLISS programmers. On the other hand, because BLISS always
interprets a name as an address, it is easy to treat addresses as
data, and address arithmetic can be performed in a simple and
consistent way.

1.4.4 Assigning Values
A value is assigned to storage by an assignment operator, "=". An
example of an assignment is:

X =2

This assignment means "form a fullword value that represents 2, and
then store that value in the fullword of memory whose address is X."

In BLISS, an assignment can be viewed as just another expression. Its
first operand (left-hand-side) provides a value that is interpreted as
the address of a data segment. Its second operand (right-hand-side)
provides a value that is stored at the given address. The assignment
expression itself has a value, namely the value of its second operand;
more is said of this in the next section.

Often the left-hand-side of an assignment is just a name. However, in
BLISS there 1is no restriction on the expression that appears on the
left-hand side of an assignment. Whatever that expression is, it is
evaluated and the resulting value is interpreted as an address. For
example,

X+6 = 2

assigns 2 to the fullword of memory that begins six addressable units
after the wunit whose address 1is X. The example just presented is
valid and illustrates an important feature of BLISS. However, such an
assignment would not appear in a well-designed program, and especially
not in a transportable one. 1Instead, an address computation, such as
X+6 in the example, would be performed through a structure-reference
(see Chapter 12).

1.4.5 Expressions

Many high level programming languages classify each construct of the
language either as a statement, which performs an action without
producing a value, or as an expression, which calculates a value. For
example, such 1languages classify the assignment construct as a
statement, and do not permit its use in a context requiring a value.

In BLISS, any construct except a declaration can be wused as an
expression. For constructs that are statement-like, BLISS defines a
value. For example, the value of an assignment is the wvalue of the
right-hand side of the assignment. The expression

2*(B = .C + 1)
contains an assignment. When the expression 1is evaluated, it
calculates 2*(.C+1). At the same time, without performing any

additional calculation, it stores the value of .C+l1 in location B.

1-6

Introduction
THE MAIN FEATURES OF BLISS

The absence of statements from BLISS does not require a new approach
to programming. Whenever a construct is used in a statement-like way,
it is terminated by a semicolon and its value 1is discarded. The
expression

Q = 2% .R;

is a terminated expression. It assigns the value of 2*.R to Q and
then,” having no further use for the value, discards it. Such
constructs as this, ending with a semicolon, play the role of
statements in BLISS.

1.4.6 Blocks

A block is a syntactic feature of BLISS that 1is used to gather
together a portion of a program and make it into a single unit (in
fact, into a form of expression). In its most familiar form, a block
is the keyword BEGIN followed by a sequence of declarations followed
by a sequence of terminated expressions followed by the keyword END.
An example is:

BEGIN
LOCAL TEMP;
TEMP = .X;
X =.Y;

Y = .TEMP;
END

This block contains one declaration and three terminated expressions.
The declaration specifies that TEMP designates a storage location that
will be used only during execution of the block. Each of the three
terminated expressions is an assignment and, together, they exchange
the contents of X and Y. The entire block 1is, itself, a primary
expression.

Sometimes it is useful to provide a value for a block. 1In that case,
an expression without the terminal semicolon is placed at the end of
the block. An example is:

Z = BEGIN
LOCAL TEMP;
TEMP = .X;
X = .Y;

Y = .TEMP;
.X EQL .Y
END

This block exchanges the contents of X and Y Jjust as the previous
example of a block did. Iin addition, the contents of X and Y are
compared and the value of the block is 1 or 0, depending on whether or
not the values are equal. When execution of the block is complete,
its value is assigned to Z.

In the first example, if the semicolon following the final expression
(Y = .TEMP) were omitted, the block would have as its value the
contents of location TEMP, according to the evaluation rule given for
assignments in Section 1.2.4. (Chapter 8 gives a full description of
the semantics and use of the semicolon in the context of expressions
and blocks.)

Introduction
THE MAIN FEATURES OF BLISS

A block that does not contain declarations 1is called a compound
expression. An example that uses such a block is:

IF .A NEQ O

THEN
BEGIN
B = .P + .A;
C = .0+ .A;
END
In this example, the compound expression gathers two separate

assignments into a single construct. Both assignments are performed
if the content of A is not 0 and both are skipped otherwise.

In BLISS, a parenthesis pair and a BEGIN-END pair can be wused
interchangeably. For example, the preceding example can be written
equivalently as:

IF .A NEQ O
THEN

~ W~
nn

or, more compactly, as:
IF .A NEQ 0 THEN (B = .P + .A; C = .Q + .A;)
A block that uses a parenthesis pair and contains just one expression

is a parenthesized expression; it is the ultimate specialization of a
block. An example of the use of some parenthesized expressions is:

(A + 1)*(B - 1)

Because the parentheses are present, the addition is performed before
the fetch operation, and the multiplication is performed last of all.
When the parentheses are removed, the expression is:

.A + 1*B -1

This expression has a different meaning because the operators refer to
different operands. According to the priority rules given in Chapter
5, the fetch operation is performed before the addition, and the
multiplication 1is performed before the addition or subtraction. Thus
parenthesized expressions are used to override the priority rules.

1.4.7 Declarations

Every name in a BLISS program must be declared. The purpose of the
declaration is to provide the BLISS compiler with information about
the name. A simple example of a declaration is:

OWN
X;

This declaration says that X designates a storage 1location that is
permanently allocated (in the OWN program section) before program
execution begins. (Note that, in the context of declarations, the
semicolon is simply a mandatory terminator.)

1-8

Introduction
THE MAIN FEATURES OF BLISS

A more complicated example of a declaration is:

OWN
ALPHA: VECTOR([100] INITIAL(REP 100 OF (0});

This declaration not only specifies that ALPHA is an OWN name, but
also gives two attributes, which begin with the keywords VECTOR and
INITIAL. The VECTOR attribute describes the structure of the storage
designated by ALPHA. The INITIAL attribute provides initial values
for the storage.

The preceding examples are declarations of names of data addresses.
An example of the declaration of a name of a routine address is:

ROUTINE EXCHANGE (A,B): NOVALUE =
BEGIN
LOCAL
TEMP;
TEMP = ..A;
A = ..B;
.B = .TEMP;
END;

This routine exchanges the contents of the two locations that are
given through the formal names, A and B. The extra fetch operator
used with these formal names reflects the fact that a formal name is
the address of a storage location that contains a parameter; it is
not the parameter itself.

The attribute NOVALUE indicates that this routine does not return a
value, since the 1last expression within the routine body 1is a
terminated expression. Therefore, a call on this routine must appear
in a context that does not require a value. For example, the call
could be used in a statement-like way. The semicolon following the
keyword END is simply the required declaration terminator, and as such
has nothing to do with whether or not the routine returns a value.

Some names do not represent addresses. For example,

MACRO
Q =0,3 %;

declares the name of a macro, Q. During compilation, every occurrence
of 0 in the scope of this declaration is replaced by the text "0,3".

Declarations are scoped by the block structure of a program. The same
name can be used in different blocks for different purposes. Thus it
is not necessary to use an awkward name because the appropriate name
has been used in some other part of the same program.

1.4.8 Structures

The most commonly used forms of data structures are defined as part of
BLISS. An example of a use of such a structure was given in the
preceding discussion of declarations; it is:

OWN
ALPHA: VECTOR[100] INITIAL(REP 100 OF (0));

1-9

Introduction
THE MAIN FEATURES OF BLISS

In this declaration, VECTOR[100] is the structure-attribute. It
specifies that ALPHA designates a data-segment in storage that is not
a single fullword, but rather is a sequence of 100 fullwords. The
first of the fullwords 1is referenced by ALPHA[0O], the second by
ALPHA{1l], and so on up to ALPHA[99]. An example of a reference to
this vector is:

ALPHA[.I-1] =5

Suppose that, for a given execution of this assignment, the content of
I is 8. Then the assignment is equivalent to

ALPHA[7] = 5

and its effect is to set the eighth element of the vector to 5.

In addition to VECTOR, three other kinds of data structures
(BITVECTOR, BLOCK, BLOCKVECTOR) are defined as part of BLISS. Beyond
that, however, is the capacity of BLISS to accept programmed
definitions of data structures. This feature permits the programmer
to define data structures that are designed precisely for a given
application. A part of the data-structure definition 1is the
'algorithm' for accessing the structure. For example, a structure can
be programmed to pack data in a way that saves storage or to include
special checks for illegal accesses.

1.4.9 Flow of Control

Alternative actions to be taken by a program can be controlled by a
conditional-expression. An example is:

IF .X GTR O

THEN
Y = .X
ELSE
Y = -.X;
This example sets Y to the absolute value of the contents of X. It

ends with a semicolon, and 1is therefore a statement-like use of a
conditional-expression. Another example is:

Y = (IF .X GTR 0 THEN .X ELSE -.X);

This example also sets Y to the absolute value of the contents of X.
However, 1in this example the value of the conditional-expression is
used. Its value is .X or -.X, depending on whether or not the test is
satisfied. Once the value of the conditional-expression 1is
calculated, it is assigned to Y.

A more specialized construct for alternative flow of control 1is the
case-expression. An example is:

CASE .X FROM 1 TO 8 OF

SET

[11: REPORT1(.2);
{2]1: REPORT2(.2) ;
[4,7]: Q = .Z+]1;

[INRANGE]: ERRORL(.Z)
[OUTRANGE]: ERROR2(.Z)
TES;

.
’
.
1’

Introduction
THE MAIN FEATURES OF BLISS

The interpretation of this expression begins with the evaluation of
.X; then, depending on the value of .X, one of five actions is taken.
If the value is 1, the routine REPORT1 is called. I1f the value is 2,
the routine REPORT2 is called. If the value is 4 or 7, the assignment
0 = .Z2+1 is performed. If the value is in the range from 1 to 8 but
is none of the previous cases, then the routine ERROR1 is called. If
the value is outside of the range 1 to 8, then the routine ERROR2 is
called.

A third construct for alternative flow of control is the
select-expression, which 1lies between the conditional-expression and
the case-expression in its degree of specialization.

1.4.10 Loops

Iterative actions are controlled by loop-expressions. An example of
the use of a loop-expression is:

OWN
SuM,
LIST: VECTOR[21];
SuM = 0;
INCR I FROM 0 TO 20 DO
SUM = .SUM + .LIST[.I]);

The loop-expression in this example forms the sum of the 21 elements
of the vector LIST. It does so by executing the assignment 21 times,

once each for .I equal to 0, 1, 2, and so on through 20. In this
example, the loop-expression 1is followed by a semicolon and is
therefore used in a statement-like way. Note that the 'control

parameters’' (0 and 20 in this case) can be any form of expression that
has a value.

A second example of the use of a loop-expression is:

OWN
X,
LIST: VECTOR[21];

Do

(INCR I FROM 0 TO 20 DO
IF .LIST[.I] EQL O THEN EXITLOOP .I);

The loop-expression in this example searches the vector LIST for an
element that is 0. If a 0 is found, the value of the loop-expression
is .I; that is, a value between 0 and 20 that shows where the 0 was
found. If a 0 is not found, the loop runs to completion and the value
of the loop-expression is (by definition) -1. In this example, the
value of the loop-expression is used to provide, in a convenient way,
for the case that there is no 0 in LIST.

1.4.11 Binding of Names

Most of the names in a BLISS program represent addresses -—-— either
data addresses or routine addresses. The operation of associating an
address with a name is called binding. Once the name is bound, the
use of the name becomes equivalent to the use of the address to which
it is bound.

Introduction
THE MAIN FEATURES OF BLISS

As an example of binding, consider the following use of the name BETA:

OWN
BETA;

BETA = 4;

Suppose that BETA is bound to the address 1203. Then the assignment
in the example is equivalent to:

1203 = 4;

In nearly all cases, the programmer does not know or care to know the
address to which a name 1is bound. Storage 1is allocated by the
compiler, the linker, and the operating system, and the programmer
simply wants references to storage to be consistent.

Occasionally, a programmer does want to access a particular 1location.
Suppose, for example, that a fullword used for communication with a
certain input/output device is in 1. cation 80. Then that location can
be set as follows:

BIND
IOW = 80;
10W = 0;
In this case, the assignment is entirely equivalent to
80 = 0;

The use of the BIND declaration makes the intentions of the programmer
clear, not only to the reader but also to the compiler.

1.5 PROGRAM TRANSPORTABILITY

Transportability of software is the use of the same source program in

more than one system environment. The Dbasis for transportable
programming in BLISS is the extensive language base referred to as
Common BLISS. In addition, BLISS provides many specific facilities

that aid in achieving transportability along with efficiency, either
through (1) parameterization of Common BLISS constructs, or (2)
conditional or compartmented use of dialect-specific code.

The major facilities that support transportable programming are the
following:

e Predefined data structures, e.g. VECTOR, BITVECTOR, BLOCK, that
allow commonly used data structures to be allocated and accessed
efficiently in each target environment.

® Predefined literals, that reflect the parameters of the target
architectures in terms of bits. These literals can be used, for
example, to parameterize data declarations and storage references
for greatest efficiency on each intended target system.

A listing of the predefined literals and their values for each
target system follows.

Introduction
PROGRAM TRANSPORTABILITY

value in:
Name Meaning BLISS-16 BLISS-32 BLISS-36

$BPVAL Bits per 16 32 36
BLISS value

$BPUNIT Bits per 8 8 36
addressable unit

%BPADDR Bits per 16 32 18 or 30%
address value

$UPVAL Units per 2 4 1
BLISS value

(*Depending on the target-system CPU.)

e User-definable data structures and named fields. The structure
definition is a representation of the accessing algorithm, and it
can make use of the predefined literals to provide field packing
that is optimal for each target architecture.

e Character string functions, that permit efficient manipulation of
string data regardless of the representation on the target
architecture. Examples: CHS$PTR creates a character-string
pointer, CHSMOVE moves a character string, and CH$COMPARE
compares the value of two strings. There are approximately 25
such functions.

e Compile time conditionals, that allow coempiled code to Dbe
explicitly different for different target architectures.

e Powerful macro facility, that allows for different expansions for
different target systems, e.g. $BLISS32 (BYTE) expands to its
parameters (BYTE in this case) only if being compiled by the
BLISS-32 compiler. Macros can also be used to segregate code
sequences that differ for each architecture.

e REQUIRE and LIBRARY files. Sets of common definitions can be
kept in files that are selectively included in compilations
through use of the REQUIRE or LIBRARY declarations. This is a
simple and efficient method of sharing common data structures and
definitions between modules in a conditional fashion. It also
permits compile-time conditionals and parameterized definitions

- to be maintained separately from the code in the modules.

1.6 EFFECTS OF OPTIMIZATION

The semantic definitions of the BLISS language in this manual describe
the useful, perceptible results of program execution as if those
results were achieved without optimization of the object code.
Wherever possible, then, the manual avoids discussion of how the
results are actually obtained. The only exceptions are where a
discussion of object <code enables the programmer to make a more
efficient choice between several alternative constructs, for example,
between two types of control expressions.

In particular, the optimization strategies employed by the compiler
are not described. The optimizations reduce the cost of program
execution, by eliminating some of the actions defined by the language
semantics, but they never affect the final results.

1-13

Introduction
EFFECTS OF OPTIMIZATION

In some cases, however, the optimizations can be so extensive (global
flow optimizations) that the object code generated does not show any
obvious correlation to the corresponding sequence of source code. The
degree of optimization performed by the compiler can be controlled by
optimization switches, either in the module head (Chapter 19) or in
the compiler command line. The BLISS user's guides describe the kinds
of optimizations performed and the effect of the various optimization
switches.

1.7 THE BLISS PROGRAMMING SYSTEM

The BLISS programming system is the collection of software programs
that supports the development of BLISS programs, Some of the
components of the BLISS system are used only for BLISS programs; the
compiler 1is an example. Other components are shared with other
programming language systems; the linker is shared in this way.

Operating instructions for the compiler or the linker are not given
here. Such instructions are essential (and are given in the
appropriate BLISS user's guide), but they never, or almost never,
affect the results of program execution as described in this manual.

This section describes the components of the BLISS system and then
goes on to talk about the evaluation of constant expressions by two
components of the system, the compiler and the linker.

1.7.1 System Components

The BLISS system has five main components: the compiler, the linker,
the operating system, a debugging package, and a set of utilities,
These components are briefly described in the following paragraphs.

The compiler is especially written for the BLISS system (one for each
dialect). It accepts a BLISS module as its input or source file. It
produces an unlinked target-system program as its object file
(although the <compiler used for a given dialect may itself actually
execute on another computer system, i.e., may be a cross-compiler).
Because, as discussed above, the compiler performs complicated and
large-scale optimizations, the relationship between the source file
and the object file is sometimes difficult to perceive; that is, it
can be difficult to find the specific instructions that implement a
particular BLISS expression. Therefore, a plan for developing a BLISS
program should involve as little reference to the object file as
possible.

The compiler takes only one module at a time as its input. Therefore,
the <compiler cannot determine addresses that are used in the given
module but declared in other modules; such addresses are external and
must be 1left blank (unlinked in the object file). Furthermore, the
compiler does not determine the absolute addresses of routines and
data. Instead, the compiler expresses addresses as offsets relative
to certain base addresses.

Introduction
THE BLISS PROGRAMMING SYSTEM

The linker is a target-system utility program that is shared by all of
the ~programming languages for the target system. It accepts an
unlinked object program, produced by the compiler, for each module of
a program. It produces an executable program image as its output.

The linker takes up where the compiler leaves off, and finishes the
job of preparing the program for execution. It has access to all
modules of the program and can therefore fill in the external
addresses. It can determine the required base addresses for routines
and data and can therefore replace static offset addresses with
absolute addresses.

The operating system is a collection of target-system utility programs
that are essential to any programming job. It includes a command that
executes a program. This command loads the program image and starts
execution. Thereafter, the operating system manages input/output,
handles interrupts, and generally oversees program execution.

The debugging package is a program that assists a programmer 1in
checking out a program. The package includes features for dumping
data in convenient representations and formats, for tracing data
through the execution of the program, for establishing break points to
halt program execution, and so on.

The BLISS utilities are a collection of programs especially written to
support the BLISS programming process. One such utility, for example,
is the BLISS source-program formatter. The utilities are described in
the BLISS User's Guides and in on-line documentation files available
with each BLISS system.

1.7.2 Constant Expressions

When the value of an expression cannot <change throughout program
execution, it is a constant expression. Many important techniques for
optimizing a program depend on the recognition and evaluation of
constant expressions.

Some constant expressions can be evaluated as soon as they are written
down. For example, the value of the numeric-literal 52 is obviously
fifty-two. Other constant-expressions depend on addresses that are
determined either by the compiler or by the linker. For example, the
value of the expression X+6 depends on the address that is associated
with X.

When the value of a constant expression is determined, the expression
is bound. The process of associating values with constant expressions
is a form of binding. These terms are most often applied to names;
however, in BLISS a name is Jjust a special case of an expression, and
a bound name is just a special case of a bound expression. The main
activity of the 1linker is to bind the names used in a program to
appropriate addresses.

In certain contexts, BLISS requires a compile-time-constant-
expression; that is, an expression that can be bound by the compiler.
For example, when a VECTOR data segment is declared, its size must be

1-15

Introduction
THE BLISS PROGRAMMING SYSTEM

given as a compile-time-constant-expression; this restriction permits
the compiler to allocate storage for the data segment and thus avoid
the expense of dynamic storage allocation.

Since the compiler does not determine absolute addresses, a
compile-time-constant-expression wusually cannot depend on a name that
represents an address. The exception occurs in expressions such as
X-Y or X EQLA Y; 1in these expressions, the offset addresses for X and
Y (which are determined by the compiler) are sufficient to determine
the values of the expressions.

In certain other contexts, BLISS requires a link-time-constant-
expression; that 1is, an expression that can be bound by the linker,
Since all addresses are determined by the 1linker, a 1link-time-
constant-expression can depend on a name that represents an address.
Further details about both compile- and link-time-constant-expressions
are given in Chapter 7.

Much of BLISS programming can be done without regard for the fact that
a program goes through compilation and 1linking before it can be
executed. The compile- and link-time-constant-expressions are
important exceptions to this rule.

1.8 A COMPLETE PROGRAM

An example of a complete program follows. The purpose of the example
is to illustrate the overall structure of a BLISS program. The
example is .not a realistic program, although it 1is executable. A
realistic program would require many pages for its listing as well as
many pages of explanation. Instead, the example is a short program

that reads a number from the terminal, adds one to it, and prints out -

the result.

The program is composed of two modules, TIO and El. The first module,
TIO, 1is assumed to be a general-purpose library module that performs
input/output at the user's terminal. It includes an input routine,
GETNUM, that reads a number that has been entered at the terminal, and
an output routine, PUTNUM, that prints a given number at the termimal.
The module TIO is not listed here.

The second module, El1, is the specialized portion of the example
program. It controls the entire process and performs the specified
operation (the addition of 1) on the given data. This module 1is
presented here.

Introduction
A COMPLETE PROGRAM

MODULE El1 (MAIN = CTRL) =
BEGIN

FORWARD ROUTINE
CTRL,
STEP;

ROUTINE CTRL =
+

This routine inputs a value, operates on it, and
then outputs the result.

BEGIN
EXTERNAL ROUTINE
GETNUM, ! Input a number from terminal
PUTNUM; ! Output a number to terminal
LOCAL
X, ! Storage for input value
Y; ! Storage for output value
GETNUM (X) ;

Y = STEP(.X)
PUTNUM(.Y)
END;

-

ROUTINE STEP(A)

+
This routine adds 1 to the given value.

(.A+1);

END
ELUDOM

An informal discussion of this module follows. Only the main features
are mentioned, and some new terminology is introduced. The purpose is

to give a general idea of how a module 1is constructed and how it
works.

The module includes comments, each of which begins with an exclamation
mark. Not included, however, is a long comment that normally appears

at the beginning of a module and provides information about copyright,
authorship, revisions, and so on.

The outer structure of the module is:

MODULE El1 (MAIN = CTRL) =
BEGIN

END
ELUDOM

The first line gives the name of the module, El. It also specifies
that the main routine for the entire program is CTRL; therefore, when
the program is executed, the operating system will call CTRL. The
three dots represent the body of the module.

Introduction
A COMPLETE PROGRAM

The body of the module begins with a forward-routine-declaration,
which lists the names of the routines that are declared in the module.
The remainder of the body 1is devoted to the declarations of the
routines.

The first routine-declaration begins with the line:
ROUTINE CTRL =

This line gives the name of the routine, CTRL. Because CTRL 1is not
followed by a parenthesized list of names, the routine is not called
with parameters. The purpose of the routine 1is to <control program
execution and to call other routines.

The body of the routine CTRL is given after the comment that describes
the routine. It contains two declarations followed by three
expressions. The declarations do not cause actions directly;
instead, they describe the names that are used in the routine. The
first declaration describes GETNUM and PUTNUM as names of routines
that are declared in another module. The second declaration describes
X and Y as the addresses of storage segments that are wused during
execution of this routine.

The three expressions are:

GETNUM (X) ;
Y = STEP(.X);
PUTNUM(.Y)

The first two expressions are terminated (followed by a semicolon),
the third is not. These expressions specify separate actions, and are
executed (or more precisely, evaluated) one after another, 1in the
order written. The first expression calls upon the routine GETNUM to
read a number from the user's terminal and store it at address X. The
second expression calls upon the routine STEP to add 1 to the contents
of X and then assigns the result to Y. (The values of the first two
expressions are discarded; thus these expressions are used in a
statement-1like way, solely for their side effects.)

The third, non-terminated expression calls upon the routine PUTNUM to
print the «contents of 1location Y at the user's terminal, but also
provide a value for the routine as a whole. This is the value of the
routine call, presumably a completion code returned by PUTNUM. (One
target operating system, VAX/VMS, requires such a value to be returned
by the main routine. 1In the case of other target operating systems,
the main-routine return value, if provided, is simply ignored.)

The second routine-declaration begins with the line:
ROUTINE STEP(A) =
This line gives the name of the routine STEP. It also gives a formal

name, A, that represents the parameter of the routine. Because there
is no NOVALUE attribute, this routine also returns a value.

Introduction
A COMPLETE PROGRAM

The body of the routine STEP is given after the comment that describes
the routine. It is a single line, as follows:

(.A+1) ;

This line specifies that when this routine is called, the value it
returns is calculated by adding 1 to the contents of formal location
A, the value of the parameter. Observe that the semicolon here is
simply the terminator of the routine declaration, and as such does not

terminate the expression. It has no effect upon whether or not the
routine returns a value.

The expression that constitutes the routine body 1is enclosed in
parentheses for added clarity; the effect would be exactly the same
without the parentheses in this case. An equivalent way of expressing
this routine declaration, which shows more clearly the role of the

semicolon, is the following:
ROUTINE STEP(A) =

+
This routine adds 1 to the given value.

BEGIN
JA+L
END;

Section 1.4.6 discusses the equivalence of the parenthesis pair and
the BEGIN-END pair as used in these examples.

CHAPTER 2

NN NONNMNNNNDODNNDNNDNDNN

.

e & ® o e ¢ 8 ¢ @ 3 o o

BSOS B R B W NR N

. . « .
NN

N =

AU s WN -

.
—

LEXICAL DEFINITIONS AND SYNTAX NOTATION

CHARACTERS AND LINEMARKS . . « « « « « &
Characters . . ¢« o« o o o o o o o & o =
LinemarksS « ¢ ¢« o o o o o o o o o o =

LEXEMES AND SPACES « + ¢ + ¢ ¢ s o o o
Lexemes e o o o o o o s 8 e o e s e o
Spaces and Comments . . . «+ « « « o« &

Guidelines On The Use Of Comments .

THE SEPARATION RULES . . ¢ « « o o« o ¢ =«

THE SYNTAX NOTATION e e s e o s s s e e
Syntactic Rules« ¢ ¢ « ¢ ¢ o &
Syntactic Names and Syntactic Literals
Concatenations . . ¢« ¢ &« ¢« « o o o o« &
Disjunctions . . « ¢ « « o o &+ o o o
Replications . . « ¢ « « ¢ o o o « o =«
Dialectal Differences« ¢ « «

NNV NDNDNDNDNDNDND
{
WA ubdd WWwhNN

CHAPTER 2

LEXICAL DEFINITIONS AND SYNTAX NOTATION

This chapter defines lexemes (the basic syntactic elements of BLISS),
and the rules for the formation of valid BLISS source text. It also
describes the syntax notation used in later chapters to define the
larger constructs of the BLISS language.

The basic elements and rules defined here are the following:

. Characters and linemarks. Characters are the indivisible
units of program text. Linemarks serve to divide a character
sequence into separate "lines" of source text. Together they
constitute the lowest-level elements of syntactic structure.

. Lexemes and spaces, The lexemes of BLISS are analogous to
the words and punctuation marks of ordinary English text.
The spaces are used to separate lexemes where necessary and,
optionally, to arrange the program text 1in a clear and
attractive way. Together they constitute the next higher
level of syntactic structure.

Note that a comment in BLISS is simply a special form of a
space from the lexical viewpoint.

. The separation rules, which govern the mandatory and optional
use of spaces to separate lexemes,

The syntax notation, described in the last section of this chapter, is
used to formulate the syntactic rules that define the many constructs
of the BLISS language. Each such construct consists of one or more
lexemes. Thus these higher-level syntactic rules fundamentally depend
upon the separation rules for their formal interpretation, although
the separations required and allowed by the syntactic rules are
usually intuitively obvious without recourse to the separation rules,

2.1 CHARACTERS AND LINEMARKS

At the lowest level of syntactic structure a BLISS module consists of
a sequence of characters and linemarks. They are the smallest
recognizable elements of the source text.

Lexical Definitions and Syntax Notation
CHARACTERS AND LINEMARKS

2.1.1 Characters

The characters that can appear in a module are listed and classified
in the following table:

Characters

Printing Characters

Letters: ABC...Zabc... 2z

Digits: 012....9
Delimiters: s F S ==, s () T] <>
Special Characters: $_ % 1!
Free Characters: "#s2zeN" {1}~
Nonprinting Characters: blank tab vertical-tab form-feed

All of the characters in this table are members of the ASCII character
set. However, the table does not include all of the ASCII characters.
Specifically, 30 of the 34 nonprinting ASCII characters do not appear
in the table and must not be used in a BLISS module.

Note that this table shows which characters can be used in a BLISS
program, and does not impose a restriction on data. BLISS data can
use any ASCII characters. (The characters that cannot be represented
literally in the program text can, however, be entered indirectly,
using numeric codes, via the $CHAR lexical-function described in
Chapter 15.)

2.1.2 Linemarks

The linemark is the separation between the end of one source line and
the beginning of the next in a program-text file. On most terminals,
it is entered into the program text by pushing the RETURN, CARRIAGE
RETURN, or NEWLINE key.

The linemark is represented in different ways in different target
systems. On the PDP-11 and VAX-11l systems, where a text file is a
sequence of records, the linemark 1is represented by the division
between two successive records. On the DECsystem-10 and DECsystem-20,
where a text file is a single character string, the linemark is
represented by a line-feed, vertical-tab, or form-feed character; 1if
any of these characters is immediately preceded by a carriage-return
character, then that character is also part of the linemark.

2.2 LEXEMES AND SPACES

At the next higher 1level of syntactic structure a BLISS module
consists of a sequence of lexemes and spaces. A lexeme is the
smallest meaningful unit of the source text. Spaces are used to
separate certain kinds of lexemes according to the separation rules,
and are optionally used to separate other lexemes for greater
readability and general formatting purposes. The division of a module

2-2

Lexical Definitions and Syntax Notation
LEXEMES AND SPACES

into lexemes and spaces is especially important for the interpretation
of macros, as described in Chapter 15.

2.2.1 Lexemes

The various types of lexemes that can appear in a module are listed
and classified in the following table, with examples for each type
except delimiters (single characters that are completely enumerated):

Lexemes
Keywords: ROUTINE $ASCIZ AND

Names
Predeclared: VECTOR MAX

Explicitly Declared: X BETA26 INITIAL SIZE

Decimal Literals: 0 23000

Quoted Strings: 'ABC' 'He said, ''Gol''' '77700"

Delimiters
Operators: . - * / + - =

Punctuation Marks: ’

A delimiter serves either as an operator or as a punctuation mark.
These 1lexemes are called delimiters because they never "run into" a
neighboring lexeme. For example, the delimiter "+" can be used to
form the expression "ALPHA+1" (consisting of three lexemes) without
using blanks. But an attempt to use the keyword "AND" without
adjacent blanks results in "ALPHAAND1", interpreted as a single
lexeme.

2.2.2 Spaces and Comments

When two lexemes would otherwise "run together" to make a single
lexeme, they must be separated by a space. A description of spaces is
given in the following table:

Spaces

Linemark

Nonprinting Characters: blank tab vertical-tab form-feed

Comments
Trailing Comment: ! This is a program for entomologists.
Embedded Comment: % (Insert new routine here)%

Lexical Definitions and Syntax Notation
LEXEMES AND SPACES

The preceding table describes spaces informally, using two examples
for the comments. A more precise definition is:

1. A space is a linemark, a nonprinting character (as listed in
the table) or a comment.

2. A comment is a trailing comment or an embedded comment.

3. A trailing comment is an exclamation character followed by
the remainder of the line on which the comment begins.

4. An embedded comment begins with the two characters "s (",
followed by the text of the comment, followed by the two
characters ")%". The text must not contain the sequence
")g", since that would prematurely end the comment; see
guidelines below. An embedded comment can begin after any
lexeme of a module and can extend to any later position in
the module. However, an embedded comment must end in the
same source file in which it began.

Wwhen a module is written by the programmer, spaces are commonly used
to arrange the module in a clear and attractive format and to insert
comments on the workings of the program. However, when a module is
translated by the compiler, the only role of spaces is to separate the
lexemes of the module. From the point of view of the compiler, for
example, a lengthy comment is equivalent to a single blank character.

2.2.2.1 Guidelines On The Use Of Comments - A trailing comment,
beginning with the "!" character anywhere in a source line, is
terminated by the next linemark, i.e., by the 'end of the 1line' in
which it occurs. Thus it is a generally safe and unambiguous form of
commment and can be used, for example, to “"comment out" any line of
source text whatever its content.

An embedded comment, beginning with the character sequence "s (", 1is
terminated by the very next occurence of the sequence ")$". This
means that the embedded comment cannot be nested. Also, the sequence
"yg" jis a valid though ill-advised form of ending of a macro
definition {(see Section 15.2). Thus an extensive embedded comment
could be inadvertently terminated by the occurence of ")%" in a macro
declaration where the "%" character was intended to terminate a macro
definition, For these reasons the embedded comment should be used
with care. Also, 1its use to "comment out" a body of code is
discouraged.

2.3 THE SEPARATION RULES

The use of spaces between the lexemes of a module is governed by the
separation rules. The rules are:

1. One or more spaces must appear between two lexemes if each
lexeme is any one of the following:

e A name,
e A keyword, or
e A decimal-literal.

This rule requires the use of spaces wherever two lexemes
would otherwise merge to form a single, longer lexeme.

2-4

Lexical Definitions and Syntax Notation
THE SEPARATION RULES

2. One or more spaces may appear between any two lexemes. This
rule permits the use of spaces to control format and provide
comments.

3. A space must not be inserted 1into a lexeme. This rule
prevents a lexeme from being broken into two lexemes. Some
apparent exceptions arise in the case of a quoted-string
lexeme, as described in Sections 4.3.2.

2.4 THE SYNTAX NOTATION

The syntax of BLISS is a collection of syntactic rules that describe
the construction of a module (the unit of compilation). The special
notation used for the syntactic rules is defined in this section.

Each syntactic rule defines a syntactic name. The syntactic rules are
interdependent; that is, many of the rules define a syntactic name in
terms of other syntactic names. However, the rules do not form a
vicious <circle of definitions because some of the rules define
syntactic names directly in terms of syntactic literals, i.e., without
reference to other syntactic names.

The ultimate syntactic name 1is module, which 1is defined 1in the
syntactic rules given in Chapter 19. The description of the language
begins with the definition of the syntactic name expression, in
Chapter 4.

2.4.1 sSyntactic Rules

A syntactic rule is divided into two parts by a vertical line. To the
left of the 1line is the syntactic name that is defined by the rule;
to the right, a string definition. 1In the simplest rules, the string
definition is a single character or a single syntactic name.

In more complicated rules, string definitions are combined to make
larger string definitions as follows: by concatenation (the joining
of strings), by disjunction (the choice between two strings), or by
iteration (the joining of several copies of a string).

An example of the simplest possible kind of rule is:

dollar $
In English, this rule reads: 'The syntactic name dollar designates
the single character "$",' Note that the character "$" is a syntactic
literal, as defined in the following section; thus this rule

completely defines the syntactic name dollar, without reference to any
other rules,

Lexical Definitions and Syntax Notation
THE SYNTAX NOTATION

Sometimes it is wuseful to give the same definition for several
syntactic names. In such a case, the several names are written one
above another and are joined by a brace.

position
size expression
In English, this rule reads: 'The syntactic names gosition and size

each designate an expression.'

2.4.2 sSyntactic Names and Syntactic Literals

A syntactic name is one or more English words composed of lower case
letters and connected by hyphens. Four examples of syntactic names
are given in the two syntactic rules above, namely: dollar, position,
size, and expression.

Further examples of syntactic names are:

module

own-item
forward-routine-declaration
compile-time-constant-expression

Every syntactic name has at least two characters.
A syntactic literal is a printing character that 1is interpreted as

itself when It occurs in a string definition. All printing characters
are syntactic literals except:

1. A character that is part of a syntactic name.
2. A brace character, { or }, or a vertical bar, .

3. A period or comma that is part of the sequence "..." or the
sequence ",...".

In practice, it is easy to distinguish a syntactic name from a
syntactic literal because syntactic names are always in lower case and
BLISS keywords appear in this manual (by convention) in upper case.

2.4.3 Concatenations

A concatenation is a string definition composed of a sequence of two
or more string definitions. If the definitions are adjacent (without
intervening spaces), then the strings they define must also be
adjacent. If the definitions are separated (by spaces), then the
strings they define may or may not require separation, depending on
the separation rules given in Section 2.3.

An example of a syntactic rule that uses adjacent concatenations is:

volatile-attribute VOLATILE

Lexical Definitions and Syntax Notation
THE SYNTAX NOTATION

In English, this rule reads: 'The syntactic name volatile~attribute
designates the following string: the keyword "VOLATILE".' Because the
eight letters "VOLATILE" (each one a syntactic literal) are adjacent
in the rule, they must also be adjacent in the program.

An example of a rule that uses both adjacent and separated
concatenations is:

exitloop-expression EXITLOOP exit-value

In English, this rule reads: 'The syntactic name exitloop-expression
designhates the following string: the keyword "EXITLOOP", followed by
an exit-value.'

In the English reading of any syntactic rule, the phrase "followed by"
is an abbreviation for "followed by the spaces (if any) that are
required by the separation rules, followed by".

2.4.4 Disjunctions

A disjunction is a string definition that permits a choice of one
string definition from a set of several string definitions. The set
of definitions is enclosed in braces. Each definition 1is separated
from the preceding one by being on a new line or by a vertical-bar
character.

An example of a disjunction in which each choice 1is written on a
separate line is:

single~value
case-label low-value TO high-value
INRANGE
OUTRANGE
In English, this reads: 'The syntactic name case-label designates one
of the following strings: (1) a single-value, (2) a low-value

followed by the keyword "TO" followed by a high-value, (3) the keyword
"INRANGE", (4) the keyword "OUTRANGE".

An example of a disjunction in which the choices are separated by
vertical-bar characters is:

octal-digit fol 1121 -—171}

In English, this reads: 'The syntactic name octal-digit designates
one of the following characters: "0", "1", "2", and so on to "7".'
Observe that once the set of choices is clearly implied, the ellipsis
symbol "---" is used to indicate other choices. 1In some disjunctions,
one of the choices may be the omission of a construct; in such a
case, the word "nothing" is included in the braces.

Lexical Definitions and Syntax Notation
THE SYNTAX NOTATION

An example of a disjunction that uses the word "nothing” as one of the
choices is:

WITH exit-value
leave-expression LEAVE label nothing -

2.4.5 Replications

A replication is a string definition that represents a sequence of one
or more copies of a given string definition. The replication is
indicated by writing the symbol "..." after the given definition. The
separation between the defined strings is determined by the separation
rules, just as for concatenation.

An example of a replication is:

own-item own-name lnothing

: own-attribute ...}

In English, this rule reads: 'The syntactic name own-item designates

the following string: an own-name followed by an optional
own-attribute-list. An own-attribute-list is a colon followed by a
sequence of one or more own-attributes.' (The extra syntactic name,

own-attribute-list, is introduced only for the sake of the English
reading.)

A special kind of replication 1is indicated by writing the symbol
",..." after the definition. The symbol means that each copy of the
given definition is separated from the preceding one by a comma.

An example of a replication that uses the symbol "L,e.." is:

actual ,...
routine-call routine-designator (nothing)

In English, the rule reads: 'The syntactic name routine-call
designates the following string: a routine-designator, followed by
the character " (", followed by an optional actual-list, followed by
the character ")". an actual-list is a sequence of actuals that are
separated from one another by commas."' (The extra syntactic name,
actual-list, is introduced only for the sake of the English reading.)

Note that in either case ("..." or ",..."), the optional replication
applies only to the string definition that immediately precedes the
replication symbol.

Lexical Definitions and Syntax Notation
THE SYNTAX NOTATION

2.4.6 Dialectal Differences
Some of the syntactic rules given in this manual apply to only one or
two of the three BLISS dialects. That is, some of the rules are not

part of Common BLISS. Further, certain of the string definitions
given within some rules are dialect specific.

These dialect-specific features are indicated in the syntax diagrams
by 'flags' of the form
nn Only => or mm/nn Only =>

preceding a rule (or group of rules) for the former case; or a flag
of the form

<= nn Only or <= mm/nn
following a string definition for the latter case. In each case, mm

and nn identify the dialect(s) to which the syntactic feature applies,
i.e., 16, 32, or 36.

An example of an entire syntactic rule that is dialect-specific is:

16/32 Only =>
SIGNED
extension-attribute UNSIGNED
In English, the dialect flag means: 'The following syntactic rule

applies to the BLISS-16 and BLISS-32 dialects only."

An example of both a syntactic rule and a string definition within the
rule that are dialect-specific is:

16/32 Only =>
LONG <= 32 Only

allocation-unit WORD
BYTE
In English, the left-pointing dialect flag "<= 32 Oonly" means: 'The

string definition LONG 1is valid only in BLISS-32 as an alternative
within the rule for allocation-unit (which itself applies only to the
BLISS-16 and BLISS-32 dialects).

CHAPTER 3 BLISS VALUES AND DATA REPRESENTATIONS

BLISS VALUES . . ¢ o o o o o o ¢ o o o o o
Fullword Values . .+ « « o« o o o o o o = =
Field Values . ¢« « o o o o s o o o o o & o
The Extension of Values . « « « « o ¢ + &

DATA SEGMENTS . . + « « o = o
aAddressable Units and Units Per BLISS Value
SCAlarS « « ¢ o o o o o o s s e s e e s e
VECTOR Structures . o« o« o o o o o » o o o
BITVECTOR Structures . « o« o« o o o o o« =
BLOCK StrucCtuUres . « o« o o o o o o o = o &«
BLOCKVECTOR Structures . « « o« s o o o =+ &
Programmed Structures« + o ¢ o o

CHARACTER SEQUENCE DATA .+ ¢ « o o o o o o
General Character Representation
Character Sequence Operations
BLISS-16 Character Representation
BLISS-32 Character Representation
BLISS-36 Character Representation

STORAGE ORGANIZATION . .« « o & o o o o o o =
The Stack .« o« o o o o o o o = s o o s o @
The Registers . « .« « ¢ o o o &+ ¢ o o = =
Storage for a Program Module

WwWwww
e e e o s 8 e e »
NN =
. o e e o
[RE N

« o e ¢« o o
¢« o e o . . .
[, - S I O SO W N

« e e

.
BB WWWWWWNNNMNDNDND

.

WLWWWWWwwwwwwwwwwwww
.

. .
w N -

w W
[U
HOWSIOO &N

wWwwwww

b

CHAPTER 3

BLISS VALUES AND DATA REPRESENTATIONS

The range of data values permitted and the kinds of data
representations available are important characteristics of a
programming language. Because the BLISS 1language is a systems
implementation language, its value and data representations are
closely related to those directly provided or efficiently handled by
the machine architecture of each target system.

This chapter describes the values and data representations provided by
each BLISS compiler/dialect. Because the three BLISS target systems
(or system families) have substantially different architectures --
word sizes, addressable units, character string representations, etc.
-~ certain portions of this chapter are, necessarily, gquite system
specific.

3.1 BLISS VALUES

BLISS provides a variety of written (source program) representations
for values (binary, octal, hexadecimal, and so on) . These are
described in Chapter 4. The normal representation is decimal; that
is, any number in a BLISS program and in this manual, is interpreted
as decimal notation unless otherwise indicated.

The values on which the object program operates, however, are
represented as bit strings. The maximum-length bit string that is
efficiently accessable by a given target system (i.e., a "word" or
"longword" depending on the system) is called a fullword in BLISS
terminology. The length of a fullword, in bits, Tfor each target
system 1is indicated by the numeric portion of the name of the
respective dialect: 16, 32, or 36.

A bit string that is shorter than a fullword is called a field value.
Several field value sizes are of particular importance in BLISS,
depending upon the dialect in question:

° For All Dialects - The bit, which is the smallest unit of
storage.

° For BLISS-16 - The byte (8 bits), which is the Dbasic
addressable unit in PDP-11 and VAX-1l1l systems.

° For BLISS-32 - The byte, as above, and the word (16 bits),
which is the 'intermediate size' addressable unit in VvAX-11
systems.

Bliss Values and Data Representations
BLISS VALUES

Fullword values and field values play contrasting roles 1in BLISS,
Fullword values are used as the basis for all calculations. Fields
are used to achieve compact storage for values that do not require the
maximum-length bit string for their representation. The two kinds of
values are discussed separately in the following sections.

3.1.1 Fullword Values
The fullword value (formerly called "a BLISS value") is the

fundamental data type of BLISS. Specifically, the result of
evaluating any BLISS expression is a fullword value.

In some cases, a fullword value can be viewed as a bit string without
a specific interpretation, as when a value is moved from one storage
location to another without modification. 1In other contexts, the bits
of a fullword value are given a specific interpretation. A fullword
value can be interpreted as:
° A signed integer, represented in two's complement notation.
. An unsigned integer,

° A sequence of character positions, each of which contains a
code for an ASCII character.

° A sequence of logical values, each of which represents
"true" or "false".

° A memory address.
Other interpretations for a fullword value can be devised, but these

are the interpretations that are built into the operations of BLISS.

The length of a fullword, in bits, is given in each BLISS dialect by
the predeclared 1literal $BPVAL (bits per value), i.e., 16, 32, or 36
for BLISS-16, BLISS-32 and BLISS-36, respectively. Using this
literal, the range of a fullword value for each of the interpretations
listed above can be expressed for all dialects as follows:
° Signed integer, i:
- (2**$BPVAL-1) < i < (2**$BPVAL-1)-1
In BLISS-16, for instance: -(2**15) < i < (2**15)-1
. Unsigned integer, i:
0 < i < (2*%*$BPVAL)-1
. ASCII character positions:
2 in BLISS-16
4 in BLISS-32
5 in BLISS-36

. Sequence of logical (boolean) values:

$BPVAL

Bliss Values and Data Representations
BLISS VALUES

. Memory address:

Full address space of each target system

A fundamental rule of BLISS is the following:

The interpretation of a fullword value is supplied by the context
in which the fullword value is used. A given fullword value can
have one interpretation in one context and a different
interpretation in another context.

In this respect, the BLISS language is similar to machine language and
is different from most high 1level languages. Both BLISS and the
target-system hardware interpret a value according to the operation
applied to it. In contrast, most high level languages associate a
specific interpretation (or "type") with each value, independent of
its context.

The BLISS rule for interpreting fullword values allows programmers to
stay close to the hardware and, accordingly, to write more efficient
programs. At the same time, however, this rule permits programming
errors to arise as a result of the misinterpretation of values.

As a basis for an example of the interpretation of a fullword value,
consider the following assignment:

X = -1

This assignment sets the contents of X to the two's complement
representation of minus one; that is, a sequence of $BPVAL ones. The
two expressions that follow interpret the contents of X in different
ways:

.X LSS 4
.X LSSU 4

Both of these expressions use a 1less-than operator to compare the
contents of X to 4., They yield 1 or 0 depending on whether or not the
contents of X is less than 4. However, according to the definitions
given in Chapter 5, the operators interpret their operands in
different ways, as follows:

° The LSS operator interprets its operands as signed integer
values, It finds that the contents of X is -1 and is
therefore less than 4. Accordingly, the value of the
expression is 1.

. The LSSU operator interprets 1its operands as unsigned
integer values. It finds that the contents of X is a large
positive integer (namely, (2**$BPVAL)-1) and is therefore
not less than 4. Accordingly, the value of the expression
is 0.

Since the negative number was assigned to X, it might be assumed that
the user of the LSSU operator is incorrect. In fact, however, both
expressions are valid. The question of which 1is correct depends
entirely on the intentions of the programmer.

Bliss Values and Data Representations
BLISS VALUES

3.1.2 Field values

According to the definition already given, a field value is a bit
string that is shorter than a fullword. Field values arise in two
ways, as follows:

° Some stored values are "packed" and occupy only part of a
fullword.

[Some BLISS operators and literals have values that can be
represented in less than $BPVAL bits.

Whenever a field value arises during program execution, it is extended
to become a fullword and then the appropriate interpretation 1s
applied to the fullword. The rules for the extension of values
follow.

3.1.3 The Extension of Values

A field value is extended to a fullword value by placing a sufficient
number of bits at the left end of the given value to provide a total
of $BPVAL bits.

The following discussion of value extension is largely oriented toward
BLISS-16 and BLISS-32, since the target systems for these two dialects
allow allocation of scalar data segments in smaller-than-fullword
units. Hence these dialects have an allocation-unit and an
extension-attribute that can be used in data declarations. As will be
seen in Chapters 5 and 11, however, these syntactic features are
closely related to field-selectors, which are common to all three
dialects. To the extent, then, that field values can arise in
BLISS-36 as well as in BLISS-16 and BLISS-32, the following discussion
is equally applicable to all dialects.

A value can be extended in two ways, as follows:

® Unsigned extension uses a zero bit for each additional bit.

] Signed extension uses a copy of the sign bit (leftmost bit)
of the given value for each additional bit.

The kind of extension is determined in either of two ways. First, in
BLISS-16/32, an extension-attribute (UNSIGNED or SIGNED) can be
included in the declaration of a data segment name (see Section 9.2).
Second, a sign-extension-flag can be used in a field-selector (see
Section 11.2). When the kind of extension is not explicitly given by
an extension-attribute or a sign-extension-flag, unsigned extension is
assumed as the default.

BLISS-16/32 ONLY

As the basis for some examples of value extension, consider the
following declaration which is valid in BLISS-16 or BLISS-32:

OWN
X: BYTE SIGNED,
Y: BYTE;

Bliss Values and Data Representations
BLISS VALUES

Suppose the contents of both X and Y are:
11111111 (binary)

The declaration of X as SIGNED implies that this wvalue is -1;
that 1is, the two's complement interpretation of the given bit
string. On the other hand, the declaration of Y as UNSIGNED (by
default, since no extension~attribute is given) implies that its
contents is 255; that is, the unsigned interpretation of the
given bit string.

(These declarations are invalid for BLISS-36 simply because the
target-system architecture does not permit storage allocation in
units of less than $BPVAL bits, i.e., less than a 36-bit machine
word. Fetching and storing of field values can be performed,
however, through the wuse of explicit field-selectors, as
illustrated in a later example.)

The sign interpretations come into play when the contents of X
and Y are fetched. The evaluation of .X uses signed extension to
produce the following bit string:

11111...1111111111 (binary)

which is the two's complement representation of -1 represented in
16 bits for BLISS-16 or 32 bits for BLISS-32. 1In contrast, the
evaluation of .Y uses unsigned extension to produce the following
bit string:

00000...0011111111 (binary)

which is the unsigned representation of 255. Therefore, the two
results are different, and the expression

.X EQL .Y

would be false (that is, the low bit would have the value 0).

In BLISS-36 as well as BLISS-16 and BLISS-32, identical results would
be obtained wusing the following, analogous set of declarations and
fetch operations:

OWN
X,
Y;

declares X and Y as the names of fullword, scalar data segments.
Assume that the low-order eight bits of both these fullwords are
one-bits., Then the fetch operation

.X<0,8,1>

specifies a fetch of the 1low-order eight bits of location X
with signed extension, upon -evaluation produces the value -1, as in
the example above, represented in $BPVAL bits. 1In contrast, the fetch
operation

.¥<0,8,0>

specifies a fetch of the 1low-order eight bits of 1location Y
with unsigned extension, which produces the value 255 in $BPVAL bits.

3-5

Bliss Values and Data Representations
DATA SEGMENTS

3.2 DATA SEGMENTS

During the execution of a BLISS program, values are stored in

data segments. A data segment consists of one or more addressable
units of memory. 1In its simplest form, a data segment contains a
single value. In its more complicated forms, a data segment can

contain many values of various lengths.

The different kinds of data segments can be classified as follows:

Data Segments
Scalars
Structures
Predeclared Structures
VECTOR Structures
BITVECTOR Structures
BLOCK Structures
BLOCKVECTOR Structures
Programmed Structures

A scalar segment contains a single value, whereas a structure may
contain any number of values. Each predeclared structure is a part of
the definition of BLISS, and it 1is invoked by wusing one of the
predeclared structure names (VECTOR, BITVECTOR, BLOCK, or BLOCKVECTOR)
in the declaration of a data segment. A programmed structure is
defined by the programmer and can be used to organize the contents of
a data segment in any way.

3.2.1 Addressable Units and Units Per BLISS Value

The three target-system families supported by BLISS differ 1in four
respects having to do with their storage organization that affect the
source-language syntax and semantics to some degree. These
differences are as follows:

1. Maximum (or only) "word" size, already described as the
BLISS fullword consisting of $BPVAL bits.

2. Smallest directly addressable unit of storage.

3. Number of addressable units per BLISS value (i.e., per
fullword) .

4. ©Size of an address value.

The size of the smallest addressable unit, in bits, is given by the
predeclared literal $BPUNIT (bits per unit). Its value is 8 for both
BLISS-16 and BLISS-32 —-- byte oriented target systems; and 36 for
BLISS-36 -- a word oriented target system.

The number of addressable units per BLISS value is the quotient of
$BPVAL over $BPUNIT. This value is given by the predeclared literal
$UPVAL (units per value). Its value is 2 for BLISS-16 (two bytes per

PDP-11 word), 4 for BLISS-32 (four bytes per VAX-11 longword), and 1
for BLISS-36.

The final difference is the number of bits required for a maximum
address value, given by the predeclared literal $BPADDR. Its value is
16 for BLISS-16, 32 for BLISS-32, and 18 or 30 for BLISS-36, depending
on the setting of the EXTEND module-switch, (This value is usually

3-6

Bliss Values and Data Representations
DATA SEGMENTS

less significant than the others, as its utility is limited to certain
kinds of operations on addresses that are not commonly required.)

The literals just described are used in the subsequent discussions of
data-segment types.

3.2.2 Scalars

In BLISS-16 and BLISS-32, the storage occupied by a scalar segment
depends on the allocation-unit that is associated with the segment.
The allocation-unit is given in the declaration of the name of the
segment and is one of the following keywords:

LONG (for 32 bits) <= BLISS-32 only
WORD (for 16 bits) <= BLISS-16/32 only
BYTE (for 8 bits) <= BLISS-16/32 only

When no allocation-unit is given, WORD is assumed in BLISS-16 and LONG
is assumed in BLISS-32. In BLISS-36, only fullword scalar segments
can be allocated.

The kind of extension used when the value of a data segment is fetched
depends on the extension-attribute (BLISS-16/32 only) that is
associated with the segment or the field-selector associated with the
fetch operation. The extension-attribute 1is one of the following
keywords:

UNSIGNED (for unsigned extension)
SIGNED (for signed extension)

When no extension-attribute or field-selector 1is given, unsigned
extension is assumed.

The extension-attribute does not affect the amount of storage used for
a data segment. 1Its only effect is on the way the value is extended
to $BPVAL bits when it is fetched. It is wvalid to give an
extension-attribute with a fullword data segment, but the attribute
has no effect since the value is already $BPVAL bits long.

An example of the declaration of a scalar segment is:
OWN X;

This declaration describes a segment that is allocated permanently
before execution begins (because it is OWN), that is named X, that is
a scalar (because no structure-attribute is given), that occupies a
fullword (because no allocation-unit is given), and that uses unsigned
extension (because no extension-attribute is given).

The features of a data segment can be illustrated in a diagram. In
the following, the declaration of X is given together with the diagram
for the corresponding data segment:

Declaration Diagram
OWN X; 2360 X / 15 / (%BPVAL)

Bliss Values and Data Representations
DATA SEGMENTS

This diagram represents a data segment in a simple and abstract way;
that 1is, it does not show the specific layout of the data in terms of
the byte boundaries (where applicable), bit sequences, and addresses
of storage. A more detailed notation is introduced in Chapter 11.

The diagram represents the data segment as follows:

1. The address of the data segment is given in two forms. The
first form is an (arbitrarily chosen) integer, 2360, used by
the hardware to locate the segment. The second form is the
name, X, that 1is wused by the program to designate the
segment.,

2. The storage is represented by a box followed by a
parenthesized expression. The expression shows how many
bits of storage the box represents.

3. The contents of the data segment is given as a literal, 15,
written inside the box. It is this part of the diagram that
changes as program execution proceeds.

In this example, the value of X is 2360 (the address of the data
segment), whereas the value of .X is 15 (the contents of the data
segment) .

BLISS-16/32 ONLY

The preceding example describes a scalar that occupies a
fullword. Examples of scalars that, in BLISS-16 or BLISS-32,
occupy a word and a byte are:

Declaration Diagram
OWN Y: WORD; 1000 Y / 28 / (16)
OWN Z: BYTE; 2440 zZ / 18 / (8)

In these examples, each data segment has the UNSIGNED
extension-attribute by default. Thus the values fetched from Y
are in the range from 0 to (2**16)-1 and the values fetched from
Z are in the range from 0 to (2**8)-1.

An example of a scalar that has the SIGNED extension-attribute

is:
Declaration Diagram
OWN R: SIGNED BYTE; 3002 R / =5 7 (8)
The values fetched from R range from - (2**7) through (2**7)-1.

Thus although R and Z (in the preceding paragraph) both occupy
eight bits of storage, their values are interpreted differently
when they are fetched.

For the purposes of the following discussions, in BLISS-36 scalar
data-segment declarations can be thought of as having an implicit
allocation-unit of $%UPVAL value (i.e., one addressable wunit per
segment), and an implicit UNSIGNED extension attribute.

Bliss Values and Data Representations
DATA SEGMENTS

3.2.3 VECTOR Structures

A vector structure is a sequence of scalar elements. The number of
elements 1is the extent of the vector, and is given as part of the
declaration of the segment name. The elements are numbered, with ©
for the first element, 1 for the second, and so on.

Each element of a vector has the same allocation—-unit and
extension-attribute. This 1information can be given as part of the
declaration of the vector. If the allocation-unit is not given, the
default 1is the same as for scalar segments (fullword allocation). If
the extension-attribute is not given, unsigned extension 1is assumed
(where applicable).

An example of a vector is:
Declaration Diagram
OWN A: VECTORI[3]; 5440 A[0] / 28 / (%BPVAL)
A[l1] / 5 / (%BPVAL)
A[2] / 133 / (%BPVAL)
This declaration describes a segment that starts at address 5440 and
is named A. The declaration gives the extent of the vector as 3 and

so the vector has three elements. The declaration does not give an
allocation-unit, so each element occupies a fullword.

A particular element is selected by a bracketed subscript expression.
Suppose that the contents of a data segment named IND is 3, and
consider the contrast between the following expressions:

Expression Value
A[.IND-2] 5440+%UPVAL (the address of the second element)
.A[.IND-2] S (the contents of the second element)

BLISS-16/32 ONLY

An example of a declaration that gives both allocation-unit and
extension-attribute is:

Declaration Diagram

OWN B: VECTOR[3,WORD,SIGNED]; 46046 B[0] / 15 / (16)

B[1] / 3 / (16)
B[2] ,/ 4 / (16)

This declaration describes a segment that starts at address 46046
and is named B. It is similar to the segment named A, described
in the preceding paragraph. However, the allocation-unit is
given explicitly as WORD, and therefore each element of the
vector occupies 16 bits. It follows that the vector occupies
only six bytes of memory. Furthermore, the extension-attribute
is given explicitly as SIGNED, and therefore, the fetched
contents of an element of B is subject to signed extension.

3-9

Bliss Values and Data Representations
DATA SEGMENTS

An example of a vector of bytes is:

Declaration Diagram

OWN C: VECTOR[4,BYTE]; 221 c[0) /T 7/ (8)
cl1l /7 7 (8)
cl2y /2 7/ (8)
c[3] /4 7 (8)

This data segment is a vector of four elements and occupies four
bytes of memory. Since an extention-attribute is not given,
UNSIGNED is assumed by default.

3.2.4 BITVECTOR Structures

A bitvector structure is similar to a vector structure. However,
bitvector structures are designed especially to handle bit strings,
and each element of a bitvector structure is a single bit.

An example of a bitvector structure is:
Declaration Diagram
OWN STATUS: BITVECTOR[15}; 1604 STATUS[0] /1 7 (1)
STATUS [1] /1 7 (1)

... (and so on, until)

STATUS [14] / 0 / (1)
(not used) /7777777 (n)

This declaration describes a segment that has 15 elements and thus
makes use of 15 bits of memory. The number of unused bits, n, in the
data segment allocated for this structure would be one in BLISS-16 and
BLISS-32 (byte allocation), and 21 in BLISS-36.

A bitvector starts at the low-order (rightmost) bit of its first
addressable unit of storage. Thus in BLISS-16 or BLISS-32, STATUS[O]
designates the low-order bit of the byte whose address is 1604,
STATUS[7] designates the high-order bit of that byte, STATUS [8]
designates the low-order bit of byte 1605, and so on.

In BLISS-36, where the structure is entirely contained in one word,
the references STATUS[0] and STATUS[8] designate the low-order bit and
the ninth bit "from the right", respectively, of word 1604. (Note
that bit-position numbering in BLISS is consistent across dialects:
bit numbers increase from low order to high order, "right to left”,
regardless of the target-system hardware convention.)

Neither an allocation-unit nor an extension-attribute can be used with
BITVECTOR. (The number of addressable units allocated is the smallest
number of units that can accomodate the given number of bits.) When
the contents of an element of a bit vector is fetched, unsigned
extension is always used.

3-10

Bliss Values and Data Representations
DATA SEGMENTS

3.2.5 BLOCK Structures

A block structure is a sequence of components. The block as a whole
has a name, which is declared using the BLOCK structure-attribute. 1In
addition, each component of a block has its own name.

A block is declared with a size and, in BLISS-16 and BLISS-32, an
allocation-unit, The size specifies the amount of storage required
for the entire block. The allocation-unit determines the units in
which the size is measured. The default allocation-unit is the same
as for a scalar segment declaration (fullword allocation).

The individual components of a block can have different sizes. The
way in which the size of each component is specified is given in
Chapter 11. For purposes of the present discussion, it is sufficient
to state that the size is determined when the program is written and
cannot change during program execution.

Observe that a block differs from a vector in two ways. A block is
less flexible than a vector because, in normal usage, the name of a
block component is given explicitly when the program 1is written,
whereas the subscript of a vector element can be calculated during
program execution. On the other hand, a block is more flexible than a
vector because the components of a block can have various sizes,
whereas the elements of a vector must all have the same size.

An example of a BLOCK structure, using BLISS-32, is:
Declaration Diagram
OWN ITEM: BLOCK[ITEMSIZE,BYTE]; 33300 ITEM[FLG] / 0 / (2)

ITEM[N1] / 235 / (14)

ITEM[LOC] / 17 / (32)

This declaration describes a segment that starts at address 33300 and
is named ITEM. The declaration gives the size of the block as
ITEMSIZE. The diagram shows that the individual components are FILG
(two bits), N1 (fourteen bits), and LOC (32 bits). Since ITEMSIZE
must be the total number of bytes used, the diagram implies that the
value of ITEMSIZE should be 6.

The address of a component of the block is written exactly as it
appears in the diagram. Consider the contrast between the following
expressions:

Expression Value
ITEM[LOC] 33302 (the address of the third component)
.ITEM[LOC] 17 (the contents of the third component)

3.2.6 BLOCKVECTOR Structures

A blockvector structure is a sequence of elements (as 1is a vector
structure), but each element consists of a block. The number of
elements is the extent of the blockvector, and is given as part of the

3-11

Bliss Values and Data Representations
DATA SEGMENTS

declaration of the segment name. The elements are numbered, with 0
for the first element, 1 for the second, and so on.

Each element of a blockvector is a sequence of components (as 1is a
block) . Each component is a scalar and has its own name, Therefore,
the combination of the blockvector name, the subscript of an element,
and the name of a component is used to designate a single value.

In addition to the extent, an element-size and, if BLISS-16 or
BLISS-32, an allocation-unit are given in the declaration of a
blockvector. The element-size specifies the amount of storage for
each element (i.e., the block size), and the allocation-unit
determines the units in which the element-size is measured. The
default allocation-unit is the same as for a scalar segment (fullword
allocation). The storage required for a blockvector is the product of
its extent and its element-size.

An example of a BLOCKVECTOR structure, using BLISS-36, is:
Declaration Diagram

OWN Q: BLOCKVECTORI[2,0S]; 6000 Q[0,FLAG] 5 / (8)

o(0,VvAL] /62 7 (28)

Q[l,FLAG]

/
/

Q[0,PTR] /0 / (36)
/25 / (8)
/

o[1,VAL] /78 7 (28)

0[1,PTR] /23 7 (36)

The declaration of Q gives the extent as 2 and the element size as QS.
Acording to the diagram, each element has three components, FLAG, VAL,
and PTR. Since QS must be the total number of fullwords used by each
element, the diagram implies that the value of QS should be 2.

Suppose that the contents of a data segment named I is 0, and consider
the contrast between the following expressions:

Expressions Value
Ql.I+1,FLAG] 6002 (address of component)
.Q[.I+1,FLAG] 25 (contents of component)

3.2.7 Programmed Structures

The predeclared structures discussed in the preceding sections provide
the data structures usually required for system programming. To
provide for other data structures, BLISS has a feature, the STRUCTURE
declaration, that permits a programmer to design and use his own data
structures. This feature of BLISS is described in Chapter 11 where,
in addition, each predeclared structure Iis defined in terms of a
STRUCTURE declaration.

3-12

Bliss Values and Data Representations
CHARACTER SEQUENCE DATA

3.3 CHARACTER SEQUENCE DATA

The representation of character data differs among the three BLISS
dialects due to basic architectural differences. Character data is
represented in a very different way in BLISS-36 target systems than in
BLISS-16 and BLISS-32 target systems. 1In spite of this difference, it
is possible to think about character data in a single, uniform way
that applies to all BLISS target systems and, more importantly, to
code BLISS programs that behave the same way and give the same results
on all BLISS systems, even though the results are achieved in
significantly different ways at object level,

The BLISS features for handling character data in this common (i.e.,
transportable) way involve some new terminology and a set of special
character-handling functions; these features are described in detail
in Chapter 20.

The representation of character data and, in particular, sequences of
characters 1is described here in two ways. First, character sequences
are described in a general way that includes only the aspects that are
common to all BLISS target systems, Second, the representation of
character sequences is described specifically for each BLISS target
system,

3.3.1 General Character Representation

Loosely speaking, a character sequence is like a vector of character
data elements. This analogy may be useful in understanding the
following description of BLISS character sequences. (Fuller detail is
given in Chapter 20.)

A character code is a sequence of bits that represents a character.
Usually the ASCII encoding of characters is used in BLISS.

A character position is the storage for a single character code. For
a given Implementation of BLISS, the size of a character position is
determined by two factors: the requirements of the character code and
the organization of storage.

A character position sequence is a portion of storage that is used for
one or more character positions. Such a sequence has a first and last
position. For each position except the first, there 1is a previous
position, and for each position except the last, there is a next
position.

A character data segment is a character position sequence that |is
allocated as a single portion of storage. 1In the simpler applications
of character handling, it is possible to treat each character data
segment as a separate unit, containing a complete character position
sequence and allocated in the same way as other data segments.

A character pointer is a value that designates a character position.
Sometimes a character pointer is set to the first character position
of a sequence and remains there, providing access to the entire
sequence. In other «cases, a character pointer is used to scan back
and forth in a sequence, selecting one position after another. A

3-13

Bliss Values and Data Representations
CHARACTER SEQUENCE DATA

character pointer can be correctly interpreted only by a character
handling function. It occupies a fullword.

The length of a character position sequence is the number of character
positions 1in the sequence. The length of a sequence is not included
as part of the sequence itself. 1In order to fully specify a character
position sequence, both its length and a pointer to its first position
must be given. Typically, the parameters of the character handling
functions occur in pairs, a length followed by a pointer.

3.3.2 Character Sequence Operations

The basic operations of character handling are the allocation of
storage, creation of a pointer, moving of a pointer, fetching or
storing of a character code, and the comparison of character
sequences, All of these operations must be performed by means of the
specific character handling functions provided for this purpose. For
example, the contents of a character position must always be fetched
or stored by means of a character pointer that designates the

character position. In contrast, a character pointer can be fetched
or stored 1like any other fullword value (by means of the
fetch-operator, ".", or the assignment operator, "=").

Returning to the analogy with a vector of character data elements, the
following correspondences can be established:

° A character code corresponds to the contents of an element of
the vector.

o A character position corresponds to the storage for an
element of the vector.

° A character position sequence corresponds to a contiguous
sequence of elements of a vector (possibly but not
necessarily the entire vector).

] A character data segment is the complete vector.

® A character pointer corresponds to the address of an element
of the vector.

The ways in which this analogy is inexact are:

° A character position need not correspond to an addressable
unit of storage.

. A character pointer is not simply an address value.

(These considerations apply specifically to BLISS-36 as will be seen
below.)

3.3.3 BLISS-16 Character Representation

In BLISS-16 there are two character positions per fullword.
Characters are allocated in storage with the leftmost character of the
source string in the low-order (or "rightmost") character position of
the first or only fullword. Additional fullwords or bytes are
allocated in ascending address order. For example, the source

3-14

Bliss Values and Data Representations
CHARACTER SEQUENCE DATA

character string 'ABCDEFGH' would be allocated as follows:

Diagram

7000 /BA/ (16)
7002 /DC/ (16)
7004 /FE/ (16)
7006 /HG/ (16)

Note that the eight-character string 'ABCDEFGH' can only appear in the
context of a PLIT (a type of primary expression) since a string
literal itself, as a primary expression, cannot exceed the capacity of
a fullword: two character positions in BLISS-16. (See Chapter 4,
"primary Expressions".)

The BLISS-16 representation 1is related to the general BLISS
representation of character sequences as follows:

. A character code consists of 8 bits.
] A character position is a byte of storage.

. A character position sequence is a contiguous sequence of
bytes of storage with successive characters, considered from
left to right, contained in successive bytes from lower to
higher addresses.

° A character data segment is also a contiguous sequence of
bytes of storage.

° A character pointer is the address of a byte.

3.3.4 BLISS-32 Character Representation

In BLISS-32 there are four character positions per fullword.
Characters are allocated in storage with the leftmost character of the
source string in the low-order (or "rightmost") character position of
the first or only fullword. Additional fullwords or bytes are
allocated 1in ascending address order. For example, the source
character string 'ABCDEFGH' would be allocated as follows:

Diagram
36014 /DCBA/ (32)
36018 /HGFE/ (32)

Note that the eight-character string 'ABCDEFGH' can only appear in the
context of a PLIT (a type of primary expression) since a string
literal itself, as a primary expression, cannot exceed the capacity of
a fullword: four character positions in BLISS-32. (See Chapter 4,
"primary Expressions".)

The BLISS-32 representation is related to the general BLISS
representation in the same way as in BLISS-16.

Bliss Values and Data Representations
CHARACTER SEQUENCE DATA

3.3.5 BLISS-36 Character Representation

In BLISS-36 there are five ASCII character positions per fullword or
six SIXBIT character positions. Characters are allocated in storage
with the leftmost character of the source string in the high-order (or
"leftmost") character position of the first or only fullword.
Additional fullwords are allocated in ascending address order. For
example, the ASCII string 'ABCDEFGH' would be allocated as follows:

Diagram
21005 /ABCDE/ (36)
21006 /FGH / (36)

Note that the eight-character string 'ABCDEFGH' can only appear in the
context of a PLIT (a type of primary expression) since a string
literal itself, as a primary expression, cannot exceed the capacity of
a fullword: five character positions in BLISS-36. (See Chapter 4,
"Primary Expressions".)

The BLISS-36 representation is related to the general BLISS
representation of character sequences as follows:

° A character code consists of 7 bits.

. A character position is a 7-bit field of a 36-bit word of
memory.

. A character position sequence is a contiguous sequence of
character positions with successive character codes,
considered from left to right, contained in adjacent 7-bit
fields beginning at any of the five character positions in a
word and continuing toward positions in the lower order part
of the word and then to the high order 7 bits of the next
word, and so on.

° A character data segment is a contiguous sequence of 36-bit
words.

° A character pointer is a special 36-bit value that consists
of both address and position and size information describing
the character position.

(In DECsystem-10 terminology, a character pointer is a byte
pointer that, when used as the operand of an ILDB (increment
and load byte) instruction, will fetch the character code
value from the indicated character position.)

3.4 STORAGE ORGANIZATION

During the execution of a BLISS-compiled object program, storage
consists of the following:

Storage
Storage for the given program
The Stack

The Registers

Storage for the First Module

Storage for the Second Module

Storage for the Last Module
Other Storage

3-16

Bliss Values and Data Representations
STORAGE ORGANIZATION

The other storage includes the routines and data of the operating
system, the run-time routines for BLISS, and the storage for programs
other than the given program.

The stack, the registers, and the storage for each module are
described in the following sections.

3.4.1 The Stack

The stack is used to store temporary data associated with the
execution of the routines in a BLISS program. The stack is composed
of frames. Upon entry to a routine, a frame is pushed on the stack
for use in executing that routine. Upon return from the routine, the
frame is popped from the stack.

A stack frame contains data segments of two kinds. Some of the data
segments are declared as LOCAL or STACKLOCAL. Such segments are
directly accessible from the program and are used for values that are
needed only during the execution of the routine in which they are
declared. The other data segments are allocated by the compiler and
are not accessible from the program. These segments are used for such
values as the return address of the routine or the intermediate
results that are produced during the evaluation of an expression.

The declaration of LOCAL and STACKLOCAL names is described in Chapter
10. The relation between a routine and the stack is further described
in Chapter 12.

3.4.2 The Registers

The registers of BLISS correspond to the general registers of the
target-system hardware. Each register contains one fullword value.
Each of the registers is considered to be a single data segment.

The use of registers is normally determined by the compiler, not the
program., Access to a register uses less time than access to ordinary
storage; therefore, registers are often used to store the
intermediate results and addressing indices of a calculation. Under
special circumstances, registers can be accessed by the program.

The declaration of register names is described in Section 10.7.

3.4.3 Storage for a Program Module

A module uses four kinds of program sections. Each kind of program
section has a special purpose, as follows:

° An OWN program section contains a data segment for each name
that is declared OWN in the module. Such a data segment is
permanently allocated. It can be accessed only from the
module in which it is declared.

° A GLOBAL program section contains a data segment for each
name that 1s declared GLOBAL in the module. Such a data

3-17

Bliss Values and Data Representations
STORAGE ORGANIZATION

segment is permanently allocated. It can be accessed from
the module in which it is declared and in any module in which
its name is declared EXTERNAL.

. A PLIT program section contains a data segment for each PLIT
used In the module.

[A CODE program section contains a code segment for each
routine that is declared in the module.

The programmer can leave the management of program sections to the
compiler; and in that case each module will have no more than one of
each kind of program section. On the other hand, the programmer can
specify several program sections of the same kind for a module and can
determine which data segments or routines are allocated in which
program sections.

The division of storage for a module into sections permits the
operating system to manage storage effectively. For example, an OWN
section need be present only when its associated module is being
executed, whereas a GLOBAL section must be present more frequently.
For another example, the PLIT and CODE sections are not modified
during program execution and can therefore be regarded as read-only
storage,

The declarations of OWN and GLOBAL segment names are described in
Sections 10.1 and 10.2. The definition of plits is given in Section
4.4. The declaration of routines is described in section 12.3.

CHAPTER 4

N R O S Y

bhbb.&bbbbbbbbbbbbh

BWWWWWRNNNDNDNDEERE

= O 00~ U UTUT UL B DD

[N N

. . o« e e e » ..
BSOS W N

« o s s s .

N =

U W N S w N

wN =

.
=

N -

PRIMARY EXPRESSIONS

PRIMARIES « o =
syntax
Semantics . .

NUMERIC-LITERALS
syntax . .+ . .
Restrictions .
Defaults . . .
Semantics . .

Limitations o

STRING LITERALS
syntax . . « o o
Restrictions . .
Defaults
Semantics . . .

PLITS e o s e s e
Syntax
Restrictions .
Defaults . . .
Semantics . .
Pragmatics . .

NAMES « e o o s

n

Syntax . . .
Restrictions
Semantics .
BLOCKS . « « « + &
STRUCTURE-REFERENCE
ROUTINE-CALLS . .
FIELD-REFERENCES .
CODECOMMENTS . . .
syntax . . . o
Semantics . . .

e o & ® o e+ e * @

S

[

(T e o o & o o s o

e o s s & v o ¢

.

e & & o o

s o & 8 & o 8 s s

» 8 & ® 8 ® s e+ 0

s e e s

e s o e s »

e« & s o s s @

TSR o

11 [N N O S R R g alad
b—'b—‘i—‘l—'l’—‘llllllllllll
NNNI—'!—‘\Q\OG)\IO\O\O\LHU'!WNNN}—‘

4-13
4-13
4-14
4-14
4-14
4-15
4-15
4-16
4-16
4-16
4-17
4-17

CHAPTER 4

PRIMARY EXPRESSIONS

In most high level languages, the term expression refers to the kinds
of construct that perform calculation, such as the addition of two
numbers or, perhaps, the concatenation of two strings. Such
expressions obviously have values; 1in fact, their sole purpose is to
calculate values.

In BLISS, the term expression applies to all constructs of the
language except declarations. For example, the construct that assigns
a value to a data segment is an expression and has a value. As
another example, the construct that controls an execution loop is also
an expression and has a value. Thus it is possible, although unusual,
to add the value of an assignment-expression to the value of a
loop-expression.

There are four kinds of expression, as shown in the following syntax
diagram:

primary

expression operator—-expression
executable-function
control-expression

This chapter describes primary expressions. It is the first of four
chapters that describe the various kinds of expressions.

The first section of this chapter discusses primaries in a general
way. Each of the remaining sections of this chapter describes one
kind of primary in more detail.

4.1 PRIMARIES

Every expression is built up from one or more primaries. The simplest
form of expression is a single primary. More complicated expressions
are constructed of primaries in combination with operators.

There is considerable variety among the primaries. A primary can be
simply a numeric-literal, such as 4, or it can be a block of
considerable length and complexity. A primary can specify a very
elementary operation, such as the formation of a storage address, or
it can call a long and complicated routine.

4-1

Primary Expressions
PRIMARIES

Examples of primary expressions are:

5 A numeric-literal whose value is 5

'Enter data:’ A string-literal composed of 11 ASCII
characters

PLIT (5,4) A pointer to a pair of literals

TOP_OF_LIST A name

F() A call to routine F with no parameters

G(5, PLIT(5,4)) A call to routine G with two parameters

X[ACCESS LEVEL] A structure-reference to a field of a data
structure named X

BETAK2,6> A field-reference to the six high-order
bits of the byte at BETA

(.X + .Y) A simple kind of block, called a
parenthesized expression

BEGIN

LOCAL T; A more complicated block, which contains

T=0; a declaration and two expressions

G(T,5);

END

4.1.1 Syntax

(" nhumeric-literal h
string-literal
plit
name
primary < block

structure-reference
routine-call
field-reference
codecomment

4.1.2 Semantics

The semantics of primaries is given in the following sections, where
each kind of primary is considered individually.

4.2 NUMERIC-LITERALS

A numeric~literal is used to represent a specific number. An integer
value can be written in any one of four radices: binary, octal,
decimal, or hexadecimal. A special-purpose way of representing an
integer is the character—code literal, which represents the ASCII code
for a given character as a transportable, fullword value. A
floating-point value can be written in single or double precision.

4-2

Primary Expressions
NUMERIC-LITERALS

Wherever the radix for a BLISS literal is not given, the radix 1is
assumed to be decimal. This manual follows the same convention; that
is, wherever a number appears in the text without an explicit radix,
the number is assumed to be decimal.

The following examples show five different ways to write a numeric
literal for the value 15.

15 Standard decimal-literal
$B8'1111" Binary integer-literal
$0'17" Octal integer-literal
$DECIMAL'15" Decimal integer-literal
X'F' Hexadecimal integer-literal

The character-code-literal is used to express, in a transportable way,
the numeric value of the ASCII code for a character. For example,

$C'A'

has the value 65 (decimal), which is the ASCII ccde for "A".

Certain literal names are predeclared by the compilers and have
specific numeric values. The values reflect various aspects of the
target system architecture. For example, %BPADDR is predeclared with
a value that is the number of bits required for an address value,
which varies for each target system. Therefore the predeclared name
$BPADDR has a different value for each BLISS compiler: 16 in
BLISS-16, 32 in BLISS-32, and 18 or 30 {depending on the target-system
environment) in BLISS-36. The predeclared literal names are described
in Section 14.1.5.

4.2.1 Syntax

decimal-literal
numeric-literal integer-literal
character-code-literal
float-literal
decimal~literal decimal-digit ...
decimal-digit {0|1|2|3l4|516|7|8|9}
%B
%0
integer-literal $DECIMAL ' opt-sign integer-digit ... '
X
opt-sign { + | = | nothing }

Primary Expressions
NUMERIC-LITERALS

ol112131415161718129
integer-digit AlB|lCIDIJ|EIF
character-code-
literal $C ' quoted-character !

printing-character-except-apostrophe
blank

quoted-character tab
"

single—precision—float—literal]
float-literal double-precision-float-literal

single-precision- E exponent]
float-literal $E ' mantissa nothing '
double-precision- D exponent}
float-literal $D ' mantissa nothing '
digits
digits .
mantissa opt-sign . digits

digits . digits

exponent opt-sign digits
digits decimal-digit ...
opt-sign { + 1 - | nothing }
Some of the numeric-literals are compo sed of two lexemes.

Specifically, in an integer-literal, the radix indicator (%B, %0,
¥DECIMAL, or %X) is a lexeme and the remainder is another; and in a
float-literal, the precision indicator (%E or %D) is a lexeme and the
remainder is another.

The guoted-string in a numeric-literal can be supplied by certain
lexical-functions (see Section 15.5).

A printing-character is any ASCII character whose code, i, is 1in the
range 33 < 1 < 126 (decimal). A printing-character-except-apostrophe
is any printing character except an apostrophe. The apostrophe is the
ASCII character with code 39 (decimal). -

Primary Expressions
NUMERIC-LITERALS

The blank is the ASCII character with code 32 (decimal). The tab is
the BSCII character with code 9 (decimal).

4.2.2 Restrictions

The double-precision-float-literal is not supported in BLISS-36 V2.

The digits in an integer-literal must conform to the radix specified
by the keyword at the beginning of the literal. Depending on whether
the keyword is %B, %0, $%DECIMAL, or %X, the digits must be binary,
octal, decimal, or hexadecimal.

A space must not appear in a numeric-literal except between the
lexemes of a two—lexeme numeric-literal (see Section 4.2.1).

When a numeric-literal (other than a float-literal) is evaluated, its
value, i, must fit in a fullword; that is, it must lie in the range

- (2%*% (§BPVAL-1)) < i < (2**$BPVAL)-1

See Section 3.1.1 for the definition of %BPVAL for each target system.

When a float-literal is evaluated its value, x, must fit in the target
system's machine representation of a floating-point wvalue. The
approximate value range of x for each target-system family 1is as
follows:

e For BLISS-16/32: 0.29*%(10**-38) < abs(x) < 1.7*%(10%%38)

¢ For BLISS-36: 0.15%(10**-38) < abs(x) < 1.7*(10**38)

BLISS-16 ONLY

The single-precision-float-literal and double-precision-float-
literal produce a value that occupies two or four fullwords
respectively, and therefore can appear only in a plit (see
Section 4.4) or an initial-attribute (see Section 9.6).

BLISS-32 ONLY
A double-precision-float-literal produces a value that occupies

two fullwords and therefore can appear only in a plit (see
Section 4.4) or an initial-attribute (see Section 9.6).

4.2.3 Defaults

The default for the sign of a numeric-literal is '+'. For example,
the numeric-literal $0'777' is equivalent to %0'+777"'.

The default radix is decimal; that is, when a sequence of digits
appears without a radix keyword and without quotes, it is assumed to
be a decimal-literal.

Primary Expressions
NUMERIC-LITERALS

4.2.4 Semantics

A decimal-literal is interpreted as the decimal representation of an
integer value.

An integer-literal begins with a keyword that determines its
interpretation by giving the radix of the literal. Depending on
whether the keyword is %B, %0, %DECIMAL, or %X, the sequence of digits
within the quotes are interpreted as a binary, octal, decimal, or
hexadecimal representation, respectively, of an integer value.

The value of a character-code-literal is the integer that is the ASCII
character code for the quoted-character. When two apostrophes are
used as the quoted-character, the value of the 1literal 1is the
character code for a single apostrophe; that is, the
character-code-literal $C'''' has the value 39 (decimal).

The evaluation of a numeric-literal (other than a float-literal)
produces an integer value. If the literal has a minus sign, then its
value is represented as a negative number in two's complement form.

BLISS-16 ONLY

The evaluation of a float-literal produces a value in PDP-11
floating-point representation that occupies two or four
fullwords, depending on whether the 1literal begins with $E
{(single precision) or %D (double precision). (The representation
is identical to that for VAX-11.)

BLISS-32/36 ONLY

The evaluation of a float-literal produces a value in the target
system's floating-point representation that occupies one or two
fullwords, depending on whether the 1literal begins with $E
(single precision) or %D (double ©precision). (The VAX-11
representation is identical to that for PDP-11.)

4.2.4.1 Limitations on Float-Literals - Single-precision floating
point values in BLISS-16 and double-precision floating point values in
all dialects require more than $BPVAL bits for their representation.
Such values cannot be stored in a fullword and cannot be operated upon
by any of the BLISS operators or executable-functions.

Except for a few builtin machine-specific-functions, BLISS does not
provide facilities for operating upon any float-literal as such.
Float-literals are provided in BLISS in order to facilitate the
development of special data segments and special routines for
performing high-precision arithmetic.

4.3 STRING LITERALS

A string-literal contains a sequence of ASCII characters, The value
of the string-literal 1is obtained by encoding the sequence of
characters in one of several different ways, depending on the
string-type of the literal (e.g., %ASCII, $ASCIZ, %RAD50_11, %P).

4-6

Primary Expressions
STRING LITERALS

A string-literal whose value occupies one fullword or less can be used
as a primary, that is, can appear anywhere that a primary expression
is allowed. The number of characters that can be encoded in a
fullword varies with both the target system and the string-type
(Section 4.3.2). Examples are:

%ASCII'AB' in any dialect
$ASCII'ABCD' in BLISS-32 or BLISS-36
$RAD5S0 11'ABC' in BLISS-16 or BLISS-32

$RAD50_ 11'ABCDEF' in BLISS-32 only
$RAD50 10'ABCDEF' in BLISS-36 only

In each of these examples, the quoted string is encoded into one

fullword or less in each of the dialects specified.

A string-literal whose value occupies more than a fullword 1is not a
primary expression and can be used only within a plit expression (see

Section 4.4) or in an initial-attribute (see Section 9.6). An example
is:

'A complete list of errors follows:'

The encoded value of this string-literal, consisting of 34 character
positions, occupies much more than a fullword on any target system.

4.3.1 sSyntax

{ string-type

string-literal nothing quoted-string

$ASCII
$ASCIZ
$ASCIC <= 16/32
string-type $RAD50_11 = 16/32
$RADS0_10 = 36 Only
$SIXBIT = 36 Only
%P <= 16/32

{quoted—character ...}
)

quoted-string ' nothing

printing—character—except—apostrophe
blank

quoted-character tab
e

A printing character is any ASCII character whose code, i, is 1in the
range 33 < 1 < 126 (decimal). A printing—character—except—apostrophe
is any printing character except an apostrophe. The apostrophe is the
ASCII character with code 39 (decimal).

The blank is the ASCII character with code 32 (decimal). The tab is
the ASCII character with code 9 (decimal).

4-7

Primary Expressions
STRING LITERALS

Some of the string-literals are composed of two lexemes, the
string-type and a quoted-string. Spaces are permitted between the two
lexemes.

The quoted-string in a string-literal can be constructed by certain
lexical-functions, which are described in Chapter 15. A quoted-string
constructed in that way can be composed of any sequence of ASCII
characters and therefore 1is not restricted to printing characters,
blanks, and tabs.

The quoted-string in a string-literal can also be supplied by another
string-literal, This feature is mainly useful in the design of macros
and is discussed in Section 15.3.2.2.

4.3.2 Restrictions

A quoted-string is a single 1lexeme. As the syntax shows, the
quoted-string can contain blanks and tabs. These characters are
interpreted as characters in the string, not as characters that divide
the quoted-string into several lexemes. Aside from blanks and tabs,
no other spaces (as defined in Section 2.2.2) can appear in the source
text for a quoted-string.

A string-literal that is not a plit-string in a plit or
initial-attribute must fit in one fullword. Specific limitations on
string length are given 1in the following table, by dialect and
string-type:

Dialect Max. Number of Characters Per Fullword

ASCII ASCIZ ASCIC RADS50_11 SIXBIT RADS0_10 P

BLISS-16 2 1 1 3 - -- 3*
BLISS-32 4 3 3 6 - - 7%
BLISS-36 5 4 - - 6 6 -

* Plus optional sign character

BLISS-16/32 ONLY

A %ASCIC string-literal must contain no more than 255
quoted-characters.

A 3RAD50 11 string-literal may contain only the characters A
through 2z, 0 through 9, blank, period (.), and dollar ($) in the
quoted-string. Lowercase letters appearing in the quoted-string
are encoded as the corresponding uppercase letters.

A %P string-literal must contain only the decimal digits (0
through 9) except for an optional initial sign (+ or -). There
must not be more than 31 digits in the quoted-string.

BLISS-36 ONLY

A $RADS50_10 string-literal may contain only the characters A
through 2z, 0 through 9, blank, period (.), dollar ($), and

4-8

Primary Expressions
STRING LITERALS

percent (%) in the quoted-string. Lowercase letters appearing in
the quoted-string are encoded as the corresponding uppercase
letters.

A %SIXBIT string-literal may contain any quoted-characters except
the following: tab (9), ° (96), { (123), | (124), } (125), and ~
(126) . (The parenthesized ASCII codes are in decimal.) Lowercase
letters appearing in the quoted-string are encoded as the
corresponding uppercase letters.

Other restrictions on the length of string-literals (if any) are given
in the appropriate BLISS user's guide.

4.3.3 Defaults

The default for the string-type 1is %ASCII. For example, the
string-literal 'abc' is equivalent to $ASCII'abc'.

The default for the sign in a %P string-literal is "+", For example,
the string-literal %P'2' is equivalent to %P'+2'.

4.3.4 Semantics

Each quoted-character in a string-literal represents one character
code in the value. A printing-character-except-apostrophe, a blank,
or a tab represents itself, A sequence of two apostrophes represents
a single apostrophe.

The remaining semantic description uses the generalized terms
character position and character position sequence. The machine
specific equivalents of these terms are given in Section 3.3. (See

also Chapter 20, on "Character Handling Functions".)

The value of a string-literal is determined in several steps, as
follows:

1. For string-types $ASCIZ and $%ASCIC, augment the string of
quoted-characters as follows:

a. If $ASCIZ, add a trailing null character (ASCII code 0) to
the string.

b. If $ASCIC (16/32 only), count the characters in the
quoted-string and use this (8-bit integer) count as the
initial 'character' of the string, preceding the first
quoted-character.

2. Encode the character string, augmented as required by Step 1,
according to the string-type and dialect, as follows:

a. For string types 8ASCII and $ASCIZ, form a character
position sequence that has one character position for each
character in the string. For BLISS-16 and -32, use the
8-bit ASCII code of the i'th character as the value of the
itth character position. For BLISS-36, use the
corresponding 7-bit ASCII code. If necessary, extend the
resulting character position sequence with enough trailing,

4-9

Primary Expressions
STRING LITERALS

Note:

zero-valued positions to £ill the final (or only) fullword
occupied by the sequence.

For string-type %ASCIC (16/32 only), form a character
position sequence as in Step 2.a, but use the initial count
*character' value as is for the first character position.

For string-type $RADS50_11 (16/32 only), extend the original
quoted-string with enough trailing blank characters to make
up a multiple of three characters, if necessary. Then use
Radix-50 encoding to form a character position sequence that
has two character positions for each group of three
characters in the string. If necessary, extend the
resulting character position sequence with enough trailing,
zero-valued positions to £ill the final (or only) fullword
occupied by the sequence.

For string-type %RAD50_10 (36 only), use Radix-50 encoding
to form a fullword for each group of six (or fewer)
quoted-characters in the string. This encoding always
produces one or more complete fullwords.

For string type %SIXBIT (36 only), form a character position
sequence that has one (6-bit) character position for each
character in the string. Use the SIXBIT code equivalent of
the ASCII <code of the i'th character as the value of the
i'th character position. 1If necessary, extend the resulting
character position sequence with enough trailing,
zero-valued positions to f£ill the final (or only) fullword
occupied by the sequence.

For string-type %P (16/32 only), use the PDP-11/VAX-11
packed decimal string encoding to form a sequence that has
one byte for each two digits of the quoted-string, and that
provides a position for the sign in the last byte. Leading
zero characters are not discarded in forming this sequence.
(The packed decimal encoding is described in the VAX-11/780
Architecture Handbook, Section 4.11.)

The ordering of character positions in storage 1is system

dependent, and 1is described in Chapter 3. The ASCII, Radix-50,
and SIXBIT string encodings are described in Appendix B.

3. Use the character position sequence obtained in Step 2 as
follows:

a.

b.

If the given literal appears in a plit or initial-attribute,
use the sequence as the value of the literal.

If the given 1literal does not appear in a plit or
initial-attribute and the sequence is contained in a single
fullword, the fullword is the required literal value.

Otherwise, the sequence is invalid as a string-literal and
the literal value is undefined.

The interpretation of a string-literal is performed entirely by the

compiler.

If the string-literal is a plit-string, then the compiler

uses the value in forming a literal in PLIT storage, as described in

Section

4.4, If the string-literal is an initial-value, then the

compiler uses the value to initialize the contents of a data segment,
as described in Section 9.6. Otherwise, the compiler incorporates the
value of the string-literal in the object code it is generating.

4-10

Primary Expressions
PLITS

4.4 PLITS

A constant value that requires no more than a fullword of storage can
be represented by a numeric-literal or string-literal that stands

alone (that is, is not contained in a plit). A constant value that
requires more storage must be represented by a plit.
The value of a plit is not the value of the given constant but rather

the address of a data segment that contains the given constant. The
data segment for a plit is allocated in a PLIT program section, and it
is initialized to the given constant value before program execution
begins.

There are two kinds of plits. The counted plit begins with the
keyword PLIT, which stands for "pointer to literal”. The data segment
for this kind of plit begins with an extra fullword that contains the
count for the plit. The count is the number of fullwords in the plit
excluding the fullword used for the count. The second kind of plit,

the uncounted plit, begins with the keyword UPLIT, which stands for
"uncounted pointer to literal"™. The data segment for this kind of
plit does not include a fullword for the count.
4.4.1 Syntax
{PLIT lallocation—unitl <= 16/32
plit UPLIT nothing
(plit-item ,...)
plit-group
plit-item plit-expression
plit-string
allocation-unit <= 16/32
plit-group REP replicator OF
REP replicator OF allocation-unit <= 16/32

(plit-item ,...)

16/32 Only =>

allocation-unit

WORD

{LONG} <= 32 Only
BYTE

replicator

compile-time-constant-expression

plit-expression

link-time-constant-expression

plit-string

string-literal

Primary Expressions
PLITS

4.4.2 Restrictions

The value of a replicator must not be less than zero.

BLISS~-16/32 ONLY

The value of a plit-expression allocated as BYTE must lie in the
range -(2**7) through (2**8)-1. The value of a plit-expression
allocated as WORD must 1lie in the range -~ (2*%*15) through
(2**16)-1.

4,4.3 Defaults

When no "REP replicator OF" construct is given, a replicator value of
1 is assumed.

4.4.4 Semantics

A plit causes constant data to be allocated. The value of the plit is
the address of the first addressable unit of the data specified by the
plit-items. The compiler determines an address offset for the plit
and the linker binds this offset to an absolute address.

If the plit has the keyword PLIT and therefore is a counted plit, then
the count 1is located in the fullword preceding the data specified by
the plit-items. The count indicates the number of fullwords occupied
by the plit data.

In the simplest case, a plit 1is just the keyword PLIT or UPLIT
followed by a parenthesized list of plit-expressions or plit-strings.
In this case, values of the items are laid out in storage, starting at
the plit address and continuing in the direction of increasing
addresses. The value of each plit-expression occupies a fullword.
The value of each string-literal occupies as many character positions
as the string requires, with unused character positions added, |if
necessary, to fill out the final fullword.

BLISS-16/32 ONLY

When an allocation-unit is present, it specifies explicitly the
unit of storage to be used. Depending on whether the
allocation-unit is’ LONG, WORD, or BYTE, the value of each
plit-expression occupies a longword, a word, or a byte,
respectively. Similarly, the value of each string-literal
occupies as many bytes as the string requires, with unused bytes
added, if necessary, to fill out the last unit of storage. (The
allocation-unit LONG and the 1longword storage unit apply to
BLISS~-32 only.)

When an allocation-unit is given, the item or items to which it
applies are enclosed 1in parentheses. Several allocation-units
can be used in a single plit; for any given item, the innermost
allocation-unit is the one that applies.

Primary Expressions
PLITS

When a "replicator OF" construct is present, it specifies the
repetition of the plit-group that follows 1it. The plit-group is
evaluated before it is repeated. Thus, if the plit-group contains an
embedded plit, the embedded plit is allocated once, and its address is
used in each repetition of the plit-group.

The evaluation of plits is performed by the compiler, the linker, and
the operating system before program execution. Thus during program
execution, a plit represents the constant address of a segquence of
constant values.

When the values specified by a plit do not completely £ill the last
fullword of the plit, the values of the unused character positions are
undefined. A program that attempts to access the wunused character
positions is invalid.

Plits are not necessarily allocated in the order in which they are
written, and unused storage may be left between the storage for one
plit and that for the next. Therefore, the relative positions of two
plits is undefined. A program that depends on the relative positions
of two plits is invalid.

4.4.5 Pragmatics

A plit-expression is not restricted to numeric-literals. It can be
any link-time-constant-expression, and can therefore include
address-valued names whose value is established at link time. Suppose
the following declarations are given:

OWN
A: VECTOR[10],
B;

EXTERNAL
X;

Then, within the scope of these declarations, the following plit can
be used:

UPLIT(A[4], B+2, X)

This plit occupies three fullwords. The first contains the address of
the fifth element of A. The second contains the address B plus 2.
The third fullword contains the address X.

4.5 NAMES

A name usually designates the address of a routine or a data segment.
The value of such a name is determined by the compiler, linker, and
operating system together. Within the scope of a given declaration of
a name (as defined in Section 8.2), the value of a name does not
change during program execution.

Primary Expressions
NAMES

4,5.1 Syntax

letter
letter digit
name dollar dollar cee
underline underline
nothing
{AIBICI—--lZ‘
letter alblcl] =-—1|z2
digit {fol1 1121 -—129}
dollar $
underline _

A name can be constructed by the $NAME lexical-function, described in
Section 15.5.4. A name constructed in that way can be composed of any

sequence of ASCII characters and therefore need not satisfy the syntax
given above.

4.5.2 Restrictions

A name must not be more than 31 characters long in any case.

The reserved keywords, listed in Appendix A, must not be wused as
names.

A name is a single lexeme and must not contain a space.

The dollar character is reserved for use in software supplied by
Digital.
BLISS-16/36 ONLY

Names declared as global or external must be unique within their

first six characters (throughout a program), to assure correct
linking.

4,.5.3 Semantics

When two names are compared, the distinction between uppercase and
lowercase letters is ignored. Thus the following items are considered
to be four instances of the same name:

BETA beta Beta bEta

Primary Expressions
NAMES

This equivalence also applies to keywords. The only place where an
uppercase letter is distinguished from a lowercase letter is in a
gquoted-string,

The interpretation of a name depends on its declaration. Declarations
are described in Chapter 8.

4.6 BLOCKS

In its simplest form, a block is a means to gather together one or
more expressions to form a single primary expression. 1In its more
complicated forms, a block contains declarations and determines the
scope of those declarations. It provides the fundamental large-scale
unit of BLISS program structure.

In the example

5 * (LA + .B)

the block (.A + .B) serves to specify that the value of .A + .B is one
of the operands of the multiply operator.

The block
X = BEGIN
LOCAL T;
T =2 + F();
T = .T * G(.T);
.T
END

contains a declaration of a local data segment T which is used within
the block as a temporary variable. When the block is completed, the
contents of T becomes the value of the block, and is assigned to X.

The complete description of blocks is given in Chapter 8.

4.7 STRUCTURE-REFERENCES
when a data segment consists of a structure of several values, a
structure-reference is used to fetch or store the individual values.
A structure-reference can also be used to designate the address of a
contained value.
Examples of expressions containing structure-references are:

X=,A[.I]

TABLE[Q(.X+2)+3] = 5

F (ALPHA [FIELDNAME, .J-1])

The complete description of structure-references is given in Chapter
11.

Primary Expressions
ROUTINE-CALLS

4.8 ROUTINE-CALLS

A routine-call causes the execution of a routine. The called routine
may be a part of the same module that calls it or it may be part of
another module in the same program. The routine may be written in
BLISS or in some other language that 1is supported by the target
system.

The execution of a routine can have two kinds of effects. First, it
can calculate a value that is returned as the value of the
routine-call., Second, it can have side effects; that 1is, it can

perform actions other than returning a calculated value, such as
modifying data, performing input/output, and so on.

The expression "X = F()" calls the routine named F but does not pass
any arguments. The value returned by F is assigned to location X.

The expression
P(5, .X, UPLIT('MESSAGE'));

calls the routine named P and passes three arguments: the wvalue 5,
the contents of location X and the address of an ASCII string. The
value returned by routine P, if any, is not used.

The complete description of routine-calls is given in Chapter 12.

4.9 FIELD-REFERENCES

A field-reference can designate any portion of storage of up to $BPVAL
bits in 1length. That is, it designates a field value that can range
in size from one bit to a fullword. 1In BLISS-32, for example, the
field can be a sequence of up to 32 bits. Normally, a field-reference
is used only within a structure-declaration.

The full description of field-references is given in Chapter 11.

4.10 CODECOMMENTS

A codecomment places a comment in the object part of the compilation
listing of the module in which it appears. Thus codecomments permit
annotation of the object code.

In addition, a codecomment acts as a barrier to optimizations that are
normally performed by the compiler, in that such optimizations do not
cross the codecomment. Thus it divides the source 1listing and the
object 1listing into portions that contain mutually corresponding
source and object code.

Primary Expressions
CODECOMMENTS

4.10.1 Syntax

codecomment CODECOMMENT quoted-string ,... : block

4,.10.2 Semantics

The value of a codecomment expression is the value of the block.

A codecomment places the given quoted-string in the object code
listing in the form of an assembly language comment.

A codecomment expression prevents code motion. That is, expressions
in the source that appear before the codecomment expression are
compiled into instructions in the object code that precede the
generated comment, and source expressions that follow the codecomment
expression are compiled into instructions that follow the generated
comment.

A codecomment has other effects on optimization. For example, the
compiler will not place a value 1in temporary storage (such as a
register) prior to a codecomment and then fetch the value after the
codecomment. Instead, the compiler recalculates the value.

A general description of optimization is given in the user's guide for
each BLISS compiler.

CHAPTER 5 COMPUTATIONAL EXPRESSIONS

5.1 OPERATOR~EXPRESSIONS . . ¢ ¢ ¢ o o o o o o =«
5.1.1 Syntax . ¢ ¢« ¢ e e o e s e e e e e s
5.1.2 Restrictions . . « ¢ & ¢ o o o o o o o & =
5.1.3 Defaults . ¢ ¢ ¢ o o o o o ¢ o o 2 o e o s
5.1.4 Semantics . . ¢ ¢ ¢ 4 e e e 6 o e e e s e
5.1.4.1 Fetch Expressions « « + ¢« « « &
5.1.4.2 Prefix Sign Expressions
5.1.4.3 Shift Expression . « « ¢ o o & o o « & =
5.1.4.4 Arithmetic Expressions . . « « « « « « &
5.1.4.5 Relational Expressions . « « « « « « « &
5.1.4.6 Boolean Expressions . . « « « « o « o &
5.1.4.7 Assignment Expressions« . .
5.1.5 Pragmatics . ¢« o & o o o o o o o s o o o
5.1.5.1 Explicit Parenthesization
5.1.5.2 The Order of Evaluation « « « &
5.1.5.3 Operations on Field Values in BLISS-16/32
5.2 EXECUTABLE-FUNCTIONS . . . « ¢ « « o o o o =«
5.2.1 SYNtax « ¢ ¢« ¢ ¢ e 4 e e e e e e s e e s
5.2.2 Semantics ¢ e . e
5.2.2.1 SIGN and ABS Functions « + &
5.2.2.2 MAX and MIN Functions . . . « « « « =«
5.2.2.3 The $REF Function . . . « « ¢ « « « « &
5.2.3 Pragmatics . . « &« o ¢ o « o o o o o s s s

HOWOOULdWWN -

.
|l oottt ,
et

[N O O I S N RS, R RO S

CHAPTER 5

COMPUTATIONAL EXPRESSIONS

The computational expressions of BLISS provide the operations of the
language. A single computational expression performs a single basic
operation, like addition or the fetching of a value. A combination of
computational expressions, nested one within another, can perform a
long and complicated sequence of operations.

Computational expressions are classified as either operator-
expressions or executable-functions. A typical operator-expression is
A=0; it assigns a value, that is, places a value in storage. It is
identified by the "=" operator that appears between the two operands,
A and 0. A typical executable-function is MAX(.X,.Y,.2); it selects
the maximum of several values, and it is identified by the keyword MAX
that precedes the parameters .X, .Y, and .Z. All computational
expressions, regardless of their syntax, perform a predefined
operation on given values to produce a result value.

5.1 OPERATOR-EXPRESSIONS

The notation used for the operator-expressions of BLISS is similar to
the notation of mathematics. The terms "operator", "operand", and
"associativity" that are used in describing BLISS expressions are all
drawn from the terminology of mathematics.

Computational Expressions
OPERATOR-EXPRESSIONS

5.1.1 Syntax

The following syntax diagram gives the many forms of the
operator-expression. The forms are divided by broken lines into
priority levels, and an associativity 1is given for each priority
Tevel. This information is used iIn Section 5.1.3.

Assocliates

from
operator- . e2 right to left
expression = f--memmm—mmm——em———eo oo —om——— e oo oo s
{t}
- e2 right to left
el - e2 left to right
decreasing MOD
priority el * e2 left to right
/
{2}
el - e2 left to right
EQL | EQLU | EQLA
NEQ | NEQU | NEQA
LSS | LsSu | LSSA
el LEQ | LEQU | LEQA e2 left to right
GTR | GTRU | GTRA
GEQ | GEQU | GEQA
NOT e2 right to left
el AND e2 left to right
el OR e2 left to right
EQV
el XOR e2 left to right
el = e2 - right to left
primary
el operator-expression
e2 executable-function

Every operator-expression has one of the following general forms:

prefix-operator right-operand

left-operand

infix-operator right-operand

The operands must be expressions and the operator is either a keyword
or a single delimiter character.

Computational Expressions
OPERATOR-EXPRESSIONS

5.1.2 Restrictions

An operator-expression must not have an operand that is a
control-expression. This restriction is expressed in the syntax (in
the rule that defines el and e2), but is repeated here for emphasis.
For example, the operator-expression

X = IF .ALPHA EQL 0 THEN .X1 ELSE .X2

is not valid. (Parentheses can be used to avoid this restriction, by
converting the right-operand to a compound-expression; see Sections
8.1 and 5.1.5.1.)

A prefix-operator must not immediately follow an infix or prefix
operator that has a higher priority. For example,

.A EQL NOT .B

is not valid. (Parentheses can be used to avoid this restriction, as
above; see Sections 8.1 and 5.1.5.1.)

The result of an arithmetic operation ("**, "/", "MOD", "+", and "-")
must not exceed the capacity of a signed fullword; if it does so, the
result is undefined.

The value of the right operand of a "MOD" or "/" operator must not be
zero.

5.1.3 Defaults

The default parenthesization for operator-expressions is determined by
the “priority levels and associativities given in the syntax diagram
for operator-expressions. The following rules apply:

1. Parenthesize the operators of a given expression in order of

descending priority. That is, first parenthesize all fetch
operators (highest priority), then parenthesize all prefix
b and "-" operators (second highest priority), then

continue in this manner through operators of decreasing
priority, and finally parenthesize all assignment operators
(lowest priority).

2. If an expression contains several occurrences of operators
that have a given priority, then parenthesize those operators
in the order 1indicated by the associativity. 1f the
associativity for a given priority level is "left to right",
then parenthesize operators with that priority from left to
right; if the associativity 1is “right to left", then
parenthesize from right to left.

When an operator is parenthesized, the parentheses surround the
operator and the one or two operands required by the operator.

Computational Expressions
OPERATOR-EXPRESSIONS

As an example of the application of these rules, consider the
following expression:

3*R(B)-2%.,A+12
This expression contains four operators, and there are many ways in
which it could be explicitly parenthesized. The default

parenthesization is obtained as follows:

1. The fetch operator has the highest priority and is
parenthesized first, giving:

3*R(B)-2*(,A)+12
2. Of the remaining operators in the expression, the two "*"
operators have the highest priority and are parenthesized

next, giving:

(3*R(B))—-(2*(.A))+12

3. The remaining operators are "-" and "+" wused as infix
operators. These operators have the same priority level and
so associativity must be taken into account. Since

associativity is "left to right" for these operators, the "-"
is parenthesized first, giving:

((3*R(B))-(2*(.A)))+12

4. Finally, the remaining operator, "+" |is parenthesized,
giving:

(((3*R(B))-(2*(.A)))+12)
This fully-parenthesized expression is equivalent to the original,

unparenthesized expression.

Observe that, in the example just given, the routine-call is treated
as a single construct because it is a complete primary. That is,
3*R (B) is parenthesized as (3*R(B)) rather than (3*R) (B) .
Structure-references and field-references are treated as a single
construct in a similar way.

Explicit parenthesization is discussed in Section 5.1.5.1.

5.1.4 Semantics
An operator-expression is evaluated as follows:
1. Evaluate the operand(s) of the expression.

2. Calculate a value according to the specific rules for the
given operator.

The value obtained in Step 2 is the value of the expression.

In general, the order in which the operands of an operator-expression
are evaluated is not defined. (See Section 5.1.5.2.)

Computational Expressions
OPERATOR-EXPRESSIONS

The order in which assignment expressions, routine-calls, and
control-expressions are evaluated is, however, defined as follows:

Every evaluation of an assignment expression, routine-call, or
control-expression in the left operand of an operator-expression
is completed before any evaluation of an assignment expression,
routine-call, or control-expression in the right operand of the
operator-expression is begun.

(The consequences of this ordering rule are discussed in Section
5.1.5.2.)

The value of every BLISS expression is a fullword value. It follows
that the value of the operands of an operator-expression are fullword
values and that the value of the operator-expression itself is a
fullword value,

In some cases, an operator-expression produces a value that cannot be
represented as a fullword wvalue. In such cases, the value of the
expression is undefined and the program is 1invalid. There 1is no
guarantee that such an overflow is detected or signaled.

The remainder of this description of semantics is devoted to specific
rules for the various operator-expressions. The operator expressions
are grouped according to function, but they are nevertheless described
in the order in which they appear in the syntax diagram; that is, in
order of decreasing priority.

5.1.4.1 Fetch Expressions - A fetch expression obtains the value that
is stored at a given address. The expression has the form:

. e2

The operand of a fetch expression can be a field-reference that has a
field-selector; in that case the fetch expression has a special
interpretation. However, the use of a field-selector outside of a
structure-declaration is not recommended. For that reason, the effect
of a field-selector on a fetch expression is described later, in
Section 11.2.

A fetch expression without a field-selector is evaluated as follows:

BLISS-16/32 ONLY

1. If e2 is the name of a data-segment, then determine its
allocation-unit and extension-attribute from its declaration.
If e2 1is any other expression, then wuse the default
allocation-unit (WORD for BLISS-16, LONG for BLISS-32) and
use UNSIGNED as its extension-attribute.

2. Interpret the value of e2 as an address. Depending on
whether the allocation-unit of e2 is LONG, WORD, or BYTE,
fetch the contents of the longword, word, or byte at that
address. (LONG and longword apply to BLISS-32 only.)

Computational Expressions
OPERATOR-EXPRESSIONS

3. If the value fetched in Step 2 is a field value (less than
$BPVAL bits long), interpret it as a signed or unsigned value
depending on the extension-attribute. If the attribute is
UNSIGNED, then extend it to a fullword value by placing 0's
at the left end. If the attribute is SIGNED, extend it to a
fullword value by placing copies of the left-most (sign) bit
at the left end.

4. Use the fullword value obtained in Step 3 as the value of the
fetch expression.

BLISS-36 ONLY

1. Interpret the value of e2 as an address and fetch the
contents of the fullword at that address.

2. Use the fullword value obtained in Step 1 as the value of the
fetch expression.

5.1.4.2 Prefix Sign Expressions - A prefix sign supplies the

algebraic sign for a given value. The expression has the following
forms:

M

The expression is evaluated as follows:

° If the operator is "+", then the value of the expression is
the value of e2.

° 1f the operator is "-", then the value of the expression is
the negative (two's complement) of the value of e2.

5.1.4.3 Shift Expression - This expression performs operations based
on the arithmetic shift instruction of the target system. The
expression has the following form:

el © e2

This operation can be explained in terms of a hypothetical shift
register that is valid for all BLISS dialects. The register has n bit
positions, where n is 16, 32 or 36 depending upon the target system
(¥BPVAL) . The TPpositions are numbered starting at the right with
position 0 (the low-order position) and ending with position n-1 (the
sign position), referred to below as position m.

To evaluate an arithmetic shift expression, place the value of el in

the shift register and let the value of e2 be called v2. Proceed as
follows:

a. If v2 is positive, move each bit v2 positions to the left.
When a bit is moved out of the sign position, m, discard it.
When a bit is moved out of position 0, put a zero-bit in
position 0.

b. 1I1f v2 is zero, do not move any bits.

5-6

Computational Expressions
OPERATOR-EXPRESSIONS

c. If v2 is negative, move each bit ABS(v2) positions to the
right. However, do not modify the bit in position m (the
sign position). When a bit is moved out of position m-1, put
a copy of the sign bit in position m-1. When a bit is moved
out of position 0, discard it.

When the shift is complete, use the contents of the shift register as
the value of the shift expression.

Sometimes an arithmetic shift 1is used for scaling; that 1is, to
multiply a value by a power of two. For that application, the
following interpretation of an arithmetic shift is more appropriate:

1. Let vl and v2 be the signed values of the operands and
calculate the following value:

v1*(2%*y2)
In this expression, 2**v2 means "2 to the power v2".

2. If the result of Step 1 is not an integer, reduce it to the
next smallest integer. For example, reduce 2.5 to 2 and
reduce -2.5 to -3.

3. Represent the result of Step 2 as a signed, two's complement
binary integer. If the result requires more than $BPVAL bits
for its representation, some of the high~order bits of the
representation are lost.

This interpretation is entirely equivalent to the interpretation in
terms of a shift register; it is just another way of looking at the
same operator.

Examples of arithmetic shift operations are given in the following
table:

vl v2 2%%y2 v1*(2%%y2) vl~v2
10 2 4 40 40
-10 2 4 =40 -40
10 -2 0.25 2.5 2
-10 -2 0.25 -2.5 -3

All the values in this table are decimal numbers. Observe that when
v2 is positive, the arithmetic shift performs multiplication by a
power of 2. When v2 1is negative and vl 1s positive, the shift
performs division by a power of 2. When v2 and vl are both negative,
the shift performs something close to, but not guite the same as,
division by a power of 2.

5.1.4.4 Arithmetic Expressions - The multiplication, division,
addition, and subtraction expressions perform the operations of
ordinary arithmetic. The modulus (MOD) expression obtains the

remainder of a division. The expression has the following form:

Computational Expressions
OPERATOR-EXPRESSIONS

The values of the operands are interpreted as signed values, and the
result is represented as a signed value. If the result is outside the
range provided by a signed fullword, then the expression is 1invalid
and the value of the expression is undefined.

Let vl and v2 be the values of the operands. The expression is
evaluated as follows:

° If the operator is "*" (multiplication), then multiply vl by
v2 and use the result as the value of the expression.

) If the operator is "/" (division), then proceed as follows:

a. If v2 is zero, the expression is invalid and the value of
the expression is undefined.

b. Otherwise, divide vl by v2. If the result is not an
integer, drop 1its fractional part without rounding (so
that 2.8 becomes 2 and -2.8 becomes -2). Use the result
as the value of the expression.

° If the operator is "MOD" (modulus), then proceed as follows:

a. If v2 is zero, the expression is invalid and the value of
the expression is undefined.

b. Otherwise, divide vl by v2. Drop the fractional part of
the value (so that 2.8 becomes 2.0 and -2.8 becomes
-2.0).

c. Multiply the value obtained in Step b by v2.

d. Subtract the value obtained in Step c¢ from v] and use the
result as the value of the expression.

° I1f the operator is "+" (addition), then add v2 to vl and use
the result as the value of the expression.

° If the operator is "-" (subtraction), then subtract v2 from
vl and use the result as the value of the expression.
The MOD operator is the remainder of the division of vl by v2. An aid

to understanding the MOD operator is the identity:

(vl MOD v2) EQL (vl1-v2*(vl/v2))

Some examples of the "/" and MOD operations are:

vl v2 vl/v2 vl MOD v2
10 3 3 1
10 -3 -3 1
-19 7 -2 -5
-19 -7 2 -5
13 2 6 1
13 8 1 5
13 10 1 3
13 16 0 13

Computational Expressions
OPERATOR-EXPRESSIONS

The last four examples show how the MOD operator is used to obtain the
last digit of the binary, octal, decimal, and hexadecimal
representations of 13,

5.1.4.5 Relational Expressions - A relational expression is wused to
compare two values. The expression has the following form:

EQL | EQLU | EQLA
NEQ | NEQU | NEQA
LSS | LsSU | LSSA
el LEQ | LEQU | LEQA e2
GTR | GTRU | GTRA
GEQ | GEQU | GEQA

The interpretation of the operator itself is determined by the first
three letters of the operator, as follows:

EQL is equal to

NEQ is not equal to

LSS is less than

LEQ is less than or equal to
GTR is greater than

GEQ is greater than or equal to

The interpretation of the operands is determined by the fourth letter
of the operator as follows:

No fourth letter: Interpret operand values as signed values.
Fourth letter is U: Interpret operand values as unsigned values.

Fourth letter is A: Interpret operand values as address values.

If the values of the operand satisfy the relation specified by the
operator, then the value of the relational expression 1is "1";
otherwise, it is "0". 1In both cases, the value is represented as a
fullword value.

In both BLISS-16 and BLISS-32, the operators LSSU and LSSA are
equivalent, as are GTRU and GTRA, LEQU and LEQA, and GEQU and GEOQA.
That is, the unsigned and address forms of the ‘'magnitude sensitive'
relational operators are equivalent. In BLISS-36, however, the
operators LSS (signed) and LSSA are equivalent, as are GTR and GTRA,
and so on. This reflects a difference in the range of valid address
values allowed by the corresponding systems. The distinction between
the signed/unsigned and the address forms of the operators is provided
so that programmers can specify the desired interpretation of the
values being operated on, in a both explicit and transportable
fashion.

Note that all forms of the EQL and NEQ operators are by nature

equivalent in all dialects; the unsigned and address forms are
provided for symmetry with the other relational operators discussed
above. Use of the alternate forms 1is encouraged for the sake of
clarity.

5-9

Computational Expressions
OPERATOR-EXPRESSIONS

Two examples of the use of relational expressions are:

Expression Value
-1 LSS O 1 (true)
-1 LSSU O 0 (false)

As another example, consider the following program fragment:

OWN
X,
Y;

X LSSA Y

The value of the relational-expression in this example 1is 1 (true)
because X is allocated at a smaller address than Y.

5.1.4.6 Boolean Expressions - A Boolean expression is used to apply a

Boolean operation to given values. The expression has the following
forms:

NOT e2
AND
OR

el XOR e2
EQV

Each of these expressions operate on the individual bits of the

operands to produce the individual bits of the result. The specific
rules are:

. If the operator is NOT, then the i'th bit of the result is
obtained from the 1i'th bit of the value of e2 according to
the following table:

e2 NOT
0 1
1 0

° If the expression has two operands, then the i'th bit of the
result is obtained from the i'th bit of the value of el and
the i'th bit of the value of e2 according to the following

table:
el e2 AND OR XOR EQV
0 0 0 0 0 1
0 1 0 1 1 0
1 0 0 1 1 0
1 1 1 1 0 1

The appropriate rule is applied $BPVAL times, once for each bit in the
result.

Computational Expressions
OPERATOR-EXPRESSIONS

Boolean logic applies to single bits while BLISS always operates on
fullwords. Therefore special precautions are sometimes required in
programming Boolean logic in BLISS.

Suppose, for example, that A is thought of as the name of a Boolean
variable; that is, a variable whose value is always 0 or 1. Suppose,
further, that the negation of the contents of A must be assigned to
another Boolean variable, which is named B. The following assignment
might be tried out:

B = (NOT .3A);

However, this assignment does not produce a Boolean value. Instead,
its effect (assuming a BLISS-32 fullword, for example) is:

Contents of A Contents of B
0 11111111111111111111111111111111 (binary)
1 111111111111111111111111111111160 (binary)

The low-order bit is the desired Boolean result, but the other bits
clutter up the result. To assign a Boolean value to B, the high-order
bits can be masked out as follows:

B = ((NOT .A) AND 1l); or B = .A XOR 1;

5.1.4.7 Assignment Expressions - An assignment expression is used to
store a given wvalue at a given address. The form of the expression
is:

el = e2

The left operand of an assignment expression can be a field-reference
that has a field-selector; in that case the assignment expression has
a special interpretation. However, the use of a field-selector is not
recommended outside of a structure-declaration. For that reason, the
effect of a field-selector on an assignment expression is described
later, in Section 11.2.

An assignment-expression without a field-selector 1is evaluated as
follows:

BLISS-16/32 ONLY

1. 1If el is the name of a data segment, then determine its
allocation-unit from its declaration. if el is any other
expression, then use the default allocation-unit (WORD for
BLISS-16, LONG for BLISS-32).

2. Interpret the value of el as an address. Depending on
whether the allocation-unit of el is LONG, WORD, ot BYTE,
store the corresponding number of rightmost bits of the value
of e2 in the longword, word, or byte at the given address.
(LONG and longword apply to BLISS-32 only.)

3. Use the original value of e2 (that is, the fullword value) as
the value of the assignment expression.

Computational Expressions
OPERATOR-EXPRESSIONS

BLISS-36 ONLY

1. Interpret the value of el as an address and store the value
of e2 in the fullword at the given address.

2. Use the value of e2 as the value of the assignment
expression.

5.1.5 Pragmatics

Two aspects of the interpretation of operator-expressions are
discussed here: the effect of explicit parenthesization, and the
order of expression evaluation.

5.1.5.1 Explicit Parenthesization - Any expression can be placed in
parentheses. The value of the parenthesized expression is the value
of the expression within the parentheses. The effect of the
parentheses 1is to delimit the operands of the expression. Consider
the following expressions:

(.A)+1

. (A+1)
The two different placements of the parentheses produce two
expressions that are not equivalent. In the first example, the

operand of the fetch operator is just A, while in the second example,
it is A+l.

Every expression is fully parenthesized, if necessary, by the compiler
to determine which operands go with each operator, according to the
default rules given 1in Section 5.1.3, For example, the default
parenthesization of the expression .A+l is:

(.A)+1
This parenthesization follows from the fact that the fetch operator
has higher priority than the addition operator. The expression could
be explicitly parenthesized, however, as

. (A+1)

to specify the interpretation required.
Sometimes an operator-expression must be explicitly parenthesized
because of restrictions that prohibit the use of certain operands (see
Section 5.1.2). Any operand can, itself, be a parenthesized
expression because a parenthesized expression is a form of block (as
defined in Section 8.1), which is a primary (as defined in Section
4.1). For example, the expression

X = (IF .ALPHA EQL 0O THEN .X1 ELSE .X2)
is valid but the unparenthesized form is not. Again, the expression

-A EQL (NOT .B)

is valid, but the unparenthesized form is not.

5-12

Computational Expressions
OPERATOR~EXPRESSIONS

5.1.5.2 The Order of Evaluation - As stated in Section 5.1.4, the
order in which operator-expressions are evaluated is largely
undefined. By leaving the order undefined, the language definition
permits the compiler to choose an order of evaluation that is
efficient.

In most cases, the results of programs are not affected by the absence
of a defined order of evaluation. Consider, for example, the
following expression:

X = 2%.X + 3/.Y;

The absence of a defined order of evaluation does not affect the value
assigned to X because all possible orders of evaluation of this
assignment (after the operands are delimited by default
parenthesization) produce the same value.

The rule near the beginning of Section 5.1.4, however, states that
assignment expressions, routine-calls, and control-expressions are
evaluated in left-to-right order. 1In some cases where the order of
evaluation is important, this rule provides the necessary ordering.
Consider, for example, the following example:

BETA = 2*R(.Y) + Q(.2Z)

Suppose that R and Q are names of routines, and that the routines they
designate use the same data (for example, R sets a data segment that Q
fetches). Then it is important that the routines be called in the
indicated order. They are.

It must be said, however, that the example Jjust given is not good
programming. It is legitimate for a routine-call to set or use data
that is not mentioned in the routine-call, but a dependence between
two routine-calls in the same expression is dangerously obscure.

Some expressions are invalid because they depend on an ordering that
is undefined. An example is the expression:

0 = .X + (X=.Y);

It is not valid to assume that the contents of X will be fetched
before it is set. The value assigned to Q could be either the value
of .X+.Y or the value of 2*.Y. Assuming that it was the first of the
two values that was intended, the example can be revised by breaking
it into two assignments, as follows:

Q
X

X o+ LY,
LY;

This version is valid because expressions that are separated by a
semicolon are always evaluated in sequence, one at a time.

The example just given was quite obviously bad programming. However,
the same problem can arise with certain routine-calls, and then the
problem is less obvious. As an example, suppose that the routine R
contains, among other things, the assignment expression:

X = .Y;

Computational Expressions
OPERATOR-EXPRESSIONS

Now consider the expression:
Q = .X + R();

This statement has the same problem as the earlier one; there is no
rule that specifies whether the operator that fetches X or the call on
the routine R is evaluated first.

5.1.5.3 Operations on Field values in BLISS-16/32 - When all data
segments involved in a calculation occupy fullwords, the calculation
is relatively easy to program. Fullwords accomodate large values and
assignment from one fullword to another never modifies a value.

When a data segment that is smaller than a fullword is involved in a
calculation, problems can arise, either through the assignment of a
large value to the small data segment or through the 1incorrect
extension of the «contents of the small data segment. An example of
the latter problem is:

OWN

Wt
[
[

KX e

For purposes of discussion, assume that the programmer has a good
reason for restricting X to one byte. Since X does not occupy a
fullword, it is extended before being incremented and assigned to Y.
And since X is UNSIGNED by default, the extended value is 255 rather

than -1. Thus the value of Y becomes, surprisingly, 256 rather than
0.

The program fragment under discussion does not violate any rules of
BLISS-16 or BLISS-32; it 1is wvalid. However, since it assigns a
negative number, -1, to a name that is declared UNSIGNED by default,
the program fragment is certainly inconsistent.

The program can be fixed in either of the following ways:

° Change the numeric literal from -1 to 255. This change does
not affect the value assigned to ¥, but it does make it clear
that the programmer expects that result.

° Insert the SIGNED attribute to the declaration of X. This
change causes 0 tc be assigned to Y.

The choice between these changes depends entirely on the intentions of

the programmer and cannot be made by looking at this small part of the
program.

Related problems can arise (in any dialect) from the use of
field-references for fields that are smaller than a fullword. These
are discussed in Section 11.2.5.4.

Computational Expressions
EXECUTABLE-FUNCTIONS

5.2 EXECUTABLE-FUNCTIONS

The executable-functions are called v"oxecutable"” to distinguish them
from the lexical-functions, which are described in Chapter 15. There
are five kinds of executable-functions, as follows:

standard-functions

supplementary-functions
condition-handling-functions (BLISS-16/32 only)
linkage-functions

machine-specific-functions

Each of these kinds of function is characterized in the following
paragraphs.

The standard-functions are general-purpose functions; that 1is, they
are restricted to neither a specific area of system programming nor a
specific computer system. The standard-functions are just as
fundamental to BLISS as the operator-expressions. An example of a

call on a standard-function is:

MAX(.X, .Y, 0)

The value of this function is the contents of X, the contents of Y, or

0, whichever 1is greatest. The name MAX 1is predeclared as an
executable-function, so the example just given can appear where MAX is
undeclared. The standard-functions are defined in this chapter

(Section 5.2.2).

The supplementary-functions are designed for particular areas of
system programming. These functions are usually defined and
documented in "packages". One such package consists of the character
handling functions. An example of a call on such a function is:

X = CHSRCHAR{(.PTR3);

This assignment reads a character from the position selected by the

contents of PTR3 and assigns it to X. The character handling
functions are the only supplementary-functions defined in this manual.
However, it is anticipated that other packages of

supplementary-functions will be added to the language in the future.

The condition-handling-functions are used for generating signals for
unusual events or conditions and for controlling the subsequent
processing of a signal (BLISS-16/32 only). These functions are
defined in Chapter 17.

The linkage-functions are used in combination with some linkages
(calling sequences) to code routines in a more general way; for
example, to code a routine that can be called with different numbers
of parameters in different calls. The linkage-functions are defined
in Section 13.6.

The machine-specific-functions are designed for specific computer
systems. Usually a machine-specific~function represents a single
hardware instruction. Such a function permits the use of the harédware
instruction without a "break out" to assembly language. The use of a
machine-specific-function makes a progran machine-dependent. An
example of the use of a machine-~specific-function is not given here.
Such an example would be misleading without a detailed description of

5-15

Compytational Expressions
EXECUTABLE-FUNCTIONS

the context in which it appeared. The use of machine-specific-
functions requires knowledge of both the hardware instruction set and
the optimization strategies of the compiler. Machine-specific-
functions are described in the respective BLISS User's Guides.

5.2.1 Syntax

executable-function executable-function-name

[actual—parameter, e
(

nothing)
executable- name
function-name $name
actual-parameter expression

5.2.2 Semantics

The semantics of the executable-functions is nearly identical to that
for operator-expressions (see Section 5.1). The only difference is
that the operation to be performed is specified by a name at the
beginning of the executable-function (for example, "MAX") instead of
by an operator.

The semantics of the standard-functions are given in the following
subsections. The semantics of some supplementary-functions, the
character handling functions, are given in Chapter 20. The semantics
of the machine-specific-functions are defined in the User's Guide for
each dialect.

5.2.2.1 SIGN and ABS Functions - The SIGN and ABS functions are used
to extract the sign and the absolute value, respectively, from a
value. The functions have the form:

SIGN
ABS (el)

Either of these functions is a compile-time-constant-expression if its
actual-parameter is a compile-time-constant-expression. The values
returned by these functions are:

Function Value

SIGN(x) +1 if x>0
0 if x =0
-1 if x <0

ABS(x) X ifx >0

-(x) if x <0

Computational Expressions
EXECUTABLE-FUNCTIONS

Examples of the use of the SIGN and ABS functions are:

Example value
SIGN (5) +1
ABS (5) +5
SIGN (-5) -1
ABS (-5) +5
SIGN(0) 0
ABS (0) 0

Observe that, in each of these examples,

SIGN (x) *ABS (x) EQL X

5.2.2.2 MAX and MIN Functions - The MAX and MIN functions are used to
select the largest and the smallest, respectively, from a set of
values. The functions have the form:

MAX | MAXU | MAXA}
MIN | MINU | MINA (el , €2 ;.04)

The interpretation of the function itself is determined by the first
three letters of its name, as follows:

MAX select the largest value
MIN select the smallest value

The interpretation of the operands is determined by the fourth letter
of the function name as follows:

No fourth letter: Interpret operand values as signed values.
Fourth letter is U: Interpret operand values as unsigned values.

Fourth letter is A: Interpret operand values as addresses.

The value of the function is the largest or smallest of the values of
the operands, depending on the function name.

In both BLISS-16 and BLISS-32, the functions MAXU and MAXA are
equivalent, as are MINU and MINA. That is, the unsigned and address
forms of the MAX and MIN functions are equivalent. In BLISS-36,
however, the functions MAX (signed) and MAXA are equivalent, as are
MIN and MINA. This reflects a difference in the range of wvalid
address values allowed by the corresponding systems.

The distinction between the signed/unsigned and the address forms of
the functions is provided so that programmers can specify the desired
interpretation of the values being operated on, in a both explicit and
transportable fashion.

Computational Expressions
EXECUTABLE-FUNCTIONS

Examples of the use of the signed and unsigned maximum and minimum
functions are:

Example Value
MAX(-1,0,1) 1
MAXU (-1,0,1) -1
MIN(-1,0,1) -1
MINU(-1,0,1) 0

These examples show the difference between the signed and unsigned
functions. The signed functions treat -1 (which is represented as a
fullword of 1's) as a negative value, whereas the unsigned functions
treat -1 as a large positive value.

An example of the use of the address maximum and minimum functions is:

OWN
X: VECTOR([1O0],

Z = MAXA(X[5],Y)

The assignment sets Z to the value of Y because OWN data segments are
allocated at increasing addresses.

5.2.2.3 The $REF Function - The %REF function provides temporary
storage for the value of an actual-parameter in a routine-call or
executable-function. The function has the form:

$REF (el)
The function can be used only as an actual-parameter in a routine-
call or executable-function.
The function is evaluated as follows:

1. Allocate a temporary fullword and place the value of el in
that fullword.

2. Use the address of the temporary fullword as the value of the
function.

For purposes of discussion, suppose that a programmer has declared a
routine called RHO. The details of the declaration are not given
here. All that matters is that the routine has one parameter, which
is the address of a given value, and returns a result which,
presumably, depends on the given value.

Suppose, now, that the value to be passed is not stored in a data
segment but must, instead, be calculated. Specifically, it is the
value of the expression: .X+l. It would not be correct to write:

Y = RHO(.X+1);

In this version, .X+l1 would not be used as the given value (which was
intended), but rather as the address of the given value.

5-18

Computational Expressions
EXECUTABLE-FUNCTIONS

A correct solution to the problem is to declare and use a temporary
data segment name. However, the use of a temporary just to deal with
a calculated parameter is inconvenient. The $REF function provides a
better solution, as follows:

OWN
X,
Y;
Y = RHO(RREF (.X+1));

Observe that $REF is not an "undot" operation. The following calls
are not equivalent:

F(X)
F($REF (.X))

The routine-call F(X) passes the address of X as the actual-parameter
of the routine F, while the second call passes the address of a
temporary data segment that contains a copy of the contents of X.

5.2.3 Pragmatics

The cost of evaluating a typical executable function is much less than
the cost of evaluating a typical routine-call. The wuse of an
executable-function usually does not produce a routine call; instead,
it is compiled into a few instructions that are often designed
precisely for the required operation. In contrast, a routine-call
usually requires the passing of parameters, the creation of a stack
frame, and the return of a result as well as the inevitable subroutine
jump. In fact, the similarity between an executable-function and a
routine-call does not extend much beyond the similarities in their
syntax.

CHAPTER

6

CONTROL EXPRESSIONS

CONDITIONAL-EXPRESSIONS

Syntax
Restrictions .
Semantics . .
Pragmatics . .

-

Nesting of Conditional
Used vs. Discarded vValues =
Incomplete Test Evaluation

Complete vs.
CASE-EXPRESSIONS
syntax . . o .
Restrictions .
Semantics . .
Pragmatics . .

SELECT- EXPRESSIONS

Syntax
Restrictions .
Semantics .

-

INDEXED-LOOP- EXPRESSIONS

syntax
Restrictions .
Defaults . . .
Semantics . .
Pragmatics . .

TESTED-LOOP- EXPRESSIONS

Syntax
Restrictions .
Semantics . .
Pragmatics . .
EXIT-EXPRESSIONS
Syntax
Restrictions .
Semantics . .

Leave-Expressions

-

Exitloop-Expressions

Pragmatics . .

RETURN-EXPRESSIONS

syntax
Restrictions .
Semantics . .

s o e o e o e e
« o o s s e = .
e o s e 8 o e
e o o o o o o @

. . . -

Expressions . .

|
BaDWW NN

| [I I B
HOWWIWLOWLJAOC WU S

| AN
|

(o)W o))
t
=

CHAPTER 6

CONTROL EXPRESSIONS

Early programming languages permitted unrestricted patterns of control
flow, and the 1logic of many programs was very difficult to follow.
More recent languages have introduced specialized and restricted
patterns of flow, and thus encourage the construction of programs that
are better organized.

There are five fundamental kinds of «control flow in BLISS:
sequential, conditional, iterative, subroutine, and condition
handling. Sequential flow, a simple notion, 1is defined in Section
8.1.3 as part of the description of blocks. Conditional and iterative
flow is described in this chapter. Subroutine flow 1is described in
Chapter 12, and condition handling in Chapter 17.

Notable by its absence in BLISS is the familiar GO TO construct. Its
absence prevents the use of arbitrary patterns of flow. Programming
without the GO TO frequently requires more analysis of the problenm,
but usually results in a clearer and more reliable program.

In BLISS, the constructs for conditional and iterative flow control
are called control-expressions. Because they are expressions, these
constructs can have values and can be nested within larger
expressions.

The syntax diagram for control-expressions is:

conditional-expression
case-expression
select-expression
control-expression loop-expression
exit-expression
return-expression

Loop-expressions are described under two categories: indexed-loops
and tested loops.

6.1 CONDITIONAL-EXPRESSIONS

A conditional-expression performs a given test and then, depending on
whether or not the test is satisfied, evaluates the first or second of
two given expressions.

Control Expressions

CONDITIONAL-EXPRESSIONS

An example of a conditional-expression is:
IF .X GTR XMAX THEN F(.X) ELSE G(.X);

In this example the contents of X is compared with a value XMAX. If
.X is greater than XMAX, then the routine F is called; otherwise,
routine G is called.

6.1.1 Syntax

conditional- IF test THEN consequence ELSE alternative
expression
IF test THEN conseguence

test
consequence expression
alternative

In addition to the syntactic rules just given, the following syntactic
rule is required:

An "ELSE alternative" that could be part of several
conditional-expressions 1is, 1in fact, part of the innermost
of them,

An example of an expression to which this rule applies is:
IF .A EQL O THEN IF .B EQL O THEN X = 5 ELSE X = 6;

This expression is interpreted as:

IF .A EQL 0 THEN (IF .B EQL 0 THEN X = 5 ELSE X = 6);

6.1.2 Restrictions

A conditional-expression that lacks an "ELSE alternative" must not be
used in a context that requires a value.

6.1.3 Semantics

The satisfaction of a test depends on the low-order (rightmost) bit of
the “value of the ~ test. If the 1low-order bit is 1, the test is
satisfied; otherwise, the test is not satisfied.

Expressions used as test expressions are subject to an evaluation rule
that is more flexible (for optimization purposes) than the rule
applied in other contexts. Specifically, the test-expression
evaluation rule is:

Within a test expression, an expression that is not needed
to determine the value of the test expression 1is not
necessarily evaluated.

Control Expressions
CONDITIONAL-EXPRESSIONS

A test expression that 1is subject to this rule appears in the
following conditional-expression:

IF .A OR F(.B) THEN X = 0

If the contents of A is 1 (true), then the value of the entire test
expression is 1 (true) regardless of the wvalue of F(.B).
Consequently, the call on routine F may not be evaluated. Writing the
test in the reverse order does not change the situation. (See Section
6.1.4.3.)

Given the preceding description of test evaluation, the interpretation
for an entire conditional-expression can be presented. It is:

1. Evaluate the test.

2. If the test is satisfied, evaluate the consequence and use
that value as the value of the conditional-expression.

3. If the test 1is not satisfied and if an alternative Iis
present, evaluate the alternative and use that value as the
value of the conditional-expression. If an alternative is
not present, the value of the expression is undefined.

6.1.4 Pragmatics

6.1.4.1 Nesting of Conditional Expressions - Conditional expressions
provide a way to choose one of two mutually exclusive actions,
depending on a specified test condition. The test, consequence or
alternative may be any expression. It is common, for example, for the
consequence or alternative to be a sequence of expressions (written as
a block) as in:

IF .X EQL O
THEN (Y = .Y+1; F(.Y); G{())
ELSE (G(); Y = .Y-1);

Control expressions can also be included in these expressions. For
example:

IF (IF .X EQL O THEN .Y ELSE F(.Y))
THEN
Z =G() + 5;

In this example, the following conditional-expression:

IF .X EQL 0 THEN .Y ELSE F(.Y)

appears as the test expression of another, larger
conditional-expression. The inner test, ".X EQL 0", determines which
of the two expressions, ".Y" or "F(.Y)", is used as the test for the
outer conditional.

Control Expressions
CONDITIONAL-EXPRESSIONS

6.1.4.2 Used vs, Discarded Values - Every BLISS expression has a
value; however, in some contexts that value is used and in others it
is discarded. This aspect of BLISS is discussed here because the
conditional-expression is a good example of an expression that is at
home in both contexts. However, the following discussion applies to
the value of any kind of BLISS expression.

An example of a conditional-expression whose value is used is:
D = (IF .I EQL .J THEN 20 ELSE 30);

Suppose that .I and .J are equal; then 20, which is the value of the
consequence, becomes the value of the conditional-expression and is
assigned to D. Observe that, because the assignment expression is
followed by a semicolon, its value is discarded, but only after the
assignment has been performed.

An example of a conditional-expression whose value is discarded is:
IF .I EQL .J THEN D = 20 ELSE D = 30;

Suppose, again, that .I and .J are equal; then the evaluation of the
consequence causes 20 to be assigned to D and also causes 20 to be the
value of the conditional-expression. Since the conditional-expression
is followed by a semicolon, its value is discarded.

The two expressions just given are equivalent in function, and are
close enough in their cost that the choice between the two examples is
ordinarily a matter of programming style.

6.1.4.3 Complete vs. Incomplete Test Evaluation - As Section 6.1.3
stated, a test may not be fully evaluated. Furthermore, different
occurrences of the same test may be evaluated in different ways.
These variations reflect the fact that the BLISS compiler performs a
far-reaching analysis of the context in which a test appears and then
produces code that is optimized for that context. For this reason, an
expression that must be evaluated (because it sets values or has other
side effects) must not be part of a test.

If an assignment or routine-call must be evaluated, its value should
be assigned to a temporary variable. Then the value of the temporary
variable can be used in the test expression. For example:

IF .A OR F(.B) THEN X = 0;

can be rewritten as follows:

T = F(.B);
IF .A OR .T THEN X = 0;

6.2 CASE-EXPRESSIONS
A case-expression evaluates an index and then uses the value of that

index to choose one expression to be evaluated from a set of
expressions.

6-4

Control Expressions
CASE-EXPRESSIONS

An example of a case-expression is:

CASE .X+1 FROM -1 TO 8 OF

SET

[1]: F1();
[2 TO 4]: F2();
[5, 7, -1]: F3();
[INRANGE] : Fd4();
[OUTRANGE] : F5();
TES

In this example, the value of .X+1 is used to choose one of five
routines to be called as follows:

Value of .X+1 Routine Called

F3
F4
Fl
F2
F2
F2
F3
F4
F3
F4
(all other values) F5

OIS WN O

6.2.1 Syntax

case-expression CASE case-index

FROM low-bound TO high~bound OF
SET

case-line ...

TES

case-line [case-label ,... 1] : case-action ;

single-value

case-~label low~-value TO high-value
INRANGE

OUTRANGE

case-index
case-action expression

low-bound
high-bound
single-value ; compile-time-constant-expression
low-value
high-value

Control Expressions
CASE-EXPRESSIONS

6.2.2 Restrictions

Every value within the range specified by the low-bound and high-bound
expressions must be accounted for exactly once in a case-expression.
If an integer value 1in the range is not explicitly given, a
case-action must be specified for INRANGE.

If the case-index can assume a value outside the specified range, a
case-action must be specified for OUTRANGE.

If the INRANGE case-label 1is wused, it must appear after all
case-labels of the form:

single-value
or
low-value TO high-value

Thus the only case-label that can follow INRANGE is OUTRANGE.

6.2.3 Semantics

The matching of the case-index to a case-label determines the
case-action to be -evaluated. The syntax provides four kinds of
case-label, The following list gives, for each kind of case-label,
the condition under which a match occurs.

Case-Label Condition for a Match

single-value A match occurs if the values of the
case-index and the single-value are
equal.

low-value TO high-value A match occurs if the value of the

case-index 1is 1in the range specified
by the values of the 1low-value and
high-value expressions (that is, the
following signed comparisons hold:
low-value < case-index < high-value).

INRANGE A match occurs if the value of the
case—index 1is in the range specified
by the values of the low-bound and
high-bound expressions (that is, the
following signed comparisons hold:
low-bound < case-index < high-bound)
and the case-index does not match any
other case-label.

OUTRANGE A match occurs if the wvalue of the
case-index is outside the range

specified by the values of the
low-bound and high-bound expressions.

Given the preceding definition of matching, the interpretation of an
entire case-expression can be presented. It is:
1. Evaluate the case-index.

2. Evaluate the case-action in the case-line that contains the
case-label matched by the case-index.

6-6

Control Expressions
CASE-EXPRESSIONS

3. Use the value of the case-action as the value of the
case-expression.

The case-expression is designed for a special, very efficient
implementation. In order to make a decision about wusing a
case-expression, a programmer needs to understand its implementation.
A brief discussion follows.

The bounds and case-labels of a case-expression are all
compile-time-constant—-expressions and can therefore be evaluated by
the compiler. For this reason, the compiler can prepare a transfer
vector for use in the evaluation of a case-expression. The transfer
vector has one element for each value of the case-index in the range
from low-bound to high-bound. The first element of the vector
provides the address of the object code for the case-action that is
performed when the case-index is equal to low-bound. The second
element provides the address of the object code for the case-action
that 1is performed when the case-index is equal to low-bound plus one.
And so on.

When a case-expression is evaluated during program execution, only a
single operation 1is required to get to the appropriate case-action.
That is, the case-index is used as an index into the transfer wvector.

Thus a case-expression does not require a search through the
case-labels.

6.2.4 Pragmatics

A case-expression is most useful when the case-index assumes values in

a small range. An example of the effective use of a case-expression
is:

CASE .TYPECODE FROM 0 TO 3 OF
SET
[0]: LITERAL({();
[1]: IDENTIFIER();
[2]: KEYWORD{();
[3]: PREDCL();
TES;

This case-expression is used to choose the routine to be evaluated
based on the value of .TYPECODE. The data segment named TYPECODE
contains a code that is set earlier in the program. Since TYPECODE
cannot assume a value outside the specified range, a case-action is
not given for OUTRANGE and since each of the values within the range

is associated with a specific case-action, a case-action is not given
for INRANGE.

Control Expressions
CASE-EXPRESSIONS

Another example of a case-expression is:

CASE .NUMBER FROM 1 TO 10 OF
SET
[1,2,3,5,7]: PRIME = .PRIME + 1;
[INRANGE] : NONPRIME = .NONPRIME + 1;
[OUTRANGE] : ERROR{() ;
TES;

This case-expression increments the counter PRIME if the contents of
NUMBER is 1, 2, 3, 5, or 7. 1If the contents of NUMBER is 4, 6, 8, 9
or 10, the counter NONPRIME is incremented. If the contents of NUMBER
is outside the specified range, an error routine is called.

6.3 SELECT-EXPRESSIONS

A select-expression evaluates an index and then uses the value of that
index to choose one or more expressions to be evaluated. Two kinds of
select-expressions are defined for BLISS: one evaluates all
expressions chosen by the index, and the other only evaluates the
first such expression.

A select-expression differs from a case—expression in several
important ways:

o Select-labels are evaluated at execution time.
° A range of values is not specified for the select-index.

° The select-index and select-labels can be interpreted as
signed, unsigned, or address values depending on the form of
the select expression used.

An example of a select-expression, assuming the VAX-11/780 target
system for purposes of illustration, is:

SIZE=(SELECTONE .VALUE OF
SET
[-128 TO 127]: 1
[-32768 TO 32767]: 2
[OTHERWISE]: 4
TES);

- we we

In this example, the contents of VALUE is used to determine the number
of bytes of storage needed for its representation.

If the select-expression in this example 1is reprogrammed as a
case-expression, it requires a range from -32768 to 32767, and its
transfer vector occupies 65536 16-bit words. For this reason, the
case-expression is decidedly impractical for this example. (The
particular example used and the transfer-vector size cited are not
appropriate for all target systems, of course, but do convey the
essential differences between select- and case-expression usage.)

Control Expressions
SELECT-EXPRESSIONS

6.3.1 Syntax

select-expression SELECT | SELECTU | SELECTA
SELECTONE | SELECTONEU | SELECTONEA
select-index OF
SET
select-line ...
TES
select-1line [select-label ,... 1 : select-action ;
selector
select-label low-selector TO high-selector
OTHERWISE
ALWAYS

select-index
select-action
selector expression
low-selector
high-selector

6.3.2 Restrictions

The select-label ALWAYS cannot be used in an expression that begins
with SELECTONE, SELECTONEU, or SELECTONEA.

6.3.3 Semantics

The matching of the select-index to a select-label determines whether

or not the select-action in the select-line containing the
select-label 1is evaluated. The syntax provides four kinds of
select-label, The following list gives, for each kind of
select-label, the condition under which a match occurs.

Select-Label Condition for a Match

selector _ A match occurs if the wvalues of the

select-index and selector are equal.

low-selector TO A match occurs if the value of the
high-selector select-index is in the range specified by the
values of the low-selector and high-selector

expressions (that is, low-selector <

select-index < high-selector).

OTHERWISE A match occurs if a match has not previously
occurred.

ALWAYS A match always occurs.

Control Expressions
SELECT-EXPRESSIONS

The keyword at the beginning of a select-expression consists of SELECT
or SELECTONE, followed by an optional added letter, U or A. The added
letter affects the matching of the select-index to a particular
select-label. Specifically, it determines the kind of comparison, as
follows:

No added letter: Use signed comparison.
Last letter is U: Use unsigned comparison.
Last letter is A: Use address comparison.
Given the preceding discussion of matching and keywords, the

interpretation for an entire select-expression can be presented. It
is:

1. Evaluate the select-index.

2. Let the first select-line of the select-expression be the
current select-line.

3. Evaluate the select-labels on the current select-line to
determine whether at least one of them matches the
select-index.

4. TIf a match is found, then evaluate the select-action of the
current select-line. Otherwise, go to Step 6.

5. If the select-expression is a form of SELECTONE, then go to
Step 8.

6. If the current select-line is the last select-line, then go
to Step 8.

7. Let the select-line that follows the current select-line be
the new current select-line and go to Step 3.

8. Use the value of the most recently evaluated select-action as
the value of the select-expression. If no select-action has
been evaluated during this evaluation of the select-
expression, use -1 as the value of the select-expression.

In Step 3 of this interpretation, the select-labels in a single
select-line may be evaluated in any order. Furthermore, they are
subject to partial evaluation in the same way as a test in a
conditional-expression (see Section 6.1.3). Therefore, a select-label
must not contain assignments or routine-calls that must be evaluated
because they have important side-effects.

6.4 INDEXED-LOOP-EXPRESSIONS

A loop-expression repeatedly evaluates a given expression, the
loop-body. Loop-expressions are classified as indexed-loops
(described in this section) and tested-loops (described in the next
section).

Control Expressions
INDEXED-LOOP-EXPRESSIONS

An indexed-loop has a loop-index that starts at a given value and is
stepped each time the loop cycles until a final value is reached. The
loop-index not only determines the number of cycles performed by the
loop, but can also be used as data in the calculations performed in
the loop-body. An example of an indexed-loop is:

OWN
V: VECTOR[10],
SUM;

SUM = 0;

INCR I FROM 0 TO 9 DO
SUM = .SUM + .V[.I];

In this loop-expression, the loop-body is a single
assignment-expression. The assignment-expression 1is evaluated ten
times, for the sequence of values of .I as follows: 0, 1, 2, ..., 9.
The effect of the 1loop 1is to place the sum of the elements of the
vector V in the data segment named SUM.

6.4.1 Syntax

loop-expression indexed-loop-expression
tested-loop-expression
indexed-loop- INCR | INCRU | INCRA
expression DECR | DECRU | DECRA loop-index

FROM initial TO final BY step
nothing nothing nothing

DO 1loop-body

loop-index name
loop-body

initial expression
final

step

6.4.2 Restrictions

The value of the step expression in an indexed-loop-expression must be
positive.

Control Expressions
INDEXED-LOOP-EXPRESSIONS
6.4.3 Defaults

The initial, final, and step expressions can be omitted in an
indexed-loop-expression. The following defaults apply:

Keyword Defaults

INCR FROM 0 TO +infinity BY 1

INCRU FROM 0 TO +infinity BY 1

INCRA FROM 0 TO +infinity BY 1

DECR FROM largest-signed-value TO 0 BY 1
DECRU FROM largest-unsigned-value TO 0 BY 1
DECRA FROM largest-address-value TO 0 BY 1

The default "+infinity" for INCR, INCRU, and INCRA loop-expressions
means that no end test is made if no final expression is given. The
"largest values" referred to are the maximum values accommodated by a
signed or unsigned fullword, or the maximum address value provided,
respectively, on the target system.

6.4.4 Semantics

The loop-index is implicitly declared to be a LOCAL name for the scope
of the loop-body. This implicit declaration supe' sedes any previous
declaration for that name throughout the indexed-loop. The MAP
declaration, described in Section 10.10, can be used to provide a
structure attribute for the loop-index.

The keyword at the beginning of an indexed-loop-expression is INCR or
DECR, followed by an optional added letter, U or A. The added letter
affects the comparison of the index to the first and final
expressions. Specifically,

No added letter: Use signed comparison.
Last letter is U: Use unsigned comparison.
Last letter is A: Use address comparison.
Given the preceding discussion of indexes and keywords, the

interpretation for an entire indexed-loop-expression can be presented.
It is:

1. Set the value of the loop-index to the value of the initial
expression.

2. Evaluate the step and final expressions and save the values
of these expressions.

3. If there is no final expression (so that "+infinity" is
assumed by default), skip to Step 5. Otherwise, perform the
end test. The end test is satisfied if:

a. The keyword is INCR, INCRU, or INCRA, and the value of
the loop-index 1is greater than the saved value of the
final expression; or,

Control Expressions
INDEXED-LOOP-EXPRESSIONS

b. The keyword is DECR, DECRU, or DECRA and the value of the
loop-index is less than the saved value of the final

expression.
4, If the end test is satisfied, evaluation of the
loop-expression 1is complete. Use -1 as the value of the

loop-expression.

5. Evaluate the loop-body.

6. If the keyword is a form of INCR, add the saved value of the
step expression to the loop-index. If the keyword is a form

of DECR, subtract the saved value of the step expression from
the loop-index. Go to Step 3.

6.4.5 Pragmatics

The improper declaration of a loop-index is a common programming
error. An example is:

SUM = 0;
INCR I FROM 0 TO 9 DO
BEGIN
LOCAL
I;
SUM = .SUM + .V[.I];
END;

The preceding program fragment is incorrect because I is wused as a
loop-index and then "blocked off" from use in the loop-body by an
explicit declaration of I as LOCAL. The name I in .V[.I] refers to a
data segment that is allocated by the explicit declaration, not to the
implicit data segment that contains the loop-index. The correct
version of this example appears at the beginning of this section
(Section 6.4).

6.5 TESTED-LOOP-EXPRESSIONS

A tested-loop-expression contains a test expression that is evaluated
once during each loop cycle. The test expression determines whether
or not repeated evaluation of the loop-body continues.

In a pre-tested loop, the test is made at the beginning of each cycle.
If the test is satisfied, then the loop-body is evaluated and a new
cycle begins; otherwise, evaluation of the loop-expression is
complete. An example of a pre-tested-loop is:

WHILE .PTR NEQ O DO
BEGIN
SUM = LIST[.PTR,CONT];

PTR = LIST[.PTR,LINK];

END;
In this example, the loop-body is the BEGIN-END block, with its two
assignment-expressions. Each cycle of the loop begins with a test of
the contents of PTR. If the value is not 0, then the block is
evaluated and a new cycle begins; otherwise, evaluation of the

loop-expression is complete.

6-13

Control Expressions
TESTED-LOOP-EXPRESSIONS

A post-tested-loop differs from a pre-tested-loop only in the position
of the test. 1In a post-tested-loop, the test is evaluated at the end
of each cycle.

6.5.1 Syntax

tested-loop- pre-tested-loop
expression post-tested-loop
WHILE
pre-tested-loop UNTIL test DO loop-body
WHILE
post-tested-loop DO 1loop-body UNTIL test

6.5.2 Restrictions

The test in a pre-tested-loop or post-tested-loop is subject to the
same evaluation rules as the test in a conditional-expression,
described in Section 6.1.3. Assignments or routine-calls that must be

evaluated because they set values or have other side effects must not
be included as part of a test.

6.5.3 Semantics
The interpretation of a pre-tested-loop is:

1. Evaluate the test.

2. Examine the test clause (that is, the "WHILE test" or "UNTIL
test"). The test clause is satisfied if the keyword is WHILE
and the low-order bit of the test is 1 or if the keyword is
UNTIL and the low-order bit of the test is 0.

3. If the test clause is satisfied, evaluate the loop-body and
return to Step 1.

4. 1If the test clause is not satisfied, use the value -1 as the
value of the loop-expression.

The interpretation of a post-tested loop is:

1. Evaluate the loop-body.

2. Evaluate the test.

3. Examine the test clause. 1If the test clause is satisfied, as
defined in Step 2 of the interpretation of the
pre-tested-loop, return to Step 1.

4. If the test clause is not satisfied, use the value -1 as the

value of the loop-expression.

6-14

Control Expressions
TESTED-LOOP-EXPRESSIONS

6.5.4 Pragmatics

The keywords WHILE and UNTIL are used to determine the continuation of

a loop. If WHILE is used, then the loop continues if the low bit of
the test expression value is 1. If UNTIL is used, the loop continues
if the low bit of the test expression is 0. Thus:

WHILE test is equivalent to UNTIL NOT (test)
The most fundamental form of loop is one that begins with:

WHILE 1 DO
Such a loop could cycle indefinitely since the 1loop test is always

satisfied. Evaluation of the loop can be ended by an exit-expression
(see Section 6.6) or a return-expression (see Section 6.7) that 1is
executed within the loop-body.

6.6 EXIT-EXPRESSIONS

An exit-expression gives three items of information: a command to end
the evaluation of a block, the label of the block to which the command
applies, and optionally a value for the designated block. 2An example
of an exit-expression is:

LEAVE ALPHA WITH .X-1;

This expression must occur in a block that 1is labeled ALPHA. It
causes evaluation of that block to end and provides the value of .X-1

as the value of that block. The labeling of blocks is described in
Section 8.1.

6.6.1 Syntax

exit-expression

{leave—expression }

exitloop-expression

leave-expression

WITH

LEAVE 1label {nothing

exit-value

|

exitloop-expression

exit-value
EXITLOOP nothing

|

label

hame

exit-value

expression

Control Expressions

EXIT-EXPRESSIONS

6.6.2 Restrictions

A leave-expression must be contained in a block labeled by the same
label that appears in the leave-expression.

An exitloop-expression must be contained in a loocp-expression.

If an exit-expression applies to an expression whose value is used,
then the exit-expression must contain an exit-value.

6.6.3 Semantics

The semantics of the two kinds of exit-expression is presented in the
following sections.

6.3.1 Leave-Expressions - The interpretation of a leave-expression
1. If an exit-value is given, evaluate the exit-value and wuse
that value as the value of the innermost labeled-block.

2. 1If an exit-value is not given, the value of the innermost
labeled-block is undefined.

3. End the evaluation of the labeled-block designated by the
label of the leave-expression.

6.6.3.2 Exitloop-Expressions - The interpretation of an exitloop-
expression is:

1. 1If an exit-value is given, evaluate the exit-value and use
that value as the value of the loop-expression.

2. If an exit-value is not given, the value of the
loop-expression is undefined.

3. End the evaluation of the innermost loop.

6.6.4 Pragmatics

An exitloop-expression is a special case of a leave-expression that
leaves the innermost containing loop-expression. An exitloop-
expression is convenient because it does not require the use of a
label.

6-16

Control Expressions
EXIT-EXPRESSIONS

An example of an exitloop-expression appears in the following program
fragment:

OWN
X: VECTORI[10],
ZEROFLAG;
ZEROFLAG = 0;
INCR I FROM 0 TO 9 DO
IF .X[.I] EQL O
THEN (ZEROFLAG = 1; EXITLOOP);

The elements of the vector X are examined to determine if there is an
element whose contents is 0. If an element containing 0 is found,
then ZEROFLAG is set to 1 and evaluation of the loop-expression 1is
ended by the EXITLOOP. Evaluation of the loop ends when the first

zero is found; the elements of the vector following the first element
containing 0 are not examined.

An example of a leave-expression appears in the following program
fragment:

OWN
XYZ: ARRAY[10,20],
ZEROFLAG;
LABEL
L;
ZEROFLAG = 0; ! Initialize to no zeros found
L: BEGIN

INCR I FROM 0 TO 9 DO
INCR J FROM 0 TO 19 DO
IF .XYZ[.I,.J] EQL 0
THEN (ZEROFLAG = 1; LEAVE L);
END;

When the leave-expression is evaluated, it ends evaluation of two
loops: the inner loop with index J and the outer loop with index I.

The value of an exit-expression can be used to give a value to a loop.

An example of this use of an exit-expression appears in the following
program fragment:

OWN

VALBUF: VECTORI[101,
BUFLEN;

BUFLEN = 1+
BEGIN
DECR J FROM 9 TOC 0 DO

IF .VALBUF[.J] NEQ 0 THEN EXITLOOP .J
END;

Assume that the initial elements of VALBUF contain non-zero values,
and the remaining elements contain zero. BUFLEN is the number of
non-zero values in VALBUF. Observe that if a non-zero value is found
then the exitloop-expression ends the evaluation of the loop. If the
buffer is all zeros, the evaluation of the loop runs to completion and

the 1loop value 1is =-1. 1In both cases, the value returned is 1 less
than the desired number of values.

Control Expressions
RETURN-EXPRESSIONS

6.7 RETURN-EXPRESSIONS

A return-expression is used to end the evaluation of a routine and
send control back to the point at which the routine was called.

6.7.1 Syntax

returned-value
return-expression RETURN nothing

returned-value expression

6.7.2 Restrictions

A return-expression in a routine that does not have the NOVALUE
attribute must have a returned-value.

6.7.3 Semantics

The interpretation of the return-expression is:

1. If the return-expression has a returned-value, evaluate the
returned-value and use that value as the value of the
routine-body.

2. End the evaluation of the routine-body.
Discussion of return-expressions is presented in the sections on the

NOVALUE attribute (Section 9.8) and routine-declarations (Section
12.2).

CHAPTER 7

o & o
wN -

*« o e
« o

NN R
w N =

NN NN NN

CONSTANT EXPRESSIONS

COMPILE-TIME CONSTANT EXPRESSIONS

SYNntax « ¢« ¢« o o ¢ o s e s s e
Restrictions . « « « « o o o &«
Semantics .« ¢« 4 ¢ ¢ ¢ o & o
LINK-TIME CONSTANT EXPRESSIONS .
Syntax .« ¢ ¢ o ¢ ¢ o s o o s e

Restrictions . « « « ¢ « o o =«
Semantics .« « ¢ ¢« ¢ o o o o o

NN NN NN
1
NSO s wwH

CHAPTER 7

CONSTANT EXPRESSIONS

A constant expression is an expression that can be evaluated before
program execution begins. The practical and efficient implementation
of BLISS requires that constant expressions be used in certain
contexts, as specified in the syntax diagrams. An expression is a
constant expression if certain restrictions are met, and those
restrictions are given in this chapter.

There are two kinds of constant expression. The compile-time constant
expression 1is the more heavily restricted of the two, and can be
evaluated during the compilation of the module in which it appears.
The 1link-time constant expression includes the compile-time constant
expression as a special case, and can be evaluated by the compiler,
the linker, and the operating system working together.

This chapter has two sections, one for each kind of constant
expression.

7.1 COMPILE-TIME CONSTANT EXPRESSIONS

This section defines compile—time—constant—expressions. The defini-
tion assumes the definition of expressions given in the previous
chapters and then imposes restrictions. The restrictions are designed
to permit a compile-time constant expression to be evaluated during
the compilation of the module in which it appears. When the compiler
encounters a compile-time constant expression, it evaluates that
expression and makes use of its value in compiling efficient object
code.

Constant values known to the compiler are required in several places
in BLISS in order to give a reasonable interpretation to another
language feature. For example, in order for the compiler to allocate
static storage for plits, the actual sizes of all components must be
known -- including any repetition counts. The same consideration
applies to the sizes of other static storage declarations, such as an
own-declaration.

In other cases, requiring constant values assures that an efficient
implementation can be provided by the compiler. For example,
requiring that all LOCAL (and STACKLOCAL) storage allocation is of
constant size and therefore known to the compiler assures that storage
allocation can be done efficiently and that LOCAL data segments can be
addressed efficiently.

Constant Expressions
COMPILE-TIME CONSTANT EXPRESSIONS

Some simple examples of compile-time constant expressions are:

5

3 * 15 -4

7 + $C'A!

MAX (3, 7, 3*15-4)

Compile-time constant expressions often involve names that are
declared LITERAL; for example:

LITERAL
REG = 5,
SIZE = 47;
BEGIN

OWN X: VECTOR[MAX(SIZE,3)+1];
REGISTER A = REG;

END

Wherever the definition of BLISS requires a compile-time constant
expression, the syntactic name

compile-time-constant-expression
is used in the appropriate syntax diagram. There are quite a few
contexts that require compile-time constant expressions, and they are
scattered through the language. For convenience, a complete 1list
follows.
A compile-time constant expression must be used as

® The replicator in a plit (Chapter 4)

e The 1low-bound, high-bound, single-value, low-value, and
high-value expressions in a case-expression (Chapter 6)

e The boundary expression in an alignment-attribute (Chapter 9)

® The ctce-access-actual 1in a preset-attribute of a data-
declaration (Chapter 9)

e The bit-count in a range-attribute of a literal- or
external-literal-declaration (Chapter 9)

e The register-number in a register-declaration (Chapter 10)

e The sign-extension-flag in a field-selector (Chapter 11)

® The structure-size in the declaration of a structure-name
(Chapter 11)

e The allocation-actual parameter in a structure-attribute
(Chapter 11)

o The field-component in a field-declaration (Chapter 11)

o The register—number in a linkage-option (Chapter 13)

e The literal-value in a literal-declaration (Chapter 14)

Constant Expressions
COMPILE-TIME CONSTANT EXPRESSIONS

e Certain parameters in lexical-functions (Chapter 15}

e The lexical-test in a lexical-conditional (Chapter 15)

e The compiletime-value in a compiletime~declaration (Chapter
15)

e The level value in an OPTLEVEL module-switch (Chapter 19).

7.1.1 Syntax

compile-time-constant-expression expression

7.1.2 Restrictions

These restrictions apply to an expression after any macro-calls in the
expression have been expanded.

A compile-time-constant-expression must be one of the following

expressions:

1. A numeric-literal.

2. A string-literal.

3. A name that

a. Is declared in any bound-declaration except an EXTERNAL
iiteral-declaration (as described in Chapter 14), and

b. Is bound to a value that is given by a compile-time-
constant-expression.

4. A structure-reference that vyields a compile-time-constant-
expression when it is expanded (as described in Chapter 11).

5. A block that has a compile-time-constant-expression (and
nothing else) as its body.

6. An operator-expression that

a. 1Is not a fetch-expression or an assignment-expression and

b. Has a compile-time-constant-expression as each of its
operands.

7. An operator—-expression that has the form:

rela
el - e2

In these forms, rela is one of the relational operators for
addresses (EQLA, NEQA, and so on). Both el and e2 must be
link-time-constant—-expressions; furthermore, their wvalues
must be addresses that are relative to the same program
section, external data segment, or external routine name.

7-3

Constant Expressions
COMPILE-TIME CONSTANT EXPRESSIONS

8. An executable-function that

a. 1Is the ABS function, the SIGN function, or one of the max
or min functions, and

b. Has a compile-time-constant-expression as each of its

parameters,

9. A supplementary-function that satisfies certain restrictions.
Those restrictions are not given here but instead appear as

part of the definition of each supplementary-function. (For
example, Section 20.2.1.1 states that the CHSALLOCATION
function 1is a compile~-time-constant-expression if its

parameters are compile-time-constant-expressions.)

10. A conditional-expression that

a. Has a test that 1is a compile-time-constant-expression,
and

b. Has a consequence or alternative that is a compile-time-
constant-expression, depending on whether the test is
satisfied or fails.

11. A case~expression that

a. Has a case-index that is a compile-time~constant-
expression, and

b. Has at least one «case-action that 1is a compile-time-
constant-expression; namely, that case-action that is
chosen by the value of the case-index.

7.1.3 Semantics

A compile-time-constant-expression is evaluated during the compilation
of the module in which it appears. In all other respects, its
interpretation is the same as that for an unrestricted expression (see
Chapters 4, 5, and 6).

7.2 LINK-TIME CONSTANT EXPRESSIONS

This section defines link-time-constant-expressions. The definition
assumes the definition of expressions given in the previous chapters,
and then imposes restrictions. The definition of 1link-time constant
expressions includes the compile-time constant expressions as a
special case. The restrictions on a link-time constant expression are
designed to permit the expression to be evaluated by the compiler, the
linker, and the operating system before the value is needed for
program execution.

Constant Expressions
LINK~TIME CONSTANT EXPRESSIONS

The need for link-time constant expressions arises in two ways:

e A name that designates storage in a program section is
specified as an offset, not a full, absolute address, by the
compiler. The absolute address cannot be determined until
1ink time, when the program sections are allocated and their
base addresses are determined.

e A name that is declared EXTERNAL is entirely undetermined at
compile time because its original declaration is in another
module. Its offset, to say nothing of its absolute address,
cannot be determined until 1link time, when the module in
which the GLOBAL declaration of the name appears is present.

A simple example of the use of a link-time constant expression is
contained in the following program fragment:

OWN X: VECTOR[101];

OWN ALPHA: INITIAL(X[2]);

During compilation, the final value of X is not known; it is
expressed as an offset in the OWN program section. Only at link time
is it possible to determine the absolute address of X, to evaluate
X[2] (the address of the third element of X), and, finally, to supply
the initial value for ALPHA.

Wherever the definition of BLISS requires a link-time constant
expression, the syntactic name
link-time-constant-expression

is used in the appropriate syntax diagram. There are five contexts in
which a link-time constant expression is required; they are:

e The plit-expression in a plit (Chapter 4)

e The plit—expression in an initial-attribute of an own- ofr
global-declaration (Chapter 9)

e The preset-value 1in a preset-attribute of an own- or
global—declaration (Chapter 9)

e The data-name-value in a GLOBAL bind-data-declaration
(Chapter 14)

e The routine-name-value in a GLOBAL bind-routine-declaration
(Chapter 14).

7.2.1 Syntax

link-time-constant-expression expression

Constant Expressions
LINK-TIME CONSTANT EXPRESSIONS

7.2.2

Restrictions

These restrictions apply to an expression after any macro-calls in the
expression have been expanded.

A link-time-constant-expression must be one of the following
expressions:

1.
2.

3.

A compile~time-constant-expression.

A plit.
A name that is declared as one of the following:

a. OWN, GLOBAL, EXTERNAL, or FORWARD. (These are used for
names of permanently allocated data segments.)

b. ROUTINE, GLOBAL ROUTINE, EXTERNAL ROUTINE or FORWARD
ROUTINE. (These are used for names of routine segments.)

c. EXTERNAL LITERAL. (This is used for names of 1literals
that are bound in other modules.)

A name that

a., Is declared by a bound-declaration (as described in
Chapter 14), and

b. 1Is bound to a wvalue that is given by a link-time-
constant-expression,

A structure-reference that vyields a link-time-constant-
expression when it is expanded (as described in Chapter 11).

A block that has a link-time-constant-expression (and nothing

else) as its body.

An operator—-expression that has the form:

a) e

In these forms, el must be a link-time-constant-—expression
and e2 must be a compile-time~constant-expression.

An operator-expression that has the form:

rela
el - e2

In these forms, rela is one of the relational operators for
addresses (EQLA, NEQA, and so on). Both el and e2 must be
link-time-constant-expressions; furthermore, their values
must be addresses that are relative to the same program
section, external data segment, or external routine name.

A supplementary-function that satisfies certain restrictions.

. Those restrictions are not given here but appear as part of

the definition of each supplementary function. (For example,
Section 20.2.2.1 states that the CHSPTR function is a
link-time-constant-expression if its first parameter is a
link-time~constant-expression and its remaining parameters
are compile-time-constant-expressions.)

7-6

Constant Expressions
LINK-TIME CONSTANT EXPRESSIONS

7.2.3 Semantics

A link-time-constant-expression is evaluated during the compilation,
linking, and loading of the module in which it appears. In all other
respects, its interpretation is the same as that for an unrestricted
expression (see Chapters 4, 5, and 6).

The restrictions presented above seem complicated, but they express
the following simple idea:

A link-time-constant-expression is

e Any compile-time-constant-expression,

e A data segment name or external name,

e A data segment name or external name modified by adding or
subtracting a constant value (using + and -), or

e The result of comparing or taking the difference of two link-
time-constant-expressions that represent addresses 1in the
same program section or relative to the same external name
(using the relational operators for addresses).

CHAPTER

BLOCKS AND DECLARATIONS

BLOCKS « &« o o ¢ & o
Syntax . . « ¢ o .o
Restrictions
Semantics
Discussion

DECLARATIONS . « « . &
Syntax . . .« .+ .« o o
Restrictions
Semantics
Discussion . . . « .

€0 00 00 00 00 00 0 00 O
|
OO U BB WNN

CHAPTER 8

BLOCKS AND DECLARATIONS

Blocks and declarations are the fundamental structural features of
BLISS. They are interdependent and complementary. A block is used to
gather a sequence of declarations and expressions into a single
construct. In contrast, a declaration is used to distribute a single
set of information to many places in a block: To each place where the
declared name is used.

This chapter has two sections. One describes blocks, and the other
describes declarations at the most general level. Later chapters
describe the specific types of declarations in detail.

8.1 BLOCKS

On the inside, a block can contain a long and complicated sequence of
declarations and expressions. From the outside, that same block is a
single syntactic unit that has a single value. In this way, blocks
provide for the large-scale structuring of a program.

Blocks need not be complicated. They are often used to specify the
order in which operators are to be evaluated; for example:

2% (.A-1)

In this expression, "(.A-1)" is a block. It is used to show that the
difference of .A and 1 should be calculated before multiplication by
2. This block is the simplest kind of block, a parenthesized-
expression.

In some cases, a block is used to gather several expressions together
so that they are evaluated as a unit; for example:

IF .ALPHA NEQ O

THEN
BEGIN
01 = .ALPHA*.S1;
Q2 = .ALPHA*.S2;
END;

An equivalent way of writing this block is:
IF .ALPHA NEQ 0 THEN (Ql = .ALPHA*.Sl; Q2 = .ALPHA*.S52;);

The block in these examples is a compound-expression; that 1is, a
block that contains one or more expressions but does not contain a
declaration., The choice between parentheses and the BEGIN-END pair is
entirely a matter of appearance and readability.

8-1

Blocks and Declarations
BLOCKS

Finally, a block can be used to gather together a sequence of
declarations and expressions of arbitrary length and complexity.

8.1.1 Syntax

labeled-block]
block unlabeled-block
labeled-block { label : } ... unlabeled-block
label name
BEGIN block-body END}
unlabeled-block (block-body)
declaration ...}
block-body nothing
‘block—action ...l
nothing
block—value}
nothing
block-action expression ;
block-value expression

A block immediately contains a given construct (such as a name or a
declaration) 1If 1t 1Is the smallest block that contains the given
construct,

A compound-expression is a block that does not immediately contain any
declarations.

A parenthesized-expression is a block that has the form:

(expression)

8.1.2 Restrictions
The label in a labeled-block must be declared by a 1label-declaration
(see Section 18.4).

A block that appears in a context that requires a value must contain a
block-value expression.

Blocks and Declarations
BLOCKS

A block must not be empty; that is, it must contain at 1least one
declaration, block-action, or block-value.

8.1.3 Semantics

Consider, first, a block whose evaluation runs to completion without
being prematurely ended by, for example, a leave-expression. The
block is evaluated in three steps, as follows:

1. Process the declarations (if any).

2. Evaluate the block-actions (if any) in the order in which
they are written.

3. Evaluate the block-value expression (if any).

If the block has a block-value expression, then the value of that
expression is the wvalue of the block; otherwise, the value of the
block is undefined and an attempt to use that value is invalid.

Most of the processing of declarations 1is performed before program
execution begins. For example, the information in an OWN declaration
is used by the compiler and linker to allocate storage, provide an
initial wvalue, and so on. In a few cases, the processing of a
declaration requires run-time calculations. For example, the value in
a BIND declaration can be given by an expression that must be
evaluated each time the block is entered.

The evaluation of block-actions in order, one after another, 1is the
basis for sequential flow of control. It is valid to assume that the
evaluation of a block-action is completed before the evaluation of the
next block-action begins. 1In the course of optimization, the compiler
alters the order of some calculations, but never in a way that affects
the results,

In BLISS the block-action plays a role similar to the role of the
"statement™ in other high level languages. The semicolon at the end
of a block-action has the syntactic role of separating the
block-action from the next component of the block. In addition, it
has the semantic effect of discarding the value of the expression.
Thus it is valid to use an expression whose value is undefined as the
expression in a block-action.

Consider, next, a block that does not run to completion. Such a
situation arises because of a return-expression, leave-expression, or
exitloop-expression that 1is contained in the block. In this
situation, the value of the block is the value supplied by the
return-expression, leave-expression, or exitloop-expression. If no
value is supplied, then the value of the block is undefined.

8-3

Blocks and Declarations
BLOCKS

8.1.4 Discussion

An example of a block is contained in the following
conditional-expression:

IF .Q EQL O
THEN
BEGIN
LOCAL
TEMP;
TEMP = .X;
X = .Y;
Y = .TEMP;
END;

The block is evaluated if the contents of Q is 0.

The block in this example begins with one declaration, continues with
three block-~actions, and does not contain a block-value expression.
The declaration describes a data segment named TEMP, which Iis
allocated for wuse in this block only. The block actions are all
assignments; they exchange the contents of X and Y. Clearly, it |is
important, in this example, that the assignments are performed in the
order written.

The entire example 1is an expression (a conditional-expression)
followed by a semicolon. Therefore it is a block-action and is part
of some larger block (not shown).

8.2 DECLARATIONS

A declaration provides information about the block that contains it.
Usually, the information affects the interpretation of one or more
names that are used in the block. Thus, although the declaration does
not directly cause any action, it does affect the interpretation of
the block by specifying information about the names that are declared.

In the simplest case, the information provided by a declaration is
just a single keyword; for example,

OWN
X;

specifies that X is an OWN name.

Sometimes a declaration gives some of the attributes that are
described in Chapter 9. For example,

GLOBAL
DELTA: VECTOR[120] INITIAL(REP 120 OF (-1));

specifies that DELTA is a GLOBAL name and that it has the given
structure- and initial-attributes.

Blocks and Declarations
DECLARATIONS

In other cases, a declaration can give even more information. For
example,

GLOBAL ROUTINE EXCH(X,Y): NOVALUE =
BEGIN
LOCAL TEMP;
TEMP = ..X;

X = ..Y;
.Y = .TEMP;
END;

specifies that EXCH 1is a global routine-name, that it has the
novalue-attribute, that it has the formal-name list (X,Y), and that it
designates the routine given in the BEGIN-END block.

A declaration applies to those occurrences of a name that are within
its scope. In the example just given, the declaration

LOCAL TEMP;

applies only to the occurrences of TEMP within the BEGIN-END block.
The example is part of a module (not shown) but any other use of TEMP

in that module lies outside the scope of the local-declaration in the
example.

8.2.1 Syntax

r data-declaration N
structure-declaration
field-declaration
routine—-declaration
linkage-declaration
enable-declaration
bound-declaration
compiletime~declaration
declaration macro-declaration
require-declaration
library-declaration
psect-declaration
switches-declaration
label—-declaration
builtin-declaration

_. undeclare-declaration J

The syntax diagrams for the specific kinds of declarations are given
in later chapters. With few exceptions, however, each kind of
declaration declares a user-chosen symbol as a specific kind of name
(data-segment name, structure-definition name, routine name, etc.),
and generally provides additional information about that name.

Blocks and Declarations
DECLARATIONS

A given name can be used more than once in a module and can have
different declarations in different places. The declaration that
applies to a given use of a name governs that name. To find the
declaration that governs a given use of a name, proceed as follows:

Start at the given use of the name and scan backwards
through the module. If the end of a block is encountered,
skip over everything contained in that block. The first
declaration of the given name that is encountered during
this scan is the desired declaration.

One declaration of a name can govern many uses of the name. The part
of a module that 1is governed by a declaration is the scope of that
declaration.

8.2.2 Restrictions

Every use of a name must be governed by an explicit declaration. The
predeclared names (see Appendix A) are an exception to this rule;
they can be used without being explicitly declared.

Two declarations of the same name must not be immediately contained in
the same block.

The two restrictions just given are subject to some exceptions when
UNDECLARE declarations are used (see Chapter 18).

A name is declared as global when its declaration begins with the
keyword GLOBAL. A name must not be declared global more than once in
a program.,

8.2.3 Semantics

A declaration supplies the following information about each occurrence
of a name that it governs:

1. The one or more keywords with which the declaration begins.
2. The attributes that appear in the declaration of the name.

3. Other, specialized, information that is included in certain
kinds of declaration, such as the routine-body in a routine-
declaration, or the bound-value in a bind-declaration.

Most of the information supplied by the declaration is processed by
the compiler. For most declarations, part of the processing defines a
value for the declared name. For example, when an own-declaration is
processed, an address offset 1is associated with the name, and that
address-offset is bound (by the linker) to the address of a data
segment.

Blocks and Declarations
DECLARATIONS

8.2.4 Discussion

As defined in Section 8.2.1, the scope of a declaration is the part of
a module that is governed by the declaration. An example of scopes is
given in the following diagram:

BEGIN
OWN r«——Block A
X,
Y,
Z;
ROUTINE S1 =
BEGIN
LOCAL
X, Block B
A;

... {Calculation #1)

END;

... (Calculation #2)

BEGIN

MACRO Y = 0 %;

.o+ (Calculation #3) Block C
END

... (Calculation #4)

END

The three blocks in this example are enclosed in boxes that are
identified as A, B, and C for convenience of discussion. Block A
designates the entire example (including the contents of Block B and
Block (). The details of the calculations performed by the example
block are not important, so they are omitted. The places where names
could be wused in calculations are called Calculation $#1, Calculation
#2, and so on.

Blocks and Declarations

DECLARATIONS

The example contains seven declarations of names.

declarations are:

Declaration

O XN KX
—

Another way to express this information is

(in Block A)
(in Block A)
(in Block A)
(in Block A)
(in Block B)
(in Block B)
(in Block C)

Scope of Declaration

Block A except Block B
Block A except Block C

Block
Block
Block
Block
Block

Owwy >

to

show

the

The scopes of the

declaration

that governs each name in each of the calculations, as follows:

Use of Name

In

In

In

In

Calculation #1
X
Y
Z
s1
A

Calculation #2
X
Y
Z
S1
A

Calculation #3
X
Y
Z
S1
A

Calculation #4

Declaration of Name

LOCAL (Block
OWN (Block
OWN (Block
ROUTINE (Block
LOCAL (Block
OWN (Block
OWN (Block
OWN (Block

ROUTINE (Block
(undeclared)

OWN (Block
MACRO (Block
OWN (Block

ROUTINE (Block
(undeclared)

B)
a)
A)
A)
B)

A)
A)
A)
A)

a)
C)
A)
A)

(same as in Calculation #2)

Blocks and Declarations

DECLARATIONS
A second example of scope is:
BEGIN *———Block A
OWN
X,
Y;
ROUTINE S2 (X) = X +1; (= Block B
ROUTINE S3 (X,Y,N) = Block C
BEGIN - Block D
MAP
Y: REF VECTOR;
X = 0;
DECR I FROM .N TO 0 DO
X = X+ Y[.1); |= Block E
END;
END

The blocks in this example are labeled in the same way as 1in the
previous example. Three of the blocks are implicit; that is, they
are assumed to exist even though a BEGIN-END or parenthesis pair is
not used. Specifically, Blocks B and C are the implicit blocks that
each surround the formal-names and the routine-body of a
routine-declaration. Block E is the implicit block that surrounds the
body of a loop.

Blocks and Declarations
DECLARATIONS

This example contains ten declarations. Five of the declarations are
implicit. Specifically, the formal-name X is implicitly declared in
Block B; the formal-names X, Y, and N are implicitly declared in
Block C; and the loop-index I is implicitly declared in Block E. The
scopes of the declarations are:

Declaration Scope of Declaration

X (in Block A) Block A except Blocks B and C
Y (in Block &) Block A except Block C
S2 (in Block A) Block A

X (in Block B) Block B

S3 (in Block &) Block A

X (in Block C) Block C

Y (in Block C) Block C except Block D
N (in Block C) Block C

Y (in Block D) Block D

I (in Block E) Block E

Unlike all other declarations, the MAP declaration redeclares a name;
that 1is, it establishes a new set of attributes to be used with a
previously declared data segment name. Thus, the two declarations of
Y in Blocks C and D refer to the same data segment.

CHAPTER 9 ATTRIBUTES
9.1 THE ALLOCATION=UNIT v o v ©« o o s s o o o 9-1
9.1.1 SBYNEAX ¢ v ¢ v i s s e e e e s e e e e e e e e . 9-2
9.1.2 Default . . & v v ¢« v v v ot e e e e e e e e e . 9=2
9.1.3 Restriction . ¢ & 4 ¢ ¢ ¢« v ¢ 4 v ¢ e« o o o« o & 9-2
9.1.4 Semantics . . v 4 b 4 e e e e e e e e e e e e . 9-2
9.2 THE EXTENSION-ATTRIBUTE e o o s e s e o o s e s e 9-2
9.2.1 SYNtax . . ¢ . it i i 4 e et e e e e e e e e . 9-3
9.2.2 Restriction ¢ ¢ & ¢ ¢ v ¢« v 4« ¢ o« o « . 9-3
9.2.3 Default . & & & v v ¢ v v e e e e e e e e e e . 9-3
9.2.4 Semantics . . ¢ 4 4 i i it h e e e e e e e e . 9-3
9.3 THE STRUCTURE-ATTRIBUTE e o o o s s e e & & o o o 9-3
9.4 THE FIELD-ATTRIBUTE e o o e s e s s+ e o o s o s o 9-4
9.4.1 SBYNLAX ¢ & & v v 4 i e e s e s e e s e e e e e . 9-5
9.4.2 Default . . & & ¢t ¢ ¢ v 4 o o o o 4 s e e o e 4 9-5
9.4.3 Semantics e o o s o s s e s s e e e & 9-5
9.5 THE ALIGNMENT- ATTRIBUTE e o s e o s e+ e s e o e & 9-5
9.5.1 SYNLAX © v ¢ 4 it b e e e e e e e e e e e e s . 9-6
9.5.2 Restrictions ¢« ¢ ¢ ¢ & v v v v v v v« « o 9-6
9.5.3 Default . . & ¢ 4 ¢ ¢ v v v 4 e e e e . . 9-6
9.5.4 Semantics e s o s s s s e e« o 9-6
9.5.5 Discussion « & v v 4 v v v v 4t e e e e e e e . 97
9.6 THE INITIAL-ATTRIBUTE e o 6 e e o o s s e o e o & 9-7
9.6.1 SYNEAX ¢« & 4 4 i b 4t e e e e s e e s e e e e . 9-8
9.6.2 Restriction ¢ v ¢ v & ¢ 4 4« v o « « . 9-8
9.6.3 Default . . & & &t ¢ ¢ ¢ ¢ ¢ v o 4 o o o s « + . 9-8
9.6.4 Semantics . . . e o o s s+ s s s s e e e o o « 9-9
9.7 THE PRESET- ATTRIBUTE e a4 e o s+ s s s e s e e o o &« 9-9
9.7.1 SYNLAX & ¢ i 4 it e s s e e s e e e e e e e e .99
9.7.2 Restriction ¢« . & ¢ + ¢+ v 4w 4« v« « « « 9-10
9.7.3 Default . . . & ¢ ¢ & ¢ ¢ v ¢ v e v o o o o . 9-10
9.7.4 Semantics 4 . . e s o s s e « « 9-10
9.7.5 Pragmatics « o« e« o+ « o« 9-10
9.8 THE PSECT-ALLOCATION ATTRIBUTE . . . & o « & + & 9-11
9.8.1 SYNtax . . . v v i it s ke e e e e e e e e . 9-12
9.8.2 Restrictions . . . ¢« . & ¢ & v 4 4 4 4 4 4w e o 9-12
9.8.3 Defaults . . ¢ v v 4 4 v v e 4 4 e e e e e e . 9-12
9.8.4 Semantics . . 4 4 e 4 4 e e e e e e e e e e . 9-12
9.8.5 Pragmatics . . . & ¢ v v ¢ v ¢ v v v 4 4 e o . 9-12
9.9 THE VOLATILE-ATTRIBUTE . ¢« ¢ ¢ o o ¢ o o o o « 9-13
9.9.1 SYNLAx « v 4 4 4 v s st e s s e e e e e e e . 9-13
9.9.2 Semantics . . . e o o o s o s+ e o o & e o o 9-13
9.10 THE NOVALUE- ATTRIBUTE e o o e o o s e s o e e 9-13
9.10.1 SYNEAX & ¢ v v 4 6 4t e e e e e e e e s e e . 9-14
9.10.2 Restrictions . . v & ¢« ¢ ¢ ¢ & ¢« v o o « o o« .+ 9-14
9.10.3 Semantics . . 4 ¢ i 4t e 4 4 4 e e s e e e o 9-15
9.11 THE LINKAGE-ATTRIBUTE . e e o o . e . 9-15
9.11.1 BYNEAX & 4 4 ¢ v i i e e e s e e e e s e e e o 9-15
9.11.2 Restrictions ¢« . v ¢ ¢ v v v v « « « 9-15
9.11.3 Defaults . « +« ¢ o ¢ o ¢ o« o« = e e e . 9-15
9.11.4 Semantics . . . e s o s e s s+ e e o e s s+ o 9-16
9.12 THE RANGE- ATTRIBUTE e ¢ o e o s o e e e o e o 9-16
9.12.1 SYNtax . . ¢ i i e 4 i e e e e e e e e e e e . 9-17
9.12.2 Restriction . . . ¢ ¢« ¢« ¢ ¢ ¢ v ¢ ¢ o o o« o« « 9-17
9.12.3 Default . . & ¢ ¢ 4t ¢ ¢ 4 e 4 e s e e e e e . 9-17
9.12.4 Semantics . . . i 4 i bt 4 e 4 e e e e e e . 9-17
9.13 THE ADDRESSING-MODE-ATTRIBUTE e o o o o o o o o 9-17
9.13.1 Syntax . ¢ ¢ ¢ ¢ ¢ ¢ o o o e e o s o e s+ s « 9-18
9.13.2 Default . . . ¢ ¢ 4 ¢ ¢ v 6 4 e s e e e e 9-18
9.13.3 Semantics . . e o o o s s s e s s e o e o & 9-19
9.14 THE WEAK- ATTRIBUTE e o o s s o s e s 2 e s o o 9-19
9.14.1 SYNEAX ¢ v 4 4 4 i i e e e e e e e e e e e e . 9-19
9.14.2 Semantics e e o o e e s s e e o o & 9-20
9.15 A SUMMARY OF ATTRIBUTE USAGE . ¢ ¢« ¢ ¢ o o o o » 9-20

CHAPTER 9

ATTRIBUTES

Many declarations are used to associate attributes with a declared
name, as well as declaring the name to be of a specific kind. Some
attributes are common to many forms of declarations, and some apply to
only a few forms. This chapter describes the attributes themselves.

The following syntax diagram lists the attributes:

allocation-unit <= 16/32
extension-attribute <= 16/32
structure-attribute
field-attribute
alignment-attribute <= 16/32
initial-attribute
attribute preset-attribute
psect-allocation
volatile-attribute
novalue-attribute
linkage-attribute
range—attribute
address-mode-attribute <= 32 Only
_weak-attribute J <= 32 Only

Each attribute is described in a section of this chapter. A final
section summarizes the usage of attributes by showing which attribute
can be used with which kind of declaration.

9.1 THE ALLOCATION-UNIT - BLISS-16/32 ONLY
An allocation-unit c¢an be wused in a data-declaration or a
bind-data-declaration. An allocation-unit can appear either as an

independent attribute or as an allocation-actual parameter within a
structure-attribute (as described in Chapter 11).

An allocation-unit is wused wherever the ™granularity" of storage
allocation must be specified.

Examples of the use of allocation-units in the declaration of names
are:

OWN A is a scalar data segment composed
A: WORD; of one word (16 bits).

9-1

Attributes

THE ALLOCATION-UNIT - BLISS-16/32 ONLY
GLOBAL B is a vector data segment composed
B: VECTOR[10,BYTE]; of ten one-byte elements.
LOCAL C is a scalar data segment composed
C; (by default) of one fullword.

9.1.1 Syntax

16/32 Only =>
allocation-unit WORD

{LONG] <= 32 Only
BYTE

9.1.2 Default

The default allocation-unit 1is WORD for BLISS-16, and LONG for
BLISS-32.

9.1.3 Restriction

As shown in the syntax diagram, the allocation-unit LONG is valid for
BLISS-32 only.

An allocation-unit (used as an attribute) must not be used in the same
declaration as a structure-attribute.

If a declaration contains both an allocation-unit (used as an
attribute) and an initial-attribute, then the allocation-unit must
precede the initial-attribute.

9.1.4 Semantics

An allocation-unit specifies a quantity of storage, as follows:

LONG 32 bits

WORD 16 bits

BYTE 8 bits
If the declaration of a name does not contain a structure-attribute
(and is therefore a scalar declaration), the allocation-unit
determines the quantity of storage allocated for the entire data
segment. If the declaration has a structure-attribute, the attribute

can include an allocation-unit as one of its allocation-actuals.

9.2 THE EXTENSION-ATTRIBUTE - BLISS-16/32 ONLY

Like an allocation-unit, an extension-unit can be used in a
data-declaration or a bind-data-declaration. An extension-attribute
can appear either as an independent attribute or as an

allocation-actual within a structure-attribute (as described in
Chapter 11).

9-2

Attributes
THE EXTENSION-ATTRIBUTE - BLISS-16/32 ONLY

Examples of the use of an extension-attribute are:

OWN A is a scalar data segment
A: SIGNED WORD; composed of one signed
word.
GLOBAL B is a vector data segment
B: VECTOR[10,BYTE,SIGNED]; composed of 10 signed
bytes.
LOCAL C is a scalar segment
C: UNSIGNED BYTE; composed of one unsigned
byte.

9.2.1 Syntax

16/32 oOnly =>
{SIGNED }

extension-attribute UNSIGNED

9.2.2 Restriction

An extension-attribute (used as an attribute) must not appear in the
same declaration as a structure-attribute.

9.2.3 Default

The default extension-attribute is UNSIGNED.

9.2.4 Semantics

An extension-attribute specifies the value extension rule to use when
fetching the contents of a scalar field value. SIGNED specifies that
the high order bit of the fetched value (the sign bit) is to be used.
UNSIGNED specifies that zero bits are to be used.

The extension-attribute is normally specified in combination with the
allocation-unit BYTE in BLISS-16, and with BYTE or WORD in BLISS-32.

9.3 THE STRUCTURE-ATTRIBUTE

A structure-attribute can be used in a data-declaration or a
bind-data-declaration. It associates the declared data-segment name
to a separately declared structure-definition, causing the allocation
of the data-segment to be controlled by that structure-definition.
Subsequent access to the data-segment 1is also controlled by the
associated structure-definition. (A structure~definition is declared
in a structure-declaration. BLISS provides several predeclared
structure-definitions, as described in Chapter 11.)

Attributes
THE STRUCTURE-ATTRIBUTE

An example of the use of a structure-attribute is:

OWN
X: VECTORI[8];

The structure-attribute here is VECTORI[8]. The attribute specifies
that X is a data-segment with a VECTOR structure. The predeclared
structure-definition named VECTOR is described in Section 11.9. In
accordance with that definition plus the allocation-actual, 8,
specified in the attribute, X is allocated as a sequence of eight
fullword elements that are designated X[0] through X[7]. (In BLISS-16
or BLISS-32, an allocation-unit can be used as an additional
allocation-actual, e.g., VECTOR[8,BYTE], to specify the size of the
elements allocated.)

A structure-attribute can name a user declared structure-definition as
well as one of the standard, predeclared structures described in
Chapter 11. In any case, the interpretation of the
structure-attribute depends entirely on the structure-declaration that
governs the given structure-name.

As an example:

GLOBAL
Y: MATRIX[10];

The structure-attribute here is MATRIX[10]. The attribute specifies
that Y is a MATRIX structure. BLISS does not have a predeclaration
for the name MATRIX; therefore, this example must occur in the scope
of an explicit STRUCTURE declaration of MATRIX. The interpretation of
the example depends entirely on that STRUCTURE declaration.

The structure-attribute is fully described in Chapter 11, together
with the structure-declaration.

9.4 THE FIELD-ATTRIBUTE

A field-attribute can be used in data-declarations and
bind-data-declarations. It specifies one or more field-names that are
to be associated with the declared data-segment-name. This

association allows the field-names to be used in structure-references
to the data segment, as described in Chapter 11. (The field-attribute
is meaningful only in declarations of structured data segments.)

The definition of a field-name, in terms of field-component values, is
given in a field-declaration that governs the wuse of that name.
Field-declarations are also described in Chapter 11.

As a "shorthand" notational convenience, a group of field-name
definitions can be identified (in the field-declaration) by a
field-set-name and can then be referred to in a field-attribute by
that single name.

Attributes
THE FIELD-ATTRIBUTE

9.4.1 syntax

field-name
field-attribute FIELD (field-set-name goees)
field-name
field-set-name name

9.4.2 Default

If a field-attribute is not specified for a data-segment-name, no
field-names may appear in an ordinary-structure-reference to the
corresponding data segment.

9.4.3 Semantics

A field-attribute specifies the set of field-names that can validly
appear in an ordinary-structure-reference to a data segment declared
with the given field-attribute. A field-set-name in a field-attribute
specifies a set of field-names that can so appear. If no
field-attribute is given, then no field-name 1is wvalid in such a
reference,

9.5 THE ALIGNMENT-ATTRIBUTE - BLISS-16/32 ONLY

An alignment-attribute can be wused in an OWN, GLOBAL, LOCAL, or
STACKLOCAL data-declaration. 1In BLISS-32, an alignment-attribute can
also be used in a psect-declaration, as described in Section 18.1.1.
This attribute indicates the address alignment required for a data
segment relative to the different levels of address boundaries (e.g.,
byte, word, longword, quadword).

The purpose of the alignment-attribute is to specify the ‘'smallest'
boundary at which the data segment may be allocated, generally a
'larger' boundary than the default one. For example, an alignment-
attribute might be wused to specify that a particular byte-scalar
segment is to start at a word boundary only, rather than at any byte
boundary which 1is the default. Use of this attribute can result in
unused storage left between the previously allocated data segment and
the data segment to which the attribute applies.

The alignment-attribute indicates a particular address boundary by
means of a boundary value, n, which specifies that the binary address
of the data segment must end in at least n 0's. For example:

OWN
A:BYTE ALIGN(1);

The alignment-attribute, ALIGN(l), specifies that data-segment A is to
be allocated at an address that ends with at least one 0; which is to
say that it is to be aligned to a word boundary.

Attributes
THE ALIGNMENT-ATTRIBUTE - BLISS-16/32 ONLY

An example of BLISS-32 usage of the alignment-attribute is given in
Section 9.5.5.

9.5.1 Syntax

16/32 Only =>

alignment-attribute ALIGN (boundary)

boundary compile-time-constant-expression

9.5.2 Restrictions

The value of boundary must be a positive integer.

BLISS-16 ONLY

The value of boundary must be either 0 or 1, corresponding to
byte- or word-boundary alignment respectively.

The value of boundary must not exceed the value of the program-section
alignment boundary for the storage class being allocated.

The value of boundary in a LOCAL or STACKLOCAL declaration must not
exceed 2.

9.5.3 Default

The default alignment depends on the kind of data that is declared, as
follows:

Kind of Data Default Alignment
BYTE scalar ALIGN(0)

WORD scalar ALIGN (1)

LONG scalar ALIGN (2) <= 32 Only
Any structure ALIGN (1) <= 16 Only
Any structure ALIGN (2) <= 32 Only

9.5.4 Semantics

Suppose the value of the boundary expression 1s n. The compiler
allocates the declared data segment in the unused portion of the
appropriate program section at the smallest possible address offset
that ends with at least n zero bits.

Attributes
THE ALIGNMENT-ATTRIBUTE - BLISS-16/32 ONLY

9.5.5 Discussion

The alignment-attribute is a nontransportable feature, is not required
for most purposes, and should only be used with a thorough knowledge
of the target system's storage organization and accessing mechanisms.,

A data segment declared as OWN or GLOBAL 1is allocated in the
appropriate OWN or GLOBAL program section. Its location is defined in
terms of an address offset, that 1is, an address relative to the
beginning of the program section. In BLISS-16 and BLISS-32, any
address constitutes the boundary of one or more allocation units:
Thus all addresses are byte boundaries, every other address (relative
to zero) is a word boundary as well, and in BLISS-32 every fourth
address is also a longword boundary, and so on,

By default, a data segment is allocated at an address offset that is
"natural" for <either 1its size or type, e.g., a word-size scalar is
aligned to a word boundary, and a structured segment 1is always
fullword aligned, whatever its allocation unit.

In BLISS-16, where the value of boundary may be 0 or 1, the only
meaningful use of the alignment-attribute is to force byte-size scalar
items to a word boundary, presumably for reasons of execution
efficiency in special situations.

In BLISS-32 the boundary value for OWN and GLOBAL data segments is
limited only by physical-storage considerations. Further, the
alignment-attribute can be used to specify a smaller as well as a
larger boundary than the default (except for byte items, obviously),

essentially for ©purposes of storage compaction versus execution
efficiency.

A data segment declared in a LOCAL or STACKLOCAL declaration is
allocated in the <current stackframe. The stack handling mechanism
imposes certain restrictions such that the alignment specified for a
LOCAL or STACKLOCAL data segment cannot exceed a longword boundary in
BLISS-32.

An example of the use of an alignment-attribute in BLISS-32 is:

OWN
X: ALIGN(3);

In this example the alignment-attribute, ALIGN(3), directs the
compiler to allocate data-segment X in such a way that its binary
address offset ends in at least three 0's. That is to say, it directs
the compiler to align the segment to a quadword boundary. Depending
on where available storage begins, the compiler must leave from zero
to seven bytes of unused storage in order to satisfy this alignment
attribute.

9.6 THE INITIAL-ATTRIBUTE

An initial-attribute can be used in an OWN or GLOBAL data-declaration.

Attributes
THE INITIAL-ATTRIBUTE

An initial-attribute supplies one or more initialization values, which
are assigned to the data segment before program execution begins.

Examples of the use of initial-attributes are:

OWN X: INITIAL(2); X is initialized to 2.
GLOBAL Y: VECTOR([6] Each element of Y is
INITIAL(REP 6 OF (~-1)); initialized to -1.
16/32 Only =>
GLOBAL Z: VECTOR[20,BYTE] The first 4 bytes of Z are
INITIAL(BYTE('STOP', initialized to 8, T, O, and

REP 16 OF (0))); P; the last 16 bytes to 0.

9.6.1 Syntax

initial-attribute INITIAL (initial-value ,...)

initial-value plit-item

The plit-item is defined in Chapter 4.

9.6.2 Restriction

The initial value(s) must not occupy more storage than is allocated
for the data segment.

If a declaration contains both a structure-attribute and an
initial-attribute, then the structure-attribute must precede the
initial-attribute.

If a declaration contains both an allocation-unit (used as an
attribute) and an initial-attribute, then the allocation-unit must
precede the initial-attribute., (BLISS-16/32 only.)

9.6.3 Default
BLISS-16/32 ONLY

If the initial-attribute appears in the declaration of a scalar
name (that 1is, with no structure-attribute present), then the
default allocation-unit for the plit-items in the
initial-attribute 1is the allocation-unit of the scalar name.
Otherwise (that is, with a structure-attribute present), the
default allocation-unit 1is WORD for BLISS-16 or LONG for
BLISS-32.

Attributes
THE INITIAL-ATTRIBUTE

9.6.4 Semantics

The list of initial-values is evaluated just as they would be 1in a
plit. The resulting value(s) are placed in the data segment at the
time it is allocated. If the initial value(s) occupy less storage

than the data segment, the trailing bits of the data segment are
initialized to 0's.

9.7 THE PRESET-ATTRIBUTE

A preset-attribute can be used in an OWN or GLOBAL data-declaration
that declares a structured data-segment. It allows static
initialization of individual fields of a structured data-segment.

A preset-attribute supplies an initialization value for one or more
fields of a data structure, one value per specified field. These
values are assigned to the data segment before program execution
begins. Unspecified portions of the data segment are set to zero.

An example of the use of PRESET is given in the following program
fragment, involving a block structure defined with field-names:

FIELD LINK LIST ITEMS =

SET

LL_VALUE = [0,0,%BPVAL/2,0],
LL_TYPE = [0,%BPVAL/2,%BPVAL/2,0],
LL LAST = [1,0,%BPVAL,0],

LL_NEXT = [2,0,%BPVAL,0]

TES;

GLOBAL LLIST HEAD : BLOCK[3] FIELD(LINK_LIST_ITEMS)
PRESET([LL_NEXT] LLIST HEAD,
[LL_LAST] LLIST HEAD,
[LL_VALUE] = -1) 3

In this example the origin block of a linked list is initialized with
suitable values; note that the 1list of preset values is order
independent. The LL TYPE field is set to zero by default. (The

predeclared literal $BPVAL used in the example is defined in Section
14.1.5.)

9.7.1 Syntax

preset-attribute PRESET (preset-item ,...)

preset-item [ctce-access—-actual ,...] = preset-value

ctce-access—-actual

compile-time-constant-expression
field-name

preset-value link-time-constant-expression

The field-name is defined in Chapter 11.

9-9

Attributes
THE PRESET-ATTRIBUTE

9.7.2 Restriction

The preset-attribute may appear only in an OWN or GLOBAL declaration,
and must be preceded by a structure-attribute within that declaration.

If any preset-item contains a field-name, the preset-attribute must be
preceded by a field-attribute designating that field-name.

The preset-attribute and initial-attribute may not be used in the same
declaration.

A declaration may not contain more than one preset-attribute.

The preset value(s) must not occupy more storage than is allocated for
the data segment, and the fields described by the preset-items may not
overlap.

When expanded, the structure-reference formed by concatenating the
own- or global-name with the bracketed access-actual list of a preset-
item must yield a link-time-constant-expression. The value of that
expression must be within the range of addresses allocated to the
data-segment. Also, if that expression is a field-~reference, it must
conform to the dialect-specific restrictions on field-references used
in an assignment context, as specified in Section 11.2. (See the
Pragmatics subsection below.)

9.7.3 Default

If a preset-attribute appears in the declaration of an OWN or GLOBAL
data-segment, any portion of that segment not described by a preset-
item is set to zeros upon allocation.

9.7.4 Semantics

The declared own- or global-name is concatenated with each preset-
item, in turn, and the expression(s) so formed are evaluated as if
they were assignment expressions. The resulting value(s) are placed
in the data segment at the time it is allocated. Any portions of the
data-segment not explicitly initialized by preset-items are set to
zeros,

9.7.5 Pragmatics

The use of PRESET is the preferred method of 1initializing nonscalar
data-segments, although some simple VECTOR-type structures can be
initialized conveniently with the INITIAL attribute. Initialization
of most nonhomogenous structures with the INITIAL attribute, however,
is impractical or at least an error prone practice.

Note that a psect-allocation attribute can be used to conveniently
assign an initialized data-segment to write-protected storage; see
Section 9.8.

9-10

Attributes
THE PRESET-ATTRIBUTE

The restrictions placed on the access-actual list of the preset-item
(Section 9.7.2) seem complicated, but they simply reflect the fact
that assignment-expressions involving a structure-reference as their
left operand are, in effect, evaluated during the initialization
process and must meet the following conditions:

1. Must be resolvable at link time,

2. Must result only in stores to locations allocated to the
named data-segment (with no spillover), and

3. Must result in assignments that are valid for the intended
target system(s), in terms of field size and word-boundary
constraints (if any). For example, in all dialects a field
to be stored into (or fetched from) may not be longer than a
fullword.

The specific restrictions on field-references (the typical result of
structure-reference expansions) are fully described in Chapter 11.

These restriction come into play only in the case of a relatively
complicated or ‘'tricky' structure, such as one whose definition
contains a routine call or performs bounds checking, for example.
They pose no problem for the initialization of predeclared structures
and other comparably straightforward user-declared structures.

9.8 THE PSECT-ALLOCATION ATTRIBUTE

The psect-allocation attribute can be used 1in declarations of
permanent data-segments and in declarations of routines. It specifies
the name of the program section in which the declared data-segment or
routine (code segment) is to be allocated. Program sections and the
psect-declaration are described in Chapter 18.

The psect-allocation attribute provides a more convenient means of
making program-section assignments for OWN, GLOBAL, and code segments
than is possible using the psect-declaration alone. A major use of
the psect-allocation attribute is for assigning an OWN or GLOBAL data-
segment to write-protected storage. For example:

GLOBAL LITERAL
MAIN POWER = 0, AUX POWER = 1, PRIMARY BYPASS = 2,
VALVE 1 = 3, VALVE_2 = 4, SECOND BYPASS = 5, DUMPER = 6,

OFF = 0, ON =1 ;

GLOBAL STARTUP STATE : BITVECTOR[7] PSECT($PLITS)

PRESET ([MAIN_POWER] = ON ,
[AUX_POWER] = OFF ,
[VALVE_1] = ON ,
[VALVE_2] = OFF ,
[PRIMARY BYPASS] = OFF ,
[SECOND BYPASS] = ON ,
[DUMPER] = OFF) ;

This fragment of a supposed process-control program establishes a
control table of symbolically-named binary values for use by several
modules and, since its content should never be modified, it is
allocated in the S$PLIT$ program-section, by means of the PSECT
attribute. "SPLITS$" names the default program section for plit
storage, which is given read-only access protection (if available on a
given target system).

9-11

Attributes
THE PSECT-ALLOCATION ATTRIBUTE

9.8.1 Syntax

psect-allocation PSECT (psect-name)

psect-name name

9.8.2 Restrictions

The psect-allocation attribute may appear in the following data- and
routine-declarations only:

FORWARD, OWN, GLOBAL, EXTERNAL,
FORWARD ROUTINE, ROUTINE, GLOBAL ROUTINE, EXTERNAL ROUTINE

The psect-name specified 1in the attribute must either be a
predeclared, default program-section name or be explicitly declared in
a psect-declaration prior to its use. See Section 18.1.

If specified in a FORWARD or FORWARD ROUTINE declaration, the psect-
name must match the psect-name explicitly or implicitly associated
with the controlling declaration of the data-segment or routine.

9.8.3 Defaults

If no psect-allocation attribute is specified, then the declared data-
or code-segment is allocated in the program section established by the
most recent psect-declaration for the segment's storage class (OWN,
GLOBAL, or CODE), or in the appropriate default program section.

9.8.4 Semantics

In declarations other than EXTERNAL or EXTERNAL ROUTINE, the psect-
allocation attribute causes the declared data-segment or code-segment
to be allocated in the named program section.

In EXTERNAL and EXTERNAL ROUTINE declarations, the psect-allocation
attribute informs the compiler that the declared segment is allocated
in the named program section of another module (presumably), and any
attributes defined for that program section in the current module are
to apply.

9.8.5 Pragmatics

While the psect-allocation attribute need not appear in a FORWARD or
FORWARD ROUTINE declaration, its specification in those declarations
can favorably affect the quality of code generated for the segment in
question, particularly in the case of FORWARD ROUTINE. (Note that

there is no default program-section name associated with a FORWARD or
FORWARD ROUTINE declaration.)

Attributes
THE PSECT-ALLOCATION ATTRIBUTE

The psect-allocation attribute is essentially a convenience, allowing
the programmer to more easily achieve what would otherwise require
repeated uses of the PSECT declaration.

9.9 THE VOLATILE~-ATTRIBUTE

A volatile-attribute can be used in any data-declaration other than a
REGISTER declaration. It can also be used in a bind-data-declaration.

For purposes of optimization, the compiler assumes that the contents
of a data segment will be changed during execution in either of two
ways: by an assignment or by a routine-call. The volatile-attribute
specifies that the contents of the declared data segment can change in
a third way: by an action that 1is not directly specified in the
module being compiled. This attribute causes the compiler to assume
that the value in the declared data segment can change at any time.
Consequently the compiled code must fetch the contents of that data
segment anew for each fetch in the BLISS program and must store a
value for each assignment.

An example of the use of a volatile-attribute is:
GLOBAL INPUT_PORT: VOLATILE;
In this example, it is assumed that INPUT PORT designates a data

segment that is set, through an interrupt routine, whenever a fullword
of input arrives.

9.9.1 Syntax

volatile-attribute VOLATILE

9.9.2 Semantics

A volatile attribute is a warning to the compiler that the contents of
a data segment can change at any time. A module that does not declare
each such data segment as VOLATILE is invalid.

If the volatile-attribute appears in the declaration of the name of a
REF structure (as described in Sections 11.1.3.5 and 11.4), then the
volatile attribute applies both to the storage for the address of the
structure and to the storage for the structure itself.

9.10 THE NOVALUE-ATTRIBUTE
The novalue-attribute can be used in a routine-declaration or a

bind-routine-declaration. It specifies that the declared routine does
not return a value.

9-13

Attributes
THE NOVALUE-ATTRIBUTE

It is usually possible to determine by inspection whether or not a
routine returns a value. However, in order to facilitate optimization
and to provide clear documentation, this information must be given as
part of the declaration of the routine-name. Specifically, the
novalue-attribute must or must not be used depending on whether the
routine does not or does return a value.

An example of a routine that does not return a value is:

ROUTINE EXCH(X,Y): NOVALUE = There is a NOVALUE attribute,
BEGIN so the routine does
LOCAL TEMP; not return a value;
TEMP = ..X; instead, its effect is to
X = ..Y; exchange the values of
.Y = .TEMP; X and Y.
END;

This routine, having no RETURN expression, returns control after
complete evaluation of the routine-body. Since the routine-body is a
block that consists solely of block-actions (expressions terminated by
a semicolon) and has no block-value, no value is returned. The
NOVALUE attribute affirms this procedure-like characteristic. See
Section 8.1 for a discussion of block-actions and block-values.

Note carefully that if routine EXCH did not contain the NOVALUE
attribute, the compiler would assume that a null expression (namely
the block-value expression) exists between the last exrression shown
and the block terminator. This in turn would cause the compilation
diagnostic "Null expression appears in value-required context". When

such a routine 1is called, it may appear to return a value, but that
value is unpredictable.

Alternatively, if the last assignment expression were not terminated
by a semicolon (and NOVALUE was specified), the routine would indeed
have a block-value - the value of that assignment expression.
However, that value would be discarded prior to return of control
because of the NOVALUE attribute. Thus a routine with the NOVALUE
attribute never has a return value, no matter what value-implying
expressions appear in its body.

9.10.1 S8Syntax

novalue-attribute NOVALUE

9.10.2 Restrictions

A routine that is declared with a novalue-attribute must not be called
in a2 context that requires a value.

Attributes
THE NOVALUE-ATTRIBUTE

9.10.3 Semantics

The value of a routine that is declared with the novalue-attribute 1is
undefined.

9.11 THE LINKAGE-ATTRIBUTE

The linkage-attribute can be used 1in a routine-declaration or a
bind-routine-declaration. It specifies a linkage-name that 1Is
associated with the declared routine-name. This, in turn, causes the
routine-name to be associated with the 1linkage-declaration that
governs that linkage-name. The linkage-definition identified by the
linkage-name controls both the code generated for the given routine
and the code generated for any call to that routine.

A linkage is the machanism used to «call a routine; it saves
registers, passes parameters, and controls other aspects of
communication between a routine-call and the called routine. The
default 1linkage-name BLISS in BLISS-16/32, or BLISS36C in BLISS-36,
identifies the standard 1linkage convention for BLISS-compiled

routines.

The linkage-attribute is simply a name; it is the declaration of that
name that specifies the linkage to be used. BLISS includes several
predeclared linkage-names. Linkage-declarations and predeclared
linkage-names are described in Chapter 13.

9.11.1 §8yntax

linkage-attribute linkage-name

linkage-name name

9.11.2 Restrictions

A linkage-name must be one of the predeclared linkage-names or must be
governed by a linkage-declaration.

A linkage-attribute given for a routine-name in an EXTERNAL ROUTINE,
FORWARD ROUTINE, BIND ROUTINE, or GLOEAL BIND ROUTINE declaration must
be the same as the linkage-attribute given in the corresponding
ROUTINE or GLOBAL ROUTINE declaration.

9.11.3 Defaults

The default linkage-attribute is the predeclared 1linkage-name BLISS
for BLISS-16 or BLISS-32, and the linkage-name BLISS36C for BLISS-36.

Attributes
THE LINKAGE-ATTRIBUTE

9.11.4 Semantics

A linkage-attribute associates a linkage-name with a routine-name.
Thus, the 1linkage-attribute indirectly controls the linkage-related
code generated for a ROUTINE or GLOBAL ROUTINE DECLARATION, and the
code generated for all <calls to the routine, according to the
definition of the specified linkage-name.

9.12 THE RANGE-ATTRIBUTE

The range-attribute can be used in a literal-declaration or
external-literal-declaration. These declarations are described in
Chapter 14.

A literal-name designates a constant value that is used as data but is
stored in the object code rather than in a data segment. When the
compiler is provided with sufficient information and the literal value
is small enough, a short field can be generated for the value rather
than a fullword.

The range-attribute specifies the quantity of storage required for a
literal and indicates whether the field is to be interpreted as a
signed or unsigned representation.

An example of the use of the range-attribute is:
EXTERNAL LITERAL X: UNSIGNED(4);

The effect of this attribute in a BLISS-32/VAX-11 context 1is as
follows. (Analogous effects would be obtained on other target
systems.) At the time the module containing this declaration is
compiled, it is assumed that the value of X can be accomodated in a
VAX-11 literal-operand specifier, and code |is generated on that
assumption. Then, when the modules are linked, a check is made for
agreement of the range-attribute with the external value and the value
of X is then placed in the empty fields provided for it.

Suppose the following declaration appears in another module of the
same program:

GLOBAL LITERAL X = 12: UNSIGNED(4);

This declaration not only specifies that X designates the value 12,
but also that it can be stored as an unsigned integer in four bits.
This attribute both documents that a range-attribute assumption exists

in another module of the program and allows the compiler to verify
that the assumption is satisfied.

Attributes
THE RANGE-ATTRIBUTE

9.12.1 Syntax

SIGNED
range-attribute

UNSIGNED} { bit-count)

bit-count compile-time-constant-expression

9.12.2 Restriction

The value, n, of bit-count must be in the range 1 < n < $BPVAL. That
is, the field specified may not be longer than a fullword.

9.12.3 Default

The default range-attribute is SIGNED(%BPVAL).

9.12.4 Semantics

The range-attribute specifies the maximum number of bits required for
a given 1literal value, and indicates whether the value is to be
interpreted as a signed or unsigned integer.

9.13 THE ADDRESSING-MODE-ATTRIBUTE - BLISS-32 ONLY

Each data or routine name has, as its value, an address. As the
compiler translates a BLISS module into an object module, it replaces
each use of a data or routine name with an offset address value. The

final address value is supplied later by the linker and the operating
system. But the compiler does provide a sequence of bytes in the
object code to accommodate the final address value.

A VAX-11 address can be encoded in several different ways: absolute
or relative, in a short or long form. The addressing-mode-attribute
determines the way in which the address is encoded. For every use of
a data or routine name, the default rules specify an
addressing-mode-attribute (if one is not given explicitly).

An addressing-mode-attribute can be given in a FORWARD or EXTERNAL
declaration, described in Chapter 10, or in a FORWARD ROUTINE or
EXTERNAL ROUTINE declaration, described in Chapter 12. This attribute
can also be used in a PSECT declaration (Section 18.1), and in a
SWITCHES declaration or a module-~head switch (Sections 18.2 and 19.2
respectively). The latter two uses indirectly control a number of
individual data- and/or routine-declarations.

9-17

Attributes
THE ADDRESSING-MODE-ATTRIBUTE - BLISS-32 ONLY

9.13.1 Syntax

32 Only =>
addressing-mode-
attribute ADDRESSING_MODE (mode)
GENERAL
ABSOLUTE
mode LONG RELATIVE

WORD_RELATIVE

9.13.2 Dpefault

Consider a name that is declared by one of the following kinds of
declaration:

forward-declaration
external-declaration
forward-routine-declaration
external-routine-declaration
psect-declaration

For such a name, the addressing-mode-attribute is obtained as follows:

° If an addressing-mode-attribute is given explicitly, then
that attribute is used.

. Otherwise, if the declaration of the name is in the scope of
an addressing-mode-switch (as described in Sections 18.2 and
19.2), then that switch supplies the attribute. 1In fact, the
switch supplies two attributes, an EXTERNAL default for use
with an external-declaration or external-routine-declaration,
and a NONEXTERNAL default for use with a forward-declaration,
forward-routine-declaration, or psect-declaration.

° Otherwise, the WORD_ RELATIVE attribute is used.

Next, consider a name that is declared by one of the following kinds
of declaration:

own-declaration
global-declaration
routine-declaration
global-routine-declaration

For such a name, an addressing-mode-attribute cannot be given
directly. Instead, the addressing-mode-attribute of the name is the

addressing-mode-attribute of the psect in which the named segment is
allocated.

Finally, consider plits. Although a plit does not have a name, 1its
address does have an addressing-mode-attribute. The attribute is the
addressing-mode-attribute of the psect in which the plit is allocated.

Attributes
THE ADDRESSING-MODE-ATTRIBUTE - BLISS-32 ONLY

9.13.3 Semantics

The compiler translates each use of a data or routine name into an
encoded address. An encoded address consists of an encoding-type
followed by a displacement. The encoding-type specifies the
addressing-mode-attribute and other information, while the
displacement is an address specification. The encoding-type always
occupies one byte, while the displacement occupies a number of bytes
that is determined by the addressing-mode-attribute.

The addressing-mode-attribute instructs the compiler in the
preparation of an encoded address, as follows:

Attribute Instruction to Compiler

GENERAL Let the linker make the choice between wusing a
relative or absolute displacement. Provide four
bytes for the displacement.

ABSOLUTE Use an absolute displacement, and put it in four
bytes.

LONG_RELATIVE Use a relative displacement, and put it in four
bytes.

WORD_RELATIVE Use a relative displacement, and put it in two
bytes.

The WORD RELATIVE attribute applies to most names (and it 1is the
ultimate default); it is appropriate for references within an
executable image that 1is not unusually large. The LONG_RELATIVE
attribute is used 1in the infrequent situation where 16 bits is not
sufficient to represent a relative address. The ABSOLUTE attribute is
used for names that designate addresses that are fixed in the virtual
address space, such as system service routines and data. The GENERAL
attribute is used when the choice between an absolute or relative
address cannot be made at compile time.

9.14 THE WEAK-ATTRIBUTE - BLISS-32 ONLY

The weak-attribute can be used in a declaration that has either GLOBAL
or EXTERNAL in its keyword phrase. Such declarations are described in
many places in the following chapters.

The weak-attribute affects the way in which the VAX-11 linker and
librarian programs handle global names. (This is discussed further
under EXTERNAL declarations, in Section 10.4.3.)

9.14.1 Syntax

32 Only =>

weak-attribute WEAK

9-19

Attributes
THE WEAK-ATTRIBUTE - BLISS-32 ONLY

9.14.2 Semantics

The weak-attribute specifies a property of a name for use by the

linker and librarian programs, as described in the manuals for those
programs.

9.15 A SUMMARY OF ATTRIBUTE USAGE

Each attribute description in this chapter includes a 1list of the
declarations in which the attribute can be used. That information is
gathered together in the following table, where an "x" marks each
attribute that can be used in each kind of declaration.

Allocation-Unit

Extension
Structure
Field
Alignment
Initial
Preset
Psect-Allocation
Volatile
Novalue
Linkage
Range
Addressing-Mode
Weak

Y Y Y v Y VY V%Y J 1 {
OWN X X X X X X X X X
GLOBAL X X X X X X X X X X
FORWARD X X X X . . . X X . . . X .
EXTERNAL X X X X . . . X X . . . X X
LOCAL X X X X X . . . X
STACKLOCAL X X X X X . . . X
REGISTER X X X X
GLOBAL REG. X X X X
EXTERNAL REG. X X X X
MAP X X X X X
BIND X X X X X
GLOBAL BIND X X X X X X
ROUTINE X . X X . . .
GLOBAL RTN. X . X X . . X
FORWARD RTN. X . X X . X .
EXTERNAL RTN. X . X X . X X
BIND ROUTINE X X . . .
GLOBAL BIND RTN. X X . . X
LITERAL X . .
GLOBAL LIT. X . X
EXTERNAL LIT. X . X

CHAPTER 10

10.1
10.1.1
10.1.2
10.1.3
10.2
10.2.1
10.2.2
10.2.3
10.3
10.3.1
10.3.2
10.3.3
10.4
10.4.1
10.4.2
10.4.3
10.5
10.5.1
10.5.2
10.5.3
10.5.4
10.6
10.6.1
10.6.2
10.6.3
10.7
10.7.1
10.7.2
10.7.3
10.7.4
10.8
10.8.1
10.8.2
10.8.3
10.9
10.9.1
10.9.2
10.9.3
10.9.4
10.10
10.10.1
10.10.2
10.10.3

DATA DECLARATIONS

OWN-DECLARATIONS . .
Syntax . .« .+ .+ o o
Restrictions . . .
Semantics

GLOBAL-DECLARATIONS
Syntax+ &
Restrictions . . .
Semantics

FORWARD-DECLARATIONS
Syntax . « ¢« .+ o .
Restrictions . . .
Semantics . . .

EXTERNAL- DECLARATIONS
Syntax . .« . o o o
Restrictions . . .
Semantics

LOCAL-DECLARATIONS .
Syntax « « + .« . o
Restrictions . . .
Semantics
Pragmatics . . .

STACKLOCAL~ DECLARATIONS

Syntax . « « « o
Restrictions . . .
Semantics . . .
REGISTER- DECLARATIONS

Syntax . . « « . &
Restrictions . . .
Semantics « s e .
Pragmatics . . .

GLOBAL- REGISTER—DECLARATIONS

syntax« « .
Restrictions . . .
Semantics

-

EXTERNAL-REGISTER-DECLARATIONS

Syntax . . .« .
Restrictions .
Defaults . . .
Semantics . .
MAP-DECLARATIONS
Syntax
Restrictions .
Semantics . .

o o o s o ¢ o o o

e & o o o 8 s ® s » s 0 @

e & o e o o e s o

10-2
10-2
10-3
10-3
10-3
10-4
10-4
10-4
10-5
10-5
10-5
10-6
10-6
10-6
10-6
10-7
10-7
10-8
10-8
10-9
10-9
10-9
10-9
10-9
10-9
10-10
10-10
10-11
10-12
10-12
10-12
10-13
10-13
10-14
10-15
10-15
10-15
10-16
10-16
10-17
10-17
10-17
10-17

CHAPTER 10

DATA DECLARATIONS

A data-declaration describes one or more data segments. Taken
together, the data declarations of a program specify the storage
required for the data on which that program operates.

The data-declarations can be divided into three categories, as
follows:

. A permanent declaration begins with OWN, GLOBAL, or EXTERNAL.
It describes a data segment that remains allocated throughout
the execution of the program.

° A temporary declaration begins with LOCAL, STACKLOCAL,
REGISTER, GLOBAL REGISTER, or EXTERNAL REGISTER. It
describes a data segment that exists only during each
execution of a given block.

) An overlay declaration begins with MAP. It describes a data
segment that has been declared elsewhere, but that is given
new attributes by this declaration.

A data-declaration provides some or all of the following information
about each data segment it declares:

] The name of the data segment.

. The address of the data segment, which is determined by the
kind~ of declaration and by some of the attributes. The

address of the data segment becomes the value of the declared
name.

] The scope of the name of the data segment, which depends on
the position of the declaration within the program and on the
kind of declaration.

. The longevity of the data segment, which is determined by the
kind of declaration (permanent or temporary).

° The attributes of the data segment, which are given as part
of the declaration and by the default rules for attributes.

The attributes applicable to data-declarations are described in
Chapter 9 except for the structure-attribute which is described in
Chapter 11 along with other aspects of data structures.

10-1

Data Declarations
INTRODUCTION

The syntax diagram for data~declarations is:

data-declaration

fown-declaration
global-declaration
forward-declaration
external-declaration
local-declaration
stacklocal-declaration
register—-declaration
Lmap—declaration

10.1 OWN-DECLARATIONS

The storage for an OWN data segment is permanent;
created before program execution begins and exists throughout program

execution. The scope of

an own—-declaration i

s

that 1is, it is

its immediately

containing block (including any lower-level blocks contained therein).
That is to say, the name of an OWN data segment
within the block in which it is declared.

can

be wused only

An example of an own-declaration in a routine-declaration context is:

ROUTINE KILO =
BEGIN
OWN
X: INITIAL(O);
X = .X+1;

IF .X LEQ 1000 THEN 1 ELSE O

END;

The data segment named X is allocated and initialized only once,

before program execution begins.

only within the routine KILO.

10.1.1 Syntax

It can be referred to by the name X

own-declaration

OWN own-item ,... ;

own—-item

: own-attribute

own-name nothing

...}

initial-attribute
preset—-attribute
psect-allocation
Lvolatile—attribute

own-name name
-
allocation-unit W <= 16/32 Only
extension-attribute <= 16/32 Only
structure-attribute
field-attribute
own-attribute alignment-attribute <= 16/32 Only

10-2

Data Declarations
OWN-DECLARATIONS

10.1.2 Restrictions

BLISS-16/32 only: A structure-attribute must not appear in the same
declaration as an allocation-unit or an extension-attribute.

A field-attribute can appear only in a declaration that has a
structure-attribute.

10.1.3 Semantics

The data segment designated by a name that is declared OWN is
allocated in the current program section for the storage class OWN, as
described in Section 18.1. Program sections for the storage class OWN
are created before program execution begins and are not discarded
until after program execution is complete.

The data segment for an OWN name is always allocated at the lowest
possible address within the unused portion of the current OWN program
section, after allowing for address-alignment requirements (if any).

In BLISS-16, data segments larger than one byte are allocated at even
addresses, which may leave an unused byte preceeding the data segment.
One-byte data segments are allocated at the next available byte.

In BLISS-32 the address must be consistent with the
alignment-attribute, which is either given explicitly or determined by
default. The alignment-attribute may dictate some unused bytes, as
described in Section 9.5.

In BLISS-36 there are no special alignment rules; each data segment
is allocated at the next available word.

Because OWN data segments are allocated in this way, the address of
one OWN data segment can be calculated relative to that of another,
provided that both segments are declared 1in the same module and
allocated in the same program section.

When the storage for an OWN data segment is created by the linker, it
is set to 0's. If the data segment is given an initial value in the
declaration, it is initialized by the linker.

10.2 GLOBAL-DECLARATIONS

Like an OWN data segment, the storage for a GLOBAL data segment is
permanent; that 1is, it wexists throughout program execution. 1In
contrast to an OWN data segment, the name of a GLOBAL data segment can
be used in several separate blocks; that is, in the block in which it
is declared GLOBAL and in each block in which it is declared EXTERNAL.

Usually the block in which a name is declared GLOBAL is in one module
and the blocks in which it is declared EXTERNAL are in other modules.
In this way, a data segment can be shared among several modules.

10-3

Data Declarations
GLOBAL-DECLARATIONS

Aside from the initial keyword, the syntax of the own-declaration and
global-declaration is identical, except that in BLISS-32 the
weak-attribute is permitted in a global-declaration.

10.2.1 Syntax

global-declaration GLOBAL global-item ,... ;
: global-attribute ...
global-item global-name nothing
global-name name
(. . h
allocation-unit <= 16/32 Only

extension-attribute <= 16/32 Only
structure-attribute
field-attribute
global-attribute alignment-attribute <= 16/32 Only
initial-attribute
preset-attribute
psect-allocation
volatile~attribute
L weak-attribute) <= 32 Only

10.2.2 Restrictions

A name is declared as global when the declaration begins with the
keyword GLOBAL (except for GLOBAL REGISTER, Section 10.8). A name
must not be declared as global more than once in a program.

BLISS-16/32 only: A structure-attribute must not appear in the same
declaration as an allocation-unit or an extension-attribute.

A field-attribute can appear only in a declaration that has a
structure-attribute.

10.2.3 Semantics

The data segment designated by a name that is declared GLOBAL is
allocated in the current program section for the storage class GLOBAL,
as described in Section 18.1. Program sections for the storage class
GLOBAL are created before program execution begins and are not
discarded until after program execution is complete.

The data segment for a GLOBAL name 1is allocated in the same
predictable way as the data segment for an OWN name. Therefore, a
programmer can determine the relative addresses of any two GLOBAL data
segments that are declared in the same module and are allocated in the
same program section.

10-4

Data Declarations
GLOBAL-DECLARATIONS

A GLOBAL data segment can be accessed by name within the scope of the
declaration of its name. 1In addition, it can be accessed within the
scope of any external-declaration of its name.

10.3 FORWARD-DECLARATIONS

A forward-declaration is used to give the attributes of a name before
storage 1is allocated for the name. A forward-declaration is always
used in conjunction with an own-declaration or a global-declaration;
it is wused to avoid what would otherwise be a vicious circle of
definitions. Such situations are unusual, but they do arise.

As an example, suppose that X and Y are pointers; that is, X and Y
are each the name of a data segment that contains the address of
another data segment. Suppose, also, that X and Y must be initialized
to point to each other. The required declarations are:

FORWARD
Y;

OWN
X: INITIAL(Y),
Y: INITIAL(X);

The forward-declaration declares Y so that it can be wused to
initialize X which, in turn, is used to initialize Y.

10.3.1 Syntax

forward-declaration FORWARD forward-item ,... ;

14

: forward-attribute ...]

forward-item forward-name nothing

forward-name name
allocation-unit <= 16/32 Only
extension-attribute <= 16/32 Only
structure-attribute

forward-attribute field-attribute

psect-allocation
volatile-attribute
addressing-mode—-attribute <= 32 Only

10.3.2 Restrictions

Each name that is declared by a forward-declaration must also be
declared, a second time, by an own-declaration or a global-declaration
that is in the same block.

10-5

Data Declarations
FORWARD-DECLARATIONS

After the default attributes have been filled in, a
forward-declaration of a name and the associated own-declaration or
global-declaration of the same name must be identical with respect to
all of the attributes allowed in the forward-declaration.

BLISS-16/32 only: A structure-attribute must not appear in the same
declaration as an allocation-unit or an extension-attribute.

A field-attribute can appear only in a declaration that has a
structure-attribute.

10.3.3 Semantics

The forward-declaration associates attributes with a name without
allocating the storage for that name.

10.4 EXTERNAL-DECLARATIONS

A name that is declared EXTERNAL is assumed to be declared GLOBAL
somewhere else in the same program. The linker treats each occurrence
of the name governed by an external-declaration as if it were governed
by the global-declaration of the same name. Thus the external
declaration does not cause the allocation of a data segment but rather
extends the accessibility of a data segment that 1is allocated
elsewhere.

10.4.1 Syntax

external-declaration EXTERNAL external-item ,... ;

: external-attribute ...
external-item external-name nothing

external-name name
(allocation-unit W <= 16/32 Only
extension-attribute <= 16/32 Only

structure-attribute
external-attribute field-attribute

ﬂ psect-allocation
volatile-attribute
addressing-mode~attribute <= 32 Only
L weak-attribute <= 32 Only

S

10.4.2 Restrictions

A name that 1is declared EXTERNAL must also be declared GLOBAL
somewhere else in the same program. In BLISS-32, this restriction
does not apply if the EXTERNAL name has the weak-attribute.

10-6

Data Declarations
EXTERNAL-DECLARATIONS

BLISS-16/32 only: A structure-attribute must not appear in the same
declaration as an allocation-unit or an extension-attribute.

A field-attribute can appear only in a declaration that has a
structure-attribute.

After default attributes have been filled in, the following attributes
of the EXTERNAL and GLOBAL declarations of a given name must be
identical:

allocation-unit
extension-attribute
structure-attribute
field-attribute
volatile-attribute

10.4.3 Semantics

The linker generates and uses a list of all names that are declared
GLOBAL 1in the entire program. For each such name, the list shows the
value of the name and some of the attributes of the name. This 1list
is used in determining the value of a given EXTERNAL name as follows:

° The list is searched for an entry for the given name. If
such an entry 1is found, then it supplies the value of the
given EXTERNAL name.

° In BLISS-32 only, if no entry for the given name is found and
the given name has the weak-attribute, then 0 is used as the
value of the given name.

] If no entry for the given-name is found and the given name
does not have the weak-attribute, then the program is not
valid.

In BLISS-32 only, when an EXTERNAL name has the wvalue 0 (determined
because no entry was found and the weak-attribute was present), the
program can be executed provided an attempt is not made to wuse the
given name as an address.

10.5 LOCAL-DECLARATIONS

The storage for a LOCAL data segment is temporary; that is, it exists
only during the execution of the block in which it is declared. The
data segment is allocated either in the stackframe for the block in
which it is declared, or in a general register that is free.

The scope of a LOCAL data-declaration is 1its immediately containing
block excluding any lower-level contained routines. That is, unlike
OWN data segments, "up~-level" references to a LOCAL data segment from
a lower-level routine are not permitted.

10-7

Data Declarations
LOCAL-DECLARATIONS

10.5.1 Syntax

local-declaration LOCAL local-item ,... ;
: local-attribute ...
local-item local-name nothing
local-name name
allocation-unit <= 16/32 Only
extension—-attribute <= 16/32 Only
local-attribute structure-attribute

field-attribute
alignment-attribute <= 16/32 Only
volatile-attribute

10.5.2 Restrictions

A local-declaration must be contained in a routine-body.

Suppose the routine-body of a given routine, routine A, contains the
declaration of another routine, routine B. If a name is declared
LOCAL in routine A and is not declared in routine B, then the name
cannot be wused in routine B. (Such usage would be an "up-level"
reference, which is prohibited for local-names.)

A program must not depend on the initial contents of a LOCAL data
segment. An initial-attribute is not permitted (as the syntax shows)
and the initial contents is undefined.

A program must not depend on the relative positions of two LOCAL data
segments in storage.

BLISS-16/32 only: A structure-attribute must not appear in the same
declaration as an allocation-unit or an extension-attribute.

A field-attribute can appear only in a declaration that has a
structure—-attribute.

BLISS-32 only: An alignment-attribute used in the declaration of a
LOCAL name must not have a boundary expression whose value is greater
than 2.

10-8

Data Declarations
LOCAL-DECLARATIONS

10.5.3 Semantics
The data segment for a LOCAL name is allocated either in the current
stack frame or in a general register. 1In either of the following

situations, a given LOCAL data segment is always allocated in the
current stack frame:

. The given data segment occupies more than a fullword.

. The name of the given data segment is used as an independent

address; that 1is, 1its use 1is not confined to a fetch
expression or to the left-hand-side of an assignment
expression.

In other situations, the choice between stack frame and register is
based on strategies that the compiler uses for code optimization.

10.5.4 Pragmatics

A temporary data segment (such as a LOCAL data segment) must be used
for a recursive variable in a recursive routine.

10.6 STACKLOCAL-DECLARATIONS

A STACKLOCAL data segment is always allocated in the current stack
frame. 1In all other respects, it is the same as a LOCAL data segment.

10.6.1 Syntax

stacklocal-declaration STACKLOCAL local-item ,...

.
s’

The local-item is as defined in Section 10.5.1.

10.6.2 Restrictions

All the restrictions given in Section 10.5.2 for LOCAL data segments
also apply to STACKLOCAL data segments.

10.6.3 Semantics
The semantics given in Section 10.5.3 for LOCAL data segments apply to

STACKLOCAL data segments except that a STACKLOCAL data segment is
always allocated in the current stack frame.

10-9

Data Declarations
REGISTER-DECLARATIONS

10.7 REGISTER-DECLARATIONS

A register data segment is a data segment that is always allocated in
a general register, In most other respects, it is the same as a LOCAL
data segment. If the declaration specifies a register-number, the
data segment is allocated in the specified register. Otherwise, the
data segment is allocated in a register chosen by the compiler.

An example of a register-declaration is:

REGISTER

STATUS = 5: BITVECTOR[10],
BETA;

This declaration associates the names STATUS and BETA with two general
registers. The register number for STATUS is given explicitly as 5
and only 10 bits of that register are used. The register number for

BETA is 1left to be chosen by the compiler, and the full register is
used.

10.7.1 Syntax

register-declaration REGISTER register-item ,... ;

I

register-item register-name

= register-number
nothing

[: register-attribute ...}

nothing
register—name name
register-number compile-time-constant-expression
allocation-unit <= 16/32 Only
extension-attribute <= 16/32 Only
register-attribute structure-attribute

field-attribute

10-10

Data Declarations
REGISTER-DECLARATIONS

10.7.2 Restrictions

The value of the register-number, if specified, must be in the range
given below for each dialect:

For BLISS-16: 0 through 5
For BLISS-32: 0 through 11

For BLISS-36: 0 through 12, if the governing linkage-attribute

is BLISS36C (the default), FORTRAN FUNC, or
FORTRAN_SUB.

1 and 3 through 15, if the governing
linkage-attribute is BLISS10

The general rule for BLISS-36 |is that the
register-number must not specify a register in use
as the stack pointer, the frame pointer, or the
argument pointer (if applicable). The
linkage-definition that governs the routine
containing the register-declaration controls the
assignment of registers for these uses.

A register specified by register-number must be PRESERVED or NOTUSED
in the 1linkage of any routine called in the containing block if the
call occurs within the 'useful lifetime' of the register data segment.
(That is, if the <call occurs between the first and last possible
references to that segment.)

A register data segment must not occupy more than a fullword.
A register-declaration must be contained in a routine-body.

Suppose the routine-body of a given routine, routine A, contains the
declaration of another routine, routine B. If a name. is declared
REGISTER in routine A and is not declared in routine B, then the name
cannot be wused in routine B. Such usage would be an "up-level"”
reference and is not permitted for register data segments.

A program must not depend on the initial contents of a register data
segment. An initial-attribute is not permitted (as the syntax shows)
and the initial content is undefined.

BLISS-16/32 only: A structure-attribute must not appear in the same
declaration as an allocation-unit or an extension-attribute.

A field-attribute can appear only in a declaration that has a
structure-attribute.

A name declared in a register-declaration must be wused only as the
operand of a fetch expression or as the first operand of an assignment
expression. (This restriction does not apply to certain
machine-specific-function parameters; see the applicable BLISS User's
Guide.)

10-11

Data Declarations
REGISTER-DECLARATIONS

10.7.3 Semantics

If a register-number is given in the declaration of a register data
segment, then the data segment is allocated in that register. During
execution of the routine that contains the declaration, the register

may be used for other purposes, but none that conflict with the valid
use of the allocated data segment.

A register data segment is similar to a local data segment in that it
is created on entry to the block in which it is declared and released

on exit from that block, and cannot be referenced from any lower-level
contained routine-body.

10.7.4 Pragmatics

Standard register-names with appropriate predefined values are
provided, as builtin-names, for each BLISS dialect. In order to use
these names with their predefined values, they may be declared 1in a
BUILTIN declaration (Section 18.3). The builtin register-names and
values are as follows:

FOR BLISS-16 FOR BLISS-32
Name Value Name Value
RO 0 RO 0
R1 1 R1 1
R2 2 R2 2
R3 3 . .
R4 4 . .
R5 5 . .
SP 6 R11 11
PC 7 AP 12
FP 13
SPp 14
PC 15

FOR BLISS-36

The builtin register-names SP, FP, and AP are provided. The
value defined for each name depends upon the linkage-definition
associated with the routine in which the name is declared
BUILTIN. See Chapter 13, on "Linkages".

10.8 GLOBAL-REGISTER-DECLARATIONS

A global register data segment is a data segment that is created and
allocated 1in a given register in one routine, and may be made
available for use in other routines that are called by the declaring
routine, Global register data segments are identified by name, and
both the calling and called routine must agree (through a matching set
of register- and linkage-declarations) that a particular global
register data segment is available.

A global register data segment is the same as an ordinary register
data segment with respect to its use within the declaring routine.

10-12

Data Declarations
GLOBAL-REGISTER-DECLARATIONS

A GLOBAL REGISTER declaration establishes the name and actual register
assignment of a global register data segment and creates the storage
(that is, allocates the register). 1In order for the data segment to
be available to a called routine, that routine must specify the same
name in an EXTERNAL REGISTER declaration and must specify both the
name and register-number in the GLOBAL linkage-option of its governing
linkage-definition.

10.8.1 Syntax

global-register- GLOBAL REGISTER register-item ,... ;
declaration
register-item register-name

= register-number

: register-attribute ...]

nothing
register-name name
register-number compile-time-constant-expression
allocation-unit <= 16/32 Only
extension—-attribute <= 16/32 Only
register-attribute structure-attribute

field-attribute

10.8.2 Restrictions

The register-number is constrained by the containing routine's linkage
as described for ordinary register data segments in the first
paragraph of Section 10.7.2, but is also constrained by the 1linkage-
definition governing any <called routine that refers to the declared
global register data segment. The inter-routine requirements are
described in Chapter 13, on "Linkage Declarations."

A register data segment must not occupy more than a fullword.

A global-register-declaration must be contained in a routine-body.

Suppose the routine-body of a given routine, routine A, contains the
declaration of another routine, routine B. 1If a name is declared
GLOBAL REGISTER in routine A and is not declared in routine B, then
the name cannot be used in routine B. Such wusage would be an
"up-level" reference and is not permitted for register data segments.

10-13

Data Declarations
GLOBAL-REGISTER-DECLARATIONS

A program must not depend on the initial contents of a register data
segment. An initial-attribute is not permitted (as the syntax shows)
and the initial contents is undefined.

BLISS-16/32 only: A structure-attribute must not appear in the same
declaration as an allocation-unit or an extension-attribute.

A field-attribute can appear only in a declaration that has a
structure-attribute.

A name declared in a global-register-declaration must be used only as
the operand of a fetch expression or as the first operand of an
assignment expression. (This restriction does not apply to certain

machine-specific-function parameters; see the applicable BLISS User's
Guide.)

If the linkage definition of a called routine specifies a global
register data segment, then the routine call must be in the scope of a
global- or external-register-declaration of the data segment.

BLISS-16/36 ONLY

If a call to a routine occurs in the scope of a global register
data segment, then the register-number of the data segment must
be given in either the GLOBAL or PRESERVE linkage-option of the
called routine's linkage definition.

BLISS-32 ONLY

If a call to a routine with CALL linkage-type occurs in the scope
of a global register data segment, then the register-number of
the data segment must be given in either the GLOBAL or PRESERVE
linkage-option of the called routine's linkage definition.

If a call to a routine with JSB linkage-type occurs in the scope
of a global register data segment, then the register-number of
the data segment must be given in either the GLOBAL or NOTUSED
linkage-option of the called routine's linkage definition.

10.8.3 Semantics

A global-register-declaration causes a register data segment to be
allocated. A global register data segment is a local data segment
just like an ordinary register data segment--it is created on entry to
the block in which it 1is contained and released on exit from that
block. However, unlike an ordinary register data segment, a global
register data segment is available in called routines under certain

conditions, described briefly below and more fully in Chapter 13,
"Linkages".

10-14

Data Declarations
GLOBAL-REGISTER-DECLARATIONS

In order to pass a global register data segment to a called routine,
the linkage-definition of the called routine must contain the name and
register-number of the data segment in its GLOBAL 1linkage-option.
There may be more global register data segments available at a call
than are specified in the linkage for the call; however, every global
register data segment specified in the linkage must be available at
the call. Only those global register data segments specified 1in the
linkage are available in the called routine. *

10.9 EXTERNAL-REGISTER-DECLARATIONS

An EXTERNAL REGISTER declaration specifies that a global register data
segment created in a calling routine is used in the routine containing
the declaration. This declaration must be used in combination with
linkage definitions that include appropriate GLOBAL linkage-options.

10.9.1 Syntax

external-register- EXTERNAL REGISTER register-item ,... ;
declaration
register-item register-name

= register-number
nothing

{: register-attribute ...)

nothing
register-name name
register-number compile~time-constant-expression
allocation-unit <= 16/32 Only
extension-attribute <= 16/32 Only
register-attribute structure-attribute

field-attribute

10.9.2 Restrictions

The register-number, if given, must be the same as that specified in
the GLOBAL linkage-option of the <containing routine's 1linkage
definition.

A register data segment must not occupy more than a fullword.

An external-register-declaration must be contained within a routine
declaration whose linkage definition specifies the named
global-register-segment.

10-15

Data Declarations
EXTERNAL-REGISTER-DECLARATIONS

Suppose the routine-body of a given routine, routine A, contains the
declaration of another routine, routine B. If a name is declared
EXTERNAL REGISTER in routine A and is not declared in routine B, then
the name cannot be wused 1in routine B. Ssuch usage would be an
"up-level" reference and is not permitted for register data segments.

BLISS=16/32 only: A structure-attribute must not appear in the same
declaration as an allocation-unit or an extension-attribute.

A field-attribute can appear only in a declaration that has a
structure~attribute,.

A name declared in an external-register-declaration must be used only
as the operand of a fetch expression or as the first operand of an
assignment expression. (This restriction does not apply to certain
machine-specific-function parameters; see the applicable BLISS User's
Guide.)

10.9.3 Defaults

If an external-register-declaration does not specify a
register-number, the register-number given for that
external-register-name in the GLOBAL linkage-option is assumed.

10.9.4 Semantics

An external-register—declaration specifies that a global register data
segment created in a calling routine 1is available for use. The
declared name must also be specified in the called routine's 1linkage
definition; however, not all of the global register data segments
specified in the linkage need be declared in an
external-register-declaration.

BLISS-16/36 ONLY

If a global-register-segment is specified in the routine's
linkage but is not declared EXTERNAL REGISTER, then the contents
of the register are preserved by the called routine and the
register is available for other purposes.

BLISS-32 ONLY

If a global-register-segment is specified 1in the routine's
linkage but is not declared EXTERNAL REGISTER, then in a routine
with CALL linkage-type the contents of the register are preserved
by the called routine and the register is available for other
purposes. In a routine with JSB 1linkage-type, however, the
contents of such a register cannot be preserved and the register
is not usable in any way.

10-16

Data Declarations
MAP-DECLARATIONS

10.10 MAP-DECLARATIONS

A map-declaration is used to supply new attributes in the current
block to a name that is already declared.

The most common use of a map-declaration is in the declaration of the
formal-names of a routine-declaration. Each formal-name is considered
to be declared as a fullword, unsigned scalar data segment 1in an
imaginary block that surrounds the routine-body. When those
attributes are not suitable, a MAP declaration 1is wused to override
these defaults. This use of a map-declaration is discussed in Chapter
12, on "Routines".

10.10.1 Syntax

map-declaration MAP map-item ,... ;
map-item map-name : map-attribute ...
map-name name
allocation-unit <= 16/32 Only
extension-attribute <= 16/32 Only
map-attribute structure-attribute
field-attribute
volatile-attribute

10.10.2 Restrictions

A map-declaration must lie within the scope of another declaration of
the same name. The latter declaration must be a data-declaration or a
bind-data-declaration.

BLISS-16/32 only: A structure-attribute must not appear in the same
declaration as an allocation-unit or an extension-attribute.

A field-attribute can appear only in a declaration that has a
structure-attribute.

10.10.3 Semantics

The declaration of a name as MAP changes neither the value of the name
nor the contents of the data segment designated by the name. Instead,
the storage whose address is given by the declared name is

re-interpreted in accordance with the attributes given in the
map-declaration.

10-17

CHAPTER 11

11.1

11.1.1
11.1.2
11.1.3

11.10
11.10.1
11.10.2
11.10.3
11.10.3.
11.10.3
11.10.3.
11.10.3.
11.10.3.
11.10.4

DATA STRUCTURES

INTRODUCTION TO DATA STRUCTURES . . « « & « o o«
The Abstract Definition of Data Structures . .
The Concrete Representation of Data Structures

The Programmed Description
Field-References
Structure-Declarations . . .
Structure Allocation
Structure-References
REF Structures . « ¢« « « .« &

of Data

Structures

Interchangeable Structure-Declarations
and

Decimal Digit Arrays
BLISS=36 v ¢« ¢ o o o o o o &
Conclusion . . « & ¢« v « o « .
FIELD-REFERENCES . « ¢« ¢« ¢ « « =«
Syntax . . < . ¢ ¢ . 0 e . .
Restrictions . . « « ¢« « + .+ &
Default ¢« ¢ + ¢« « o &
Semantics .+ ¢+ ¢ 4 ¢ ¢ o o o o
Discussion ¢« ¢« . .« o .
Examples . « ¢« &« ¢« & « & &
Field-References
Field-References and
Operations on Scalar Field
STRUCTURE-DECLARATIONS
Syntax . ¢ ¢ ¢ 4+ e e o e e o .
Restrictions « « . . .
Semantics . . ¢« 4 ¢« ¢ o e o
STRUCTURE-ATTRIBUTES STORAGE
SYNtaX v ¢ ¢ 4 4 o o o o o o @
Restrictions
Semantics . . e s s e e e
FIELD- DECLARATIONS e e e s e e e
Syntax . . ¢« ¢ ¢ 4 i 4 e e e
Restrictions . . ¢« « « ¢« « . .
Semantics . . ¢ « ¢ ¢ + o . .
FIELD-ATTRIBUTES . . « ¢ o o « &
Syntax . . « ¢« ¢« ¢ 4 4 e e o .
Restrictions+ . .
Semantics
ORDINARY- STRUCTURE—REFERENCES
Syntax
Restrictions . . ¢« « « « « .
Semantics ¢ . .
Discussion
DEFAULT-STRUCTURE- REFERENCES . .
SYNtax o ¢ 4 ¢ 4 4 e e s e e e
Restrictions . . . ¢ ¢« « « « .
Semantics . . ¢ . .« e o . .
Discussion
GENERAL-STRUCTURE- REFERENCES . .
Syntax .« ¢ 4 ¢ ¢ ¢ ¢ e ¢ o o =
Restrictions « . . .
Semantics ¢ . ¢ o .
Discussion . « ¢« ¢« « ¢« ¢« o o« o«
PREDECLARED STRUCTURES
VECTOR Structures e o e o o
BITVECTOR Structures
BLOCK Structures

1 A Typical Byte- 0r1ented BLOCK Structure
.2 BLOCK Field-References . . .

3 BLOCK Allocation
4 BLOCK Structure-References .
5 BLOCK Field-Declarations . .

BLOCKVECTOR Structures . . . «

.

in BLISS-16

.

in Structure-Declarations
Expressions in General
Values

11-2
11-2
11-3
11-5
11-5
11-6
11-7
11-7
11-8
11-9

11-10
11-12
11-12
11-13
11-14
11-15
11-15
11-18
11-19
11-19
11-20
11-21
11-22
11-23
11-24
11-24
11-24
11-25
11-25
11-26
11-26
11-27
11-27
11-27
11-28
11-28
11-28
11-29
11-29
11-30
11-30
11-31
11-31
11-32
11-32
11-33
11-33
11-33
11-35
11-36
11-36
11-37
11-38
11-39
11-39
11-41
11-42
11-43
11-43
11-44
11-45
11-45
11-46

11.11 OTHER STRUCTURES . . &+« & 4« & « o o o s o o« o« « » 11-48
11.11.1 "One-Origin" Vector Structures 11-48
11.11.2 "Bounds Checking" Vector Structures 11-48
11.11.3 Two-Dimensional Array Structures - 11-49
11.11.4 Symmetric Array Structures o 11-49
11.11.5 Non-Continuous Block Structures 11-50
11.11.6 Partially Overlayed Structures « . o . 11-52
11.11.7 General Purpose Structures for Default

Structure References . . . « « « o« « s+ o « o« o 11-54

CHAPTER 11

DATA STRUCTURES

A data structure is the framework for a collection of values that are
stored under a single name. Certain frequently-used data structures
are predefined in BLISS; they are the vector, the bit vector, the
block, and the blockvector. The use of these data structures is
described in Chapter 3 on "Values and Data Representations"”.

This chapter describes the features of BLISS that permit a programmer
to go beyond the predefined data structures and design special data
structures that fit a particular application.

The first section of this chapter discusses the concepts of data
structures and provides a detailed example of a specific data
structure.

The next section describes the field-reference, which is the
fundamental BLISS mechanism for accessing an element of a data
structure.

The next seven sections describe the features of BLISS that are wused
to define and use a data structure; they are structure-declarations,
structure-attributes, field-declarations, field-attributes, ordinary-
structure-references, default-structure-references, and general-
structure-references.

The final two sections return to the description of specific data
structures. One section gives the full definition of each of the
BLISS predefined structures. The remaining section gives several
examples of programmer-defined structures.

11-1

Data Structures
INTRODUCTION TO DATA STRUCTURES

11.1 INTRODUCTION TO DATA STRUCTURES

The BLISS facilities for programmer-defined data structures have the
following benefits:

1. Generality. If a specific application requires a data
structure that is different from any predefined data
structure, the programmer can define a new data structure
that fills the need.

2. Flexibility. 1If a specific application requires a different
representation for an existing kind of data structure (for
example, one that requires less space), the programmer can

provide a new data structure that ©provides the required
representation.

3. Machine-Independence. If a program must depend on the
architecture of the computer in order to save space or
execution time, that dependence can be localized and

concealed within the appropriate data structure definition.

4. Checking. If references must be checked for wvalidity (for
example, vector subscript in range), an appropriate check can
be built into a programmer-defined structure definition.

The design for a new data structure has three parts: the abstract
definition, the concrete representation, and the programmed
description. The abstract definition and concrete representation are
part of the design of a program; although they may be written down as
part of the documentation, they are not a part of the BLISS program.
On the other hand, the programmed description of a data structure is
part of the BLISS program in which the structure is used.

This introductory discussion of data structures requires a specific
example; therefore, a data structure called a "decimal digit array"
is carried through each section of this discussion. The concrete
representation and programmed description for the example structure is
first worked out for the VAX-11 and BLISS-32. Further on, concrete
representations and programmed descriptions are given for the PDP-11
and BLISS-16, and the DECSYSTEM-10/20 and BLISS-36.

11.1.1 The Abstract Definition of Data Structures

An abstract definition of a data structure specifies the structure,
content, and usage of a particular collection of data in terms of its
application, not in terms of a particular computer implementation.
Indeed, the definition is abstract only if it applies equally to all
possible representations of the data.

The abstract definition of the decimal digit array might be:

A decimal digit array is a compact storage representation of a
sequence of decimal digits that permits reasonably quick access
to individual digits.

The decimal digit array is not a predefined structure in BLISS and it
is not even an especially important structure. However, it is typical
of the sort of data structure that can be readily defined by a BLISS
programmer .

11-2

Data Structures
INTRODUCTION TO DATA STRUCTURES

The abstract definition of the decimal digit array establishes four
characteristics of the desired structure:

1. The word "compact" asserts that the representation cannot
waste space, presumably because there will be many decimal
digit arrays or because some of them will have many elements.

2. The word "sequence", as well as the word "array" in the name
of the structure, 1indicates that the elements of the
structure are ordered.

3. The words "dec¢imal digit" indicate that each element can have
ten distinct values, and these values are associated with the
characters "0", "1", and so on, through "9",.

4. The phrase "permits reasonably quick access to individual
digits" provides important information about the usage of the
data structure.

Observe the cautious wording of the third fact: it asserts that each
element accommodates a range of ten values (which requires somewhat
less than four bits), not that each element accommodates a decimal
digit <character code (which would require seven or eight bits in
ASCII).

11.1.2 The Concrete Representation of Data Structures

The concrete representation of a data structure determines which bits
of memory are occupied by the data and how these bits are interpreted.

The design of the representation depends on the following
considerations:

1. The amount of storage available for the structure. If the
structure is big, it should not contain a large proportion of
unused storage.

2. The amount of time available for access to the fields of the
structure. If the structure 1is accessed frequently, each
access should be fast.

3. The effect of the representation on program development. If
the elements must be accessed during debugging, that access
should be convenient.

4, Compatibility with other representations of the same data.
If a commitment to a given representation has already been
made, it may be necessary to accept that representation even
if it is not optimal.

The design of a concrete representation is difficult, especially at
the beginning of a project. The facilities of BLISS permit a
programmer to change concrete representations easily, even after the
project is under way.

The possible representations for a data structure can be ranked
according to time and space requirements. The ranking can begin with
those that have compact storage but slow access and proceed to those
that have fast access but excessive storage.

11-3

Data Structures
INTRODUCTION TO DATA STRUCTURES

As an example, such a ranking for the decimal-digit-array data
structure on the VAX-11 target system would be:

1. Since 32 bits can accommodate any nine-digit decimal number,
the array can be stored nine digits per fullword. 1In this
representation, however, access to a single digit requires
considerable computation (conversion of a thirty-two-bit
binary integer to a nine-digit decimal integer).

2. Since 4 bits can accommodate ten distinct values, the array
can be stored eight digits per fullword. This representation
requires a conversion to get from the element value to an
ASCII character but the conversion is a simple addition or OR
operation.

3. Since the ASCII codes for decimal digits normally occupy
eight bits each, and since the byte is a natural unit of
storage on VAX-11, the array can be stored four digits per
fullword. In this representation, about half the storage is
wasted, but access is quicker.

4. Since VAX-11 works best on fullword values, the array could
be stored one digit per fullword. This representation wastes
a lot of storage, but provides the most rapid access.

Ranking representations in this way 1is useful, but sometimes
difficult. Many considerations can affect the ranking, for example,
both virtual and physical memory management strategies. The ranking

might even be different for different models of the VAX-11l.

Each of these concrete representations 1is correct for certain
situations. For the example under consideration, the representation
in item 2 is chosen. That choice is interesting because it leads to a
data structure that is not predefined in BLISS.

The representation just chosen for a decimal digit array can be
diagrammed for the VAX-1ll as follows:

DDA

X[1],4 X[{01,4 : X

o X[21,4

This diagram differs from those given in Section 3.2. In Chapter 3,
the intent was to represent data structures in a machine-independent

way. Here, the intent is to represent the specific layout of the data
structure in VAX-11 storage.

The diagram depicts a sequence of bytes in VAX-11 storage. The first
line of the diagram (X{1] and X[0]) is the first byte allocated for
the array. The second line (... and X[2]) is the second byte. The
third line suggests successive bytes.

11-4

Data Structures
INTRODUCTION TO DATA STRUCTURES

The diagram represents a specific instance of a decimal digit array.
The name of the array is X; that is, the value of X is the address of
the first byte of the array. The name X is written to the right of
the diagram because of the VAX-11 convention of indexing bits and
bytes from right (low order) to left (high order).

The diagram shows that the first element of the vector is called X([O0]
and contains 4 bits. That element occupies the four low-order bits of
the byte whose address is X. The second element is called X[1l] and
occupies the four high-order bits of the byte whose address is X. The
third element is called X[2] and occupies the four low-order bits of
the byte whose address 1is X+1. The remaining elements of the
structure are designated in a similar way.

The name DDA (for decimal digit array) at the top of the diagram
refers to the layout of the fields relative to the starting address of
the structure. There could be more than one DDA structure in storage
at a given time, one at X and others at other addresses.

11.1.3 The Programmed Description of Data Structures

Once the abstract definition and concrete representation of a
structure have been designed, the facilities of BLISS can be used to

describe and wuse the structure. The principal facilities are
structure-declarations, structure-attributes, and structure-
references. However, before these facilities can be described,

field-references must be considered.

11.1.3.1 Field-References - A field-reference is a BLISS construct
that can designate any portion of storage that is $BPVAL bits or less
in size. For example, a field-reference can designate a sequence of

15 bits starting with the second bit of the addressable unit whose
address is 3116.

A field-reference has the form:

addr < pos, size, ext >

where:
addr is interpreted as an addressable-unit address.
pos is the number of (least significant) bits skipped before
the field begins.
size is the number of bits in the field.
ext is 0 or 1 depending on whether wunsigned or signed

extension is used in fetching the contents of the field.

The ext parameter can be omitted if unsigned extension 1is suitable.

Sign éxtension is described in Section 3.1.3, and a full description
of field-references is given in Section 11.2.

11-5

Data Structures
INTRODUCTION TO DATA STRUCTURES

Restrictions on the values of addr, pos, and size are different in
each BLISS dialect because of differing capabilities of the respective
target architectures. Briefly stated, field-references in BLISS-32
can designate any field of up to %BPVAL bits without regard to address
boundaries; while field-references in BLISS-16 and BLISS-36 must
designate fields that are completely contained within one fullword.

The BLISS-32 field-references for the decimal digit array X
(diagrammed in Section 11.1.2) are:

X<0,4> (first element, X[0])
X<4,4> (second element, X[1])
X<8,4> (third element, X[2])
The field-reference for the third element 1is typical; it is

interpreted as follows:

Find the addressable unit (VAX-11 byte) whose address 1is X.
Start at the 1low-order bit of that unit of storage and skip
forward across 8 bits. Use the next 4 bits as the field.

In this definition, "skip forward" means proceed toward higher order
bits and toward higher storage addresses.

Field-references can handle any memory access required in BLISS.
However, they are very dependent on the concrete representation of
data structures., The features described in the following sections are
designed to confine the use of field-references to a special place,
the structure-declaration, and thus localize the dependence of a
program on representation.

11.1.3.2 Structure-Declarations - The following program fragment

contains the structure-declaration for BLISS-32 decimal digit arrays
(DDAs) .

STRUCTURE
DDA[I; N] =
[(N+1)/2]
DDA<K4*I,4>;
OWN
X: DDA[10];

X[5]

.X[6];

The first four lines of the example are the structure-declaration.
Each line has a different purpose, as follows:

1. "STRUCTURE" is the keyword for the declaration.

2. "DDA[I; N] =" gives the structure-name, DDA, and the formal
names I and N, The name I before the semicolon is an
access—-formal, and is used when an instance of the structure
is referenced. The name N after the semicolon 1is an
allocation-formal, and 1is wused when an instance of the
structure is allocated.

3. "“(N+1)/2" is the structure-size and determines the number of

addressable wunits (bytes 1in this case) allocated for each
instance of the structure.

11-6

Data Structures
INTRODUCTION TO DATA STRUCTURES

4. "DDA<K4*I,4>" is the structure-body and provides a field-
reference for each reference to the structure in the program.
(Note that, because of dialect-specific differences in
field-reference limitations noted above, this particular
structure-body definition is valid in the general case only
in BLISS-32.)

Observe that in the structure-size and structure-body a fetch
operator, ".", is not used before a formal name to refer to the value
of an actual parameter. In this sense structure formal names are like
macro formal names (see Chapter 16) and unlike routine formal names
(see Chapter 12).

11.1.3.3 Structure Allocation - A structure-declaration does not
allocate any particular instance of a data structure; it just
associates a name with a description of a structure.

An instance of a given structure is allocated when its name is used in
a structure-attribute in the declaration of a data segment name. The
following declaration allocates a l0-element instance, named X, of a
decimal digit array:

OWN
X: DDA[10];

The compiler determines how much storage to allocate for X by making a
copy of the structure-size, "(N+1) /2", replacing N, the
allocation-formal, by 10, and evaluating the expression. The result
is 5 and thus five bytes are allocated.

The example structure-size expression 1is also wvalid for BLISS-16
(assuming an 1identical concrete representation for DDA), since the
addressable-unit size is the same. The structure-size expression
required for BLISS-36, assuming a similar concrete representation for
DDA, is given in Section 11.1.3.7.

11.1.3.4 Structure-References - The following assignment contains two
examples of references to the decimal digit array named X:

X[5] = .X[6];

When the program is compiled, the first structure-reference is
replaced by a copy of the structure-body from the declaration of DDA.
Then, within the structure-body, DDA is replaced by X and I is
replaced by 5. The second structure-reference is compiled in the same
way, except that I is replaced by 6. The result is:

X<4*5,4> = (X<4%6,4>;

11-7

Data Structures
INTRODUCTION TO DATA STRUCTURES

The actual-parameter of a structure-reference need not be a
numeric-literal as in this example; it can be any expression. For
example, the assignment

X[.J3) = .X[.J3+1];
is expanded by the compiler into:
X<4*%(.J3) ,4> = .X<4*(.J3+1),4>;

In this case, the fields selected depend on the contents of J3 each
time the assignment is executed.

Similar examples of the structure-body expression for BLISS-16 and
BLISS-36, assuming an identical or similar concrete representation for
DDA, are given in Section 11.1.3.7.

11.1.3.5 REF Structures - It is sometimes useful to manipulate the
addresses of data structures, It is easy to manipulate addresses in
BLISS, but the compiler needs information about the structures to
which the addresses refer. This information is supplied with the help
of the REF keyword and an appropriate structure-attribute in the
declaration of storage for a structure address.

As an example of the wuse of REF, consider the following program
fragment:

STRUCTURE
DDA{I; N] =
[(N+1)/2]
DDA<K4*I,4>;
OWN
X: DDA[10],
Y: DDA[10];
OWN
ALPHA,
PDDA: REF DDA[10];
IF .ALPHEA EQL O THEN PDDA=X ELSE PDDA=Y;
PDDA[5] = .PDDA[6];

The interpretation of the final assignment depends on the value of
PDDA and the value of PDDA is determined, at run time, by the contents
of ALPHA. If ALPHA contains zero, the assignment is equivalent to:

X{5] = .X[6];
Otherwise it is equivalent to:

Y[{5] = .Y[6];

A name that is declared with REF designates a data segment that
contains the address of a structure. Since an address always occupies
a fullword, a fullword is always allocated for such a name. In the

example above, PDDA is the address of a fullword that contains either
the address X or the address Y.

11-8

Data Structures
INTRODUCTION TO DATA STRUCTURES

When a name that is declared REF is used in a structure-reference (and
is therefore followed by a list of parameters in brackets), an extra
level of indirection 1is automatically supplied. Thus in the
assignment

PDDA([5] = .PDDA[6];

the address of the structure to which a value is assigned is not PDDA
but is rather the «contents of PDDA. Similarly, the address of the
structure from which a value is fetched is not PDDA but is rather the
contents of PDDA.

When a name that is declared REF is not used in a structure reference,
it is interpreted without the extra level of indirection. (If this
were not the case, then the contents of a data segment used as a
pointer to a structure could not be changed.) Thus in the assignment:

PDDA = X;

the address of the data segment to which a value is assigned is PDDA.

11.1.3.6 Interchangeable Structure-Declarations - It is quite natural
to use different structure-declarations for the same abstract
structure at different stages in the development of a program. Three
possible declarations for decimal digit arrays are:

. The declaration already considered in the preceding sections
is:
STRUCTURE
DDA[I; N] =
[(N+1) /2]

DDA<4*1,4>;

This declaration was presented as the one that implements the
chosen concrete representation for decimal digit arrays.

° A second declaration of DDA is:

STRUCTURE
DDA[I; N] =
[N]
DDA<8*I,8>;

This declaration provides for faster access to the elements
but uses twice as much storage.

° A third declaration of DDA is:

STRUCTURE
DDA[I; N] =
[N]
BEGIN
IF I LSS 0 OR I GTR N-1 THEN ERROR (DDA, I);
DDA
END<8*I,8>;

11-9

Data Structures
INTRODUCTION TO DATA STRUCTURES

This declaration is oriented toward debugging. Specifically,

1. It uses a full byte (instead of 4 bits) for each element
of the array. Thus the examination of memory is easier.

2. It includes a check on the value of the subscript I to
make sure that it is in the range from 0 to N-1. Thus
this class of errors is detected automatically.

Thus this declaration can be used during the development of a
program and one of the previous declarations of DDA can be
used for the production version of the same program.

The debugging declaration just given illustrates an interesting
feature of structures. Suppose the following program fragment lies
within the scope of the debugging declaration:

OWN
X: DDA[10],
Y: DDA[20];

X[.J] = .Y[.K]};

The compiler expands the assignment on the 1last 1line into the
following assignment:

BEGIN

IF .J LSS 0 OR .J GTR 9 THEN ERROR(DDA, .J);
DDA

END<8*.J,8>

BEGIN

IF .K LSS 0 OR .K GTR 19 THEN ERROR (DDA, .K);
DDA

END<8*.K,8>;

This example shows that the compiler saves the value of the
allocation-parameter, N, each time the structure is allocated. For X
this value is 10, for Y it is 20. Thus this value can be used in the
structure-body and, eventually, in each structure-reference.

11.1.3.7 Decimal Digit Arrays in BLISS-16 and BLISS-36 - For a packed
4-bits-per-digit representation of a decimal digit array in BLISS-36,

a different structure-size definition is required for the following
reasons:

° The smallest (and only) addressable unit in BLISS-36 1is the
fullword, rather that the byte as in BLISS-16 and BLISS-32.

. The 36-bit fullword of BLISS-36 can nicely accomodate nine
4-bit digits.

11-10

Data Structures
INTRODUCTION TO DATA STRUCTURES

Instead of the BLISS-16/32 structure~size expression " (N+1)/2", which
allocates one 8-bit addressable unit for each two elements required
plus one unit for an odd final element, the following expression is
appropriate for BLISS-36:

(N+8)/9

This structure-size expression allocates one 36-bit word for each nine
elements required plus one word for a final (or only) group of less
than nine.

As noted above, the BLISS-32 structure-size expression is also wvalid
for BLISS-16, since the respective target systems have the same basic
storage allocation unit (i.e., the byte).

The structure-body definition given for DDA in BLISS-32 needs to be
modified in both BLISS-16 and BLISS-36 because neither of these
dialects allows the position value of a field-reference to exceed
$BPVAL (as it can in BLISS-32). 1In BLISS-16 the DDA structure-body
can be defined as:

(DDA+I/2)< (I MCD 2)*4,4>
Alternatives to this expression, which are 1logically equivalent but
better in terms of object-code efficiency, are the following:

(DDA+I/2)<IF I THEN 4 ELSE 0,4>
or

(DDA+4+I/2)<(I AND 1)*4,4>
or

(DDA+I/2) <(I"2) AND 4,4>
These alternatives are listed in order of increasing space efficiency,
although the first alternative results in the fastest code sequence.
In BLISS-36 the DDA structure-body can be defined as:

(DDA+I/9)<(I MOD 9)*4,4>
To summarize, the BLISS-16 and BLISS-36 forms of the DDA

structure-declaration are the following:

e For BLISS-16 -

STRUCTURE
DDA[I; N] =
[(N+1)/2]

(DDA+1/2)<(1I"72) AND 4,4>;

e For BLISS-36 -

STRUCTURE
DDA[I; N] =
[(N+8)/9]

(DDA+I/9)<(I MOD 9)*4,4>

1i-11

Data Structures
INTRODUCTION TO DATA STRUCTURES

The wuser's guide for each BLISS dialect describes, under
"Transportability Guidelines", the development of generalized, fully
transportable structure-declarations. In particular, it describes a
general packed-vector data structure called GEN_VECTOR which produces

the same concrete representation described here as DDA on any target
system.

11.1.4 Conclusion

All high 1level 1languages provide the programmer with a set of
predefined data structures. Some programming languages provide
facilities for the definition of new abstract data structures based on
predefined data structures. BLISS goes beyond such facilities and
provides for the definition of new concrete data structures.

Thus, when the need arises, a BLISS programmer can access storage just
as freely as an assembly language programmer can. The programmer can
designate any addresses, any fields, any bits in storage.

The structure-declaration is the interface between the implementation
of a given data structure and its use in the program. On one side of
the interface 1lies the specific layout of the structure, with
machine-specific details and an appropriate concern for efficiency.
On the other side of the interface are the many references to the
structure, each treating it as an abstract, machine-independent
entity. For each data structure, communication between the two sides
is by a single name, such as DDA used for the example in this section.

Because the predefined structures of BLISS use the same facilities of
BLISS as programmer-defined structures, they provide a point of
departure for data description rather than presenting a restrictive
barrier,

The BLISS facilities for data structures are unusual and relatively
complicated. They depend on the combination of the various
declarations, attributes, and references described in this chapter.
The concluding sections of this chapter, Section 11.10 on predeclared
structures and Section 11.11 on typical programmer defined structures,
show how these facilities are combined to define and use specific
structures.

11.2 FIELD-REFERENCES

A field-reference designates a sequence of up to $BPVAL bits of
storage. It is normally used as the operand of a fetch operator or
the left operand of an assignment operator. With certain
restrictions, however, a field-reference can be used in any context
that requires an address value.

Structure-declarations use field-references to map abstract,
machine-independent structures into concrete, machine-specific storage
units. Thus, when suitably parameterized, they support the writing of

programs that are efficient and yet transportable from one target
system to another.

11-12

Data Structures
FIELD-REFERENCES

Field-references should be used only in structure-declarations. The
use of field-references in any other context introduces
machine-dependence in a confusing and disorganized way.

Examples of field-references are given in Section 11.1.3.1.

11.2.1 Syntax

field-selector

field-reference address nothing

primary
address executable-function

, sign-extension-flag

field-selector < position , size nothing >
position
size expression
sign-extension-flag compile-time-constant-expression

In addition to the syntactic rules just given, the following syntactic
rules are required:

1. A field-selector that could be part of several fetch
expressions is, in fact, part of the innermost of them.

2. A field-selector that could be part of either an assignment
express@on or a fetch expression 1is part of the fetch
expression.

An example of an expression to which Rule 1 applies is:

. .BETALS8, 8>

This expression is interpreted as:
. (.BETA<S8,8>)

rather than as:
.(.BETA)<8,8>

In this example, the given expression is composed of one fetch
expression within another, and Rule 1 is needed because one of the

fetch expressions does not have a field-selector. In the first
interpretation, the field-selector 1is part of the inner fetch
expression, and is, therefore, applied to the data segment whose
address is BETA. In the second (nondefault) interpretation, the

field-selector is part of the outer fetch expression and, therefore,
is applied to the data segment whose address is .BETA.

11-13

Data Structures
FIELD-REFERENCES

An example of an expression to which Rule 2 applies is:
.0<0,8> = A+l

This expression is interpreted as:

(.0<0,8>) = .A+l
rather than as:
(.0)<0,8> = A+l

In the first interpretation, the field-selector is part of the fetch
expression and the assignment is made, by default, to a fullword. 1In
the second (nondefault) interpretation, the field-selector is part of

the assignment expression, and the fetch is made, by default, from a
fullword.

11.2.2 Restrictions

The restrictions on the address, position, and size expression values
in a field-selector are different for each BLISS dialect, as follows:

BLISS~-16 ONLY

The size of a field may range from 0 to 16 bits, inclusive, but a
field must not cross a machine-word boundary. This implies two
sets of specific restrictions on the position (p) and size (s)
values, as follows:

(a) If the field-selector is applied to a even-numbered byte
(i.e., word-aligned) address, then

P
s < 16

0
0 -—
0 p+ts < 16

IAIAILA

{b) If the field-selector is applied to an odd-numbered byte
address, then

0 <p

0 s

0

| ALAIA
nlA
|A
[

P+
BLISS-32 ONLY

The value of the size expression may range from 0 to 32,
inclusive, and the field so specified may cross a longword
boundary. More specifically, there is no restriction on the

position expression relative to storage-address boundaries, and
the restriction on size (s) is

0<s < 32

11-14

Data Structures
FIELD-REFERENCES

BLISS-36 ONLY

The value of the size expression may range from 0 to 36,
inclusive, but the field so specified may not <cross a
machine-word boundary. More specifically, the restrictions on
position (p) and size (s) are

0<p
0 < s < 36
0 < p+s < 36

The value of the sign-extension-flag must be 0 or 1.

A field-selector must not be immediately followed by another
field-selector. For example,

.2<0,16><8,2> = .BETA

is not valid. (Parentheses can be used to avoid this restriction.
For example,

(.2<0,16>)<8,2> = .BETA

is a valid expression.)

Normally a field-reference is the operand of a fetch operator or the
left operand of an assignment operator. When a field-reference is
used in any other way, it must specify a field that begins on an
addressable-unit boundary; that is:

. The value of the position expression must be 0 or 8 in
BLISS-16, must be 0 or a multiple of 8 in BLISS-32, and must
be 0 in BLISS-36.

. The address expression must not be a register-name,
. The position and size expressions must be compile-time-

constant-expressions.

When the address in a field-reference 1is a register-name, the
field-reference must specify a field that lies entirely within the
designated register; that is, the position expression must be greater

than or equal to 0 and the sum of the position and size expressions
must be less than or equal to %BPVAL.

11.2.3 Default

The default value for the sign-extension-flag is 0.

11.2.4 Semantics

A field-reference specifies a field of up to a fullword ($BPVAL bits)
in size relative to a given storage address. Certain aspects of the
field-selector semantics are dialect dependent, as described in the
following three paragraphs.

11-15

Data Structures
FIELD-REFERENCES

In BLISS-16, the field is specified relative to a byte address, and
the field must be completely contained in the machine word containing
the given byte,

In BLISS-32, the field is specified relative to a byte address, and
the field may occur anywhere in storage relative to the given byte.

In BLISS-36, the field is specified relative to a word address, and
the field must be completely contained in the given machine word.

Depending on the context in which it appears, a field-reference has
one of the interpretation given below. (These rules do not apply to
field-references in the structure-body of a structure-declaration,
because the structure-body 1is not interpreted as part of the
declaration of a structure; rather, these rules apply when the
structure-body is used in the interpretation of a structure-reference,
as described in Sections 11.7, 11.8, and 11.9.)

. Fetch Context. If the field-reference is the operand of a
fetch expression (defined in Section 5.1), having the form:

. €2 field-selector
then evaluate the fetch expression as follows:
1. Interpret the address expression, e2, as follows:

a. If the address is a register-name, then call the
register the selected unit.

b. Otherwise, 1let a be the value of the address
expression. Locate the addressable-unit in storage
whose address is a. Call this addressable-unit the
selected unit,

2. Let p be the value of the position expression. Locate
the sequence of p bits that starts with the low-order bit
of the selected unit. Call these bits the offset field.

3. Let s be the value of the size expression. Locate the
sequence of s bits that immediately follows the offset
field. Call these bits the selected field.

4, Obtain a fullword value as follows:

a. If s = $BPVAL, fetch the contents of the selected
field.

b. If 0 < s < $BPVAL, fetch the contents of the selected
field and extend it to a fullword as follows:

1) If the value of the sign-extension-flag is O,
then extend the selected field by adding
zero-bits at the left.

2) oOtherwise, extend the selected field by adding
copies of the sign bit (leftmost bit) of the
selected field at the left.

c. If s = 0, use the fullword representation of zero.

11-16

Data Structures
FIELD-REFERENCES

5. Use the value just obtained as the value of the fetch
expression.

Assignment Context. If the field-reference 1is the left

operand of an assignment expression (defined in Section 5.1),
having the form:

el field-selector = e2
then evaluate the assignment expression as follows:

1. Locate the selected field of storage, relative to el, as
in Steps 1 through 3 for the fetch context.

2. Let s be the value of the size expression and let v2 be
the "value of the right operand, e2, of the assignment
expression. Store a value as follows:

a. If s = %BPVAL, store v2 in the selected field.

b. If 0 < s < $BPVAL, store the rightmost s bits of v2
in the selected field.

c. If s = 0, do not store a value.
3. Use the fullword value of e2 as the value of the

assignment expression.

Other Contexts., If a field-reference appears in some other

context, then evaluate the field-reference as follows:

1. Let a be the value of the address expression and let p be
the value of the position. Compute

a + p/%BPUNIT

Observe that a restriction in Section 11.2.2 requires
that the address must not be a register-name, and the
value of p must be zero or, in the case of BLISS-16/32, a
multiple of 8, so that the wvalue of p/%BPUNIT is an
integer. Also observe that the values of the size and
sign-extension-flag expressions are not used, but the
restrictions on these values still apply.

2. Use the value just computed as the value of the
field-reference.

The following considerations apply to the interpretation of
field-references:

The order in which the address, position, size, and
sign-extension-flag expressions are evaluated is not defined
(see Section 5.1.4).

The sign-extension-flag is ignored in all contexts except a
fetch expression.

11-17

Data Structures
FIELD-REFERENCES

° The description of the field-reference just given uses
phrases 1like "sequence of p bits that starts with..." and
"sequence s of bits that immediately follows...". Thus it
assumes an ordering of bits in storage. That ordering, based
on numeric significance, is:

For BLISS-16 and BLISS-32

Bit 0 The low-order bit of byte n
Bit 7 The high-order bit of byte n
Bit 8 The low-order bit of byte n+l
Bit 15 The high-order bit of byte n+l

BLISS-32 ONLY

Bit 16 The low-order bit of byte n+2

Bit 23 The high-order bit of byte n+2
Bit 24 The low-order bit of byte n+3

For BLISS-36

Bit 0 The low-order bit of word n

Bié 35 The high-order bit of word n

° Observe that in BLISS-32, although the selected field cannot
be 1longer than 32 bits, it can occur anywhere in storage,
crossing boundaries between bytes, words, or longwords.

11.2.5 Discussion

The BLISS bit numbering convention, defined above, is consistent
across the BLISS dialects: bit-position 0 is always the "rightmost"
or least significant bit of the specified addressable unit, for all
target systems.

Several aspects of field-references are discussed in the following

subsections. First, some examples are given to illustrate various
cases, Second, the placement of a field-selector in the definition of
a structure 1is discussed. And third, the general and fundamental

relationship of field-references to expressions is discussed.

11-18

Data Structures
FIELD-REFERENCES

11.2.5.1 Examples - Field-references used in fetch and assignment
contexts are illustrated throughout this chapter and do not require
further elaboration here. However, field-references used in other
contexts involve some special considerations.

As stated in Section 11.2.4, a field-reference that is not in a fetch
or assignment context computes a value according to the formula

b + p/%BPUNIT

In BLISS-32 and to a limited extent in BLISS-16, such field-references
allow the programmer to compute the address at which a field begins.
Such address values might be assigned to another data segment for
later use or passed as actual-parameters of a routine-call. Observe
that the restrictions in such cases (the byte-address is not a
register name, position and size are compile-time constant values, and
the position is zero or a multiple of 8) assure that the compiler can
verify that the field does begin at a byte address and hence, that the
above formula can be computed.

Consider the following examples:

Example Comment

A =X The address of the data segment X is assigned to
A,

A = X<0,8> The address of the data segment X is assigned to
A (as in the previous example).

A = X<10,12> Invalid. The field-reference does not designate a
field that begins at a byte address.

A = X<8,8> Invalid in BLISS-36; valid in BLISS-16/32. The
address of the data segment X plus 1 is assigned
to A. This field-reference is equivalent to the
field-reference (X+1)<0,8>.

A = X<.Y,1> Invalid, The position expression is not a

complle-time constant value and, therefore, the
field might not begin at a byte address.

Observe that in BLISS-16 the effective range of p/8 is simply 0 or 1;
in BLISS-32 the range of p/8 is unrestricted; and in BLISS-36 the
range of p/36 is (only) O. Consequently, the value of a
field-reference 1in BLISS-36 1is effectively the same as the address
part of the field-reference and the term "p/$BPUNIT" in the formula
for the value has no practical utility.

11.2.5.2 Fleld-References in Structure-Declarations — The definition
of a structure-name can include a field-reference as the
structure-body (see Section 11.3), but when the structure-body
involves a block, a common error is to place the field-selector inside
the block instead of following the block.

11-19

Data Structures
FIELD-REFERENCES

An example of correct placement of the field-selector following the
block was given in Section 11.1.3.6; it is repeated here:

STRUCTURE
DDA [I;N] =
[N]
BEGIN
IF I LSS 0 OR I GTR N-1 THEN ERROR (DDA, I);
DDA
END<K8*I,8>;

Suppose the last two lines of this example are coded as follows:

DDA<8*I,8>
END;

This coding has a quite different meaning than the one intended.
Because the field-reference 1is contained inside the block, the rule
for a field-reference in a context other than a fetch or assignment
context always applies. When the structure-reference is used in a
fetch or assignment, a fullword fetch or assignment results according
to the rules in Section 5.1 (assuming that the restrictions on
field-references do not result in an error).

As can be seen in this example, the placement of the field-selector
following the block is essential for the desired meaning.

11.2.5.3 Field-References and Expressions in General - Consider again
the first two examples in Section 11.2.5.1. They are:

A =X

A

X<0,8>

In both cases, the address of the data segment X 1is assigned to A.
These examples are especially interesting because they hint at a BLISS
language design principle that ties together field-references and
expressions in a very general way.

The BLISS rules regarding expressions and data segments given

elsewhere in this manual can be restated (in part) in the following
way:

1. The declaration of a data segment name associates an
implicit, default field-selector with the name, which is
determined as follows:

a. If the data segment 1is a scalar, then the default
field-selector is <0, size, sign> where:

i, The size value 1is, in BLISS-16 and BLISS-32, a
multiple of $BPUNIT determined by the explicit or
default allocation-unit, and in BLISS-36 is simply
$BPUNIT, that is, 36.

ii. The sign value is, in BLISS-16 and BLISS-32, 0 or 1
according to the explicit or default
extension-attribute, and in BLISS-36 is always 0.

11-20

Data Structures
FIELD-REFERENCES

b. 1If the data segment 1is structured, then the default
field-selector 1is <0, $BPVAL, 0>. (This default applies
only when the data segment name does not appear in a
structure-reference.)

2. For any expression other than a data segment name, the
default field-selector is <0, $BPVAL, 0>. (This default
applies only when the expression does not appear as the
address—expression of a default-structure-reference.)

According to these rules, every expression in a BLISS program can be
thought of as having a default field-selector.

When the semantics for field-references given in Section 11.2.4 is
applied to expressions with default field-selectors as described here,
the resulting interpretation is equivalent to the semantics given in
Chapter 5. The description given there is used because it is simpler
and more intuitive for the common cases. The description given here
presents an important part of the conceptual foundation of BLISS.

11.2.5.4 Operations on Scalar Field Values - When all values involved
in a <calculation occupy fullwords, the programming involved is
relatively straightforward. Fullwords accomodate maximum-size BLISS

values and assignment from one fullword to another never modifies a
value,

When a scalar field value - a value smaller than a fullword and not
part of a data structure - is involved in a calculation, however,
problems can arise. They can arise either through assignment of a
large value to the small field, or through incorrect extension of the
contents of the field. An example of the former type of problem is
the inadvertent assignment of a fullword value to a field that is not
large enough to accomodate the significant portion of the fullword.
Obviously some significance will be lost in the stored result.

The latter type of problem can be more subtle; for example:

OWN
X;
Y;
X<0,8> = ~-1;
Y = .X<0,8> + 1;

s e

For purposes of discussion, assume that there is some good reason for
using an 8-bit field relative to address X (which cannot be determined
from inspection of the program fragment). Since this field occupies
less than a fullword, when fetched it 1is extended before being
incremented and assigned to Y. And since the extension for the field
is unsigned by default, the extended field value becomes 255 rather
than -1. Thus the value of Y becomes 256 rather than 0, presumably
not the intended result,.

The program fragment does not violate any rules of BLISS; it is
valid. However, since it assigns a negative number, -1, to a field
that is by implication unsigned, the program fragment is at least
ambiguous in its intent, if not incorrect.

11-21

Data Structures
FIELD-REFERENCES

Depending on whether the result obtained was or was not the one

intended, the program fragment can be altered in one of the following
ways:

e Change the numeric-literal from -1 to 255. This change does
not affect the value assigned to Y, but does make clear that
the result is the expected one.

e Replace the field-selectors shown with <0,8,1>, indicating
signed value extension. This change causes 0 to be assigned
to Y.

In BLISS-16 or BLISS-32, the problems just described can also arise
through the use of an allocation-unit that causes field allocation of
a scalar data segment; that is, through the use of BYTE in BLISS-16,
or BYTE or WORD in BLISS-32, as an attribute in a data declaration.
This is due to the implicit relationship between allocation-units and
field-selectors. An equivalent program fragment that uses the BYTE
allocation-unit rather than explicit field-references to produce
results identical to those described above is given in Section
5.1.5.3.

11.3 STRUCTURE-DECLARATIONS

A structure-declaration describes the organization of a data
structure. It specifies (or implies) a field-reference for every
possible reference to the structure and thus defines the layout of the
structure in storage. It also specifies an expression to be used to
determine the amount of storage to be allocated when a structure is
associated with a name in a data-declaration.

An example of a structure-declaration in each of the BLISS dialects
is:

e In BLISS-16 -

STRUCTURE
VECTOR[I; N, UNIT=2, EXT=0] =
(N*UNIT]
(VECTOR+I*UNIT)<0,8*UNIT,EXT>;

e In BLISS-32 -

STRUCTURE
VECTOR[I; N, UNIT=4, EXT=0] =
[N*UNIT]
(VECTOR + I*UNIT)<0,8*UNIT,EXT>;

e In BLISS-36 -

STRUCTURE
VECTOR[I; N] =
[N]
(VECTOR+I)<0,36>;

These are equivalent declarations of the BLISS predeclared structure

named VECTOR, but they do not differ in any significant way from
structure declarations written by the programmer.

11-22

Data Structures
STRUCTURE-DECLARATIONS

The access-formal in this declaration is I and the allocation-formals
are N and, 1in BLISS-16/32, UNIT and EXT. UNIT and EXT have default
values of SUPVAL and 0, respectively. If in BLISS-16 or BLISS-32 a
VECTOR structure-attribute does not specify allocation-actuals for
UNIT and EXT, then these default values are used. The structure-size
expression is N*UNIT and the structure-body is
(VECTOR + I*UNIT)<0,%BPUNIT*UNIT,EXT>.

Observe that in the BLISS-36 VECTOR declaration, the
allocation-formals UNIT and EXT are not included. This is so because
BLISS-36 does not have the corresponding allocation-unit and
extension-attribute (used in data-declarations in the other two
dialects), and therefore these formal parameters are of no practical
use. 1f, however, these formal parameters were expressed in the
BLISS-36 declaration and given their default values of %UPVAL (1 in
BLISS-36) and 0 (unsigned-extension), respectively, the BLISS-36
declaration would be not only explicitly equivalent -- varying only in
the dialect-specific wvalues of $UPVAL and $BPUNIT -- but also
operationally valid.

11.3.1 Syntax

structure-declaration STRUCTURE structure-definition ,...

.
14

structure-definition structure-name

access-formal ,...
[nothing

; allocation-formal ,...
nothing]

[structure-size]
= nothing

structure-body

= allocation—-default
allocation-formal allocation-name nothing

structure-size]

structure-body expression

structure-name

access-formal name

allocation-name

allocation-default compile-time-constant-expression

11-23

Data Structures
STRUCTURE-DECLARATIONS

11.3.2 Restrictions

A primary of a structure-size expression must be either an allocation-

name or a compile-time~constant-expression, When a compile-time-
constant-expression is substituted for each allocation-name in the
expression, the resulting expression must be a compile-time-

constant-expression.

I1f the structure-body expression contains a block, only the following
declarations can appear in the block:

LOCAL EXTERNAL LITERAL
STACKLOCAL EXTERNAL ROUTINE
REGISTER LITERAL

EXTERNAL

11.3.3 Semantics

The structure-size expression of a structure-declaration is utilized
by the compiler when the structure name appears in a structure-
attribute of a data-declaration. It specifies the number of
addressable units to allocate for the declared data segment.

The structure-body is utilized each time a structure-reference appears
in an expression. It specifies a replacement for the structure-
reference that consists of an expression. Observe that a field-
reference is one form of expression.

The use of these portions of the structure-definition is described in
the following sections on structure-attributes and storage allocation

(Section 11.4) and structure-references (Sections 11.7, 11.8, and
11.9).

11.4 STRUCTURE-ATTRIBUTES AND STORAGE ALLOCATION

The form of a data segment is determined when its name 1is declared.
If a structure-attribute appears in the declaration, then that
structure-attribute determines the structure of the data segment both
for purposes of storage allocation and access. If no structure-
attribute appears, then the data segment is assumed to be a scalar.

A structure-attribute in the declaration of a name provides two kinds

of information. First, it provides a structure-name and thus
associates a structure-definition with the name of the data segment.
Second, it provides the allocation-actual parameters for the

structure-definition, and thus specifies the number of addressable
units of storage to be allocated for the data segment.

Observe that the parameters in a structure-attribute are positional;
that 1is, the formal names given in the structure-declaration are not
used as keywords in a structure-attribute.

11-24

Data Structures
STRUCTURE~-ATTRIBUTES AND STORAGE ALLOCATION

The complete syntax and semantics of the declarations in which a
structure-attribute can appear are given 1in the chapters on data
declarations (Chapter 10) and on binding (Chapter 14). This section
describes only the structure-attribute itself and how it is used to
determine the size of a structured data segment.

11.4.1 sSyntax

REF
structure-attribute

nothing} structure-name

[allocation-actual ,...]
nothing

structure-name name

compile-time-constant-expression

allocation-actual allocation-unit <= 16/32
extension-attribute <= 16/32
nothing

16/32 Only
{LONG} <= 32 Only

allocation-unit WORD

BYTE
16/32 Only

SIGNED
extension-attribute (UNSIGNED]

11.4.2 Restrictions
BLISS-16/32 ONLY

An allocation-unit used directly as an attribute cannot appear in
the same declaration as a structure-attribute. Similarly, an
extension-attribute used directly as an attribute cannot appear
in the same declaration as a structure-attribute.

Unless the structure-attribute begins with REF or is in an EXTERNAL,
MAP, or BIND declaration:

l. A structure-size expression must appear in the definition of
the structure-name, and

2. A non-null allocation-actual parameter must be given for each
allocation-name that appears in the structure-size expression
and does not have an allocation-default.

A non-null allocation-actual parameter must be given for each
allocation-name that appears in the structure-body and does not have
an allocation-default.

11-25

Data Structures
STRUCTURE-ATTRIBUTES AND STORAGE ALLOCATION

11.4.3

Semantics

The allocation of a structure is performed by the compiler as follows:

1.

If in BLISS~16 or BLISS-32 an allocation-unit or
extension-attribute keyword appears as an allocation-actual,
it is replaced by a constant value as follows:

Keyword Replaced by

LONG 4 <= 32 Only
WORD 2

BYTE 1

SIGNED 1

UNSIGNED 0

The allocation-actual parameters are evaluated and the values
are associated with the corresponding allocation-names in the
specified structure-definition.

Any allocation-name that does not have a value already
associated with it from Step 2, but does have an
allocation-default value, is associated with its default
value.

The amount of storage to allocate for the declared name is
determined as follows:

a. If the structure-attribute appears in an EXTERNAL, MAP,
or BIND declaration, then no storage is allocated.

b. If the structure-attribute begins with the keyword REF,
then one fullword of storage is allocated.

c. Otherwise, the structure-size expression 1is evaluated
using the values that are associated with each of the
allocation-formal names. The resulting value specifies
the number of addressable units of storage that are
allocated.

The structure-name and the values associated with each
allocation-name are recorded with the data-segment name being
declared, for use when the data-segment is referenced.

11.5 FIELD-DECLARATIONS

The FIELD declaration is used to define names of fields in BLOCK and
BLOCKVECTOR predeclared structures, and in programmer-defined
structures that are similar to BLOCK.

A BLISS-36 example of a field-declaration is:

FIELD
DCB_FIELDS =

SET

DCB A = [0,0,36,0],
DCB B = [rL,0,6,0],
DCB_C = [1,6,12,0],
DCB D = [1,18,18,01,
DCB E = [2,0,36,0]
TES;

11-26

Data Structures
FIELD-DECLARATIONS

The field-names declared here are DCB_A, DCB_B, and so on. Each name
can be used as a parameter in a structure-reference to represent a
sequence of four access-actuals. For example, DCB_A can be used to
represent "0,0,36,0". (In other examples, the field-names might
represent more or less than four access-actuals.)

The example field-declaration just given also provides a
field-set-name, DCB FIELDS. That name 1is wused to refer to the
field-names collectively as when, for example, they must be mentioned
in a field-attribute.

The field-declaration is a special-purpose facility that can best be
explained in the context of a complete example of structure
declaration and use. Such an example is given in section 11.10.3.

11.5.1 Syntax

field-set-definition
field-declaration FIELD field-definition geee 3
field-set-definition field-set-name =
SET
field-definition ,...
TES
field-definition field-name = [field-component ,...]

field—set—name]

field-name name

field-component compile-time-constant-expression

11.5.2 Restrictions

A field-name can only be used as an access-actual parameter of a
structure-reference, a parameter of a field-attribute, or in the
SFIELDEXPAND lexical-function.

A field-set-name can only be used as a parameter of a field-attribute.

11.5.3 Semantics

The field-declaration defines names for use as access—-actual
parameters of structure-references to designate fixed fields in fixed
data structures. As a notational convenience, a set of such

field-names can be declared and referred to by a single name. Observe
that both field-names and field-set-names follow the normal rules

concerning scope and uniqueness of names; there is no concept like
the "qualified names" of COBOL or PL/I.

11-27

Data Structures
FIELD-DECLARATIONS

When a field-name appears as an access-actual parameter of a
structure-reference, it 1is replaced by the list of field-component
values from the field-definition. (See example in Section 11.10.3.5.)
These values provide one or more of the access-actual parameters used
in the evaluation of the structure-reference. A field-name need not
itself supply all of the actual parameters required for the reference.
(While this replacement has some of the characteristics of a macro
expansion, field-names are not macro-names; 1in particular, a field-
name is not valid in contexts other than a structure-reference.)

The field-attribute specifies the set of field-names that can appear
in ordinary-structure-references for the indicated data segment., If
no field-attribute is given, then no field-name is valid.

Any field-name can be used in a general-structure-reference.

11.6 FIELD-ATTRIBUTES

A field-attribute is used in the declaration of a structured data
segment name; that 1is, 1in the same declaration with a structure-
attribute. The field-attribute supplies field-names for some or all
of the fields in the structured data segment, either directly by
listing field-names or indirectly by giving one or more field-set-
names, or both.

An example of the use of a field-attribute is:

OWN
ALPHA: BLOCK[DCB_SIZE] FIELD(DCB_FIELDS);

In this example, the field-attribute associates the field-set-name

DCB_FIELDS with the data segment name ALPHA.

Like the field-declaration, the field-attribute can best be explained
in the context of a complete example of structure declaration and use.
Such an example is given in Section 11.10.3.

11.6.1 S8yntax

field-name
field-attribute FIELD (field-set-name goees)

field-name
field-set-name name

11.6.2 Restrictions

Although a field-set-name can appear as a field-attribute parameter in
a data segment declaration (as the syntax shows), it cannot be used in
a structure-reference to the data segment. The individual field-names
associated with the field-set-name must be used instead.

11-28

Data Structures
FIELD-ATTRIBUTES

A field-attribute can be used only in a declaration that also has a
structure-attribute,

11.6.3 Semantics

A field-attribute specifies the set of field-names that may appear in
an ordinary-structure-reference to the data segment declared with the
given field-attribute. A field-set-name in a field-attribute implies
a defined set of field-names that may so appear. If no
field-attribute is given, then no field-name 1is wvalid in such a
reference,

11.7 ORDINARY-STRUCTURE-REFERENCES

A structure-reference is used to access a part of a structured data
segment. The ©part of the segment that is accessed is determined by
the access-actual parameters in the structure-reference. For example,
a structure-reference for a vector has one access-—actual parameter
that specifies the element of the vector to be accessed.

Three kinds of structure-reference are provided: ordinary, default
and general. The ordinary-structure-reference 1is by far the most
commonly used form. It gives the name of a data segment and relies on
the compiler to determine the appropriate structure from the
declaration of the segment name. A default-structure-reference is
similar, but the address of the data segment 1is given by an
expression, often a preceding ordinary- or default-structure-
reference, and relies on the compiler to determine the structure from
the default structure specification given in a switches-declaration or
module-switch. A general-structure-reference is self contained. It
gives all the information necessary for the access.

Suppose the declaration of A is:
OWN A: VECTOR[10];

An example of an ordinary-structure-reference is:

Al[.J}
The compiler uses the declaration of A to find the kind of structure
that 1s being accessed. This ordinary-structure-reference 1is a
reference to a VECTOR that consists of 10 elements. The

structure-body that is declared for VECTOR is used in combination with
the allocation-actuals in the declaration of A and the access~actuals
in the structure-reference to determine the field-reference for the
appropriate element of the vector.

Suppose the following set of declarations are given:
OWN A: VECTOR[10];
SWITCHES STRUCTURE (BLOCK ([11);
FIELD FL = [0,0,%BPVAL/2,0],
FR = [0,%BPVAL/2,%BPVAL/2,0];
An example of a default-structure-reference is:

A[.J][FL]

11-29

Data Structures
ORDINARY-STRUCTURE-REFERENCES

The compiler processes the initial ordinary-structure-reference,
A[.J], as described in the preceding example. The field-reference
that results is then used as the address part of a subsequent
structure-reference. The compiler uses the specification of the
default structure in the switches-declaration to find the kind of
structure that is being accessed, In this example the
default-structure-reference is a BLOCK that consists of one fullword.
The structure-body that is declared for BLOCK is used in combination
with the allocation-actuals in the default structure specification in
the SWITCHES declaration to determine the field-reference for the
appropriate field in the j'th element of segment A.

An example of a general-structure-reference is:
VECTOR([A, .J; 10]
This general-structure-reference 1is equivalent to the ordinary-

structure-reference given above.

Ordinary-structure-references are described in this section. Default-

and general-structure-references are described in the next two
sections.

11.7.1 Ssyntax

ordinary-structure-reference
structure~-reference default-structure-reference
general-structure-reference

ordinary-structure-

reference segment-name [access-actual ,...]
segment-name name
field-name
access—-actual expression
nothing

11.7.2 Restrictions
A structure-attribute must be associated with the segment-name.
If field-names are used as access—-actuals in the structure-reference,

then a field-attribute designating those field-names must be
associated with the segment-name.

An access—actual parameter must be given for each access-formal name

that appears in the structure-body of the associated structure-
definition.

11-30

11.7.3

Data Structures
ORDINARY-STRUCTURE-REFERENCES

Semantics

The interpretation of an ordinary-structure-reference is:

l.

11.7.4

Use the segment-name to get the structure-body of the
associated structure-definition and to get the wvalues
associated with each of the allocation-names for that
segment-name,

I1f the structure-attribute for the segment did not include
the keyword REF, then determine the value of the data segment
name (which is the address of the data segment) and associate
that value with the structure name.

If the structure attribute did include the keyword REF, then
fetch the fullword contents of the segment-name and associate
that value with the structure name.

If one or more access-actuals is a field-name, replace each
field-name with its defined sequence of field-component
values. This replacement may increase the number of
access-actual expressions in the resulting
structure-reference.

Evaluate the access-actual expressions and associate the i'th
access-actual value with the i'th access-formal name in the
structure definition. The order of evaluation of the
access-actual expressions is not defined (see Section 5.1.4).

Evaluate the structure-body using the values associated with
each of the allocation-formal names, the access-formal names,
and the structure-name.

Use the resulting expression (which is typically a
field-reference) in place of the structure-reference.

Discussion

An important characteristic of structure-references 1is that the
access—actual expressions in a structure-reference are each evaluated
exactly once. The resulting value 1is used in the structure-body
evaluation in each place that the access-formal appears.

Consider the following declarations:

EXTERNAL ROUTINE

X,
Y,
F;

STRUCTURE

XYZ [A;B] =
[B]
(XYZ+X (A)+Y (A)) ;

OWN ABC: XYZ[4];

11-31

Data Structures
ORDINARY-STRUCTURE-REFERENCES

Given these declarations, the structure-reference
ABC[F ()]
is logically equivalent to

BEGIN

LOCAL TEMP;

TEMP = F();
X(.TEMP) + Y (.TEMP)
END

The routine F is called once in the structure-reference ABC[F ()] and
the resulting value is used twice.

Since structure-references are handled by the compiler in a manner
similar- to macro expansions and they are, in fact, compiled to in-line
code, it is natural to think of structure-references as macro calls;
however, the preceding discussion shows that the interpretation of the
actual parameters is more similar to that for routine-calls.

11.8 DEFAULT-STRUCTURE-REFERENCES

A default-structure-reference 1is used when an ordinary-structure-
reference cannot provide the required field-reference. This usage
arises when the address of the accessed data segment is an expression,
so that the name of the data (which is part of an ordinary-structure-
reference) is not known. When this occurs frequently in a block or
module, it can be convenient to give a default structure-attribute in
a switches-declaration or module-switch to provide the structure
information to be used for all such occurrences,

An example of a default-structure-reference has already been given in

the introduction of Section 11.7. A more extensive example is given
in Section 11.11.7.

11.8.1 Syntax

default-structure- address [access-actual ,...]
reference
primary
address executable-function
field-name
access~actual expression
nothing

11-32

Data Structures
DEFAULT-STRUCTURE-REFERENCES

11.8.2 Restrictions

The address of a default-structure-reference must not be the name of a
data segment declared with a structure-attribute. (If the address is
the name of a data segment declared with a structure-attribute, then
the structure-reference 1is an ordinary-structure-reference and is
interpreted as described in Section 11.7.)

A default-structure-reference must only occur in the scope of a non-
empty STRUCTURE switch-item (see Section 18.2).

An access-—actual parameter must be given for each access-formal name

that appears in the structure-body of the definition of the default
structure.

11.8.3 Semantics
The interpretation of a default-structure-reference is:

1. Use the default structure-attribute to get the structure-body
of the associated structure-definition and to get the
allocation-actual values associated with each of the
allocation-names of the structure.

2. If the default structure-attribute does not include the
keyword REF, then associated the value of the address of the
structure reference with the structure-name. If the default
structure-attribute does include the keyword REF, then fetch
the fullword contents of the address value, and associate the
result with the structure-name.

3. If one or more access-actuals is a field-name, replace each
field-name with 1its defined sequence of field-component
values. This replacement may increase the number of access-
actual expressions in the resulting structure-reference.

4. Evaluate the access-actual expressions and associate the i'th
access-actual value with the i'th access-formal name in the
structure-definition. The order of evaluation of the access-
actuals is not defined (see Section 5.1.4).

5. Evaluate the structure-body using the values associated with
each of the allocation-formal names, the access-formal names,
and the structure-name.

6. Use the resulting expression (which 1is typically a field-
reference) in place of the structure-reference.

11.8.4 Discussion

Default-structure-references are very similar to ordinary-structure-
references. The differences are:

1. A default-structure-reference uses the structure information
established in a default structure-attribute, and hence, must
occur in the scope of a non-empty STRUCTURE switch-item. In
contrast, an ordinary-structure-reference uses the structure
information associated with the declaration of a data segment

11-33

Data Structures
DEFAULT-STRUCTURE-REFERENCES

name and is independent of whether or not a default
structure-attribute is established.

2. A default-structure-reference permits any field-name to be
used as an access-actual parameter. (In this respect it is
like a general-structure-reference, see Section 11.9.) There
is no way to specify a default field-attribute to go with the
default structure-attribute. In contrast, an ordinary-
structure-reference permits only those field-names that are
given in the field-attribute of the data segment declaration.

Observe that when an ordinary- or default-structure-reference occurs
as the address part of another default-structure-reference, the

interpretation occurs from left to right. That 1is, a structure-
reference of the form

exp[actuals ,...] [actuals ,...]
is equivalent to
(exp [actuals ,...]) [actuals ,...]

Also observe that such a structure-reference is a primary and is
interpreted before any operators are applied. For example,

X

LY[11(2) is equivalent to X = .(Y[1])I[2]
and

X

«Y[11[2]113] is equivalent to X = ..((Y[1])[2])I[3]

Consider the following block:

BEGIN

SWITCHES STRUCTURE (VECTOR[10]);

OWN X;

X[0] = 1; tvalid
BEGIN
SWITCHES STRUCTURE ();
X[0] = 1; 1Invalid
END

END

The declaration of X in this example does not associate the structure-
attribute VECTOR[10] with X. Segment X is a scalar by default and is
allocated a single fullword.

The first occurrence of X[0], in the fifth line of the example, is a
valid default-structure-reference. It cannot be an ordinary-
structure-reference because no structure-attribute is associated with
X. Thé second occurrence of X[0], in the tenth line of the example,
is invalid because the default structure-attribute is empty and, as
before, there is no structure-attribute associated with X.

11-34

Data Structures
DEFAULT-STRUCTURE-REFERENCES

As another example, consider the block

BEGIN

SWITCHES STRUCTURE (VECTOR[100]);
OWN X: BITVECTOR[20];

X[.I1 = 1;

(X)(.11 = 1;

END

In this example, the structure-reference X[.I] is an ordinary-
structure-reference because the structure-attribute BITVECTOR[20] is
given in the declaration of X. Thus, the interpretation of the
structure-reference uses the BITVECTOR structure (and not the VECTOR
structure) .

The structure-reference (X)[.I] is a default-structure-reference
because (X), the base address of the reference, is not a data segment
name. The value of the expression (X) is, of course, the same as the
value of X, but the BITVECTOR structure-attribute associated with X is
lost in the evaluation of the expression (X), just as it 1is in the
evaluation of the expressions (X+4) or even (X+0). Thus, the
interpretation of the structure-reference (X)[.I] wuses the VECTOR
structure (and not the BITVECTOR structure).

The above examples are not realistic examples of the use of defaul t-
structure-references; rather they emphasize certain fine points in
the distinction between ordinary- and default-structure-references.
More realistic examples are given in the last part of this chapter,
Section 11.11.7.

The above examples also illustrate how it is possible to be confused
about whether a structure-reference is ordinary or default when the
address is a data segment name. For this reason, default-structure-
references should be used cautiously and only when there is a very
good reason.

A default-structure-reference provides no capability that cannot also
be achieved with a general-structure-reference. It is strictly a
notational and stylistic convenience.

11.9 GENERAL-STRUCTURE-REFERENCES

A general-structure-reference is wused when an ordinary-structure-
reference cannot provide the required field-reference. This usage
arises in two ways. First, a general-structure-reference must be used
when the address of the accessed data segment is an expression, so
that the name of the data segment (which 1is part of an ordinary-
structure-reference) is not Kknown. Second, a general-structure-
reference can be used to access a given data segment using a different
structure-definition than that which is associated with the name of
the data segment.

11-35

Data Structures
GENERAL-STRUCTURE-REFERENCES

An example of the second use of a general-structure-reference is given
in the following block:

BEGIN
STRUCTURE
ARRAY[I, J; M, N] =
[M*N*3UPVAL]
{ARRAY+ (I*N+J) *SUPVAL) ;
OWN ALPHA: VECTOR[200];
ARRAY [ALPHA,.I,.J;50,4]1 = 0;

END

The general-structure-reference interprets the vector ALPHA as a two-
dimensional array according to the structure-declaration for ARRAY.

(The declaration of this two-dimensional array structure is discussed
in Section 11.11.3.)

11.9.1 Syntax

general-structure- structure-name
reference

[access-part

; allocation-actual ,...}
nothing]

access-part segment-expression

, access-actual ,...
nothing

segment-expression nothing

{expression}

The syntactic names structure-name, access-actual and allocation-
actual are defined in Sections 11.3 and 11.4.

11.9.2 Restrictions

If the structure-name appears in the structure-body of the definition
of the structure-name, then the segment-expression must be non-empty.

An access-actual parameter must be given for each access-formal name

that appears in the structure-body of the definition of the structure-
name.

An allocation-actual must be given for each allocation-name that

appears in the structure-body and that does not have an allocation-
default.

11-36

Data Structures
GENERAL-STRUCTURE-REFERENCES

11.9.3 Semantics
The interpretation of a general-structure-reference is:

1. Use the structure-name to get the structure-body for the
declaration of that name.

2. 1If one or more of the access-actuals is a field-name, replace
each field-name with its defined sequence of field-component
values. This replacement may increase the number of access-
actual expressions in the resulting structure-reference.

3. Evaluate the segment-expression and associate the value with
the structure-name in the structure definition.

4. Evaluate the access-actual expressions and associate the i'th
access-actual value with the i'th access-formal name in the
structure definition,.

5. In BLISS-16 or BLISS-32, if an allocation-unit or
extension-attribute keyword appears as an allocation-actual,
replace it by a constant value as follows:

Keyword Replace by

LONG 4 <= 32 only
WORD 2

BYTE 1

SIGNED 1

UNSIGNED 0

6. Evaluate the allocation-actual expressions and associate the
i'th allocation-actual value with the i'th allocation-formal
name in the structure definition. (Observe that each
allocation-actual is a compile-time constant value.)

7. Any allocation-formal that does not have a wvalue already
associated with it from the previous step, but does have an
allocation-default value specified, is associated with that
default value.

8. Evaluate the structure-body using the values associated with
each of the access-formals, allocation-formals and the
structure—-name.

9. Use the resulting expression (which is typically a
field-reference) in place of the structure-reference.

The order of evaluation of the segment-expression and access-actual
expressions is not defined (see Section 5.1.4).

The interpretation of a general-structure-reference combines the
relevant parts of the rules for interpretation of an
ordinary-structure~reference and the structure-attribute for a given
data segment.

11-37

Data Structures
GENERAL-STRUCTURE-REFERENCES
11.9.4 Discussion
A general-structure-reference of the form
structure-name [segment, access ,... ; allocation ,... }
is equivalent to the following field-reference:

BEGIN
BIND base = address

¢+ structure-name [allocation ,... 1;
base [access ,...]
END field-selector

where:
base is an arbitrary unique name created for the
purpose of this discussion.
address is the address part of the field-reference in the

structure~-body of the declaration of the
structure-name.

field-selector 1is the field-selector part of the field-reference
in the structure-body of the declaration of the
structure~name. (As the syntax of Sections 11.2
and 11.3 show, a field-selector is optional.)

The BIND declaration is described in Section 14.3.

As with an ordinary-structure~reference, the parameters of a
general-structure-reference are evaluated once, and the resulting
values can be used more than once (see Section 11.7.4).

Unlike an ordinary-structure-reference, however, any field-name can be
used as an access-—actual of a general-structure-reference. There is
no way to designate a specific set of field-names that are wvalid;
that 1is, there 1is nothing analogous to the field-attribute for
general-structure-references.

A general-structure-reference does not include (or need) anything
analogous to the REF keyword in a structure-attribute. The same
effect is accomplished by explicitly indicating the extra fetch in
coding the segment-expression. Consider the following:

OWN
A: VECTORI[10],
B: REF VECTOR INITIAL(A);

Afll] = 1;
VECTOR[A,1;10]1 = 1;
B[1] = 1;
VECTOR[.B,1;10] = 1;

All four assignments have the same effect; namely, they assign one to

the second element of A. The first two assignments show the
corresponding ordinary- and general-structure-references for the
non-REF structure A. The second two assignments show the

corresponding ordinary- and general-structure-references for the REF
structure B.

11-38

Data Structures
PREDECLARED STRUCTURES

11.10 PREDECLARED STRUCTURES

The structures most commonly used in system programming are
predeclared in BLISS. The use and interpretation of each of these
structures has already been introduced in Chapter 3 and used in
examples. This section presents the definition of each of these
structures.

The four predeclared structures provide no capability that is not
available by explicitly coding the structure-declarations given in the
following sections. They are predeclared in BLISS as a convenience
and to foster the use of uniform names for these common structures.

The predeclared structures are the following:

Structure-Name Usage

VECTOR A vector of signed or unsigned elements of
uniform size (bytes or words in BLISS-16;
bytes, words, or longwords in BLISS-32; and
words in BLISS-36)

BITVECTOR A vector of one-bit elements
BLOCK A sequence of varying-sized fields
BLOCKVECTOR A vector of blocks.

The declaration and use of the predeclared BLOCK structure is
discussed here in detail because of its fundamental nature (along with
VECTOR, discussed previously). The BITVECTOR and BLOCKVECTOR
structures are discussed more briefly because they are straightforward
variations of the VECTOR and BLOCK structures.

11.10.1 VECTOR Structures

A VECTOR structure is a sequence of elements of the same size. The
number of elements, n, is the extent of the vector. The elements are
numbered from 0 to n-1. The generalized form of the

structure-declaration is:

STRUCTURE
VECTOR([I; N, UNIT=%UPVAL, EXT=0] =
[N*UNIT]
(VECTOR+I*UNIT)<0,3BPUNIT*UNIT, EXT>;

When this generalized declaration is made dialect specific, the
resulting (actual) structure-declaration of VECTOR in each dialect is
as follows:

e In BLISS-1l6 -
STRUCTURE
VECTOR[I; N, UNIT=2, EXT=0] =

[N*UNIT]
(VECTOR+I*UNIT)<Q,8*UNIT,EXT>;

11-39

Data Structures
PREDECLARED STRUCTURES

e In BLISS-32 -
STRUCTURE

VECTOR[I; N,
(N*UNIT]

UNIT=4, EXT=0] =

(VECTOR+I*UNIT)<0,8*UNIT,EXT>;

e In BLISS-36 -

STRUCTURE
VECTOR[I; N]
[N]

(VECTOR+I)<0,36>;

The formal names of the
meanings:

structure-declaration have the following

Formal-Name Meaning

I The number of the element to be referenced

N The number of elements in the vector

UNIT The number of addressable-units in each
element, The wvalid values vary with the

target system: 1 or 2 for BLISS-16, and 1
through 4 for BLISS-32. (Since the only
valid value would be 1 in BLISS-36, the
formal-name UNIT is omitted in that dialect.)
The default value, SUPVAL, implies a

fullword.
EXT The sign-extension rule to be used for
fetching elements. The valid values are 0

and 1. The default is 0, that is, unsigned.
(Note that sign-extension of a fullword is
not meaningful, thus the formal-name EXT is
omitted in BLISS-36.)

Example uses of this structure as structure-attributes in declarations

are:
Example
VECTOR([10]

VECTOR[10,WORD])

VECTOR[20,BYTE, SIGNED]

REF VECTORI[5]

VECTOR([20, 3]

Interpretation

A vector of io fullwords

A vector of 10 wunsigned words in
BLISS-16/32

A vector of 20 signed bytes in
BLISS-16/32

A reference to a vector of 5
fullwords

A vector of 20 three-byte elemehts,
in BLISS-32 only.

11-40

Data Structures
PREDECLARED STRUCTURES

11.10.2 BITVECTOR Structures

A BITVECTOR is a sequence of one-bit elements that are densely packed
in storage. The number of elements, n, is the extent of the

bitvector. The elements are numbered from 0 to n-1. The generalized
form of the structure-declaration is:

STRUCTURE
BITVECTOR([I; N] =
[(N+ ($BPUNIT-1))/$BPUNIT]
(BITVECTOR+I/$BPUNIT)<I MOD %BPUNIT,1,0>;

The actual, dialect-specific forms of this structure-declaration are
as follows:

e In BLISS-16 -

STRUCTURE
BITVECTOR[I; N} =
[((N+7)/8)]
(BITVECTOR+(I"-3))<I AND 7,1,0>;

e In BLISS-32 the following variation is used to take advantage
of the 1less restrictive field~-references for better code
gquality -

STRUCTURE
BITVECTOR[I; N] =
[(N+7)/8]
BITVECTOR<I,1>;

e In BLISS-36 -
STRUCTURE
BITVECTORI[I; N] =

[(N+35)/36]
(BITVECTOR+I/36)<I MOD 36,1,0>;

The formal names of this structure have the following meaning:

Formal-Name Meaning
I The number of the element to be referenced
N The number of elements in the vector

Example uses of this structure as structure-attributes in declarations
are:

Example Interpretation
REF BITVECTOR([8] A reference to a vector of 8

one~bit elements
BITVECTORI[60] A vector of 60 one-bit elements

Observe that the second data segment would occupy 8 bytes of PDP-11 or
VAX-11 storage, and would leave the four high order bits of the last
byte unused. On the DECSYSTEM-10/20 the first data segment would
occupy one word with 28 high order bits unused; the second would
occupy two words with 12 high order bits of the second word unused.

11-41

Data Structures

PREDECLARED STRUCTURES

11.10.3 BLOCK Structures

A BLOCK structure

is

a

sequence of components. The individual

components of a block can be of various sizes. The generalized form
of the structure-declaration is:

STRUCTURE
BLOCK[O,

P,

[BS*UNIT]
(BLOCK+O*UNIT)<P,S,E>;

S,

E; BS, UNIT=%UPVAL] =

The actual, dialect-specific forms of this structure-~declaration are

as follows:

e In BLISS-16 -

STRUCTURE
BLOCK[O, P,

[BS*UNIT]

(BLOCK+C*UNIT)<P,S,E>;

e In BLISS-32 -

STRUCTURE

BLOCK][O,

P,

S, E; BS, UNIT=2] =

S, E; BS, UNIT=4] =

[BS*UNIT]
(BLOCK+O*UNIT)<P,S,E>;

e In BLISS-36 -

STRUCTURE

BLOCK[O,

[BS]

P,

S, E; BS] =

(BLOCK+0)<P,S,E>;

The formal names of this structure have the following meanings:

Formal-Name

0]

BS

UNIT

Meaning

The offset to the addressable-unit in which
the field begins

The bit offset from the addressable-unit to
the field beginning

The size of the field in bits. Vvalid values
are 0 to $BPVAL

The extension flag. Valid values are 0 for
zero—extension and 1 for sign-extension

The number of allocation units needed to
represent the block, i.e., the block size

The size of the allocation-unit and offset in
terms of addressable units. valid values
vary with the target system: 1 or 2 for
BLISS-16, 1 through 4 for BLISS-32, and 1
only in BLISS-36 (the formal-name UNIT is
omitted in that dialect). The default is
$UPVAL, that is, a fullword.

11-42

Data Structures
PREDECLARED STRUCTURES

Blocks are conventionally allocated in fullword wunits for most
efficient operation of the hardware. (Using default fullword
allocation also facilitates transportability of BLISS programs.)

11.10.3.1 A Typical Byte-Oriented BLOCK Structure - An example of a
typical block on a byte-oriented target system (PDP-11 or vax-11) is
considered in detail in the following paragraphs. The block is named
ALPHA and has five components, named A, B, C, D, and E. The VAX-1l
target system and BLISS-32 dialect are assumed for the purposes of
this example as they provide the richest basis for explanation of the
underlying BLISS structure mechanisms. (A BLISS-36 example would Dbe
somewhat simpler since addressable byte boundaries are not considered.
Analogous code fragments for BLISS-36 are shown in this discussion
where appropriate.)

The layout of the example block in VAX-11 storage is:

DCB

A,32 :ALPHA

D,19 C,5 B,8

E,32

This diagram uses the notation introduced at the beginning of this
chapter, in Section 11.1.2.

The name DCB refers to the layout of the fields relative to the
starting address of the block. Thus there could be more than one DCB

block in storage at a given time, one at ALPHA and others at other
addresses.

The block is divided into five components, and the name and size are
given for each component. Component A contains 32 bits and occupies
the four bytes whose addresses are ALPHA through ALPHA+3. Component B
contains 8 bits and occupies the byte at ALPHA+4. Component C
contains 5 bits and occupies the 5 low-order bits of the byte at
ALPHA+5. Component D contains 19 bits and occupies the remaining bits
of the byte at ALPHA+5 as well as the next two bytes. Component E
occupies the next longword.

11.10.3.2 BLOCK Field-References - Each component of a block has a
field-reference. The field-references for DCB are:

Component Field-Reference Analogue For BLISS-36
A of ALPHA (ALPHA+0)<0,32,0> (ALPHA+0)<0,36,0>

B of ALPHA (ALPHA+4)<0,8,0> (ALPHA+1)<0,8,0>

C of ALPHA (ALPHA+4)<8,5,0> (ALPHA+1)<8,5,0>

D of ALPHA (ALPHA+4)<13,19,0> (ALPHA+1)<13,23,0>

E of ALPHA (ALPHA+8)<0,32,0> (ALPHA+2)<0,36,0>

11-43

Data Structures
PREDECLARED STRUCTURES

As a specific example of access to DCB, consider the field-reference
for component D of ALPHA. This expression is interpreted by locating
the byte whose address 1is (ALPHA+4) and then applying the
field-selector <13,19,0> at that position in memory. The
field-selector starts at the low-order (rightmost) bit of the
designated byte, then skips 13 bits (first parameter) to the left,
then selects the next 19 bits (second parameter), and, finally,
applies unsigned extension (third parameter) if the access is a fetch.

The field-references given in the table reflect a bias towards
fullwords. That 1is, if ALPHA is a fullword address, then the
expressions (ALPHA+4) and (ALPHA+8) are also fullword addresses. This
bias 1is natural for VAX-11, but it is not essential. 2An alternative
field-reference for component D that does not show this bias is:

(ALPHA+5)<5,19,0> [No analogue in BLISS-36]

This field-reference is different from that given previously for D,
but it selects the same bits of storage.

Any of the field-references can be used for either a fetch or a store

operation. For example, to place the value 7 in component D of ALPHA,
write:

(ALPHA+4)<13,19,0> = 7

11.10.3.3 BLOCK Allocation - A specific block data segment is

allocated by means of a BLOCK structure-attribute. The attribute
provides values for the allocation-formals of the BLOCK
structure-declaration.

The following declaration allocates storage for the DCB block named
ALPHA:

OWN
ALPHA: BLOCKI3,41];

The structure-attribute in this example is BLOCK[3,4], and it provides
the values 3 and 4 for the allocation-formals N and UNIT,
respectively. When storage is allocated for ALPHA, the structure-size
expression in the declaration of BLOCK is evaluated. That expression
is N*UNIT and its value is therefore 12. Thus 12 bytes of storage (3
fullwords) are allocated for ALPHA.

An equivalent declaration of ALPHA is:

OWN
ALPHA: BLOCKI[3]; [Also valid in BLISS-36]

In this declaration, the structure-attribute does not give a value for
UNIT, so the default value is used. (This declaration results in the
allocation of three fullwords in BLISS-36 also, whereas the prior
version would not be valid in that dialect.)

11-44

Data Structures
PREDECLARED STRUCTURES

Yet another equivalent declaration is:

LITERAL
DCB_SIZE = 3;

OWN
ALPHA: BLOCK[DCB_SIZE];

This example uses a literal-name instead of a numeric-literal to
provide the value of the allocation-formal N. This practice is always
desirable, and is especially so when ALPHA is one of several data
segments of the same form. The use of the name DCB SIZE tells the
reader explicitly that ALPHA will eventually be used Tfor the block
diagrammed at the beginning of this section.

11.10.3.4 BLOCK Structure-References - A specific component of a data
block is accessed by means of a structure-reference. The
structure-reference begins with the name of the data segment and then

gives wvalues for the four access-formals of the BLOCK structure
declaration.

The following example ends by assigning 7 to component D of ALPHA:
LITERAL
DCB_SIZE = 3;
OWN
ALPHA: BLOCK[DCB_SIZE];

ALPHA[1,13,19,0] = 7;

The structure-reference in this example is interpreted as follows.
First, make a copy of the structure-body of the declaration of BLOCK.
That structure-body is:
(BLOCK+O*UNIT)<P,S,E>
Next, replace the "zero'th formal-name", BLOCK, with ALPHA, giving:
(ALPHA+O*UNIT)<P,S,E>
Next, replace the allocation-formal UNIT with 4, giving:

(ALPHA+0*4)<P,S,E>

Finally, replace the four access-formals, O, P, S, and E, with the
corresponding access-actual parameters, 1, 13, 19, and 0, giving:

(ALPHA+4)<13,19,0>

This is the same as the field-reference given for component D in
Section 11.10.3.2.

11.10.3.5 BLOCK Field-Declarations - The reference to component D of
ALPHA is improved by the use of the BLOCK structure-name, but it still
requires a list of integer parameters, {1,13,19,0], that bears no
obvious relation to the description "component D of DCB".

11-45

Data Structures
PREDECLARED STRUCTURES

This problem could be solved by defining a macro, such as:

MACRO
DCB D = 1,13,19,0 §;

However, BLISS provides a special feature, the field-declaration, for
this purpose.

The following program fragment shows the complete mechanism for
handling the block ALPHA:

LITERAL
DCB SIZE = 3;
FIELD
DCB_FIELDS =
SET
pcB A = [0,0,32,0],
oce’ B = [1,0,8,0],
pcB_c¢ = [1,8,5,01,
DCcB D = [1,13,19,0]1,
DCB_E = [2,0,32,0]
TES;
MACRO
DCB = BLOCK[DCB_SIZE] FIELD(DCB_FIELDS) %;
OWN

ALPHA: DCB;

ALPHA[DCB_D] = 7;

The field-declaration defines the four-integer code for each component

and also gives a name, DCB_FIELDS, to the five field-names thus
declared.

The declaration of the macro-name DCB is the final convenience; it
permits the block layout that is associated with ALPHA to be
designated by a single name, DCB.

When the macro-call on DCB is expanded, the declaration of ALPHA
becomes:

«OWN
ALPHA: BLOCK[DCB_SIZE] FIELD(DCB_FIELDS);

The field-attribute allows the five field-names associated with
DCB_FIELDS to be used in structure-references for ALPHA.

11.10.4 BLOCKVECTOR Structures

A BLOCKVECTOR structure is a vector of blocks. The number of
elements, n, is the extent of the vector and the size of each element
is the size of a single block. The elements are numbered from 0 to
n-1. The structure-declaration for BLOCKVECTOR in each dialect is:

e In BLISS-16 -
STRUCTURE
BLOCKVECTOR[I, O, P, S, E; N, BS, UNIT=2] =

[N*BS*UNIT]
(BLOCKVECTOR+ (I1*BS+0) *UNIT)<P,S,E>;

11-46

Data Structures
PREDECLARED STRUCTURES

e In BLISS-32 -

STRUCTURE
BLOCKVECTOR([I, O, P, S, E; N, BS, UNIT=4] =
[N*BS*UNIT]
{BLOCKVECTOR+ (I*BS+0) *UNIT)<P,S,E>;

e In BLISS-36 -

STRUCTURE
BLOCKVECTOR[I, O, P, S, E; N, BS] =
[N*BS}
(BLOCKVECTOR+ (I*BS+0))<P,S,E>;

The formal names of the structure-declaration have the following
meanings:

Formal-Name Meaning
I The number of the block element. valid

values are 0 through N-1

0 The offset to a field. Vvalid wvalues are 0
through BS-1

P Bit offset from the addressable-unit to the
beginning of the field

S Size of the field in bits. Valid values are
0 through $BPVAL

E Extension rule. valid wvalues are 0 for
zero-extension and 1 for sign-extension

N The number of block elements in the vector

BS The number of allocation-units in each block
element

UNIT The number of addressable-units in the

allocation-unit.

The BLOCKVECTOR structure is a combination of the allocation and
access definitions from the BLOCK and VECTOR structures.
Using this structure, a declaration of a vector of DCB blocks (used as
an example of the BLOCK structure in section 11.10.3) is written:

OWN XXX: BLOCKVECTOR[lOO,DCB_SIZE] FIELD(DCB_FIELDS);
This declaration allocates storage for 100 DCB blocks, each of which
is three fullwords in size.
If the contents of a variable J is 2 then

.XXX[.J,DCB_D]
fetches the value of the D field of the third block in the vector.
Observe that the field-declaration used with the block discussed in
Section 11.10.3 is used with the blockvector discussed here.

11-47

Data Structures
OTHER STRUCTURES

11.11 OTHER STRUCTURES

The predeclared structures described 1in the previous section are
included in BLISS because they occur frequently in many types of
programs. However, they are only a sample of the wide range of
structures that can be defined using the structure declaration. This
section sketches some additional structures that illustrate some of
the other possibilities.

To minimize the complexity of the example structures presented, only
fullword versions of the structures are defined. These examples could
be augmented in a variety of ways to be more flexible. Also, the
structure-declarations are written in parameterized, transportable
form (using the predeclared literal $UPVAL) such that they are wvalid
in all dialects.

11.11.1 "One-Origin"™ Vector Structures

The definition of vector presented previously numbered the elements of
the wvector from 0 to n-1, where n is the number of elements of the
vector. In some applications, it T1s more natural to number the
elements from 1 to n instead.

A structure that accomplishes this is:

STRUCTURE
VECTOR1 [I; N] =
[N*$UPVAL]
(VECTOR1+(I~1)*3UPVAL);

This structure differs from the VECTCR structure previously presented
in that 1 1is subtracted from the element number before the offset
relative to the base of the vector is computed.

11.11.2 "Bounds Checking" Vector Structures

On occasion, particularly during debugging, it is desirable to perform
validity checking of the access-actuals of a structure-reference. For
the VECTOR]1 structure just given, bounds checking can be accomplished
as follows:

STRUCTURE
VECTORICHKI[I; N] =
[N*$UPVAL]
BEGIN
LOCAL T;
T =1;
IF . T LSS 1 OR .T GTR N
THEN
BEGIN
ERROR(.T);
T =1;
END;
VECTOR1CHK+ (.T~1) *3UPVAL
END;

This structure calls a routine ERROR for those cases 1in which the
value of I is not in the valid range of 1 through N inclusive.

11-48

Data Structures
OTHER STRUCTURES

11.11.3 Two-Dimensional Array Structures

A zero-origin two dimensional array structure can be defined as
follows:

STRUCTURE
ARRAY[I, J; M, N] =
[M*N*3UPVAL]
(ARRAY+ (I*N+J) *3UPVAL) ;

This structure stores elements in "row-order™ as in PL/I.
A similar structure that stores elements in one-origin "column-order",
as in FORTRAN, can be defined as follows:
STRUCTURE
ARRAYBYCOL[I, J; M, N] =
[M*N*3UPVAL]
(ARRAY+ ((J-1)*M+(I-1))*3UPVAL);

This structure differs from the previous example in the following
ways:

. I is replaced by I-1 and J 1is replaced by J-1 to get
one-origin numbering of the elements.

] I and J are interchanged in the structure-body, as are M and
N, to get column-ordering instead of row-ordering.

11.11.4 Symmetric Array Structures

A symmetric array is a square array in which the contents of A[I,J] is
equal to the <contents of A[J,I]. For such an array, it is not
hecessary to allocate storage for the entire array.

A symmetric 3-by-3 array can be diagramed as follows:

J ——>

(1,1) (1,2) (1,3)

(2,2) (2,3)

(3,3)

The number of elements needed to represent a symmetric array is:
n * (n+l)/2

where n is the number of elements in each dimension. In the 3-by-3
example above this gives 3*4/2, or 6, elements.

11-49

Data Structures
OTHER STRUCTURES

The storage for such an array can be allocated with the elements in
the following order:

(1,1), (1,2), (2,2), (1,3), (2,3), (3,3)

If j is greater than or equal to i then the 1linear position of the
(i,j) element in the storage sequence is given by the formula

J*(3-1)/2+i1

In the 3-by-3 example above, the position of the (2,3) element is
3*%(3-1)/2+2 = 5

That is, element (2,3) is the fifth element of the linear sequence.

This analysis can be incorporated into a structure declaration for
symmetric arrays as follows:

STRUCTURE
SYMARRAY[I, J; M] =
[(M* (M+1) /2) *3UPVAL]
(SYMARRAY-3%UPVAL+
(IF J GTR I
THEN
J*(J-1)/2+I
ELSE
I*(I-1)/2+4J
) *3UPVAL

Declaration and use of this structure is the same as for an ordinary
two-dimensional one-origin array. For example,

OWN SYMX: SYMARRAY([10,10];

declares and allocates a 10-by-10 symmetric array named SYMX. It
occupies 55 fullwords of storage.

The sum of the 100 "logical" elements of the array can be computed as
shown in the following:

SUM = 0;
INCR I FROM 1 TO 10 DO
INCR J FROM 1 TO 10 DO
SUM = .SUM + ,SYMX[.I,.J];

11.11.5 Non-Continuous Block Structures

The predeclared definition of the BLOCK structure given previously
assumes that all of the fields of the block are contiguous in memory.
In some cases this might not be possible or desirable. For example, a
storage management subsystem might be in use that provides only a
fixed-size block of memory. In such a circumstance it may still be
desirable to reference a "logical block™ as an entity even though it
might be represented using more than one physical block of memory.

11-50

Data Structures
OTHER STRUCTURES

The following structure illustrates a way to achieve this:

STRUCTURE
LBLOCK[O, P, S, E, I] =

(CASE I FROM 0 TO 1 OF
SET
[0]: (LBLOCK+O*%UPVAL);
[1]: (.LBLOCK+O*%UPVAL);
TES

)<P,S,E>;

Since this structure is only intended to be wused with dynamically
allocated memory, the definition does not contain a structure-size
expression.

A typical declaration of a data segment that points to an instance of
this structure is:

OWN XPTR: REF LBLOCK;

To understand this structure, consider the following diagram:

: XPTR
T -
B A
C
D
E s
F
H G

«—3%BPVAL bits—»

LBLOCK Organization

The diagram illustrates a logical block consisting of 9 fields named A
through 1I. The logical block is represented as two physical blocks.
Each physical block consists of four fullwords, the assumed fixed-size
storage management unit. The arrows indicate fields that contain the
address of the first block and of the remainder of the logical block.

11-51

Data Structures
OTHER STRUCTURES

The first physical block is like the BLOCK structure described in
Section 11.10.3. However, the access formal 1list for the LBLOCK
structure includes an additional formal name, I, that the BLOCK
structure did not have. This formal name 1is wused in the

structure-body to choose one of two expressions as the structure
address expression.

The field-name for A is defined as follows:
FIELD A = [1,0,%BPVAL/2,1,0];

When used in a structure-reference to XPTR, the 1last 0 in this
definition causes the first case-line of the structure-body to be
used, and thus the reference

XPTR[A]

is 1ike a BLOCK reference.

A field in the second physical block, such as F, is defined using a 1
as the last value, as in:

FIELD F = [1,0,%BPVAL,1,1];

The last 1 in this definition causes the second case~-line to be used.
Examination of the second case-line shows that it is just like the
first except that the contents of the first fullword of the first
physical block is used as the base for applying the offset, position,
size and extension values.

A reference to this field is written in the same way as a reference to
the A field, that is, as:

XPTR [F]

The "extra indirection" used to reference this field 1is "hidden" in
the structure and field definitions used to define the logical
structure.

11.11.6 Partially Overlayed Structures

Some programming applications require data structures that that are
similar with respect to some, but not all, of their fields.

For example, consider the symbol table of a compiler. The table must
accommodate different kinds of identifiers (symbols), and has a
different kind of block for each kind of identifier. However, in
order to make the table useful, some fields will appear in all blocks
of the table. One such common field will be the "type field", which
specifies which kind of identifier a given block represents.

As another example, consider the table of device control blocks in an
operating system. Once again, the table must have different kinds of
blocks, one kind for each kind of device; and, once again, some
fields will appear in all blocks of the table. 1In this example, the
common fields might be the priority level, a pointer to a queue of
operations, and a device type code.

11-52

Data Structures
OTHER STRUCTURES

As a basis for illustration, consider the following diagram:

F TYP | LEN $§s§\ TYP | LEN
NAME_PTR NAME_PTR
VALUE 0 z
LINK
BLOCK Type 1 BLOCK Type 2

The diagram shows two different blocks that share some common fields,
namely: LEN, TYP, and NAME PTR. Each block also has fields that are

not common with the other block; indeed, the blocks are not even the
same size.

The following declarations illustrate one way to code the definitions
of these two blocks, using BLISS-36 as the sample dialect:

FIELD

COM_FLDS =
SET
LEN = [0,0,12,0],
TYP = [0,12,12,0],
NAME PTR = {1,0,36,0]
TES,

TYPl_FLDS =
SET
F = [0,24,12,0],
VALUE = [2,0,36,0]
TES,

TYPZ_FLDS =
SET
zZ = [2,0,18,0],
o= 1[2,18,18,1],
LINK = [3,0,36,0]
TES;

MACRO
TYPl_BLOCK = BLOCK{[3] FIELD(COM_FLDS,TYPI_FLDS) %,
TYPZ_BLOCK = BLOCK{4] FIELD(COM_FLDS,TYPZ_FLDS) %;

The field-declaration defines three sets of fields:
COM_FLDS, for fields that are common to both types of block,

TYP1_FLDS, for fields that are specific to the first type of
block, and

TYP2 FLDS, for fields that are specific to the second type of
block.

11-53

Data Structures
OTHER STRUCTURES

The macro-declaration defines two macros, one for each kind of block;
the expansions give the attributes appropriate for each kind of block.

These macro-names can be used in data declarations such as:

OWN

STARTUP: TYPl BLOCK;
LOCAL .

PTR: REF TYP2 BLOCK;

Observe that in the declaration of PTR (as LOCAL) the
structure-attribute is REF BLOCK[4], where REF is given explicitly and
BLOCK[4] results from the expansion of TYP2 BLOCK. If BLOCK[4] and
FIELD (COM_FLDS,TYP2_ FLDS) had been given in the opposite order in the
macro definition of ~TYP2 BLOCK, then additional macro definitions
would be needed in order to declare data segments with REF
structure-attributes.

The definition technique shown above has two advantages:

1. The common definition information is given only once, thereby
avoiding the ©possibility of clerical errors in giving the
same information in multiple field-set definitions.

2. Depending on specific details, changes or additions to the
common fields can be made in one place, which is easier and
more reliable than making corresponding changes in many
places.

11.11.7 General Purpose Structures for Default Structure References

Some programming applications involve complicated data structures
using blocks of various types connected together by pointers. If the
nature of the application involves frequent access to blocks related
to a given block by "following pointers", there may well be notational
advantages to using a default structure (see Sections 11.8 and 18.2).

To illustrate this, first consider how an example might be coded
without wusing default structures. Suppose the following block is
being used to represent a node in a tree structure, such as might be
used for expressions in a compiler.

oP

LEFT_OPND

RIGHT_OPND

The op field is used to contain a code for the kind of arithmetic
operator represented, and the LEFT OPND and RIGHT OPND fields are used
to contain addresses of other such nodes.

11-54

Data Structures
OTHER STRUCTURES

A routine to compare the OP fields of the two subnodes of a given node
for equality might be coded as follows:

ROUTINE COMPARE_SUBOPS (NODE) =

BEGIN

MAP NODE: REF TREE FIELD(TREE_FIELDS);

LOCAL
L_PTR: REF TREE FIELD(TREE_FIELDS),
R_PTR: REF TREE FIELD(TREE_FIELDS);

L_PTR = .NODE[LEFT_OPND];

R_PTR = .NODE[RIGHT OPND];

IF .L_PTR[OP] EQL .R_PTR[OP]

THEN

eeo; ! Actions if subnodes have same OP value
END;

The structure and field name definitions assumed in this example
should be obvious from earlier examples and are not shown.

The same effect can be achieved using a default structure as follows:

ROUTINE COMPARE_SUBOPS1 (NODE) =
BEGIN
SWITCHES STRUCTURE (REF TREE);

IF .NODE([LEFT_OPND] [OP] EQL .NODE[RIGHT_OPND] [OP]
THEN

cee} ! Actions if subnodes have same OP value
END;

This second version is slightly shorter. It is also more suggestive
of the "logical" access being performed because intermediate
assignments are not needed simply to obtain a data segment name (such
as L_PTR in the first version) that is declared with the appropriate
structure properties for each step along the path of access.

Observe that the default structure in this example is a REF structure.

This means that each step in the access path necessarily makes a fetch
to obtain the base address for the next field access.

11-55

CHAPTER 12

12.1

12.1.
12.1.
.3
12.1.

12.1

12.2

12.2.
12.2.
12.2.

12.3

12.3.
12.3.

12.4

12.4.
12.4.
12.4.
12.4.
12.4.
12.4.
12.4.5
«5.
12.4.5

12.4

12.5

12.5.
12.5.
12.5.
12.5.

12.6

12.6.
12.6.
12.6.

12.7

12.7.
12.7.
12.7.

1
2

4

1
2
3

1
2

1
2
3
4
5

5.1
.2
3
4

1
2
3
4

1
2
3

1
2
3

ROUTINES

ORDINARY-ROUTINE-CALLS
syntax < .

Restrictions
Semantics . ¢« ¢ ¢ o ¢ .
Pragmatics

GENERAL-ROUTINE-~ CALLS
Syntax .« « « + o . .
Restrictions
Semantics

ROUTINE- DECLARATIONS .
Syntax
Semantics

ORDINARY~ROUTINE~ DECLAR
Syntax .« « + « + o .
Restrictions
Defaults
Semantics
Pragmatics

Parameter Passing .

e
T
e ® s e e s o

T

e s & e Fe v e e
noc.Hoqov

-.ooZoou
w

s 8 e e e e @

Allocation of Formal- Name Data

Attributes for Formal-names

Computed Routine Addresses

GLOBAL-ROUTINE-DECLARATIONS
Syntax . « ¢ ¢ ¢ s ¢ o o
Restrictions
Defaults « ¢« « .«
Semantics . . .

FORWARD—ROUTINE—DECLARATIONS
SYyntax .« ¢« ¢« o o s s e e
Restrictions
Semantics

EXTERNAL-ROUTINE- DECLARATIONS
Syntax
Restrictions
Semantics . . .+ « 4 . . .

Segments

¢« o s e e s

* e & e & o o e ¢

s o o e o o

* " & e e * 8 s & e+ & e 4+ e e ¢ o

CHAPTER 12

ROUTINES

Routines are the logical units from which a program is built. Each
routine describes a portion of the program that is relatively complete
and independent. The design of BLISS permits a routine to have its
own block structure and local data.

A program has a single main routine (see MAIN module-switch, Section
19.2). The main routine controls the computation, but it can delegate
parts of the computation to subordinate routines. Each subordinate
routine can, in turn, delegate part of its computation to its own
subordinate routines. A routine can also call an external routine
(one defined outside of its own block or module) to perform a commonly
needed function, for example.

The use of routines has two sides: the calling of routines and the
declaration of routines. The first two sections of this chapter
describe routine-calls. The remaining five sections describe
routine-declarations.

The 1linkage-declaration, which controls the instruction sequence
generated for a call on a given routine, and the register-management
discipline used within the routine, is described in Chapter 13 along
with other linkage-related declarations.

12.1 ORDINARY~ROUTINE-CALLS

A routine-call causes the execution of a routine that has been
declared as part of the same module or some other BLISS module, or of
a program written in another language.

Two kinds of routine-calls are provided: ordinary and general. The
ordinary-routine~call is by far the most commonly used form: it gives
the name of a routine and relies on the compiler to determine, from
the declaration of the named routine, the appropriate linkage (or
calling sequence).

A general-routine-call 1is self-contained. It gives all of the
information needed for calling the routine.

12-1

Routines
ORDINARY-ROUTINE-CALLS

An example of an ordinary-routine-call 1is given in the following
program fragment:

OWN
A,
B;

EXTERNAL ROUTINE
EXCHANGE: NOVALUE;

EXCHANGE (A, B);
END

The routine EXCHANGE is declared in some other module; it exchanges
the contents of its parameters. The routine-call EXCHANGE (A, B)
causes the contents of the actual-parameters A and B to be exchanged.
(A declaration of routine EXCHANGE is given in Section 12.4.5.1.)

12.1.1 Syntax

ordinary-routine-call
routine-call general-routine-call
ordinary-

routine-call routine-designator
actual-parameter ,...
(nothing)

routine-designator primary
actual-parameter expression

12.1.2 Restrictions

The number of actual-parameters in a routine-call must agree with the
number of formal-names in the routine-declaration. (This restriction

can be relaxed through use of the 1linkage-functions described in
Section 13.6.)

The value of each actual-parameter must be consistent with the context

in which the corresponding formal-name is used in the
routine-declaration.

The evaluation of the routine-designhator must yield the value of a
name that has been declared ROUTINE.

The linkage of the routine-designator (determined as described in
Section 12.1.3) must be the same as the linkage-attribute in the
declaration of the routine that is called.

12-2

Routines
ORDINARY-ROUTINE-CALLS

The order in which the routine-designator and actual-parameters are
evaluated 1is wundefined. (This rule concerning undefined order of
evaluation is similar to the rules for operator expressions discussed
in Section 5.1.4.) A module must not depend upon any particular
evaluation order for these expressions.

12.1.3 Semantics
An ordinary-routine-call is interpreted as follows:
1. Evaluate the routine-designator and the actual-parameters.

2. Determine the linkage to be used with the routine-designator.
If the routine-designator is a routine-name, then the linkage
is given by the linkage-attribute (explicit or default) in
the declaration of the routine-name. Otherwise, the linkage
is given by the linkage-name established in a LINKAGE switch
or, 1if no LINKAGE switch applies, the linkage is the default
linkage-name for the dialect in use (BLISS for BLISS-16/32;
BLISS36C for BLISS-36).

3. Associate the actual-parameters with the formal-names of the
routine called. The value of the 1i'th actual-parameter
becomes the content of the i'th formal-name.

4, Create a stack frame. The kind of stack frame and the
details of 1its organization depend on the linkage of the
routine.

5. Evaluate the routine-body.
6. Delete the stack frame.

7. If a value is returned, use that value as the wvalue of the
routine-call.

The linkage used in a routine-call does not affect the semantics of
the call, but instead affects the details of how the call is carried
out. Linkages are described in Chapter 13.

12.1.4 Pragmatics

An actual-parameter in a routine-call can be a %REF standard function.
This function is especially designed for use in routine-calls. It is
described and illustrated in Section 5.2.2.3

12-3

Routines
GENERAL-ROUTINE-CALLS

12.2 GENERAL-ROUTINE-CALLS

A routine whose address is computed during execution can be called
with a linkage other than the default linkage using a
general-routine-call. An example of a general-routine-call is given
in the following program fragment:

EXTERNAL ROUTINE
Fl: FORTRAN_SUB NOVALUE,
F2: FORTRAN_SUB NOVALUE,
F3: FORTRAN_SUB NOVALUE;
BIND
TABLE = UPLIT(F1,F2,F3) : VECTOR;

FORTRAN SUB(.TABLE[.I], Pl, P2)

The address of the FORTRAN routine to be called is computed by
fetching an element of a vector. Because the routine has linkage-type
FORTRAN SUB, the general-routine-call must be used to give the

compiler the information necessary to generate the correct form of
routine-call,

12.2,1 Syntax

general-routine- linkage-name
call

({ routine-address

, actual-parameter ,...
nothing

)

linkage-name name

routine-address }

actual-parameter expression

12.2.2 Restrictions

BLISS-16 ONLY

A linkage-name defined with the linkage-type INTERRUPT may not be
used in a general-routine-call.

The evaluation of the routine-address expression must yield the
address of a routine that is declared with the specified linkage-name
as its linkage-attribute.

The number of actual-parameters in a routine-call must agree with the
number of formal-names in the routine-declaration. (This restriction

can be relaxed through use of the 1linkage-functions described in
Section 13.6.)

12-4

Routines
GENERAL-ROUTINE-CALLS

The value of each actual-parameter must be consistent with the context
in which the corresponding formal-name is used in the
routine-declaration.

The order in which the routine-address expression and
actual-parameters are evaluated is not specified. A module must not
depend upon any particular evaluation order for these expressions.

12.2.3 Semantics

In a general-routine-call, the routine-address expression is
interpreted as the address of the routine to be called and the
remaining expressions are interpreted as the actual parameters of the
call. The 1linkage to be used is given by the linkage-name. 1In all
other respects, the semantics is the same as for an
ordinary-routine-call.

12.3 ROUTINE-DECLARATIONS

A routine-name can be declared in five different ways in BLISS. An
ordinary-routine-declaration 1is wused to give the definition of a
routine that is used only in the block in which it is declared. A

global-routine-declaration is used to give the definition of a routine
that is used in other modules as well as in the module in which it is
declared. A forward-routine-declaration declares the name of a
routine so that it can be called from a point in the block that
precedes its complete definition, which is given by an ordinary- or
global-routine-declaration. An external-routine-declaration declares
the name of a routine whose definition is given as a
global-routine-declaration in another module. A
bind-routine-declaration gives the definition of the address of a
routine in terms of an expression.

The first four ways of declaring a routine-name are described in the
following sections. The bind-routine-declaration is described in
Section 14.4.

12.3.1 Ssyntax

ordinary-routine-declaration
routine-declaration global-routine-declaration

forward-routine-declaration
external-routine-declaration

12.3.2 Semantics

The semantics of the routine-declaration is given in the following

sections where each kind of routine-declaration is considered
separately.

12-5

Routines
ORDINARY-ROUTINE-DECLARATIONS

12.4 ORDINARY-ROUTINE-DECLARATIONS

An ordinary-routine-declaration defines a routine. The scope of the
declared routine-name is the immediately containing block (including
all contained blocks). The declaration includes an expression, the
routine-body, which is evaluated each time the routine is called. The
declaration also includes a list of formal-names. When the routine is
called, the value of each actual-parameter in the routine-call is
assigned to the corresponding formal-name. The formal-names can be
accessed in the routine-body as if they were LOCAL data segment names,
except that values must not be assigned to them.

A BLISS routine can be recursive. A routine is recursive if it can be
called while a previous call is still active. Recursion can be direct
or indirect. Direct recursion occurs when the routine contains a call
on 1tself; for example, the routine-body for the routine A contains a
call on the routine A. 1Indirect recursion occurs when the routine
contains a call on another routine, which ultimately results in a call
on the routine being declared; for example, the routine-body for the
routine A contains a call on the routine B, which contains a call on
the routine A.

An example of an ordinary-routine-declaration is:
ROUTINE AVERAGE3(F1,F2,F3) = (.Fl1 + .F2 + .F3)/3;

The routine AVERAGE3 has three formal-names Fl, F2, and F3. An
example of a call on this routine is:

AVERAGE3 (5, .A, .B*.(C)

Another example of an ordinary-routine-declaration is the declaration
of a factorial routine, This routine computes the mathematical
function factorial(n):

ROUTINE IFACT (N) =

BEGIN

LOCAL
RESULT;

RESULT = 1;

INCR I FROM 2 TO .N DO
RESULT = .RESULT*.I;

«RESULT

END;

When the routine IFACT is called it computes the factorial of the
actual-parameter specified. Observe that if the content of N is less
than 2, the indexed-loop is not executed and the value of the routine
is 1. An example of a call in this routine is:

IFACT(.A * ,B)

In this example, if the content of A is assumed to be 2 and the

content of B is assumed to be 3, the result returned by the call is
720.

12-6

Routines
ORDINARY-ROUTINE-DECLARATIONS

The factorial routine could be rewritten as a directly recursive
routine, as follows:

ROUTINE RFACT (N) =
IF .N GTR 1
THEN
.N * RFACT (.N - 1)
ELSE
1;

(For the computation of a factorial the first version, IFACT, is more

efficient than the recursive version, RFACT. Recursion is used when
it is the most natural and/or efficient method.)

12.4.1 Syntax

ordinary-routine-

declaration ROUTINE routine-definition ,... ;
(formal-name ,...)
routine-definition routine-name nothing

: routine-attribute ...
nothing

= routine-body

formal-name

routine-name
name

routine-attribute linkage-attribute

novalue-attribute
psect-allocation

AN

rout ine-bod expression
Y P

12.4.2 Restrictions
The number of formal-names in the routine-declaration must agree with
the number of actual-parameters in the routine-call. (This

restriction can be relaxed through use of the 1linkage-functions
described in Section 13.6.)

The context in which the content of the formal-name is used must be
consistent with the value supplied by the actual-parameter.

A formal-name must not be assigned a value.

Both the value of a formal-name and its content are wundefined except
during the evaluation of the routine-body.

12-7

Routines
ORDINARY-ROUTINE-DECLARATIONS

If the routine is declared with the NOVALUE attribute, it must not be
called in a context that requires a value and if any RETURN expression
in the routine-body has a returned-value, the expression is evaluated
but its wvalue is not used. If the routine does not have the NOVALUE
attribute, any RETURN expression in the routine-body as well as the
routine-body itself must have a returned-value.

Suppose the routine-body of a given routine, routine A, contains the
declaration of another routine, routine B. If a name is a formal-name
for routine A, then that name cannot be used as such within routine B.
Such wusage would be an "up-level" reference, which is prohibited for
formal-names just as for local-names (see Section 10.5).

12.4.3 Defaults

Each formal-name is implicitly declared by a routine-declaration. It
is assumed to be a scalar, with the default allocation-unit and
extension-attribute (BLISS-16/32 only). 1If this assumed declaration
is not appropriate, a map-declaration can be used to provide other
attributes.

If a linkage-attribute is not given and the routine is in the scope of
a LINKAGE switch, then the default 1linkage-attribute is the
linkage-name given by the LINKAGE switch (see Section 18.2 and 19.2).
Otherwise, the default 1is the predeclared 1linkage-name BLISS for
BLISS-16/32, or BLISS36C for BLISS-36.

12.4.4 Semantics

The compiler makes use of the information in an ordinary-routine-
declaration as follows:

1. The attributes and keywords are processed.

2. The routine-body is processed. Formal-names are treated as
LOCAL variable names that are declared in an implicit block
enclosing the routine-body and are initialized with the value
of the corresponding actual-parameter in a routine-call.

3. If the routine is declared with the NOVALUE attribute, the
mechanism for returning a value is suppressed.

12.4.5 Pragmatics

The following sections give examples that illustrate various aspects
of the routine facility of BLISS.

12.4.5.1 Parameter Passing - The value of each actual-parameter of a
routine-call is passed to the routine by means of the corresponding
formal-name. However, the value of the formal-name is not the wvalue
of the actual-parameter. Instead, each formal-name designates a data
segment that contains the value of the actual parameter. The data
segment designated by the formal-name is defined only during
evaluation of the routine-body, and it is "temporary" in that sense.

12-8

Routines
ORDINARY-ROUTINE-DECLARATIONS

Since it is the value of an actual-parameter that is normally of
interest (rather than the address of the temporary data segment that

contains that value), a use of a formal-name without a preceding
fetch-operator is often an error.

For example, consider the following routine-declaration:

ROUTINE AVERAGE3(F1,F2,F3) =
(.F1 + .F2 + .F3)/3;

This routine is called with three actual-parameters whose values are
to be averaged. An example of a call on the routine is:

AVERAGE3(5, .A, .B*.C)

Each formal-name of the routine can be thought of as a special kind of
LOCAL name that is declared in the implicit block that surrounds the

routine-body. Therefore, the routine-body for AVERAGE3 can be thought
of as the following block:

BEGIN

LOCAL
F1l,
F2,
F3;

Fl 5;

F2 JA;

F3 .B*.C;

(.F1 + .F2 + .F3)/3

END

This interpretation shows that it is .Fl, .F2, and .F3 that represent
the values to be averaged, not Fl, F2, and F3.

In the preceding example, the routine-call supplied values that were
intended for calculation. It is also possible for a routine-call to
supply values that are intended for use as addresses. For example,
consider the following routine-declaration:

ROUTINE EXCHANGE (X,Y): NOVALUE =
BEGIN
LOCAL TEMP;
TEMP = ..X;

X = ..Y;
.Y = .TEMP;
END;

This routine is called with two actual-parameters whose values are the
addresses of data segments. An example of a call on the routine is:

EXCHANGE (Q,R)

When this call is evaluated, the contents of Q and R are interchanged.
Once again, each formal-name can be thought of as a special kind of
LOCAL name. Thus the given parameters Q and R are represented by .X
and .Y, respectively, not by X and Y.

Note that routines coded to be called from FORTRAN must assume that
actual-parameter values are always the addresses of data segments.

This is so because FORTRAN routines pass parameters by address, not by
value,

12-9

Routines
ORDINARY-ROUTINE-DECLARATIONS

As an example, consider the following modification of AVERAGE3:

ROUTINE AVERAGE3A(F1,F2,F3) =
(..F1 + ..F2 + ..F3)/3;

This routine requires that the actual-parameters be the addresses of

the values to be averaged. Thus a BLISS call on this routine might
be:

AVERAGE3A(UPLIT(5), A, RREF(.B*.C))

This call on AVERAGE3A gives the same value as the call, given
earlier, on AVERAGE3. The first actual-parameter uses a UPLIT (see
Section 4.4) to supply the address of the numeric-literal 5. The
second actual-parameter simply uses the name A (without a fetch
operator) to get the address of the value. The third actual-parameter
uses the $REF standard function (see Section 5.2.) to supply an
address for the value of the expression .B*.C.

The routine AVERAGE3A uses addresses of values where values would have
been sufficient for, e.g., interaction with other BLISS routines.
That is to say, it does not minimize indirection. However, the
routine is wvalid and, coded in this way, can be made callable from
programs written in the FORTRAN language by the addition of the
FORTRAN_FUNC linkage-attribute (see Section 13.5).

12.4.5.2 Allocation of Formal-Name Data Segments - While data
segments for formal-names are 1like 1local data segments in most
respects (as discussed in Section 12.4.5.1), they are not necessarily
allocated in the same way as local data segments. Formal data
segments are allocated and assigned values by the routine making a
call, rather than by the routine that is called. The calling routine
may arrange to allocate formals in static memory that 1is protected
from write access rather than, for example, in a temporary segment in

a stack frame. This is an optimization because, under suitable
conditions, the «calling routine does not need to allocate and assign
values for the formals each time the call is made. Moreover, the

calling routine may even be able to use the same formal data segments
for different routine calls if they have the same number and sequence
of actual parameter values., A restriction given in Section 12.4.2,
namely, that a formal name must not be assigned a value, assures that
it is valid for a calling routine to use such optimizations.

12.4.5.3 Attributes for Formal-names - If the default attributes
(UNSIGNED WORD 1in BLISS-16, UNSIGNED LONG in BLISS-32, none in
BLISS-36) are not appropriate for a formal-name, a map-declaration can
be used to supply the desired attributes. An example of the use of
the map-declaration in an ordinary routine declaration is:

ROUTINE ZEROBIT(A,B,C): NOVALUE =
BEGIN
MAP A: REF BITVECTORI[12];
IF .A[.B]
THEN
BEGIN
A{.B] = 0;
.C=..C +1;
END;
END;

12-10

Routines
ORDINARY~ROUTINE-DECLARATIONS

The map-declaration is used to supply the structure—-attribute REF
BITVECTOR[12] for the first formal-name, A. Suppose the content of B
is i. The routine ZEROBIT tests the i'th bit of the bitvector
structure A. If that bit is 1, it is set to 0 and the content of the
location pointed to by .C is incremented.

12.4.5.4 Computed Routine Addresses - A routine-call usually begins
with a routine-name, which designates the routine in an explicit and
constant way. However, a routine-call can begin with any expression
that vyields a valid routine address. As the basis for an example,
consider the following sketch of a routine-~declaration:

ROUTINE ENTVAL(A,ERR): NOVALUE =
BEGIN
.. (Try to enter .A in LISTI)
IF .FILLED THEN (.ERR) (1, .A);
... (Try to enter .A in LIST2)
IF ,FILLED THEN (.ERR) (2, .A);
END;

The details are omitted, but assume that this routine tries to put the
content of A into two lists, LIST1 and LIST2. If the list is filled
up, an error message must be printed. However, ENTVAL does not print
a message and does not even call a specific routine to print an error
message. Instead, ENTVAL calls a routine whose address is given as
one of the formal-names.

An example of the use of ENTVAL is:

ROUTINE ERRX(N,VAL): NOVALUE =
BEGIN
... (Print error message for invalid .X)
END

ENTVAL (.X, ERRX)

In this example, ENTVAL is called in order to enter the contents of X
in the lists. The second parameter of the call is ERRX, which is the
name of a routine designed especially to report an invalid value of
.X. Observe that the name ERRX in this call does not call the routine
ERRX because there are no parentheses following it. Thus, ERRX is not
a routine call. Presumably, the same program contains other calls on
ENTVAL, and different <calls use different routines tc report an
invalid value.

12.5 GLOBAL-ROUTINE-DECLARATIONS

A global-routine-declaration provides the same information as the
ordinary-routine-declaration. The only difference between these two
declarations is their scope. A routine that 1is declared in an
ordinary-routine-declaration can only be called in the block in which
the declaration is given (Section 8.2.4). A routine that is declared
in a global-routine-declaration can be called outside the block in
which it is declared. The scope of the routine-name 1is extended
beyond the block by means of one or more external-routine-declarations
in other blocks or modules.

12-11

Routines
GLOBAL-ROUTINE-DECLARATIONS

The only differences between the syntax of the ordinary-routine-
declaration and the global-routine-declaration are that the GLOBAL
keyword is required in the 1latter and, in BLISS-32 only, the
weak-attribute is permitted in a global-routine-declaration.

12.5.1 Syntax

global~routine-
declaration GLOBAL ROUTINE global-routine-definition ,...

.
4

global-routine- (formal-name ,...)
definition routine-name nothing

: global-routine-attribute ...
nothing

= routine-body

routine-name name
formal-name

novalue-attribute

global-routine- linkage-attribute
attribute psect-allocation
weak-attribute <= 32 Only
routine-body expression

12.5.2 Restrictions

The restrictions given in Section 12.4.2 for ordinary-routine-
declarations also apply to global-routine-declarations.

BLISS-16 and BLISS-36 restrictions on names declared as global are
given in Section 4.5.2.

12.5.3 Defaults

The defaults given in Section 12.4.3 for ordinary~routine-
declarations also apply to global-routine-declarations.

12.5.4 Semantics

The compiler makes use of the information in a global-routine-
declaration as follows:

1. The global nature of the routine is recorded. An indicator
is set for the 1linker to show that this is a global~-
declaration. If the routine-declaration has the

weak-attribute, another indicator is set for the linker.

12-12

Routines
GLOBAL-ROUTINE-DECLARATIONS

2. The semantics are then the same as the semantics for an
ordinary-routine-declaration, given in Section 12.4.4.

12.6 FORWARD-ROUTINE-DECLARATIONS

Every routine must be declared by an ordinary- or global-routine
declaration. Sometimes, however, it is necessary to use the routine-
name before its full definition is given. Prior to such a "forward"
use of the name, a forward-routine-declaration must be used to declare
the name as a routine-name and to associate a limited set of
attributes with it.

As an example of the use of a forward-routine-declaration, consider
the two routines A and B. The routine A calls the routine B and the
routine B calls the routine A. If the ordinary-routine-declaration
for A is given first, a forward-routine-declaration must be given for
B. If the ordinary routine-declaration for B 1is given first, a
forward-routine-declaration must be given for A.

In general, the use of a forward-routine declaration (at the beginning
of a block) to specify all of the routine-names that are declared in
the remainder of the block serves as a useful "table of contents" and
allows the routines to be written in an order that is independent of
their caller/callee relationships.

12.6.1 Syntax

forward-routine-
declaration FORWARD ROUTINE forward-routine-item ,... ;

forward-routine- : fwd-routine-attribute ...
item routine-name nothing

novalue-attribute
fwd-routine- linkage~attribute

attribute psect-allocation
addressing-mode-attribute <= 32 Only

routine-name name

12.6.2 Restrictions

A routine-name declared in a forward-routine-declaration must appear
in an ordinary- or global-routine-declaration later in the same block.

After any default attributes are filled in, a forward-routine-
declaration must agree with its corresponding ordinary- or global-
routine-declaration with respect to the set of attributes allowed in
both declarations.

12-13

Routines
FORWARD-ROUTINE-DECLARATIONS

12.6.3 Semantics

A forward-routine-declaration declares a name to be a routine—name
whose definition is given later in the same block, and associates with
that name the set of attributes needed for generation of calls to the
named routine. The semantics of the BLISS-32 addressing-mode-
attribute (which is not one of the ordinary or global routine-
attributes) is described in Section 9.13.

12.7 EXTERNAL-ROUTINE-DECLARATIONS

Often a routine must be defined in one block of a program and called
in other blocks of the same program. Usually this situation arises

from the organization of the pProgram into separately compiled modules,
but this need not be the case.

In order to provide for the linkage between routine-calls and routine
definitions that occur in different scopes (e.g., different modules),
external-routine-declarations must be used. Specifically, the
routine-name is declared in one block by a global-declaration (which
defines the routine) and is declared in the other blocks by
external-declarations.

12.7.1 Syntax

external-routine-
declaration EXTERNAL ROUTINE external-routine-item rees

.
’

external-routine- ¢ exXxt-routine-attribute ...
item routine-name nothing

routine-name name

novalue~attribute

ext-routine- linkage-attribute
attribute psect-allocation
addressing-mode-attribute <= 32 Only
weak-attribute <= 32 Only

12.7.2 Restrictions

A name must not be declared EXTERNAL ROUTINE unless it is declared
GLOBAL ROUTINE or GLOBAL BIND ROUTINE in some other block of the same
program. This restriction does not apply, however, to an EXTERNAL
name that is declared with the weak-attribute (BLISS-32 only; see
Section 9.14),

12-14

Routines
EXTERNAL-ROUTINE-DECLARATIONS

12.7.3 Semantics

An external-routine-declaration informs the compiler that the
definition of the routine-name is not in the current block. The
compiler takes note of the attributes given in the
external-routine-declaration, Then, each time a use of the declared

routine-name is encountered, the compiler leaves a blank space in the
object code for the routine-address. Later, the linker fills in the
blank with a specific address.

The attributes in an external-routine~declaration provides the
information the compiler and linker need to proceed in the absence of
a full routine-declaration in the same module. The linkage attribute
gives the compiler information about the type of call to generate for
the routine and the availability and uses of registers within the
routine. 1In particular, the novalue-attribute permits the compiler to
detect an invalid call on the routine (a call that expects a value).
The addressing-mode-attribute and weak-attribute (BLISS-32 only) are
described in Chapter 9.

12-15

CHAPTER 13

LINKAGES

13.1 INTRODUCTION TO LINKAGE-DECLARATIONS . . .
13.1.1 Register Usage . . « « ¢ « o o o o o o
13.1.1.1 Special PUrpoSeS . . « + o« o o o o o o
13.1.1.2 General PULPOSES . ¢ o « o o o o o o o
13.1.1.3 Other PUrPOSES . « o o o o s o & o o =
13.1.1.4 Multiple PUrposes . . . « o« o o s o =
13.1.2 Typical Syntax . « . « ¢« + o« o o o o o &
13.1.3 DiscusSsSion . « o ¢« 4 o ¢ o o e o s e e
13.1.3.1 Linkage-TypesS « o« « o o « o« o o o o o
13.1.3.2 Parameter-Locations . e e e e e e s
13.1.3.2.1 Argument Pointer Method e s e s e e
13.1.3.2.2 Implicit Stack Location Method . . .
13.1.3.2.3 Register Parameters . . . « « « « =«
13.1.4 Linkage-Options . . . « ¢« « ¢ & ¢ « < =«
13.2 BLISS-16 LINKAGE-DECLARATIONS . . « .« . =
13.2.1 SYNEAX o o« ¢ o o o o « o s e = e e o s e
13.2.2 Restrictions . « ¢« + ¢ o o o« ¢ o o « & &
13.2.3 DefaultsS . ¢ o« o ¢ o o o o o o o o s o
13.2.4 Semantics . . e o 4 s s s e e e e o
13.2.4.1 INTERRUPT Llnkage Type . « « =« . .

13.2.4.2 EMT, TRAP, and IOT Llnkage—Types e .
13.2.4.3 RSX AST Linkage-TYPe . « « « « « s o =
13.2.5 BLISS—16 Predeclared Linkage-Names . . .
13.3 BLISS—-32 LINKAGE-DECLARATIONS . . « « . =
13.3.1 SYNEAX o« o o o o o o 4 e e s e e e e s
13.3.2 Restrictions . . « « ¢« o &+ & o o o « + &
13.3.3 DefaultsS . « o o o o o o o o o o o o o =
13.3.4 Semantics e e e s e e s e s e
13.3.5 JSB Linkage Examples e e s s e e e e e
13.3.6 BLISS-32 Predeclared Linkage-Names . . .
13.4 BLISS-36 LINKAGE-DECLARATIONS . . . « . .
13.4.1 SYNEax « « ¢ ¢ o 4 4 s e e e e e e e e s
13.4.2 Restrictions . . + ¢ ¢ o o ¢ « o o o o =
13.4.3 Defaults
13.4.3.1 Defaults for the PUSHJ Llnkage Type .
13.4.3.2 Defaults for the F10 Linkage-Type . .
13.4.4 Semantics
13.4.5 BLISS-36 Predeclared Llnkage Names .« e .
13.5 COMMON PREDECLARED LINKAGE-NAMES
13.5.1 The BLISS Linkages . . « o « ¢ + o o o =
13.5.2 The FORTRAN Linkages . . « « « ¢ « « o« &
13.6 LINKAGE-FUNCTIONS . ¢« o o o o o o o o =« =
13.6.1 Common Linkage-Functions . . . « « . . .
13.6.1. Definition . « & ¢« & o ¢ « ¢ o o o + =
13.6. l. Examples
13.6.2 BLISS-16 and BLISS- 32 Llnkage Functlons
13.7 GLOBAL REGISTER DATA SEGMENTS AND LINKAGES
13.7.1 DiscuSsSion . o & ¢ o + o o o o« s e o
13.7.2 Guidelines for BLISS-16 . . « .+ « « =« =«
13.7.3 Guidelines for BLISS-32 . . « « « + « &
13.7.4 Guidelines for BLISS-36 . « ¢ « « « o =

13-2
13-2
13-3
13-4
13-4
13-4
13-5
13-6
13-6
13-6
13-6
13-7
13-7
13-7
13-8
13-9
13-9
13-10
13-11
13-12
13-13
13-13
13-13
13-13
13-14
13-14
13-15
13-16
13-17
13-18
13-18
13-19
13-19
13-20
13-21
13-21
13-22
13-22
13-23
13-23
13-23
13-24
13-24
13-25
13-26
13-27
13-27
13-31
13-32
13-32
13-33

CHAPTER 13

LINKAGES

A linkage 1is the ©particular calling-sequence convention wused in
calling a routine, and the register-management discipline used during
execution of the routine that is called. The type of object code
generated by the compiler for a routine-call is determined by the
linkage-definition associated with the called routine, The
linkage-definition also controls the object code generated for the
entry and exit sequences of the routine with which it 1is associated.
Thus, a 1linkage serves as the bridge between a routine and any
routines that call it.

A linkage-definition may be explicitly declared in a
linkage-declaration. Each BLISS dialect also provides several
predefined linkages: one designed for standardized calls between
BLISS-compiled routines (used as the default linkage), and others for
calls between BLISS-compiled routines and FORTRAN-compiled routines.
In the case of BLISS-36, a predefined linkage is also provided for
compatibility with BLISS-10.

Each linkage-definition, whether predefined or explicitly declared, is
identified by a 1linkage-name. Every routine, in turn, has a
linkage-name associated with it, either by default or by explicit
specification of a linkage-attribute in the routine's declaration.

The BLISS linkage facility consists of the following features:
e Linkage-declarations
e Predeclared linkage-names
e Linkage-functions (a class of executable-functions)
® Global-register-declarations
® External-register-declarations

This chapter describes the first three language features, and then
discusses their use in conjunction with the global- and
external-register-declarations. Primary descriptions of the register
declarations are given in Chapter 10.

In general, the BLISS linkage facility provides a type of control over
the compiled code that is quite unusual in high-level languages, but
which is often needed for efficiency-sensitive system applications.
It allows, when necessary, a high degree of control over the kind of
calling sequence generated by the compiler, and the register-usage
conventions that are observed by related routines. This control might
be exercised, for example, in order to optimize a given routine or

13-1

Linkages
INTRODUCTION

group of routines (e.g., a subsystem) 1in terms of either size or
execution time, or to produce a BLISS routine suitable for wuse with
software written in other languages.

13.1 INTRODUCTION TO LINKAGE-DECLARATIONS

A linkage-declaration declares a linkage-name that 1is defined by a
particular combination of linkage characteristics, These
characteristics include:

e Linkage-type -- The general type of calling sequence, in
terms of the specific transfer-of-control instructions and/or
the software calling convention.

e Parameter-location options - The method by which
actual-parameters are passed.

® Register-usage options -- Specification of the registers that
are saved and restored across a call, and of those that will
not be used in a called routine,.

® Global-register options -- Specification of register data
segments that are shared between routines.

The linkage~declarations of each BLISS dialect are quite
system-specific; they are tailored to the particular hardware
capabilities of each system and to the major software calling
conventions in wuse on those systems. Nonetheless, there are many

aspects of linkage-declarations that apply to two or more of the BLISS
dialects.

This introduction to linkage-declarations explains the common aspects
in three sections., The first discusses the many ways that registers
can be used. This section 1is especially important because it
establishes much of the vocabulary and many of the concepts used
throughout this chapter. The second section presents a partial syntax
for 1linkage-declarations that includes constructs common to at least
two of the BLISS dialects. The third section describes the parts of
the 1linkage-declaration and further develops the concepts introduced
in the first section.

13.1.1 Register Usage

During the execution of a routine, some temporary storage 1is usually
needed for holding values until they are wused. The stack frame
associated with the execution of the routine is one place to hold such
values and the general registers are another. The general registers
are more often preferable to the stack frame because they can be
accessed more quickly and/or with shorter instructions. However, when
one routine calls another, some consistent rules regarding register
usage must be observed in order for both to use the machine registers
correctly.

The different uses of these registers can be broadly classified as
special purpose and general purpose. Special purpose registers are
dedicated for the same particular purpose among a group of routines;
frequently that group 1is all of the routines of a program. General
purpose registers are used for a variety of purposes by different
routines and even within a single routine. This classification is

13-2

Linkages
INTRODUCTION TO LINKAGE-DECLARATIONS

hardly precise and does not even consider certain other kinds of usage
that are described later; but it does provide a basis for discussion.

13.1.1.1 Special Purposes - In BLISS there are five types of special
purposes to consider for register wusage: program counter, stack
pointer, frame pointer, argument pointer, and value-return register.
(As will be seen, registers are not dedicated for all of these
purposes in every routine,)

The program counter register is used to contain the address of the
next 1Instruction to be executed. In BLISS-16, the program counter is
always register 7 and in BLISS-32 it is always register 15, In
BLISS-36, the program counter is a special, not generally accessible
part of the machine architecture, and thus does not figure in BLISS-36
register assignments.

The stack pointer register is used to contain the address of a portion
of memory used for temporary storage during the execution of each
routine. When a routine is called, the stack pointer is adjusted to
point to a new area and when the routine returns the previous address
is put back. The stack pointer may be adjusted many times during the
execution of the routine as the need for temporary storage grows and
diminishes in different parts of the routine. The portion of storage
between the original address in the stack pointer and the current
value at any particular point in time is known as the stack frame for
that call of the routine.

Stack frames can vary greatly in size and complexity. A stack frame
might be as small as a single fullword containing the program counter
for returning to the calling routine or it might be very large,
containing many values, fields, addresses, preserved register values,
and so on.

The frame pointer register is used to contain the address of a fixed
part of the stack frame of a routine. 1In contrast with the stack
pointer, which may be adjusted many times during the execution of a
routine, the frame pointer is generally set once at the beginning of
routine execution and only changes when another routine is called and
when the routine completes and returns. The utility of a frame
pointer comes from this "stable" characteristic; the frame pointer
makes access to fixed parts of the stack frame simple and efficient.

The argument pointer register is used to contain the address of a
block of storage that contains the values of the actual-parameters of
a routine-call.

The value return register is a register used to contain the value of a
routine during the process of completion and returning.

The value return register, unlike the other special registers, is used
as such only briefly during the completion of one routine and the
resumption of the calling routine. Consequently, this register can
also be used for general purposes during the execution of a routine.

13

!
W

Linkages
INTRODUCTION TO LINKAGE-DECLARATIONS

13.1.1.2 General Purposes - Arregister that is not dedicated to one
of the special purposes described in the preceding section can be used
in a variety of ways. These uses are divided as follows:

Locally usable
Preserved
Non-preserved

Globally usable

Not used

A preserved register contains the same value after returning from a
routine-call as it contained at the time the routine was called.

A non-preserved register does not (necessarily) contain the same value

after returning from a routine-call as it contained at the time the
routine was called.

Preserved and non-preserved registers are together called locall
usable registers. This combined designation is convenient because
many of the rules concerning register usage apply equally to both
preserved and non-preserved registers.

Locally usable registers are used by the compiler according to its
optimization strategies. The compiler determines how many of them to
use, which to use for evaluating expressions, which to allocate for
local data segments, and so on.

A globally usable register is used to contain a global register data
segment, that 1Is, a register data segment that is accessible in more
than one routine. Global register data segments are governed by
special rules involving LINKAGE declarations in combination with
GLOBAL REGISTER and EXTERNAL REGISTER declarations. See Section 13.7
for complete details.

A not used register is simply not used in any way (applicable to
BLISS-32 only).

13.1.1.3 oOther Purposes - Registers can also be used to pass the
values of actual-parameters of a routine-call to the routine that is
called. (These registers must be among the locally usable registers
of the <called routine.) When such an actual-parameter is evaluated,
the value is assigned to a given register instead of to a position in
an argument block or the stack. The routine that is called can
efficiently fetch such a parameter value because it is already
available in a register at the beginning of the routine execution.

One or more of the locally usable registers can be allocated for a
data segment established by a REGISTER declaration (see Section 10.7).

13.1.1.4 Multiple Purposes - Most registers are not 1limited to a
single purpose or class of purpose. The program counter and stack
pointer in both BLISS-16 and BLISS-32, as well as the frame pointer in

BLISS-32, are truly dedicated by the hardware for these purposes; but
these are the only cases.

13-4

Linkages
INTRODUCTION TO LINKAGE-DECLARATIONS

Registers can be used for multiple purposes so long as those uses do
not conflict. Because of the many different kinds of use, the rules
for compatible use are complicated and lengthy. Even so, BLISS still
does not always allow every imaginable combination; that would get
even more complicated and lengthy. But, by and large, BLISS does
allow nearly all of the register uses and combinations of uses that
play a significant role in system software on each of the target
systems.

13.1.2 Typical Syntax

linkage-declaration LINKAGE linkage-definition ,... ;

linkage-definition linkage-name = linkage-type

(parameter-location ,...)}
nothing

: linkage-option ...
nothing

linkage-type ‘CALL}

REGISTER = register-number
parameter-location STANDARD
nothing

GLOBAL (global-register-segment ,...)

PRESERVE
linkage-option NOPRESERVE| (register-number ,...)
global-register- global-register-name = register-number
segment
global-
register-name name
linkage-name
register-number compile-time-constant-expression
The notation "---" in the above diagram indicates that there are

additional alternatives in some of the dialects that are not shown.

This syntax diagram does not apply completely to all of the BLISS
dialects, but it is representative. (The linkage-type CALL is part of
BLISS-16 and BLISS-32, but not BLISS-36.)

13-5

Linkages
INTRODUCTION TO LINKAGE-DECLARATIONS

13.1.3 Discussion

The linkage-declaration defines a name for a particular combination of
calling sequence characteristics. A name so declared can be used as a
linkage-attribute in any kind of routine-declaration. The several
parts of a linkage-definition are described in the following sections.

13.1.3.1 Linkage-Types - The linkage-type selects the principal
characteristics of the calling sequence to be used. Each linkage-type
generally establishes the following:

° The specific machine instructions to be wused to transfer
control to a routine and to return from the routine.

(] Whether or not an argument pointer 1is wused to address
actual-parameter values.

. Which linkage-options are applicable.
° The defaults for linkage-options.

The CALL keyword occurs as a linkage-type in BLISS-16 and BLISS-32;
however, the only common characteristic that CALL implies is the use
of an argument pointer to access actual-parameters. CALL is not the
only linkage-type that implies use of an argument pointer; the F10
linkage-type in BLISS-36 also implies use of an argument pointer.

13.1.3.2 Parameter-Locations - An actual-parameter of a routine-call
can be passed to the routine that is called in one of two ways: it
can be passed in a standard, or default, method or it can be assigned
to one of the general registers.

There are two major variations on the standard method; the
linkage-type determinees which one is used. The two methods are:

° by argument pointer

. by implicit stack location

13.1.3.2.1 Argument Pointer Method - In the argument pointer method,
all of the actual-parameters of the routine-call are assigned to
successive positions in a block called the argument block. The
address of this block is passed to the called routine using one of the
general registers. A register used in this way is called an argument
pointer register. The <called routine fetches an actual-parameter
value from the argument block, using the argument pointer value in
combination with an offset determined from the formal-name that
corresponds to that actual-parameter position.

In addition to the actual-parameter values, an argument block can
contain additional information concerning the parameter values. In
each BLISS dialect, the argument block contains the number of
actual-parameter values in the block. 1In BLISS-36 other information
may also be contained in the argument block.

An argument block may be located anywhere in storage at the option of
the compiler. It might be part of the stack frame of the routine

13-6

Linkages
INTRODUCTION TO LINKAGE-DECLARATIONS

containing the routine-call or it might be 1in permanently allocated
storage. A restriction against assigning to a formal-name assures
that an argument block can be allocated in storage protected against
writing and/or reused in the calling routine for other routine-calls.

13.1.3.2.2 1Implicit Stack Location Method - In the implicit stack
location method, the actual-parameters of the routine-call are
assigned to successive positions in the stack frame of the routine
containing the call. No explicit value giving the location of the
parameters is passed to the routine that is called. The called
routine fetches an actual-parameter value using implicit information
about where the value is located in the stack frame.

13.1.3.2.3 Register Parameters - In addition to the standard method
of passing actual-parameter values, some or all of the parameters can
be passed by assigning them to specified general registers. This
method can be wused in combination with the standard method; for
example, one parameter can be passed in a register, and the others in
the standard way.

13.1.4 Linkage-Options

Linkage-options supplement and modify the basic calling sequence
conventions established by the linkage-type. For example, in BLISS-36
the LINKAGE_REGS option can be used in combination with the PUSHJ
linkage-type to specify the registers to be used as the stack pointer,
frame pointer, and value-return register, respectively, if the default
choices for the PUSHJ linkage-type are not suitable.

In some cases, a particular linkage-option must only be used in
combination with a specific 1linkage-type. The LINKAGE REGS option
just mentioned is an example; it must only be used with the PUSHJ
linkage-type in BLISS-36.

In a few cases, linkage-options can be used with several linkage-types
and in more than one BLISS dialect. The PRESERVE, NOPRESERVE, and
GLOBAL linkage-options are examples. They can be used in all dialects
with at least two different linkage-types.

In the object code generated for a given routine, each register's use

is governed by one of three usage conventions, each corresponding to
one of the following linkage-option keywords:

PRESERVE A preserved register can be used during the
execution of the routine, but the original contents
at the time of the routine call must be restored at
the time the routine completes and returns.

NOPRESERVE A non-preserved register can be wused during the

execution of the routine (without restoring its
original contents).

GLOBAL A globally usable register 1is used only as
determined by Its corresponding GLOBAL REGISTER and
EXTERNAL REGISTER declarations, and by explicit
source-code references to such a register.

13-7

Linkages
INTRODUCTION TO LINKAGE-DECLARATIONS

A register that is given in a PRESERVE linkage-option <contains the
same value after returning from a routine as it contained at the time
the routine was called. The called routine may or may not use the
register. If it does, then special action 1is taken to save the
contents of the register (push it onto the stack) before the register
is used and restore it (pop it from the stack) afterward. If the

register is not used, then no special action 1is needed. In either
case, a calling routine 1is able to leave useful information in a
register preserved by the routine being called -- the information |is

still available after the call.

A register that is given in a NOPRESERVE 1linkage-option does not
necessarily contain the same value after returning from a routine as
it contained at the time the routine was called. The called routine
may or may not use the register, but in either case no special action
is taken to preserve its contents. A calling routine must not leave
needed information in a register that is not preserved by the routine
being called -- the information may not be available after the call.

Registers that are given in a GLOBAL linkage-option are wused to
contain global register data segments by both calling and called
routines. Globally usable registers are not managed by the compiler;
they are used only as explicitly directed by the source program. In
certain special <cases, depending on the 1linkage-type and other
details, a register given in a GLOBAL linkage-option may be treated as
a preserved register, rather than as globally usable. These cases are
described later in the sections for each BLISS dialect.

Globally usable registers are described fully in Section 13.7 where
the GLOBAL linkage-option and the related GLOBAL REGISTER and EXTERNAL
REGISTER declarations are considered together.

13.2 BLISS-16 LINKAGE-DECLARATIONS

The 1linkage capabilities provided by the 1linkage-declaration in
BLISS-16 are the following:

e The JSR, CALL, EMT, TRAP, IOT, INTERRUPT, and RSX_ AST
linkage-types

e Standard or register parameter-locations
® Globally used and locally used registers

e The CLEARSTACK, RTT, and VALUECBIT exit sequence linkage-
options

As an example of a linkage-declaration, consider the following:

LINKAGE
PAR2REG3 = CALL (STANDARD, REGISTER = 3);

The declaration indicates that the CALL linkage-type is to be used and
that the second actual-parameter 1is to be passed using register 3.
The first actual-parameter and any parameters after the second
parameter are to be passed in the standard way.

13-8

Linkages
BLISS-16 LINKAGE-DECLARATIONS

13.2.1 Syntax

linkage-declaration| LINKAGE linkage-definition ,... ;
linkage-definition linkage-name = linkage-type
(parameter-location ,...)}
nothing
: linkage-option ...
nothing
16 Only =>
JSR
CALL
EMT
linkage-type TRAP
I0T
INTERRUPT
RSX_AST
REGISTER = register—-number
parameter-location STANDARD
nothing
16 Only =>
CLEARSTACK
RTT
VALUECBIT
linkage-option GLOBAL (global-register-segment ,...)
PRESERVE
NOPRESERVE| (register-number ,...)
global-register- global-register-name = register—number
segment
global-
register-name name
linkage-name
register-number compile-time-constant-expression

13.2.2 Restrictions

Linkage-names defined with EMT, TRAP, or IOT linkage-type must not be
given as a linkage-attribute in any kind of routine declaration.
(Such a linkage-name must be used only in a general-routine-call; see
Section 13.2.4.2.)

Linkage-names defined with the INTERRUPT or RSX AST linkage-type must

only be used as a linkage-attribute in a ROUTINE, GLOBAL ROUTINE, or
FORWARD ROUTINE declaration.

13-9

Linkages
BLISS-16 LINKAGE~-DECLARATIONS

The register-number value must be in the range 0 to 5.

A register-number value must not be given as both a parameter-location
and a global-register-segment, and must not be given in more than one
parameter-location or global-register-segment.

A register-number value must not be given 1in more than one
linkage-option.

If the CALL linkage-type is given, then the register-number of a
REGISTER parameter~location must be in the range 0 to 4.

The GLOBAL, PRESERVE, NOPRESERVE, CLEARSTACK, and VALUECBIT
linkage-options must not be specified with the CALL linkage-type.

If OTS (runtime library) routines are called, register 0 must not be
specified as a global-register-segment in the calling routine's
linkage-definition.

If the CLEARSTACK linkage-option is given, the number of
actual-parameters in a (general) routine-call must be equal to the
number of parameter-locations given.

The VALUECBIT linkage-option may not be specified in a linkage-
definition for a routine written in BLISS.

If the VALUECBIT linkage-option is given, the CLEARSTACK
linkage-option must also be given.

The RTT 1linkage-option must only be given with the INTERRUPT
linkage-type.

No linkage~option may be given with the RSX AST linkage-type.

13.2.3 Defaults

If a parameter-location is not given, then STANDARD is assumed. If a
routine-call or routine-declaration contains more parameters than are
given in the associated linkage-definition, then STANDARD is assumed
as the parameter-location for each of the additional parameters.

For the JSR linkage-type, the registers are used as follows, by
default:

Registers Default Usage
0 Value return register, non-preserved
1-5 Preserved
6 Stack pointer
7 Program counter

13-10

Linkages
BLISS-16 LINKAGE-DECLARATIONS

For the CALL linkage-type, the registers are used as follows:
Registers Usage

Value return register, non-preserved
-4 Preserved

Argument pointer

Stack pointer

Program counter

~NoOV O~ O

(The 'default' usage cannot be modified for the CALL linkage-type.)

For the EMT, TRAP, IOT, INTERRUPT, and RSX_AST 1linkage-types, the
registers are used as follows, by default:

Registers Default Usage
0-5 Preserved
6 Stack pointer
7 Program counter

13.2.4 Semantics

A linkage-definition defines a name that designates a particular
combination of calling sequence options. Generally, such a name may
be used as a linkage-attribute in any kind of routine-declaration;
however, this is not true of all linkage-names.

The 1linkage-type JSR specifies that the PDP-11 JSR and RTS
instructions are wused by the compiled code, and that the parameters
with STANDARD parameter-locations are placed on the stack (without a
parameter count) and accessed by the called routine relative to the
stack pointer (SP) register.

The 1linkage-type CALL specifies that the PDP-11 JSR and RTS
instructions are wused by the compiled code, and that the parameters
with STANDARD parameter-locations are passed using register 5 (R5) as
the argument pointer.

The linkage-types INTERRUPT and RSX_AST specify that a routine will be
"called" only by a PDP-11 hardware or software interrupt. These
linkages are further described in Sections 13.2.4.1 and 13.2.4.3.

If REGISTER is specified for a parameter-location, the given register
will be used as the location to which the actual-parameter value is be
assigned, and correspondingly, is the 1location where the called
routine expects to find the value. This use of a register location to
transmit an actual-parameter value to a called routine does not affect
the semantics associated with the use of the corresponding
formal-parameter name.

The CLEARSTACK linkage-option (which must be used only with the JSR,
EMT, TRAP, IOT, or INTERRUPT linkage-type) specifies that the actual-
parameters that are placed on the stack for a routine-call are removed
from the stack by the called routine (instead of by the calling
routine). 1If CLEARSTACK is not specified, they will not be removed by
the called routine (and are the responsibility of the caller}.

13-11

Linkages
BLISS-16 LINKAGE-DECLARATIONS

The VALUECBIT linkage-option (which must be used only with the JSR,
EMT, TRAP, IOT, or INTERRUPT linkage-type, and only in combination
with CLEARSTACK) specifies that an external routine declared with this
linkage-option returns 1its value in the C bit, and that the value of
register 0 is undefined on return from such a routine. (This linkage-
option is wused to interface with non-BLISS routines having this
value-return characteristic.)

The RTT linkage-option (which must be used only with the INTERRUPT
linkage-type) specifies that the PDP-11 RTT intruction should be used
to exit from the interrupt routine instead of the normal RTI
instruction.

The GLOBAL, PRESERVE, and NOPRESERVE linkage-options specify the usage
conventions that apply to each PDP-11 machine register at the time a
routine is called and during the execution of the routine, There are
three conventions, one corresponding to each of the three
linkage-option keywords. A usage convention 1is specified for a
register by giving its number in the appropriate linkage-option. The
description of these linkage-options is given in Section 13.1.

Register usage conventions can be specified only for registers 0
through 5; the remaining registers (the stack pointer and program
counter) are used only as specified in the PDP-11 hardware and
software architecture.

Globally usable registers are not managed by the compiler; they are
used only as explicitly given in the source program.

13.2.4.1 INTERRUPT Linkage-Type - A 1linkage-name defined with the
INTERRUPT linkage-type must only be used as a linkage~attribute in a
forward-, ordinary-, or global-routine declaration. It specifies that
the routine to which it is applied will only be invoked by a PDP-11
hardware interrupt or software simulation of an interrupt (such as an
RSX-11 Synchronous System Trap). Interrupts may occur as a result of
certain 'external' events, such as I/0 device completion, or as a
result of programmed events, such as execution of certain
instructions: EMT, IOT, and so on. (See Section 13.2.4.3 concerning
the related linkage-type RSX AST.)

The number of formal-names given for the routine must equal the number
of values pushed on the stack by the "call". In most cases this is
exactly two. However, interrupt routines that are called by
general-routine-calls using a linkage-name defined with a EMT, TRAP,
or IOT linkage-type can have more than two formal parameters.

The formal parameters of the routine correspond to the hardware values
in the order pushed; that is, the first formal parameter corresponds
to the first value pushed, the second formal parameter corresponds to
the second value pushed, and so on. Consequently, the last formal
parameter corresponds to the pushed program counter (PC) and the next
to last formal parameter corresponds to the pushed processor status
(PS).

13-12

Linkages
BLISS~-16 LINKAGE-DECLARATIONS

13.2.4.2 EMT, TRAP, and IOT Linkage-Types - In a general-routine-call
that uses a linkage-name defined with an EMT, TRAP, or IOT
linkage-type, the following special rules apply:

. For EMT and TRAP, the first value in the actual-parameter
list 1is not interpreted as a routine-address. Instead it is
interpreted as a value that is incorporated into the low byte
of the EMT or TRAP instruction itself. It must be a
compile-time-constant-expression in the range 0 to 255.

] For 10T, all of the values 1in the parameter 1list are
actual-parameters. There is no routine-address parameter.

13.2.4.3 RSX AST Linkage-Type - Similar to the INTERRUPT linkage-
type, the RSX AST linkage-type specifies that the routine to which it
is applied will be invoked only by an RSX-11 Asynchronous System Trap
(AST) . The first four formal parameters of such a routine are
mandatory and correspond to the following context information: (1)
the event-flag mask word, (2) program-status word, (3) program
counter, and (4) Directive Status Word of the interrupted task,
respectively. Additional formal parameters must be specified if the
kind of AST that invokes the routine pushes supplemental information
onto the stack. At the routine's return point, any such supplemental
information is removed from the stack and an RSX-11 AST SERVICE EXIT
directive (rather than an RTS instruction) is executed.

13.2.5 BLISS-16 Predeclared Linkage-Names

Four linkage-names are predeclared in every BLISS-16 module. The
linkages are provided for compatible and transportable usage among the
several BLISS dialects. See Section 13.5 concerning such usage.

The predeclared linkage-names are defined as shown in the following
declaration:

LINKAGE
BLISS = JSR,
FORTRAN = CALL,
FORTRAN_SUB = CALL,
FORTRAN_FUNC = CALL;

13.3 BLISS-32 LINKAGE-DECLARATIONS

A linkage-declaration in BLISS-32 can be used to specify a CALL or JSB
linkage-type, to designate registers for passing parameters, and to
identify registers as globally used, locally used, or not used.

As an example of a linkage-declaration, consider the following:

LINKAGE
PAR2REG3 = CALL (STANDARD, REGISTER = 3);

The declaration indicates that the CALL linkage-type is to be used and
that the second actual-parameter is to be passed using register 3.
The first actual-parameter and any parameters after the second
parameter are to be passed in the standard way.

13-13

Linkages
BLISS-32 LINKAGE-DECLARATIONS

13.3.1 Syntax

linkage-declaration LINKAGE linkage-definition ,...

.
’

linkage-definition linkage-name = linkage-type

(parameter-location ,...)
nothing

‘: linkage~option ...l

nothing
32 Only =>
CALL
linkage-type JSB
REGISTER = register—-number
parameter-location STANDARD
nothing
32 Only =>
GLOBAL (global-register-segment ,...)
PRESERVE
linkage-option NOPRESERVE ; (register-number ,...)
NOTUSED
global~register- global-register-name = register—number
segment
global-
register—-name name
linkage-name
register-number compile-time-constant-expression

13.3.2 Restrictions

A NOTUSED linkage-option must only be given with the JSB linkage-type.
It must not be given in combination with the CALL linkage-type.

The register-number in a REGISTER parameter-location or a
linkage-option must be in the range 0 to 11.

A register-number value must not be given as both a parameter-location
and a global-register-segment, must not be given as both a
parameter—-location and in a NOTUSED linkage-option, and must not be
given in more than one parameter-location or global-register-segment.

A register-number value must not be given in more than one
linkage-option.

13-14

Linkages
BLISS-32 LINKAGE-DECLARATIONS

Some of the character-handling and machine-specific functions require
the use of particular machine registers because they result in vax-11
instructions that use specified registers; such functions must not be
used if the required registers are not locally usable. Observe that
at most the set of registers 0 through 5 inclusive must be locally
usable to satisfy this requirement.

The VAX-11 calling standard requires that register 0 or registers 0
and 1 together be used to return routine values. This requirement,
combined with the preceding general restriction, 1leads to the
following two special case restrictions:

° If a routine-call is in the scope of a global register data
segment that is allocated in either register 0 or 1, then the
routine that is called must not return a value; that is,

must be declared with the NOVALUE attribute.

° If the linkage-attribute of a routine-declaration specifies
registers 0 or 1 as PRESERVE, GLOBAL, or NOTUSED, then that
routine must also have the NOVALUE attribute.

The VAX-11 calling standard also requires that registers 0 and 1 be
usable as temporary registers by the condition handling software
during processing of a signal (see Chapter 17). Further, only routine
stack frames associated with the CALL linkage-type are used for
restoring register contents during unwinding. These requirements,
together with the above restrictions on linkages, lead to the
following special case restrictions:

° A routine-body must not immediately contain an ENABLE
declaration if the 1linkage-attribute of the routine is
defined with linkage-type JSB or with registers 0 or 1 as
either PRESERVE, GLOBAL, or NOTUSED.

. A routine whose linkage-attribute is defined with registers 0
or 1 as PRESERVE, GLOBAL, or NOTUSED must not be terminated
by unwinding.

. If a routine-call to a routine with JSB linkage-type occurs
in a routine with JSB linkage-type, all of the locally usable
registers of the called routine must also be given as locally
usable registers of the routine containing the call. That
is, the outermost JSB routine in a nest of JSB routines must
specify all the registers that are locally usable. (This
restriction assures that the CALL routine that calls the
outermost JSB routine can preserve all the necessary
registers.)

The VAX-11 calling standard is described in Appendix C of the
VAX-11/780 Architecture Handbook, Vol. I. Condition handling, and
its Interaction with linkages, 1s described in Chapter 17 of this
manual.

13.3.3 Defaults

If a parameter-location is not given, then STANDARD is assumed. If a
routine-call or routine-declaration contains more parameters than are
given in the associated linkage-definition, then STANDARD is assumed
as the parameter-location for each of the additional parameters.

13-15

Linkages
BLISS~32 LINKAGE-DECLARATIONS

For the CALL linkage-type, the registers are used as follows, by
default:

Registers Default Usage
0 Value return register, non-preserved
1 Non-preserved
2-11 Preserved
12 Argument pointer
13 Frame pointer
14 Stack pointer
15 Program counter

For the JSB linkage-type, the registers are used as follows, by
default:

Registers Default Usage
0 Value return register, non-preserved
1 Non-preserved
2-11 Preserved
12-13 Not used
14 Stack pointer
15 Program counter

Observe that, for both CALL and JSB linkage-types, registers 0 to 11
are locally usable by default.

13.3.4 Semantics

A linkage-declaration defines a name for a particular combination of
calling sequence options. A name so declared can be used as a
linkage-attribute in any kind of routine-declaration.

The linkage-type CALL specifies that the VAX-11 CALLS/CALLG and RET
instructions are used. Further, the parameters with STANDARD
parameter-locations are passed using register 12 (AP) as the argument
pointer.

The linkage-type JSB specifies that the VAX-11 JSB/BSBW/BSBB and RSB
instructions are used by the compiled code. Further, the parameters
with STANDARD parameter-locations are placed on the stack (without a
count) and accessed by the called routine relative to the stack
pointer (SP) register.

If REGISTER is given as a parameter-location, then the given register
is used as the location to which the actual-parameter value is
assigned in performing a routine-call, and correspondingly, 1is the
location where the called routine expects to find the actual-parameter
value. This use of a register 1location to transmit an actual-
parameter value to a «called routine does not affect the semantics
associated with the use of the corresponding formal-parameter name.

The linkage-options specify the usage conventions that apply to each
VAX-11 machine register at the time a routine is called and during the
execution of the routine. There are four conventions, one
corresponding to each of the four linkage-option keywords, namely:

13-16

Linkages
BLISS-32 LINKAGE-DECLARATIONS

GLOBAL, PRESERVE, NOPRESERVE, and NOTUSED. A usage convention is
specified for a register by giving its number in the appropriate
linkage-option. The description of these linkage-options is given in
Section 13.1.

Register usage conventions can be specified only for registers 0
through 11; the remaining registers (the argument pointer, frame
pointer, stack pointer, and program counter) are used only as
specified in the VAX-11 hardware and software architecture.

Globally usable registers are not managed by the compiler; they are

used only as explicitly given 1in the source program, with the
following exception:

In a routine with a linkage that specifies CALL linkage-type and
a globally-usable register (in a GLOBAL linkage-option), if the
global-register-segment is not declared as a global register data
segment (using an EXTERNAL REGISTER declaration) within the body
of the routine, then the compiler can <choose to consider the
register preserved (and hence, locally usable).

However, in a routine with a linkage that specifies JSB linkage-type,
the compiler cannot preserve and use such registers. The reason for
the difference has to do with the requirements for condition handling.
Briefly, the CALL linkage-type provides the information needed for the
condition handling software to properly recover register values when
doing unwinding; the JSB linkage-type does not.

Registers that are given in a NOTUSED linkage-option are not used in
any way. Only routines with a 1linkage that specifies the JSB
linkage-type can have registers that are not usable.

Some guidelines concerning the choice of registers to specify in a
NOTUSED linkage-option are discussed in Section 13.7.2.

13.3.5 JSB Linkage Examples

The routine EXCHANGE in Section 12.4.5 is an example of a routine that
can be made significantly smaller and faster by the use of a
linkage-declaration such as:

LINKAGE

FAST = JSB(REGISTER = 0, REGISTER = 1);
When the linkage-attribute FAST is given for the routine EXCHANGE, the
JSB linkage-type 1is wused instead of the CALL linkage-type and the
parameters are passed in registers 0 and 1.

When a set of routines with JSB linkage~type call one another, care
must be taken to ensure that the locally usable registers of the
calling routine include all the 1locally usable registers of any

routine that it calls, For example, consider the following
linkage-declarations:

LINKAGE

JSB_ALL = JSB,
JSB_NOll = JSB: NOTUSED(11);

13-17

Linkages
BLISS-32 LINKAGE-DECLARATIONS

The 1linkage JSB_ALL specifies a JSB linkage-type. Because no
linkage-options are given, the locally usable registers are registers
0 to 11. The linkage JSB NOll also specifies a JSB linkage-type.
Because the linkage—optioﬁ indicates that register 11 is not used, the
locally usable registers are registers 0 to 10.

Suppose the following routines are declared:

FORWARD ROUTINE
ALPHA: JSB_ALL,
BETA: JSB_NO11;

Then routine ALPHA can legitimately call routine BETA. But routine
BETA must not call routine ALPHA because the set of locally usable

registers of ALPHA is not a subset of the locally usable registers of
BETA.

13.3.6 BLISS-32 Predeclared Linkage-Names

Four linkage-names are predeclared in every BLISS-32 module. These
linkages are provided for compatible and transportable usage among the
several BLISS dialects. See Section 13.5 concerning such usage.

The predeclared linkage-names are defined as shown in the following
declaration:

LINKAGE
BLISS = CALL,
FORTRAN = CALL,
FORTRAN_SUB = CALL,
FORTRAN_FUNC = CALL;

13.4 BLISS-36 LINKAGE-DECLARATIONS

A linkage-declaration in BLISS-36 can be used to specify a PUSHJ or
F10 1linkage-type, to identify globally used registers, to specify the
use of a PORTAL instruction in the entry sequence of a routine, and to

specify other linkage capabilities that pertain only to one of the two
linkage-types.

As an example of a linkage declaration, consider the following:

LINKAGE
PAR2REG4 = PUSHJ (STANDARD, REGISTER = 4);

The declaration indicates that the PUSHJ linkage-type is used and that
the second actual-parameter is passed using register 4. The first
actual-parameter and any parameters after the second parameter are
passed in the standard way.

13-18

13.4.1 Syntax

Linkages
BLISS-36 LINKAGE-DECLARATIONS

linkage-declaration

LINKAGE linkage-definition ,... ;

linkage-definition

linkage-name = linkage-type

(parameter-location ,...)
nothing

: linkage-option ...
nothing

36 Only =>

linkage-type

PUSHJ
Fl0

parameter-location

REGISTER = register-number
STANDARD
nothing

36 Only =>

linkage-option

general-linkage-option
pushj-linkage-option

general-linkage-
option

GLOBAL (global-register-segment ,...)
J PORTAL
{PRESERVE

NOPRESERVE) (register-number ,...)

pushj-linkage-
option

LINKAGE_REGS (stack-pointer-reg ,
frame-pointer-reg , return-value-req)

stack-pointer-reg
frame-pointer-reg
return-value-reg

register-number

linkage-name

global-register- global-register-name = register-number
segment

global-
register-name name

register-number

compile-time-constant-expression

13.4.2 Restrictions

A REGISTER parameter-location may only be
linkage-type. It may

linkage-type.

specified with the PUSHJ
not be specified in combination with the F10

13-19

Linkages
BLISS-36 LINKAGE-DECLARATIONS

The register-number in a REGISTER parameter-location must be 1in the
range 0 to 15 and must not specify a register given as either the
stack-pointer-reg or the frame-pointer-reg. (It may be the same as
the register given as the value-return-reg.)

The LINKAGE REGS linkage-option may not be given in combination with
F10 linkage-type.

The stack-pointer-reg and the value-return-reg in the LINKAGE_REGS
option must be in the range 0 to 15, and the frame-pointer-reg must be
in the range 1 to 15.

All of the routines in a given program must use the same stack-pointer
register, including any implicitly called OTS routines. (This
restriction assures that a single object-time-system library can
satisfy all of the requirements of a program.)

The register-number in a linkage-option other than the LINKAGE_REGS
option must be in the range 0 to 15 and must not specify a register
used as a stack pointer, frame pointer, or argument pointer (if
applicable).

The same register-number value may not be given as both a
parameter-location and a global-register-segment, and may not be given
more than once as a parameter-location or a linkage-option
register-number. There 1is one exception: the register specified as
the value return register in a LINKAGE REGS option can also be
specified as preserved, non-preserved, or global.

If the value return register is also specified as preserved or global
then the linkage-name so defined must only be wused as a
linkage-attribute in the declaration of a routine that also has the
NOVALUE attribute or in a general-routine-call in a context that does
not require a value.

Some executable-functions impose "hidden" restrictions on the linkage-
definition and explicit register usage of the containing routine.
More specifically, some of the character-handling-functions and each
of the condition-handling-functions result in calls to Object Time
System (OTS) routines. These implicit routine calls are made with the
governing OTS linkage for the program (BLISS36C by default).
Therefore, any routine containing such functions must also be able to
call a routine having the governing OTS linkage. 1In particular, the
containing routine's use of register data segments declared by
register-number, whether local or global, must be consistent with the
register conventions of the OTS linkage. (See the restrictions in
Sections 10.7, 10.8, and 10.9.)

13.4.3 Defaults

The defaults for each of the 1linkage-options depend on the
linkage-type that is given.

13-20

Linkages
BLISS-36 LINKAGE-DECLARATIONS

13.4.3.1 Defaults for the PUSHJ Linkage-Type - If a parameter-
location is not given, then STANDARD is assumed. If a routine-call or
routine-declaration contains more parameters than are given in the
associated linkage-definition, then STANDARD is assumed as the
parameter-location for each of the additional parameters.

Default register usage for PUSHJ linkage-type is determined in two
steps: First, the defaults for the LINKAGE_REG option are applied if
the option is not given; and second, the defaults for all registers
not specified by the explicit or default LINKAGE REGS option are
determined. -

The default for the LINKAGE REGS option is LINKAGE_REGS(0,2,3), that
is:

Register Default Usage
0 Stack pointer
2 Frame pointer
3 Value return register, non-preserved

For any register not specified by the explicit or default LINKAGE_REGS
option, the default usage is:

Registers Default Usage
0 Preserved
1-10 Non-preserved
11-15 Preserved

As an example, if the PUSHJ linkage-type is given without any
linkage-option, then the resulting register usage is the following:

Registers Usage
0 Stack pointer
1 Non-preserved
2 Frame pointer
3 value return register, non-preserved
4-10 Non-preserved
11-15 Preserved

13.4.3.2 Defaults for the F10 Linkage-Type - For the F10 linkage-
type, the registers are used as follows, by default:

Registers Default Usage
0 value return register, non-preserved
1-13 Non-preserved
14 Argument pointer
15 Stack pointer

Observe that a frame pointer is not used.

13-21

Linkages
BLISS-36 LINKAGE-DECLARATIONS

13.4.4 Semantics

The PUSHJ linkage-type specifies a calling sequence in which the
actual-parameters are passed on the stack without the use of an
argument pointer. Unlike the F10 linkage-type, actual-parameters can
also be passed in registers (as described in 13.1.5.1) and the
LINKAGE REGS option can be used to specify which registers are used
for the stack pointer, frame pointer, and value return registers.

The Fl0 linkage-type specifies a calling sequence in which
actual-parameters are passed using an argument block (see Section
13.1) whose address is contained in register 14, Register 15 is the
stack pointer and register 0 is the value return register.

The GLOBAL 1linkage-option can be used with both PUSHJ and Fl0

linkage-types. It is introduced in Section 13.1 and is discussed in
detail in Section 13.7.

The PORTAL linkage-option can also be used with both 1linkage-types,
When wused in the definition of the linkage-attribute of a ROUTINE or
GLOBAL ROUTINE declaration, it causes the first instruction of the
code compiled for the routine to be a PORTAL instruction ("JRST
1,.41"). The PORTAL instruction is used in the construction of
certain kinds of execute-only programs. See the system hardware
manuals for details.

The PRESERVE and NOPRESERVE linkage-options are described in Section
13.1.

The LINKAGE REGS option, used only with the PUSHJ linkage-type,
specifies the registers to be used for the stack pointer, frame
pointer and the value return register.

13.4.5 BLISS-36 Predeclared Linkage-Names

Four linkage-names are predeclared in every BLISS-36 module, These
linkages are provided for compatible and transportable usage among the
several BLISS dialects. See Section 13.5 concerning such usage. The
default linkage-name is BLISS36C.

The predeclared linkage-names are defined as shown 1in the following
declaration:

LINKAGE
BLISS10 = PUSHJ,
BLISS36C =
PUSHJ:
LINKAGE_REGS (15,13,1)
NOPRESERVE (2,3,4,5)
PRESERVE (0,6,7,8,9,10,11,12,14),
FORTRAN_SUB = F10,
FORTRAN_FUNC =
F10: PRESERVE(2,3,4,5,6,7,8,9,10,11,12,13);

13-22

Linkages
BLISS-36 LINKAGE-DECLARATIONS

The BLISS10 linkage is provided for convenient interfacing with
routines compiled by the BLISS-10 compiler. (BLISS-10 is an older
dialect of BLISS which is becoming obsolete.) The definition of the
BLISS10 1linkage given here assumes that default register options are
used by the BLISS-10 module.

The BLISS36C linkage is the default linkage for BLISS-36. (The name
comes from a preliminary bootstrapping version of BLISS-36 that was
known as BLISS-36C. BLISS-36C is now obsolete.)

The BLISS36C linkage can also be used for interfacing with BLISS-10
routines that are compiled using the "/Z" compilation option of the
BLISS-10 compiler.

13.5 COMMON PREDECLARED LINKAGE-NAMES

Two linkage-names are predeclared in all BLISS dialects, namely:
FORTRAN_SUB and FORTRAN_FUNC. In addition, the linkage-names BLISS
and FORTRAN are predeclared in BLISS-16 and BLISS-32.

.

The complete semantics for these linkage-names is given in the earlier
sections on the linkage-declaration for each dialect (see Section
13.2.5 for BLISS-16, Section 13.3.6 for BLISS-32, and Section 13.4.5
for BLISS-36). This section summarizes the common characteristics
that apply across dialects.

13.5.1 The BLISS Linkages

In BLISS-16 and BLISS-32, the BLISS linkage is the default linkage in
the absence of any other specification. 1In BLISS-36, the default
linkage is BLISS36C. The semantics associated with these linkages are
given in Sections 12.4 through 12.7.

In light of the above, the way to obtain a compatible and
transportable BLISS 1linkage in all dialects is to use no explicit
linkage specification at all.

13.5.2 The FORTRAN Linkages

The FORTRAN-related linkages provide a compatible and transportable
means to interface with FORTRAN compiled routines on each of the
target systems.

Use of the FORTRAN linkages is quite similar to wuse of the BLISS
linkages with these exceptions:

o Each formal parameter must be assumed to contain a value that
is an address. The body of the routine must be coded
appropriately. (In BLISS-32, this restriction can be relaxed
through use of the VAL builtin function of VAX-11 FORTRAN
IV-PLUS.)

. Each actual-parameter must be a value that is an address.

13-23

Linkages
COMMON PREDECLARED LINKAGE-NAMES

There are several FORTRAN linkages because, in the case of FORTRAN-10
on the DECsystem-10/-20, FORTRAN~]0 compiled SUBROUTINE subprograms
use the machine registers in a different way than FORTRAN-10 compiled
FUNCTION subprograms. (This difference is reflected 1in the
declarations for the FORTRAN SUB and FORTRAN FUNC linkage-names given
for BLISS-36 in Section T3.4.5.) There “is no such difference for
PDP-11 and VAX-11 FORTRAN systems.

In light of the above, the way to obtain compatible and transportable
interfacing to FORTRAN with all three BLISS dialects is:

. Use the FORTRAN SUB linkage-name in the declaration of any
routine which is to be wused as a FORTRAN SUBROUTINE
subprogram.

This applies to all EXTERNAL ROUTINE declarations, for
example, regardless of whether the routine is actually coded
in BLISS or FORTRAN. This also applies, obviously, to the
ROUTINE or GLOBAL ROUTINE declaration if the routine is coded
in BLISS. 1In both cases, it is also highly desirable to use
the NOVALUE attribute as well.

. Use the FORTRAN FUNC linkage-name in the declaration of any
routine which is to be used as a FORTRAN FUNCTION subprogram.

As with the FORTRAN_SUB linkage, this applies to EXTERNAL
ROUTINE declarations as well as to ROUTINE and GLOBAL ROUTINE
declarations.

If compatible and transportable interfacing to only PDP-11 and VAX-11
FORTRAN systems is desired, then the FORTRAN linkage-name can be used
for both SUBROUTINE and FUNCTION subprograms in BLISS-16 and BLISS-32.

13.6 LINKAGE-FUNCTIONS

Linkage-functions are executable-functions (see Section 5.2) that
provide specialized information about the actual-parameters used to
call a routine. For example, linkage-functions can be used to code a
routine that can be called with different numbers of actual-parameters
in different routine-calls.

13.6.1 Common Linkage-Functions

There are three common BLISS linkage-functions: ACTUALCOUNT,
ACTUALPARAMETER and ARGPTR. These functions can be used with all of
the FORTRAN-related predeclared linkages in all BLISS dialects. They
can also be used with some of the BLISS-related predeclared linkages.

13-24

Linkages
LINKAGE-FUNCTIONS

13.6.1.1 Definition - The common linkage-functions are defined as
follows:

ACTUALCOUNT()
Restriction. Must be declared BUILTIN within the body of a
routine whose linkage-attribute is defined with certain
linkage-types. The 1linkage-types, and the predeclared

linkages that are consequently permitted, are:

Dialect Linkage-Type Predeclared Linkages

BLISS-16 CALL FORTRAN
FORTRAN_SUB
FORTRAN_FUNC

BLISS-32 CALL BLISS
FORTRAN
FORTRAN_SUB
FORTRAN_FUNC

BLISS-36 F1l0 FORTRAN_SUB
FORTRAN_FUNC

value. Return the number of actual-parameters passed to the
routine using STANDARD parameter-locations; parameters passed
using REGISTER parameter-locations are not included in the
returned value.

For the predeclared linkages in all dialects, all parameters
are passed using STANDARD parameter-locations and,
consequently, ACTUALCOUNT returns the number of
actual-parameters.

ACTUALPARAMETER(1)

Restrictions. The first restriction for ACTUALPARAMETER is
the same as for ACTUALCOUNT above.

The value of i must be in the range 1 to ACTUALCOUNT() .

value. Return the value of the i'th actual-parameter that was
passed using STANDARD parameter-locations; parameters passed
using REGISTER parameter-locations are not obtainable with
this function.

For the predeclared linkages in all dialects, all actual-
parameters are passed using STANDARD parameter—locations, and,

consequently, ACTUALPARAMETER (i) returns the value of the i'th
actual-parameter.

ARGPTR()

Restriction. The restriction for ARGPTR is the same as for
ACTUALCOUNT above.

Value. Return the address of the argument block.

13-25

Linkages
LINKAGE-FUNCTIONS

13.6.1.2 Examples - The use of the linkage-functions permits routines
to be written in a more general way. Consider, for example, a
generalization of the routine AVERAGE3 (Section 12.4.5), which accepts
three parameters, to the routine AVERAGE, which accepts any number of
parameters:

ROUTINE AVERAGE =

BEGIN

BUILTIN
ACTUALCOUNT,
ACTUALPARAMETER;

LOCAL
L;

L =0;

INCR I FROM 1 TO ACTUALCOUNT() DO
L = .L + ACTUALPARAMETER(.I);

« L/ACTUALCOUNT ()

END;

Some calls on the routine AVERAGE and the value of these calls are
given in the following list:

Call Value

AVERAGE (1,2, 3) 2

AVERAGE (2,4,6,8,10) 6

AVERAGE (8) 8

AVERAGE () 22?2 (Invalid)

In some cases a routine has a fixed and variable set of parameters.
For example, consider the following routine, which calculates the
difference between an expected value (the fixed part) and the average
of a set of values (the variable part):

ROUTINE DELTA AVERAGE (EXPECTED) =

BEGIN
BUILTIN
ACTUALCOUNT,
ACTUALPARAMETER;
LOCAL
L;
L =0;

1’
INCR I FROM 2 TO ACTUALCOUNT() DO
L= .L+ ACTUALPARAMETER(.I);
+-EXPECTED - .L/(ACTUALCOUNT()-1)
END;

Some calls on the routine DELTA_AVERAGE are:

Call Value

DELTA_ AVERAGE (3,1,2,3) 1
DELTA_AVERAGE(6,2,4,6,8,10) 0
DELTA_AVERAGE(7) 2?2? (Invalid)
DELTA_AVERAGE() 2?22 (Invalid)

Observe in this example that explicit formal-parameters are not
distinct from the parameters accessed by the 1linkage-functions.
Specifically, . EXPECTED is equivalent to ACTUALPARAMETER(1) .
Consequently, the 1loop initial value is 2, not 1, and the divisor in
the next to last line is ACTUALCOUNT()-1, not ACTUALCOUNT () .

13-26

Linkages
LINKAGE-FUNCTIONS

The ARGPTR linkage-function returns the address of the argument block
of a routine-call. In some cases the argument block address passed in
the argument pointer register may not be left in that same register
throughout the execution of the called routine. For example, in
BLISS-36 this is usually done in the code compiled for a routine with
the F10 linkage-type that calls another routine which also has the F1l0
linkage-type. The ARGPTR function provides a compatible means to
obtain the address of the argument block in all dialects.

13.6.2 BLISS-16 and BLISS-32 Linkage-Functions

The NULLPARAMETER linkage-function (in BLISS-16 and BLISS-32 only)
tests a parameter position of a call from a FORTRAN routine and
returns true if the actual-parameter is a null or omitted parameter.
See the PDP-11 and VAX-11 FORTRAN manuals for a description of null
and omitted parameters.

The NULLPARAMETER function is defined as follows:

NULLPARAMETER(i)

Restriction. The value of i must be greater than or equal to
one.

value. Return one if i 1is greater than the number of
actual-parameters, or (if i is not greater than the number of
actual-parameters) if the i'th actual-parameter has the value
-1 in BLISS-16 or 0 in BLISS-32. Otherwise, return zero.

13.7 GLOBAL REGISTER DATA SEGMENTS AND LINKAGES

A global register data segment is a data segment that is created and
allocated in a given register in one routine and may be made available
for use in other routines that it calls. Global register data
segments are identified by name and both the calling and called
routine must agree that a particular data segment is available.

A GLOBAL REGISTER declaration (Section 10.8) causes a global register
data segment to be allocated. A global register data segment is a
local data segment just like an ordinary register data segment—-it is
created on entry to the block in which it is contained and released on
exit from that block. However, unlike an ordinary register data

segment, a global data segment is available in called routines under
certain circumstances.

In order to pass a global register data segment to a called routine,
the 1linkage-attribute for the called routine must contain the name of
the data segment and its register assignment in its GLOBAL
linkage-option. There may be more global register data segments
available at a call than are given in the 1linkage for the call;
however, every global register data segment given in the linkage must
be available at the call. Only those global register data segments
given in the linkage are available in the called routine.

13-27

Linkages
GLOBAL REGISTER DATA SEGMENTS AND LINKAGES

An EXTERNAL REGISTER declaration (Section 10.9) specifies that a
global register data segment created in a calling routine is available
for use. The declared name must be given in the 1linkage; however,
not all global register data segments given in the linkage need be
declared in an EXTERNAL REGISTER declaration.

The linkage-attribute forms a bridge between calling and called
routines, Consider the use of the global register data segment GRDS
in the following example:

$IF ¥BLISS(BLISS16) OR $BLISS(BLISS32)

$THEN
LITERAL
GRDS _REG =1 ;
LINKAGE
BRIDGE =
$BLISS516 (JSR: GLOBAL(GRDS = GRDS_REG))
¥BLISS32(CALL: GLOBAL(GRDS = GRDS_REG));
RELSE ! For BLISS-~36
LITERAL
GRDS REG = 6 ;
LINKAGE ~

BRIDGE = PUSHJ:
LINKAGE_REGS (15,13,1)
NOPRESERVE (2,3,4,5)
PRESERVE(0,7,8,9,10,11,12,14)
GLOBAL(GRDS = GRDS_REG);

$FI

FORWARD ROUTINE
ROUT2: BRIDGE NOVALUE;

ROUTINE ROUT1 =
BEGIN
GLOBAL REGISTER
GRDS = GRDS_REG;

GRDS = 0;
ROUT2();
.GRDS
END;
ROUTINE ROUT2: BRIDGE NOVALUE =
BEGIN
EXTERNAL REGISTER
GRDS;
GRDS = .GRDS + 1;
END;

First, the literal-name GRDS REG is bound to either the value 1 or the
value 6, depending upon the compiler used for the compilation. This
literal value 1is wused to specify a register-number in several
subsequent declarations. (The conditional-compilation constructs used
in this example are described in Chapters 15 and 16.)

Next, the name BRIDGE is defined as a linkage-name with the global
register data segment GRDS. This declaration also depends upon the
compiler used for the compilation. (Note that the definition of
BRIDGE for BLISS-36 matches the default BLISS36C linkage except for
the GLOBAL option, and thus is compatible with the default 1linkage.)
Then, the forward-routine-declaration for ROUT2 uses the
linkage-attribute BRIDGE. The calling routine ROUT1 allocates the

13-28

Linkages
GLOBAL REGISTER DATA SEGMENTS AND LINKAGES

global register data segment GRDS and sets it to 0. (Observe that
ROUT]1 does not need any special linkage-attribute in order to create
the global register data segment.) ROUT1 then calls the routine ROUT2.
ROUT2 increments the value of the global register data segment, and
returns. The value of routine ROUT1 is the value of the global
register data segment, 1.

Because the information about the global register data segment is
supplied by the 1linkage-attribute BRIDGE, the compiler can perform
several consistency checks to verify that the global register data
segment is being used correctly. 1In the above example, the compiler
knows that ROUT2 uses a global register data segment and can,
therefore, check that a call on that routine occurs within the scope
of the global register declaration. Further, the compiler can check
that the external register declaration for GRDS is within a routine
with a linkage-attribute for the global register data segment GRDS.

A global register data segment is a register that is, by convention,
reserved for a particular use by a set of routines that function
together as a package. For example, consider a file maintenance
package. Typically, such a package consists of interface routines and
internal routines. The interface routines establish the function to
be performed by the file maintenance package (i.e., open, insert, and
so on) and set up the appropriate environment. The internal routines
perform the basic processing within the environment established by the
interface. Part of that environment is often the establishment of one
or more global register data segments.

A file maintenance package is far too complex to illustrate here.
Instead consider the following much smaller -- and somewhat contrived
-- system. The module consists of a system of two global routines,
VECMAXMIN and VECMAXMINAVG, each of which uses two other routines
which are internal to the module. Both VECMAXMIN and VECMAXMINAVG are
written to be callable from FORTRAN. Each actual-parameter to these
routines must be the address of the desired FORTRAN variable or array.

The first routine, VECMAXMIN, 1is called with the first parameter
giving the base of an integer vector, and the second parameter giving
the number of elements in the vector. The maximum value encountered
in the vector is returned via the third parameter, while the minimum
value is returned via the fourth parameter. The value of the routine
is the difference between the maximum and minimum.

The second routine, VECMAXMINAVG, is called with two parameters which
are the same as the first two parameters of VECMAXMIN. Its value is
the average of the maximum and minimum elements of the array.

The internal routine VECMAXl searches a vector and returns the maximum
value; and similarly, the internal routine VECMINl returns the
minimum value. Routines VECMIN1 and VECMAX1l each receive their two
parameters as global register data segments, in registers that are
appropriate for the respective, dialect-specific linkage definitions.
(See the guidelines given further on concerning the preferred choice
of registers for each target system.)

13-29

Linkages
GLOBAL REGISTER DATA SEGMENTS AND LINKAGES

MODULE VECOPS (IDENT='03"') =

BEGIN
LITERAL
VECREG = $BLISS16 (1)
$BLISS32(11)
$¥BLISS36(12),
LENREG = S$BLISS16(2)
$BLISS32(10)
¥BLISS36(11);
LINKAGE
BLISSTWOREG =

¥BLISS16 (JSR:)
¥BLISS32(CALL:)
¥BLISS36 (PUSHJ: LINKAGE REGS(15,13,1)
NOPRESERVE (2,3,4,5)
PRESERVE(0,7,8,9,10,14))
GLOBAL(VEC = VECREG, LEN = LENREG);

FORWARD ROUTINE
VECMAXMIN: FORTRAN FUNC,
VECMAXMINAVG: FORTRAN FUNC,
VECMAX1: BLISSTWOREG,
VECMIN]l: BLISSTWOREG;

GLOBAL ROUTINE

VECMAXMIN (VECADR, LENADR ,MAXADR,MINADR) : FORTRAN_FUNC =
BEGIN

GLOBAL REGISTER
VEC = VECREG : REF VECTOR,
LEN = LENREG;

! Initialize global registers
1

VEC
LEN

. VECADR;
. . LENADR;

L]

! Main code
]

.MAXADR = VECMAX1 ();
.MINADR = VECMIN1();
. .MAXADR-..MINADR
END;

GLOBAL ROUTINE VECMAXMINAVG (VECADR,LENADR): FORTRAN FUNC =
BEGIN

GLOBAL REGISTER
VEC VECREG : REF VECTOR,
LEN LENREG;

VEC
LEN

. VECADR;
.« LENADR;

(VECMAX1 () - VECMIN1())/2
END;

13-30

Linkages
GLOBAL REGISTER DATA SEGMENTS AND LINKAGES

ROUTINE VECMAX1l: BLISSTWOREG =
BEGIN

EXTERNAL REGISTER
VEC: REF VECTOR,
LEN;

LOCAL
MAXX;

MAXX = .VEC[O0];
DECR J FROM .LEN-1 TO 1 DO
MAXX = MAX(.MAXX,.VEC[.J]);

«MAXX
END;

ROUTINE VECMINl: BLISSTWOREG =
BEGIN

EXTERNAL REGISTER
VEC: REF VECTOR,
LEN;

LOCAL
MINN;

MINN = .VEC[O0];
DECR J FROM .LEN-1 TO 1 DO
MINN = MIN(.MINN,.VEC[.J]);

+MINN
END;

END
ELUDOM

13.7.1 Discussion

GLOBAL REGISTER and EXTERNAL REGISTER declarations in combination with
linkage-definitions that include a GLOBAL linkage-option provide a
controlled means to extend the scope of a register data segment from
one routine into another routine. The restrictions help assure that
this unusual dynamic extension of register scope is clearly documented
and unlikely to be a source of error because of hidden effects.

The optimization benefits from the use of global register data
segments come about in two distinct ways. First, both the called and
calling routines benefit from code efficiency that results from the
use of a register instead of a temporary (stack) location to hold the
parameter value during the call. Second, the calling routine benefits
from the fact that the global register value is still available in the
same register after return from the called routine. No save and
restore of the register contents is required around the call.

13-31

Linkages
GLOBAL REGISTER DATA SEGMENTS AND LINKAGES

The same conventions can (and must) be used to share register data
segments between nested routine definitions. In this case, the
convention allows the inner routine to access a "local" data segment
of the outer routine in an efficient manner. (This capability is
sometimes called "up-level addressing” in other languages and often
requires complex and inefficient code.) Observe, however, that there
is no particular advantage to coding the called routine as a nested
routine, Indeed, the convention works equally well between routines
in separately compiled modules.

The use of global registers is a wuseful and sometimes important
optimization technique. Care must be taken, however, to assure that
two independently developed parts of a program that use the technique
do not inadvertently use register assignments that conflict when the
parts are brought together. Global registers are not subject to the
normal optimization strategies of the compiler and, consequently, may
lead to worse, rather than better, code quality if too many are used.

13.7.2 Guidelines for BLISS-16

The many restrictions concerning the use of LINKAGE declarations and
global register data segments are necessary to assure proper
management of the machine registers at all times.

Two guidelines are particularly recommended:

1. The value return register should always be specified as
non-preserved (which 1is the default). This will avoid the
special restrictions related to this register.

2. When planning the allocation of global register data
segments, use contiguous registers beginning with register 1;
for example, registers 1 and 2 if two are needed.

Note carefully that, because the PDP-11 has very few locally usable
registers (relative to other target systems), the allocation of even
one register as global over a large span of code will very 1likely
decrease overall code quality.

13.7.3 Guidelines for BLISS-32

The many restrictions concerning the use of LINKAGE declarations and
global register data segments are necessary to assure proper
management of the machine registers at all times, especially during
condition handling (see Chapter 17).

13-32

Linkages
GLOBAL REGISTER DATA SEGMENTS AND LINKAGES

One restriction in particular deserves special consideration when JSB
routines and global register data segments are used together, namely:

If a call to a routine with JSB linkage-type occurs in the scope
of a global register data segment, then the given register-number
of the data segment must be given in either a GLOBAL
linkage-option or a NOTUSED linkage-option of the linkage of the
called routine.

That is, if a global register data segment is active at the point of a
call to a JSB routine, the only permitted use of the register in the
JSB routine is as a global register data segment; if not wused that
way, it must not be used at all,

Some service routines in the VAX-11 Run-Time Library use JSB 1linkage.
By convention, these routines use a contiguous group of registers,
none of which are preserved, starting at register number 0. In 1light
of this convention, and the above restrictions, the following two
guidelines are suggested:

l. When specifying the linkage of a routine with JSB 1linkage,
give the 1locally wusable registers as contiguous lower
numbered registers starting at zero. Keep the set of locally
usable registers as small as possible consistent with
acceptable code quality.

2. When planning the allocation of global register data

segments, use contiguous higher numbered registers, that is,
11, 10, 9, and so on.

A reasonable strategy is to divide the registers into groups so that
JSB routines never locally use more than, say, registers 0 through 7
and global register data segments are always specified in registers 8
through 11. This guarantees that no conflicts will arise in using JSB
routines and global register data segments together.

One additional guideline is strongly recommended, namely: registers 0
and 1 should always be specified as nonpreserved (which is the
default). This will avoid the error prone special restrictions
related to condition handling (see Section 13.3.2).

13.7.4 Guidelines for BLISS-36

The many restrictions concerning the use of LINKAGE declarations and
global register data segments are necessary to assure proper
management of the machine registers at all times.

Two guidelines are particularly recommended:

1. The value return register should always be specified as
non-preserved (which 1is the default). This will avoid the
special restrictions related to this register.

2. When planning the allocation of global register data
segments, use the highest-numbered contiguous set of
registers available; for example, 12, 11, 10, 9, and so on
when using the BLISS36C type register conventions,

13-33

CHAPTER 14

14.1

14.1.1
14.1.2
14.1.3
14.1.4
14.1.5
14.2

14.2.1
14.2.2
14.2.3
14.2.4
14.3

14.3.1
14.3.2
14.3.3
14.3.4
14.4

14.4.1
14.4.2
14.4.3
14.4.4

BINDING

LITERAL-DECLARATIONS . .
Syntax . .« ¢« + o 4 s .
Restrictions
Defaults
Semantics
Predeclared L1terals

EXTERNAL~-LITERAL- DECLARATIO S
Syntax « ¢ .« ¢ ¢ e o e e e
Restrictions . . « « +« « « .
Defaults . . « . . &

s o & e s o
.
e 3 e 8 s @

Semantics . . . ¢ ¢ ¢ & .
BIND-DATA-DECLARATIONS
Syntax « ¢« ¢ ¢ ¢ e o e s s .
Restrictions « .« .
Defaults . . ¢« ¢ ¢ ¢« ¢ o o &
Semantics . . . e e e o e
BIND-ROUTINE- DECLARATIONS . .
Syntax .« ¢« v ¢ o e ¢ o o o e
Restrictions . « « +« ¢« « «
Default . . « ¢ ¢« ¢« o« & o =
Semantics . . ¢ ¢ ¢ o o o W

" ¢ & 8 ¢ o o & o

« e ¢ o e o e e 0

14-1
14-2
14-2
14-3
14-3
14-3
14-4
14-4
14-4
14-4
14-5
14-5
14-6
14-6
14-7
14-7
14-7
14-8
14-8
14-8
14-9

CHAPTER 14

BINDING

Bound-declarations are different from most of the declarations
discussed thus far because a bound-declaration defines a name in terms
of other names and values. Bound-declarations do not 1involve the
allocation of storage. Instead, they provide a name for a constant
value, or an additional name and sometimes a different interpretation
for existing storage.

A bound-declaration defines a name. The definition of a name consists
of its scope, its value, and its attributes. The scope and attributes
are determined in the usual way. However, the value of the name
defined 1in the bound-declaration is determined from the value of an
expression.

A name can be defined by a bound-declaration to be a 1literal-name, a
data-name, or a routine-name. The syntax diagram for bound-
declarations is:

literal-declaration
external-literal-declaration
bound-declaration bind-data-declaration
bind-routine-declaration

The syntax and semantics for each kind of bound-declaration are given
in the following sections.

14.1 LITERAL-DECLARATIONS
A literal-declaration is used to define a name whose value is

determined by a constant expression. After a name is defined in this
way, it can be used to designate the constant expression.

14-1

Binding
LITERAL-DECLARATIONS

A literal-declaration can contribute to readability of a program. An
example of this usage is

LITERAL
CAPACITY = 25;

This declaration allows the following assignment to be written:
STUDENTS = .ROOMS * CAPACITY

In this expression, STUDENTS and ROOMS are data segment names and
CAPACITY 1is the 1literal name declared above. The use of the
literal-declaration makes clear the significance of the value 25.

A literal-declaration is especially useful for defining a constant
value that is used at several different places in a program. 1In the
event that a different version of the program requires a different
value for the constant value, the change can be made in just one

place; namely, in the literal-declaration. An example of this wusage
is:

LITERAL
BUFFERSIZE = 266;

It is assumed that the size of the buffer changes from time to time
and that this value 1is involved in computations throughout the
program. A change in the value of BUFFERSIZE in this declaration

automatically changes the value of all the occurrences of BUFFERSIZE
within the program.

14.1.1 Syntax

LITERAL
literal-declaration

GLOBAL LITERAL} literal-item ,... ;

literal-item literal-name = literal-value

: literal-attribute ...
nothing

literal-name name

literal-value compile-time-constant-expression

range-attribute
literal-attribute

weak-attribute <= 32 Only

14.1.2 Restrictions

The value, n, of the bit-count expression in the range—attribute must
lie in the range 1 < n < ¥BPVAL.

14-2

Binding
LITERAL-DECLARATIONS

The literal-value must be representable in the given number of bits.

BLISS-32 ONLY

The WEAK attribute may be specified only in a GLOBAL LITERAL
declaration.

14.1.3 Defaults

If a range-attribute is not specified, then SIGNED ($BPVAL) is assumed.

14.1.4 Semantics
A literal-declaration is processed by the compiler as follows:
l. The literal-value expression is evaluated.

2. The range-attribute is used to validate the representation of
the literal-value. The bit-count expression is evaluated and
the value obtained in Step 1 is checked to verify that it can

be represented as a SIGNED or UNSIGNED value in the number of
bits specified.

3. If the literal-declaration is GLOBAL or GLOBAL with the
weak-attribute (BLISS-32 only), then the appropriate
indicators are set for the linker.

4. The literal-name is associated with the value represented in

Step 2. Wherever the literal-name appears in the module, it
is replaced by its associated value.

14.1.5 Predeclared Literals

Certain literal-names are predeclared in BLISS, as follows:

Value in
Name BLISS-16 BLISS-32 BLISS-36 Significance
$BPVAL 16 32 36 Bits per BLISS value (fullword)
$BPUNIT 8 8 36 Bits per smallest addressable
unit
$BPADDR 16 32 18 or 30 Bits per address value
$UPVAL 2 4 1 Addressable units per BLISS value

(¥BPVAL divided by $BPUNIT)

The value of $BPADDR in BLISS-36 is determined by the cpu-option
setting of the ENVIRONMENT module-switch (Section 19.2); see the
BLISS-36 User's Guide for target-system environment information.

The predeclared names just described can be used to enhance the
transportability of a program from one target system to another. See

the appropriate BLISS user's guide, under "Transportability
Guidelines", for further information.

14-3

Binding
EXTERNAL-LITERAL-DECLARATIONS

14.2 EXTERNAL—LITERAL-DECLAﬁATIONS
An external-literal-declaration gives a list of literal-names that are
declared in other, separately compiled, modules. When the program

that contains these modules is linked, the value of the
external-literal-names is determined.

External-literal-declarations are useful for providing mnemonic names
for constant expressions that are common to the modules of a program.

An example of an external-literal declaration is:

EXTERNAL LITERAL
BLKSIZ: SIGNED(8);

14.2.1 Syntax

external-literal-
declaration EXTERNAL LITERAL external-literal-item

.
goeoe ’

external-literal- : literal-attribute ...
item literal-name nothing

literal-name name

‘range—attribute

literal-attribute weak-attribute } <= 32 Only

14.2.2 Restrictions
A name must not be declared EXTERNAL LITERAL unless it 1is declared
GLOBAL LITERAL in some other block or module of the same program.

This restriction does not apply, however, to a name that 1is declared
with the weak-attribute in BLISS-32 (see Section 9.12).

The range-attribute for an EXTERNAL literal-name must accommodate the
value given for the literal in its GLOBAL literal-declaration. For
further discussion, see Section 9.10.

14.2.3 Defaults

If a range-attribute is not given, then SIGNED($BPVAL) is assumed.

14-4

Binding
EXTERNAL-LITERAL-DECLARATIONS

14.2.4 Semantics

An external-literal-declaration 1is processed by the compiler as
follows:

1. Each name in the 1list 1is identified as an EXTERNAL
literal-name.

2. If the WEAK attribute is specified, an indicator is provided
for the linker (BLISS-32 only).

14.3 BIND-DATA-DECLARATIONS

A bind-data-declaration is used to define another name for a data
segment, or part of a data segment, that already exists. The bound
name can have different attributes and can therefore depart from the
original interpretation of the data segment.

An example of a bind-data-declaration appears in the following program
fragment:

OWN
ALPHA: VECTOR[20];

BIND
A = ALPHA([8];

INCR I FROM 0 TO 20 DO
ALPHA[.I] = .ALPHA[.I] * .A;

The name A is defined by the bind-data-declaration to be a fullword
scalar with the same address as the ninth element of the vector ALPHA.
A reference to A, therefore, is equivalent to, but more concise than,
a reference to ALPHA([8].

In the example just given, the value of A can be determined at the
time the program is linked since the address of the ninth element of
the vector ALPHA is known at link time. An example of a binding that
. cannot be determined at link time is:

BIND B = ALPHA[2*.,J-1])

The contents of J is not known at link time and so the binding of B is
deferred to execution time, Specifically, the binding occurs just
before the evaluation of the block in which the declaration appears.
The introduction of the name B can be efficient because no matter how
often B is used during the evaluation of the block, the expression
2* .,J-1 is evaluated only once,

14-5

Binding
BIND-DATA-DECLARATIONS

14,3.1 Syntax

bind-data- BIND
declaration GLOBAL BIND bind-data-item ,... ;
bind-data-item bind-data-name = data-name-value
: bind-data-attribute ...
nothing
bind-data-name name
data-name-value expression
allocation-unit <= 16/32
extension-attribute <= 16/32
bind-data-attribute structure-attribute
field-attribute
volatile-attribute
weak-attribute <= 32 Only

14.3.2 Restrictions

The data-name-value expression must be the address of a data segment
that can be accessed within the scope of the declaration.

The data-name-value expression must be a link-time-constant-expression
if (1) the declaration begins with GLOBAL or (2) the declaration is at
the outermost level of a module (and is not, therefore, contained in a
routine-declaration).

The data-name-value expression in a GLOBAL bind-data-declaration is
limited to a restricted subset of link-time-constant-expressions, in
that it must not contain a name declared EXTERNAL, EXTERNAL ROUTINE or
EXTERNAL LITERAL unless that name is an operand of a compile-time-
constant-expression (see Section 7.1.2, item 7). Furthermore, the
data-name-value expression must not contain a name declared BIND,
GLOBAL BIND, BIND ROUTINE or GLOBAL BIND ROUTINE unless the definition
of that name satisfies this same restriction.

A structure-attribute must not appear in a declaration that has an
allocation-unit or an extension-attribute (BLISS-16/32 only).

A field-attribute can appear only in a declaration that has a
structure-attribute,

A weak-attribute can appear only in a GLOBAL bind-data-declaration
(BLISS-32 only).

14-6

Binding
BIND-DATA-DECLARATIONS

14.3.3 Defaults

If an allocation-unit is not given, fullword allocation is assumed
(BLISS-16/32 only).

If a structure-attribute is not given, the name is assumed to be a
scalar.

14.3.4 Semantics
A bind-data-declaration is processed as follows:

1. The bind-data-name is associated with the attributes given
either explicitly or by default in the declaration.

2. The value of the bind-data-name is determined. The time of
evaluation depends on the kind of data—name-value expression
given, If the expression 1is not a link-time-constant-
expression, it is evaluated just prior to the evaluation of
the immediately containing block.

14.4 BIND-ROUTINE-DECLARATIONS

A bind-routine-declaration is used to define another name for an
existing routine. After a routine-name is defined in this way, it can
be used in the scope of the bind-routine-declaration either by itself
to designate the value of the routine-name or with a parenthesized
list of parameters to indicate a call on the routine.

An example of a bind-routine-declaration is:

BIND ROUTINE CALC = CALCULATION4;
It is assumed that CALCULATION4 is the name of a routine that is
declared elsewhere, and under this assumption, the value of CALC can
be determined at link time.
Another example of a bind-routine-declaration is:

BIND ROUTINE SR = (IF .A LSS 0 THEN SNEG ELSE SP0S);
It is assumed that SNEG and SPOS are names of routines that are
declared elsewhere. Because the expression to the right of the "="
operator is not a link-time-constant-expression, the value of SR is

determined just before each evaluation of the block that contains the
declaration.

14-7

Binding
BIND-ROUTINE-DECLARATIONS

14.4.1 Syntax

bind-routine- BIND ROUTINE
declaration GLOBAL BIND ROUTINE
bind-routine-item ,... ;
bind-routine-item bind-routine-name = routine-name-value
: bind-routine-attribute ...
nothing
bind-routine-name name
rout ine-name-value expression
bind-routine- novalue-attribute
attribute linkage-attribute
weak-attribute <= 32 Only

14.4.2 Restrictions

The value of the routine-name-value expression must be the address of
a routine that can be called within the scope of the bind-routine-
declaration.

The routine-name-value expression must be a link-time-constant-
expression if (1) the declaration begins with GLOBAL or (2) the
declaration is at the outermost level of a module (and 1is not,
therefore, contained in a routine-declaration).

The routine-name-value expression in a GLOBAL bind-routine-declaration
is limited to a restricted subset of link-time-constant-expressions,
in that it must not contain a name declared EXTERNAL, EXTERNAL ROUTINE
or EXTERNAL LITERAL unless that name is an operand of a compile-
time-constant-expression (see Section 7.1.2, item 7). Furthermore,
the routine-name-value expression must not contain a name declared
BIND, GLOBAL BIND, BIND ROUTINE or GLOBAL BIND ROUTINE unless the
definition of that name satisfies this same restriction.

The WEAK attribute must be given only with a GLOBAL bind-routine-
declaration (BLISS-32 only).

14.4.3 Default

1f a linkage-attribute is not given and the bind-routine-declaration
is in the scope of a LINKAGE switch, then the default linkage-
attribute is the 1linkage-name given in the linkage-switch (see
Sections 18.2 and 19.2). Otherwise, the default linkage-attribute is
the predeclared linkage-name BLISS in BLISS-16 and BLISS-32, or
BLISS36C in BLISS-36.

14-8

14.4.4

Binding
BIND-ROUTINE-DECLARATIONS

Semantics

A bind-routine-declaration is processed as follows:

1.

2.

The bind-routine-name is associated with the attributes given
either explicitly or by default in the declaration.

The value of the bind-routine-~name is determined. The time
of evaluation depends on the kind of routine-name-value
expression given., If the expression is not a link-time-
constant-expression, it 1is evaluated just prior to the
evaluation of the immediately containing block.

14-9

CHAPTER 15

15.1 INTRODUCTION TO LEXICAL PROCESSING . . .
15.1.1 From Characters to Lexemes
15.1.2 Lexeme-by-Lexeme Processing
15.1.3 Binding . ¢« + ¢ ¢« ¢« ¢ 4« ¢ o s 0 e s .
15.1.4 Expansion . . . ¢« ¢ ¢ ¢« o ¢ o o s s
15.1.5 An Example Of Lexical Processing . . .
15.2 QUOTATION . & & o « o o o o o o o o & o
15.2.1 Quote Levels . ¢ & ¢ o ¢ o o o o o o o
15.2.2 Quotation Rules . . + .« ¢ ¢ « ¢ & & =«
15.3 LEXICAL-EXPRESSIONS . +. &« o o o o o «
15.3.1 SYNLAX & ¢ o« o o o s o s e e e o s s
15.3.2 Semantics e s e s e e
15.3.2.1 Types of Numeric- therals « o o s e
15.3.2.2 Types of String-Literals
15.3.2.3 Numeric- and String-Literals
15.3.3 Discussion . + « ¢« ¢ ¢ ¢« o « o« o o o .
15.3.4 Pragmatics . . . « o e e e e e
15.4 LEXICAL-FUNCTIONS IN GENERAL e e s e e .
15.4.1 SYNtax o« o o ¢« o o ¢ o o s e s e s e e
15.4.2 Restrictions . « + ¢ ¢« ¢ o o« o o o o &«
15.4.3 Semantics e s e & s s
15.5 SPECIFIC LEXICAL- FUNCTIONS e s s e s e o
15.5.1 Quote Levels for Lexical-Actual-Paramet
15.5.2 String-Functions . « . « « + o ¢ o & &
15.5.2.1 Definition . . « & &« & o ¢ o « o o =«
15.5.2.2 Examples e e s s s o s o
15.5.3 Delimiter- Functlons e o s s e o s s
15.5.3.1 Definition . « o o ¢ o o o o o o o =«
15.5.3.2 EXamples o o ¢ o o o o o o o o o s
15.5.4 Name-Functions . . + « ¢ o« o ¢ o o o« =
15.5.4.1 Definition . . « ¢« « « ¢ ¢ ¢ ¢ ¢ o .
15.5.4.2 Examples . + ¢« ¢ o o o o o o o o o o
15.5.5 Sequence-Test-Functions « &
15.5.5.1 Definition . . ¢ ¢« ¢« ¢« ¢ ¢ « ¢« « o &
15.5.5.2 Examples . . « ¢ o ¢ o ¢ o o o o o o
15.5.6 Expression-Test-Functions
15.5.6.1 Definition . . ¢« ¢« ¢ ¢« ¢« ¢ ¢ o« o o &
15.5.6.2 EXampPlesS « « « « o o o o o o o o o
15.5.7 Bits-Functions . . +« ¢« ¢« ¢ ¢ « « « « &
15.5.7.1 Definition . + « &« &« ¢ ¢ ¢« ¢« ¢ « o &
15.5.7.2 EXamples .« ¢« o « o o o o o o o o o o
15.5.8 Allocation-Functions« . . .
15.5.8.1 Definition . . « & & ¢« ¢ o o o + o« =
15.5.8.2 Examples . . . ¢ ¢ ¢ o o o o o o o o
15.5.9 Fieldexpand-Function« « « « .
15.5.9.1 Definition . . ¢« « « &« &« ¢« ¢ ¢ o o &
15,5.9.2 EXamples . « o o o o o o o o o o o @
15.5.10 Calculation-Functions « « . .
15.5.10.1 Definition . + ¢ ¢« ¢ ¢ ¢ o o ¢ o o« &
15.5.10.2 Example . ¢ & ¢ o o o o o o o o o =
15.5.11 Compiler-State~Functions « . .
15.5.11.1 Definitions . . ¢« « « ¢ ¢ o ¢« o o &
15.5.11.2 EXxamples « o ¢ ¢ o o o o o o o o o o
15.5.12 Advisory-Functions . . . « ¢« « « ¢ ¢ &
15.5.12.1 Definitions . « ¢« ¢« ¢« « ¢« o ¢ ¢ « &
15.5.12,2 Examples . & ¢ ¢ o o o o o o o o o
15.5.13 Titling-Functions . . . ¢« « « « « + .
15.5.13.1 Definition . . +« ¢« ¢ +« ¢ ¢« ¢« « ¢ « &
15.5.13,2 EXamples « o o o o o o o o o o o o
15.5.14 Quote-Functions . ¢« « ¢ ¢ ¢ ¢ o o o &
15.5.14.1 Definitions . . +« ¢ ¢« ¢ ¢ « o ¢ o &
15.5.14.2 Examples . . ¢« ¢ ¢ ¢ ¢ o« o o o o o =
15.5.15 Macro-Functions . . . ¢« ¢« ¢ ¢ « ¢ « &
15.5.15.1 Definition . « ¢ & & ¢ o o o o o o &«

LEXICAL FUNCTIONS

er

" o o e & o

¢« o

s

e« o e s 8 s 0

* o

* o & o o o s s s s 0

15-1
15-2
15-2
15-3
15-4
15-5
15-9

15-10

15-11

15-12

15-13

15-13

15-14

15-14

15-15

15-15

15-17

15-17

15-19

15-19

15-19

15-20

15-20

15-21

15-22

15-24

15-25

15-25

15-26

15-27

15-27

15-27

15-28

15-28

15-29

15-29

15-30

15-30

15-31

15-31

15-32

15-32

15-33

15-33

15-34

15-34

15-34

15-35

15-35

15-36

15-37

15-37

15-38

15-38

15-39

15-40

15-40

15-40

15-41

15-41

15-41

15-42

15-45

15-46

15.5.
15.5.

15.6

15.6.
15.6.
15.6.

15.7

15.7.
15.7.

15.2 Examples . . « o ¢ o s o o
16 Summary Of Lexical-Functions
LEXICAL-CONDITIONALS

1 Syntax « .« ¢« « ¢ o o o e e
2 Restrictions « « « &
3 Semantics . « ¢« o ¢ o o o

COMPILETIME DECLARATIONS . . .
1 Syntax .« .« ¢ ¢ o o o o o o
2 Semantics .« ¢ 4+ o o o o . .

« o o o 0

15-46
15-47
15-48
15-48
15-48
15-49
15-49
15-49
15-50

CHAPTER 15

LEXICAL FUNCTIONS

BLISS provides two groups of features that are concerned with the
compile-time processing of a module: lexical-functions, described in
this chapter, and macros, described in Chapter 16. Lexical functions
and macros are closely related and share many common concepts and
mechanisms. Consequently, the introduction to this chapter considers
both together in an integrated way and lays the foundation for the
description of macros in the next chapter.

The lexical-functions perform basic operations on the text of the
module; for example, the $STRING lexical-function gathers several
lexemes into a single quoted-string lexeme, and the %CHARCOUNT
lexical-function counts the characters in a given quoted-string. The
example material in this chapter includes both lexical-functions and
macros, since in practical use these two features are usually
intertwined.

Closely related to the lexical-functions is the lexical-conditional,
which permits a programmer to indicate that a portion of a program is
to be included or omitted depending on the outcome of a given
compile-time test. Another related facility is the
compiletime—declaration, which declares names whose values can be
changed during compilation and which can control macro-expansion.

All of these facilities depend on lexical processing, which is the
first step in the compilation of a module. During lexical processing,
lexemes are formed and interpreted, names are associated with their
declarations, and the various kinds of lexical constructs are
processed.

This chapter is devoted to the lexical facilities of BLISS. The first
section introduces lexical processing and the second section gives the

quotation conventions. The next four sections describe
lexical-expressions, jexical-functions (in general and in particular),
and lexical-conditionals. The final section describes the

compiletime-declaration.

15.1 INTRODUCTION TO LEXICAL PROCESSING

The compilation of a module begins with lexical processing, which
divides the module into lexemes, binds “names to their associated
declarations, and expands macro-calls.

15-1

Lexical Functions
INTRODUCTION TO LEXICAL PROCESSING

15.1.1 From Characters to Lexemes

A module is supplied to the compiler as a sequence of characters and
linemarks. As the module is processed, the characters and linemarks

are collected to form lexemes. The various kinds of lexemes are
described in Chapter 2.

As an example of conversion to lexemes, consider the following module:

MODULE EX =
BEGIN
GLOBAL
X: VECTOR[1024];
END
ELUDOM

This module is presented to the compiler as a source file composed of
the following characters:

M, O, D, U, L, E, blank, E, X, blank, =, linemark,
B, E, G, I, N, linemark,
G, L, 0, B, A, L, linemark,
blank, blank, blank, blank, X, :,
blank, v, E, ¢, T, 0, R, [, 1, 0, 2, 4, 1, ;, 1linemark,
E, N, D, linemark,
E, L, U, D, 0, M, linemark

As the module is read by the compiler, it is converted into the
following list of 14 lexemes:

MODULE, EX, =,

BEGIN,

GLOBAL,

X, :, VECTOR, [, 1024, 1, ;,
END,

ELUDOM

It is the lexemes that are important in BLISS, not the 1individual
characters, and in the remainder of this chapter, modules are
discussed as sequences of lexemes. That is, the division of modules
into lexemes is taken for granted.

15.1.2 Lexeme-by-Lexeme Processing

The compiler works on one lexeme at a time. That 1is, the compiler
does not read a new lexeme until it has done everything it can with
the portion of the module it has already seen. This lexeme-by-lexeme
processing is a fundamental characteristic of BLISS.

As an example of lexeme-by-lexeme processing, consider the following
program fragment:

OWN
ALPHA;
ALPHA = 2;

When the compiler encounters this fragment, it is already in the midst
of a module. For purposes of discussion, assume that the compiler has

already encountered, in an outer block, a declaration of ALPHA as a
literal-name.

15-2

Lexical Functions
INTRODUCTION TO LEXICAL PROCESSING

The first lexeme in the fragment is OWN. When the compiler reads this
lexeme, it recognizes that the next lexeme will be a new declaration
of some name, and it prepares for that situation.

The second lexeme 1is ALPHA. Although ALPHA is already declared
(according to the assumption made above), the compiler treats this
occurrence of ALPHA as a new, overriding declaration of ALPHA.

The third lexeme is a semicolon. When the compiler reads this lexeme,
it knows that the declaration is complete. Therefore, the compiler
£ills in the various defaults for ALPHA, providing a complete
declaration for the name.

The fourth lexeme is another occurrence of ALPHA. Because of the
context, the compiler knows that this occurrence of ALPHA is a use of
the name rather than another declaration. Because the compiler is

working on one lexeme at a time, it has the full declaration of ALPHA
ready to apply to this use of ALPHA. And that is the main point of
this example.

The lexeme-by-lexeme processing of a BLISS program is quite natural
and obvious for simple modules, such as the example just given.
However, in more complicated cases, there may be more than one
"obvious" way to interpret a module, and the lexeme-by-lexeme rule
must be invoked to determine what actually happens.

15.1.3 Binding

Every identifier that is not a reserved keyword can be used as a name.
When an identifier is used as a name, it must be declared; that is,
it must be associated with a declaration. Declarations can be
implicit (supplied by the compiler) or explicit (written by the
programmer). The process of associating a given use of a name with a
declaration is called lexical binding. (The process of associating a
declaration of a name with a storage address is also called binding,
as discussed in Section 1.4. Binding in this sense, however, is not a
concern of this chapter.)

In some cases, there is more than one way to lexically bind a name.
Consider the following example:

LITERAL
ABS = 0;
ROUTINE ALPHA(X): NOVALUE =
BEGIN
LOCAL
ABS;
ABS = ..X+1;
.X = .ABS*..X;
END;

In this example, there are three declarations of ABS. First, ABS |is
implicitly declared as the name of the absolute value executable
function, as described in Chapter 5. Second, ABS is explicitly
declared as LITERAL on the second line. Third, ABS is explicitly
declared as LOCAL within the routine-declaration. According to the
rules for scoping given 1in Section 8.2, the wuse of ABS in the

15-3

Lexical Functions
INTRODUCTION TO LEXICAL PROCESSING

assignment to .X is bound to the third (and most recent) declaration
of ABS.

15.1.4 Expansion

BLISS includes a facility for defining and using macros. Macros have
names and the names are defined and given by declarations, just like
other BLISS names. Thus the macro facility is an integral part of the
BLISS language.

A macro-declaration associates a sequence of lexemes, a macro-body,
with a macro-name. Within the scope of the macro-declaration the
macro-name can be used in a macro-call. During compilation, each
macro-call is replaced by a copy of the macro-body.

A macro can be parameterized; that is, each macro-call can supply
actual-parameters that are substituted for formal-names in the
macro-body.

When the compiler encounters a macro-call, it first reads through the
call 1itself, collecting and processing the actual-parameters. Then
the compiler replaces the macro-call by its expansion. The expansion

is a modified copy of the macro-body that is given in the declaration
of the macro.

A simple example is:

MACRO

PROD(X) = (((X)+1)*((X)-1)) %;
B = PROD(2*A);
Here, the macro-call |is "PROD (2*A)" and the macro-body is

"(((X)+1)*((X)-1))". After the macro-call is expanded, the assignment
to B becomes:

B = (((2*A)+1)*((2*A)-1));

The term "expansion" reflects the fact that macros are often used by a
programmer as a short way to express a long construct. Indeed, in the
example above, the expansion 1is considerably 1longer than the
macro—-call that it replaced.

In general, however, "expansion"” refers to the replacement of one
sequence of lexemes by another during compilation. There are four
kinds of expansion in BLISS:

° A lexical-function is replaced by its expansion, as described
in Sections 15.4 and 15.5.

] A lexical-conditional is replaced by its lexical-consequence
or lexical-alternative, as described in Section 15.6.

. A macro-call is replaced by the corresponding macro-body, and
the formal-parameters in the macro-body are replaced by the
corresponding actual-parameters, as described in Sections
16.2 and 16.3.

15-4

Lexical Functions
INTRODUCTION TO LEXICAL PROCESSING

. A require-declaration or library-declaration is replaced by
the file it designates, as described in Sections 16.5 and
16.6.

The idea of expansion is a simple one, except for one problem: how is
the idea of replacing one entire sequence of lexemes with another, all
at once, consistent with the lexeme-by-lexeme processing described in
Section 15.1.27 The answer to this question requires a brief
consideration of the organization of the compiler.

The compiler processes a module in several stages; lexical processing
is the first stage. The 1lexical processing stage of the compiler
reads lexemes from the source file, collects lexemes until it can
perform some lexical processing, passes the resulting lexemes to the
next stage of the compiler, and, once again, reads lexemes from the
source file.

The compiler can be thought of as working from a single sequence of
lexemes, the input stream as follows:

° At the beginning of compilation, the input stream is the
given module.

° Each time the compiler can do nothing more without anocther
lexeme, it takes a lexeme from the head of the input stream.

° Whenever the compiler has accumulated a construct that can be
expanded (such as a lexical-function or a macro-call), it
processes that construct and places the resulting sequence of
lexemes at the head of the input stream.

° Whenever the lexical-processing stage of the compiler has
accumulated a construct that cannot be further expanded (such
as a keyword or a plus symbol), it passes that construct on
to the next stage of the compiler.

. When the input stream is empty, compilation is complete.

The method of lexical processing just described is simplified, but
only in the following way: it suppresses those details of the BLISS
compiler that, while they are important for efficient operation of the
compiler, do not affect the meaning of the program or the object code
produced by the compiler.

15.1.5 An Example Of Lexical Processing
The following module will be used as an example of lexical processing:

MODULE S1 =
BEGIN
REQUIRE
'*STDMAC' ;
GLOBAL BIND
P1 = STR8('ABC'),
P2 = STR8 ('ABCDEFGHIJKLM');

END
ELUDOM

Lexical Functions
INTRODUCTION TO LEXICAL PROCESSING

The fourth line of this module references the file named STDMAC. The
contents of that file is assumed to be:

MACRO
STR8(S) =
$IF $CHARCOUNT(S) GTR 10
$THEN $WARN ('STR8 PARAM TOO LONG') $FI
PLIT($EXACTSTRING(10,%C' ',S))
%;

A detailed trace of the lexical processing of the module follows. The
binding of names is described, expansions are performed, and the state
of the compilation is given after each expansion.

The compiler starts with MODULE and reads lexemes from the input
stream. The identifier S1 is treated in a special way because it is
the module name; it does not affect the meaning of the program. When
the compiler reads the semicolon on the fourth line, it knows that it
has reached the end of a complete require-declaration. In accordance
with the definition of require-declarations (Section 16.5), the
compiler expands the require-declaration by placing the contents of
the designated file at the head of the input stream.

At this point, the state of compilation is:

MODULE S1 =
BEGIN
MACRO
STR8 (S) =
%$IF %CHARCOUNT(S) GTR 10
3THEN $WARN ('STR8 PARAM TOO LONG') $FI
PLIT(%EXACTSTRING(10,%C' ',S))

]
1
\'4

%;
GLOBAL BIND

Pl = STR8('ABC'),
P2 = STR8('ABCDEFGHIJKLM');
END
ELUDOM
The arrow "==>" at the beginning of the third line is a marker used in

this explanation of lexical processing. Everything from the beginning
of the module up to the arrow has passed through 1lexical processing
and everything from the arrow through the end of the module is the

input stream. The lexeme that immediately follows the arrow 1is the
head of the stream.

The compiler continues processing lexemes, starting with MACRO. The
occurrence of STR8 declares that name as a macro-name. The first
occurrence of S declares that name to be the first (and only) formal
parameter of STR8. The second and third occurrences of S are bound to
this declaration. When the compiler reads the percent lexeme, it
knows that it has read a complete macro-definition. It associates the
macro-body with the name STRS8.

The compiler continues, starting with GLOBAL. The occurrence of Pl
declares that name to be a GLOBAL BIND name with a given value. The
occurrence of STR8 is bound to the macro-declaration of the same name.
When the compiler reads the right parenthesis that follows ‘'ABC', it
knows that it has read a complete macro-call. In accordance with the
definition of ordinary macros (Section 16.3), the compiler expands the

15-6

Lexical Functions
INTRODUCTION TO LEXICAL PROCESSING

macro-call by placing a copy of the macro-body at the head of the
input stream and replacing each formal-parameter in the copy by the
corresponding actual-parameter.

At this point, the state of compilation is:

MODULE S1 =
BEGIN
MACRO
STR8(S) =
%$IF RCHARCOUNT(S) GTR 10
$THEN $%WARN ('STR8 PARAM TOO LONG') %FI
PLIT(%EXACTSTRING(10,%C' ',S))
%;
GLOBAL BIND
Pl =
==> $IF %CHARCOUNT('ABC') GTR 10
$THEN %WARN ('STR8 PARAM TOO LONG') &FI
PLIT(%EXACTSTRING(10,%C' ','ABC')) ,
P2 = STR8 ('ABCDEFGHIJKLM');
END
ELUDOM

The compiler continues, starting with the first lexeme, %IF, of the
lexical-conditional. When the compiler reads the right parenthesis
that immediately follows 'ABC', it knows that it has read a complete
$CHARCOUNT 1lexical function. In accordance with the definition of
that function (Section 15.5.2), the compiler expands the function by
counting the number of characters in the actual-parameter 'ABC' and
placing a numeric-literal that represents the count at the head of the
input stream. Now the state of compilation is:

GLOBAL BIND
Pl =
$IF ==> 3 GTR 10
$THEN $WARN ('STR8 PARAM TOO LONG') %FI
PLIT(%EXACTSTRING(10,%C' ','ABC')) ,
P2 = STR8 ('ABCDEFGHIJKLM');

When the compiler reaches $THEN, it has evaluated the lexical-test of
a lexical-conditional; because 3 is not greater than 10, the test is
not satisfied. In accordance with the definition of
lexical-conditionals (see Section 15.6), the compiler skips the
remainder of the lexical-conditional. The state of compilation is:

GLOBAL BIND

Pl = ==> PLIT($EXACTSTRING(10,%C' ','ABC')) ,
P2 = STR8('ABCDEFGHIJKLM');
The compiler continues, starting with PLIT. The occurrence of

$EXACTSTRING 1is recognized as a lexical-function name, and when the
compiler reads the right parenthesis that follows, it knows it has a
complete $EXACTSTRING 1lexical function. In accordance with the
definition of that function (Section 15.5.2), the compiler makes 'ABC'
into a ten-character quoted-string by filling at the right with
blanks, and places this expansion at the head of the input stream.

15-7

Lexical Functions
INTRODUCTION TO LEXICAL PROCESSING

The state of compilation is:

GLOBAL BIND

Pl = PLIT(==> 'ABC '),
P2 = STR8 ('ABCDEFGHIJKLM');
The compiler continues, and reaches the declaration of P2. This

declaration 1is treated similarly to that of Pl; however, because the
string given for P2 contains more than 10 characters, the test in the

compilation~expression is satisfied and the compilation arrives at the
following state:

GLOBAL BIND
Pl PLIT('ABC '),
P2
==> $WARN('STR8 PARAM TOO LONG') &FI
PLIT{ %EXACTSTRING(10,%C' ','ABCDEFGHIJKLM'));

[

The compiler expands the %WARN lexical-function by generating the
warning message "STR8 PARAM TOO LONG", incrementing the warning count,
and then placing the empty sequence (that is, nothing at all) at the
head of the input stream. The compiler skips the %FI, which is the
end of the lexical-conditional. Now the state of compilation is:

GLOBAL BIND
Pl = PLIT('ABC '),
P2 =
==> PLIT($EXACTSTRING(10,%C' ','ABCDEFGHIJKLM'));

The compiler continues to the $EXACTSTRING lexical-function, which it
expands as follows:

GLOBAL BIND
Pl = PLIT('ABC ')

14
P2 = PLIT('ABCDEFGHIJ' ==>)

~e

The compiler continues to the end of the 1input stream without
performing any further binding or expansion. The result is the same
as the result of compiling the following module:

MODULE S1 =

BEGIN

GLOBAL BIND
Pl = PLIT('ABC ')
fWARN ('STR8 PARAM TOO LONG')
P2 = PLIT('ABCDEFGHIJ');

END

ELUDOM

15-8

Lexical Functions
QUOTATION

15.2 QUOTATION

(This section presents material that is difficult to understand. One
approach to this section 1is to read it casually before reading the
rest of the chapter and then to read it again carefully.)

BLISS has facilities for quotation. Quotation postpones until a later
lexical scan the binding of a name and the expansion of a
lexical-function or macro-call.

The need for quotation in BLISS is not obvious. The argument in favor
of being able to quote a name is as follows:

1. Some names are processed more than once. For example, a name
in a macro-body is processed once as part of the
macro-declaration and then, a second time, as part of the
expansion of a macro-call.

2. A particular use of a name can only be bound to one
declaration. Therefore, a name that is processed twice could
be bound in two different ways, and a choice must be made.

3. A simple rule for choosing among bindings, such as "always
bind a name the first time it is processed", is not flexible
enough.

4. Therefore, some mechanism is necessary to specify when
binding shall occur. This mechanism is the quotation
facility.

The BLISS quotation facility has two parts: the quotation rules, and
the quote-functions. Each quotation rule states that in a particular
context certain kinds of names are bound or not bound. The
quote-functions override the guotation rules and tell the compiler,
for example, to quote a particular name regardless of the applicable
quotation rules. The quotation rules are given later in this section.

A preliminary example of the BLISS quotation facility is:

OWN
X;
LITERAL
MARK = 4;
MACRO
M = MARK + %UNQUOTE MARK %;
BEGIN
LITERAL
MARK = 5;
X = M;

END

The interesting part of the example is the binding of the wuses of
MARK. A detailed discussion follows.

The name MARK is declared twice, both times as LITERAL, but with
different values. Each use of MARK must be bound to one or the other
of these declarations.

15-9

Lexical PFunctions
QUOTATION

The only uses of MARK are in the declaration of the macro M. There
are two wuses and they are handled in two different ways. The first
occurrence is not bound because one of the BLISS quotation rules
(defined in Section 15.2.2) states that in the macro-body of a
macro-declaration only a macro formal-name 1is bound. The second
occurrence 1is bound because the $UNQUOTE function (defined in Section
15.5.13) overrides the rule just stated and forces binding. After
pProcessing, the macro-body is:

MARK (not bound yet) + MARK (bound to LITERAL 4)

This macro-body is associated with the macro-name M.

Later in the processing of the example, the compiler replaces the
macro-call on M with 1its expansion, and begins to process the
expansion. This time around, the first MARK is bound because the
quotation rules permit it. The second MARK is already bound and,
because a name is never bound for a second time, is left as it is.
After processing, the expansion is:

MARK (bound to LITERAL 5) + MARK (bound to LITERAL 4)

Thus the assignment statement is compiled as assigning 9 to X.

In this example, the application of the quotation rules to the binding
of names has been illustrated. They also apply to the expansion of
lexical-functions and macro-calls.

15.2.1 Quote Levels

The quotation rules of BLISS are organized around three quote 1levels.
At any given time during compilation of a module, a particular quote
level applies to the lexemes being read from the input stream. As
compilation proceeds, the quote level changes depending on the
language construct that is being compiled.

The quote levels are numbered from 1 to 3. They are:

1. Normal-Quote. This level applies to any portion of a module
not covered by the following quote levels.

2. Name-Quote. This level applies to lexical contexts in which
it Is "natural"™ to ignore most applicable declarations. The
portions of a module processed at name-quote level are:

a. A name that 1is about to be declared (explicitly or
implicitly). Specifically, (1) a name that begins a
definition within a declaration, or (2) a name that
appears in the formal-name-list of a routine, structure,
or macro declaration.

b. A name that appears in (1) a name-quote actual-parameter
of a lexical-function or (2) any actual-parameter of a
macro=-call.

C. An unreserved keyword in a context in which an unreserved
keyword is required. An example is a module-switch in a
module-head (described in Section 18.1.1), where the
context makes it clear that a keyword is being used as a
switch. (The BLISS keywords are listed in Appendix B.)

15-10

Lexical Functions
QUOTATION

3. Macro-Quote. This level applies primarily to a macro-body in
a macro-declaration. It also applies to a keyword-default-
actual-parameter (Section 16.2.1).

If more than one of the preceding levels could apply to a given
context, the quote level with the highest number is chosen.

15.2.2 Quotation Rules

The quotation rules determine the binding of names and the expansion
of both macro-calls and lexical functions. There are three quotation
rules, one for each quote level, as follows:

1. At normal-quote level, bind every name.

At this level, expand every macro-call and lexical-function.

2. At name-quote level, bind macro-names. That is, bind a name
only if the binding, performed in the usual way, associates
the name with a macro-declaration.

At this level, expand every macro-call and lexical-function.

3. At macro-quote level, bind macro-formal-names. That is, bind
a name only if the binding, performed in the usual way,
associates the name with the (implicit) declaration of a
macro-formal-name.

At this level, expand only the quote lexical-functions; that
is, $QUOTE, $%UNQUOTE, and $EXPAND.

The quote-functions, described in Section 15.5.13 are specifically
designed to override the rules above. However, a quote-function only
applies at a specific place in a program. For example, the $QUOTE
function postpones application of the bind operation to a name that
immediately follows the function, even though the quotation rules may
call for binding of that name.

15-11

Lexical Functions
LEXICAL-EXPRESSIONS

15.3 LEXICAL-EXPRESSIONS

A module is presented to the compiler as a source file composed of
characters and 1linemarks. During lexical processing, the characters

are grouped into 1lexemes and then the lexemes are grouped into
lexical-expressions.

A lexical-expression can be a single lexeme. Examples are:

+ The plus symbol

MODULE The keyword that begins a module
ALPHA A name (not declared MACRO)

329 A decimal-literal

'ABC' A quoted-string

Each of these examples is not only a single lexeme but 1is also

primitive; that 1is, it is not expanded into some other sequence of
lexemes during lexical processing.

Some examples of lexical-expressions that are more complicated are:

$ASCIC'ABC! A string-literal

$CHARCOUNT ('ABC'") A lexical-function

$IF %SWITCHES (DEBUG) A lexical-conditional with two nested

$THEN SWARN('BANG') S$FI lexical-functions

BETA(3,'ABC') A macro-call (assume BETA is declared
MACRO)

REQUIRE 'TBS'; A require-declaration

LIBRARY $STRING('XYZ',Q); A library-declaration with a nested
lexical-function

All of these lexical-expressions are composed of two or more lexemes.
The first example 1is a $ASCIC string-literal and is primitive. The
second example is a $CHARCOUNT lexical-function and 1is nonprimitive;
it is expanded to 3, which is a primitive lexical-expression. The
remaining examples are all nonprimitive, but their expansion requires
contextual information not given here.

An example of a sequence of lexical-expressions that constitutes a
complete module is:

MODULE Q =
BEGIN
MACRO
PACK (X)
GLOBAL BIND
MESSAGE
END
ELUDOM

il

UPLIT ($CHARCOUNT (X) ,X) ;

]

PACK ('HELLO') ;

This module is mainly composed of primitive, single-lexeme lexical-
expressions. The two exceptions are $CHARCOUNT(X) on the fourth line
and PACK('HELLO') on the sixth line. The first nonprimitive 1lexical-

15-12

Lexical Functions
LEXICAL-EXPRESSIONS

expression, $CHARCOUNT(X), occurs within a macro-body and, therefore,
is processed at macro-quote level; it is not expanded during macro
definition, but is treated simply as a single-lexeme sequence. The

PACK ('HELLO') lexical-expression is a macro-call, and its expansion
is:

UPLIT (%CHARCOUNT ('HELLO') ,'HELLO")
This expansion includes the nonprimitive lexical-expression

$CHARCOUNT ('HELLO'). This is a lexical-function at normal-quote level
and its expansion is 5.

This section introduces the various kinds of 1lexical-expressions in

BLISS and thus prepares for detailed descriptions in the remaining
sections of this chapter.

15.3.1 Syntax

primitive
lexical-expression nonprimitive

delimiter
keyword
primitive 4 name
numeric-literal
Lstring—literal

lexical-function
lexical-conditional
nonprimitive macro-call

} require-declaration
library-declaration

The primitive lexical-expressions are described in other parts of this
manual; specifically, the delimiters are listed in Section 2.2.1, the
keywords are listed in Appendix A, and the names, numeric-literals,
and string-literals are described in Chapter 4.

Under certain conditions, a name, by itself, is also a macro-call; in
that case, the name is nonprimitive.

15.3.2 Semantics
The fundamental lexical rule of BLISS is:

A given sequence of lexemes is a valid BLISS module if and only
if the expansion of nonprimitive lexical-expressions produces a

sequence of lexemes that satisfies the definition of module given
in Chapter 19.

This rule joins together the description of lexical-expressions given
in this chapter and the definition of a module given in Chapter 19.
(That definition of a module includes, by reference, most of the other
chapters of this manual.)

15-13

Lexical Functions
LEXICAL-EXPRESSIONS

The semantics of the various nonprimitive lexical-expressions are
given in later sections of this chapter.

A few remarks about numeric- and string-literals as lexical-
expressions are necessary. These remarks are presented here rather

than in Chapter 4 because they are closely related to the concepts of
lexical processing.

15.3.2.1 Types of Numeric-Literals - The numeric-literals, as defined
in Section 4.2, can be classified as follows:

Fullword Type:
Unsigned Decimal-Literal
Integer-Literal
Character-Code-Literal
Single-Precision-Float Type:
Single~Precision-Float-Literal
Double-Precision-Float Type:
Double~-Precision-Float-Literal

Different numeric-literals of the same type can be used
interchangeably, but numeric-literals of different types cannot. For
example, if a decimal-literal is called for in the syntax, then an
integer-literal can be used instead, but a single-precision-
float-literal cannot.

This rule about interchangeability of numeric-literals does not say
anything new about BLISS, but draws together assertions that are made
in several different places in this manual.

15.3.2.2 Types of String-Literals - The string-literals, as described
in Section 4.3, can be classified as follows:

Uncounted ASCII Type:

Quoted-String (without preceding string-type)

$ASCII String-Literal

$ASCIZ String-Literal
Counted ASCII Type:

$ASCIC String-Literal (BLISS-16/32 only)
Radix-50 Type:

$RAD50 11 String-Literal (BLISS-16/32 only)

$RAD50_ 10 String-Literal (BLISS-36 only)
Sixbit Type:

$SIXBIT String-Literal (BLISS-36 only)
Packed Decimal Type:

%P String-Literal (BLISS-16/32 only)

Different string-literals of the same type can be used
interchangeably, but string-literals of different types cannot. For
example, if a quoted-string is called for, then a $ASCII
string—-literal can be used but a %ASCIC string-literal cannot.

BLISS permits this interchange of uncounted string-literals because
each of them represents a sequence of ASCII characters. (The 0 at the
end of a $ASCIZ literal is thought of as the ASCII character called
"null", which has code 0.)

15-14

Lexical Functions
LEXICAL-EXPRESSIONS

The interchangeability of uncounted ASCII literals does make a slight
addition to the 1language. Consider the definition of the $ASCIC
string-literal (BLISS-16/32 only) given in Section 4.3:

$ASCIC quoted-string

Because of the interchangeability of uncounted ASCII literals, the

gquoted-string can be replaced by an ASCIZ string-literal, and the
result is:

%ASCIC $ASCIZ quoted-string

Thus the following construct is a wvalid $ASCIC string-literal in
BLISS-16 or BLISS-32:

RASCIC $ASCIZ 'ABC'

This literal has a different interpretation than either %ASCIC'ABC' or
$ASCIZ'ABC'. It is encoded in five bytes. The first byte contains
the number of characters, 4, in the character sequence. The next
three bytes contain the ASCII codes for A, B, and C. The final byte
contains 0, which is the ASCII code for the null character.

Some further applications of 1interchangeability of uncounted ASCII
literals are:

$B %ASCII'11011'
%C %ASCII'Q’
$ASCII %ASCIZ %ASCII'ABC'

15.3.2.3 Numeric- and String-Literals - Except for the decimal-
literal and quoted-string, the numeric- and string-literals are all
composed of two lexemes. Each of those lexemes can be produced by

nonprimitive lexical-expressions. An example is the following program
fragment:

MACRO
OCT(N) = %0 $STRING(N) %;
0CT(23)
When the macro-call OCT(23) is expanded, the result is:
%0 %STRING(23)
Then the $STRING lexical-function is evaluated and the result is:
%0 '23°

Thus the final value is 19 (decimal).

15.3.3 Discussion

Some nonprimitive lexical-expressions have an 'empty' expansion, that
is, they do not produce any lexemes. They are used for their side-
effects in controlling the compilation process. Two examples are the
%$UNQUOTE and %WARN lexical-functions discussed previously.

15-15

Lexical Functions
LEXICAL-EXPRESSIONS

Other nonprimitive lexical-expressions have non—-empty expansions, as
do most of the 1lexical-expressions introduced so far. Almost all
instances of this "expanding" type of nonprimitive lexical-expression
can, in principle, be replaced by an equivalent sequence of primitive
lexical-expressions. Such 'replaceable' 1lexical-expressions do not
produce any results that (again, theoretically) could not be obtained
without then. Their purpose 1is to facilitate both conditional
compilation and the writing of macros. Also, they often radically
reduce the effort required to achieve a given result, and can be used
to enhance the clarity of a module.

It is useful to examine those few cases in which a nonprimitive
lexical-expression cannot in any way be replaced by an equivalent
primitive lexical-expression sequence. There are three such cases.
Bach of them is rather specialized, and all of them involve lexical-
functions. They are: internal-only character sequences, excessively-
long character sequences, and internal-only names.

An internal-only character sequence is a character sequence that is
not composed entirely of printing characters, blanks, and tabs. Such
character sequences can be represented by means of the $STRING and
3CHAR lexical-functions, but cannot, according to Section 4.3, be
represented by a quoted-string.

As an example, consider the character sequence
A, carriage-return, line-feed, B

This sequence can be represented as follows:
¥STRING('A',%CHAR(13),%CHAR(10),'B")

The lexical-functions $STRING and %CHAR are defined later, in Section
15.5.2. In this example, $CHAR(13) and %CHAR(10) represent the
troublesome characters, and the $STRING function joins the four
characters into a single sequence. That sequence cannot be
represented by a quoted-string because a quoted-string cannot include
a carriage-return or a line-feed. Thus the uses of the $STRING and
3CHAR functions are essential in this example.

An excessively-long character sequence is one that contains more
characters than can be represented on one line by a quoted-string.
Such a character sequence can be represented on several lines by means
of $STRING as follows:

¥STRING('A line of many characters',
'Another line of characters')

Again, %STRING is essential in this example.

An internal-only name is a character sequence that must be used as a
BLISS name but that does not satisfy the syntax for a BLISS name. An
example is XYZ.A, which is a valid assembler name but not a valid
BLISS name. In BLISS, this name can be represented only as:

$NAME ('XYZ.A'")

The lexical-function %NAME is defined later, in Section 15.5.4.

15-16

Lexical Functions
LEXICAL-EXPRESSIONS

15.3.4 Pragmatics

The description of the lexical-processing stage of the compiler given
in this chapter is correct with respect to the results of compilation,
but does not reflect techniques that make the compiler 1itself more
efficient. One such technique involves the use of internal encoding
of lexemes, and another the use of multiple input streams for the
expansion of lexical-expressions.

The latter technique merits some discussion, since it pertains to the

scanning of lexemes. The compiler does not, in fact, maintain a
single input stream into which the expansion of every
lexical-expression is inserted. Instead, the compiler maintains

several input streams. The principal input stream is, of course, the
file for the module that is being compiled. However, a new input
stream is introduced each time an expansion occurs. For example,
after a macro-call has been processed, the corresponding macro-body
becomes a new input stream. Even the replacement of a formal-name in
a macro-body by the associated macro actual-parameter is done by
treating the actual-parameter as a new input stream.

When a new input stream is introduced, input from the old input stream
is suspended. Lexemes are taken from the new input stream until it
terminates. This new stream can itself contain lexical-expressions
whose expansion may introduce further new streams. When the end of an
input stream is reached, the previous input stream is restored. Thus
the input streams are nested, and the initial input stream (the module
file) is always the final input stream.

15.4 LEXICAL-FUNCTIONS IN GENERAL

A lexical-function is processed by the compiler. The result is a
sequence of lexemes that 1is the expansion of the lexical-function.
The expansion then becomes input to the compiler and is processed in

its turn.

It is important to distinguish between the evaluation of a
computational expression and the expansion of a lexical-function. A
computational expression yields a value, and that value can be used in
the evaluation of other expressions. In contrast, a lexical-function
yields a sequence of lexemes, and that sequence can be used as input
to the compiler.

It is also useful to distinguish between lexical-functions and
macro-calls. Both return a sequence of lexemes, but a
jexical-function invokes an operation that is built into BLISS,
whereas a macro-call invokes an operation that must be defined in a
macro-declaration. Thus lexical-functions and macro-calls are related
in the same way that executable-functions and routine-calls are
related.

Certain parameters of lexical-functions can be expressions, but every
such expression must be a compi1e—time—constant—expression. This
restriction reflects the fact that all lexical-functions must be fully
processed during compilation.

15-17

Lexical Functions
LEXICAL-FUNCTIONS IN GENERAL

Each lexical-function begins with a keyword that, in turn, begins with
a percent character; for example, $STRING and %CHAR.

A few examples of lexical-functions follow:

Lexical-Function Expansion

¥STRING('A','B','C") 'ABC'

¥STRING('X',24) 'X24!

¥CHARCOUNT ('ABC') 3

¥NUMBER('~00062") -62 (coded internally as one lexeme)
These are simple examples: the expansion of each of these

lexical-functions is a single lexeme.

Some lexical-functions can return a sequence that 1is more than one
lexeme in length. A simple example is:

Lexical-Function Expansion
$EXPLODE ('ABC') '‘A','B','C'
In this case, the expansion consists of five lexemes (three

quoted-strings and two commas).
Some lexical-functions are replaced by nothing (that 1is, an empty
sequence of lexemes). For example,
Y = .A+%PRINT('CHECK POINT 20'")F(X);
produces the same object code as
Y = .A+F(X);
However, the first version causes the informational message 'CHECK
POINT 20' to be included in the output listing of the compiler.
Lexical functions can be nested. 2an example is:
%STRING('A',%CHARCOUNT('XYZ'),'B')

Expansion of the $STRING function begins with expansion of the nested
function, %CHARCOUNT giving:

$STRING('A',3,'B")
then the %STRING function itself is expanded, giving:
'A3B!
This quoted-string is the final expansion of the nested 1lexical

functions.

This section gives the general definition of lexical functions,
without defining any particular function. Specific definitions are
given in the next section.

15-18

Lexical Functions
LEXICAL-FUNCTIONS IN GENERAL

15.4.1 Syntax

lexical-function lexical-function-name
(lexical-actual-parameter ,...)
lexeme
nothing

lexical-

function-name $name
lexical-actual- lexeme ...
parameter nothing

15.4.2 Restrictions

A lexical-function must conform syntactically to one of the specific
lexical-function definitions given in the next section, Section 15.5.
For example, the $DECLARED function requires just one parenthesized
parameter, and that parameter must be a single lexeme, specifically a
name.

Each lexical-function-name is a reserved keyword. It must not be
declared and cannot be used for any other purpose.

15.4.3 Semantics

The processing of a lexical-function 1is performed as part of the
compilation of a module. Processing begins when the compiler calls
for the next lexeme of the input stream and that lexeme is recognized
as a lexical-function-name. Processing continues wuntil the last
lexeme of a valid 1lexical-function has been processed. When
processing is complete, the lexical-function is replaced by a sequence
of lexemes that is its expansion.

The processing of a 1lexical-function <can be prevented by placing
$QUOTE in front of it.

When processing of a lexical-function is complete and the
lexical-function has been replaced by its expansion, the compiler
takes its next lexeme from the beginning of the expansion. If the

expansion is the empty sequence, the compiler takes its next lexeme
from the stream that follows the lexical-function.

Most lexical-functions require a parenthesized 1list of actual-
parameters. © That parameter list can, itself, contain
lexical-functions or macro-calls; it is no different in that respect
than other portions of a BLISS module.

Each actual-parameter of a lexical-function is processed at either
name-quote level or normal-quote level. For example, the first two

15-19

Lexiqal Functions
LEXICAL-FUNCTIONS IN GENERAL

actual-parameters of the REXACTSTRING function are at normal-quote
level, while the remaining actual-parameters are at name-quote level.
In the individual definitions in Section 15.5, this distinction is
indicated by placing a # character before each parameter that is
processed at name-~quote level.

Once the actual-parameters have been processed, they must satisfy
certain restrictions. The definition of each lexical-function gives
restrictions that apply to 1its parameters. But one restriction
applies to all 1lexical-functions: when a parameter can be an
expression, it must be a compile-time-constant-expression. This
restriction is necessary because lexical-functions are always expanded
during compilation.

A few lexical-functions cause the compiler to skip over a lexeme
sequence that could otherwise be compiled. For example, $%ERRORMACRO
will, under certain circumstances, abort every macro-call expansion
that 1is in progress. However, such lexical-functions never cause a

portion of the unparsed input stream to be skipped; instead, they
discard secondary sources of lexemes (macro-bodies) and proceed as if
each of those macro-bodies had ended. Such 1lexical-functions are

defined in Section 15.5.11 (%ERRORMACRO) and Section 15.5.14
(REXITITERATION and $EXITMACRO).

15.5 SPECIFIC LEXICAL-FUNCTIONS

For purposes of this presentation, the lexical-functions are grouped
as follows:

String-Functions $STRING, $EXACTSTRING, %CHAR, %CHARCOUNT
Delimiter-Functions $EXPLODE, $REMOVE
Name-Functions $NAME

Sequence-Test-Functions $NULL, SIDENTICAL
Expression-Test-Functions $ISSTRING, %CTCE, %LTCE

Bits-Functions SNBITSU, S$NBITS

Allocation-Functions $ALLOCATION, %SIZE

Fieldexpand-Functions $FIELDEXPAND

Calculation-Functions $ASSIGN, $%NUMBER

Compiler-State-Functions $DECLARED, $SWITCHES, $%BLISS, $%VARIANT

Advisory-Functions $ERROR, %WARN, $%$INFORM, %PRINT,
$MESSAGE, $ERRORMACRO

Title~Functions $TITLE, %SBTTL

Quote-Functions $QUOTE, $UNQUOTE, S$EXPAND

Macro~Functions $REMAINING, $LENGTH, %COUNT,

$EXITITERATION, %EXITMACRO

A description of these 1lexical-functions follows. The description
begins with a brief discussion of quotation within lexical-functions.
Then each class of lexical functions is described in its own section.
Finally, all the lexical-functions are summarized in a single table.

15.5.1 Quote Levels for Lexical-Actual-Parameters

If a lexical-function appears in a context that is at macro-quote
level, then the 1lexical-function is not expanded and its parameters
are processed at macro-quote level. Otherwise, each parameter is
processed at a quote level that is specified in the definition of the
lexical-function.

15-20

Lexical Functions
SPECIFIC LEXICAL-FUNCTIONS

In the definitions of lexical-functions that follow, a # character
sometimes appears before a parameter; in that case, the parameter is
processed at name-quote level and is called a "name-quote parameter”.
Otherwise, the parameter is processed at normal-quote level.

For example, the definition of $EXACTSTRING in Section 15.5.2 begins
with

$EXACTSTRING(n , £ill , #p ,ec.)

Therefore, the first two parameters of $EXACTSTRING are processed at
normal-quote level and the remaining parameters are processed at
name-quote level.

Note that the character # is part of the definition of BLISS; it
never actually appears before a parameter in a program.

15.5.2 String-Functions

The string-functions operate on or produce quoted-string lexemes.
They are important because they facilitate the compile-time
manipulation of quoted-strings, and provide a useful basis for the
definition of new macros by the programmer. The string-functions also
support the run-time functions for character handling that are
described in Chapter 20.

Most of these functions convert a given sequence of lexemes into a
different but essentially equivalent sequence of lexemes. The %STRING
function converts a sequence of lexemes into a single quoted-string
lexeme. The $EXACTSTRING function is 1like %STRING except that it
adjusts the resulting quoted-string to a specified length. The $%CHAR
function takes a sequence of numeric values and converts it into a
quoted-string lexeme.

The only string-function that does not perform a lexical conversion
(as informally defined in the preceding paragraph) is %CHARCOUNT.
This function forms a quoted-string and then yields a numeric-literal
equal to the number of quoted-characters in the string.

The $STRING function plays a leading role among the lexical-functions
because several lexical-functions are based on it. It accepts
parameters that are each a quoted-string, numeric-literal, name, or
empty sequence, and it puts these parameters together into a single
quoted-string lexeme. Examples are:

Function Expansion
$STRING('ABC','D') 'ABCD'
$STRING(23,%B'-111") '23-7"
$STRING (ALPHA,,,9) 'ALPHA9'

The following lexical functions are all based on the $STRING function:

String-Functions $EXACTSTRING, %$CHARCOUNT
Delimiter-Functions $EXPLODE

Name-Functions $NAME

Advisory-Functions $ERROR, %WARN, %INFORM, $PRINT,

$MESSAGE, $ERRORMACRO

15-21

Lexical Functions
SPECIFIC LEXICAL-FUNCTIONS

Each of these lexical-functions begins by using the %STRING function
to gather its parameters into a single quoted-string. Then the
function performs an action on the quoted-string that is different for
each function.

15.5.2.1 Definition - The string-functions are expanded as follows:

2STRING(#p ,...)
Restriction. Each parameter must be one of the following:

Fullword numeric-literal, that is:
unsigned decimal-literal
integer-literal
character—code-literal

ASCII string-literal, that is:
quoted-string
$ASCII string-literal
$ASCIZ string-literal
$ASCIC string-literal

Identifier except for reserved keyword

Empty sequence

Expansion. Modify each parameter, depending on what kind of
lexeme it is, as follows:

) If the parameter is a quoted-string, then remove the
initial and final quote characters.

] If the parameter is a string-literal with a string-type,
then process the string-type (Section 4.3), adding a
leading or trailing character position as required, and
remove the initial and final quote characters.

° If the parameter is a numeric-literal, then represent its
value as a standard numeric-literal. A standard
numeric-literal represents a positive value as a sequence
of decimal digits that does not begin with 0, and
represents a negative value as a minus sign followed by a
sequence of digits that does not begin with 0.

. If the parameter is a name, change any lower-case letters
to upper-case.

° If the parameter is an empty sequence, leave it as is.

Concatenate the modified parameters in the order given to
form a single character sequence. Place the sequence in
quotes, forming a quoted-string. Return the quoted-string.

REXACTSTRING(n , £ill1 , #p ,e..)
YEXACTSTRING(n , fill)

Restrictions. The parameter n must be a compile-time-
constant-expression, and its value must satisfy
implementation restrictions, given elsewhere, on the 1length
of a character sequence.

The parameter fill must be a compile-time-constant-
expression, and its value must be in the range 0 through 127.

15-22

Lexical Functions
SPECIFIC LEXICAL-FUNCTIONS

(Use of a simple string-literal to represent a fill character
is strongly discouraged since it will produce differing
results in different dialects; see Section 3.3. Use of the
character-code-literal -- %C'character' -- however, is fully
transportable.)

Each of the remaining parameters must satisfy the
restrictions on %STRING parameters.

Expansion. Evaluate the first two parameters. Then proceed
as for the $STRING function, obtaining a single quoted-string
from the third through 1last actual-parameters. If the
function has only two parameters, form the empty quoted
string, ''. B

Modify the resulting quoted-string as follows:

. If the quoted-string represents n characters, leave it
unchanged.

° I1f the quoted-string represents more than n characters,
remove quoted-characters from the right end until it
represents n characters.

° If the quoted-string represents less than n characters,
add quoted-characters at the right end until it
represents n characters. Use the character whose ASCII
code is given by the value of fill.

Return the resulting quoted-string.

$CHAR(code ,...)

Restrictions. Each parameter must be a compile-time-
constant-expression, The value of each parameter must be in
the range 0 through 127.

Expansion. Evaluate each parameter and interpret its wvalue
as the code for an ASCII character. Concatenate the
resulting characters to form a single character sequence.
Return the quoted-string that represents that character
sequence.

$CHARCOUNT(#P ;e)

Restriction. The parameters must satisfy the restrictions on
$STRING parameters.

Expansion. Proceed as for the $STRING function, obtaining a

single quoted-string. Determine the number of
gquoted-characters (see Section 4.3.1) in the quoted-string.
Represent this number as a numeric-literal. Return the

numeric-literal.

The result of a %STRING, S$EXACTSTRING, or $%$CHAR function 1is a
quoted-string. However, unlike the quoted-strings written by BLISS
programmers, this dquoted-string 1is not restricted to printing
characters, blanks, and tabs; instead, it can represent any sequence
of ASCII characters. This quoted-string is processed by the compiler
as if it were an ordinary quoted-string.

15-23

Lexical Functions
SPECIFIC LEXICAL-FUNCTIONS

15.5.2.2 Examples - The examples that follow are designed to
illustrate the definition of the various string-functions, not to show
how they should be used. Thus they are simple and, in some cases,
unrealistic.

Examples of the $STRING function are:

Function Expansion

$STRING('ABC") 'ABC'

$STRING('ABC','D') 'ABCD'

$STRING(%C'A') '65"

$STRING('ABC',%C'A") YABC65!

$STRING (23) 123!

$STRING (00023) 23!

$STRING('00023") '00023"

$STRING (20+3) (INVALID: Operator not allowed)
$STRING('20+3"') 120+3"°

$STRING(%B'-1111") '1-15"

$STRING(%0'77"',%X'77") '63119"

$STRING($E'1.125E-02") (INVALID: Float-literal not allowed)
$STRING (beta,'beta') 'BETAbeta’

$STRING(,X,,Y) 'Xy!

$STRING (OWN,MODULE) (INVALID: Reserved-keywords not allowed)
$STRING ('OWN','MODULE’') ' OWNMODULE"

$STRING(Q,18) Q18!

$STRING (Q,$DECIMAL'-18") 'Q-18'

$STRING(Q,~-18) (INVALID: Leading sign not allowed)

It is assumed in these examples that beta, X, Y, and Q are not macro-
names. As $STRING parameters, non-macro names are treated literally

{(except for possible case conversion), whereas a macro—name is
expanded.

In most programming situations, at least some of the parameters of the
$STRING function (or any other lexical-function) are variable.
Consider, for example:

$STRING(U,'="',V(X,Y))

Assume that U and V are declared as macros. The %STRING function will
put the expansions of the two macros into a single quoted-string
separated by an '=' sign. If the expansions of U and V are *ALPHA'
and 'X+Y', respectively, then the final expansion of the $STRING
function is the quoted-string 'ALPHA=X+Y'.

Examples of the $EXACTSTRING function are:

Function Expansion
$EXACTSTRING(6,%C'X"','ABC"') "ABCXXX'
$EXACTSTRING(3,%C'X','ABC"') 'ABC'

$EXACTSTRING (2,%C'X','ABC') 'AB'
$EXACTSTRING(0,%C'X','ABC"') ve
$EXACTSTRING(-2,%C'X"',"ABC') (INVALID: Negative count)

$EXACTSTRING(4,%C'-") R
SEXACTSTRING(6,%C'*',38,'-6") '38-6**!

15-24

Lexical Functions
SPECIFIC LEXICAL-FUNCTIONS

$EXACTSTRING(4,%C'Y',3%C'X") '88YY!
$EXACTSTRING(4,'Y','X") 'X' in BLISS-36 only!
$EXACTSTRING(4,'Y','X") '*XYYY' in BLISS-16/32 only!
$EXACTSTRING(4,%C'Y','X") 'XYYY' in all dialects
$EXACTSTRING(4,89,'X') 'XyYvyy'!

Examples of the %CHAR function follow. They are assumed to lie in the
scope of these declarations:

LITERAL
ACODE 65,
BCODE 66,
APOSTROPHE = 39,
CR 13,
LF 10;

The examples are:

Function Expansion

$CHAR (65, 66) 'AB'

$CHAR (ACODE ,BCODE) 'AB'

$CHAR (ACODE+32) 'a'

$CHAR (ACODE , APOSTROPHE, BCODE) 'A''B' (3 characters)
$CHAR (CR, LF) (new line)

Examples of the %CHARCOUNT function are:

Function Expansion
$CHARCOUNT ('ARBRC') 3
$CHARCOUNT(,,"'"',) 0
$CHARCOQUNT('A''C") 3

15.5.3 Delimiter-Functions

The delimiter-functions insert or delete delimiters within a given
string.

The $EXPLODE function forms a quoted-string and then "explodes" it
into a 1list of single-character quoted-strings. It can be used to
take a given string apart. The %$REMOVE function deletes parentheses,
brackets, or angle brackets that enclose a given actual-parameter.

15.5.3.1 Definition - The delimiter-functions are expanded as
follows:

SEXPLODE(#P ,.¢.)

Restriction. Each parameter must satisfy the restriction on
$STRING parameters.

Expansion. Proceed as for the $STRING function, obtaining a
single quoted-string.

Remove the quotes from the ends of the resulting
quoted-string, place each quoted-character in its own pair of

15-25

Lexical Functions
SPECIFIC LEXICAL-FUNCTIONS

quotes, and insert a comma between each quoted-string and the

next.

Return the resulting sequence of quoted-strings and commas.

$REMOVE (#p)

Expansion. If the parameter begins and ends with a matched
pair of parentheses, (...), brackets, [...], or angle
brackets, <...>, then remove these lexemes from the
parameter. Otherwise, leave the parameter unchanged.

Return the resulting sequence of lexemes.
The result of a $EXPLODE function 1is a sequence of one or more
one-character quoted-strings. As with the %STRING, $EXACTSTRING, and

$CHAR lexical-functions, these quoted-strings can represent any ASCII
characters.

15.5.3.2 Examples - Examples of the $EXPLODE function are:

Function Expansion

$EXPLODE ("ABC') ‘a','B','C' (5 lexemes)
$EXPLODE ('A') ‘A’ (1 lexeme)
$EXPLODE () L (1 lexeme)
$EXPLODE('A','B') ‘A','B! (3 lexemes)
$EXPLODE (%0'77"'") '6','3" (3 lexemes)
SEXPLODE ('A',%0'-77"') ‘'A','-','6','3" (7 lexemes)

The following example is especially interesting:
$STRING ($EXPLODE ('ABC'"))

In this example, %STRING acts as the inverse of $EXPLODE, and the
final expansion of the nested functions is just 'ABC'.

Examples of the $REMOVE function follow.

Function Expansion
$REMOVE ((A,B,C)) A, B, C
$REMOVE (<A+1>) A+l
$REMOVE ([R(A+1)1) R (A+1)
$REMOVE ((A+B)) A+B
SREMOVE ((A)+ (B)) (A)+(B)
This function is usually applied to macro-formal-names. A simple

example of this application is:

MACRO

A(X) = RRR ($REMOVE (X))} +1 %;
A(l);
A((1,2,3));

15-26

Lexical Functions
SPECIFIC LEXICAL-FUNCTIONS

The extra parentheses in the second macro-call are required to keep
its parameter from being treated as three parameters. The %REMOVE
function deletes the extra parentheses, and the two macro-calls expand
to:

RRR(1)+1;
RRR(1,2,3)+1;

Assuming that RRR is a conditional or iterative macro (as defined in

Section 16.3) and thus accepts a parameter list of variable length,
this is a useful result.

15.5.4 Name-Functions
Sometimes it is necessary to put together a name during program
compilation. This need arises either because the name cannot be

written (conveniently) in advance or because it 1is a sequence of
characters that would not normally be accepted as a name.

15.5.4.1 Definition - The name-function is expanded as follows:

SNAME(#p ,...)

Restriction. Each parameter must satisfy the restriction on
$STRING parameters.

Expansion. Proceed as for the %$STRING function, obtaining a
single quoted-string.

Treat the sequence of quoted-characters in the quoted-string
as a name. Return the resulting name,

The result of a $NAME lexical-function is a name. Unlike the names
written by BLISS programmers, this name 1is not restricted to the
syntax for a BLISS name; instead, it can be any sequence of ASCII

characters. It is accepted by the compiler as a name.

15.5.4.2 Examples - The $NAME function permits the formation of a
name out of parts that are compile-time variables. An example is:

MACRO
BLOCKOP (A) =
OWN A: BLOCKI[10];
ROUTINE $NAME(A,' INIT'): NOVALUE =
BEGIN -
END;
%;

Suppose this macro is called as follows:

BLOCKOP (BETA)

15-27

Lexical Functions
SPECIFIC LEXICAL-FUNCTIONS

The expansion is:

OWN BETA: BLOCK([10];
ROUTINE BETA_ INIT: NOVALUE =
BEGIN

END;

The macro BLOCKOP uses the given name, BETA, for an OWN data segment.
It uses $NAME to generate a related but distinct name, BETA_INIT, for
the routine that initializes BETA.

The $NAME function also can be used to force the compiler to accept
any character sequence as a name. That can be useful when something
entirely new is needed. An example is:

$NAME ('+302"')

Each time this construct appears, it is equivalent to writing Jjust
+302 and having those four characters accepted by the compiler as a
valid name,

The $NAME function should not be used casually. Sometimes its use can
cause an unexpected collision with names generated by the compiler.
For example, one compiler uses names like P.AAA, P.AAB, and so on, for
plit storage. Furthermore, some operating systems restrict global
names to the characters that are in the RADS50 character set; in that
situation, $NAME (+302) would be invalid as a global name.

On the other hand, there are cases in which $NAME is essential. For
example, the period character is used for global names in some
software. Since period cannot be used in an ordinary BLISS name,
$NAME must be used to form such a global name.

15.5.5 Sequence-Test-Functions

A sequence-test-function expands to 1 or 0, depending on whether or
not a certain condition is met. Since a test-function is expanded
during compilation, it can be used within other 1lexical constructs.
In particular, a sequence-test-function can be used as a compile-time-
test in a lexical-conditional, as described in Section 15.6.

The two test-functions, %NULL and $IDENTICAL, are applied to lexeme
sequences. The $NULL function determines whether a sequence is empty;
that is, contains nothing. The $IDENTICAL function compares two
sequences to determine if they contain the same lexemes in the same
order.

15.5.5.1 Definition - The sequence-test-functions are expanded as
follows:

$NULL(#seq ,...)
Expansion. Process the actual-parameters as for an ordinary
macro-call, as defined 1in Section 16.3.3.1. Return the
numeric-literal 1 or 0, depending on whether or not all the

parameters expand to the empty sequence.

15-28

Lexical Functions
SPECIFIC LEXICAL-FUNCTIONS

SIDENTICAL(#seql , #seq2)

Expansion. Process the actual-parameters, seql and seq2, as
for an ordinary macro-call, as defined in Section 16.3.3.1.
Return the numeric-literal 1 or 0, depending on whether or
not the two resulting lexeme sequences are the same.

When two identifiers are compared, all letters are considered
to be upper-case, so that case is effectively ignored. When
two numeric-literals are compared, the numeric values of the
numeric-literals are compared rather than the
numeric-literals themselves.

15.5.5.2 Examples - Examples of the $NULL and $IDENTICAL functions
are:

Function Expansion
$NULL () 1
$NULL(,,) 1
$NULL ($EXACTSTRING(0,0,'ABC'")) 0
$NULL (,ALPHA) 0

$IDENTICAL (A+B,A+B)
$IDENTICAL(,)
$IDENTICAL (3, $CHARCOUNT ('ABC"'))
$IDENTICAL (%0'77',63)
$IDENTICAL (ALPHA,alpha)
$IDENTICAL ('ALPHA','alpha')
$IDENTICAL (A+B,A+C)
$IDENTICAL(32,'32")

COOHKHKF H

The third example of $NULL is interesting, since it might be thought
that a character sequence of length 0 would be a lexical sequence of
length 0. However, the value of

$EXACTSTRING(0,0,"'ABC"')

is the string-literal that represents the empty character sequence,
'**, and that string-literal constitutes one lexeme.

15.5.6 Expression-Test-Functions

An expression-test-function expands to 1 or 0, depending on whether or
not each of its parameters constitute a particular form of expression.
Since a test-function is expanded during compilation, it can be used
within other 1lexical constructs. In particular, an expression-test-
function can be used as a compile-time-test in a lexical-conditional,
as described in Section 15.6.

The functions $ISSTRING, $CTCE, and $LTCE are applied to expressions.
The $ISSTRING function determines whether or not each of its
parameters is a string-literal. The %CTCE function determines whether
or not each of its parameters is a compile-time-constant-expression.
The $LTCE function determines whether or not each of its parameters is
a link-time-constant-expression.

15-29

Lexical Functions

SPECIFIC

15.5.6.1
follows:

LEXICAL-FUNCTIONS

Definition - The expression-test-functions are expanded as

$ISSTRING(exXpP ,ee.)

Restriction. Each parameter must be a valid expression.

Expansion. Process each parameter, expanding all macro-calls
and lexical-functions. Return the numeric-literal 1 if each
of the resulting expressions is a quoted-string; return the
numeric-literal 0 if any of the resulting expressions is not
a quoted-string.

$CTCE(€XP see0)

Restriction. Each parameter must be a valid expression.

Expansion. Process each parameter, expanding all macro-calls
and lexical-functions. Return the numeric-literal 1 if each
of the resulting expressions is a compile-time-constant-
expression; return the numeric-literal 0 if any of the
resulting expressions is not a compile-time-constant-
expression.

SLTCE(exp ,...)

15.5.6.2

Restriction. Each parameter must be a valid expression.

Expansion. Process each parameter, expanding all macro-calls
and lexical-functions. Return the numeric-literal 1 if each
of the resulting expressions |is a link-time-constant-
expression; return the numeric-literal 0 1if any of the
resulting expressions is not a link-time-constant-expression.

Examples - Examples of the expression-test-functions are:

Function Expansion

$ISSTRING('ALPHA','BETA','GAMMA')

1
$ISSTRING('ALPHA','BETA' ,GAMMA) 0
$ISSTRING (3ASCIC 'ALPHA') 1
$ISSTRING ($RAD50_11'AB.99',%P'372") 1
$ISSTRING(GET_STRING_RTN (BUF+I))
$ISSTRING (3CHARCOUNT ('GAMMA'))
$ISSTRING (3STRING (3ASCIC'BETA'))

$ISSTRING ('ABCDEFGHIJ"')
$ISSTRING (PLIT ('ABCDEFGHIJ'))

<= 16/32 Only
<= 16/32 Only

= 0O O

[

(Context for the following examples:

$CTCE (X,Y)
$CTCE (A)
$CTCE (V)
$CTCE (A,V)

OWN X: REF VECTOR,
Y: VECTOR[10];

EXTERNAL LITERAL A;

LITERAL V = 100;)

O~ OO

15-30

Lexical Functions
SPECIFIC LEXICAL-FUNCTIONS

$LTCE (X,Y)
SLTCE (X+A)
$LTCE (X[0])
$LTCE (Y[9])
SLTCE (V)

O

15.5.7 Bits-Functions

A bits-function determines the smallest number of bits required for
the BLISS encoding of a given value. The $NBITSU function determines
the number of bits required for an unsigned encoding, and the $NBITS
function does the same for a signed encoding.

15.5.7.1 Definition - The bits-functions are expanded as follows:

ENBITSU(n ,...)

Restriction. Each parameter must be a compile-time-constant-
expression.

Expansion. This function calculates a bit count for each of
its parameters. The bit count is the smallest number of bits
required to represent the parameter as an unsigned binary
integer. The following algorithm is used:

) I1f the function has just one parameter, evaluate that
parameter.

o If the value of the parameter is negative, then the
desired bit count is $BPVAL (which, in BLISS-32 for
example, is 32).

o Otherwise, the desired bit count 1is the smallest
integer, i, that satisfies the following relation:

0 < vp < (2%*i)-1

where vp is the value of the given parameter, and
2**j means "2 to the i'th power".

° If the given $NBITSU function has several parameters,
then the desired bit count is the value of the following
expression:

MAX($NBITSU(nl), $NBITSU(n2),...)
where nl, n2, and so on, are the given parameters.

Represent the bit count thus obtained as a numeric-literal.
Return the numeric-literal.

15-31

Lexical Functions
SPECIFIC LEXICAL-FUNCTIONS
SNBITS(n ,...)

Restriction. Each parameter must be a compile-time-constant-
nestr’ct_.on
expression,

Expansion. This function calculates a bit count for each of

its parameters. The bit count is the smallest number of bits

required to represent the parameter as a signed (two's

complement) binary integer. The following algorithm is used:

) If the function has just one parameter, evaluate that
parameter. The desired bit count 1is the smallest
integer, i, that satisfies the following relation:

—(2**(i-1)) < vp £ (2**(i-1))-1

where vp is the value of the given parameter and 2**(i-1)
means "2 to the (i-1)'th power".

) If the given $NBITS function has several parameters, then
the desired bit count is the value of the following
expression:

MAX($NBITS(nl), ®NBITS(n2),...)

where nl, n2, and so on, are the given parameters.

Represent the bit count thus obtained as a numeric-literal.
Return the numeric-literal.

15.5.7.2 Examples - Examples of the $NBITSU and $NBITS functions are:

Expansion of Expansion of

Parameter List SNBITSU $NBITS
-8 $BPVAL 4
-1 $BPVAL 1
0 0 1
1 1 2
2 2 3
255 8 9
1,7 3 4
-8,7 $BPVAL 4
0,1,255,2,3 8 9

15.5.8 Allocation-Functions

An allocation-function determines the amount of storage required for a
given kind of data. Allocation-functions are useful in laying out
storage and calculating address offsets.

The $ALLOCATION function determines how many addressible wunits have
been allocated for a given data name. The %SIZE function determines
how many addressible wunits would be allocated for a given
structure—attribute if that attribute were used in a data declaration.

15-32

SPECIFIC

Lexical Functions
LEXICAL-FUNCTIONS

15.5.8.1 Definition - The allocation-functions are expanded as

follows:

%ALLOCATION(name)

Restriction. The parameter must be a name that is declared

as one of the following:

OWN

GLOBAL

FORWARD

LOCAL

STACKLOCAL
REGISTER

GLOBAL REGISTER
EXTERNAL REGISTER

Expansion. Determine the number of addressible units
allocated in the data segment for the given name. Represent
the number just obtained as a numeric-literal. Return the

numeric-literal.

$SIZE(structure-attribute)

Restriction. The parameter must be a structure-attribute, as

described in Chapter 11.

Expansion. Determine the number of addressible units that
would be allocated for a data structure if the given
structure-attribute appeared in a data-declaration at this

point in the program. (A full

description of

structure-attributes is given in Section 11.4.) Represent
the number 3just obtained as a numeric-literal. Return the

numeric-literal.

15.5.8.2 Examples - The examples that follow are assumed to lie in

the scope of these declarations:

GLOBAL
Xy
¥Y: BYTE, <= BLISS-16/32 only
Z: VECTOR[10];
STRUCTURE
ARRAY([I,J;M,N] =
[M*N*4]
(ARRAY+ (I*N+J) *4);

Examples of the $ALLOCATION and %SIZE functions are:

Function Expansion

$ALLOCATION(X) $UPVAL (for example, 1 in BLISS-36)
$ALLOCATION(Y) 1 (in BLISS-16/32 only)
$ALLOCATION(Z) $UPVAL*10 (for example, 40 in BLISS-16))
$SIZE(VECTOR[10]) $UPVAL*10 (for example, 20 in BLISS-16)
$SIZE(VECTOR[10,WORD]) 20 (in BLISS-16/32 only)

$SIZE (REF VECTOR) $UPVAL (for example, 1 in BLISS-36)
$SIZE (ARRAY[3,3]) $UPVAL*9 (for example, 36 in BLISS-32)

15-33

Lexical Functions
SPECIFIC LEXICAL-FUNCTIONS

15.5.9 Fieldexpand-Function
The fieldexpand-function plays a specialized role in the declaration

of data-structures. The function 1is wused in conjunction with
field-names, which are described in Chapter 11l.

The $FIELDEXPAND function replaces a given field-name with its
associated 1list of field-components. When an additional parameter is
given, that parameter selects one of the field-components.

15.5.9.1 Definition - The field-functions are defined as follows:

SFIELDEXPAND(field)
$FIELDEXPAND(field , n)

Restrictions. The first parameter must be a field-name
declared in a field-declaration.

The second parameter, if present, must be a
compile-time-constant-expression, and its value, v, must lie
in the range 0 through k-1, where k 1is the number of
field-components associated with field.

Expansion. Determine the list of field-components associated
with the given field-name (see Chapter 11).

Represent each field-component as a standard numeric-literal
(see the definition of $STRING); use a comma to separate
each field-component in the list from the next.

If a second parameter is not given, return the entire list of
field-components. Otherwise, return the v-th field-
component, where v is the value of the second parameter.

15.5.9.2 Examples - The examples that follow are assumed to 1lie in
the scope of this declaration:

FIELD
DCB_FIELDS =

SET
DCB_ A = [0,0,0,0],
pcB B = [0,8,3,0],
pce_ ¢ = [o0,11,5,1],
DCB D = [0,16,16,1],
DCB_E = [1,0,%BPVAL,0]
TES;

(This declaration is taken from Chapter 12, where field-declarations
are described and illustrated.)

Examples of the SFIELDEXPAND function are:
Function Expansion

$FIELDEXPAND (DCB A)

= 0, 0 (7 lexemes)
$FIELDEXPAND(DCB C) 0, v
0
1

1 (7 lexemes)
(1 lexeme)
(1 lexeme)

$FIELDEXPAND(DCB_C,0)
$FIELDEXPAND(DCB_C, 3)

Lexical Functions
SPECIFIC LEXICAL-FUNCTIONS

A field-name in a structure-reference is expanded without application
of the SFIELDEXPAND function. Elsewhere, the $FIELDEXPAND function is
necessary to force expansion.

15.5.10 Calculation-Functions

The calculation-functions provide a compile-time facility for
calculating a value, saving it, and using it later in the compilation.

The $%ASSIGN function assigns a value during program compilation. The
value 1is obtained from a compile-time-constant-expression and is
assigned to a COMPILETIME name. The $NUMBER function produces a
numeric-literal from another numeric-literal, a quoted-string, or a
name. When the $NUMBER function is applied to a name, the name must
be a COMPILETIME, LITERAL, or GLOBAL LITERAL name.

15.5.10.1 Definition - The calculation-functions are expanded as
follows:

$ASSIGN(#name , n)

Restrictions. The first parameter must be a name that Iis
declared COMPILETIME.

The second parameter must be a compile-time-constant-
expression.

Expansion. Evaluate the second parameter and associate the
resulting value with the first parameter. Return the empty
sequence.

$NUMBER(p)

Restrictions. The parameter must be a dquoted-string, a
numeric-Iiteral, or a name.

If the parameter is a quoted-string, 1its quoted-characters
must consist of an optional sign followed by a sequence of
decimal digits. If the parameter is a numeric-literal, it
must not be a float-literal. 1If the parameter is a name, it
must be declared as one of the following:

LITERAL

GLOBAL LITERAL

COMPILETIME
Expansion. First determine the value of the parameter, as
follows:
. If the parameter is a quoted-string, then remove the

quotes and interpret the remainder as a decimal integer.

. If the parameter is a numeric-literal, use the value it
represents.

° If the value is a name, use the value associated with the
name by its declaration or, in the case of a COMPILETIME
name, the most recently processed $ASSIGN function.

15-35

Lexical Functions
SPECIFIC LEXICAL-FUNCTIONS

Once the value of the parameter has been determined,

represent that wvalue as a numeric-literal. Return the
numeric-literal.

15.5.10.2 Example - An example of a macro that uses the %ASSIGN
function appears in the following program fragment:

BEGIN
COMPILETIME
ERRS = 0;
MACRO
COUNT_ERROR = $ASSIGN (ERRS,ERRS+1) $%;

END

The first declaration in this block declares ERRS as a COMPILETIME
name. The second declaration declares COUNT_ERROR as a macro name.
Wherever COUNT ERROR is called, it will expand to:

$ASSIGN{(ERRS, ERRS+l1)

Wherever the compiler encounters this expansion, it will increase ERRS

by one. Thus the macro can be used to keep a count of a particular
kind of error.

The combined use of the $ASSIGN and $NUMBER function is the only way
the value of a compile-time-constant-expression can be incorporated in
a compile-time character sequence., An example is:

COMPILETIME
N = 0,
Q= 4;

$ASSIGN (N, 2*Q-1)
$INFORM('HERE IS AN INTEGER: ',$NUMBER(N))

The use of %ASSIGN is essential because 2*Q-1 is not a valid parameter
for either $INFORM or $NUMBER.

More examples of the $NUMBER function follow. They are assumed to lie
in the scope of the following declaration:

LITERAL
Q = -16;

The examples are:

Function Expansion

$NUMBER('-180") -180 (coded internally as one lexeme)
$NUMBER (83) 83

$NUMBER (%0'100") 64

$NUMBER (Q) -16 (coded internally as one lexeme)

15-36

Lexical Functions
SPECIFIC LEXICAL-FUNCTIONS

15.5.11 Compiler-State-Functions

Like the sequence-test-functions, a compiler-state-function expands to
0 or 1, depending on whether or not a certain condition is met. Since
the function is expanded during compilation, it can be used within
other 1lexical <constructs. In particular, a compiler-state-function
can be used as a lexical-test in a lexical-conditional, described in
Section 15.6.

The compiler-state-functions refer to tables that are maintained by
the compiler. The $DECLARED function determines whether a given name
has been explicitly declared. The %SWITCHES function determines the
settings of one or more compilation switches. The %BLISS function
determines which compiler (BLISS-16, BLISS-32, or BLISS-36) is in use.
The $VARIANT function determines the integer value given in the
/VARIANT qualifier switch (if any) in the compiler command line.

15.5.11.1 Definitions - The test-functions are expanded as follows:

$DECLARED(#name)
Restriction. The parameter must be a name.
Expansion. Return the numeric-literal 1 or 0, depending on
whether or not it is explicitly declared at this point in the
compilation of the program.

$SWITCHES(#switch-name ,...)

Restriction. Each parameter must be one of the following
on-off-switches:

ERRS | NOERRS
OPTIMIZE | NOOPTIMIZE
UNAMES | NOUNAMES
SAFE | NOSAFE

ZIP | NOZIP

CODE | NOCODE

DEBUG | NODEBUG

Expansion. Return the numeric-literal 1 or 0, depending on
whether or not every parameter designates the current setting
of an on-off-switch.

$BLISS (#language-name)

Restriction. The parameter must be one of the following
compiler names:

BLISS16
BLISS32
BLISS36

Expansion. Return the numeric-literal 1 or 0, depending on

whether or not the parameter designates the compiler that is
compiling this program.

15-37

Lexical Functions
SPECIFIC LEXICAL-FUNCTIONS
$VARIANT
Expansion. One of the following must apply:

° If the compiler command line contained a qualifier switch
of the form:

/VARIANT:n or /VARIANT=n
where n is an unsigned decimal-literal, then return n.

. If the compiler command line contained a qualifier switch
of the form:

/VARIANT
then return the decimal-literal 1.

. If the compiler command line did not contain a /VARIANT
qualifier switch, then return the decimal-literal 0.

15.5.11.2 Examples - The examples that follow are assumed to 1lie in
the scope of these, and only these, declarations:

OWN
A;
SWITCHES
OPTIMIZE,
NOCODE;

It is further assumed that the compiler being used is a BLISS-32
compiler.

Examples of the %DECLARED, %SWITCHES, and $BLISS functions are:

Function Expansion
$DECLARED(A) 1
$DECLARED(B) 0
$DECLARED (VECTOR) 0

$SWITCHES (OPTIMIZE)
$SWITCHES (OPTIMIZE,NOCODE)
$¥SWITCHES (OPTIMIZE, CODE)

O

$BLISS (BLISS16) 0
$BLISS (BLISS32) 1
¥BLISS (BLISS36) 0

It is assumed that the third example above appears in a context in
which VECTOR is not explicitly declared.

15.5.12 Advisory-Functions

The advisory-functions generate compile-time output. The kind of
advisory function determines the form of output: it may be an error

message, a warning message, an informational message, or just a line
in the program listing.

15-38

Lexical Functions
SPECIFIC LEXICAL-FUNCTIONS

Two of the advisory functions do more than generate compile-time
output: 3ERRORMACRO also aborts any current macro—-expansion, and
$ERROR inhibits most subsequent expression evaluations and causes the
object module to be discarded. (See the appropriate BLISS User's
Guide for further information on the side-effects of $ERROR.)

15.5.12.1 Definitions - The advisory-functions are expanded as
follows:

$ERROR(#pP ,...)

Restriction. Parameters of an advisory-function must satisfy
the restriction on parameters of the $STRING function.

Expansion. Proceed as for the %STRING function, obtaining a
single quoted-string. Use the quoted-string as the text of a
compiler error message, transmit the message as if it were a
standard diagnostic, and add 1 to the compiler error count.
Return the empty sequence.

SWARN(#P ;...)

Restriction. Parameters of an advisory-function must satisfy
the restriction on parameters of the %S5TRING function.

Expansion. Proceed as for the $STRING function, obtaining a
single quoted-string. Use the quoted-string as the text of a
compiler warning message, transmit the message as if it were
a standard diagnostic, and add 1 to the compiler warning
count. Return the empty sequence.

$INFORM(#P ,+.-)

Restriction. Parameters of an advisory-function must satisfy
the restriction on parameters of the $STRING function.

Expansion. Proceed as for the $STRING function, obtaining a
single quoted-string. Use the quoted-string as the text of a
compiler information message, and transmit the message as if
it were a standard diagnostic. (Do not increment either the
compiler error or warning count.) Return the empty sequence.

$PRINT(#P sev.)

Restriction. Parameters of an advisory-function must satisfy
the restriction on parameters of the $STRING function.

Expansion. Proceed as for the %STRING function, obtaining a
single quoted-string. Insert the character sequence directly
into the compilation 1listing as the next line of that
listing. Return the empty sequence.

15-39

Lexical Functions
SPECIFIC LEXICAL-FUNCTIONS

¥MESSAGE(#p ,...)

Restriction. Parameters of an advisory-function must satisfy
the restriction on parameters of the $STRING function.

Expansion. Proceed as for the %STRING function, obtaining a
single quoted-string. Write the character sequence directly
to the user's terminal (or other standard output device for
the compilation). Return the empty sequence.

%¥ERRORMACRO(#P ,e4.)

Restriction. Parameters of an advisory-function must satisfy
the restriction on parameters of the %STRING function.

Expansion. Proceed as for the %STRING function, obtaining a
single quoted-string. Use the quoted-string as the text of a
compiler error message, transmit the message as if it were a
standard diagnostic, and add 1 to the compiler error count.
Then, in addition, abort every macro-call expansion that is
currently in progress. Resume compilation of the program
with the lexeme that follows the outermost of the aborted
macro-calls.

15.5.12.2 Examples - Examples of the form of message produced by the
advisory-functions appear in the BLISS User's Guides.

15.5.13 Titling-Functions

Each page of a compilation listing begins with a header. The header
may vary from one implementation to another, but, typically, it
includes the page number, compilation date, and other identifying
information. By means of the titling-functions, a programmer can
specify a title and a subtitle for inclusion in the header.

15.5.13.1 Definition - The titling-functions are expanded as follows:

$TITLE gs

Restriction. The lexeme gs must be a8 quoted-string. (Note
that gs is not enclosed in parentheses.)

Expansion. Use the value of gs as the title in subsequent

headers of the compilation 1listing. Return the empty
sequence.

$SBTTL gs

Restriction. The lexeme gs must be a quoted-string. (Note
that gs is not enclosed in parentheses.)

Expansion. Use the value of gs as the subtitle in subsequent

headers of the compilation 1listing. Return the empty
sequence.

15-40

Lexical Functions
SPECIFIC LEXICAL-FUNCTIONS

These functions can be wused repeatedly throughout a module, thus
changing the title and/or subtitle from page to page of the listing.

15.5.13.2 Examples - Listing titles and subtitles appear in the BLISS
User's Guides.

15.5.14 Quote-Functions

The quotation-functions are used to override the quotation rules given
earlier, 1in Section 15.2.2. Each function applies to the name or
lexical-function-name that immediately follows 1it. The $QUOTE
function can also be applied to a comma or percent lexeme.

The %QUOTE function prevents a name from being bound and prevents
expansion of a lexical-function or macro-call. The %UNQUOTE function
causes a name to be bound but does not cause any expansion. The
SEXPAND function causes both binding and expansion.

15.5.14.1 Definitions - The quote-functions are expanded as follows:

$QUOTE

Restrictions. The next lexeme must be a name, a lexical-
function—-name, a comma, or a percent sign.

Use of this function is restricted to macro-bodies or to the
actual-parameters of a macro-call or lexical-function. That
is, it applies only to lexemes encountered at macro-quote or
name-quote level.

Expansion. Temporarily change the quotation rules so that
binding of the next lexeme is deferred to a subsequent scan
of the lexeme stream in which it occurs. More specifically,
this means that:

° If the next lexeme is an unbound name, an attempt to bind
it will not occur when it is read.

] If the next lexeme is the beginning of a macro-call or
lexical-function, an attempt to expand the macro-call or
lexical-function will not occur when it is read.

. If the next lexeme is itself a quote-function in a macro-
definition, that quote-function will be interpreted as a
lexeme in the macro-body and thus will not, at that
point, affect the binding of the lexeme which follows it.

. If the next 1lexeme 1is a comma in a list of
actual-parameters in a lexical-function or macro-call, it
will be interpreted as a lexeme in the current

actual-parameter rather than as the separation between
two actual-parameters.

. If the next lexeme is a percent in a macro-definition, it
will be interpreted as a lexeme in the macro-body rather
than as the termination of the macro-body.

Return the empty sequence.

15-41

Lexical Functions

SPECIFIC

LEXICAL-FUNCTIONS

$UNQUOTE

Restriction. The next lexeme must be a name or lexical-
function-name.

Use of this function is restricted to macro-bodies or to the
actual-parameters of a macro-call or lexical-function. That
is, it applies only to lexemes encountered at macro-quote or
name-quote level.

Expansion. Attempt to bind the next lexeme.

(Forced binding of a macro-name or lexical-function-name does
not also force expansion of the corresponding call or
function.)

Return the empty sequence.

FEXPAND

15.5.14.2

Restriction. The sequence of lexemes that follow SEXPAND
must begin with a lexical-function or macro-call.

Use of this function is restricted to macro-bodies. That is,
it applies only to lexemes encountered at macro-quote level.

Expansion. Temporarily change the quotation rules so that

the lexical-function or macro-call that follows $%EXPAND is
expanded. (Any macro-calls or lexical-functions contained in
the expansion are not themselves automatically expanded.)

Return the empty sequence.

Examples -~ A simple example of the use of the $UNQUOTE

function is given earlier (in Section 15.2). A series of more complex
examples is given here. They are each based on the following program

fragment:

MACRO

Ql(p) = 1,P 8§,
Q2 = 2 g,
X = 01(Q2) %;

ROUTINE R =

BEGIN

MACRO
%QUOTE Q1 (X) = 10,X %,
%$QUOTE Q2 = 20 %;

BIND
Y = UPLIT(%STRING(X));

END;
When 01(Q2) in the declaration of X is processed, neither Ql nor Q2 is
bound because they are names at macro-quote level (see Section
15.2.1).

15-42

Lexical Functions
SPECIFIC LEXICAL-FUNCTIONS

The %QUOTE functions are necessary in the second macro-declaration
because Q1 and Q2 would otherwise be interpreted as macro-calls, and
the declaration would become:

MACRO
1,
2

>

= 10,X %,
20 %;

which is nonsense. This expansion would occur because Q1 and Q2 are
macro-names at name-quote level.
A call on the macro X appears in the bind-declaration. When X is
expanded and processed, it is

10,20
This result reflects the fact that Q1 and Q2 are both bound in the

scope of the second declarations of Q1 and Q2.

The following table shows the affect of using various gquote-functions
in the macro-body of the declaration of X:

If Q1(Q2) is replaced with: Then the processed expansion is:
Q1 (3UNQUOTE Q2) 10,2

$UNQUOTE Q1(Q2) 1,20

$UNQUOTE Q1 ($UNQUOTE Q2) 1,2

$EXPAND 0Q1(Q2) 1,2

$EXPAND Q1 ($QUOTE Q2) 1,20

Q1 (3QUOTE Q2) 10,20

Q1 (3QUOTE %QUOTE %QUOTE %QUOTE $%QUOTE %QUOTE Q2) 10,02
The last two examples are especially interesting. In Q1 (3QUOTE Q2),

the %QUOTE has no effect because Q2 is at macro quote level and would
not be bound or expanded anyhow.

In the final example, the many occurrences of %$QUOTE have the effect
of keeping Q2 from ever being expanded. The processed macro-body for
this example is:

Q1 (¥QUOTE S$QUOTE $QUOTE Q2)

This macro-body becomes the expansion of X and must be processed as
such; the result is:

Q1 (3QUOTE Q2)

Next, this macro-call is expanded. Before processing, the expansion
is:

10,%QUOTE Q2

Finally, this expansion is processed, giving the result shown, 10,02.

The preceding example is largely concerned with macro-names. That 1is
not intended to imply that quote-functions are not important for
lexical-functions or for names other than macro-names.

15-43

Lexical Functions
SPECIFIC LEXICAL-FUNCTIONS

An example of 3$QUOTE applied to a comma and a percent is:

MACRO
X =
MACRO
Q(A) = UPLIT(A) $QUOTE %
%;
X;
BIND
Y = Q(4 %QUOTE, 5 %QUOTE, 6);

When the declaration of X is processed, the following macro-body is
associated with X:

MACRO
Q(A) = UPLIT(A) %;

The terminal percent gets into the macro-body because it was quoted in
the declaration. The expansion of the macro-call X is exactly this
same macro-body, and when it 1is processed, it establishes a
declaration for Q.

The macro-call of Q has just one actual-parameter, as follows:

4, 5, 6

The commas get into the actual-parameter because they are quoted. The
net effect of this example is to produce the declaration:

BIND
Y = UPLIT(4,5,6);

An example of the use of $EXPAND is contained in the following program
fragment:

MACRO
B=2¢Cg,
A =B %,
X =A%,
XX = SEXPAND A §%;
UNDECLARE
%QUOTE A,
%QUOTE B;
OWN X;
OWN XX;

The macro-call X in the first OWN declaration is expanded to the name
A with no further expansion since the macro-name A has been
undeclared.

The macro definition of XX is B since the %EXPAND function forces
expansion of the macro-call A within the macro-body for XX (prior to
the 'undeclaration' of macro-name A). Thus the macro-call XX 1in the
second OWN declaration is expanded to B, again with no further
expansion since the macro-name B has been undeclared.

15-44

Lexical Functions
SPECIFIC LEXICAL-FUNCTIONS

Note that the expansion of the function %EXPAND A within the macro-
body for XX is not carried through to the name C. The following macro
can be used to obtain this effect when desired:

MACRO
FORCE [] = $QUOTE SEXPAND $REMAINING %;

The previous example could then be extended as follows:

MACRO
B =2C %,
A =B %,
X =A%,

XX = SEXPAND A %,
XXX = SEXPAND FORCE(A) %;

UNDECLARE
$QUOTE A,
$QUOTE B;

OWN X,
XX,
XXX ;

The internally stored definition of FORCE is %EXPAND $REMAINING. When
the macro-declaration of XXX is processed, the %EXPAND function causes
the macro—-call FORCE(A) to be expanded. Whenever a macro-call |is
expanded, all actual-parameters of the call are completely expanded.
Therefore the actual-parameter A becomes C. That 1is, the body of
FORCE expands simply to its fully expanded argument list.

The $EXPAND function has several practical applications:

e Compilation time can be reduced by forcing a one-time
expansion of embedded macro-calls at macro-declaration time,
rather than at every occurrence of the 'containing' macro-
call.

e The memory used during compilation for storing macro-bodies
can be reduced by forcing expansion of macros involving
complicated conditional-compilation syntax.

e Further efficiencies in the use of 1library files can be
gained by forcing as much expansion as possible during the
library pre-compilation.

® Macro-names declared for use within a library precompilation
can be undeclared and thus freed for different uses in
modules that refer to the library, if all instances of the
macro-names are expanded within the library file.

15.5.15 Macro-Functions

The macro-functions are especially designed for use within
macro-definitions; they are not useful in any other context.
Complete definitions of the macro-functions are given in this section.
However, these definitions are difficult to understand without a
discussion of macros. Examples and motivation for the macro-functions
are given later, in Section 16.3 on macro-calls and Section 16.4 on
examples of macros.

15-45

Lexical Functions
SPECIFIC LEXICAL-FUNCTIONS

15.5.15.1 Definition - The macro-functions are expanded as follows:

$*REMAINING

Expansion. Concatenate the actual-parameters not associated
with formal-parameters, separating them by commas. Return
the resulting sequence of lexemes.

$LENGTH

Expansion. Determine the number of actual-parameters for the
current macro-call. Represent this number as a
numeric-literal. Return the numeric-literal.

¥COUNT

Expansion. Determine the recursion depth in a
conditional-macro or the number of completed iterations in an
iterative-macro. Represent this number as a numeric-literal.
Return the numeric-literal.

SEXITITERATION
Expansion. Terminate the expansion of the current iteration
of an iterative macro call. If a default separator or
closing grouper (as specified 1in Section 16.3.3.4) is

required at normal termination of an iteration, include it.

$EXITMACRO
Expansion. Terminate the expansion of the smallest

macro-body in which this lexical-function is contained, just
as if the terminal % lexeme appeared here.

15.5.15.2 Examples - Some examples of these functions are given as
part of the discussion of macros in Section 16.4.

15-46

Lexical Functions
SPECIFIC LEXICAL-FUNCTIONS

15.5.16 Summary Of Lexical-Functions
The following table gives one example of each lexical-function:
Function Expansion

$STRING ('ABC',23,%B'-1111"',,phi) *ABC23-15PHI’

SEXACTSTRING(8,%C'X','ABC',23) 'ABC23XXX'
$CHAR(65,66,67,39,97,98,99) 'ABC' 'abc’
$CHARCOUNT ('ABC',23) 5

$SEXPLODE ('ABC',23)
$REMOVE (Q)

IAI’IBI'ICI’IZI'I3I
[where Q is (A+l)] A+l

$NAME ('+302"' ,beta) +302BETA (as a name)

$NULL('abc',''") 0 (not a null sequence)
$IDENTICAL(ABC 5,ABC $B'101l') 1 (sequences are identical)
$ISSTRING (BETA, 'BETA"') 0 (one not a string)

$CTCE (ALPHA[1]) 0 (not a c-t-c-e)
$LTCE(.ALPHA[1l]) 0 (not an l-t-c-e)
$NBITSU(7,2) 3

$NBITS(7,2) 4

$ALLOCATION (X) [scalar by default] $UPVAL
%SIZE(VECTOR[10,WORD]) 20 (BLISS-16/32 only)

$ASSIGN (X, 2+3)
$NUMBER (Y)

[X is COMPILETIME] empty (associates 5 with X)
[Y declared LITERAL 6]} 6

$DECLARED (A)
%SWITCHES (OPTIMIZE, NOCODE)
$BLISS (BLISS32)

$ERROR ('error message')

$WARN ('warning message')
$INFORM('information message')
$PRINT ('text in listing')
$MESSAGE ('text for terminal’)
$ERRORMACRO('error message')

S TITLE 'On Top Line of Page'’
$SBTTL 'On Second Line of Page'

$QUOTE lexeme, comma, or percent
SUNQUOTE (Binds following name)
$EXPAND (Binds and expands)

$REMAINING
$LENGTH

$COUNT
$EXITITERATION
$EXITMACRO

15-47

1 (A is declared)
1 (these switches are on)
1 (under BLISS-32 compiler)

empty (steps error count)
empty (steps warning count)
empty

empty

empty

empty (aborts all macros)

empty
empty

empty
empty
empty

unmatched actual-parameters
number of actual-parameters
recursion or iteration count
empty (abort iteration)

empty (abort smallest macro)

Lexical Functions
LEXICAL-CONDITIONALS

15.6 LEXICAL-CONDITIONALS

A lexical-conditional evaluates a compile-time-constant-expression and
then, depending on the value of that expression, skips one or the
other of two given lexeme sequences. In some other programming
languages, this kind of facility is called "conditional compilation®.

Like the lexical-functions, a lexical-conditional is fully processed
at compile-time. However, the 1lexical-conditional differs from a
lexical-function in two respects. First, its syntax is different;
that is Jjust a matter of programming convenience. Second, and more
important, it can be used to skip over a sequence of lexemes.

An example of a lexical-conditional is given in Section 15.1.5.

15.6.1 Syntax

lexical-conditional $IF lexical-test
$THEN lexical-consequence

{%ELSE lexical-alternative

nothing
$FI
lexical-test compile-time-constant-expression
lexical-consequence lexeme ...
lexical-alternative nothing

The syntactic name lexeme is defined in Section 2.2.

15.6.2 Restrictions

If a macro-body contains the lexeme %IF, then it must also contain the
matching $THEN, RELSE (if present), and $FI of the same
lexical-conditional. This restriction must be satisfied by the source
file before any lexical processing has been performed.

The restriction just given applies not only to a macro-body, but also
to an actual-parameter in a macro-call or lexical-function, to the
file that is designated by a require-declaration, or to the
lexical~consequence or lexical-alternative within another
lexical-conditional.

The keywords %IF, $THEN, $ELSE, or %FI must not be preceded by a
quote-function.

15-48

Lexical Functions
LEXICAL-CONDITIONALS

15.6.3 Semantics

The expansion of a lexical-conditional begins with the evaluation of
the lexical-test. 1f the low-order bit of the value of the
lexical-test is 1, then the test is satisfied; otherwise, the test is
not satisfied. -

If the test is satisfied, the lexical-consequence is subjected to
lexical processing and the lexical-alternative (if present) is
skipped.

If the test is not satisfied, the lexical-consequence is skipped, and
the lexical-alternative (if present) is subjected to lexical
processing.

When a lexical-consequence or lexical-consequence is skipped, it is
not processed in any way; the compiler scans through, looking for the
terminating $ELSE or %FI and ignoring everything else.

A lexical-conditional in the macro-body of a macro-definition 1is not
expanded; instead, it 1is 1included 1in the macro-body that is
associated with the macro-name. Later, when the macro-body is used to
expand a macro-call, the lexical-conditional is expanded.

15.7 COMPILETIME DECLARATIONS
Compile time variables provide a means to compute and assign values

during compilation, particularly for use in combination with
lexical-conditionals.

15.7.1 Syntax

compiletime-declaration COMPILETIME compiletime-item ,... ;
compiletime-item compiletime-name = compiletime-value
compiletime-name name

compiletime-value compile-time-constant-expression

15-49

Lexical Functions
COMPILETIME DECLARATIONS

15.7.2 Semantics

The compiletime-declaration establishes a name whose value can be
changed during compilation of the source module. In all other
respects a compiletime~name is the same as a (non-GLOBAL) LITERAL name

and can be wused in all of the same ways that a literal name can be
used.

Observe that a compiletime-name must be given an initial value when
the name is declared.

The value of a compiletime-name can be changed by the %ASSIGN
lexical-function as described in Section 15.5.9.

15-50

CHAPTER 16

l16.1
16.1.1
16.1.2
16.1.3
16.1.4
16.1.5
16.2
16.2.1
16.2.2
16.2.3
16.2.3.1
16.2.3.2
16.2.4
16.3
16.3.1
16.3.2

16.4

16.4.1
16.4.2
16.4.3
16.4.4
16.5

16.5.1
16.5.2
16.5.3
16.6

16.6.1
16.6.2
16.6.3

MACROS

INTRODUCTION TO MACROS

Macro Declarations and Calls
Macros With Parameters
Parenthesization of Macros

Quotation Rules and Macros .
and

A Survey of Macros
MACRO-DECLARATIONS .
Syntax
Restrictions . . .
Semantics

Lexical Processing

Predeclared Macros
MACRO-CALLS e s e e
Syntax . . ¢ . ¢ .
Restrictions . . .
Semantics

Lexical Processing
Expansion of Simple Macros .
Expansion of Conditional Macros
Expansion of Iterative-Macros.

Expansion of Keyword-Macros

Discussion

Introductory Examples
Default Punctuation

EXAMPLES OF MACROS .

Macros for Initializing a BLOCK
A Complicated Macro
Nested Macro Definition

of

of Macro-Calls

»
.
.
.

Related

Declarations Within Macros

REQUIRE-DECLARATIONS
Syntax . . .« . . .
Restrictions . . .
Semantics

LIBRARY-DECLARATIONS
Syntax « . . .« . .
Restrictions . . .
Semantics

e o ® o o @

. .

. .

.
« o e o e o

Loy LI

a

.
.
.
-
-

« o s e 0

]

* & o e+ & @

.
.
.
.

t

Qe o o o o

.
.
.
.
.
.

e« o (T e & & e o

Macro-Definitio
Interpretation of Macro-Definitions

e o ¢ o o o & o o o 0

ns

s & s 8 e ¥ e o @

e ¢ o 8 e I e o s » s o

o ¢ o+ o @

* o ¢ & o

e & 9 e & o & o © @

e o & s o

e o e o o
.

e @ 9 ¢ ® e 8 8 & o & s & o+ 0

16-1
16-2
16-2
16-3
lo-4
16-5
16-7
16-8
16-9
16-10
16-10
l16-11
16-11
16-12
16=13
16-13

16-14

l16-14
16-15
16-16
16-17
16-20
16-21
16-21
16-23
16-24
16-24
16-26
16-27
16-27
16-27
16-28
16-28
16-28
16-28
16-29
16-29
16-30

CHAPTER 16

MACROS

Macros can make programs short and clear. When a certain construct is
used often, a macro can be defined that gives the construct a name,
and the name can then be used wherever the construct is required. By
this means, a construct that is either large or unclear can be given a
short, intuitive representation.

The idea of using the name of a construct instead of the construct
itself can be extended 1in several ways, and BLISS has a variety of
macro facilities, A programmer who wishes to use simple macros in an
obvious and intuitive way can do so; but a programmer who wishes to
use complicated macros to generate large and intricate tables, for
example, can also do that.

This chapter is devoted to the macros and related facilities for
user—-defined expansion of source text. The first section introduces
the various kinds of macros. The next two sections describe the
declaration and call of macros. The final two sections describe the
require-~ and library-declarations.

16.1 INTRODUCTION TO MACROS

The macro facilities of BLISS are important but, in some ways,
difficult to learn. Macros are important because they can be used to
add new notations to BLISS and thus greatly improve the organization
and clarity of a program. The macro facilities are difficult to learn
because they are innovative; most high 1level programming languages
provide very limited macro facilities or have none at all.

The expansion of macros is a part of lexical processing, and therefore
macros are initially discussed at the beginning of the previous
chapter. Specifically, the basic principles of macro expansion are
presented in Section 15.1.4, and an example is given in Section
15.1.5. An understanding of lexical processing is a prerequisite for
the discussion of macros in this chapter.

This section is an informal description of a particular kind of macro,
the simple macro. Simple macros are a good place to begin the study
of macros for several reasons: first, they are relatively simple, as
the name suggests; second, they are sufficient for most programming
applications; and, finally, most of the general techniques of macro
usage can be illustrated with simple macros. Thus a reader who does
not have a strong interest in macros can read this section and skip
the remainder of the description of macros.

l6-1

Macros
INTRODUCTION TO MACROS

16.1.1 Macro Declarations and Calls

A macro has two parts: the macro-declaration and the macro-call. A
macro-declaration contains one or more macro-definitions, and each
macro-definition associates a name, the macro-name, with a sequence of
lexemes, the macro-body. Once a macro-name has been declared, it can
be used in macro-calls.

An example of a macro-declaration is:

MACRO
CLA = PLIT(502,-1,3) %,
ADD = PLIT(402,0,3) %;
This declaration contains two macro-definitions. The first

macro-definition associates the name CLA with the macro-body
PLIT(502,-1,3), and the second associates ADD with PLIT(402,0,3).
Each macro-body is terminated by a percent lexeme.

Two examples of macro-calls appear in the following example:

IF USED(REG)
THEN CODE CLA
ELSE CODE = ADD;

The macro-calls here are CLA and ADD. 1If this conditional-expression
is within the scope of the macro-declaration in the preceding
paragraph, then it is equivalent to:

IF USED(REG)
THEN CODE
ELSE CODE

PLIT(502,-1,3)
PLIT(402,0,3);

Assuming that the names CLA and ADD have some mnemonic significance in
the program from which this example is drawn, their use in the
conditional-expression is certainly more clear than the use of the
plits.

A macro-body is processed twice. The first processing occurs when it
is encountered as part of a macro-definition. During that processing,
no object code is generated by the compiler; instead, the macro-body
is saved by the compiler as a sequence of lexemes and that sequence is
associated with the macro-name. The second processing occurs when the
macro-body 1is used as the expansion of a macro-call. During that
processing, the macro-body is compiled in the normal way.

16.1.2 Macros With Parameters

A macro-definition can have a 1list of formal-name parameters, and
these formal-name parameters can appear in the macro-body. When a
macro-call is expanded, each appearance of a formal-name parameter in
the macro-body is replaced by the corresponding actual-parameter from
the macro-call. The use of parameters in macros can greatly increase
their power and generality.

16-2

Macros
INTRODUCTION TO MACROS

An example of a macro with parameters is:

MACRO
GETBYTE(N,I) = ((N)“(-(I)) AND %B'11111111"') %;
X = GETBYTE(.Y+1,12)-2;

In this example, the list of formal-names is (N,I) and the 1list of
actual-parameters is (.Y+1,12). When the macro-call on GETBYTE is
expanded, a copy of the macro-body associated with GETBYTE is made,
and then N is replaced by .Y+l and I is replaced by 12. The resulting
expansion is:

((.Y+1)"(-(12)) AND %B'11111111")

This expansion is placed at the head of the input stream (as described
in Section 15.1.4) and is then compiled. Incidentally, the expansion
of GETBYTE(N,I) is an expression whose value is the eight-bit field
(one byte) of N that is I bits from the right (low order) end of N.

Just as a macro-body is processed twice, so also is an
actual-parameter processed twice. The first processing of the
actual-parameter occurs when the macro-body is encountered as part of
a macro-call. During that processing, no object-code is generated,

just as for a macro-body. However, macro-calls, lexical-functions, or
lexical-conditionals encountered within the actual-parameter are
expanded during this first processing, and i