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Chapter 2 ❖


Control Structures 
Assembler language only provides goto and its conditional variants. Early 
high-level languages such as FORTRAN relied heavily on goto, three-way 
arithmetic branches, and many-way indexed branches. Algol introduced con­
trol structures that began to make goto obsolete. Under the banner of “struc­
tured programming,” computer scientists such as C. A. R. Hoare, Edsger W. 
Dijkstra, Donald E. Knuth, and Ole-Johan Dahl showed how programs could 
be written more clearly and elegantly with while and for loops, case state­
ments, and loops with internal exits [Knuth 71; Dahl 72]. One of the tenets of 
structured programming is that procedures should be used heavily to modu­
larize effort. In this chapter we will explore control structures that are a lit­
tle out of the ordinary. 

1 ◆ EXCEPTION HANDLING 
If a procedure discovers that an erroneous situation (such as bad input) has 
arisen, it needs to report that fact to its caller. One way to program this be­
havior is to have each procedure provide an error return and to check for that 
return on each invocation. SNOBOL allows an explicit failure goto and suc­
cess goto on each statement, which makes this sort of programming conve­
nient. However, using a goto to deal with errors does not lead to clear 
programs, and checking each procedure invocation for error returns makes 
for verbose programs. 

A control construct for dealing with error conditions was first proposed by 
Goodenough [Goodenough 75] and has found its way into languages like Ada, 
Mesa, CLU, ML, Eiffel, and Modula-3. I will use a syntax like Ada’s for de­
scribing this control structure. 

When a procedure needs to indicate failure, it raises an exception. This 
action causes control to transfer along a well-defined path in the program to 
where the exception is handled. To embed this concept in programming lan-
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guages, identifiers can be declared to be of type exception. Each such iden­
tifier represents a distinct exception; the programmer usually names 
exception identifiers to indicate when they are to be raised, such as Stack-
Overflow. Some built-in operations may raise exceptions on some arguments. 
For example, division by zero raises the predefined exception DivByZero. 
Converting an integer to a float in such a way that precision is lost might 
raise the exception PrecisionLoss. Trying to extract the head of an empty 
list might raise the exception ListEmpty. 

A raised exception causes control to exit from the current expression, 
statement, and procedure, exiting outward until either the entire program is 
exited or control reaches a place where the program is explicitly prepared to 
handle the raised exception. For example: 

Figure 2.1 variable 1 
A, B : integer; 2 

begin 3 
B := 0;  4  
A := (4 / B) + 13; 5 
write(A); 6 

handle 7 
when DivByZero => A := 0; 8 
when PrecisionLoss => B := 2; 9 

end; 10 

When control reaches line 5, a divide error occurs, raising DivByZero. Con­
trol exits from the expression (no addition of 13 occurs) and from the body of 
the block (line 6 is not executed). It would exit entirely from the block, but 
this block has a handler (lines 7− 9) that includes this particular exception 
(line 8). Control therefore continues on line 8, setting A to 0. After that, the 
block exits (and A disappears, but let’s ignore that.) If an exception had been 
raised that this block does not handle (even if it handles other exceptions), 
control would have continued to exit outward. If the raised exception causes 
the program to terminate, the runtime library might print a message indicat­
ing the exception name and a backtrace showing where the program was exe­
cuting when the exception was raised. 

It is also possible to associate an exception handler directly with an ex­
pression: 

Figure 2.2	 if ((A / B) handle when DivByZero => return 0) = 3 1 
then ... 2 

Here I have used return instead of do to indicate that the handler yields a 
value to be used in the larger expression. 

Languages that provide for exception handling usually allow the program­
mer to define new exceptions and explicitly raise them. 

Figure 2.3 variable 1 
BadInput : exception; 2 
A : integer;	 3 
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begin 4 
read(A); 5 
if A < 0  then 6 

raise BadInput 7 
end; 8 
... 9 

handle 10 
when BadInput => 11 

write("Negative numbers are invalid here."); 12 
raise BadInput; 13 

end; 14 

BadInput is a programmer-defined exception declared in line 2, raised in line 
7, and handled in lines 11–13. This example also shows that a handler can 
reraise the same exception (or raise a different one) in order to propagate the 
raised exception further. 

Perhaps I want all divide errors to yield 0 for the entire program. It is te­
dious to place a handler on each expression; instead, a language might allow 
execution to resume from a handler. 

Figure 2.4 variable 1 
A, B : integer; 2 

begin 3 
B := 0;  4  
A := (4 / B) + 13; 5 
write(A); 6 

handle 7 
when DivByZero => resume 0; 8 

end; 9 

In this example, line 6 will be executed and will print 13. The DivByZero ex­
ception is raised in the middle of an expression, so it makes sense to resume 
the expression with a given value. 

Unfortunately, resuming computation can be ill-defined. It is not always 
clear where to resume computation: at the point at which raise occurred or 
at some intermediate point along the exit path from that point to where the 
exception is handled. For example, 

Figure 2.5 A := (GetInput() handle when BadInput => resume 0); 

Does resume 0 mean that GetInput should return 0, or does it mean that com­
putation should continue inside GetInput (perhaps at a raise statement, 
where 0 makes no sense)? 

Luckily, programmers can usually manage quite well without needing to 
resume computation. A statement that might fail can be surrounded by a 
handler in a loop. If the statement fails, the handler can print diagnostic in­
formation, and the loop can try again. 

Exceptions introduce several scope problems. First, the name scope that 
handles a raised exception generally has no access to the name scope that 
raised it. Therefore, there is no way for the handler to manipulate variables 
local to the raising scope in order to compute alternative answers or even to 
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generate error messages that convey exactly which values were erroneous. 
This problem is ameliorated in Modula-3, in which exceptions can take value­
mode parameters. The actual parameters are provided by the raise state­
ment, and the formal parameters are defined by the handle clause. Parame­
ters can be used to indicate where in the program the exception was raised 
and what values led to the exceptional situation. 

Second, programmer-defined exceptions may be visible in the raising 
scope but not in the handling scope. The problem arises for programmer­
defined exceptions that exit the entire program (to a scope where only prede­
fined exceptions exist) and for “don’t-care” exception-handler patterns within 
the program, as in line 4 below: 

Figure 2.6 begin 1 
... 2 

handle 3 
when _ => ... 4 

end; 5 

Such a handler might not be able to raise the exception further (unless the 
programming language provides a predefined exception identifier Self that 
holds the exception that was raised). 

In some ways, raise statements are like goto statements to labels passed 
as parameters. However, exceptions are far more disciplined than gotos, and 
they do not require that the programmer pass targets as parameters. 

Exceptions reduce the clarity of loop constructs. Every loop has an im­
plicit exit caused by an unhandled exception wresting control out of the loop. 
Modula-3 unifies loops and exceptions by treating break as equivalent to 
raise ExitException. Loop statements implicitly handle this exception and 
exit the loop. Similarly, Modula-3 considers the return statement as equiva­
lent to raise ReturnException. The value returned by a function becomes 
the parameter to ReturnException. 

The exception mechanism I have shown binds exception handlers to 
blocks. An alternative is to let raised exceptions throw the computation into 
a failure state [Wong 90]. In failure state, ordinary statements are not exe­
cuted. Procedures can return while execution is in failure state, however. 
Only the handle statement is executed in failure state; after it completes, fail­
ure state is no longer in force unless handle reraises an exception. The pro­
grammer may place handle statements in the middle of blocks, interspersed 
with ordinary statements. The execution cost for this scheme may be fairly 
high, however, because every statement must be compiled with a test to see if 
execution is in failure state. 

Exceptions are useful for more than handling error conditions. They also 
provide a clean way for programs to exit multiple procedure invocations. For 
example, an interactive editor might raise an exception in order to return to 
the main command loop after performing a complex action. 

Exceptions are not the only reasonable way to handle error conditions. 
Sometimes it is easier for the programmer to have errors set a global variable 
that the program may inspect later when it is convenient. For example, the 
standard library packaged with C has a global variable errno that indicates 
the most recent error that occurred in performing an operating-system call. 
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The programmer can choose to ignore return values and inspect errno well 
into the calculation, redirecting further effort if an error has occurred. The 
program is likely to be more efficient and clearer than a program that sur­
rounds code with exception handlers. This point is especially important in 
numerical computations on large data sets on highly pipelined computers. 
Putting in the necessary tests to handle exceptions can slow down such com­
putations so much that they become useless, whereas hardware that sets a 
flag when it discovers overflow, say, allows such computations to run at full 
speed and lets the program notice rare problems after the fact. 

Another way to treat errors is by generating error values, such as unde­
fined and positive_overflow, that are an integral part of arithmetic types. 
Similarly, null_pointer_dereference and array_range_error can be error 
values generated by the related mistakes. Expressions can evaluate to an er­
ror value instead of their normal results. These error values are propagated 
(using specific rules) to produce a final result. For example, 1/0 yields the 
value zero_divide, while 0*(1/0) yields undefined. Any operation involving 
zero_divide yields undefined. Error values render the results of all compu­
tations well defined, guaranteeing that all valid evaluation orders produce 
the same result.1 They also provide for a degree of error repair, since the pro­
gram can test for error values and perhaps transform them into something 
meaningful. However, because the program can continue computing with er­
ror values, the error values finally produced may provide no indication of the 
original errors. It can be quite difficult to debug programs when errors prop­
agate in this way. It would be far more helpful if the error value contained 
extra information, such as the source file and line number where the error oc­
curred, which could propagate along with the error value itself. 

2 ◆ COROUTINES 
Consider the problem of comparing two binary trees to see if their nodes have 
the same values in symmetric (also called in-order) traversal. For example, 
the trees in Figure 2.7 compare as equal. 

Figure 2.7 Equivalent 
binary trees 

E 

E 

D 

D 

CC 

B 

A B 

A 

We could use a recursive procedure to store the symmetric-order traversal in 
an array, call the procedure for each tree, and then compare the arrays, but it 
is more elegant to advance independently in each tree, comparing as we go. 
Such an algorithm is also far more efficient if the trees are unequal near the 
������������������������������������ 

1 An error algebra with good numeric properties is discussed in [Wetherell 83]. 
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beginning of the traversal. The problem is that each traversal needs its own 
recursion stack. In most programming languages, this solution requires an 
explicit stack for each tree and a program that replaces recursion with itera­
tion. 

2.1 Coroutines in Simula 
Simula provides explicit coroutines that have just the effect we need. Simula 
classes are introduced in Chapter 3 as a way to implement abstract data 
types. Here I will show you another use. 

A class is a data type much like a record structure, but it may also contain 
procedures and initialization code. When a variable is declared of that class 
type, or when a value is created at runtime from the heap using a new call, an 
instance of the class is created. This instance is often called an object; in  
fact, the concept of object-oriented programming, discussed in Chapter 5, is 
derived largely from Simula classes. After space is allocated (either on the 
stack or the heap), the initialization code is run for this object. Programmers 
usually use this facility to set up the object’s data fields. However, the initial­
ization code may suspend itself before it completes. I will call an object that 
has not completed its initialization code an active object. An active object’s 
fields may be inspected and modified, and its procedures may be called. In 
addition, its initialization code can be resumed from the point it suspended. 

Because the initialization can invoke arbitrary procedures that may sus­
pend at any point during their execution, each object needs its own stack un­
til its initialization has completed. An active object is therefore a coroutine, 
that is, an execution thread that can pass control to other coroutines without 
losing its current execution environment, such as its location within nested 
name scopes and nested control structures. 

Simula achieves this structure by introducing two new statements. The 
call statement specifies a suspended active object, which is thereby allowed 
to continue execution in its saved execution environment. The callers are 
saved on a runtime stack. The detach statement suspends the current object 
and returns control to the most recent object that invoked call. (This object 
is found on the stack just mentioned.) The main program is treated as an ob­
ject for this purpose, but it must not invoke detach. 

The program of Figure 2.8 solves the binary-tree equality puzzle. Simula 
syntax is fairly similar to Ada syntax; the following is close to correct Simula, 
although I have modified it somewhat so I don’t confuse syntactic with se­
mantic issues. 

Figure 2.8 class Tree; -- used as a Pascal record 1 
Value : char; 2 
LeftChild, RightChild : pointer to Tree; 3 

end; -- Tree 4 
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class TreeSearch; -- used as a coroutine 5 
MyTree : pointer to Tree; 6 
CurrentNode : pointer to Tree; 7 
Done : Boolean; -- true when tree exhausted 8 

procedure Dive 9 
(readonly Node : pointer to Tree); 10 

begin 11 
if Node ≠ nil then 12 

Dive(Nodeˆ.LeftChild); 13 
CurrentNode := Node; 14 
detach;  15  
Dive(Nodeˆ.RightChild); 16 

end;  17  
end; -- Dive 18 

begin -- TreeSearch: initialization and coroutine 19 
Done := false; 20 
CurrentNode := nil; 21 
detach; -- wait for initial values 22 
Dive(MyTree); -- will detach at each node 23 
Done := true; 24 

end; -- TreeSearch 25 

variable -- main 26 
A, B : pointer to Tree; 27 
ASearch, BSearch : pointer to TreeSearch; 28 
Equal : Boolean; 29 

begin -- main 30 
... -- initialize A and B 31 
new(ASearch); ASearchˆ.MyTree := A; 32 
new(BSearch); BSearchˆ.MyTree := B; 33 
while not (ASearchˆ.Done or BSearchˆ.Done or 34 

ASearchˆ.CurrentNode ≠ BSearchˆ.CurrentNode) 35 
do 36 

call ASearchˆ; -- continues coroutine 37 
call BSearchˆ; -- continues coroutine 38 

end; 39 
Equal := ASearchˆ.Done and BSearchˆ.Done; 40 

end; 41 

The new calls in lines 32–33 create new instances of TreeSearch and assign 
them to ASearch and BSearch. Each of these instances detaches during ini­
tialization (line 22) to allow their local variables MyTree to be set (lines 
32–33). Then they are repeatedly resumed by the main program (lines 
37–38). The call statements in lines 37–38 are invalid after the coroutines 
have finished (that is, after the initialization code of the class instances 
ASearchˆ and BSearchˆ has finished line 24), but line 34 prevents such a mis­
take from occurring. The class instances for both the trees and the coroutines 
are deallocated after control exits from the block at line 41, since all pointers 
to those instances disappear at that point. (Garbage collection is used for 
deallocation.) 
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2.2 Coroutines in CLU 
The CLU language, designed by Barbara Liskov at MIT, provides a general­
ized for loop [Liskov 81]. The control variable takes on successive values 
provided by a coroutine called an iterator. This iterator is similar in most 
ways to an ordinary procedure, but it returns values via a yield statement. 
When the for loop requires another value for the control variable, the itera­
tor is resumed from where it left off and is allowed to execute until it encoun­
ters another yield. If the iterator reaches the end of its code instead, the for 
loop that relies on the iterator terminates. CLU’s yield is like Simula’s de­
tach, except that it also passes back a value. CLU’s for implicitly contains 
the effect of Simula’s call. 

A naive implementation of CLU would create a separate stack for each ac­
tive iterator instance. (The same iterator may have several active instances; 
it does, for example, if there is a for nested within another for.) A coroutine 
linkage, much like Simula’s call and detach, would ensure that each iterator 
instance maintains its own context, so that it may be resumed properly. 

The following program provides a simple example. CLU syntax is also 
fairly close to Ada syntax; the following is almost valid CLU. 

Figure 2.9 iterator B() : integer; -- yields 3, 4 1 
begin 2 

yield 3; 3 
yield 4; 4 

end; -- B  5  

iterator C() : integer; -- yields 1, 2, 3 6 
begin 7 

yield 1; 8 
yield 2; 9 
yield 3; 10 

end; -- C  11 

iterator A() : integer; -- yields 10, 20, 30 12 
variable 13 

Answer : integer; 14 
begin 15 

for Answer := C() do -- ranges over 1, 2, 3 16 
yield 10*Answer; 17 

end; 18 
end; -- A  19 

variable 20 
x, y : integer; 21 

begin 22 
for x := A() do -- ranges over 10, 20, 30 23 

for y := B() do -- ranges over 3, 4 24 
P(x, y); -- called 6 times 25 

end;  26  
end; 27 

end; 28 

The loop in line 23 iterates over the three values yielded by iterator A (lines 
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12–19). For each of these values, the loop in line 24 iterates over the two val­
ues yielded by iterator B (lines 1–5). Iterator A itself introduces a loop that it­
erates over the three values yielded by iterator C (lines 6–11). 

Happily, CLU can be implemented with a single stack. As a for loop be­
gins execution, some activation record (call it the parent) is active (although 
not necessarily at the top of the stack). A new activation record for the itera­
tor is constructed and placed at the top of the stack. Whenever the body of 
the loop is executing, the parent activation record is current, even though the 
iterator’s activation record is higher on the stack. When the iterator is re­
sumed so that it can produce the next value for the control variable, its acti­
vation record again becomes current. Each new iterator invocation gets a 
new activation record at the current stack top. Thus an activation record 
fairly deep in the stack can be the parent of an activation record at the top of 
the stack. Nonetheless, when an iterator terminates, indicating to its parent 
for loop that there are no more values, the iterator’s activation record is cer­
tain to be at the top of the stack and may be reclaimed by simply adjusting 
the top-of-stack pointer. (This claim is addressed in Exercise 2.10.) 

For Figure 2.9, each time P is invoked, the runtime stack appears as fol­
lows. The arrows show the dynamic (child-parent) chain. 

Figure 2.10 Runtime 
CLU stack during 
iterator execution 

main 

iterator C 

procedure P 

iterator B 

iterator A 

CLU iterators are often trivially equivalent to programs using ordinary 
for loops. However, for some combinatorial algorithms, recursive CLU itera­
tors are much more powerful and allow truly elegant programs. One example 
is the generation of all binary trees with n nodes. This problem can be solved 
without CLU iterators, albeit with some complexity [Solomon 80]. Figure 
2.11 presents a natural CLU implementation. 
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Figure 2.11 type Tree = 1

record 2


Left, Right : pointer to Node; 3

end; -- Tree; 4


iterator TreeGen(Size : integer) : pointer to Tree; 5

-- generate all trees with Size nodes 6

variable 7


Answer : Tree; 8

Root : integer; -- serial number of the root 9


begin 10

if Size = 0 then 11


yield nil; -- only the empty tree 12

else -- answer not empty 13


for Root := 1 to Size do 14

for Answer.Left := TreeGen(Root-1) do 15


for Answer.Right := TreeGen(Size-Root) 16

do 17


yield &Answer; 18

end; -- for Right 19


end; -- for Left 20

end; -- for Root 21


end -- answer not empty 22

end -- TreeGen 23


variable -- sample use of TreeGen 24

T :  pointer to Tree; 25


begin 26

for T := TreeGen(10) do 27


TreePrint(T); 28

end; 29


end; 30


This marvelously compact program prints all binary trees of size 10. The 
for loop in lines 27–29 invokes the iterator TreeGen(10) until no more values 
are produced. TreeGen will produce 16,796 values before it terminates. It 
works by recursion on the size of tree required. The simple case is to gener­
ate a tree of size 0; the yield in line 12 accomplishes this. If an instance of 
TreeGen(0) is resumed after line 12, it falls through, thereby terminating its 
parent loop. The other case requires that TreeGen iterate through all possi­
bilities of the root of the tree it will generate (line 14). Any one of the Size 
nodes could be root. For each such possibility, there are Root-1 nodes on the 
left and Size-Root nodes on the right. All combinations of the trees meeting 
these specifications must be joined to produce the trees with Size nodes. The 
nested loops starting in lines 15 and 16 iterate through all such combinations; 
for each, yield in line 18 passes to the parent a reference to the solution. The 
storage for the solution is in the local activation record of the iterator. As it­
erators terminate, their storage is released, so there is no need to explicitly 
allocate or deallocate any storage for the resulting tree. 
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2.3 Embedding CLU Iterators in C 
Surprisingly, it is possible to implement CLU iterators using only the con­
structs available to a C programmer. This implementation clarifies CLU and 
shows some interesting aspects of C. 

The only machine-independent way to manipulate activation records in C 
is to use the library routines setjmp and longjmp. They are intended to pro­
vide the equivalent of exception handling; they allow many levels of activa­
tion records to be terminated at once, jumping from an activation record at 
the top of the stack directly back to one deep within the stack. I apply these 
routines in a way probably unintended by their inventors: to resume an acti­
vation record higher on the stack than the invoker. 

Setjmp(Buf) takes a snapshot of the current environment — registers, 
stack pointers, program counter, and such — and places it in the Buf data 
structure. Longjmp(Buf, ReturnValue) restores the registers from Buf, ef­
fectively restoring the exact context in which the setjmp was called. In fact, 
it creates another return from the original setjmp call. In order to let the 
program distinguish whether setjmp is returning the ordinary way or be­
cause of a longjmp, setjmp returns a 0 in the former case and ReturnValue in 
the latter case. For this reason, setjmp is usually embedded in a conditional 
or case statement to identify these cases and take appropriate action. 

This facility is very like jumping to a label passed as a parameter, which 
has the effect of unwinding the stack to the right activation record for the tar­
get of the goto. Setjmp can capture the situation before a procedure call, and 
longjmp can be invoked from within a procedure; the call unwinds the stack 
to its position when setjmp recorded the situation. Unbridled use of setjmp 
and longjmp can be worse than an unconstrained goto. It allows such activi­
ties as jumping into a control structure (after all, the setjmp can be in the 
middle of a loop or a branch of a conditional) or even jumping back to a proce­
dure that has exited. 

This ability to break the rules makes it possible to implement CLU itera­
tors within the C language. My implementation is packaged as a set of C 
macros, primarily iterFOR and iterYIELD. Whenever iterFOR is about to in­
voke an iterator, it performs setjmp to allow the iterator to come back to the 
iterFOR via longjmp. Likewise, each iterYIELD performs setjmp to allow its 
parent iterFOR to resume it via longjmp. The macros use a single global 
variable (not visible to the programmer) to store a pointer to the associated 
Buf structures in both these cases. 

Now that the linkage between iterFOR and its iterator can be established, 
two problems remain. They both concern managing space on the stack. Un­
fortunately, new activation records are placed on the stack immediately above 
the invoker’s activation record, even if other activation records have been 
placed there. 

The first problem is that even in the simplest situation, with a single 
iterFOR invoking a single iterator, we need padding on the stack between 
their respective activation records. If there is no padding, then attempts by 
iterFOR to resume the iterator fail. After all, iterFOR calls longjmp, and this 
invocation places an activation record on the stack (since longjmp is also a 
procedure). This activation record coincides with the iterator’s activation 
record, destroying at least the arguments and quite likely other information 
as well. Furthermore, any ordinary procedure calls invoked by the body of 
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the iterFOR need a place to put their activation records. I solve this problem 
by invoking iterators via a Helper routine, which declares a local array just 
for padding and then calls the iterator by a normal procedure invocation. 

The second problem arises with nested iterFOR loops, which are, after all, 
the interesting ones. Consider again Figure 2.9 introduced on page 34. Once 
the outer for in line 23 has established an instance of A, and A in line 16 has 
established an instance of C, the inner for in line 24 needs to put its instance 
of B at the top of the stack. Main can’t directly invoke Helper, because that 
would place the activation record for B exactly where the A is residing. I 
therefore keep track of the iterator instance (in this case, C) that is currently 
at the top of the stack so that I can resume it, not so it will yield its next 
value, but so it will call Helper on my behalf to start B. 

Figure 2.12 Runtime 
C stack during 
iterator execution 

helper 

helper 

helper 

helper 

main 

iterator C 

procedure P 

iterator B 

iterator A 

Figure 2.12 demonstrates the appearance of the runtime stack at the same 
stage as the previous figure. Solid arrows pointing downward show to which 
activation record each activation record returns control via longjmp. Dotted 
arrows pointing downward show ordinary procedure returns. Solid arrows 
pointing upward show which activation record actually started each new acti­
vation record. Dotted arrows pointing upward show the direction of longjmp 
used to request new invocations. 

Choosing to build iterators as C macros provides the ability to express 
CLU coroutines at the cost of clarity. In particular, I made the following deci­
sions: 

1.	 The value returned by an iterYIELD statement must be placed in a 
global variable by the programmer; the macros do not attempt to trans­
mit these values. 

2.	 The programmer must write the Helper routine. In the usual case, the 
helper just declares a dummy local array and invokes the iterator proce­
dure, passing arguments through global variables. If there are several 
different iterators to be called, Helper must distinguish which one is in­
tended. 
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3.	 Any routine that includes an iterFOR and every iterator must invoke 
iterSTART at the end of local declarations. 

4.	 Instead of falling through, iterators must terminate with iterDONE. 
5.	 The Helper routine does not provide enough padding to allow iterators 

and their callers to invoke arbitrary subroutines while iterators are on 
the stack. Procedures must be invoked from inside iterFOR loops by 
calling iterSUB. 

The macro package appears in Figure 2.13. (Note for the reader unfamil­
iar with C: the braces { and } act as begin and end; void is a type with no 
values; declarations first give the type (such as int or jmp_buf *) and then 
the identifier; the assignment operator is = ; the dereferencing operator is * ; 
the referencing operator is & .) 

Figure 2.13 #include <setjmp.h> 1 
#define ITERMAXDEPTH 50 2 
jmp_buf *GlobalJmpBuf; /* global pointer for linkage */ 3 
jmp_buf *EnvironmentStack[ITERMAXDEPTH] = {0}, 4 

**LastEnv = EnvironmentStack; 5 

/* return values for longjmp */ 6 
#define J_FIRST 0 /* original return from setjmp */ 7 
#define J_YIELD 1 8 
#define J_RESUME 2 9 
#define J_CALLITER 3 10 
#define J_DONE 4 11 
#define J_CALLSUB 5 12 
#define J_RETURN 6 13 

/* iterSTART must be invoked after all local declarations 14 
in any procedure with an iterFOR and in all iterators. 15 

*/ 16 
#define iterSTART \ 17 

jmp_buf MyBuf, CallerBuf; \ 18 
if (GlobalJmpBuf) \ 19 

bcopy((char *)GlobalJmpBuf, (char *)CallerBuf, \ 20 
sizeof(jmp_buf)); \ 21 

LastEnv++; \ 22 
*LastEnv = &MyBuf; 23 
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/* Initialization gives global args to Helper. 24

Body is the body of the for loop. 25


*/ 26

#define iterFOR(Initialization, Body) \ 27


switch (setjmp(MyBuf)) { \ 28

case J_FIRST: \ 29


GlobalJmpBuf = MyBuf; \ 30

Initialization; \ 31

if (*LastEnv != MyBuf)\ 32


longjmp(**LastEnv, J_CALLITER); \ 33

else Helper(); \ 34


case J_YIELD: \ 35

{ jmp_buf *Resume = GlobalJmpBuf; \ 36


Body; \ 37

longjmp(*Resume, J_RESUME); \ 38


} \  39 

case J_DONE: break; \  40 


}  41


/* No arguments; the value yielded must be passed 42

through globals. 43


*/ 44

#define iterYIELD \ 45


switch (setjmp(MyBuf)) { \ 46

case J_FIRST: \ 47


GlobalJmpBuf = &MyBuf; \ 48

longjmp(CallerBuf, J_YIELD); \ 49


case J_CALLITER: \ 50

Helper(); /* won’t return */ \ 51


case J_CALLSUB: \ 52

{ jmp_buf *Return = GlobalJmpBuf; \ 53


Helper(); \ 54

longjmp(*Return, J_RETURN); \ 55


} \  56 

case J_RESUME: break; \  57 


}  58


/* Every iterator must return via iterDONE; 59

a direct return is meaningless. 60


*/ 61

#define iterDONE \ 62


LastEnv--; \ 63

longjmp(CallerBuf, J_DONE) 64
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/* iterSUB(Initialization) invokes Helper to perform 65 
subroutine work from an iterator or its user. 66 

*/ 67 
#define iterSUB(Initialization) \ 68 

{ jmp_buf SubBuf; \ 69 
switch (setjmp(SubBuf)) { \ 70 

case J_FIRST: \ 71 
Initialization; \ 72 
if (*LastEnv != &MyBuf) { \ 73 

GlobalJmpBuf = &SubBuf; \ 74 
longjmp(**LastEnv, J_CALLSUB); \ 75 

} \  76  
else Helper(); \ 77 
break; \  78  

case J_RETURN: \ 79 
break; \  80  

} \  81  
}  82 

The variables used to remember the stack of environments are 
EnvironmentStack and LastEnv (lines 4 and 5). When an iterator starts, it 
must save a copy of its parent’s Buf (lines 20–21); this code is in a conditional, 
since iterStart is also called by noniterators that happen to invoke iterators. 
An iterator is invoked through Helper (line 34) or by asking a more deeply 
nested iterator to assist (line 33). Such calls for assistance always appear as 
resumptions from iterYIELD (line 50). 

iterSUB (line 68) invokes Helper from the top of the stack but expects a 
normal return. Helper needs to be able to identify which subroutine is actu­
ally to be called by inspecting global variables. The flow of control travels to 
the top of the stack (line 75), where it invokes Helper (line 54) and then re­
turns via a longjmp (line 55). 

Figure 2.14 shows how to code Figure 2.9 (on page 34) using the C macros. 

Figure 2.14	 int AValue, BValue, CValue, mainX, mainY; 1 
enum {CallA, CallB, CallC, CallPrint} HelpBy; 2 

void Helper(){ 3 
switch (HelpBy) { 4 

case CallA: A(); break; 5 
case CallB: B(); break; 6 
case CallC: C(); break; 7 
case CallPrint: 8 

printf("%d %d0, mainX, mainY); break; 9 
} 10 

} 11 

int B(){ 12 
iterSTART; 13 
BValue = 3; iterYIELD; 14 
BValue = 4; iterYIELD; 15 
iterDONE; 16 

} 17 
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int C(){ 18 
iterSTART; 19 
CValue = 1; iterYIELD; 20 
CValue = 2; iterYIELD; 21 
CValue = 3; iterYIELD; 22 
iterDONE; 23 

} 24 

int A(){ 25 
int Answer; 26 
iterSTART; 27 
iterFOR ({HelpBy = CallC;} , { 28 

Answer = 10 * CValue; 29 
AValue = Answer; iterYIELD; 30 

}); 31 
iterDONE; 32 

} 33 

void main(){ 34 
iterSTART; 35 
iterFOR({HelpBy = CallA;} , { 36 

mainX = AValue; 37 
iterFOR ({HelpBy = CallB;} , { 38 

mainY = BValue; 39 
iterSUB( HelpBy = CallPrint ); 40 

}); 41 
}); 42 

} 43 

Line 1 introduces all the variables that need to be passed as parameters or as 
results of yield statements. Lines 2–11 form the Helper routine that is 
needed for invoking iterators as well as other routines, such as printf. 

I cannot entirely recommend using these C macros; it is far better to use a 
language that provides iterators directly for those situations (admittedly 
rare) when recursive iterators are the best tool. After all, CLU iterators are 
not at all hard to compile into fine code. 

The C macros can be used (I have used them on several occasions), but 
they leave a lot of room for errors. The programmer must pass parameters 
and results to and from the iterators through global variables. All calls to it­
erators (via iterFOR) and to routines (via iterSUB) are funneled through a 
single Helper routine. Helper needs to reserve adequate space (experience 
shows that not much is needed) and must use global variables to distinguish 
the reason it is being called. The programmer must be careful to use iterSUB 
instead of direct calls inside iterFOR. The resulting programs are certainly 
not elegant in appearance, although with some practice, they are not hard to 
code and to read. 

The C macros have other drawbacks. In some C implementations, 
longjmp refuses to jump up the stack. Compile-time and hand-coded opti­
mizations that put variables in registers typically render them invisible to 
setjmp, so iterators and routines that contain iterFOR must not be optimized. 
There is a danger that interrupts may cause the stack to become garbled, be­
cause a program written in C cannot protect the top of the stack. 
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2.4 Coroutines in Icon 
Icon is discussed in some detail in Chapter 9. It generalizes CLU iterators by 
providing expressions that can be reevaluated to give different results. 

3 ◆ CONTINUATIONS: IO 
FORTRAN demonstrates that is possible to build a perfectly usable program­
ming language with only procedure calls and conditional goto as control 
structures. The Io language reflects the hope that a usable programming lan­
guage can result from only a single control structure: a goto with parameters. 
I will call the targets of these jumps procedures even though they do not re­
turn to the calling point. The parameters passed to procedures are not re­
stricted to simple values. They may also be continuations, which represent 
the remainder of the computation to be performed after the called procedure 
is finished with its other work. Instead of returning, procedures just invoke 
their continuation. Continuations are explored formally in Chapter 10; here I 
will show you a practical use. 

Io manages to build remarkably sophisticated facilities on such a simple 
foundation. It can form data structures by embedding them in procedures, 
and it can represent coroutines. 

Io programs do not contain a sequence of statements. A program is a pro­
cedure call that is given the rest of the program as a continuation parameter. 
A statement continuation is a closure; it includes a procedure, its environ­
ment, and even its parameters. 

Io’s syntax is designed to make statement continuations easy to write. If a 
statement continuation is the last parameter, which is the usual case, it is 
separated from the other parameters by a semicolon, to remind the program­
mer of sequencing. Continuations and procedures in other parameter posi­
tions must be surrounded by parentheses. I will present Io by showing 
examples from [Levien 89]. 

Figure 2.15 write 5; 1 
write 6; 2 
terminate 3 

As you expect, this program prints 5 6. But I need to explain how it works. 
The predeclared write procedure takes two parameters: a number and a con­
tinuation. The call in line 1 has 5 as its first parameter and write 6; termi­
nate as its second. The write procedure prints 5 and then invokes the 
continuation. It is a call to another instance of write (line 2), with parame­
ters 6 and terminate. This instance prints 6 and then invokes the parame­
terless predeclared procedure terminate. This procedure does nothing. It 
certainly doesn’t return, and it has no continuation to invoke. 

Procedures can be declared as follows: 

Figure 2.16 declare writeTwice: → Number; 1 
write Number; write Number; terminate. 2 

That is, the identifier writeTwice is associated with an anonymous procedure 
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(introduced by →) that takes a single formal parameter Number (the parame­
ter list is terminated by the first ;) and prints it twice. The period, . , indi­
cates the end of the declaration. This procedure is not very useful, because 
execution will halt after it finishes. Procedures do not return. So I will mod­
ify it to take a continuation as well: 

Figure 2.17 declare writeTwice: → Number Continuation; 1 
write Number; write Number; Continuation. 2 

writeTwice 7; 3 
write 9; 4 
terminate 5 

Lines 1–2 declare writeTwice, and line 3 invokes it with a 7 and a continua­
tion composed of lines 4–5. Here is a trace of execution: 

Figure 2.18 writeTwice 7 (write 9; terminate) -- called on line 3 1 
Number := 7 2 
Continuation := (write 9; terminate) 3 

write 7 (write 7; write 9; terminate) -- called on line 2 4 
-- writes 7 5 

write 7 (write 9; terminate) -- called by write 6 
-- writes 7 7 

write 9 (terminate) -- called by write 8 
-- writes 9 9 

terminate -- called by write 10 

Indented lines (such as lines 2–3) indicate the formal-actual bindings. I sur­
round parameters in parentheses for clarity. 

Even arithmetic operations are built to take a continuation. The differ­
ence between a statement and an expression is that an expression continua­
tion expects a parameter, namely, the value of the expression. Consider the 
following code, for example: 

Figure 2.19	 + 2 3  →  Number; 1 
write Number; 2 
terminate 3 

The + operator adds its parameters 2 and 3 and passes the resulting value 5 
to its last parameter (→ Number; write Number; terminate), which prints the 
5 and terminates. This expression continuation is an anonymous procedure; 
that is, it is declared but not associated with an identifier. In general, an ex­
pression continuation is a procedure expecting a single parameter. The syn­
tax conspires to make this program look almost normal. The result of the 
addition is apparently assigned to a variable Number, which is used in the fol­
lowing statements. In fact, the result of the addition is bound to the formal 
parameter Number, whose scope continues to the end of the program. 

Conditional operators are predeclared to take two statement continuations 
corresponding to the two Boolean values true and false. For example, the 
following code will print the numbers from 1 to 10. 
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Figure 2.20 declare Count: → Start End Continuation; 1 
write Start; 2 
= Start End (Continuation); -- "then" clause 3 
+ Start 1 → NewStart; -- "else clause" 4 
Count NewStart End Continuation. 5 

Count 1 10; terminate 6 

Here is a trace of execution: 

Figure 2.21 Count 1 10 terminate -- called on line 6 1 
Start := 1 2 
End := 10 3 
Continuation := terminate 4 

write 1 (= 1 10 terminate A:(+ 1 1 → NewStart; 5 
Count NewStart 10; terminate) 6 
-- writes 1 7 

= 1 10 terminate A 8 
-- called by write 9 

A -- called by ‘=’ 10 
+ 1 1 B:(→  NewStart; Count NewStart 10; terminate) 11 
B 2 -- called by ‘+’ 12 
Count 2 10 terminate -- called by B 13 
... 
Count 10 10 terminate 14 
write 10 (= 10 10 terminate C:( 15 

+ 1 1  →  NewStart; Count NewStart 10; terminate.) 16 
-- writes 10 17 

= 10 10 terminate C 18 
terminate 19 

I have introduced the shorthand forms A (line 5), B (line 11), and C (line 15) 
for conciseness. 

Procedures can contain constants that are made available later: 

Figure 2.22 declare TwoNumbers: → Client; 1 
Client 34 53. 2 

declare WritePair: → PairProc Continuation; 3 
PairProc → x y;  4  
write x; 5 
write y; 6 
Continuation. 7 

WritePair TwoNumbers; 8 
terminate 9 

Line 8 invokes WritePair with two parameters: the first is a procedure 
(twoNumbers), and the second is a continuation (terminate). WritePair in­
vokes its first parameter (line 4), passing the remainder of its body (lines 4–7) 
as a procedure parameter with local variable Continuation bound to termi­
nate. TwoNumbers applies that procedure to parameters 34 and 53, causing 
these numbers to be printed and then terminate to be called. Procedure 
TwoNumbers can be generalized to contain any two numbers: 
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Figure 2.23 declare MakePair: → x y User Continuation; 1 
User (→ Client; Client x y); Continuation. 2 

MakePair 12 13 (WritePair); 3 
terminate. 4 

The execution trace is as follows: 

Figure 2.24 MakePair 12 13 WritePair terminate 1 
x := 12  2  
y := 14  3  
User := WritePair 4 
Continuation := terminate 5 

WritePair A:(→ Client; Client 12 13) terminate 6 
PairProc := A 7 
Continuation := terminate 8 

A B:(→ x y; write x; write y; terminate); 9 
Client := G 10 

B 12 13 -- writes "12 13" then terminates. 11 

Linked lists can be implemented by suitable cleverness as functions with 
two parameters, both procedures. An empty list calls its first parameter, 
which is a continuation. Other lists call the second parameter, passing two 
new parameters that represent the first number in the list and the remainder 
of the list. Here are the relevant declarations: 

Figure 2.25 declare WriteList: → List Continuation; 1 
List (Continuation) → First Rest; 2 
write First; 3 
WriteList Rest; 4 
Continuation. 5 

declare EmptyList: → Null NotNull; 6 
Null. 7 

declare Cons: → Number List EContinuation; 8 
EContinuation → Null NotNull; 9 
NotNull Number List. 10 

Cons 1 EmptyList → List; 11 
Cons 2 List → List; 12 
WriteList List; 13 
terminate 14 

Here, Cons (the name is taken from LISP, described in Chapter 4) is meant to 
combine a header element with the rest of a list to create a new list. Again, 
the execution trace clarifies what happens: 
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Figure 2.26 Cons 1 EmptyList A:(	 1 
→	 List; Cons 2 List → List; WriteList List; 2 

terminate) 3 
Number := 1 4 
List := EmptyList 5 
EContinuation := A 6 

A B:(→ Null NotNull; NotNull 1 EmptyList) 7 
List := B 8 

Cons 2 B C:(→ List; WriteList List; terminate) 9 
Number := 2 10 
List := B 11 
EContinuation := C 12 

C D:(→ Null NotNull; NotNull 2 B) 13 
List := D 14 

WriteList D terminate 15 
List := D 16 
Continuation := terminate 17 

D terminate E:(→ First Rest; write First; 18 
WriteList Rest; terminate) 19 
Null := terminate 20 
NotNull := E 21 

E 2 B  22 
First := 2 23 
Rest := B 24 
-- writes 2 25 

WriteList B terminate 26 
List := B 27 
Continuation := terminate 28 

B terminate F:(→ First Rest; write First; 29 
WriteList Rest; terminate) 30 
Null := terminate 31 
NotNull := F 32 

F 1 EmptyList 33 
First := 1 34 
Rest := EmptyList 35 
-- writes 1 36 

WriteList EmptyList terminate 37 
List := EmptyList 38 
Continuation := terminate 39 

EmptyList terminate G:(→ First Rest; write First; 40 
WriteList Rest; terminate) 41 
Null := terminate 42 
NotNull := G 43 

terminate 44 

Similar cleverness can produce a set of declarations for binary trees. Empty 
trees call their first parameter. Other trees call their second parameter with 
the key, left subtree, and the right subtree. Other data structures can be 
built similarly. 

Continuations are perfectly capable of handling coroutines. For example, 
a global variable could hold the continuation of the thread that is not cur­
rently executing. I could define a switch procedure that saves its continua­
tion parameter in the global and invokes the old value of the global. It would 
be more elegant to redesign statement continuations. Instead of being a sin-
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gle closure, they could be a list of closures (using the list mechanisms I have 
already introduced). The switch procedure would take the appropriate ele­
ment from the list and sort it to the front of the list. Ordinary procedures use 
the front of the list as the current thread. 

Instead of showing the gory details of coroutines, I will show how Io can 
build infinite data structures that are evaluated only when necessary. (Lazy 
evaluation is discussed in Chapter 4.) 

Figure 2.27 declare Range: → First EContinuation; 1 
EContinuation First → Null NotNull; 2 
+ First 1 → NewFirst; 3 
Range NewFirst EContinuation. 4 

declare FullRange: → Null NotNull; 5 
Range 0 NotNull. 6 

WriteList FullRange; -- writes 0 1 2 3 ...  7 
terminate 8 

I leave it to you as an exercise to trace the execution. 
Given that continuations are very powerful, why are they not a part of ev­

ery language? Why do they not replace the conventional mechanisms of con­
trol structure? First, continuations are extremely confusing. The examples 
given in this section are almost impossible to understand without tracing, 
and even then, the general flow of control is lost in the details of procedure 
calls and parameter passing. With experience, programmers might become 
comfortable with them; however, continuations are so similar to gotos (with 
the added complexity of parameters) that they make it difficult to structure 
programs. 

Second, continuations are not necessarily pleasant to implement. Proce­
dures may be referenced long after they are created, and allocation does not 
follow a stack discipline, so it appears that activation records must be created 
in the heap. Luckily, circularities will not exist, so reference counts can gov­
ern reclamation of activation records. The implementation and the program­
mer must be able to distinguish functions that have not yet been bound to 
parameters (classical closures) from those that are so bound. Both are pre­
sent in Io. In Figure 2.25 (on page 46), the anonymous procedure in lines 2–5 
is a classical closure, whereas the subsidiary call to write in line 3 includes 
its parameters (First and WriteList Rest; Continuation). 

Even though continuations will never be a popular programming method, 
I like them because they combine several ideas you will see elsewhere in this 
book. The examples abound with higher-level functions (discussed in Chap­
ter 3) and anonymous functions (also Chapter 3). Continuations can imple­
ment coroutines and LISP-style lists (Chapter 4). Finally, denotational 
semantic definitions of programming languages use continuations directly 
(Chapter 10). 
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4 ◆ POWER LOOPS 
Although the programmer usually knows exactly how deeply loops must nest, 
there are some problems for which the depth of nesting depends on the data. 
Programmers usually turn to recursion to handle these cases; each level of 
nesting is a new level of recursion. However, there is a clearer alternative 
that can generate faster code. The alternative has recently2 been called 
power loops [Mandl 90]. The idea is to have an array of control variables 
and to build a loop that iterates over all control variables. 

For example, the n-queens problem is to find all solutions to the puzzle of 
placing n queens on an n × n chessboard so that no queen attacks any other. 
Here is a straightforward solution: 

Figure 2.28 variable 1 
Queen : array 1 .. n  of integer; 2 

nest Column := 1 to n 3 
for Queen[Column] := 1 to n do 4 

if OkSoFar(Column) then 5 
deeper; 6 

end; -- if OkSoFar(Column) 7 
end; -- for Queen[Column] 8 

do 9 
write(Queen[1..n]); 10 

end; 11 

Any solution will have exactly one queen in each column of the chessboard. 
Line 2 establishes an array that will describe which row is occupied by the 
queen in each column. The OkSoFar routine (line 5) checks to make sure that 
the most recent queen does not attack (and therefore is not attacked by) any 
of the previously placed queens. Line 3 introduces a set of nested loops. It ef­
fectively replicates lines 4–8 for each value of Column, placing the next replica 
at the point marked by the deeper pseudostatement (line 6). There must be 
exactly one deeper in a nest. Nested inside the innermost instance is the 
body shown in line 10. If n = 3, for example, this program is equivalent to the 
code of Figure 2.29. 

������������������������������������ 
2 The Madcap language had power loops in the early 1960s [Wells 63]. 
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Figure 2.29 for Queen[1] := 1 to n do 1 
if OkSoFar(1) then 2 

for Queen[2] := 1 to n do 3 
if OkSoFar(2) then 4 

for Queen[3] := 1 to n do 5 
if OkSoFar(3) then 6 

write(Queen[1..3]) 7 
end; -- if 3  8  

end; -- for 3 9 
end; -- if 2  10  

end; -- for 2 11 
end; -- if 1  12  

end; -- for 1 13 

Nesting applies not only to loops, as Figure 2.30 shows. 

Figure 2.30 nest Level := 1 to n 1 
if SomeCondition(Level) then 2 

deeper; 3 
else 4 

write("failed at level", Level); 5 
end; 6 

do 7 
write("success!"); 8 

end; 9 

Of course, a programmer may place a nest inside another nest, either in the 
replicated part (as in lines 2–6 of Figure 2.30) or in the body (line 8), but such 
usage is likely to be confusing. If nest can be nested in the replicated part, 
each deeper must indicate which nest it refers to. 

It is not hard to generate efficient code for nest. Figure 2.31 is a flowchart 
showing the generated code, where i is the nest control variable. The labels t 
and f are the true and false exits of the conditionals. Label d is the exit 
from the replicated part when it encounters deeper, and r is the reentry after 
deeper. The fall-through exit from the replicated part is called e. If execu­
tion after deeper will just fall through (as in Figure 2.30), decrementing i 
and checking i < init can be omitted. 

Although power loops are elegant, they are subsumed by recursive proce­
dures, albeit with a loss of elegance and efficiency. Power loops are so rarely 
helpful that languages should probably avoid them. It doesn’t make sense to 
introduce a construct in a general-purpose language if it will only be used in a 
handful of programs. 
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Figure 2.31 

i < init 

i :=  i  - 1  

i :=  i  +  1  

replicated part i > final i := init 

5 ◆ FINAL COMMENTS 
This chapter has introduced a variety of control constructs that have a mixed 
history of success. Exception-handling mechanisms are enjoying increasing 
popularity. General coroutines are found to some extent in concurrent pro­
gramming languages (discussed in Chapter 7). CLU iterators and power 
loops never caught on in mainstream languages. Io continuations have no 
track record, but appear unlikely to catch on. 

We can often see good reason for these results. Chapter 1 presented a list 
of characteristics of good programming languages. Among them were sim­
plicity (using as few concepts as possible), clarity (easily understood code se­
mantics), and expressiveness (ability to describe algorithms). Exception 
handling scores well on all these fronts. The mechanism introduces only one 
additional concept (the exception, with the raise statement and the handle 
syntax). The semantics are clear when an exception is raised, especially if no 
resumption is possible and if all exceptions must be declared at the global 
level. The only confusion might come from the fact that the handler is deter­
mined dynamically, not statically; dynamic binding tends to be more confus­
ing to the programmer, because it cannot easily be localized to any region of 
the program. The mechanism serves a real need in expressing multilevel pre­
mature procedure return. 

Coroutines are less successful by my measures. The set of concepts is not 
too large; Simula manages with per-object initialization code and two new 
statements: detach and call. However, the dynamic nature of the call stack 
and the fact that each object needs its own private stack make coroutines 
harder to understand and less efficient to implement. The additional expres­
siveness they provide is not generally useful; programmers are not often 
faced with testing traversals of trees for equality. 

CLU iterators are truly elegant. They are clear and expressive. They pro­
vide a single, uniform way to program all loops. They can be implemented ef­
ficiently on a single stack. Perhaps they have not caught on because, like 
general coroutines, they provide expressiveness in an arena where most pro­
grams do not need it. The only application I have ever found for which CLU 
iterators give me just what I need has been solving combinatorial puzzles, 
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and these don’t crop up often. 
Power loops have less to recommend them. They are not as clear as ordi­

nary loops; if you don’t believe this, consider what it means to nest a struc­
ture other than for. They don’t provide any expressiveness beyond what 
recursion already provides. There are very few situations in which they are 
the natural way to pose an algorithm. However, the mathematical concept of 
raising a function to a power is valuable, and APL (discussed in Chapter 9), 
in which manipulation by and of functions is central, has an operator much 
like the power loop. 

Io continuations provide a lot of food for thought. They spring from an at­
tempt to gain utter simplicity in a programming language. They seem to be 
quite expressive, but they suffer from a lack of clarity. No matter how often I 
have stared at the examples of Io programming, I have always had to resort 
to traces to figure out what is happening. I think they are just too obscure to 
ever be valuable. 

EXERCISES 

Review Exercises 
2.1 In what way is raising an exception like a goto? It what way is it differ­

ent? 

2.2 Write a CLU iterator upto(a,b) that yields all the integer values be­
tween a and b. You may use a while loop, but not a for loop, in your im­
plementation. 

2.3 Write a CLU iterator that generates all Fibonacci numbers, that is, the 
sequence 1, 1, 2, 3, 5, 8, . . . ,  where each number is the sum of the previ­
ous two numbers. 

2.4 Write a Simula class Fibonacci with a field Value that the initialization 
code sets to 1 and then suspends. Every time the object is resumed, 
Value should be set to the next value in the Fibonacci sequence. 

2.5 What does the following Io program do? 

Figure 2.32 declare foo: → Number Continuation; 1 
+ Number 1 → More; 2 
write More; 3 
Continuation . 4 

foo 7; 5 
foo 9; 6 
terminate 7 

2.6 Use power loops to initialize a 10 × 10 × 10 integer array A to zeroes. 
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2.7	 If I have power loops, do I need for loops? 

Challenge Exercises 
2.8	 In Figure 2.3 (page 29), I show how a handler can reraise the same ex­

ception (or raise a different one) in order to propagate the raised excep­
tion further. Would it make sense to define a language in which 
exceptions were handled by the handler that raised them, not propa­
gated further? 

2.9	 What are the ramifications of letting exceptions be first-class values? 
(First-class values are discussed in Chapter 3.) 

2.10	 Prove the contention on page 35 that when a CLU iterator terminates, 
indicating to its parent for loop that there are no more values, the itera-
tor’s activation record is actually at the top of the stack. 

2.11	 Use CLU iterators to write a program that takes a binary tree and 
prints all distinct combinations of four leaves. 

2.12	 Prove that in Figure 2.11 (page 36) the references to Answer generated 
in line 18 are always valid. In particular, prove that by the time an in­
stance of Answer is deallocated, there are no remaining pointers to that 
instance. Actually, CLU requires that control variables, such as T in 
line 25, have a scope that only includes the loop they control. You may 
make use of this restriction in your proof. 

2.13	 Show how to use the C iterator macros to write a program that enumer­
ates binary trees. 

2.14	 Are CLU iterators as powerful as Simula coroutines? In particular, can 
the binary-tree equality puzzle be solved in CLU? 

2.15	 In Figure 2.17 (page 44), could I replace the 9 in line 4 with the identi­
fier Number? 

2.16 What sort of runtime storage organization is appropriate for Io? 

2.17 Does Io support recursion? 

2.18 Show the execution trace of Figure 2.27 (page 48). 

2.19 What is the meaning of a power loop for which the range is empty? 

2.20 Figure 2.31 (page 51) has one potential inefficiency. What is it? 

2.21 Power loops are modeled on for loops. Can I model them on while loops 
instead? That is, can they look like the following? 

Figure 2.33 nest Boolean expression 1 
replicated part 2 

do 3 
body 4 

end; 5 
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2.22 Does it make sense to place declarations inside the replicated part or 
the body of a power loop? 
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