Chapter 4 [1

Functional Programming

Most of the programming languages you are familiar with (Pascal, Ada, C)
are imperative languages. They emphasize a programming style in which
programs execute commands sequentially, use variables to organize memory,
and update variables with assignment statements. The result of a program
thus comprises the contents of all permanent variables (such as files) at the
end of execution.

Although imperative programming seems quite natural and matches the
execution process of most computer hardware, it has been criticized as funda-
mentally flawed. For example, John Backus (the designer of FORTRAN)
holds that almost all programming languages (from FORTRAN to Ada) ex-
hibit a “von Neumann bottleneck” in which programs follow too closely the
“fetch instruction/update memory” cycle of typical CPUs. These languages do
not lend themselves to simultaneous execution of different parts of the pro-
gram, because any command may depend on the changes to variables caused
by previous commands. (An enormous amount of effort has gone into creat-
ing algorithms that allow compilers to discover automatically to what extent
commands may be executed simultaneously.) Execution speed is therefore ul-
timately limited by the speed with which individual instructions can be exe-
cuted. Another effect of imperative programming is that to know the state of
a computation, one must know the values of all the variables. This is why
compilers that provide a postexecution dump of the values of all variables (or,
better yet, compilers that allow variables to be examined and changed during
debugging) are so handy.

In contrast, functional programming languages have no variables, no as-
signment statements, and no iterative constructs. This design is based on the
concept of mathematical functions, which are often defined by separation into
various cases, each of which is separately defined by appealing (possibly re-
cursively) to function applications. Figure 4.1 presents such a mathematical
definition.

On-line edition copyright [0 1996 by Addison-Wesley Publishing Company. Permission is
granted to print or photocopy this document for a fee of $0.02 per page, per copy, payable to Addi-
son-Wesley Publishing Company. All other rights reserved.

103

104

Figure 4.1

Figure 4.2

CHAPTER 4 FUNCTIONAL PROGRAMMING

f(n) =
1ifn=1
f(3*n+1) if n is odd, n # 1
f(n / 2) if n is even

A WNR

In functional programming languages, such definitions are translated more
or less directly into the syntax of the language. (The Miranda syntax is re-
markably similar to this example.) The entire program is simply a function,
which is itself defined in terms of other functions.

Even though there are no variables, there are identifiers bound to values,
just as n is used in Figure 4.1. (When | use the term variable, | mean an
identifier whose value can be changed by an assignment statement.) Identi-
fiers generally acquire values through parameter binding. Variables are un-
necessary in this style of programming because the result of one function is
immediately passed as a parameter to another function. Because no vari-
ables are used, it is easy to define the effects (that is, the semantics) of a pro-
gram. Often, functions are recursive. Functions have no side effects; they
compute results without updating the values associated with variables.
Functions are usually first-class values in functional programming lan-
guages. (First-class values are discussed in Chapter 3.)

The ML language, introduced in Chapter 3, is almost entirely functional.
In that chapter, | concentrated on its type system, not on the way its lack of
variables leads to a different programming style. This chapter presents ex-
amples in LISP, ML, and FP to give you a feeling for functional programming.

Functional programming is an area of current research. There is a bien-
nial ACM Conference on LISP and Functional Programming.

1 —LISP

LISP (List Processing language) was designed by John McCarthy at MIT in
1959. LISP actually represents a family of related languages, all sharing the
common core of ideas first espoused in LISP 1.5. The most popular versions
of LISP today are Scheme and Common LISP. Most dialects of LISP are not
purely functional (variables are used sometimes, and certain functions do
have side effects). | shall concentrate however on the functional flavor of pro-
gramming in LISP.

The fundamental values manipulated by LISP are called atoms. An atom
is either a number (integer or real) or a symbol that looks like a typical iden-
tifier (such as ABC or L1@). Atoms can be structured into S-expressions,
which are recursively defined as either

1. Anatom,or
2. (S1.52), where S1 and S2 are S-expressions.

Figure 4.2 shows some S-expressions.

100 1
(A.B) 2
((10.AB). (XYZ.SSS)) 3

All S-expressions that are not atoms have two components: the head (called,

Copyright 00 Addison-Wesley. Reproduction fee $.02 per page, per copy.

1 LISP 105

for historical reasons, the car), and the tail (called, for historical reasons, the
cdrl). This definition leads to a simple runtime memory organization: nu-
meric atoms are placed in one computer word, symbolic atoms are repre-
sented by a pointer to a symbol table entry, and S-expressions are
represented by a pair of pointers to either atoms or subexpressions. Often, a
box notation is used. The atom A is represented as follows:

A

(A.B) is represented as follows:

A | B

((A.B).(C.D)) is represented as follows:

A B C D

The predefined symbol nil is used to represent the pointer to nothing. S-
expressions represent the class of simple binary trees.

LISP provides a few predefined functions to assemble and disassemble S-
expressions.

1. Car returns the head of a nonatomic S-expression. Thus car((A.B)) is
A, car(((C.B).D)) is (C.B), and car(A) is undefined (because A is an
atom). (These expressions are not syntactically correct LISP; I will in-
troduce function syntax shortly.)

2. Cdr returns the tail of a nonatomic S-expression. Thus cdr((A.B)) is B,
cdr(((C.B).D)) is D, and cdr(A) is undefined (because A is an atom).

3. Cons takes two S-expressions and builds a new S-expression composed
of the two parameters. That is, cons(x,y) = (x.y) for any x and y (ei-
ther atomic or not). Thus cons((A.B),C0) = ((A.B).C). By definition,
car(cons(x,y)) is x, and cdr(cons(x,y)) is y. Cons allocates space
from the heap for the new cell that it needs.

Lists, the fundamental structured type in LISP, are a subset of the valid
S-expressions. In particular,

! The term car stands for “contents of address register,” and cdr stands for “contents of
decrement register.” These names refer to registers on the IBM 704 computer on which LISP
was first implemented.

Copyright 00 Addison-Wesley. Reproduction fee $.02 per page, per copy.

106

Figure 4.3

CHAPTER 4 FUNCTIONAL PROGRAMMING

=

The empty list, (), is represented by the atom ni1.

2. A list with one element, (A), is equivalent to cons(A,ni1). A list (A B)
is equivalent to cons(A, cons(B,ni1)). In general, the list (AB ... Z) is
equivalent to cons (A, (B...Z)). That s, a list is extended by using cons
to add an element to its left end.

Lists that contain lists are allowed, and in fact are frequently used. For
example, ((A)) is the list that contains one element, namely the list (A).
(CA)) is created by first building (A), which is cons(A,ni1). Then (A) is
added to the empty list to make ((A)). So cons(cons(A,nil),nil) generates
(CA)). Similarly, (CAB) () 11), which contains three elements, two of which
are lists, is equal to the expression in Figure 4.3.

cons(cons(A,cons(B,ni1)), cons(nil, cons(11l,ni1)))

The only difference is that the former expression is a literal (parsed and con-
structed by the LISP compiler/interpreter), and the latter is a combination of
calls to runtime functions.

The Boolean values true and false are represented by the predefined
atoms t and nil. Two fundamental predicates (that is, Boolean-returning
functions) are eq and atom. Eq tests whether two atoms are the same (that is,
equal). Atom tests whether a given S-expression is atomic.

1.1 Function Syntax

Programs as well as data are represented as lists. That is, LISP is ho-
moiconic: Programs and data have the same representation. This property,
rarely found in programming languages, allows a LISP program to create or
modify other LISP functions. As you will see, it also allows the semantics of
LISP to be defined in a particularly simple and concise manner. (Tcl, dis-
cussed in Chapter 9, is also homoiconic and enjoys the same benefits.)

To allow programs to be represented as lists, LISP function invocations
aren't represented in the usual form of FunctionName(argl, arg2, ...), but
rather as (FunctionName argl arg2 ...). For example, the S-expression
(10.20) can be built by evaluating (cons 10 20).

When a list is evaluated, the first element of the list is looked up (in the
runtime symbol table) to find what function is to be executed. Except in spe-
cial cases (forms such as cond), the remaining list elements are evaluated and
passed to the function as actual parameters. The value computed by the body
of the function is then returned as the value of the list.

1.2 Forms

Should the call (cons A B) mean to join together the atoms A and B, or should
A and B be looked up in the symbol table in case they are formal parameters
in the current context? LISP evaluates all actual parameters, so A and B are
evaluated by looking them up in the symbol table. If I want A and B to be
treated as atoms rather than identifiers, | need to quote them, that is, pre-
vent their evaluation. The programmer can use quote, called as (quote arg),

Copyright 00 Addison-Wesley. Reproduction fee $.02 per page, per copy.

1 LISP

Figure 4.4

Figure 4.5

107

to prevent evaluation. Quote is called a form, not a function,?> because it is
understood as a special case by the LISP interpreter. If it were a function, its
parameter would be evaluated, which is exactly what quote is designed to
prevent. The code in Figure 4.4 builds the S-expression (A.B).

(cons (quote A) (quote B))

Since programmers often need to quote parameters, LISP allows an abbrevi-
ated form of quote: ’A means the same as (quote A), so (cons ’A ’B) will also
build the S-expression of Figure 4.4.

To be effective, any programming language needs some form of conditional
evaluation mechanism. LISP uses the cond form. (Some dialects of LISP also
provide an if form.) Cond takes a sequence of one or more pairs (lists of two
elements) as parameters. Each pair is considered in turn. If the first compo-
nent of a pair evaluates to t, then the second component is evaluated and re-
turned as the value of cond (and all other pairs are ignored). If the first
component evaluates to ni1 (that is, false), then the second component is ig-
nored, and the next pair is considered. If all pairs are considered, and all
first components evaluate to ni1, then cond returns nil as its value.

As an example, suppose | want to create a predicate that tests whether
some list bound to identifier L contains two or more elements. Figure 4.5
shows the code.

(cond 1
(Catom L) nil) 2
(Catom (cdr L)) nil) 3
(t © 4

) 5

First, line 2 tests if L is an atom. If it is, it is the empty list (equal to ni1),
which certainly doesn't have two or more elements. Next, line 3 tests if
cdr(L) is an atom. Cdr gives the list that remains after stripping off its first
element. If cdr(L) is an atom, then the list had only one element, and the
predicate again returns false. In all other cases, the list must have had at
least two elements, so the predicate returns true. In most cases, the last pair
given to cond has t as its first component. Such a pair represents a kind of
else clause, covering all cases not included in earlier pairs.

1.3 Programmer-Defined Functions

Functions are first-class values in LISP (as in most functional programming
languages). In particular, they can be returned as the result of functions.
Therefore, LISP must allow the programmer to construct a function directly
without necessarily giving it a name. The function constructor in LISP there-
fore builds anonymous functions, that is, functions that are not yet bound
to names. To define a function, the programmer must provide a list contain-
ing three things: the form Tambda, a list of the formal parameters, and the

2 S0 you see that sometimes form is more important than function.

Copyright 00 Addison-Wesley. Reproduction fee $.02 per page, per copy.

108

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

CHAPTER 4 FUNCTIONAL PROGRAMMING

body of the function in the form of an expression. The anonymous function in
Figure 4.6 makes a list with one element, passed in as a parameter.

(lambda (x) (cons x nil))

(The ML equivalent is fn x => x :: nil.) The formal parameter of the func-
tion is x. Parameters are passed in value mode. An implementation is likely
to use reference mode and avoid copying; reference mode is safe to use be-
cause there are no commands that can change the parameters’ values. Thus
the function call of Figure 4.7

((Tlambda (x) (cons x nil)) 10)

binds 10 to the formal parameter x, yielding (cons 1@ ni1), which is (10). If
more than one parameter is provided, they are all evaluated and bound, in
left-to-right order, to the formal parameters. The expression in Figure 4.8,
for instance,

((lambda (x y) (cons y x)) 10 20)

yields (20.10). It is an error if too many or too few actual parameters are
provided.

The anonymous function produced by the Tambda form can be applied im-
mediately (as | have been doing), passed as a parameter to a function, or
bound to an identifier. Functions are bound to identifiers via the def form,
which takes as parameters the function identifier and its definition (as a
Tambda form). Neither parameter should be quoted. Thus the expression in
Figure 4.9

(def MakeList (lambda (x) (cons x nil)))

defines the MakeList function, and (MakeList ’AA) = (AA).

1.4 Scope Rules

The same identifier can be used as a function name or as a formal parameter
in one or more functions. LISP therefore needs a scope rule to say which dec-
laration is to be associated with each use of a symbol. Early dialects of LISP
(in particular, LISP 1.5) used dynamic scoping: As actual parameters are
bound to formal parameters, they are placed at the front of an association list
that acts as the runtime symbol table for formal parameters. The association
list is searched from front to back, so the most recent association of a value to
a formal parameter is always found. If a formal parameter identifier appears
more than once, the nearest (that is, most recent) binding of it is used. The
order of call, and not static nesting, determines which declaration of a symbol
is used. Consider Figure 4.10.

Copyright 00 Addison-Wesley. Reproduction fee $.02 per page, per copy.

1 LISP

Figure 4.10

Figure 4.11

Figure 4.12

109

(def f1 (lambda (x y) (f2 11))) 1
(def f2 (Tambda (x) (cons x y))) 2
(f1 1 2) 3

When f1 is called, x is bound to 1, and y is bound to 2. Then f1 calls f2,
which adds a new binding of 11 to x. Thus (cons x y) evaluates to (cons 11
2) = (11.2).

More recent dialects of LISP (including Common LISP and Scheme) use
static scope rules, although Common LISP permits individual identifiers to be
declared as dynamically scoped. Experience has shown that static scoping is
much easier for the programmer to understand and is therefore less error-
prone.

A program can also use the set function to change bindings in the associa-
tion list, as in Figure 4.11.

(def f3 (lambda (x) (cons x (cons (set ’x 111) x)))) 1
(f3 222) 2

Formal parameter x is initially bound to 222 and becomes the first parameter
to cons. Set binds 111 to x, and returns 111 as its value. The next appear-
ance of x is now mapped to 111, and so LISP evaluates (cons 222 (cons 111
111)) = (222.(111.111)). If a symbol appears more than once in the associa-
tion list, set updates its most recent binding. If a symbol isn’'t in the associa-
tion list, it can’t be bound using set.

LISP 1.5 has a more complicated scope rule. Each atom has a property
list, which is a list (property name, value) pairs. An atom that has an APVAL
property is evaluated to the associated value regardless of the contents of the
association list. Function declarations are also stored in the property list un-
der the EXPR property. If no EXPR property is present, the association list is
searched, as shown in Figure 4.12.

(def f4 (lambda (x) (x 333 444)))
(f4 ’cons)

N =

When execution is in line 2, the body of the Tambda form of line 1 is evaluated,
and x’s property list is searched for an EXPR entry. When none is found, the
association list is tried. The binding of cons to x is found, so (cons 333 444)
is evaluated.

The function get takes an atom and a property name and returns the
value bound to that name on the atom’s association list. If no binding is
found, ni1 is returned.

1.5 Programming

Programming in LISP has a different flavor from programming in imperative
languages. Recursion, rather than iteration, is emphasized. To perform a
computation on a list, it is convenient to extract the first element of the list
(using car), and then to recursively perform the computation on the remain-
der of the list.

Copyright 00 Addison-Wesley. Reproduction fee $.02 per page, per copy.

110 CHAPTER 4 FUNCTIONAL PROGRAMMING

Figure 4.13

Figure 4.14 Appending
lists

Figure 4.15

To give you an appreciation of this style of programming, | will present a
few examples. First, I will create an Append function that appends two lists
to form one. For example, (Append "(123) '(456)) =(123456). (The
quote is needed to prevent (1 2 3) from being treated as a function call.) I
construct Append by considering cases. If the first list (call it L1) is empty
(that is, equal to ni1), then the result is the second list (call it L2). Otherwise,
I add the first element of L1 to the list consisting of the remainder of L1 ap-
pended to L2. | therefore obtain the program shown in Figure 4.13.

(def Append (Tambda (A1l A2) -- append lists Al and A2
(cond
((nuT11 A1) A2)
(t (cons (car Al) (Append (cdr A1) A2))))

v h WN R

))

In line 3, nul1 is a function that returns t only if its argument is nil. The list
returned by Append is a curious mixture of newly allocated storage (cons al-
ways returns a new cell) and storage belonging to A1 and A2. Neither actual
parameter is modified. The returned list contains new cells for all of Al's ele-
ments, the last of which points to the first cell for A2. Figure 4.14 shows the
result of calling (Append (12 3) (45 6)).

IENAED HT%J%J
® 0 @ ® 6 6

HENE N

result

The Append function can be programmed very similarly in ML, as shown in
Figure 4.15.

val rec Append = 1
fn (nil, A2) => A2 2
| (A1, A2) => (hd Al :: Append (t1 Al, A2)); 3

The predeclared functions hd and t1 are the same as LISP’s car and cdr; the
infix operator :: is the same as LISP’s cons. Instead of using a conditional
(ML has an if expression), | have chosen the more stylistic approach that
uses patterns to distinguish cases. More sophisticated patterns allow me to
avoid using hd and t1, as in Figure 4.16.

Copyright 00 Addison-Wesley. Reproduction fee $.02 per page, per copy.

1 LISP

Figure 4.16

Figure 4.17

Figure 4.18

Figure 4.19

111

val rec Append = 1
fn (nil, A2) => A2 2

| (HA1l :: TAl, A2) => (HA1l :: Append (TAl, A2)); 3

Next, | will build a LISP function that takes a list and returns its reversal.
If the list is empty, the function returns the empty list; otherwise, the first el-
ement of the list will be the last element of the reversed list. |1 can make this
element into a list (using MakeL1ist defined earlier) then append it to the end
of the reversal of the remainder of the list, arriving at the program shown in
Figure 4.17.

(def Reverse (lambda (R) -- reverse 1list R
(cond
((nul1T R) R)
(t (Append (Reverse (cdr R)) (MakeList (car R))))

oaouvih WN R

))

The returned list is completely built out of new cons cells. The ML equiva-
lent is given in Figure 4.18.

val rec Reverse = 1
fn nil => nil 2
| H:: T => Append(Reverse(T), [H]); 3

As you can see, ML’s ability to build formal parameters that correspond to
components of the actual parameters and its syntax for list construction ([H]
in line 3) give it a different feel from LISP, even though the underlying algo-
rithm is identical.

Reverse only reverses the top-level elements of a list; if the elements are
themselves lists, the lower-level lists aren’'t reversed. For example, (Reverse
(1 (234)5)))=(5(234) 1. |Ican define a related function, ReverseAll,
that reverses all lists, even if they appear as elements of another list; thus,
(ReverseAll (1 (2 34) 5)) = (5 (4 32)1). First, | define the reversal of
any atom (including ni1) as equal to that atom itself. Now when | append the
car of a list onto the end of the reversal of the remainder of the list, | make
sure to reverse the car first; thus, I have the code shown in Figure 4.19.

(def ReverseAll (lambda (RA) -- reverse RA and sublists
(cond
(Catom RA) RA)
(t (Append
(ReverseAll (cdr RA))
(MakeList (ReverseAll (car RA))))))

NOuUvThh WN R

)

This example cannot be directly translated into ML, because ML's type
scheme requires that lists be homogeneous. A programmer can, however, in-
troduce a new ML datatype for nonhomogeneous lists; this idea is pursued in
Exercise 4.13.

Copyright O Addison-Wesley. Reproduction fee $.02 per page, per copy.

112

Figure 4.20

Figure 4.21

Figure 4.22

CHAPTER 4 FUNCTIONAL PROGRAMMING

Figure 4.20 takes a list and doubles it; that is, it generates a list in which
every member of the original list appears twice.

(def Double (lambda (L) 1
(cond 2
((nuT1T L) nil) 3

(t (cons (car L) (cons (car L) 4

(DoubTle (cdr L))))) 5

) 6

)) 7

Double can be generalized in the same way as Reverse; Exercises 4.6 and 4.7
explore several generalizations.

Figure 4.21 builds Mapcar, which is itself very useful for building other
functions. Mapcar takes two parameters, a function and a list, and returns
the list formed by applying that function to each member of the list.

(def Mapcar (lambda (F L) 1
(cond 2
((nu11 L) nil) 3

(t (cons (F (car L)) (Mapcar F (cdr L)))) 4

) 5

)) 6

I can use MapCar to take a list L of integers and return a list of their squares,
as in Figure 4.22.

(MapCar (lambda (x) (* x x)) L)

As a final example, |1 will demonstrate a function Subsets that takes a set
of distinct atoms (represented as a list) and creates the set of all possible sub-
sets of the original set. That is, (Subsets "(123)) = (nil (1) (2) (3) (12)
(13) (23) (12 3)). Because the lists represent sets, the order of the ele-
ments is unimportant, and any permutation of the list elements will be ac-
ceptable. Thus, (Subsets ’ (1 2 3)) could also return (nil1 (3) (2) (1) (2 1)
G1 B2 B2D)N.

I first need a recursive definition of subset construction. That is, given a
list representing all subsets of {1, 2, ---, n}, how can I create a list represent-
ing all subsets of {1,2,---,n+1}? It helps to notice that
Subsets({1, 2, --- , n+1}) will contain exactly twice as many elements as
Subsets({1, 2, ---, n}). Moreover, the extended set will contain all the
elements of the original set plus n new sets created by inserting the element
n+1 into each of the elements of the original set. For example, (Subsets ' (1
2)) =(niT (1) (2) (12)). Therefore (Subsets ’(123)) =

(Append (Subsets ’(1 2)) (Distribute (Subsets ’(1 2)) 3))

where (Distribute (Subsets (12)) 3) =((3) (31) (32) (312)). Finally,
(Subsets ni1) equals the list containing all subsets of the empty set, which is

Copyright 00 Addison-Wesley. Reproduction fee $.02 per page, per copy.

1 LISP

Figure 4.23

Figure 4.24

Figure 4.25

Figure 4.26

113

(ni1). I first define Distribute as shown in Figure 4.23.

(def Distribute (lambda (L E) -- put E in each elt of L
(cond
((nuT1T L) nil)
(t (cons (cons E (car L))
(Distribute (cdr L) E))))

AAUVTh WN

))

Distribute distributes element E through list L. If L is empty (line 3), there
are no sets on the list to distribute E into, so Distribute returns nil. Other-
wise (line 4), it takes the car of the list and conses E to it. It then joins the
new list to the result of distributing E through the remainder of the list.

In Figure 4.24, | create an Extend function that extends a list L, which
represents all subsets over n elements, to include element n+1, E. It does
this by appending L to the list formed by distributing E through L.

(def Extend (lambda (L E) -- both L and L with E
(Append L (Distribute L E))

wWN =

))

Finally, I can define Subsets itself. The set of all subsets of the empty set
(represented by ni1) is the list containing only nil. For non-ni1 lists, | com-
pute the list of all subsets of the cdr of the list, then extend it by adding in
the car of the original list, obtaining the code in Figure 4.25.

(def Subsets (lambda (L) -- all subsets of L
(cond
((nul1l L) (MakeList nil))
(t (Extend (Subsets (cdr L)) (car L))))

vl WN R

))

1.6 Closures and Deep Binding

Because LISP functions are represented as lists, functions can be passed as
parameters to other functions and returned as the result of functions. In Fig-
ure 4.12 (page 109), it is important that cons be quoted in the call to f4, since
I don't want it evaluated until its parameters are available.

Now consider a more interesting function, sc (self-compose), that takes a
function and returns a new function representing the given function com-
posed with itself. (That is, the new function has the effect of the old function
applied twice.) 1 could write sc as shown in Figure 4.26.

(def sc (Tambda (F) (lambda (x) (F (F x)))))
This code isn't quite right, because a call such as (sc car) will try to evaluate

the resulting Tambda form prematurely. If | quote the Tambda form to obtain
the code of Figure 4.27,

Copyright 00 Addison-Wesley. Reproduction fee $.02 per page, per copy.

114 CHAPTER 4 FUNCTIONAL PROGRAMMING

Figure 4.27 (def sc (lambda (F) ’(lambda (x) (F (F x)))))

things still aren’t right, because now the binding of F will be lost; by the time
the internal Tambda form is evaluated, sc has already returned, and its formal
parameter has lost its meaning. | want to retain the binding of F until it is
time to evaluate the Tambda form returned by sc. To do this, | use a variant of
quote called function and create sc as in Figure 4.28.

Figure 4.28 (def sc (lambda (F) (function (lambda (x) (F (F x))))))

Function creates a closure in which the bindings in effect when the Tambda
form is created are retained with the Tambda form. The closure preserves the
binding of identifiers that are nonlocal to a routine until the routine is exe-
cuted. In other words, it produces a deep binding.

The Scheme dialect of LISP makes this example somewhat easier to code;
see Figure 4.29.

Figure 4.29 (define (sc F) 1
(lambda (x) (F (F x)))) 2
((sc car) ’((a b) ©) -- returns ’a 3

Scheme uses define as a shorthand that combines def and Tambda; the
Tambda in line 2 introduces deep binding by returning a closure.

In some ways building a closure is harder in LISP than in statically
scoped languages in which procedures are not first-class values. In statically
scoped languages in which procedures are not first-class values, scope rules
guarantee that an identifier cannot be referenced as a nonlocal in a part of
the program that is lexically outside the scope defining the identifier. For ex-
ample, assume that routine P, which is nested in routine Q, is passed as a
functional parameter. All calls to P (either directly or as a parameter) must
be completed before Q is terminated. Implementers can employ a simple
stack of activation records (each of which contains the local data for a particu-
lar routine activation). A closure is a pointer to the code for a routine and a
pointer to the proper activation record.

Chapter 3 introduced the dangling-procedure problem, in which the nonlo-
cal referencing environment of a procedure has been deallocated from the
central stack before the procedure is invoked. LISP encounters the same
problem. In sc, references to F will occur when the result of sc is invoked as
a function, which is after sc itself has returned. Unless special care is taken,
the binding of the formal parameter F is no longer in force at that point.
Deep binding solves the dangling-procedure problem by retaining a pointer in
the closure returned by sc that points to sc’s referencing environment, which
includes the binding for F. Consequently, sc’'s referencing environment must
be retained until all such outstanding pointers are deallocated. The result is
that the referencing environments are linked together not as a simple stack,
but as a treelike structure, with a new branch formed whenever a closure is
created. Initially, the new branch is the same as the current association list,
but they diverge as soon as the caller returns, removing the bindings of its lo-

Copyright 00 Addison-Wesley. Reproduction fee $.02 per page, per copy.

1 LISP

Figure 4.30

115

cal parameters from the association list. Because cons cells and environment
fragments have an indeterminate lifetime, most LISP implementations use
garbage collection to reclaim free runtime store.

The alternative to deep binding is shallow binding, in which all nonlocal
identifiers are resolved at the point of call. Under shallow binding, functions
need never carry any bindings with them, because the only bindings that are
used are those in effect when the function is actually evaluated. This simpli-
fication allows a simple stack of bindings to be used, but of course, functions
such as sc must be implemented differently. One (rather ugly) way to define
sc is to explicitly construct a function (using the 1ist function, which makes
a list out of its parameters) rather than to simply parameterize it. That is, |
might code sc as in Figure 4.30.

(def sc (lambda (F) 1
(Tist ’Tambda ’*(x) (list F (list F ’x))))) 2

1.7 Identifier Lookup

Shallow and deep binding are also used (unfortunately, ambiguously) to de-
note two ways of implementing (as opposed to defining) identifier lookup in a
dynamically scoped language such as early versions of LISP. | will call them
shallow and deep search to avoid any confusion.

In block-structured languages with static scope rules, identifiers are
translated to addresses (or offsets within an activation record) at compile
time. In dynamically scoped languages like LISP, some runtime overhead to
fetch the current binding (that is, value) of a symbol is to be expected, but
this cost must be minimized to obtain reasonable performance. As you might
expect, linear search through an association list every time an identifier is
referenced is too inefficient to be practical.

A key insight is that an atom is actually represented as a pointer to its
property list. It is possible to store the value associated with an atom in its
property list, allowing fast access to the atom'’s value.

The question is, what happens when a given atom is re-bound; that is, the
same identifier is re-bound as a formal parameter during application of a
Tambda form? A deep-search implementation places the original, or top-level,
value of an atom in its property list. Re-bindings are pushed onto a runtime
stack when an atom is re-bound. This stack must be searched when the cur-
rent value of an atom is needed. (The first value found for that atom is the
right one.) The name deep search is appropriate, since LISP must usually
go deep into the stack to find out if an atom has been re-bound. The advan-
tage of deep search is that creating and freeing new bindings is fairly efficient
(and somewhat similar to pushing and popping an activation record in a con-
ventional block-structured language).

Shallow search makes lookup faster by storing the most recent binding
of an atom in its property list. Lookup is shallow indeed, but there is in-
creased overhead in invoking and returning from functions. In particular, for
each local identifier, the current value of that identifier (if there is one) must
be saved on the runtime stack before the new binding is stored in the atom’s
property list. When a function returns, the last bindings pushed on the stack
(if any) must be restored.

Copyright 00 Addison-Wesley. Reproduction fee $.02 per page, per copy.

116

Figure 4.31

CHAPTER 4 FUNCTIONAL PROGRAMMING

Deciding between deep and shallow search as an implementation tech-
nique therefore amounts to choosing whether to optimize identifier lookup or
function invocation/return. The trend is toward shallow search, under the as-
sumption that identifiers are referenced more often than functions are in-
voked and return. Tests show that in most cases shallow search does lead to
faster execution.

As a final point, deep binding is compatible with shallow search. When a
function form is evaluated, rather than copying the entire environment, the
implementation copies only the bindings of selected nonlocal identifiers
whose bindings it needs to preserve. This idea is similar to import state-
ments found in imperative languages such as Modula-2. Function then cre-
ates a closure comprising the function body and the selected bindings. When
a closure is invoked, the selected bindings are reinstated (almost like a sec-
ond set of parameters), and then local bindings are created. Upon return,
both local and deep bindings are removed.

1.8 The Kernel of a LISP Interpreter

It is possible to define a LISP interpreter in terms of a few primitive func-
tions (car, cdr, cons, eq, atom, get, error, null), predefined identifiers (t,
nil), forms (cond, def, quote), and metanotions of lambda binding and func-
tion application. An interpreter is a compact and exact specification of what
any LISP program will compute. Few other languages can boast such a sim-
ple and elegant definition.

To simplify things, I will ignore fine points like deep binding, although
deep binding can be handled without undue complexity. Whenever | invoke
one of the primitive functions in the following functions, | assume that the re-
sult defined for that function is immediately computed, perhaps by a call to a
library routine. Otherwise, the interpreter would encounter infinite recur-
sion.

The interpreter is a function called Eval, shown in Figure 4.31.

(def Eval (lambda (List Env) -- evaluate List in Env 1
(cond 2
((nuT1 List) nil) 3
(Catom List) 4
(cond 5
((get List (quote APVAL)) 6
(get List (quote APVAL))) 7
(t (Lookup List Env)))) 8
(Ceq (car List) (quote quote)) (car (cdr List))) 9
(Ceq (car List) (quote cond)) 10
(EvalCond (cdr List) Env)) 11
(t (Apply C(car List) 12
(EvalList (cdr List) Env) Env))) 13
)) 14

Eval evaluates List in a given environment Env of identifier-value pairs. Val-
ues of atoms are looked up in their property lists (lines 6 and 7) or the envi-
ronment Env (line 8). The forms quote (line 9) and cond (lines 10-11) are
given special treatment. The eq function tests atoms for equality. (We don't

Copyright O Addison-Wesley. Reproduction fee $.02 per page, per copy.

1 LISP

Figure 4.32

Figure 4.33

117

need to be concerned about what eq does with nonatoms; distinguishing
pointer equality, shallow equality, and deep equality operations. These dis-
tinctions are discussed in Chapter 5.) All other lists are evaluated (lines
12-13) by applying the car of the list (a function) to a list of parameters eval-
uated in the current environment. Apply is defined as in Figure 4.32.

(def Apply (lambda (Fct Parms Env) -- apply Fct to Parms 1
(cond 2
((atom Fct) (cond 3
((eq Fct (quote car)) (car (car Parms))) 4
((eq Fct (quote cdr)) (cdr (car Parms))) 5
((eq Fct (quote cons)) 6
(cons (car Parms) (car (cdr Parms)))) 7
((eq Fct (quote get)) 8
(get (car Parms) (car (cdr Parms)))) 9
((eq Fct (quote atom)) (atom (car Parms))) 10
((eq Fct (quote error)) (error (car Parms))) 11
((eq Fct (quote eq)) 12
(eq (car Parms) (car (cdr Parms)))) 13
(t (cond 14
((get Fct (quote EXPR)) 15
(Apply (get Fct (quote EXPR)) 16
Parms Env)) 17
(t (Apply (Lookup Fct Env) 18
Parms Env))))) 19
) -- (atom Fct) 20
((eq (car Fct) (quote lambda)) 21
(Eval (car (cdr (cdr Fct))) 22
(Update (car (cdr Fct)) Parms Env))) 23
(t (Apply (Eval Fct Env) Parms Env))) 24
)) 25

If Fct is an atom (line 3), AppTly first checks for each primitive function. If the
atom isn’'t one of these, Apply checks its property list (lines 15-17), and then
its association list Env (lines 18-19). This step can lead to an infinite recur-
sion (that is, an undefined result) if Fct is a symbol bound to itself. If Fct is
nonatomic, Apply looks for a Tambda form (line 21). If it sees one, it binds the
actual parameters to the formal 1ambda parameters (using Update), and then
evaluates the Tambda body in the updated environment, which is discarded af-
terward. If a nonatomic form isn’t a Tambda form, Apply attempts to simplify
Fct by evaluating it, and then applying the simplified function to the original
parameters (line 24). The remaining procedures, shown in Figure 4.33, are
straightforward.

(def EvalCond (lambda (Conds Env) -- evaluate cond
(cond
((null Conds) nil) -- could treat as error
((Eval (car (car Conds)) Env)
(Eval (car (cdr (car Conds))) Env))
(t (EvalCond (cdr Conds) Env)))

NOoOuvih WN R

))

Copyright 00 Addison-Wesley. Reproduction fee $.02 per page, per copy.

118 CHAPTER 4 FUNCTIONAL PROGRAMMING

(def EvalList (lambda (List Env) -- evaluate 1list 8
(cond 9
((nulT List) nil) 10
(t (cons (Eval (car List) Env) 11
(EvalList (cdr List) Env)))) 12
D) 13
(def Lookup (lambda (Id Env) -- Tookup Id 14
(cond 15
((nuT11 Env) (error (quote UnboundVar))) 16
(Ceq Id (car (car Env))) (car (cdr (car Env)))) 17
(t (Lookup Id (cdr Env)))) 18
)) 19
(def Update (Tambda (Formals Vals Env) -- bind parameters 20
(cond 21
((nul1 Formals) 22
(cond ((null Vals) Env) 23
(t (error (quote ArgCount))))) 24
((nul11 vals) (error (quote ArgCount))) 25
(t (cons (cons (car Formals) 26
(cons (car Vals) nil)) 27
(Update (cdr Formals) (cdr Vals) Env))) 28
)) 29

Many of the above functions assume that their parameters are syntactically
well formed. For example, EvalCond (line 1) assumes Conds is a list of pairs.
Similarly, most functions assume their parameters are lists, properly termi-
nated by nil. A more careful interpreter would certainly check parameters
(as does Update in lines 20-29).

The top level of many LISP implementations is an infinite loop:

(loop (Print (Eval (Read))))

The built-in Read function returns an expression typed in by the user, Eval
derives a value from it, and Print displays that value. If the expression is a
new function definition, it is treated as a top-level declaration and is added to
the environment, so that later expressions can use it. Functions that are in-
troduced within bodies of other functions are problematic, because if they
modify the top-level environment, then function evaluation can have a side
effect, which is not appropriate for a functional language. Scheme avoids this
problem by forbidding function declarations except at the top level.

Any realistic LISP implementation would surely have more primitives
than the above interpreter assumes. Arithmetic, debugging, and 1/0 func-
tions are obvious omissions. Nevertheless, LISP has a remarkably small
framework. To understand LISP one needs to understand lambda binding,
function invocation, and a few primitive functions and forms (cond, for in-
stance, is required). Everything else can be viewed as a library of useful pre-
defined functions.

Consider how this situation contrasts with even so spartan a language as
Pascal, which has a very much larger conceptual framework. Not surpris-

Copyright 00 Addison-Wesley. Reproduction fee $.02 per page, per copy.

1 LISP

Figure 4.34

Figure 4.35

119

ingly, semantic definitions for imperative languages like Pascal are a good
deal more complex than for LISP. Chapter 10 discusses the formal semantics
of imperative languages.

The Eval function is also known as a metacircular interpreter. Such
an interpreter goes a long way toward formally defining the semantics of the
language. If a question arises about the meaning of a LISP construct, it can
be answered by referring to the code of Eval. In a formal sense, however,
metacircular interpreters only give one fixed point to the equation

Meaning(Program) = Meaning(Interpret(Program))

There are other fixed points (for example, that all programs loop forever) that
aren’t helpful in defining the semantics of a language. We will return to this
subject in Chapter 10, which deals with the formal semantics of programming
languages.

1.9 Run-time List Evaluation

Not only is Eval expressible in LISP; it is also provided as a predeclared func-
tion in every LISP implementation. Programmers can take advantage of the
homoiconic nature of LISP to construct programs at runtime and then pass
them as parameters to Eval.

For example, say | would like to write a function Interpret that accepts
lists in the format of Figure 4.34.

> (MyAdd (MyAdd 1 5) (MyMult 2 3))

Here, MyAdd means “add the two parameters and then double the result,” and
MyMuTt means “multiply the two parameters and then subtract one from the
result.” The input to Interpret may be an arbitrarily nested list. One way to
solve this puzzle is to program Interpret recursively. It would check to see if
the car of its parameter was an atom, MyAdd, or MyMult, and then apply the
appropriate arithmetic rule to the result of recursively interpreting the other
parameters. But Figure 4.35 shows a much more straightforward, nonrecur-
sive solution that takes advantage of Eval.

(def MyAdd (Tambda (A B) (* (+ A B) 2)))

(def MyMult (lambda (A B) (- (* A B) 1)))

(def Interpret (lambda (L) (Eval L)))

(Interpret *(MyAdd (MyAdd 1 5) (MyMult 2 3))) -- result is 34

The list to be interpreted is treated not as data, but as program, and Eval is
capable of executing programs.

1.10 Lazy Evaluation

Normally, a LISP evaluator operates by evaluating and binding actual param-
eters to formal parameters (first to last) and then evaluating function bodies.
If an actual parameter involves a function call, that function is invoked as the
parameter is evaluated. This strategy is known as strict evaluation. Given

Copyright 00 Addison-Wesley. Reproduction fee $.02 per page, per copy.

120 CHAPTER 4 FUNCTIONAL PROGRAMMING

the functional nature of LISP programs, other evaluation strategies are possi-
ble.

One of the most interesting of these is lazy evaluation. As the name
suggests, a lazy evaluator only evaluates an expression (typically, an actual
parameter) if it is absolutely necessary. Evaluation is performed incremen-
tally, so that only those parts of an expression that are needed are evaluated.
For example, if only the car of an S-expression is needed, the cdr is not yet
evaluated.

One form of lazy evaluation that is common even in imperative program-
ming languages is short-circuit semantics for Boolean operators, as discussed
in Chapter 1. In imperative languages, short-circuit evaluation can change
the meaning of a program, because a subexpression could have a side effect
(an assignment hidden in a function call, for example) that is avoided by not
evaluating that subexpression. In functional languages, there are no side ef-
fects, so there is no danger that short-circuit evaluation will change the se-
mantics. The order of evaluation of expressions (and subexpressions) is
irrelevant. This freedom to evaluate in any order makes functional lan-
guages particularly fertile ground for generalizing the idea of short-circuit se-
mantics. (The cond form requires care to make sure that the textually first
successful branch is taken. Although the branches can be evaluated in any
order, runtime errors encountered in evaluating conditions textually later
than the first successful one need to be suppressed.)

An expression that is not yet evaluated is called a suspension. Suspen-
sions are much like closures; they combine a function and a referencing envi-
ronment in which to invoke that expression. They also include all the
unevaluated parameters to that function. When a suspension is evaluated, it
is replaced by the computed value, so that future reevaluations are not
needed. Often, that computed value itself contains a suspension at the point
that evaluation was no longer needed.

Lazy evaluation is of interest primarily because strict evaluation may
evaluate more than is really needed. For example, if | want to compute which
student scored the highest grade in an exam, | might evaluate (car (sort
Students)). Strict evaluators will sort the entire list of students, then throw
all but the first element away. A lazy evaluator will perform only as much of
the sort as is needed to produce the car of the list, then stop (because there is
no reference to the cdr of the sorted list). Now, sorting in order to find the
maximum element is an inefficient approach to begin with, and we can't fault
strict evaluators for inefficiency when the algorithm itself is so bad. How-
ever, lazy evaluation manages to salvage this inefficient (but very clear) ap-
proach and make it more efficient.

As a more detailed example, consider trees encoded as lists. For example,
((AB) (CD)) represents a binary tree with two binary subtrees. The frontier
(or fringe) of a tree is the list of leaves of the tree (in left-to-right order). The
frontier of this particular tree is (A B C D). | want to determine if two trees
have the same frontier. An obvious approach is to first flatten each tree into
its frontier, then compare the frontiers for equality. | might write the code in
Figure 4.36.

Copyright 00 Addison-Wesley. Reproduction fee $.02 per page, per copy.

1 LISP

Figure 4.36

Figure 4.37

121

(def SameFrontier (lambda (X Y) 1
(EqualList (Flatten X) (Flatten Y)))) 2
(def EqualList (lambda (X Y) 3
(cond 4
((nuT1T XD (nulT Y)) 5
((nu1T Y) nil) 6
(Ceq (car X) (car Y)) 7
(EqualList (cdr X) (cdr Y))) 8
(t ni1)) 9
) 10
(def Flatten (lambda (List) 11
(cond 12
((nulT List) nil) 13
(Catom List) (MakeList List)) 14
(t (Append (Flatten (car List)) 15
(Flatten (cdr List))))) 16
)) 17

Calls to SameFrontier (assuming a strict evaluation mechanism) will flat-
ten both parameters before equality is ever considered. This computation will
be particularly inefficient if the trees are large and their frontiers have only a
small common prefix.

Lazy evaluation is more appropriate for such a problem. It follows an out-
ermost-first evaluation scheme, postponing parameter evaluation until neces-
sary. That is, in a nested invocation, such as that of Figure 4.37,

(foo (bar L) (baz (rag L)))

foo is invoked before bar or baz, and in fact they may never be invoked at all,
if, for example, foo ignores its parameters. If foo needs to evaluate its sec-
ond parameter, baz is invoked, but not rag, unless baz itself needs it. Fur-
thermore, once a function has been invoked, the result it returns may not be
completely computed. For example, the body of bar may indicate that it re-
turns (cons 1 (frob L)). It will return a cons cell (allocated from the heap)
with 1 in the car and a suspension in the cdr; the suspension indicates that a
frob must be invoked on L in order to achieve a value. This suspension may
never be activated.
The algorithm for lazy evaluation is as follows:

1. To evaluate a list, make a suspension out of it (combining the function
name, the parameters, which are not to be evaluated yet, and the refer-
encing environment).

2. To evaluate a suspension, make a suspension out of each of its parame-
ters and invoke its function in its referencing environment.

3. To evaluate a cons invocation, create a new cons cell in the heap and
initialize its car and cdr to the parameters, which are left as suspen-
sions.

4. To evaluate a primitive Boolean function such as null or eq, evaluate
the parameter(s) only as far as needed. Each primitive function has its
own lazy evaluation method.

Copyright 00 Addison-Wesley. Reproduction fee $.02 per page, per copy.

122

Figure 4.38

CHAPTER 4 FUNCTIONAL PROGRAMMING

Let me trace how a lazy evaluator might evaluate
(SameFrontier ((AB) © (B C (A D)) .
The trace in Figure 4.38 shows the evaluation steps.

Goal = (SameFrontier S1="((A B) C) S2="(B C (A D)))
=[S body] (EqualList El=(Flatten S1) E2=(Flatten S2))
=[E body] (cond ((null E1) .. D) ..) ..)

| El = (Flatten F1=S1)

| =[F body] (cond ((null S1) .. D) ..)

| [S1 is neither null nor an atom]

| = (Append Al=(Flatten (car F1))

| A2=(Flatten (cdr F1)))

| =[A body] (cond ((null A1) ..) ..)

| | Al = (Flatten F2=(car F1))

| | =[F body] (cond ((null F2) ..) ..)

| | | F2 = (car F1) = (car S1) = (car "((A B) O))
I I I = "(A B)

| | [F2 is neither null nor an atom]

| | Al = (Append A3=(Flatten (car F2))

| | Ad=(Flatten (cdr F2)))

| | =[A body] (cond ((null A3) ..) ..)

| | | A3 = (Flatten F3=(car F2))

| | | =[F body] (cond ((null F3) ..) ..)

| | | | F3 = (car F2) = (car (A B)) = 'A

| | | [F3 is not null, but it is an atom]

| | | A3 = (MakelList F3) =[M body] (cons F3 nil)
I I I = "(A)

| | [A3 is not null]

| | Al = (cons (car A3) (Append (cdr A3) A4))

| [Al is not null]

| E1l = (cons (car Al) (Append (cdr Al) A2))

[E1l is not null]

Goal = (cond ((null E2) ..) ..)

| E2 = (Flatten F4=S2)

| =[F body] (cond ((null F4) ..) ..)

| [F4 is not null or an atom]

| = (Append A5=(Flatten (car F4))

| A6=(Flatten (cdr F4)))

| [A body] (cond ((null A5) ..) ..)

| A5 = (Flatten F5=(car F4))
| =[F body] (cond ((null F5)) ..)
I

I

I

I

I

I

| = (car (B C (AD)) ="B

| F5 = (car F4) = (car S2)

I

|

|

I

| [F5 is not null, but it is an atom]

| A5 = (MakelList F5) =[M body] (cons B nil) = ’"(B)
[A5 is not null]

E2 = (cons (car A5) (Append (cdr A5) A6))

Copyright 00 Addison-Wesley. Reproduction fee $.02 per page, per copy.

OooNOOUVIh WN R

1 LISP

123
[E2 is not null] 44
Goal = (cond ((eq (car E1) (car E2)) ..) ..) 45
= (cond ((eq (car Al) (car A5)) ..) ..) 46
= (cond ((eq (car A3) 'B) ..) ..) 47
= (cond (Ceqg A ’B) ..) ..) 48
= (cond (t nil)) 49
= nil -- frontiers are different 50

The notation is concise, but | hope not too clumsy. | show that a formal pa-
rameter is bound to an actual parameter by the notation Formal=Actual, as
in S1="((AB) O in line 1. The names of the formal parameters (here, S) start
with the same letter as the name of the function (SameFrontier). | distin-
guish multiple parameters as well as new instances during recursive calls by
numeric suffixes. Simplification steps are marked in various ways. In line 2,
=[S body] means expanding a call by inserting the body of a function, in this
case, SameFrontier. | have used the declaration of Append from Figure 4.13
(page 110) whenever [A body] is mentioned. The ellipsis (..) shows where
evaluation of cond pauses in order to evaluate a subexpression. It only evalu-
ates the subexpression to the point that it can answer the condition in ques-
tion. For example, in line 9, it is necessary to discover if Al is null. By line 25
Al has been evaluated enough to answer the question, as reported in line 26.
These subordinate evaluations are indented. Line 27 continues the evalua-
tion of E1 started on line 4. It leaves the result in terms of A1 and A2, to be
further evaluated in lines 46-48.

Lazy evaluation is more difficult (and costly) to implement than strict
evaluation. The example shows that it has much of the flavor of coroutines
(see Chapter 2), with control automatically shifting as needed among many
computations in order to advance the computation.

An implementation of LISP might allow the programmer to select lazy
evaluation when desired; any evaluation strategy will produce the same re-
sult so long as the program is written in “pure” LISP. (Some dialects include
imperative facilities, which, as you have seen, can make the evaluation order
significant.) Automatic determination of the preferable evaluation strategy is
an open (and hard) problem.

Lazy evaluation is sometimes called “demand-driven evaluation” because
evaluation is triggered by a demand for a value. We conventionally view a
computation (very roughly) as first obtaining input values, then computing a
result using them, and finally printing that result. Demand-driven evalua-
tion reverses this view. Nothing happens until the evaluator sees a request to
write a result. This request initiates computations, which solicit input val-
ues. If no demand for output is seen, nothing is computed.®

Lazy evaluation also has a declarative, nonprocedural flavor. (Chapter 8
discusses logic programming, which is declarative.) Although LISP is cer-
tainly procedural (both imperative and functional languages are in the larger
category of procedural languages), lazy evaluation makes evaluation optional.

3 This is similar to a folk myth concerning the benchmarking of an optimizing FORTRAN
compiler. The compiler was presented with a very complex program containing no write state-
ments. It optimized the program by generating no code!

Copyright 00 Addison-Wesley. Reproduction fee $.02 per page, per copy.

124

CHAPTER 4 FUNCTIONAL PROGRAMMING

That is, an expression is not a command, “Compute this!” but a suggestion as
to how to obtain a value if it is needed.

Imperative languages also allow unnecessary computations to be sup-
pressed. For example, optimizing compilers often eliminate “dead code.”
Since imperative languages are full of side effects, delaying major calcula-
tions for extended periods of time is quite difficult. Lazy evaluation is much
more attractive in a functional programming-language environment.

1.11 Speculative Evaluation

Another interesting evaluation strategy is speculative evaluation. As the
name suggests, a speculative evaluator wants to evaluate as much as possi-
ble, as soon as possible. This evaluation strategy is best suited for multipro-
cessors or multicomputers that are able to perform many calculations
concurrently. Present multicomputers have hundreds of processors; future
machines may have hundreds of thousands or even millions.

A crucial problem in a multicomputer is finding a way to keep a reason-
able fraction of the processors busy. Speculative evaluation seeks to evaluate
independent subexpressions concurrently. For example, in an invocation of
SameFrontier, a speculative evaluator could flatten both lists concurrently.
Within a function, another source of potential concurrency lies in the evalua-
tion of a cond form. Individual guards of a cond can be evaluated concur-
rently, as well as their associated bodies.

Care is required because of the evaluation ordering that is assumed in
cond’s definition. Evaluation of a subexpression may lead to a runtime error
(for example, taking the car of an atom), because a speculative evaluator will
evaluate an expression that a strict evaluator would never examine. With
care, faults can be suppressed until their effect on the overall result is known.
Given this caveat, a cond form can be a rich source of concurrent evaluations.

Nonetheless, the cost of starting a processor and later receiving its result
is often high. If the calculation started speculatively is too small, the over-
head will overshadow any advantage provided by the concurrent evaluation.
A speculative evaluator for LISP would probably evaluate primitive functions
directly and reserve concurrent speculative evaluation for Tambda forms.
Such coarse-grain parallelism is discussed further in Chapter 7.

The ability to evaluate expressions in virtually any order makes specula-
tive evaluation plausible for functional programming languages. In impera-
tive languages, an elaborate analysis of what variables depend on what other
variables is required even to consider any form of concurrent evaluation.
Once again the von Neumann bottleneck rears its ugly head.

1.12 Strengths and Weaknesses of LISP

Functional programming is in many ways simpler and more elegant than con-
ventional programming styles. Programmers do not need to keep track of po-
tential side effects when a procedure is invoked, so programming is less error-
prone. The lack of side effects allows implementations a rich variety of evalu-
ation strategies.

LISP and its descendants have long been the dominant programming lan-
guages in artificial intelligence research. It has been widely used for expert
systems, natural-language processing, knowledge representation, and vision

Copyright 00 Addison-Wesley. Reproduction fee $.02 per page, per copy.

2 FP 125

modeling. Only recently has Prolog, discussed in Chapter 8, attracted a sig-
nificant following in these areas. LISP is also the foundation of the widely
used Emacs text editor. Much of LISP’s success is due to its homoiconic na-
ture: A program can construct a data structure that it then executes. The se-
mantics of the core of LISP can be described in just a few pages of a
metacircular interpreter.

LISP was the first language to have an extensive program development
environment [Teitelman 81]. (Smalltalk, described in Chapter 5, was the sec-
ond. Such environments are widely available now for Ada, Pascal, and C++.)
Programs can be modified and extended by changing one function at a time
and then seeing what happens. This facility allows elaborate programs to
evolve and supports rapid prototyping, in which a working prototype is used
to evaluate the capabilities of a program. Later, the program is fleshed out by
completing its implementation and refining critical routines.

The most apparent weakness of the early dialects of LISP is their lack of
program and data structures. In LISP 1.5, there are no type-declaration fa-
cilities (although some LISP dialects have adopted facilities for data typing).
Certainly not everything fits LISP’s recursive, list-oriented view of the world.
For example, symbol tables are rarely implemented as lists.

Many LISP programmers view type checking as something that ought to
be done after a program is developed. In effect, type checking screens a pro-
gram for inconsistencies that may lead to runtime errors. In LISP, type
checking amounts generally to checking for appropriate structures in S-
expressions.

Most production LISP dialects (such as Interlisp, Franz LISP, Common
LISP, and Scheme) have greatly extended the spartan facilities provided in
LISP 1.5, leading to incompatibilities among LISP implementations. Indeed,
it is rare to transport large LISP programs between different implementa-
tions. This failure inhibits the interchange of software tools and research de-
velopments.

It would appear that the corrupting influences of von Neumann program-
ming are so pervasive that even functional languages like LISP can succumb.
Most LISP implementations even have a prog feature that allows an impera-
tive programming style! In addition, LISP has some decidedly nonfunctional
features, such as the set function and property lists. In fact, it has been said
that “LISP ... is not a functional language at all. [The] success of LISP set
back the development of a properly functional style of programming by at
least ten years.” [Turner 85b]

2 CFP

In comparison to typical block-structured languages, LISP 1.5 stands as a
paragon of simplicity. (On the other hand, Common LISP is as big as Ada.)
Nonetheless, Backus suggests that even simpler functional programming ap-
proaches may be desirable [Backus 78]. He thinks that LISP’s parameter-
binding and substitution rules are unnecessary and instead proposes a vari-
able-free programming style limited to single-parameter functions. (A pa-
rameter may, however, be a sequence, and functions may be curried.)
Further, LISP’s ability to combine functions in any form (since functions are
just S-expressions) is unnecessarily general. He compares this freedom to the

Copyright 00 Addison-Wesley. Reproduction fee $.02 per page, per copy.

126 CHAPTER 4 FUNCTIONAL PROGRAMMING

unrestricted use of goto statements in low-level imperative languages. In
contrast, Backus prefers a fixed set of higher-order functions that allow func-
tions to be combined in various ways, analogous to the fixed set of control
structures found in modern imperative languages. The result is the FP pro-
gramming language.

2.1 Definition of an FP Environment
An FP environment comprises the following:

1.

Figure 4.39

A set of objects. An object is either an atom or a sequence, <X; , ..., Xp
>, whose elements are objects, or O (“bottom”) representing “error,” or
“undefined.” Included as atoms are @, the empty sequence (roughly
equivalent to nil in LISP), and T and F, representing true and false.
Any sequence containing O is equivalent to 0. That is, the sequence
constructor is bottom-preserving.

A set of functions (which are not objects) mapping objects into objects.
Functions may be primitive (predefined), defined (represented by a
name), or higher-order (a combination of functions and objects using a
predefined higher-order function). All functions are bottom-preserving;
f applied to O always yields O.

An application operation that applies a function to an object, yielding an
object. Function f applied to object x is denoted as f:x. Here, x isn't a
variable name (there are no variables!), but rather a placeholder for an
expression that will yield an object.

A set of higher-order functions used to combine existing functions and
objects into new functions. Typical higher-order functions include those
shown in Figure 4.39.

Composition 1
(f o« @):x = f:(g:x) 2
Construction 3
[f,, ..., f, I:x = <fi:x, ... ,fyix> 4
Condition 5
(p - f;9):x = 6
if p:x = T then 7
fix 8
elsif p:x = F then 9
g:x 10
else 11
O 12

The conditional form handles nicely a problem that arises with bottom-
preserving functions: One or the other branch of a conditional may be
undefined (bottom) while the value of the conditional is itself well de-
fined. If one tries to create a conditional function that takes a triple
representing the Boolean value, the true-part value and the false-part
value, then if any component is [J, so is the entire triple, forcing O as the
result. Since conditional is a higher-order function, the evaluator
doesn’t apply the “then function” or “else function” until the conditional

Copyright O Addison-Wesley. Reproduction fee $.02 per page, per copy.

3 PERSISTENCE IN FUNCTIONAL LANGUAGES 127

Figure 4.40

value has been evaluated and tested against T and F.

One of the advantages of restricting higher-order functions is that
they form an algebra, which allows forms to be manipulated in well-
defined ways. For example, Figure 4.40 is a theorem:

., ... ,(fu, 1 e g=[f, o g, ... , f, ° g]

This theorem states that a composed function may be “distributed into”
or “factored from” a list of functions. Such algebraic theorems can be
viewed as the basis for automatic restructuring of FP programs, poten-
tially allowing sophisticated optimizations.

5. A set of definitions binding functions to identifiers. These identifiers
serve merely as abbreviations and placeholders; there is no concept of
redefinition or scoping.

2.2 Reduction Semantics

FP environments have a particularly simple semantics called reduction se-
mantics. An FP program is composed of a number of functions applied to ob-
jects. The meaning of such a program is defined by repeatedly reducing the
program by finding a function application and evaluating it. In some cases,
function evaluation may be nonterminating. Such functions diverge and are
considered undefined (that is, [0). There are only three kinds of valid func-
tions: primitive functions, defined functions, and higher-order functions.
Primitive functions are automatically evaluable. Defined functions are re-
duced by replacing their identifiers with their definitions. Higher-order func-
tions are reduced by substituting their definitions. If a function does not
belong to one of these three categories, it is invalid.

Reduction semantics have only a very weak form of identifier binding (de-
fined names map to functions) and employ no changes to hidden states.
There is clearly no way to cause side effects, so an evaluator can reduce a
function in any order. In fact, early FP languages were called “Red” (reduc-
tion) languages.

3 —PERSISTENCE IN FUNCTIONAL LANGUAGES

A value is persistent if it is retained after the program that created it has
terminated. A database is a good example of persistent values. The conven-
tional way to make values persistent is to write them out to a file. Chapter 3
discusses the type-safety considerations of such values.

If persistent values are to be incorporated into a programming language,
we must be able to name such values and to be assured that once created,
they do not change. Functional languages can incorporate persistent values
in a natural way that avoids explicit input and output [Morrison 90].

Persistent values can be named by reference to a persistence root,
which is something like the root of a file-system hierarchy. All such values
are automatically saved after execution. If a value is structured, its compo-
nents are also preserved; in particular, other values pointed to by a persistent
value are also persistent. Using ML as an example, we might have the code

Copyright O Addison-Wesley. Reproduction fee $.02 per page, per copy.

128

Figure 4.41

Figure 4.42

CHAPTER 4 FUNCTIONAL PROGRAMMING

shown in Figure 4.41.

Tet 1
val persist(MyRoot) a.b.c = 3; 2
val persist(MyRoot) d.e; 3
in 4
a.b.c + d.e 5
end; 6

Here, the identifier a.b.c is introduced as persistent, under root MyRoot, and
is given the (permanent) value 3. The identifier d.e is not given a value; in-
stead, it gets its value from persistent storage, where it should already be de-
fined.

Since functional languages have no side effects, persistent values are im-
mutable, so there is no need to worry about getting consistent copies if two
programs access the values at the same time: such values cannot change. It
would be a runtime error to reintroduce the same identifier in a persistence
hierarchy. The only modification allowed is inserting an object into (and per-
haps removing an object from) the persistent store.

The possibility of lazy evaluation in functional programming languages
make them even more attractive for persistent store. An incompletely evalu-
ated value, that is, a suspension, can be saved in persistent store so long as
the environment on which it depends is also treated as persistent. If later
computation resolves, fully or partially, the suspension, it is safe to replace
the stored suspension with the resolved value. Future evaluations, either by
the same program or by other programs, will see effectively the same values.

One proposal for integrating persistence into a functional language is to
build an imperative command outside the language (at the operating-system
level, for example) [McNally 91]. The expression in Figure 4.42

persist ModuleA requires ModuleB, ModuleC

means that all identifiers exported from ModulaA are to be placed in persis-
tent store. Both ModuleB and ModuleC must already be in persistent store;
values in ModuleA may depend on them. If ModuleA is already in persistent
store, the new copy replaces it, but any pointers to the identifiers of the previ-
ous ModuleA are still valid. The old ModuleA becomes collectable; that is,
garbage collection routines may discard and reclaim the storage of any of its
values that are no longer pointed to.

4 —LIMITATIONS OF FUNCTIONAL
LANGUAGES

The idea that variables are unnecessary is quite attractive. It is often suffi-
cient either to bind values through parameter binding or as constants for the
duration of a block. For example, in ML, the 1et construct allows an identi-
fier to be bound to a meaning, but there is no assignment as such. There are
situations, however, in which the inability to modify an existing value leads to
awkward or inefficient programs [Arvind 89; Yuen 91].

Copyright O Addison-Wesley. Reproduction fee $.02 per page, per copy.

4 LIMITATIONS OF FUNCTIONAL LANGUAGES 129

The first problem involves initializing complex data structures, particu-
larly two-dimensional arrays. For example, | might want an array A with the
properties shown in Figure 4.43.

Figure 4.43 A[0,j] = A[i, 0] =1 00<1i<n,0<3j<n 1
Ali,j]1 = A[i, j-11 + A[i-1, j] + A[i-1, j-1] 2
00 <1i<n,0<3j<n 3

Short of embedding syntax for this elegant mathematical declaration into a
programming language, the most straightforward way to accomplish this ini-
tialization is with an imperative program that iterates as in Figure 4.44.

Figure 4.44 variable 1
sum, row, col : integer; 2
A : array [0..n-1, 0..n-1] of 1integer; 3
begin 4
for sum := 0 to 2*n-2 do 5
for row := max(0,sum-n+1) to min(n-1,sum) do 6
col := sum - row; 7
if row = @ or col = 0 then 8
Alrow, col] :=1 9
else 10
Alrow,col] := A[row, col-1] + 11
Alrow-1, col] + A[row-1, col-1] 12
end; 13
end; -- for row 14
end; -- for sum 15
end; 16

In a functional language, initialization is usually performed by recursion,
which returns the value that is to be associated with the identifier. But there
is no obvious recursive method that works here, for several reasons. First,
unlike lists, arrays are not generally built up by constructors acting on pieces.
The entire array is built at once.* Second, the natural initialization order,
which is by a diagonal wavefront, does not lend itself either to generating
rows or columns independently and then combining them to make the array.
Third, special-purpose predeclared array constructor functions can only han-
dle simpler cases in which the value at each cell depends only on the cell's in-
dices. For example, to build an array in which each cell has a value computed
as the sum of its row and column, we could employ such a function and in-
voke it as MakeArray(1, n, 1, n, (fn row, col => row+col1)). That approach
fails here, because the value in a cell depends on other values within the ar-
ray.

One solution to this problem that largely preserves referential trans-
parency, that is, that references to an identifier should always produce the
same results, is to separate allocation of data from initialization. After the
array is built, a language could permit individual cells to be assigned values,

4 APL, discussed in Chapter 9, allows arrays to be built piecemeal.

Copyright 00 Addison-Wesley. Reproduction fee $.02 per page, per copy.

130 CHAPTER 4 FUNCTIONAL PROGRAMMING

but only once each. Accesses to values that have not been initialized would be
erroneous. (In concurrent programming, discussed in Chapter 7, such ac-
cesses would block the thread that tries to access such a cell until the cell is
initialized.) Unfortunately, this solution requires that the language have as-
signment and that there be runtime checks for violations of the single-
assignment rule.

Initialized identifiers are not the only problem with functional languages.
A different problem arises if | want to summarize information in counters.
For example, I may have a function that returns values from 1 to 10, and |
want to invoke the function a million times with different parameters. | want
to know how often each of the possible return values appears. In an impera-
tive language, it is quite easy to store such results in an array that is initially
0 everywhere and updated after each function invocation. In a functional lan-
guage, there seems to be no alternative but to enter a new name scope after
each function call, getting a new array that is initialized to the old one except
for one position, where it is incremented. The only reasonable way to enter a
million name scopes is by recursion, and even that seems problematic. A so-
lution to the problem of summarizing information in a functional language is
found in the guardians in Post (discussed in Chapter 6) and in multiparadigm
languages like G-2.

Finally, functional languages sometimes lose nuances that are essential to
efficiency. For example, the Quicksort algorithm can be expressed elegantly
in Miranda (Chapter 3) as in Figure 4.45.

Figure 4.45 fun
QuickSort []1 = []
QuickSort (a :: rest) =
QuickSort [b | b <- rest; b<=a] @
[a] @
QuickSort [b | b <- rest; b > a];

aauVvih WN R

However, this representation misses some important details. First, it is inef-
ficient to make two passes through the array to partition it into small and
large elements. Second, stack space can be conserved by recursing on the
smaller sublist, not always the first sublist (I assume the compiler is smart
enough to replace the tail recursion with iteration). Third, Quicksort should
sort elements in place; this implementation builds a new array. The first two
details can be programmed in the functional model, although perhaps awk-
wardly. The other is too intricately associated with concepts of swapping val-
ues in memory locations.

Copyright 00 Addison-Wesley. Reproduction fee $.02 per page, per copy.

5 LAMBDA CALCULUS 131

Figure 4.46

Figure 4.47

Figure 4.48

5 —LAMBDA CALCULUS

The mathematician Alonzo Church designed the lambda calculus in the 1930s
as a way to express computation [Church 41]. LISP is a direct descendent of
this formalism, and ML owes much of its nature to a restricted version called
“typed lambda calculus.” In one sense, lambda calculus is a set of rules for
manipulating symbols; the symbols represent functions, parameters, and in-
vocations. In another sense, lambda calculus is a programming language; it
has given rise more or less directly to both LISP and ML.

The underlying ideas of lambda calculus are straightforward. Lambda
calculus has only three kinds of terms: identifiers (such as x), abstractions,
and applications. Abstractions represent functions of a single parameter.
They follow the notation shown in Figure 4.46.

A x . (* x2)) -- Lambda calculus 1
(lambda (x) (* x 2)) -- LISP 2
fn x = x * 2 -- ML 3

In general, an abstraction has the form (A x . T), where T is any term. Ap-
plications represent invoking a function with an actual parameter. A func-
tion F is invoked with actual parameter P by the notation (F P); both F and P
are any terms. Parentheses may be dropped; the precedence rules stipulate
that application and abstraction are grouped left to right and that application
has a higher precedence than abstraction. Therefore, the terms in Figure
4.47 are equivalent.

Ax . ((Ay . q x) z) -- fully parenthesized 1
AX . Ay . g x z --minimally parenthesized 2

Another notational convenience is that curried functions may be rewritten
without currying, as in Figure 4.48.

Ax. Ay . Az.D=AQxyz.T

Lambda calculus has a static scope rule. The abstraction (A x . T) intro-
duces a new binding for the identifier x; the scope of this binding is the term
T. In the language of lambda calculus, x is bound in (A x . T). An unbound
identifier in a term is called free in that term. It is possible to define the con-
cept of free identifiers in a recursive way: An identifier x is free in term T if
(1) the term is just the identifier x; (2) the term is an application (F P), and x
is free in F or in P; or (3) the term is an abstraction (A y . T), and x is free in
T, and x is not y. Figure 4.49 presents some examples.

Copyright 00 Addison-Wesley. Reproduction fee $.02 per page, per copy.

132 CHAPTER 4 FUNCTIONAL PROGRAMMING

Figure 4.49 Ax .y) AWy . 2zZ) --y and z are free; x is bound 1
(Ax .y) (y 2) --y and z are free; x is bound 2
Ay (y 2)) -- z is free; y is bound 3
O\ x (ANy . 2)) -- z is free; x and y are bound 4
\ x (A x . 2)) -- z is free; x is bound 5

The example in line 5 introduces two different bindings for x. This situation
is analogous to an inner declaration that conflicts with an outer declaration.
As you expect, the meaning of x within any term is based on the closest en-
closing binding. The rules of lambda calculus, which you will see shortly, en-
sure that this interpretation is followed.

The heart of lambda calculus is the rule of Figure 4.50 that lets you sim-
plify a term.

Figure 4.50 Ax . T P=p=>{P/x}T

This formula says that applying a function (A x . T) to an actual parameter P
yields the body T of the function, with all occurrences of the formal parameter
x replaced by the actual parameter P. This simplification is called 3 (beta)
reduction, and | denote it by the symbol =B=>. The notation {P / x} T can
be read as “P instead of x in T”. It is somewhat awkward to define this substi-
tution operator precisely. First, x may have bound occurrences in T that
should not be subject to substitution. These are like nested declarations of x,
which hide the outer declaration that we are trying to bind to P. Second, P
may have unbound instances of identifiers that are bound in T. These identi-
fiers must remain unbound in the substitution. To achieve this goal, such
identifiers need to be renamed in T before substitution takes place. Figure
4.51 shows some examples of substitution.

Figure 4.51 {a / b} b =a -- no renaming needed
{a / b} a=a -- no free instances of b
{a/ b} Wc.b)=C_CQc. a) -- no renaming needed
{fa/ b} Wb .b)=QAz. z) -- b=>z; no free instances left
{fa/ b} (Wb .b)bccdd)=O=z. z)(ac) -- renamed bound b=>z
{Ax . y)/ x xy) =(Ax.Yy)y)

The concept of renaming bound identifiers can be formalized; it is called a
(alpha) conversion (see Figure 4.52).

Figure 4.52 Ax . TD=0=> Ay . {y/xD

Be aware that a conversion requires that y not be free in T.
Figure 4.53 is a fairly complicated example that uses a-conversions and
B-reductions.®

5 Modified from [Sethi 89].

Copyright 00 Addison-Wesley. Reproduction fee $.02 per page, per copy.

5 LAMBDA CALCULUS 133

Figure 4.53

Figure 4.54

Figure 4.55

Figure 4.56

Mabc. @) b)) Wa . a) (Aa. a) =0=> 1
(ANabc @) b)) Wz .2 Ay .y =p=> 2
(A bc (Az.2)d) (b)) Ay .y =p=> 3
Abc.cM) Ay .y =p=> 4
Ac.c(Ay .y) =p=> 5
(ANc . co) 6

Line 2 renames bound identifiers in the second and third terms to remove
confusion with identifiers in the first term. Line 3 applies (3 reduction to the
first two terms. Line 4 applies B reduction to the inner application. This
choice is analogous to evaluating the parameter to the outer application be-
fore invoking the function. In other words, it embodies strict evaluation and
value-mode parameter passing; in lambda calculus, it is called applicative-
order evaluation.

Instead, | could have applied (3 reduction to the outer application first.
This embodies lazy evaluation and name-mode parameter passing; in lambda
calculus, it is called normal-order evaluation. Under normal-order evalua-
tion, I can reduce the same expression as shown in Figure 4.54.

Mabc. @) (b)) Wa . a) (Aa. a) =0=> 1
Mabc. @A b)) ANz.2) Ay .y =pB=> 2
Abc. (Az.2)2d) (b)) Ay .y =B=> 3
Ac. (Az.2)d (Ay .y A) =p=> 4
(A c (Az . 2))) =p=> 5
(ANc . co) 6

The final result is the same under both evaluation orders. A fundamental
theorem of lambda calculus, due to Church and Rosser, is that it doesn't mat-
ter in what order reductions are applied. If you start with a particular term T
and apply B reductions and a conversions, arriving at terms S and R after two
different lists of operations, then there is some ultimate result U such that
both S and R derive U. All reduction sequences make progress toward the
same ultimate result.

If reduction reaches a stage where no 3 reduction is possible, the result is
in normal form. Line 6 in Figure 4.54 is in normal form. Surprisingly, not
every term can be reduced to normal form; some reductions continue forever,
as in Figure 4.55.

Ax . xx)) Ax . xXx)) =0=>
Ax . xx)) Ay . yy)) =p=>
Ay . yy)) Ay . (yy)) =a=>
Ax . xXxx)) A x . xXxx)) =0=>

A WNR

Line 4 is the same as line 1; the 3 conversion did not simplify matters at all.
Another example that | will use later is the term Y, defined as shown in
Figure 4.56.

Y=OQF. Ax . FfT X)) Ax.f &xx)

This term has no free identifiers; such terms are called combinators. Fig-

Copyright 00 Addison-Wesley. Reproduction fee $.02 per page, per copy.

134

Figure 4.57

Figure 4.58

Figure 4.59

CHAPTER 4 FUNCTIONAL PROGRAMMING

ure 4.57 shows that Y has an interesting property.

Yg=QF. QAx.f X)) Ax.Ff xx))) g =p=>
Ax .gxXx)) Ax .g xx) =p=

g x.gxx)) Ax.gkxx)) =

g Y

NwWwN R

Line 4 is surprising; it comes from noticing the similarity between lines 2 and
3. If we continue this “reduction,” we move from Y gtog (Y g) tog (g (Y g))
and so forth, expanding the result each time. Combinators like Y with the
property that Y g = g (Y g) are called fixed-point operators. | will use Y
later to define recursive functions.

A last simplification rule, shown in Figure 4.58, is called n (eta) conver-
sion.

(AXx . Fx)=n=>F

We can only apply n conversion when F has no free occurrences of x. Figure
4.59 shows several n conversions.

MNab . (+ab))= 1
(A a Ab . (+ ab)))= 2
Ma. Ab. (+a b)) =n= 3
(A a (+ a)) =n=> 4
+ 5

To make a programming language from the lambda calculus requires very
little additional machinery. It is necessary to introduce predeclared identi-
fiers, such as true and if, which are called “constants.” The set of prede-
clared constants and their meanings distinguish one lambda calculus from
another. The meanings of constants are expressed by reduction rules, such as

if false T F => F

Here, if is a curried function of three parameters. This lambda calculus can
now be translated directly into ML

Lambda calculus ML

FP FP

Ax . T fn x =T

ifFBTF if B then T else F
{A/ x}T let val X = A in T end

Recursive function definitions require the combinator Y defined in Figure 4.56
(page 133). Consider the ML declaration in Figure 4.60.

Copyright O Addison-Wesley. Reproduction fee $.02 per page, per copy.

5 LAMBDA CALCULUS 135

Figure 4.60

Figure 4.61

Figure 4.62

Figure 4.63

let val rec Parity = fn x => 1
if x = 0 then 0 2
else if x =1 then 1 3
else Parity (x - 2) 4
in 5
Parity 3 6
end; 7

It is not hard to express the body of Parity as a lambda term B, as shown in
Figure 4.61.

B=1dif (=x0) 0 (Gf x 1 1 (r (- x 2))

The form of this lambda term bears a strong resemblance to LISP’s parenthe-
sized syntax. | have introduced some new constants, such as the nullary op-
erators 0 and 1 (that is, classical constants), and the binary operators = and
- .° The identifier r is free in this expression; | use it to refer to a recursive
call to the function itself. | now define Parity as shown in Figure 4.62, using
the fixed-point operator Y.

Parity =Y (A r x . B)

To show that this definition makes sense, | need to perform some reductions;
see Figure 4.63.

Parity =Y (A r x . B) =

Arx.BD YQArx.B) =

(A r x . B) Parity =p=>

Ax . if (=x0) 0 (if (= x 1) 1 (Parity (- x 2))

A WNPR

Line 1 represents the definition of Parity. Line 2 comes from the fixed-point
nature of Y. Line 3 substitutes the definition of Parity back into the result.
Line 4 performs a single B reduction, using the definition of B. Together,
these lines show that Parity is in effect defined recursively.

The last step in turning lambda calculus into a programming language is
to introduce the concept of types. The constant 0 is meant to be used differ-
ently from the constant if; the former is nullary, and the latter takes three
parameters. In Figure 4.64, following the notation of ML, | can show the
types of the constants introduced so far.

5 The fact that I now have - means that | must have an integer type as well.

Copyright 00 Addison-Wesley. Reproduction fee $.02 per page, per copy.

136

Figure 4.64

Figure 4.65

Figure 4.66

CHAPTER 4 FUNCTIONAL PROGRAMMING

int
int
int*int -> int
:int*int -> dint
=: int*int -> bool
if: bool*’a*’a ->

I+ R

a

Complicated types may be parenthesized, but parentheses may be dropped.
The precedence rules stipulate that * is grouped left-to-right and has high
precedence, whereas -> is grouped right-to-left and has low precedence. The
typed lambda calculus requires that abstractions include type information.

Ax:t. T

In Figure 4.65, t is some type indicator. Now it is possible to reject some mal-
formed expressions that were acceptable, but meaningless, before, as shown
in Figure 4.66.

A X :int . xvy 1
if 1 (xy) (y ¥ 2
if (=xy) 2 (=x2) 3

Line 1 is unacceptable because x is used in the body of the application as a
function, but has type int. Line 2 is invalid because 1 is not of type bool.
Line 3 is rejected because both branches of the if must have the same type,
but one is int and the other is bool. At this point, we have almost built the
ML programming language. All that is lacking is some syntactic elegance
(such as patterns), data types (lists are very useful for functional program-
ming), and the many parts of ML that | have not discussed at all.

Lambda calculus is valuable for several reasons. First, it gives a purely
mathematical, formal basis to the concept of programming, assigning a set of
rules that determine the meaning of a program. This ability to mathemati-
cally define the semantics of a programming language is investigated in more
detail in Chapter 10. Because all chains of reductions give rise to equivalent
results, the semantics are not affected by the order of evaluation. Second, it
introduces the concept of higher-order functions as a natural building block
for programming. Lambda abstraction builds an anonymous function that
can be applied or returned as the result of a function. Third, it gives rise to
the functional style of programming, because it has no need for variables.
The languages that are derived from lambda calculus, particularly LISP and
ML, have been quite successful. Insofar as a purely functional subset of these
languages is used, they lend themselves to lazy and speculative evaluation.
ML takes the concept of typed lambda calculus and infers types in order to
enforce strong typing.

Copyright 00 Addison-Wesley. Reproduction fee $.02 per page, per copy.

EXERCISES

EXERCISES

137

Review Exercises

4.1

4.2

4.3

4.4
4.5
4.6
4.7

4.8

4.9

4.10

411

Figure 4.67

Why is it natural for a language that has no variables to provide no iter-
ative control constructs?

If a language treats functions as first-class values, does the language
support higher-order functions?

In Figure 4.3 (page 106), | show that (cons (cons ’A (cons 'B nil))
(cons nil (cons 11 ni1))) is the same as ((CA’B) () 11). What is the
value of the following expression?

(cons (cons (cons ’A (cons ’B nil)) nil) (cons 11 nil))

In LISP, is parameter passing by value mode? If not, by what mode?
In Figure 4.25 (page 113), why introduce the function Extend?
Convert the Double function of Figure 4.20 (page 112) into ML.

Generalize the DoubTle function of Figure 4.20 (page 112) so that it dou-
bles recursively within sublists as well as at the top level.

Generalize the answer to problem 4.7 to make a Multiple function that
accepts two parameters: a list L and a multiplier M, so that if M is 2, the
effect is like Double, but higher and lower integer multipliers also work.

Under what circumstances does it make a difference in what order the
parameters to a function are evaluated?

Reduce the following lambda expression to normal form.

Ay . Az .xz(y2))) (Ma. (ab)

Reduce the lambda expressions given in Figure 4.67.

{a/ bt(A a . b
{a/ b\ b . a
{a/ b\ c . b)
{a/b}Ab . o
{a /bt a . a)
fa/ b\ b . b)
{a/b}\ c . o

Challenge Exercises

412

What does it mean for something to be a first-class value in a purely
functional language?

Copyright O Addison-Wesley. Reproduction fee $.02 per page, per copy.

138 CHAPTER 4

413

4.14

4.15

4.16

4.17

4.18

4.19
4.20

421

4.22

4.23

Figure 4.68

4.24
4.25

FUNCTIONAL PROGRAMMING

As suggested in the text (page 111), show how to use an ML datatype to
implement heterogeneous lists. You may assume that atoms are always
integers or nil. Implement both Reverse and ReverseAll. If you use

: as a constructor for your list datatype, ML automatically overloads
the [] syntax for you.

What sort of runtime storage organization is appropriate for ML? Re-
strict your answer to the purely functional part of ML.

On page 114, I claim that building a closure is easy in statically scoped
languages in which procedures are not first-class values. Is it harder if
procedures are first-class values?

Does LISP really need garbage collection? Wouldn't reference counts
suffice?

On page 116, | suggest that the implementation copy only the bindings
of selected nonlocal identifiers whose bindings it needs to preserve.
How does it know which ones?

On page 117, | say that the updated environment is discarded after a
Tambda body is evaluated. But the example shows no explicit discard.
Explain.

How must the LISP interpreter be enhanced to deal with deep binding?

The trace of lazy evaluation in Figure 4.38 (starting on page 122) hap-
pened not to need to return to a partially evaluated result. Trace the
more interesting example

(SameFrontier "(A B O (A C D)),

which will need to do so.

In FP, the sequence constructor is bottom-preserving. Show how this re-
guirement precludes lazy evaluation.

To introduce persistence into a functional language, | have used an im-
perative command. Is an imperative style necessary?

Use the combinator Y to build a lambda-calculus definition of integer
multiplication that translates the ML program of Figure 4.68.

val rec Multiply = fn (x,y) =>
if x = 0 then 0 else Multiply(x-1,y) + vy;

N =

What is the type of Y in Figure 4.56 (page 133)?
Write a lambda term that grows longer after each 3 reduction.

Copyright O Addison-Wesley. Reproduction fee $.02 per page, per copy.

