
��

Chapter 1 ❖

Introduction
The purpose of this book is to study the principles and innovations found in
modern programming languages. We will consider a wide variety of lan­
guages. The goal is not to become proficient in any of these languages, but to
learn what contributions each has made to the “state of the art” in language
design.

I will discuss various programming paradigms in this book. Some lan­
guages (such as Ada, Pascal, Modula-2) are imperative; they use variables,
assignments, and iteration. For imperative languages, I will dwell on such is­
sues as flow of control (Chapter 2) and data types (Chapter 3). Other lan­
guages (for example, LISP and FP) are functional; they have no variables,
assignments, or iteration, but model program execution as expression evalua­
tion. I discuss functional languages in Chapter 4. Other languages (for ex­
ample, Smalltalk and C++), represent the object-oriented paradigm, in
which data types are generalized to collections of data and associated rou­
tines (Chapter 5). Dataflow languages (Val, Sisal, and Post, Chapter 6) at­
tempt to gain speed by simultaneous execution of independent computations;
they require special computer architectures. A more common way to gain
speed is by concurrent programming (typified by languages such as SR and
Lynx, discussed in Chapter 7). Another major paradigm constitutes the
declarative languages such as Prolog and Go..del (Chapter 8); they view pro­
gramming as stating what is wanted and not necessarily how to compute it.
Aggregate languages (Chapter 9) form a a final loosely knit paradigm that
includes languages with special-purpose data formats, such as strings
(SNOBOL and Icon), arrays (APL), databases (dBASE and SQL), and mathe­
matical formulas (Mathematica and Maple).

In addition to studying actual programming language constructs, I will
present formal semantic models in Chapter 10. These models allow a precise
specification of what a program means, and provide the basis for reasoning
about the correctness of a program.
������������������������������������

On-line edition copyright © 1996 by Addison-Wesley Publishing Company. Permission is
granted to print or photocopy this document for a fee of $0.02 per page, per copy, payable to Addi-
son-Wesley Publishing Company. All other rights reserved.

1

2 CHAPTER 1 INTRODUCTION

1 ◆ PROGRAMMING LANGUAGES AS
SOFTWARE TOOLS

Programming languages fit into a larger subject that might be termed soft­
ware tools. This subject includes such fields as interactive editors (text, pic­
ture, spreadsheet, bitmap, and so forth), data transformers (compilers,
assemblers, stream editors, macro processors, text formatters), operating sys­
tems, database management systems, and tools for program creation, testing,
and maintenance (script files, source-code management tools, debuggers).

In general, software tools can be studied as interfaces between clients,
which are usually humans or their programs, and lower-level facilities, such
as files or operating systems.

Figure 1.1 Software
tools

Client

Interface

Implementation

Three questions arising from Figure 1.1 are worth discussing for any software
tool:

1.	 What is the nature of the interface?
2.	 How can the interface be implemented by using the lower-level facili­

ties?
3.	 How useful is the interface for humans or their agents?

When we deal with programming languages as software tools, these questions
are transformed:

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy.

2 EVALUATING PROGRAMMING LANGUAGES	 3

1.	 What is the structure (syntax) and meaning (semantics) of the program­
ming language constructs? Usually, I will use informal methods to show
what the constructs are and what they do. However, Chapter 10 pre­
sents formal methods for describing the semantics of programming lan­
guages.

2.	 How does the compiler writer deal with these constructs in order to
translate them into assembler or machine language? The subject of
compiler construction is large and fascinating, but is beyond the scope of
this book. I will occasionally touch on this topic to assure you that the
constructs can, in fact, be translated.

3.	 Is the programming language good for the programmer? More specifi­
cally, is it easy to use, expressive, readable? Does it protect the pro­
grammer from programming errors? Is it elegant? I spend a significant
amount of effort trying to evaluate programming languages and their
constructs in this way. This subject is both fascinating and difficult to
be objective about. Many languages have their own fan clubs, and dis­
cussions often revolve about an ill-defined sense of elegance.

Programming languages have a profound effect on the ways programmers
formulate solutions to problems. You will see that different paradigms im­
pose very different programming styles, but even more important, they
change the way the programmer looks at algorithms. I hope that this book
will expand your horizons in much the same way that your first exposure to
recursion opened up a new way of thinking. People have invented an amaz­
ing collection of elegant and expressive programming structures.

2 ◆ EVALUATING PROGRAMMING LANGUAGES
This book introduces you to some unusual languages and some unusual lan­
guage features. As you read about them, you might wonder how to evaluate
the quality of a feature or an entire language. Reasonable people disagree on
what makes for a great language, which is why so many novel ideas abound
in the arena of programming language design. At the risk of oversimplifica­
tion, I would like to present a short list of desiderata for programming lan­
guages [Butcher 91]. Feel free to disagree with them. Another excellent
discussion of this topic is found in Louden [Louden 93].

•	 Simplicity. There should be as few basic concepts as possible. Often the
job of the language designer is to discard elements that are superfluous,
error-prone, hard to read, or hard to compile. Many people consider PL/I,
for example, to be much too large a language. Some criticize Ada for the
same reason.

•	 Uniformity. The basic concepts should be applied consistently and uni­
versally. We should be able to use language features in different contexts
without changing their form. Non-uniformity can be annoying. In Pascal,
constants cannot be declared with values given by expressions, even
though expressions are accepted in all other contexts when a value is
needed. Non-uniformity can also be error-prone. In Pascal, some for
loops take a single statement as a body, but repeat loops can take any
number of statements. It is easy to forget to bracket multiple statements
in the body of a for loop.

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy.

4 CHAPTER 1 INTRODUCTION

•	 Orthogonality. Independent functions should be controlled by indepen­
dent mechanisms. (In mathematics, independent vectors are called ‘‘or­
thogonal.’’)

•	 Abstraction. There should be a way to factor out recurring patterns.
(Abstraction generally means hiding details by constructing a ‘‘box’’
around them and permitting only limited inspection of its contents.)

•	 Clarity. Mechanisms should be well defined, and the outcome of code
should be easily predictable. People should be able to read programs in
the language and be able to understand them readily. Many people have
criticized C, for example, for the common confusion between the assign­
ment operator (=) and the equality test operator (==).

•	 Information hiding. Program units should have access only to the in­
formation they require. It is hard to write large programs without some
control over the extent to which one part of the program can influence an­
other part.

•	 Modularity. Interfaces between programming units should be stated ex­
plicitly.

•	 Safety. Semantic errors should be detectable, preferably at compile time.
An attempt to add values of dissimilar types usually indicates that the
programmer is confused. Languages like Awk and SNOBOL that silently
convert data types in order to apply operators tend to be error-prone.

•	 Expressiveness. A wide variety of programs should be expressible.1

Languages with coroutines, for example, can express algorithms for test­
ing complex structures for equality much better than languages without
coroutines. (Coroutines are discussed in Chapter 2.)

•	 Efficiency. Efficient code should be producible from the language, possi­
bly with the assistance of the programmer. Functional programming lan­
guages that rely heavily on recursion face the danger of inefficiency,
although there are compilation methods (such as eliminating tail recur­
sion) that make such languages perfectly acceptable. However, languages
that require interpretation instead of compilation (such as Tcl) tend to be
slow, although in many applications, speed is of minor concern.

3 ◆	 BACKGROUND MATERIAL ON

PROGRAMMING LANGUAGES

Before showing you anything out of the ordinary, I want to make sure that
you are acquainted with the fundamental concepts that are covered in an un­
dergraduate course in programming languages. This section is intentionally
concise. If you need more details, you might profitably refer to the fine books
by Pratt [Pratt 96] and Louden [Louden 93].

������������������������������������
1 In a formal sense, all practical languages are Turing-complete; that is, they can express

exactly the same algorithms. However, the ease with which a programmer can come up with an
appropriate program is part of what I mean by expressiveness. Enumerating binary trees (see
Chapter 2) is quite difficult in most languages, but quite easy in CLU.

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy.

3 BACKGROUND MATERIAL ON PROGRAMMING LANGUAGES 5

3.1 Variables, Data Types, Literals, and
Expressions

I will repeatedly refer to the following example, which is designed to have a
little bit of everything in the way of types. A type is a set of values on which
the same operations are defined.

Figure 1.2 variable 1
First : pointer to integer; 2
Second : array 0..9 of 3

record 4
Third: character; 5
Fourth: integer; 6
Fifth : (Apple, Durian, Coconut, Sapodilla, 7

Mangosteen) 8
end; 9

begin 10
First := nil; 11
First := &Second[1].Fourth; 12
Firstˆ := 4; 13
Second[3].Fourth := (Firstˆ + Second[1].Fourth) * 14

Second[Firstˆ].Fourth; 15
Second[0] := [Third : ’x’; Fourth : 0; 16

Fifth : Sapodilla]; 17
end; 18

Imperative languages (such as Pascal and Ada) have variables, which are
named memory locations. Figure 1.2 introduces two variables, First (line 2)
and Second (lines 3–9). Programming languages often restrict the values that
may be placed in variables, both to ensure that compilers can generate accu­
rate code for manipulating those values and to prevent common programming
errors. The restrictions are generally in the form of type information. The
type of a variable is a restriction on the values it can hold and what opera­
tions may be applied to those values. For example, the type integer encom­
passes numeric whole-number values between some language-dependent (or
implementation-dependent) minimum and maximum value; values of this
type may act as operands in arithmetic operations such as addition. The
term integer is not set in bold monospace type, because in most languages,
predefined types are not reserved words, but ordinary identifiers that can be
given new meanings (although that is bad practice).

Researchers have developed various taxonomies to categorize types
[ISO/IEC 94; Meek 94]. I will present here a fairly simple taxonomy. A
primitive type is one that is not built out of other types. Standard primitive
types provided by most languages include integer, Boolean, character, real,
and sometimes string. Figure 1.2 uses both integer and character. Enu­
meration types are also primitive. The example uses an enumeration type in
lines 7–8; its values are restricted to the values specified. Enumeration types
often define the order of their enumeration constants. In Figure 1.2, however,

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy.

6 CHAPTER 1 INTRODUCTION

it makes no sense to consider one fruit greater than another.2

Structured types are built out of other types. Arrays, records, and
pointers are structured types.3 Figure 1.2 shows all three kinds of standard
structured types. The building blocks of a structured type are its compo­
nents. The component types go into making the structured type; component
values go into making the value of a structured type. The pointer type in line
2 of Figure 1.2 has one component type (integer); a pointer value has one
component value. There are ten component values of the array type in lines
3–9, each of a record type. Arrays are usually required to be homogeneous;
that is, all the component values must be of the same type. Arrays are in­
dexed by elements of an index type, usually either a subrange of integers,
characters, or an enumeration type. Therefore, an array has two component
types (the base type and the index type); it has as many component values as
there are members in the index type.

Flexible arrays do not have declared bounds; the bounds are set at run­
time, based on which elements of the array have been assigned values. Dy-
namic-sized arrays have declared bounds, but the bounds depend on the
runtime value of the bounds expressions. Languages that provide dynamic­
sized arrays provide syntax for discovering the lower and upper bounds in
each dimension.

Array slices, such as Second[3..5], are also components for purposes of
this discussion. Languages (like Ada) that allow array slices usually only al­
low slices in the last dimension. (APL does not have such a restriction.)

The components of the record type in lines 4–9 are of types character and
integer. Records are like arrays in that they have multiple component val­
ues. However, the values are indexed not by members of an index type but
rather by named fields. The component values need not be of the same type;
records are not required to be homogeneous. Languages for systems pro­
gramming sometimes allow the programmer to control exactly how many bits
are allocated to each field and how fields are packed into memory.

The choice is a less common structured type. It is like a record in that it
has component types, each selected by a field. However, it has only one com­
ponent value, which corresponds to exactly one of the component types.
Choices are often implemented by allocating as much space as the largest
component type needs. Some languages (like Simula) let the programmer re­
strict a variable to a particular component when the variable is declared. In
this case, only enough space is allocated for that component, and the compiler
disallows accesses to other components.

Which field is active in a choice value determines the operations that may
be applied to that value. There is usually some way for a program to deter­
mine at runtime which field is active in any value of the choice type; if not,
there is a danger that a value will be accidentally (or intentionally) treated as
belonging to a different field, which may have a different type. Often, lan­
guages provide a tagcase statement with branches in which the particular
variant is known both to the program and to the compiler. Pascal allows part
������������������������������������

2 In Southeast Asia, the durian is considered the king of fruits. My personal favorite is the
mangosteen.

3 Whether to call pointers primitive or structured is debatable. I choose to call them struc­
tured because they are built from another type.

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy.

3 BACKGROUND MATERIAL ON PROGRAMMING LANGUAGES 7

of a record to be a choice and the other fields to be active in any variant. One
of the latter fields indicates which variant is in use. It doesn’t make sense to
modify the value of that field without modifying the variant part as well.

A literal is a value, usually of a primitive type, expressly denoted in a
program. For example, 243 is an integer literal and Figure 1.2 has literals 0,
1, 3, 4, 9, and ’x’. Some values are provided as predeclared constants (that
is, identifiers with predefined and unchangeable values), such as false
(Boolean) and nil (pointer).

A constructor expressly denotes a value of a structured type. Figure 1.2
has a record constructor in lines 16–17.

An expression is a literal, a constructor, a constant, a variable, an invo­
cation of a value-returning procedure, a conditional expression, or an opera­
tor with operands that are themselves expressions. Figure 1.2 has
expressions in lines 11–17. An operator is a shorthand for an invocation of a
value-returning procedure whose parameters are the operands. Each opera­
tor has an arity, that is, the number of operands it expects. Common arities
are unary (one operand) and binary (two operands). Unary operators are
commonly written before their operand (such as -4 or &myVariable), but some
are traditionally written after the operand (such as ptrVariable)̂. Some­
times it is helpful to consider literals and constants to be nullary (no-operand)
operators. For example, true is a nullary operator of type Boolean.

Operators do not necessarily take only numeric operands. The derefer­
encing operator (ˆ), for example, produces the value pointed to by a pointer.
This operator is unary and postfix, that is, it follows its expression. You can
see it in Figure 1.2 in lines 13, 14, and 15. Some languages, such as
Gedanken, Ada, and Oberon-2, coerce pointers (repeatedly, if needed) to the
values they dereference if the context makes it clear which type is required.
The unary prefix referencing operator (&) in line 12 generates a pointer to a
value.

Common operators include those in the table on the next page. Many op­
erators are overloaded; that is, their meaning depends on the number and
types of the operands. It is easiest to understand overloaded operators as
multiply defined procedures, from which the compiler chooses the one with
the appropriate number and type of parameters.

Each operator has an assigned precedence, which determines the way
the expression is grouped in the absence of parentheses. In Figure 1.2, lines
14–15, the meaning would probably be different without the parentheses, be­
cause multiplication is usually given a higher precedence than addition.

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy.

8 CHAPTER 1 INTRODUCTION

Operator Left type Right type Result type Comments

+ - * integer integer integer
+ - * / real real real
/ integer integer real or integer
div mod integer integer integer
- numeric none same
** integer integer integer exponentiation
** numeric real real exponentiation
= any same Boolean
< > >= <= numeric same Boolean
+ string string string concatenation
˜ string pattern Boolean string match
and Boolean Boolean Boolean
or Boolean Boolean Boolean
not Boolean none Boolean
ˆ pointer none component
& any none pointer

Expressions evaluate to R-values. Variables and components of variables
of structured types also have an L-value, that is, an address where their R­
value is stored. The assignment statement (lines 11–17 in Figure 1.2) re­
quires an L-value on the left-hand side (L stands for “left”) and an R-value on
the right-hand side (R stands for “right”). In Figure 1.2, lines 11 and 12 show
a variable used for its L-value; the next lines show components used for their
L-values.

The types of the left-hand side and the right-hand side must be assign-
ment-compatible. If they are the same type, they are compatible. (What it
means to have the same type is discussed in Chapter 3.) If they are of differ­
ent types, the language may allow the value of the right-hand side to be im­
plicitly converted to the type of the left-hand side. Implicit type conversions
are called coercions. For example, Pascal will coerce integers to reals, but
not the reverse. Coercions are error-prone, because the target type may not
be able to represent all the values of the source type. For example, many
computers can store some large numbers precisely as integers but only impre­
cisely as reals.

Converting types, either explicitly (casting) or implicitly (coercing) can
sometimes change the data format. However, it is sometimes necessary to
treat an expression of one type as if it were of another type without any data­
format conversion. For example, a message might look like an array of char­
acters to one procedure, whereas another procedure must understand it as a
record with header and data fields. Wisconsin Modula introduced a noncon­
verting casting operator qua for this purpose. In C, which lacks such an oper­
ator, the programmer who wishes a nonconverting cast must cast a pointer to
the first type into a pointer to the second type; pointers have the same repre­
sentation no matter what they point to (in most C implementations). The fol­
lowing code shows both methods.

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy.

3 BACKGROUND MATERIAL ON PROGRAMMING LANGUAGES 9

Figure 1.3 type 1
FirstType = ... ; 2
SecondType = ... ; 3
SecondTypePtr = pointer to SecondType; 4

variable 5
F : FirstType; 6
S : SecondType; 7

begin 8
... 9
S := F qua SecondType; -- Wisconsin Modula 10
S := (SecondTypePtr(&F))ˆ; -- C 11

end; 12

Line 10 shows how F can be cast without conversion into the second type in
Wisconsin Modula. Line 11 shows the same thing for C, where I use the type
name SecondTypePtr as an explicit conversion routine. The referencing oper­
ator & produces a pointer to F. In both cases, if the two types disagree on
length of representation, chaos may ensue, because the number of bytes
copied by the assignment is the appropriate number for SecondType.

The Boolean operators and and or may have short-circuit semantics;
that is, the second operand is only evaluated if the first operand evaluates to
true (for and) or false (for or). This evaluation strategy is an example of
lazy evaluation, discussed in Chapter 4. Short-circuit operators allow the
programmer to combine tests, the second of which only makes sense if the
first succeeds. For example, I may want to first test if a pointer is nil, and
only if it is not, to test the value it points to.

Conditional expressions are built with an if construct. To make sure
that a conditional expression always has a value, each if must be matched by
both a then and an else. The expressions in the then and else parts must
have the same type. Here is an example:

Figure 1.4 write(if a > 0 then a else -a);

3.2 Control Constructs
Execution of imperative programming languages proceeds one statement at
a time. Statements can be simple or compound. Simple statements include
the assignment statement, procedure invocation, and goto. Compound state­
ments enclose other statements; they include conditional and iterative state­
ments, such as if, case, while, and for. Programming languages need some
syntax for delimiting enclosed statements in a compound statement. Some
languages, like Modula, provide closing syntax for each compound statement:

Figure 1.5 while Firstˆ < 10 do 1
Firstˆ := 2 * Firstˆ; 2
Second[0].Fourth := 1 + Second[0].Fourth; 3

end; 4

The end on line 4 closes the while on line 1. Other languages, like Pascal,
only allow a single statement to be included, but it may be a block state-

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy.

10 CHAPTER 1 INTRODUCTION

ment that encloses multiple statements surrounded by begin and end.
Syntax for the if statement can be confusing if there is no trailing end

syntax. If an if statement encloses another if statement in its then clause,
the else that follows might refer to either if. This problem is called the
“dangling-else” problem. In the following example, the else in line 4 could
match either the one in line 1 or line 2. Pascal specifies that the closer if
(line 2) is used.

Figure 1.6 if IntVar < 10 then 1
if IntVar < 20 then 2

IntVar := 0 3
else 4

IntVar := 1; 5

On the other hand, if if statements require a closing end, the problem cannot
arise:

Figure 1.7 if IntVar < 10 then 1
if IntVar < 20 then 2

IntVar := 0; 3
end 4

else 5
IntVar := 1; 6

end; 7

Here, the else in line 5 unambiguously matches the if in line 1. Closing syn­
tax is ugly when if statements are deeply nested in the else clause:

Figure 1.8 if IntVar < 10 then 1
IntVar := 0 2

else 3
if IntVar < 20 then 4

IntVar := 1 5
else 6

if IntVar < 30 then 7
IntVar := 2 8

else 9
IntVar := 3; 10

end; 11
end; 12

end; 13

The elsif clause clarifies matters:

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy.

3 BACKGROUND MATERIAL ON PROGRAMMING LANGUAGES 11

Figure 1.9 if IntVar < 10 then 1
IntVar := 0 2

elsif IntVar < 20 then 3
IntVar := 1 4

elsif IntVar < 30 then 5
IntVar := 2 6

else 7
IntVar := 3; 8

end; 9

All the examples in this book use a closing end for compound statements. You
don’t have to worry about language-specific syntax issues when you are try­
ing to concentrate on semantics.

Some languages, like Russell and CSP, allow conditionals to have any
number of branches, each with its own Boolean condition, called a guard.
The guards may be evaluated in any order, and execution chooses any branch
whose guard evaluates to true. These conditionals are called nondetermin­
istic, since running the program a second time with the same input may re­
sult in a different branch being selected. In such languages, else means
“when all the guards are false.”

A wide range of iterative statements (loops) is available. An iterative
statement must indicate under what condition the iteration is to terminate
and when that condition is tested. The while loop tests an arbitrary Boolean
expression before each iteration.

When goto statements became unpopular because they lead to unreadable
and unmaintainable programs, languages tried to avoid all control jumps.
But loops often need to exit from the middle or to abandon the current itera­
tion and start the next one. The break and next statements were invented to
provide these facilities without reintroducing unconstrained control jumps.
An example of exiting the loop from the middle is the “n-and-a-half-times
loop”:

Figure 1.10 loop 1
read(input); 2
if input = 0 then break end; 3
if comment(input) then next end; 4
process(input); 5

end; 6

The break in line 3 terminates the loop when a sentinel indicating the end of
input is read. The next in line 4 abandons the current iteration if the input is
not to be processed. A similar statement found in Perl is redo, which restarts
the current iteration without updating any loop indices or checking termina­
tion conditions. The break, next, and redo statements can also take an inte­
ger or a loop label to specify the number of levels of loop they are to terminate
or iterate. In this case, they are called multilevel statements.

Many loops require control variables to be initialized before the first itera­
tion and updated after each iteration. Some languages (like C) provide syn­
tax that includes these steps explicitly, which makes the loops more readable
and less error-prone. However, such syntax blurs the distinction between def­
inite (for) and indefinite (while) iteration:

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy.

12 CHAPTER 1 INTRODUCTION

Figure 1.11 for a := 1; Ptr := Start -- initialization 1
while Ptr ≠ nil -- termination condition 2
updating a := a+1; Ptr := Ptrˆ.Next; -- after each iter. 3
do 4

... -- loop body 5
end; 6

Russell and CSP generalize the nondeterministic if statement into a non­
deterministic while loop with multiple branches. So long as any guard is
true, the loop is executed, and any branch whose guard is true is arbitrarily
selected and executed. The loop terminates when all guards are false. For
example, the algorithm to compute the greatest common divisor of two inte­
gers a and b can be written as follows:

Figure 1.12 while 1
when a < b => b := b - a; 2
when b < a => a := a - b; 3

end; 4

Each guard starts with the reserved word when and ends with the symbol => .
The loop terminates when a = b.

The case statement is used to select one of a set of options on the basis of
the value of some expression.4 Most languages require that the selection be
based on a criterion known at compile time (that is, the case labels must be
constant or constant ranges); this restriction allows compilers to generate ef­
ficient code. However, conditions that can only be evaluated at runtime also
make sense, as in the following example:

Figure 1.13 case a of 1
when 0 => Something(1); -- static unique guard 2
when 1..10 => Something(2); -- static guard 3
when b+12 => Something(3); -- dynamic unique guard 4
when b+13..b+20 => Something(4); -- dynamic guard 5
otherwise Something(5); -- guard of last resort 6

end; 7

Each guard tests the value of a. Lines 2 and 4 test this value for equality
with 0 and b+12; lines 3 and 5 test it for membership in a range. If the
guards (the selectors for the branches) overlap, the case statement is erro­
neous; this situation can be detected at compile time for static guards and at
runtime for dynamic guards. Most languages consider it to be a runtime er­
ror if none of the branches is selected and there is no otherwise clause.

������������������������������������
4 C. A. R. Hoare, who invented the case statement, says, “This was my first programming

language invention, of which I am still most proud.” [Hoare 73]

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy.

3 BACKGROUND MATERIAL ON PROGRAMMING LANGUAGES 13

3.3 Procedures and Parameter Passing
Figure 1.14 will be discussed in detail in this section. For clarity, I have cho­
sen a syntax that names each formal parameter at the point of invocation;
Ada and Modula-3 have a similar syntax.

Figure 1.14 procedure TryAll(1
ValueInt : value integer; 2
ReferenceInt : reference integer; 3
ResultInt : result integer; 4
ReadOnlyInt : readonly integer := 10; 5
NameInt : name integer; 6
MacroInt : macro integer) : integer; 7

variable 8
LocalInt : integer; 9

begin 10
LocalInt := 10; -- affects only TryAll’s LocalInt 11
ValueInt := 1 + ValueInt; -- formal becomes 16 12
ReferenceInt := 1 + ValueInt; 13

-- actual and formal become 17 14
ResultInt := 1 + ReferenceInt + ReadOnlyInt + NameInt; 15

-- 47 16
return 2*MacroInt; -- 40 17

end; -- TryAll 18

variable 19
LocalInt : integer; 20
A, B : integer; 21

begin -- main program 22
LocalInt := 3; 23
B := TryAll(24

ValueInt : 15, 25
ReferenceInt : LocalInt, 26
ResultInt : A, -- becomes 47 27
ReadOnlyInt : 12, 28
NameInt : LocalInt, 29
MacroInt : 2*LocalInt) 30

); 31
-- Final values: LocalInt = 17, A = 47, B = 40 32

end; -- main program 33

Procedures (often called functions if they return values) are usually de­
clared with a header, local declarations, and a body. The header (lines 1–7)
indicates the procedure name and the parameters, if any, along with their
types and modes. If the procedure is to return a value, the type of the value
is also declared. If not, the predeclared type void is used in some languages
to indicate that no value at all is returned. The declarations (lines 8 and 9)
introduce local meanings for identifiers. Together, the parameters and the lo­
cal identifiers constitute the local referencing environment of the proce­
dure. Identifiers appearing within the procedure are interpreted, if possible,
with respect to the local referencing environment. Otherwise, they are inter­
preted with respect to parts of the program outside the procedure. The nonlo-

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy.

14 CHAPTER 1 INTRODUCTION

cal referencing environment is more complicated, so I will discuss it later.
The body of the procedure (lines 10–18) is composed of the statements

that are to be executed when the procedure is invoked. The header need not
be adjacent to the declarations and body; they may be separated for the pur­
pose of modularization (discussed in Chapter 3). Most programming lan­
guages allow recursion; that is, procedures may invoke themselves, either
directly or indirectly.

Parameters are inputs and outputs to procedures. The identifiers associ­
ated with parameters in the header are called formal parameters; the ex­
pressions passed into those parameters at the point of invocation (lines
24–31) are the actual parameters. There are many parameter-passing
modes, each with different semantics specifying how formal parameters are
bound to actual parameters.

•	 Value. The value of the actual parameter is copied into the formal pa­
rameter at invocation. In the example, the assignment in line 12 modifies
the formal, but not the actual parameter; the expression in line 13 uses
the modified value in the formal. Value mode is the most common param-
eter-passing mode. Some languages, like C, provide only this mode.

•	 Result. The value of the formal parameter is copied into the actual pa­
rameter (which must have an L-value) at procedure return. In the exam­
ple, the assignment in line 15 gives the formal a value, which is copied
into the actual parameter A (line 27) when the procedure TryAll returns.
It is usually invalid to provide actual parameters with the same L-value
to two different result parameters, because the order of copying is unde­
fined. However, this error cannot always be caught by the compiler, be­
cause it cannot always tell with certainty that two identifiers will have
different L-values at runtime.

•	 Value result. The parameter is treated as in value mode during invoca­
tion and as in result mode during return.

•	 Reference. The L-value of the formal parameter is set to the L-value of
the actual parameter. In other words, the address of the formal parame­
ter is the same as the address of the actual parameter. Any assignment to
the formal parameter immediately affects the actual parameter. In the
example, the assignment in line 13 modifies both the formal parameter
(ReferenceInt) and the actual parameter (LocalInt of the main pro­
gram), because they have the same L-value. Reference mode can be emu­
lated by value mode if the language has a referencing operator (I use &),
which produces a pointer to an expression with an L-value, and a derefer­
encing operator (I use ˆ), which takes a pointer and produces the value
pointed to. The program passes the pointer in value mode and derefer­
ences the formal parameter every time it is used. FORTRAN only has ref­
erence mode; expressions, which have no L-value, are evaluated and
placed in temporary locations in order to acquire an L-value for the dura­
tion of the procedure.5 Large arrays are usually passed in reference mode
instead of value mode to avoid the copying otherwise required.

������������������������������������
5 Some implementations of FORTRAN store all literals in a data region at runtime. A lit­

eral actual parameter is at risk of being modified by the procedure, after which the literal will
have a new value!

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy.

3 BACKGROUND MATERIAL ON PROGRAMMING LANGUAGES	 15

•	 Readonly. Either value or reference mode is actually used, but the com­
piler ensures that the formal parameter is never used on the left-hand
side of an assignment. The compiler typically uses value mode for small
values (such as primitive types) and reference mode for larger values. In
the example, it would be invalid for ReadOnlyInt to be used on the left­
hand side of the assignment on line 15.

The following modes have been proposed and used in the past, but are no
longer in favor due to their confusing semantics and difficult implementation.

•	 Name. Every use of the formal parameter causes the actual parameter to
be freshly evaluated in the referencing environment of the invocation
point. If the formal parameter’s L-value is needed (for example, the pa­
rameter appears on the left-hand side of an assignment), the actual pa-
rameter’s L-value must be freshly evaluated. If the formal parameter’s R­
value is needed, the actual parameter’s R-value must be freshly evalu­
ated. This mode is more complex than reference mode, because the actual
parameter may be an expression, and the procedure may modify one of
the variables that make up that expression. Such a modification affects
the value of the formal parameter. In the example, NameInt in line 15
evaluates to LocalInt of the main program, which was modified by the
assignment in line 13. Name mode was invented in Algol 60, caused a
certain amount of consternation among compiler writers, who had to in­
vent an implementation, and proved to be not very useful and fairly
error-prone.6 Modern languages don’t usually provide name mode.

•	 Macro. Every use of the formal parameter causes the text of the actual
parameter to be freshly evaluated in the referencing environment of the
use point. That is, if the actual parameter is a variable, IntVar, and the
procedure declares a new variable with the same name, then reference to
the formal parameter is like reference to the new, not the old, IntVar. In
the example, MacroInt in line 17 expands to 2*LocalInt, the actual pa­
rameter (line 30), but LocalInt is interpreted as referring to the variable
belonging to TryAll, not to the main program. Macro mode is extremely
error-prone, not very useful, and almost never provided. It opens the pos­
sibility of runtime parsing, because the actual parameter could be an ex­
pression fragment, such as + LocalInt, which would need to be
understood in the syntactic context of each use of the formal parameter.

Procedures themselves may be passed as parameters. In this case, we gener­
ally don’t talk about the parameter-passing mode.7 The formal parameter
declaration may indicate the number and types of the parameters to the
passed procedure. The formal parameter may be used in any way that a pro­
cedure can be used: it can be invoked or passed again as an actual parameter.

Goto labels may also be passed as parameters. The formal parameter may
then be the target of a goto or may be passed again as an actual parameter.
If it is the target of a goto, the referencing environment of the original in-
������������������������������������

6 J. Jensen invented a clever use for name-mode parameters that is called “Jensen’s de­
vice”, but its cleverness is outweighed by its lack of clarity.

7 You might say that the procedure is passed by value, but in fact, no copy is made. In­
stead, a closure is passed; this concept is elaborated below and in Chapter 3.

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy.

16 CHAPTER 1 INTRODUCTION

voker is restored, and intervening referencing environments are closed. (I
will discuss referencing environments shortly.) Implementing these seman­
tics correctly is complex, and few languages with block structure allow labels
to be passed as parameters.

Sometimes the programmer cannot predict how many parameters will be
provided. This situation arises particularly for input and output routines. If
there may be an arbitrary number of actual parameters of the same type,
they may be packaged into an array (perhaps an anonymous dynamic-sized
array built by a constructor). The formal parameter can be queried to dis­
cover how many elements were passed.

Ada, C++, and Common LISP provide default values, so that formal pa­
rameters that have no matching actuals can still have values; line 5 in Figure
1.14 provides a default value of 10 for parameter ReadOnlyInt in case it is not
provided by the call. A call can just omit an actual parameter to indicate that
it is missing. Only trailing parameters (that is, the parameters at the end of
the parameter list) may be omitted, so that the compiler can determine which
ones are missing. Other syntax is possible. For example, the procedure call
could still delimit missing parameters with commas (such as myProce-
dure(paramA,,paramC)). Alternatively, the call may explicitly associate for­
mal and actual parameters in any order. Lines 24–31 in Figure 1.14 use this
keyword (as opposed to positional) parameter-passing syntax for specifying
actuals. Keyword parameters make it easy to omit an actual parameter.

Languages differ in the syntax they use to return a value to the caller.
Line 17 of Figure 1.14 shows explicit return, in which the return statement
includes the value. The compiler can check that all returns specify a value of
the appropriate type and that the procedure does not terminate without re­
turning a value. Often the programmer introduces a local variable to con­
struct and manipulate the value before returning it; the actual return results
in an extra copy step. Implicit return uses the procedure identifier as a
write-only pseudovariable that is automatically returned when the procedure
finishes. The compiler cannot check that all execution paths set this variable,
and the programmer must be careful not to use the procedure identifier as an
ordinary variable, because such use may be misunderstood as a recursive pro­
cedure invocation. If the procedure needs to manipulate the value before it is
finalized, programmers usually introduce a local variable and copy it into the
write-only variable. Finally, identifier return introduces a new identifier or
identifiers in the procedure header to represent the returned values, as in the
following example:

Figure 1.15 procedure Double(1
ValueInt : value integer) : integer RetVal; 2

begin 3
RetVal := ValueInt * 2; 4
if RetVal < 0 then RetVal := 0; end; 5

end; -- Double 6

Line 2 introduces the new identifier RetVal, and line 4 assigns it a value.
Line 5 treats it as an ordinary integer variable. Neither the program nor the
compiled code needs to copy the values from the new identifiers into return­
value cells.

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy.

3 BACKGROUND MATERIAL ON PROGRAMMING LANGUAGES 17

The new-identifier method makes it easy to describe procedures that re­
turn multiple values. Such procedures are invoked in a context of multiple
assignment, as in Figure 1.16. Here, procedure TwoVals returns two results,
which are assigned simultaneously to two variables in the multiple assign­
ment of line 8.

Figure 1.16 procedure TwoVals : integer Answer1, Answer2; 1
begin 2

Answer1 := 3; 3
Answer2 := 9; 4

end; 5

variable a, b : integer; 6

begin 7
a, b := TwoVals; 8

end; 9

3.4 Block Structure
I will describe classic Algol block structure here; it has been adopted, with
modification, in many programming languages. A program is divided into
nested blocks, each of which introduces a new name scope. A name scope
is a region of program in which particular declarations of identifiers are in ef­
fect. A declaration maps an identifier to a meaning. We also say that it
binds the meaning to the identifier. The meanings can be variables, types,
constants, labels, procedures, or other concepts discussed elsewhere in the
book, such as modules (Chapter 3), classes (Chapter 5), and monitors (Chap­
ter 7). Traditionally, each nested name scope inherits all bindings from the
surrounding scope, except that if the same identifier is redefined in the
nested scope, the new declaration overrides the old declaration for the dura­
tion of the nested scope. Some languages, such as Ada and C++, allow de­
clared procedures to be overloaded; that is, the same name is bound to
multiple declarations at the same time, and the compiler chooses which is
meant by the number and types of the parameters.

The new declarations can be defined to take effect from the beginning of
the block (so that an earlier declaration, say of a variable, can refer to a later
declaration, perhaps of a type). More commonly, they take effect (are elabo­
rated) from the point in the block where the declaration appears. In the fol­
lowing example, I could define B in line 8 to be either real or integer,
depending on whether the outer declaration of T is hidden yet by the declara­
tion in line 10. Usually, languages either disallow such references or let the
new declaration take effect only after the point at which it appears. This de­
cision makes one-pass compilers easier to write.

Figure 1.17 type -- introduces outer block 1
T : real; 2

variable -- continues outer block 3
A : integer; 4

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy.

18 CHAPTER 1 INTRODUCTION

begin -- statements start 5
A := 4; 6
variable -- introduces nested block 7

B : T; -- real or integer? 8
type 9

T : integer; -- overrides outer declaration of T 10
begin 11

B := 3; -- coercion needed? 12
end -- nested block ends 13

end -- block ends 14

I use type, variable, or constant to introduce a new block, which includes a
new name scope (lines 1 and 7). After declarations introduce new identifiers
(including multiple instances of type, variable, or constant), the statements
in the name scope are delimited by begin and end.

Variables may be initialized to the value of some expression at the same
time they are declared. Pascal restricts initialization expressions to literals
and constants. Some languages allow arbitrary initialization expressions to
be evaluated at elaboration time; these expressions may even invoke proce­
dures.

Entering a new block just to introduce temporary declarations can be
helpful in structuring programs. More commonly, though, blocks are found as
the bodies of procedures. The identifiers introduced in the new block are all
the formal parameters and any types, constants, variables, labels, and proce­
dures defined within the procedure. A language is considered block­
structured if procedures introducing name scopes can nest. By this crite­
rion, C is not block-structured, but Pascal is.

An identifier is considered local to a name scope if it is introduced in that
name scope. Identifiers inherited from surrounding scopes are called nonlo­
cal. An identifier is global if it belongs to the outermost block of the pro­
gram. In FORTRAN, there are no global identifiers, and name scopes do not
nest. These restrictions help make FORTRAN efficient at runtime.

Although the declaration of an identifier may be clear from its defining
name scope, the instance of the identifier may not be. Every invocation of a
procedure introduces not only a new name scope, but also new instances of
variables themselves.8 A procedure may have many simultaneous instances,
because it may be invoked recursively. For local identifiers and global identi­
fiers, it is always clear which instance to use. For nonlocal identifiers, the
nonlocal referencing environment refers to the set of identifier bindings
dynamically in force during program execution. This set changes at every
procedure invocation and return, as well as when the program enters and ex­
its blocks, as illustrated in the following example.

������������������������������������
8 Although this discussion centers on variables, it also applies to labels and types, because

types may depend on runtime values. For example, an array type may have limits that are tak­
en from runtime values.

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy.

3 BACKGROUND MATERIAL ON PROGRAMMING LANGUAGES 19

Figure 1.18 procedure ProcA(value AParam : integer); 1
type AType : array 1..AParam of integer; 2
variable AVar1, AVar2 : integer; 3

procedure ProcB(value BParam : integer); 4
variable BVar1 : AType; 5
begin -- ProcB 6

... -- some statements 7
end; -- ProcB 8

begin -- ProcA 9
... -- some statements 10

end; -- ProcA 11

When ProcA is invoked, the new instance of ProcA elaborates a new set of for­
mal parameters (AParam), types (AType), variables (AVar1 and AVar2), and pro­
cedures (ProcB), which are inherited by nested procedure ProcB. When ProcB
is invoked, its new instance elaborates a new formal parameter (BParam) and
variable (BVar1), the latter of a type inherited from ProcA. ProcB may be in­
voked many times by ProcA and ProcB; each time, its new instance inherits
identifiers from the ProcA instance that elaborates the particular ProcB that
is invoked.

The situation becomes surprisingly complex when procedures (and labels)
are passed as parameters. They carry with them their nonlocal referencing
environment, so that when they are invoked, they may access nonlocal vari­
ables that are otherwise inaccessible in the program. A procedure in combi­
nation with its nonlocal referencing environment is called a closure.

Because this idea is unfamiliar to students who mainly use C (which has
no nested procedures, and therefore no nonlocal referencing environments), I
will present several examples.

Figure 1.19 procedure A(procedure X()); 1
variable Z : integer; 2
begin -- A 3

X(); 4
end; -- A 5

procedure B(S : integer); 6
variable Z : integer; 7

procedure C(); 8
begin -- C 9

write(Z); -- from lexical parent B 10
end; -- C 11

begin -- B 12
Z := S; 13
C(); 14
A(C); 15

end; -- B 16

B(3); 17

When B is called in line 17, it sets its local variable Z (line 7) to 3, the value of
formal parameter S. It then calls nested procedure C two times. The first
time is a direct call (line 14), and the second is indirect through a helper pro-

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy.

20 CHAPTER 1 INTRODUCTION

cedure A, which just relays the call (lines 15 and 4). In both cases, B is still
present, in the sense that its activation record is still on the central stack.
Procedure C needs B’s activation record, because C refers to B’s local variable
Z, which is only to be found in B’s activation record. In fact, C must access B’s
copy of Z during the second call, even though the intermediate procedure A
also has declared a local variable Z. In other words, C’s nonlocal referencing
environment is B, which elaborated C. When C is passed as an actual parame­
ter to A in line 15, a closure must be passed, so that when A invokes its formal
parameter X (which is actually C), the procedure it invokes can properly ac­
cess its nonlocal variables.

Figure 1.20 shows the stack of invocations at the point C is invoked via A.
The first row shows that the main program has declarations for A and B. The
second row shows that B has been invoked, and that it has local identifiers S
(the formal parameter, with actual value 3), Z (a locally declared integer), and
C (a locally declared procedure). The third row shows that A has been invoked
(from line 15 of the program). It has a formal parameter X (bound to the ac­
tual parameter C) and a local integer variable Z. The last row shows that A
has called its formal parameter, which we know is procedure C from row 2.
The arrows to the left of the box indicate the nonlocal referencing environ­
ment of each invocation. Rows 2 and 3 (B and A) both use the main program
as their nonlocal referencing environment. Row 4, however, shows that C
uses B as its nonlocal referencing environment. This is because C was elabo­
rated first in B, as the connecting lines indicate. That is why when C finally
refers to Z in line 10, it accesses the Z of the second row, the one belonging to
B.

Figure 1.20 Referencing
environments

main A B

3
B S Z C

A X Z

C

The following example shows a more complicated situation.

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy.

3 BACKGROUND MATERIAL ON PROGRAMMING LANGUAGES 21

Figure 1.21 procedure A(1
readonly AParam : integer; 2
AProc : procedure() 3

); 4
procedure B(); 5
begin -- B 6

write(AParam); -- writes 2 7
end; -- B 8

begin -- A 9
case AParam of 10

when 2 => A(1, B); 11
when 1 => A(0, AProc); 12
when 0 => AProc(); 13

end; -- case 14
end; -- A 15

procedure Dummy(); begin end; 16
-- never called; same type as B 17

begin -- main program 18
A(2, Dummy); 19

end; 20

The referencing environments of each instance of each procedure are shown
in Figure 1.22.

Figure 1.22 Referencing
environments

main A Dummy

2
A AParam FProc B

1
A AParam FProc B

0
A AParam FProc B

B

Each row again shows an invocation of some procedure, starting with main.
The entries on the row indicate the local referencing environment elaborated
by that invocation. The arrows on the left indicate the nonlocal referencing
environments. Here, main introduces A and Dummy. The instance of A that
main invokes is the one it elaborated, as shown by the connecting line. Proce­
dure A elaborates its parameters, AParam and AProc, and its nested procedure,
B. When A invokes itself recursively, it uses the meaning of A in its nonlocal

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy.

22 CHAPTER 1 INTRODUCTION

referencing environment, that is, the first row. It passes the closure of its
own elaborated B as an actual parameter. This closure of B includes the non­
local referencing environment of the first A, so when it is finally invoked, af­
ter being passed once more as a parameter to the third instance of A, it still
owns the first A as its nonlocal referencing environment. When B prints
AParam, therefore, it prints 2.

Binding the nonlocal referencing environment of a procedure at the time it
is elaborated is called deep binding. Under deep binding, when a procedure
is passed as a parameter, its closure is actually passed. The opposite, shal­
low binding, is to bind the nonlocal referencing environment of a procedure
at the time it is invoked. Shallow binding does not pass closures. Descen­
dents of Algol use deep binding; original LISP used shallow binding, although
it provided a way for the programmer to explicitly build a closure.

Another difference between the Algol family and original LISP is the
scope rules they follow to determine which syntactic entity is bound to each
identifier. Languages in the Algol family are statically scoped, whereas origi­
nal LISP was dynamically scoped.9 Under static scope rules, the compiler
can determine the declaration (although not necessarily the instance, as you
have seen) associated with each identifier. The strict compile-time nesting of
name scopes in Algol makes it a statically scoped language. In contrast, dy­
namic scope rules make identifiers accessible in a procedure if they were
accessible at the point of invocation; therefore, different invocations can lead
to different sets of accessible identifiers. The compiler cannot tell which iden­
tifiers are accessible to any procedure. The trend in programming language
design has been away from dynamic scope rules, because they are often con­
fusing to the programmer, who cannot tell at a glance which declaration is as­
sociated with each use of a variable. However, some recent languages, such
as Tcl, use dynamic scope rules.

3.5 Runtime Store Organization
Programmers usually don’t care how runtime store is organized. They expect
the compiler or interpreter to arrange the program and data for efficient exe­
cution. They are only interested if some language constructs are likely to use
large amounts of space or time. However, language designers are definitely
interested in runtime store organization because it affects the efficient imple­
mentation of the language.

Runtime store is typically divided into several regions. The first region
holds the compiled program instructions, which I will just call code. This re­
gion contains each procedure in the program as well as runtime libraries.
Under some operating systems, the libraries may be shared among processes
and may be brought into store dynamically when they are first referenced.

A second region holds global variables. Because the compiler knows the
identity, type, and size of these variables, it can allocate precise amounts of
store and can generate code that accesses global variables very efficiently.

A third region is the central stack. It holds an activation record for each
active procedure instance. Because procedures are invoked and return in
������������������������������������

9 More recent LISP languages, such as Common LISP and Scheme, are statically scoped.

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy.

3 BACKGROUND MATERIAL ON PROGRAMMING LANGUAGES 23

last-in, first-out order, a stack is appropriate. Each activation record
stores the return address, a pointer to the activation record of its invoker
(forming the dynamic chain), a pointer to the activation record of its nonlo­
cal referencing environment (forming the static chain), its parameters, its
local variables, and temporary locations needed during expression evaluation.
It is possible to represent the static chain in various ways; for simplicity, I
will just assume that it is a linked list of activation records. Dynamic-sized
arrays are typically represented by a fixed-size type descriptor (the size de­
pends only on the number of dimensions of the array, which is known by the
compiler) and a pointer to the value, which is placed in the activation record
after all static-sized local variables.

The central stack allows the compiler to generate efficient access code for
the variables stored there in a statically scoped language. Let me abbreviate
the phrase “accessed at a statically known offset” by the simpler but less pre­
cise “found.” Static-sized local variables are found in the current activation
record. Nonlocal variables are found in an activation record a certain dis­
tance from the front of the static chain; the compiler knows how many steps
to take in that chain. Pointers to the values of dynamic-sized local variables
are found in the current activation record; the values are interpreted accord­
ing to type descriptors found either in the current record (if the type is de­
clared locally) or in an activation record deeper on the static chain (for a
nonlocal type).

The fourth region of runtime store, called the heap, is used for dynamic
allocation of values accessed through pointers.10 These values do not follow a
stack discipline. This region of store expands as needed, getting increments
from the operating system when necessary. To avoid ever-increasing store re­
quirements for long-running programs, values are deallocated when they are
no longer needed. The space can later be reallocated to new values. Dealloca­
tion can be triggered by explicit program requests (such as Pascal’s dispose
procedure) or by automatic methods such as reference counts and garbage
collection. Reference counts indicate how many pointers are referencing each
value. Each assignment and parameter binding modifies these counts, and
each exit from a name scope reduces the counts for those variables that are
disappearing. When a count is reduced to 0, the value may be deallocated
and its space used for something else. Unfortunately, circular lists are never
deallocated, even when they are no longer accessible. Garbage collection
takes place when the store allocator notices that not much room is left. All
accessible structures are recursively traversed and marked, and then all un­
marked values are deallocated. The user often notices a distinct pause dur­
ing garbage collection. There are incremental and concurrent garbage
collection algorithms that reduce this interruption.

������������������������������������
10 Don’t confuse the heap with the treelike data structure of the same name.

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy.

24 CHAPTER 1 INTRODUCTION

4 ◆ FINAL COMMENTS
This chapter has attempted to introduce the study of programming languages
by placing it in the context of software tools in general. The background ma­
terial on programming languages is, of necessity, very concise. Its aim is to
lay the foundation for the concepts developed in the rest of this book.

The language concepts introduced here are in some sense the classical Al-
gol-like structures. They are developed in various directions in the following
chapters, each of which concentrates first on one programming language and
then shows ideas from a few others to flesh out the breadth of the topic.
Where appropriate, they end with a more mathematical treatment of the sub­
ject. Chapter 2 shows nonclassical control structures. Chapter 3 investigates
the concept of data type. It presents a detailed discussion of ML, which
shows how polymorphism can be incorporated in a statically typed language.
Because ML is mostly a functional language, you may want to read Chapter 4
before the section on ML in Chapter 3.

The next chapters are devoted to nonclassical paradigms, that is, lan­
guages not descended from Algol. Chapter 4 discusses functional program­
ming, concentrating on LISP. The concept of abstract data type is generalized
in several ways in the next three chapters. Chapter 5 introduces object­
oriented programming, concentrating on Smalltalk and C++. Chapter 6 dis­
cusses dataflow languages, concentrating on Val. Chapter 7 shows some of
the wide range of development of languages for concurrent programming. A
very different view of programming is presented in Chapter 8, which is is de­
voted to logic programming, concentrating on Prolog. Languages dealing
with special-purpose data aggregates, such as strings, arrays, databases, and
mathematical formulas, are discussed in Chapter 9. Finally, Chapter 10
shows several mathematical approaches to formalizing the syntax and se­
mantics of programming languages; although it uses imperative languages as
its model, such approaches have been used for the other language paradigms
as well.

EXERCISES

Review Exercises
1.1	 In what ways does C (or pick another language) fall short of the criteria

in Section 2 for excellence?

1.2	 How would you define the mod operator?

1.3	 Show a code fragment in which short-circuit semantics for or yield a dif­
ferent result than complete-evaluation semantics.

1.4	 Why do most languages with case statements prefer that the conditions
have compile-time values?

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy.

25 EXERCISES

1.5	 Write a procedure that produces different results depending on whether
its parameters are passed by value, reference, or name mode.

1.6	 FORTRAN only passes parameters in reference mode. C only passes
parameters in value mode. Pascal allows both modes. Show how you
can get the effect of reference mode in C and how you can get the effect
of value mode in FORTRAN by appropriate programming techniques.
In particular, show in both FORTRAN and C how to get the effect of the
following code.

Figure 1.23 variable X, Y : integer; 1

procedure Accept 2
(A : reference integer; B: value integer); 3

begin 4
A := B; 5
B := B+1; 6

end; -- Accept 7

X := 1; 8
Y := 2; 9
Accept(X, Y); 10
-- at this point, X should be 2, and Y should be 2 11

1.7	 If a language does not allow recursion (FORTRAN II, for example, did
not), is there any need for a central stack?

1.8	 C does not allow a procedure to be declared inside another procedure,
but Pascal does allow nested procedure declarations. What effect does
this choice have on runtime storage organization?

Challenge Exercises
1.9	 Why are array slices usually allowed only in the last dimension?

1.10	 Write a program that prints the index of the first all-zero row of an n × n
integer matrix M [Rubin 88]. The program should access each element of
the matrix at most once and should not access rows beyond the first all­
zero row and columns within a row beyond the first non-zero element.
It should have no variables except the matrix M and two loop indices Row
and Column. The program may not use goto, but it may use multilevel
break and next.

1.11	 What is the meaning of a goto from a procedure when the target is out­
side the procedure?

1.12 Why do goto labels passed as parameters require closures?

1.13	 Rewrite Figure 1.21 (page 21) so that procedure A takes a label instead
of a procedure. The rewritten example should behave the same as Fig­
ure 1.21.

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy.

26 CHAPTER 1 INTRODUCTION

1.14	 What rules would you make if you wanted to allow programmers to mix
positional and keyword actual parameters?

1.15	 The C language allows new name scopes to be introduced. However, C
is not generally considered a block-structured language. Why not?

1.16	 The text claims that the compiler knows the size of all global variables.
Is this claim true for global dynamic-sized arrays?

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy.

