
��

Chapter 6	 ❖

Dataflow
There is some evidence that the next big wave of change to wash over pro­
gramming languages will be concurrency. Both architectures and languages
for concurrency have been around for some time. In this chapter, I will dis­
cuss the dataflow architectural concept and the languages that have been de­
signed to conform to it. Dataflow is one way to achieve concurrency,
particularly at the fine-grain level: It finds multiple operations that can be
undertaken concurrently within the evaluation of a single expression. Ideas
from dataflow have found their way into parallelizing compilers for more con­
ventional architectures, as well. The ideas here in some ways prepare for
Chapter 7, which deals with concurrent programming languages that work at
a coarser level of granularity.

Sequential execution is an essential characteristic of the von Neumann
computer architecture, in which programs and data are stored in a central
memory. The concepts embodied by classical architecture have not been di­
rectly applicable to the domain of parallel computation. Most programming
languages have evolved from von Neumann languages, designed specifically
for the von Neumann architecture, so programmers have been conditioned to
analyze problems and write programs in sequential fashion.

The dataflow approach was first suggested by Karp and Miller [Karp 66]
as an alternative to the von Neumann architectural and linguistic concepts.
Consider computation of the series of statements in Figure 6.1.

Figure 6.1	 A := B*C + D/F; 1
G := H**2 + A; 2

A data-dependency graph called a dataflow graph represents the order­
ing of evaluation imposed by data dependencies. It encodes the fact that an
expression can’t be evaluated before its operands are evaluated. The dataflow
graph for Figure 6.1 appears in Figure 6.2.
������������������������������������

On-line edition copyright © 1996 by Addison-Wesley Publishing Company. Permission is
granted to print or photocopy this document for a fee of $0.02 per page, per copy, payable to Addi-
son-Wesley Publishing Company. All other rights reserved.

169

170 CHAPTER 6 DATAFLOW

Figure 6.2 Dataflow
graph

B

*

C

+
 A

D

/

F
 +
G

H
**

2

This graph represents a partial order on the evaluation sequence. In con­
trast, a typical von Neumann language will create a totally ordered instruc­
tion sequence to evaluate these statements, but such an order loses a
significant amount of potential concurrency. If more than one set of operands
is available, more than one expression should be evaluated concurrently.

In a dataflow computer, a program isn’t represented by a linear instruc­
tion sequence, but by a dataflow graph. Moreover, no single thread of control
moves from instruction to instruction demanding data, operating on it, and
producing new data. Rather, data flows to instructions, causing evaluation to
occur as soon as all operands are available. Data is sent along the arcs of the
dataflow graph in the form of tokens, which are created by computational
nodes and placed on output arcs. They are removed from the arcs when they
are accessed as input by other computational nodes. Concurrent execution is
a natural result of the fact that many tokens can be on the dataflow graph at
any time; the only constraint on evaluation order is the presence of tokens on
arcs in the graph.

Most computational nodes in a dataflow graph compute arithmetic results.
However, some sort of conditional structure is necessary. Loops are accommo­
dated in dataflow graphs by introducing nodes called valves that control the
flow of tokens within the graph. Two kinds of valves are commonly built: dis­
tributors and selectors. A distributor takes an input token and a Boolean
control token. It distributes the input token to one of two output arcs (labeled
T and F), as shown graphically in Figure 6.3.

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy.

DATAFLOW 171

Figure 6.3 Distributor Input token
node

Distributor Boolean control token

True False
arc arc

A selector uses a Boolean control token to accept one of two input tokens and
passes the selected token onto its output arc, as shown in Figure 6.4.

Figure 6.4
node

Selector
arc

True
arc

False

Selector Boolean control token

Output token

Viewing a computation as a dataflow graph leads directly to a functional
view of programming. Dataflow graphs do not include the notion of variables,
since there are no named memory cells holding values. Computation does not
produce side effects. Functional programming languages lend themselves to
various evaluation orders. Dataflow evaluators are typically speculative eval­
uators, since they are data-driven. Computations are triggered not by a de­
mand for values or data, but rather by their availability.

However, there are some important differences between dataflow and
functional programming. First, dataflow graphs have no simple concept of a
function that returns a value. One could surround part of a dataflow graph
with a boundary and call it a function, where all inbound arcs to the region
would be the parameters and all outgoing arcs would be the results. Such an
organization could lead to recursively defined dataflow graphs. Second, as
you saw in Chapter 4, functional programming languages rely heavily on re­
cursion, because they do not support iteration. However, dataflow manages
to support recursion by building cyclic graphs; an initial token may be placed
inside a cycle in order to allow the first iteration to proceed. Third, the values
placed on arcs are all simple values. It is easy to understand integers, reals,
and even Boolean values moving along the arcs, but values of structured
types such as records and arrays might take more underlying machinery.
Pointer types are most likely out of the question. Most important, function
types, which are so useful in functional programming, are not supported by
the dataflow graph formalism.

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy.

172 CHAPTER 6 DATAFLOW

1 ◆ DATAFLOW COMPUTERS
There are two classes of dataflow architectures. The first class is called
“static,” since such architectures do not support reentrant dataflow code (that
is, code that is used simultaneously in multiple places in the dataflow graph)
and recursion. The simple dataflow computer model introduced above is
static, as is the machine proposed by Dennis [Dennis 77].

The second class is called “dynamic.” Such machines support simultane­
ous multiple incarnations of an activity, recursion, and loop unfolding. In a
dynamic dataflow architecture, an arc may carry multiple tokens, and care is
taken to ensure that activities fire only upon receipt of matching tokens along
their input arcs. Tokens are labeled to distinguish values arising in different
contexts or from different incarnations of an activity. Two tokens match only
if their activity labels match. For example, I might wish to perform the com­
putation specified by a dataflow graph on each element of a vector of 1000
values. With a dynamic dataflow architecture, I can place 1000 tokens on the
input arc. Tokens are labeled to insure that values produced during the com­
putation can be ascribed to the appropriate input value.

The dynamic architecture outlined below is essentially that of the classical
Manchester Dataflow Computer [Gurd 85]. Modern dynamic dataflow archi­
tectures may look different. Tokens are labeled, but I leave out the specific
details of how the labels are generated or used, except that labels are
matched to identify matching tokens.

The architecture is schematically depicted in Figure 6.5. The machine op­
erates as a circular pipeline divided into four sections. The processing unit
receives packets containing operands and an instruction. The instruction is
executed on the accompanying operands, and the result tokens (after appro­
priate labeling) are placed back on the bus to be sent to the I/O switch. The
I/O Switch is included in the pipeline to serve as an I/O port. The matching
unit consists of associative token storage. When a token arrives at the
matching unit, the storage is searched for any tokens with the same label and
destination. If matches are discovered, these tokens are read out of the store,
and a packet is formed of all these tokens to be sent on to the program store.
The destination field of a token carries the address in the program store of
the instruction to which the token is directed.

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy.

173 2 VAL

Figure 6.5 Dataflow
architecture Processing unit

Program store I/O switch

Matching unit

If no match for the arriving token is found in the matching store, the to­
ken is written into storage and held in abeyance for matching tokens ex­
pected to arrive in the future. For unary operators, no matching is needed,
and the token can bypass the matching unit and proceed directly to the pro­
gram store. It is estimated that 55–70 percent of all tokens are able to bypass
the matching section.

When a packet of tokens reaches the program store, the instruction to
which the tokens are directed is accessed, and a packet is formed of the to­
kens and the instruction. This instruction is an opcode, the operands being
already available in the packet. Opcodes are elementary operations like addi­
tion and multiplication. The program store effectively holds the dataflow
graph. Instructions are vertices, and the arcs are represented by link fields
associated with each instruction to indicate the successor nodes in the
dataflow graph. The packet consisting of the operands, the opcode, and suc­
cessor information is then sent to the processing unit, and the operation of
the machine continues as described.

2 ◆ VAL
Val is a dataflow language developed at MIT by J. Dennis and others
[McGraw 82]. This language was originally designed for the static dataflow
architecture of Dennis, so it does not support dynamic dataflow features like
recursion. Val has been meticulously defined both by an axiomatic
[Ackerman 80] and a denotational [Gehani 80] semantics (these concepts are
discussed in Chapter 10.) Val is functional in nature, so side effects are ab­
sent. However, Val is strongly typed (using structural equivalence) and in­
tentionally looks more like conventional languages than LISP or FP does. In
fact, it looks much like ML (described in Chapter 3). For example, the Val
function in Figure 6.6 computes the mean and standard deviation for parame­
ters X, Y, and Z.

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy.

174 CHAPTER 6 DATAFLOW

Figure 6.6 function stats(X, Y, Z: real) : real, real; 1
let 2

Mean : real := (X+Y+Z)/3; 3
SD : real := sqrt((X − Mean)**2 + 4

(Y − Mean)**2 + (Z − Mean)**2)/3; 5
in 6

Mean, SD 7
end 8

end 9

In Val, functions return tuples of values. This syntax simplifies composition
of functions, as the values returned by one function can be immediately used
as parameters to a calling function.

Val has the usual scalar types (integer, real, Boolean, and character) as
well as arrays, records, and choice types. Arrays are all flexible, with only
the index type declared. A variety of array operations such as concatenation,
extension, and contraction are provided. During array construction, all ele­
ments of an array may be specified simultaneously, allowing all the evalua­
tions of array entries to proceed concurrently. Record construction is
patterned after array construction to promote concurrency. Val defines error
values, discussed in Chapter 2, so that the result of all computations is well
defined, no matter what the evaluation order.

Val appears to have an assignment statement, but this appearance is mis­
leading; like ML, identifiers can be bound in a block to values, but the binding
cannot be changed within that block. Such bindings get confusing when an
iterative loop is employed, since the program may need to update values be­
tween iterations. Val views each iteration as creating a new name-value
binding, with values from the previous iteration included in the computation
of the new loop values.

Structured values are viewed as single values, so array and record compo­
nents can never be individually modified. If you want to change an array ele­
ment, you must create a new array differing from the original in only one
element.

Val provides implicit concurrency. Operations that can execute indepen­
dently are evident (once the dataflow graph is built by the compiler) without
needing any explicit notation. Val achieves implicit concurrency by using
functional language features, and makes use of the fact that evaluation of a
function or expression has no side effects. If two operations do not depend on
the outcomes of each other, they can execute simultaneously. A source of side
effects in conventional languages is aliasing, whereby the same memory cell
can be referenced by more than one name. Reference-mode parameters,
pointers, and overlays can create aliases. All aliasing is forbidden in Val.
The fact that Val relies on implicit concurrency is justified on the grounds
that concurrency can be at a very low level (at the level, say, of individual
arithmetical operations), and it is unreasonable to expect the programmer to
specify concurrency details at this level.

In addition to implicit concurrency, Val provides explicit concurrency in
the forall expression, which concurrently evaluates an expression for all val­
ues in a range or structure. The width of parallelism is specified as a control
identifier that assumes all values in a given range. In addition to specifying
the control identifier and introducing a new name scope, loops also specify

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy.

2 VAL 175

how to merge the values from all the parallel streams into one result. There
are two ways to generate results: construct, which allows each parallel exe­
cution path to generate a value that becomes an element of an array of re­
sults, and accumulate, in which values from all the result streams are
merged into one result using one of a fixed set of associative binary operators
like + . (The operation specified by accumulate can be computed by an im­
plicit balanced binary tree, allowing the merged value to be produced in loga­
rithmic time.) Figure 6.7 clarifies these notions.

Figure 6.7 forall i in [1, 100] do 1
left: real := point[i].x_low; 2
bottom: real := point[i].y_low; 3
right: real := point[i].x_high; 4
top: real := point[i].y_high; 5
area: real := (right−left) * (top−bottom); 6
okay: Boolean := acceptable(area); 7
abort: Boolean := erroneous(area); 8

accumulate + if okay then area else 0.0 end; 9
accumulate or abort; 10
construct if okay then area else 0.0 end; 11

end 12

In this program, the forall produces 100 concurrent streams of execution.
Their results are merged using accumulate + to add all acceptable areas (line
9), accumulate or to determine if abort was true in any of the streams (line
10), and construct to create an array of elements calculated by a formula
(line 11). The entire forall expression returns a 3-tuple comprising those
three results.

The for expression implements loops that cannot execute in parallel be­
cause values produced in one iteration must be used in the next. The decision
concerning whether to continue loop iteration occurs within the loop body as a
conditional expression, as in Figure 6.8.

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy.

176 CHAPTER 6 DATAFLOW

Figure 6.8 for	 1
a: real := 0.0;	 2
b: real := 1.0;	 3

do	 4
let 5

c: real, done: Boolean := Compute(a, b); 6
in 7

if done then 8
c 9

else 10
iter 11

a := NewA(a, b); 12
b := NewB(a, b); 13

end 14
end 15

end 16
end 17

The identifiers a and b (lines 2 and 3) are loop parameters. During the first
iteration of the loop, the parameters have values 0.0 and 1.0. The Compute
invocation (line 6) returns two values, which are bound to c and done. If iter
is selected (lines 11–14), a new iteration is begun. New values for a and b are
evaluated for the next iteration. The binding in line 13 uses the old value of a
on the right-hand side. When done is true, the expression returns the value
bound to c (line 9).

A choice type is built as shown in Figure 6.9.

Figure 6.9 type list =	 1
choice [2

empty : void; 3
nonempty : record [item : real; rest : list] 4

]	 5

Void (line 3) is a predeclared type with no values. This example defines list
as an ordinary linked list, but with an interesting difference — it is recur­
sively defined without using pointers. Val disallows pointers because of alias­
ing issues. A list is therefore a recursive data structure rather than a
sequence of individual elements linked with pointers.

A value of a choice type is created by using a make constructor (Figure
6.10).

Figure 6.10 make list[empty : nil]

To guarantee type compatibility, the contents of a choice can only be accessed
via tagcase, as in Figure 6.11.

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy.

2 VAL	 177

Figure 6.11 function IsEmpty(L : list) : Boolean; 1
tagcase L of 2

when tag empty => true 3
when nonempty => false 4

end 5
end 6

Val also has conditional expressions.
Because Val lacks side effects and provides error values, it is an ideal can­

didate for speculative evaluation. In some places, however, Val inhibits spec­
ulative evaluation to reduce unneeded computations. In particular, in if,
tagcase and for expressions, computations are not initiated until the control­
ling expression is computed and tested. Val uses a lazy evaluator for these
constructs. In contrast, components of ordinary expressions are assumed to
be data-driven, implying a speculative evaluator. Parameters to functions are
always fully evaluated before the function is invoked.

Evaluation order in Val is primarily dictated by efficiency and simplicity
concerns, allowing lazy, speculative, and strict evaluation to coexist. An in­
teresting problem arises if a computation fails to return any value (even an
error value), because it diverges (that is, loops forever). A lazy evaluator
avoids a diverging subcomputation if its result isn’t needed. A speculative
evaluator tries to compute everything, and unnecessary diverging subcompu­
tations proceed concurrently with other computations. A conventional evalu­
ator does not proceed beyond the diverging subcomputation. Thus, Val’s
evaluation rules can affect the results computed by otherwise equivalent con­
structs. For example, an if expression can’t be replaced by a call to an equiv­
alent function, because if evaluates only some of its components, while a
function evaluates all its parameters.

Val programs obey many of the laws of FP (Chapter 4), so many of the FP
theorems can be used to transform (and optimize) Val programs. Val differs
from FP in the way it handles error values, which can invalidate certain FP
theorems. FP functions are bottom-preserving, and ⊥ represents “error.” Val,
on the other hand, allows error values to be detected, and further computa­
tion can repair or ignore the error and produce an ordinary value. For exam­
ple, I might like to establish that in Val line 1 of Figure 6.12 is equivalent to
line 2.

Figure 6.12	 H(if p(...) then F(...) else G(...) end) 1
if p(...) then H(F(...)) else H(G(...)) end 2

That is, that I can distribute a call of H into both arms of a conditional. This
theorem is true in bottom-preserving FP environments, but it isn’t true in
Val, because H(error_value) need not be error_value.

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy.

178 CHAPTER 6 DATAFLOW

3 ◆ SISAL
Val was one of the first serious attempts to produce a production-quality
dataflow language. A descendent of Val called Sisal was created to exploit the
capabilities of dynamic dataflow computers [McGraw 83]. A Sisal compiler
exists, with code generators for Vax, Crays, HEP multiprocessors, and the
Manchester dataflow computer.

The most obvious advantage of Sisal over Val is its support of recursion.
Recursive functions are useful and natural, especially in functional lan­
guages. Val’s rejection of recursion was a reflection of the design of early
static dataflow machines. Sisal also supports streams, which are needed for
ordinary sequential I/O and as a means of composing functions.

Sisal programs can be decomposed into distinct compilation units that ex­
plicitly import and export functions. Sisal also extends Val’s iterative and
parallel (forall) loop forms. They can return arrays or streams. Parallel
loops can also define explicit inner and outer products, making array manipu­
lation cleaner and potentially more efficient.

4 ◆ POST
Chinya V. Ravishankar developed Post as a Ph.D. thesis starting in 1981
[Ravishankar 89]. Post introduces several novel ideas. First, it lets the pro­
grammer determine the level of speculation in evaluation. As I mentioned
earlier, speculative evaluation can lead to nontermination under certain cir­
cumstances, but strictly lazy evaluation reduces parallelism. A second novel
concept is polychronous data structures that are partly synchronous
(must be available before used) and partly asynchronous (parts can be used
when ready). Third, Post provides communication between computational ac­
tivities in order to terminate speculative computation that may turn out to be
unnecessary. Communication between computations is not natural in purely
functional programming languages. Much of their semantic elegance derives
from their lack of side effects, so computations scheduled in parallel must not
depend on each other’s results. Further, a purely functional language per­
mits only deterministic computations and prohibits history-sensitivity.

Post was never fully implemented, but a prototype compiler was built. It
first builds a dataflow graph from the program and then converts that graph
into instructions for a dynamic dataflow machine. Post needs a dataflow ma­
chine (never implemented) that has a few special features, such as a “hold”
node for implementing lazy evaluation and a “terminate store” to help find
and remove terminated tokens.

4.1 Data Types
Values can be either primitive (integer, real, Boolean, char) or structured.
Structured values are constructed using the abstractions stream and tuple.
Both are sequences of values, but a tuple may be heterogeneous and is of
fixed length, while a stream is homogeneous and of unbounded length. All
operators and functions are automatically overloaded to apply to streams;
they create streams of results of pointwise application. Nested structures are
allowed; an element of a stream may itself be a stream.

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy.

4 POST 179

After a finite set of values, streams continue with an infinite number of
eos (end of stream) values. The eos value may be used as an operand in
arithmetic, logical, and comparison operations. It acts as an identity with
arithmetic and logical operations. With comparison operations, eos may be
made to behave either as the minimal or maximal element by using different
comparison operations. Post has two predeclared functions that generate
streams of values: (1) stream(a,b) generates a stream of integers ranging
from a to b, followed by an infinite number of eos values; and (2) const(a)
generates an infinite stream of integers with value a.

Values are implemented by the target dataflow architecture as tokens con­
taining a name (identifying the arc in the dataflow graph), a value (typically,
a real number), and a label. The label is unexpectedly complicated, contain­
ing fields describing scope, index, and program-defined information. Each of
these three fields is a stack containing information pertaining to different dy­
namic scopes in the program. The scope field identifies those dynamic scopes.
The index field distinguishes elements of a stream. The program-defined
field permits the programmer to tag values so that computations tagged in a
particular way can be terminated; this facility allows Post to manage specula­
tive computation, as described below.

4.2 Programs
A program consists of a name, a parameter list (used as a pattern), and a tar­
get expression. The pattern is matched against input data and serves to bind
formal parameters to values in the input. The target expression generates a
value that is returned by the program. The target expression may introduce
a new name scope, with type definitions and identifier declarations. Post is
statically scoped. Figure 6.13 shows a simple program.

Figure 6.13 function AddNumbers{a,b,c}; 1
type a, b, c : int 2
in a+b+c 3

end; 4

The structure is much like a classical procedure declaration, with formal pa­
rameters (the pattern {a,b,c} in line 1), type declarations for the formal pa­
rameters (line 2), and a body (line 3).

The type declarations are separated from the pattern for clarity, because
the pattern can become complex. For example, {x,y,z,}* is a pattern that
repeats the template {x,y,z} indefinitely, matching three more values of the
input stream each time. On the other hand, {x,{y,}*,z} is a 3-tuple with a
stream as the second component. Figure 6.14 uses a pattern that matches a
stream.

Figure 6.14 function AddPairs{x,y,}*; 1
type x, y : int 2
in x+y 3

end; 4

This program outputs a stream consisting of the sums of adjacent values in

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy.

180 CHAPTER 6 DATAFLOW

the input stream; the order of the output stream matches the order of the in­
put stream. If the input stream consists of an odd number of elements, y in
the final instance of the template matches an eos token, which is an identity
for arithmetic operations.

4.3 Synchrony Control
By using connectors other than a comma, the programmer may specify the
degree of synchrony required in pattern matching. The comma indicates
completely asynchronous matching; the actual parameters may be accessed
independently of each other. If the pattern uses only ˆ , matching is syn­
chronous: all elements must be present before any element is made available
to the target expression.1 If the pattern uses only ˜ , matching is sequential:
the ith element of the matched data structure is available only after all previ­
ous elements have arrived (even if they have not been accessed). Any or all of
these combinators may occur within a pattern. If several of them occur, ac­
cess is polychronous; precedence rules indicate how to group subpatterns in
the absence of parentheses.

In Figure 6.14, I could change the input pattern to {xˆy,}*, forcing pair­
wise synchronization of input elements. The program would compute the
same results, because + requires both operands before proceeding.

Sequential patterns are used for loops, as shown in the Figure 6.15.

Figure 6.15 function Largest{x˜}* init 0; 1
type x : int 2
in if Largest > x then Largest else x end 3

end; 4

This program finds the largest value in a stream of integers. It terminates
when the last instance of the target expression terminates; the value gener­
ated in this last instance is returned as the value of the program. The pro­
gram name is used to name the current value, initialized to 0 in line 1 and
compared with the next value in line 3. The dataflow graph corresponding to
this program has a cycle holding an initial token with value 0. Conditional
expressions, like the one in line 3, are evaluated speculatively. The result
from the branch that is not needed is discarded after evaluation is complete.2

An alternative syntax for conditionals is shown in Figure 6.16.

Figure 6.16 function OddSquares{x,}*; 1
type x : int 2
in [(x mod 2) ≠ 0] x*x 3

end;

Line 3 evaluates to x*x only if the condition in square brackets is true, that
������������������������������������

1 The concept of synchronization in concurrent programming languages is related; it is dis­
cussed in Chapter 7.

2 If conditionals were evaluated lazily, the programmer could hoist both branches out of the
conditional to force them to be evaluated speculatively.

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy.

4 POST 181

is, when x is odd. For other instances, the expression evaluates to nil. All
nil values are removed from the resulting stream before it is returned.

4.4 Guardians
Guardians implement shared data. They look like procedures and act like
variables. In a sense, they are like objects in an object-oriented programming
language (discussed in Chapter 5). Assignment to the guardian invokes the
procedure with the given value as an actual parameter. The procedure com­
putes a stored value, which can differ from the value of the actual parameter.
When the program accesses the guardian’s value, it gets a copy of the current
stored value. Such access is lazy, in the sense that it occurs only after all
nonguardian values used in the expression have arrived. The guardian only
has one instance, which prevents simultaneous computations from attempt­
ing simultaneous assignment. For example, consider the program of Figure
6.17.

Figure 6.17 function LargestFactor{x,}*; 1
type x : int 2
guardian Largest{v} init 0; 3

type v : int 4
in if Largest < v then v else Largest end 5

end -- Largest 6
in Largest := if (N mod x) = 0 then x end 7

end; -- LargestFactor 8

LargestFactor(stream(2,99)); 9

This program finds the largest factor of N (a nonlocal variable) smaller than
100. Even though a new instance of LargestFactor is created for each ele­
ment of the input stream, there is only one instance of its local guardian,
Largest (lines 3–6). Each element of the input stream is tested by an in­
stance of line 7; the result is assigned into the guardian. The conditional ex­
pression in line 7 evaluates to nil if the Boolean is false; nil values are
filtered out and are not passed to the guardian. Each assignment invokes
Largest’s target expression (line 5). This expression computes a new value
for the guardian, namely, the largest value so far assigned to it. The value of
a program containing guardians is a tuple of the guardians’ final values; in
this case, there is only one guardian, so a single value is returned.

Because guardians may have different values if they are evaluated at dif­
ferent times, it is necessary to permit lazy evaluation of actual parameters
that are expressions involving guardians. Post allows parameters to be
passed in value mode (the default) or lazy value mode.

4.5 Speculative Computation
Speculative computation can be terminated by a combination of program­
defined labels and an explicit terminate statement. Any expression may be
labeled, and the value resulting from that expression carries the label until it
exits the scope in which the label is declared. An individual value may carry
many labels, since it may be composed of many components, each of which

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy.

182 CHAPTER 6 DATAFLOW

may acquire multiple labels in different computations. Figure 6.18 is an ex­
ample of labeling.

Figure 6.18 function ReportEvens{x,}*; 1
type x : int; 2
label Even; 3
function AddLabel{y}; 4

type y : int 5
in 6

if (y mod 2) = 0 then 7
tag y with Even 8

else 9
y 10

end; 11
end; -- AddLabel 12
in [AddLabel(x) haslabel Even] x; 13

end; -- ReportEvens 14

This program returns only the even elements of the input stream. AddLabel
labels its parameter if the parameter is even (line 8). The body of Re­
portEvens in line 12 checks to see if its parameter, passed through AddLabel,
is labeled. If so, the parameter is returned; otherwise, the value nil is re­
turned (and then removed from the resulting stream).

If the program chooses to delete all tokens that have a particular label,
any computation they are involved in is thereby terminated. Figure 6.19
demonstrates termination.

Figure 6.19 function SomeFactor{x,}*; 1
type x : int; 2
guardian Factor{y}; 3

type y : int 4
in terminate y 5

end; -- Factor 6
in Factor := if (N mod x)=0 then x end; 7

end; -- SomeFactor 8

SomeFactor(stream(2,99)); 9

The program returns the first factor of N assigned to the guardian Factor; it
may return different values for different runs. For each input value, line 7
reports a factor, if any, to the guardian. The guardian Factor executes a ter­
minate statement and returns the value y (line 5). The terminate statement
does not specify a label in this case; all computation in the current scope
(which is implicitly given a scope label) is canceled. There is also a syntax
(not shown in this example) for specifying a program-defined label to control
termination.

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy.

5 FINAL COMMENTS 183

5 ◆ FINAL COMMENTS
Val and Sisal look, at first glance, like ordinary imperative languages. What
makes them dataflow languages is that they are functional, so that specula­
tive evaluation is possible, and they provide for explicitly concurrent loop exe­
cutions.

Post was developed in reaction to this imperative appearance. It tries to
give the programmer a feeling of labeled tokens being routed on arcs. The
terminate statement only makes sense in such a context, for example. Al­
though Post is a worthy attempt to mirror dataflow architectures better than
Val or Sisal, the result is not particularly readable. Lack of clarity, in the
sense introduced in Chapter 1, is its major weakness.

In a sense, all these languages are failures, because dataflow computing
never became popular. Very few dataflow computers were ever built, and in­
terest in this field has mostly subsided. Still, it is instructive to see how ar­
chitectural design and programming language design influence each other.
Not only did dataflow architecture lead to new languages, but those lan­
guages dictated enhancements to the architecture (such as multiple-field la­
bel stacks on tokens). A similar interplay is now taking place between
architecture and languages as massively parallel and distributed computers
are becoming available. That is the subject of Chapter 7.

Dataflow has had some successes. Optimizing compilers for vector ma­
chines build dataflow graphs in order to schedule computations effectively.
The graphs indicate what dependencies constrain the order of evaluation.

From one point of view, you could say that dataflow has been quite suc­
cessful and is widely used. Spreadsheets incorporate a form of data-driven
computation to update values that depend on other values that may have
changed. The internal representation of a spreadsheet is very like a dataflow
graph. Strangely, the languages used in spreadsheet programming are quite
different from any of the languages described here. First, they are not linear;
that is, they are not organized as a text with a start, an ordered set of com­
mands, and an end. Instead, each cell of a spreadsheet (typically, a two­
dimensional grid of cells) is separately “programmed.” For a cell acting as a
leaf in the dataflow graph, the program indicates the value of that cell. For a
cell acting as a computation node, the program indicates how to recompute
the value of that cell based on the values of other cells. These other cells can
be named explicitly, but accumulation operators such as summation and aver­
aging can also specify a set of cells (generally, a contiguous one-dimensional
subset). This organization is reminiscent of declarative programming (the
subject of Chapter 8), in which there is no necessary order to the pieces that
together make up a program.

A second difference in spreadsheet programming is that the user can often
control to what extent computation is speculative. This control is specified as
the number of times to reevaluate each computational cell when one of its in­
puts changes. Zero means do not update; an infinite value means to reevalu­
ate until values do not change. In other words, the binding of evaluation
strategies, which is usually done at language-design time, and only occasion­
ally at compile time, can be deferred until runtime.

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy.

184 CHAPTER 6 DATAFLOW

EXERCISES

Review Exercises
6.1 Draw a dataflow graph for the code of Figure 6.20.

Figure 6.20 (A + B) * (A + B + C)

6.2 Draw a dataflow graph for the code of Figure 6.21.

Figure 6.21 A := 0; 1
while A < 10 do 2

A := A + 3; 3
end; 4

6.3	 How do nondataflow languages allow the programmer to specify evalua­
tion strategy?

Challenge Exercises
6.4 Draw a dataflow graph for the code of Figure 6.22.

Figure 6.22 procedure Orbit(A : integer) : integer; 1
begin 2

if A = 1 then 3
return 1; 4

elsif even(A) then 5
return Orbit(A/2); 6

else 7
return Orbit(3*A+1); 8

end; 9
end; 10

6.5	 In Figure 6.15 (page 180), which version of > is meant on line 3? That
is, does eos act as the minimal or maximal element?

6.6	 In Figure 6.18 (page 182), what would be the effect of changing line 13
as follows?

in [AddLabel(x) haslabel Even] AddLabel(x)

6.7	 Modify Figure 6.19 (page 182) so that speculative computation is not
terminated, but the first factor found is still returned.

6.8	 In spreadsheets, how can reevaluating more than once have a different
effect from evaluating only once?

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy.

EXERCISES 185

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy.

