ADVANCED PROGRAMMING
LANGUAGE DESIGN

Raphael A. Finkel

UNIVERSITY OF KENTUCKY

A
vy

Addison-Wesley Publishing Company

Menlo Park, California = Reading, Massachusetts
New York = Don Mills, Ontario = Harlow, U.K. = Amsterdam
Bonn « Paris « Milan = Madrid = Sydney < Singapore = Tokyo
Seoul = Taipei = Mexico City =« San Juan, Puerto Rico

On-line edition copyright 0 1996 by Addison-Wesley Publishing Company. Permission is granted to print or photo-
copy this document for a fee of $0.02 per page, per copy, payable to Addison-Wesley Publishing Company. All other rights
reserved.

Acquisitions Editor: J. Carter Shanklin Proofreader: Holly McLean-Aldis

Editorial Assistant: Christine Kulke Text Designer: Peter Vacek, Eigentype
Senior Production Editor: Teri Holden Film Preparation: Lazer Touch, Inc.
Copy Editor: Nick Murray Cover Designer: Yvo Riezebos

Manufacturing Coordinator: Janet Weaver
Printer: The Maple-Vail Book Manufacturing Group
Composition and Film Coordinator: Vivian McDougal

Copyright O 1996 by Addison-Wesley Publishing Company

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or any
other media embodiments now known, or hereafter to become known, without the prior written
permission of the publisher. Manufactured in the United States of America. Published simultane-
ously in Canada.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where these designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed in initial caps or all caps.

The programs and the applications presented in this book have been included for their instruc-
tional value. They have been tested with care but are not guaranteed for any particular purpose.
The publisher does not offer any warranties or representations, nor does it accept any liabilities
with respect to the programs or applications.

Library of Congress Cataloging-in-Publication Data
Finkel, Raphael A.
Advanced programming languages / Raphael A. Finkel.
p. cm.
Includes index.
ISBN 0-8053-1191-2
1. Programming languages (Electronic computers) I. Title.
QA76.7.F56 1995 95-36693
005.13--dc20 cIp

123456789 —MA—99 98 97 96 95

A Addison-Wesley Publishing Company, Inc.
v v 2725 Sand Hill Road
Menlo Park, CA 94025

Dedicated to the memory of my father, Asher J.
Finkel, who first tickled my interest in
programming languages by announcing that he was
learning a language that could be read and written,
but not pronounced.

Preface

This book stems in part from courses taught at the University of Kentucky
and at the University of Wisconsin—Madison on programming language de-
sign. There are many good books that deal with the subject at an undergrad-
uate level, but there are few that are suitable for a one-semester graduate-
level course. This book is my attempt to fill that gap.

The goal of this course, and hence of this book, is to expose first-year grad-
uate students to a wide range of programming language paradigms and is-
sues, so that they can understand the literature on programming languages
and even conduct research in this field. It should improve the students’ ap-
preciation of the art of designing programming languages and, to a limited
degree, their skill in programming.

This book does not focus on any one language, or even on a few languages;
it mentions, at least in passing, over seventy languages, including well-
known ones (Algol, Pascal, C, C++, LISP, Ada, FORTRAN), important but less
known ones (ML, SR, Modula-3, SNOBOL), significant research languages
(CLU, Alphard, Linda), and little-known languages with important concepts
(lo, Godel). Several languages are discussed in some depth, primarily to rein-
force particular programming paradigms. ML and LISP demonstrate func-
tional programming, Smalltalk and C++ demonstrate object-oriented
programming, and Prolog demonstrates logic programming.

Students are expected to have taken an undergraduate course in program-
ming languages before using this book. The first chapter includes a review of
much of the material on imperative programming languages that would be
covered in such a course. This review makes the book self-contained, and
also makes it accessible to advanced undergraduate students.

Most textbooks on programming languages cover the well-trodden areas of
the field. In contrast, this book tries to go beyond the standard territory,
making brief forays into regions that are under current research or that have
been proposed and even rejected in the past. There are many fascinating con-
structs that appear in very few, if any, production programming languages.
Some (like power loops) should most likely not be included in a programming
language. Others (like lo continuations) are so strange that it is not clear
how to program with them. Some (APL arrays) show alternative ways to
structure languages. These unusual ideas are important even though they do
not pass the test of current usage, because they elucidate important aspects
of programming language design, and they allow students to evaluate novel
concepts.

On-line edition copyright [0 1996 by Addison-Wesley Publishing Company. Permission is
granted to print or photocopy this document for a fee of $0.02 per page, per copy, payable to Addi-
son-Wesley Publishing Company. All other rights reserved.

Xi

Xii

PREFACE

Certain themes flow through the entire book. One is the interplay be-
tween what can be done at compile time and what must be deferred to run-
time. Actions performed at compile time make for more efficient and less
error-prone execution. Decisions deferred until runtime lead to greater flexi-
bility. Another theme is how patterns and pattern matching play a large role
in many ways in programming languages. Pattern matching is immediately
important for string manipulation, but it is also critical in steering logic pro-
gramming, helpful for extracting data from structures in ML, and for associ-
ating caller and callee in CSP. A third theme is the quest for uniformity. It is
very much like the mathematical urge to generalize. It can be seen in poly-
morphism, which generalizes the concept of type, and in overloading, which
begins by unifying operators and functions and then unifies disparate func-
tions under one roof. It can be seen in the homoiconic forms of LISP, in which
program and data are both presented in the same uniform way.

Two organizing principles suggest themselves for a book on programming
languages. The first is to deal separately with such issues as syntax, types,
encapsulation, parallelism, object-oriented programming, pattern matching,
dataflow, and so forth. Each section would introduce examples from all rele-
vant languages. The other potential organizing principle is to present indi-
vidual languages, more or less in full, and then to derive principles from
them.

This book steers a middle course. | have divided it into chapters, each of
which deals primarily with one of the subjects mentioned above. Most chap-
ters include an extended example from a particular language to set the stage.
This section may introduce language-specific features not directly relevant to
the subject of the chapter. The chapter then introduces related features from
other languages.

Because this book covers both central and unusual topics, the instructor of
a course using the book should pick and choose whatever topics are of per-
sonal interest. In general, the latter parts of chapters delve into stranger and
more novel variants of material presented earlier. The book is intended for a
one-semester course, but it is about 30 percent too long to cover fully in one
semester. It is not necessary to cover every chapter, nor to cover every section
of a chapter. Only Chapter 1 and the first seven sections of Chapter 3 are
critical for understanding the other chapters. Some instructors will want to
cover Chapter 4 before the discussion of ML in Chapter 3. Many instructors
will decide to omit dataflow (Chapter 6). Others will wish to omit denota-
tional semantics (in Chapter 10).

I have not described complete languages, and | may have failed to mention
your favorite language. | have selected representative programming lan-
guages that display particular programming paradigms or language features
clearly. These languages are not all generally available or even widely
known. The appendix lists all the languages | have mentioned and gives you
some pointers to the literature and to implementations and documentation
available on the Internet through anonymous ftp (file-transfer protocol).

The exercises at the end of each chapter serve two purposes. First, they
allow students to test their understanding of the subjects presented in the
text by working exercises directly related to the material. More importantly,
they push students beyond the confines of the material presented to consider
new situations and to evaluate new proposals. Subjects that are only hinted

Copyright 00 Addison-Wesley. Reproduction fee $.02 per page, per copy.

PREFACE

Xiii

at in the text are developed more thoroughly in this latter type of exercise.

In order to create an appearance of uniformity, I have chosen to modify the
syntax of presented languages (in cases where the syntax is not the crucial is-
sue), so that language-specific syntax does not obscure the other points that I
am trying to make. For examples that do not depend on any particular lan-
guage, | have invented what | hope will be clear notation. It is derived
largely from Ada and some of its predecessors. This notation allows me to
standardize the syntactic form of language, so that the syntax does not ob-
scure the subject at hand. It is largely irrelevant whether a particular lan-
guage uses begin and end or { and } . On the other hand, in those cases
where | delve deeply into a language in current use (like ML, LISP, Prolog,
Smalltalk, and C++), | have preserved the actual language. Where reserved
words appear, | have placed them in bold monospace. Other program ex-
cerpts are in monospace font. | have also numbered examples so that instruc-
tors can refer to parts of them by line number. Each technical term that is
introduced in the text is printed in boldface the first time it appears. All
boldface entries are collected and defined in the glossary. | have tried to use a
consistent nomenclature throughout the book.

In order to relieve the formality common in textbooks, | have chosen to
write this book as a conversation between me, in the first singular person,
and you, in the second person. When | say we, | mean you and me together. |
hope you don’t mind.

Several supplemental items are available to assist the instructor in using
this text. Answers to the exercises are available from the publisher (ISBN:
0-201-49835-9) in a disk-based format. The figures from the text (in Adobe
Acrobat format), an Adobe Acrobat reader, and the entire text of this book are
available from the following site:

ftp://aw.com/cseng/authors/finkel

Please check the readme file for updates and changes. The complete text of
this book is intended for on-screen viewing free of charge; use of this material
in any other format is subject to a fee.

There are other good books on programming language design. | can par-
ticularly recommend the text by Pratt [Pratt 96] for elementary material and
the text by Louden [Louden 93] for advanced material. Other good books in-
clude those by Sebesta [Sebesta 93] and Sethi [Sethi 89].

I owe a debt of gratitude to the many people who helped me write this
book. Much of the underlying text is modified from course notes written by
Charles N. Fischer of the University of Wisconsin—Madison. Students in my
classes have submitted papers which | have used in preparing examples and
text; these include the following:

Copyright 00 Addison-Wesley. Reproduction fee $.02 per page, per copy.

Xiv

PREFACE

Subject Student Year
Gr+ Mike Rogers 1992
Dataflow Chinya Ravishankar 1981
Godel James Gary 1992
Lynx Michael Scott 1985
Mathematics languages Mary Sue Powers 1994
Miranda Manish Gupta 1992
Post Chinya Ravisha_nkar 1981

Rao Surapaneni 1992
CLP William Ralenkotter 1994

Rick Simkin 1981
Russell K. Lakshman 1992

Manish Gupta 1992
Smalltalk/C++ Jonathan Edwards 1992

Jonathan Edwards read an early draft of the text carefully and made many
helpful suggestions. Michael Scott assisted me in improving Chapter 7 on
concurrency. Arcot Rajasekar provided important feedback on Chapter 8 on
logic programming. My editor, J. Carter Shanklin, and the reviewers he se-
lected, made a world of difference in the presentation and coverage of the
book. These reviewers were David Stotts (University of North Carolina at
Chapel Hill), Spiro Michaylov (Ohio State University), Michael G. Murphy
(Southern College of Technology), Barbara Ann Greim (University of North
Carolina at Wilmington), Charles Elkan (University of California, San Diego),
Henry Ruston (Polytechnic University), and L. David Umbaugh (University
of Texas at Arlington). The University of Kentucky provided sabbatical fund-
ing to allow me to pursue this project, and Metropolitan College in Kuala
Lumpur, Malaysia, provided computer facilities that allowed me to work on it.
This book was prepared on the Linux version of the Unix operating system.
Linux is the result of work by Linus Torvalds and countless others, primarily
at the Free Software Foundation, who have provided an immense suite of pro-
grams | have used, including text editors, document formatters and preview-
ers, spelling checkers, and revision control packages. | would have been lost
without them. Finally, 1 would like to thank my wife, Beth L. Goldstein, for
her support and patience, and my daughter, Penina, and son, Asher, for being
wonderful.

Raphael A. Finkel
University of Kentucky

Copyright 00 Addison-Wesley. Reproduction fee $.02 per page, per copy.

