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Chapter 7 ❖


Concurrent Programming

Architectural advances of recent years, coupled with the growing availability 
of networked computers, have led to a new style of computing, called concur­
rent programming, that allows multiple computations to occur simultane­
ously in cooperation with each other. Many people distinguish two classes of 
concurrent programming: Distributed programming refers to computa­
tions that do not share a common memory, and parallel programming 
refers to computations that share a common memory. This distinction is not 
always helpful, since it is possible to implement a distributed computation on 
a shared-memory computer, and to implement a parallel computation on a 
distributed-memory computer. It is up to the compiler and operating system 
to implement on the underlying architecture whatever concurrency style the 
programming language promotes. Terminology is less standard in the area of 
concurrent programming than elsewhere, so I will be somewhat arbitrary, but 
consistent, in my nomenclature. 

A thread is a sequential computation that may interact with other simul­
taneous computations. A program that depends on a particular thread reach­
ing some point in computation before another thread continues must make 
that dependency explicit; it is erroneous to assume anything about relative 
speeds of execution. The reason for this rule is that the language does not 
usually have much control over execution speeds. Individual threads may be 
implemented by time-sharing a single CPU, and the scheduler may be outside 
the control of the language (in the operating system). If threads are on differ­
ent CPUs, the CPUs may have different speeds or may have other work that 
renders them slow in an unpredictable way. The communication expense for 
cooperation among threads may be unpredictable. Threads might be dynami­
cally migrated from one CPU to another to improve performance, but with a 
temporary delay. 

The connection between programming languages and operating systems is 
especially close in the area of concurrent programming. First, threads are 
sometimes supported by the underlying operating system, so the language 
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implementation needs to make use of those facilities, and the language de­
signer may choose to present or to omit features, depending on the operating 
system and what it can do. For example, a thread can be modeled by a Unix 
process. Generally, Unix processes cannot share memory. However, some 
versions of Unix, such as Solaris, offer threads within a single address space; 
these threads do share memory. Second, operating systems themselves are 
often multithreaded; the language design issues in this chapter are often 
identical with operating-system design issues. 

1 ◆ STARTING MULTIPLE THREADS 
Syntax for starting multiple computations tends to be straightforward. In 
Modula (I mean original Modula [Wirth 77], not Modula-2), a thread is 
started by invoking a procedurelike object; when the “procedure” returns, the 
thread disappears. Meanwhile, the computation that started the thread con­
tinues executing. The new thread may itself create other threads by invoking 
them. Figure 7.1 shows a program that merge-sorts an array by recursively 
creating threads. 

Figure 7.1 type 1 
DataArray = array whatever of integer; 2 

thread MergeSort( 3 
reference Tangled : DataArray; 4 
value LowIndex, HighIndex : integer); 5 

variable 6 
MidPoint : integer := (LowIndex + HighIndex) div 2; 7 

begin 8 
if LowIndex + 1 < HighIndex then -- worth sorting 9 

MergeSort(Tangled, LowIndex, MidPoint); 10 
MergeSort(Tangled, MidPoint+1, HighIndex); 11 
Merge(Tangled, 1, MidPoint, MidPoint+1, 12 

HighIndex); 13 
end; -- worth sorting 14 

end; -- MergeSort 15 

MergeSort is declared in line 3 as a thread, not a procedure. All invocations 
of MergeSort, including the recursive ones on lines 10 and 11, create new 
threads running instances of MergeSort that work independently of the main 
program. Unfortunately, MergeSort fails to wait for its children to finish and 
rushes ahead to line 12, merging the two halves of the array before they are 
properly sorted. You will soon see mechanisms for synchronization that will 
let me fix this bug. 

Each thread gets its own stack. Variables declared locally to a thread are 
like local variables in a procedure; each thread gets its own local variables. 
Likewise, any procedures called from a thread (such as Merge, called in line 
12) get new activation records on the thread’s stack. However, variables that 
are outside the scope of the thread are shared among all threads in which 
they are visible by normal scope rules. That is, the static chain in a thread’s 
stack eventually points outside of the private stack of the thread into shared 
stack. (Sometimes this arrangement is called a cactus stack, since the 
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stacks resemble the branches on a saguaro or cholla cactus.) 
Some languages let threads be started by a cobegin statement. All the 

statements within the cobegin are started as separate threads. This con­
struct includes an implicit synchronization step: The cobegin does not com­
plete until each of its children has completed. I could fix the MergeSort 
program by surrounding lines 10 and 11 with cobegin and making MergeSort 
an ordinary procedure. 

Some languages, like Modula-3, present a fairly low-level view of threads. 
A thread is started by a call to a fork procedure, which returns a thread iden­
tifier that can be used later for synchronization. Fork takes a procedure pa­
rameter that tells it what the thread should do.1 Usually, programming 
languages restrict the parameter to fork to be a global procedure, so that cac­
tus stacks are not needed. 

Other languages, like Ada, present a much higher-level view of threads. 
Each thread runs in a module, exporting procedures that may be called by 
other threads and importing types, procedures, and shared variables. If a 
block contains a thread declaration, the thread is started when its declaration 
is elaborated. The block does not complete until all threads started in it have 
finished. 

2 ◆	 COOPERATION BY MEANS OF SHARED 
VARIABLES 

The MergeSort example shows that threads sometimes need to wait for each 
other. We say that a waiting thread is blocked. Generally, there are two 
reasons why threads need to block. First, they may be using variables that 
are shared with other threads, and they need to take turns. Taking turns is 
often called mutual exclusion, because while one thread is executing in­
structions that deal with the shared variables, all other threads must be ex­
cluded from such instructions. Second, they may need to wait for some 
operation to complete in some other thread before they may reasonably do 
their own work. We can explain the MergeSort example by either reason. 
First, the variables in the Tangled array are shared between parents and 
children. Second, it makes no sense to merge the two halves of Tangled until 
they have been sorted. 

2.1 Join 
The simplest form of synchronization is to block until another thread com­
pletes. Such blocking is achieved by the join statement, which specifies 
which thread is to be awaited. The thread that invokes join is blocked until 
that thread has completed. Some languages, such as Modula-3, make join 
an expression that evaluates to the value returned by the thread at the time 
it terminates. Cobegin implicitly invokes join at the end of the compound 
statement for each thread started by that statement. 
������������������������������������ 

1 In Modula-3, the parameter is an object of a particular class that provides a method 
called apply. 

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy. 



190 CHAPTER 7 CONCURRENT PROGRAMMING


2.2 Semaphores 
The heart of most synchronization methods is the semaphore. Its imple­
mentation (often hidden from the programmer) is shown in Figure 7.2. 

Figure 7.2 type 1 
Semaphore = 2 

record -- fields initialized as shown 3 
Value : integer := 1; 4 
Waiters : queue of thread := empty; 5 

end; 6 

Semaphores have two operations, which are invoked by statements. (The op­
erations can be presented as procedure calls instead.) I call the first down 
(sometimes people call it P, wait, or  acquire). The second operation is up 
(also called V, signal, or  release): 

•	 down S decrements S.Value (line 4). It then blocks the caller, saving its 
identity in S.Waiters, if  Value is now negative. 

•	 up S increments S.Value. It unblocks the first waiting thread in 
S.Waiters if Value is now nonpositive. 

Both these operations are indivisible, that is, they complete in a thread in­
stantaneously so far as other threads are concerned. Therefore, only one 
thread at a time can either up or down a particular semaphore at a time. 

Semaphores can be used to implement mutual exclusion. All regions that 
use the same shared variables are associated with a particular semaphore, 
initialized with Value = 1. A thread that wishes to enter a region downs the 
associated semaphore. It has now achieved mutual exclusion by acquiring an 
exclusive lock. When the thread exits the region, it ups the same semaphore, 
releasing the lock. The first thread to try to enter its region succeeds. An­
other thread that tries to enter while the first is still in its region will be 
blocked. When the first thread leaves the region, the second thread is un­
blocked. Value is always either 0 or 1 (if only two threads are competing). 
For this reason, semaphores used for mutual exclusion are often called bi­
nary semaphores. 

Besides mutual exclusion, semaphores can also help achieve more complex 
synchronization. If thread T needs to wait until thread S accomplishes some 
goal, they can share a semaphore initialized with Value = 0. When S accom­
plishes its goal, it ups the semaphore. When T reaches the place where it 
must wait, it downs the same semaphore. No matter which one reaches the 
semaphore call first, T will not proceed until S has accomplished its goal. 

2.3 Mutexes 
Some languages, such as Modula-3, predeclare a mutex type that is imple­
mented by binary semaphores. The lock statement surrounds any state­
ments that must exclude other threads, as shown in Figure 7.3. 
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Figure 7.3 variable 1 
A, B : integer; 2 
AMutex, BMutex : mutex; 3 

procedure Modify(); 4 
begin 5 

lock AMutex do 6 
A := A + 1;  7  

end; 8 
lock BMutex do 9 

B := B + 1;  10  
end; 11 
lock AMutex, BMutex do 12 

A := A + B;  13  
B := A;  14  

end; 15 
end; -- Modify 16 

Variable A is protected by mutex AMutex, and B is protected by BMutex. The 
lock statement (as in line 6) is equivalent to a down operation at the start and 
an up operation at the end. Several threads may simultaneously execute in 
Modify. However, a thread executing line 7 prevents any other thread from 
executing any of lines 7, 13, and 14. It is possible for one thread to be at line 
7 and another at line 10. I lock lines 7 and 10 because on many machines, in­
crementing requires several instructions, and if two threads execute those in­
structions at about the same time, the variable might get incremented only 
once instead of twice. I lock lines 13 and 14 together to make sure that no 
thread can intervene after line 13 and before line 14 to modify A. The multi­
ple lock in line 12 first locks AMutex, then BMutex. The order is important to 
prevent deadlocks, as I will describe later. 

2.4 Conditional Critical Regions 
The Edison language has a way to program synchronization that is more ex­
pressive than mutexes but less error-prone than bare semaphores 
[Brinch Hansen 80]. As I mentioned before, synchronization in general is the 
desire to block an action until a particular condition becomes true. 

A standard example that displays the need for synchronization is the 
bounded buffer, which is an array that is filled by producer threads and 
emptied by consumer threads. All producers and consumers must mutually 
exclude each other while they are inspecting and modifying the variables that 
make up the bounded buffer. In addition, when the buffer is full, producers 
should block instead of busy waiting, which is repeatedly testing to see if 
the buffer has room. Likewise, when the buffer is empty, consumers should 
block. Figure 7.4 shows how to code this application with conditional critical 
regions. 
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Figure 7.4 constant 1 
Size = 10; -- capacity of the buffer 2 

type 3 
Datum = ... -- contents of the buffer 4 

variable 5 
Buffer : array 0..Size-1 of Datum; 6 
InCount, OutCount : integer := 0; 7 

procedure PutBuffer(value What : Datum); 8 
begin 9 

region Buffer, InCount, OutCount 10 
await InCount - OutCount < Size do 11 

Buffer[InCount mod Size] := What; 12 
InCount := InCount + 1; 13 

end; -- region 14 
end -- PutBuffer; 15 

procedure GetBuffer(result Answer : Datum); 16 
begin 17 

region Buffer, InCount, OutCount 18 
await InCount - OutCount > 0 do 19 

Answer := Buffer[OutCount mod Size]; 20 
OutCount := OutCount + 1; 21 

end; -- region 22 
end GetBuffer; 23 

The region statements starting in lines 10 and 18 are like lock statements, 
except that they name variables to be protected, not mutexes, and they have 
an await component. The compiler can check that shared variables are only 
accessed within region statements, and it can invent appropriate mutexes. 
The awaited condition is checked while the corresponding mutexes are held. 
If the condition is false, the mutexes are released and the thread is blocked 
(on an implicit semaphore). Whenever a thread exits from a region, all 
threads in conflicting regions (those that use some of the same shared vari­
ables) that are blocked for conditions are unblocked, regain their mutexes, 
and test their conditions again. This repeated rechecking of conditions can be 
a major performance problem. 

2.5 Monitors 
One objection to using conditional critical regions is the cost of checking con­
ditions, which must occur whenever a thread leaves a region. A second objec­
tion is that code that modifies shared data may be scattered throughout a 
program. The monitor construct, found in Modula and Mesa, was invented to 
address both issues [Hoare 74; Lampson 80]. It acts both as a data­
abstraction device (providing modularity) and a synchronization device. 

Monitors introduce a new name scope that contains shared data and the 
procedures that are allowed to access the data. Procedures exported from the 
monitor are mutually exclusive; that is, only one thread may execute an ex­
ported procedure from a particular monitor at a time. 

The most straightforward use of monitors is to package all routines that 
use a set of shared data (represented by a collection of variables) into a single 

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy. 



2 COOPERATION BY MEANS OF SHARED VARIABLES 193


monitor. All accesses to those variables will be forced to use exported proce­
dures, because the variables themselves are hidden from the outside world. 
For example, I can implement a shared counter that records the number of 
times some interesting event has happened, as in Figure 7.5. 

Figure 7.5 monitor Counter; 1 
export RaiseCount, ReadCount; 2 
variable Count : integer := 0; 3 

procedure RaiseCount(); 4 
begin 5 

Count := Count + 1; 6 
end; -- RaiseCount; 7 

procedure ReadCount() : integer; 8 
begin 9 

return Count 10 
end; -- ReadCount; 11 

end; -- Counter 12 

One way to picture the monitor is shown in Figure 7.5, which shows the mon­
itor as a floor plan of a building. When a thread tries to invoke an exported 
procedure, it enters through the entrance queue, where it is blocked until the 
exported procedure is free of any thread. Door 1 is unlocked only if there is 
no thread in the main room. Door 2 is always unlocked; when it is opened to 
let a thread out, door 1 is unlocked. 

Figure 7.6 A simple 
monitor 

Entrance Guard
1 2queue procedures 

It is not hard to implement this kind of monitor using only binary 
semaphores. Since the programmer does not need to remember the up and 
down operations, monitors are easier and safer to use than bare semaphores. 
In addition, all the code that can affect shared variables is packaged in one 
place, so it is easier to check that the variables are properly used. 

In order to program a bounded buffer, I also need a way to have threads 
wait if conditions are not right. Instead of Boolean expressions, monitors in­
troduce the predeclared condition data type. The operations on conditions 
are wait, signal, and broadcast. Using condition variables is more clumsy 
than programming Boolean expressions in conditional critical regions, be­
cause the programmer must remember which variable is associated with each 
situation and must also remember to signal the conditions when the time is 
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right. A bounded buffer can be programmed as in Figure 7.7. 

Figure 7.7 monitor BoundedBuffer; 1


export GetBuffer, PutBuffer; 2


constant 3

Size = 10; -- capacity of the buffer 4


type 5

Datum = ... -- contents of the buffer 6


variable 7

Buffer : array 0:Size-1 of Datum; 8

InCount, OutCount : integer := 0; 9

NotEmpty, NotFull : condition; 10


procedure PutBuffer(value What : Datum); 11

begin 12


if InCount - OutCount = Size then 13

wait NotFull; 14


end;  15 

Buffer[InCount mod Size] := What; 16

InCount := InCount + 1; 17

signal NotEmpty ; 18


end; -- PutBuffer; 19


procedure GetBuffer(result Answer : Datum); 20

begin 21


if InCount - OutCount = 0 then 22

wait NotEmpty; 23


end;  24 

Answer := Buffer[OutCount mod Size]; 25

OutCount := OutCount + 1; 26

signal NotFull ; 27


end; -- GetBuffer; 28

end; -- BoundedBuffer; 29


The situations in which the buffer is not full or not empty are indicated by 
the condition variables NotFull and NotEmpty. Consumers call GetBuffer 
(line 20), which checks to see if the buffer is empty. If so, it waits on NotEmpty 
(line 23). This operation releases mutual exclusion and blocks the thread. It 
will remain blocked until some other thread signals NotEmpty. Producers do 
exactly that in line 18. Signal has no effect on a condition for which no 
thread is waiting, unlike up on a semaphore. The consumer can be sure when 
it arrives at line 25 that the buffer is not empty, because either it was not 
empty when the consumer called GetBuffer, and this routine excludes any 
other threads from the monitor, or it was empty, but some producer has sig­
naled NotEmpty, and the consumer has been awakened and regained exclu­
sion. 

This discussion raises some troubling questions. Exactly when does the 
blocked consumer continue? If immediately, then there may be two threads 
in the monitor at once, and mutual exclusion is ruined. If later, then by the 
time the consumer continues, some other consumer may already have taken 
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the last datum, and the assumption on line 25 that the buffer is not empty is 
wrong. If several consumers are waiting at the same time, which one or ones 
are unblocked by a signal? 

The definitions of monitors in the literature disagree on the answers to 
these questions. 

Figure 7.8 Monitors 
with conditions 

Urgent queue 

3 4 

Entrance Guard 
1 2queue procedures 

5 6 7 8 

Condition queues 

Figure 7.8 expands Figure 7.6 (page 193) to show the effect of conditions. Ev­
ery condition has a condition queue (shown on the bottom of the monitor), and 
there is one urgent queue (shown at the top of the monitor). All queues are 
ordered first in, first out. Threads that are blocked are placed in these 
queues according to the following rules: 

1.	 New threads wait in the entrance queue. A new thread may enter 
through door 1 if no thread is currently in the central region. 

2.	 If a thread leaves the central region through door 2 (the exit), one 
thread is allowed in through door 4 (from the urgent queue) if there is 
one waiting there. If not, one thread is allowed through door 1 (from the 
entrance queue) if there is one waiting there. 

3.	 A thread that executes wait enters the door to the appropriate condition 
queue (for example, 5 or 7). 

4.	 When a thread executes signal, the signaled condition queue is in­
spected. If some thread is waiting in that queue, the signaler enters the 
urgent queue (door 3), and one waiter is allowed into the central region 
(door 6 or 8). If no thread is waiting in that queue, the signaler proceeds 
without leaving the central region. The signal is ignored. 

These rules assure that a waiting consumer is unblocked immediately when a 
producer signals NotEmpty and that the producer is blocked in the urgent 
queue until the consumer has taken the datum. 

Programmers have noticed that signal is almost always the last operation 
performed in an exported procedure. You can see this behavior in my pro-
ducer-consumer code (lines 18 and 27). The rules will often make the signaler 
wait in the urgent queue and then return to the central region (acquiring ex­
clusion) just to get out of the monitor altogether (releasing exclusion). These 
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extra waits ands locks are inefficient. If signal is not the last operation, the 
signaler can’t assume that the situation of shared variables is unchanged 
across signal. While it was in the urgent queue, the thread that was un­
blocked is likely to have modified the variables. The result is that signal is 
error-prone. For these reasons, some languages require that signal must be 
the last operation of an exported procedure and must cause the signaling 
thread to leave the monitor. Then the implementation doesn’t need an urgent 
queue, and signalers never make invalid assumptions about shared data. 
However, this restriction makes monitors less expressive. (Such monitors are 
strictly less powerful in a theoretical sense.) 

A related suggestion is to use broadcast instead of signal. Broadcast re­
leases all the members of the given condition queue. Since they can’t all be 
allowed into the central region at once, most are placed in the urgent queue. 
A released thread can no longer assume that the condition it has awaited is 
still met by the time it resumes. Programs written with broadcast usually 
replace the if statement in lines 13 and 22 of Figure 7.7 with a while loop to 
retest the condition after wait returns. 

Proper use of monitors follows the guideline that no thread should take 
too long in the central region. It shouldn’t take too long for a thread that is 
waiting in the entrance queue to get into the monitor and access the shared 
variables. Any lengthy operation should relax exclusion by entering a condi­
tion queue or by doing its work outside the monitor. A fascinating violation of 
this guideline arises if the thread in an exported procedure makes a call on a 
procedure exported by another monitor. Under the rules, this thread is still 
considered to be in the first monitor, preventing any other thread from enter­
ing. However, it may take a long time before it returns because it may be 
forced to wait in the second monitor in a condition queue. (By the guideline, 
it shouldn’t have to wait very long in either the entrance queue or the urgent 
queue.) This delay in returning violates the guideline with respect to the first 
monitor. The situation can even lead to deadlock if the condition it awaits in 
the second monitor can be signaled only by a thread that is currently waiting 
patiently to enter the first monitor. 

Several solutions have been proposed to this nested-monitor problem 
[Haddon 77]: 

1.	 Disallow nested monitor calls. 
2.	 Warn the programmer, but allow the bad situation to develop. That is, 

nested monitor calls maintain exclusion on the old monitor while in the 
new one. 

3.	 Release exclusion on the old monitor and enforce it only on the new one. 
When the thread is ready to return, it must wait in the urgent queue of 
the first monitor until it can once again achieve exclusive use of the cen­
tral region. 

4.	 Let the programmer decide whether the nested call should maintain ex­
clusion in the old monitor or not. By default, method 2 is used. The 
programmer can say duckout to release exclusion while still in the mon­
itor and duckin to achieve exclusion again. These calls can bracket a 
nested call to simulate method 3. 

Although monitors represent an important advance over raw semaphores, 
they do have significant problems. Monitors have been criticized for not pro-
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viding any control over how the queues are ordered. The policy of treating 
queues in first-in, first-out order is not always appropriate. For example, sev­
eral threads simultaneously in the urgent queue are like nested interrupts, 
which are usually released in first-in, last-out (stack) order. Similarly, differ­
ent waiters in a condition queue may have different priorities, which could be 
taken into account in selecting an order. Some people prefer a more general 
mechanism for inspecting and reordering the various queues. 

Monitors also display unexpected complexity with respect to nested calls. 
It is not easy to describe the semantics of wait and signal without resorting 
to pictures like Figure 7.8. Complexity is also introduced by the artificial use 
of condition variables. The programmer is more likely to understand the un­
derlying condition (like InCount - OutCount > 0) than to represent that condi­
tion properly by judicious use of NotEmpty, including signal at the 
appropriate places. 

Another objection to monitors comes from their data-abstraction ability. If 
I have several bounded buffers to implement, I would be tempted to build 
only one monitor and to have the PutBuffer and GetBuffer procedures take a 
parameter that describes which buffer is to be manipulated. This solution 
has two drawbacks. One is that the buffer has an existence outside the moni­
tor and so might be inadvertently modified by a nonmonitor procedure. Ada 
addresses this limitation by providing for variables to be exported from mod­
ules in an opaque fashion, so that they cannot be manipulated outside the 
module. The other drawback is that using only one monitor is too conserva­
tive. Every manipulation of one buffer now excludes operations on all other 
buffers, because mutual exclusion is governed by which monitor is entered, 
not by which data structure is accessed. What we want is a monitor class 
that can be instantiated once for each separate buffer. 

Mesa addresses the problem of overconservatism in two different ways. A 
monitor instance can be constructed dynamically for each buffer. However, 
there is a large space and time penalty for building monitor instances. In­
stead, the programmer may place the data (the buffer) in a monitored record, 
which is passed as a parameter to every exported procedure. The monitor 
declaration indicates that it uses a mutex in that record instead of its own 
mutex for mutual exclusion among threads executing exported procedures. 
For example, the bounded buffer in Mesa might be programmed as shown in 
Figure 7.9. 

Figure 7.9 constant 1 
Size = 10; -- capacity of the buffer 2 

type 3 
Datum = ... -- contents of a buffer 4 
BufferType : 5 

monitored record 6 
Buffer : array 0:Size-1 of Datum; 7 
InCount, OutCount : integer := 0; 8 
NotEmpty, NotFull : condition; 9 

end;  10  
BufferPtrType : pointer to BufferType; 11 
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monitor BoundedBuffer; 12

locks BufferPtrˆ using BufferPtr : BufferPtrType; 13

export GetBuffer, PutBuffer; 14


procedure PutBuffer( 15

value What : Datum; 16

value BufferPtr : BufferPtrType); 17


begin 18

if BufferPtrˆ.InCount-BufferPtrˆ.OutCount = Size 19

then 20


wait BufferPtrˆ.NotFull; 21

end;  22 

BufferPtrˆ.Buffer[BufferPtrˆ.InCount mod Size] 23


:= What; 24

BufferPtrˆ.InCount := BufferPtrˆ.InCount + 1; 25

signal BufferPtrˆ.NotEmpty ; 26


end; -- PutBuffer; 27


procedure GetBuffer 28

(result Answer : Datum; 29

value BufferPtr : BufferPtrType); 30


begin 31

if BufferPtrˆ.InCount - BufferPtrˆ.OutCount = 0 32

then 33


wait BufferPtrˆ.NotEmpty; 34

end;  35 

Answer := BufferPtrˆ.Buffer 36


[BufferPtrˆ.OutCount mod Size]; 37

BufferPtrˆ.OutCount := BufferPtrˆ.OutCount + 1; 38

signal BufferPtrˆ.NotFull ; 39


end; -- GetBuffer; 40

end; -- BoundedBuffer; 41


The buffer type (lines 5–10) implicitly contains a mutex. BoundedBuffer is 
written as a monitor, which means it implicitly acquires and releases that 
mutex on entrance and exit from exported procedures and when waiting for 
conditions. The monitor specifies that it locks BufferPtr ,̂ which must be a 
parameter to every exported procedure. Unfortunately, if an exported proce­
dure modifies its parameter BufferPtr, chaos can ensue, since the wrong mu­
tex will then be accessed. 

Modula-3 goes farther in solving the problem of overconservatism in moni­
tors. It gives up on monitors entirely, providing only the building blocks out 
of which the programmer can build the necessary structures. That is, Mod-
ula-3 has conditions and mutexes as ordinary data types. The wait state­
ment specifies both a condition and a mutex. As the thread begins to wait, it 
releases the mutex. When the thread is awakened by either signal or broad­
cast, it regains the mutex. Exported procedures and condition variables may 
be packaged into modules (to make monitors), data structures (so that each 
bounded buffer is independently exclusive), or classes (to allow monitors to be 
instantiated any number of times). 

A serious objection to monitors is related to the guideline that exclusion 
should not be in force for very long. The problem is that shared data might be 
needed for a very long time. This is exactly the situation in the readers-
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writers problem, in which some threads (the readers) need to read shared 
data, and others (the writers) need to write those data. Writers must exclude 
readers and all other writers. Readers must exclude only writers. Reading 
and writing are time-consuming operations, but they always finish eventu­
ally. If we export Read and Write from the monitor, two readers cannot exe­
cute at the same time, which is too restrictive. Therefore, Read must not be a 
monitor procedure; it must be external to the monitor. Proper use of Read 
would call the exported procedures StartRead and EndRead around calls to 
Read, but there is no assurance that a programmer will follow these rules. 
Monitors can therefore fail to protect shared data adequately. 

2.6 Crowd Monitors 
Crowd monitors are a nice extension to monitors that address this last prob­
lem [Horn 77]. Crowd monitors distinguish exclusive procedures from ordi­
nary procedures within the monitor. Only exclusive procedures are mutually 
exclusive. Ordinary procedures may be invoked only by activities that have 
permission to do so; this permission is dynamically granted and revoked by 
exclusive procedures. A skeleton of the crowd-monitor solution to the read-
ers-writers problem appears in Figure 7.10. 

Figure 7.10 crowd monitor ReadWrite; 1 

export StartRead, EndRead, Read, StartWrite, 2 
EndWrite, Write; 3 

variable 4 
Readers : crowd Read; 5 
Writers : crowd Read, Write; 6 

exclusive procedure StartRead(); 7 
... -- block the caller until reading is safe 8 
enter Readers; 9 
... 10 

exclusive procedure EndRead(); 11 
... 12 
leave Readers; 13 
... -- bookkeeping, maybe signal a waiting writer 14 

exclusive procedure StartWrite(); 15 
... -- block the caller until writing is safe 16 
enter Writers; 17 
... 18 

exclusive procedure EndWrite(); 19 
... 20 
leave Writers; 21 
... -- bookkeeping, maybe signal waiter 22 

procedure Read(...); 23 
... -- actually read from the shared data 24 
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procedure Write(...); 25 
... -- actually modify the shared data 26 

end; -- ReadWrite	 27 

In lines 5 and 6, I declare two crowds called Readers and Writers. Threads 
can dynamically enter and leave these crowds. Any member of Readers may 
access the Read procedure (lines 23–24), and any member of Writers may ac­
cess both the Read and the Write procedure (lines 25–26). Threads initially 
belong to no crowds. The exclusive procedures decide when it is appropriate 
for a thread to enter or leave a crowd. They may use conditions to wait for 
the right situation. When the exclusive procedure decides to let a reader pro­
ceed, it executes enter for the Readers crowd (line 9). Similarly, a guard can 
let a writer enter the Writers crowd (line 17). Although any thread may call 
Read and Write, because they are exported from the monitor, a runtime check 
prevents threads from calling them if the threads are not in appropriate 
crowds. A member only of Readers may not call Write, but, a member of 
Writers may call either Read or Write, since both are specified in the defini­
tion of Writers (line 6). 

2.7 Event Counts and Sequencers 
Mutual exclusion is not always desirable because it limits concurrency. It is 
also unnecessary in some cases on physically distributed computers. In fact, 
if one hasn’t yet implemented mutual exclusion, the method discussed here 
can be used to build semaphores to provide mutual exclusion, too [Reed 79]. 
Those semaphores will even allow simultaneous down operations on several 
semaphores. 

The first type needed is the event count. An event count is implemented 
as a nondecreasing integer variable. It keeps a count of the number of events 
of interest to the program, such as the number of times a variable has been 
modified. Event counts have three operations: 

1.	 advance E is used to signal the occurrence of events associated with 
event count E. It has the effect of incrementing E indivisibly. 

2.	 read E is an expression that evaluates to the value of the event count E. 
If read returns some number n, then at least n advance operations must 
have happened. By the time this number is evaluated, the event count 
may have been advanced again a number of times. 

3.	 await E reaches v waits for the event count E to have the value v. It  
blocks the calling thread until at least v advance operations have oc­
curred. It is acceptable if more than v advance operations have occurred 
when the thread is finally unblocked. This overshoot could result from 
very frequent advance operations. 

These definitions allow both await and read to be concurrent with advance, 
since the programmer won’t care if read gives a somewhat stale value or if 
await waits a trifle too long. 

Figure 7.11 shows how to encode the bounded buffer using event counts. 
For the time being, I assume that there is only one producer and one con­
sumer. 
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Figure 7.11 -- other declarations as before 1 
variable InEvents, OutEvents : eventcount := 0; 2 

procedure PutBuffer(value What : Datum); 3 
begin 4 

await OutEvents reaches InCount − Size; 5 
Buffer[InCount mod Size] := What; 6 
advance InEvents; 7 
InCount := InCount + 1; 8 

end ; -- PutBuffer; 9 

procedure GetBuffer(result Answer : Datum); 10 
begin 11 

await InEvents reaches OutCount; 12 
Answer := Buffer[OutCount mod Size]; 13 
advance OutEvents; 14 
OutCount := OutCount + 1; 15 

end; -- GetBuffer; 16 

There is no need to worry that the consumer and producer will simultane­
ously access the same cell in Buffer. The producer will wait until the con­
sumer has taken the value from any cell before await in line 5 will allow it to 
proceed to refill it. Similarly, the consumer knows that when it accesses a cell 
of Buffer, the producer must have placed data there, or the await in line 12 
would not have unblocked. Even if both advance operations (lines 7 and 14) 
happen at the same time, there is no problem, because they deal with differ­
ent event counts. The bounded buffer may be used simultaneously by both 
threads because it guarantees that the very same datum will never be 
touched by both at once. I could have omitted InCount and OutCount, replac­
ing them with read InEvents and read OutEvents, respectively, but since 
they are used for indices into Buffer, and read can return a stale value, I 
used separate variables to make sure the right index was always computed. 

The second data type for synchronization is the sequencer, which assigns 
an arbitrary order to unordered events. A sequencer is implemented as a 
nondecreasing integer variable, and has only one operation: ticket. 

•	 ticket S is an expression that first evaluates to the current value of the 
sequencer S and then increments S. This operation is indivisible. 

Now I can implement a bounded buffer in which there are many produc­
ers. For simplicity, I will still have only one consumer. As before, consump­
tion and production need not exclude each other. Multiple producers will 
take turns to make sure that they don’t write into the same cell in Buffer. 
The new producer program is given in Figure 7.12. 
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Figure 7.12 variable ProducerTurn : sequencer := 0;	 1 

procedure PutBuffer(value What : Datum); 2 
variable SequenceNumber : integer; 3 
begin 4 

SequenceNumber := ticket ProducerTurn; 5 
await InEvents reaches SequenceNumber; 6 

-- wait for turn 7 
await OutEvents reaches SequenceNumber − Size; 8 

-- wait for Buffer 9 
Buffer[SequenceNumber mod Size] := What;	 10 
advance InEvents; 11 

end ; -- PutBuffer; 12 

Each producer must await its turn to produce. The ticket operator in line 5 
orders active producers. There will be no wait in line 6 unless another pro­
ducer has just grabbed an earlier ticket and has not yet arrived at line 11. 
The await in line 8 makes sure that the cell in Buffer that is about to be 
overwritten has been consumed. The advance in line 11 tells waiting con­
sumers that this cell in Buffer may be consumed, and it tells waiting produc­
ers that this thread has finished its turn. 

The await in line 6 might seem unnecessary. It’s there to make sure that 
producers write cells of Buffer in order, so that consumers may assume that 
when InCount is advanced in line 11, the next cell of Buffer has new data. 
Unfortunately, one effect of this imposed sequential behavior on producers is 
that separate cells of Buffer cannot be written simultaneously. If the cells 
are large, producers may exclude each other for a long time. 

2.8 Barriers 
Some computations occur in phases, and threads that finish one phase must 
wait until all have finished until any may proceed to the next phase. The 
barrier type provides the necessary synchronization. It has one operation: 

•	 meet B causes the thread to block on barrier B until all threads have exe­
cuted a meet statement on B. 

An example of barrier synchronization is a bottom-up version of MergeSort, 
shown in Figure 7.13. 

Figure 7.13 constant UpperBound = ... -- size of array 
type	DataArray = array 0..UpperBound of integer; 
variable 

Tangled : DataArray;

MergeBarrier : barrier UpperBound div 2;
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thread MergeSort(Start : integer); 6 
variable Width : integer; 7 
begin 8 

Width := 1; 9 
while Width < UpperBound+1 do -- a phase 10 

-- Sort Tangled[Start .. Start+2*Width-1] 11 
if Start mod Width = 0 -- participate 12 

Merge(Tangled, Start, Start+Width-1, 13 
Start+Width, Start+2*Width-1); 14 

end;  15  
meet MergeBarrier; -- ends phase 16 
Width := 2 * Width; -- preparation for next phase 17 

end; 18 
end; -- MergeSort 19 

begin -- main 20 
for Start := 0 to UpperBound step 2 do 21 

MergeSort(Start); -- creates a thread 22 
end; 23 

end; -- main 24 

If UpperBound (line 1) is, say, 9, then line 22 starts five threads, each working 
on a different two-element section of Tangled. Each thread enters the first 
phase, sorting its own two-element section. Lines 13 and 14 sort that section, 
assuming that the two subsections are already sorted. Each thread waits for 
the phase to complete (line 16) before starting the next. MergeBarrier is de­
clared in line 5 with a capacity equal to the number of threads. Threads that 
meet at the barrier wait until the full capacity of the barrier is reached. Only 
half the threads active in one phase need to participate in the next phase; 
they select themselves in line 12. Those that become inactive still participate 
in the barrier in future phases in order to permit the active ones to make 
progress. 

Two-thread barriers can be implemented by shared variables and busy 
waiting or by two semaphores. Multithread barriers can be built by various 
combinations of two-thread barriers; there are also other ways to build them. 
In most implementations, when the barrier is first initialized, it needs to 
know exactly which threads will participate. 

Some researchers have suggested that meet be split into two operations 
[Gupta 89]. The first, arrive, indicates that the thread has finished the pre­
vious phase. The second, depart, indicates that the thread is about to start 
the next phase. Between arrive and depart, the thread need not block if it 
has useful work to do. Threads are blocked at depart until all threads have 
arrived. This suggestion can increase the effective parallelism of a program 
if there is significant work that can be done between phases. In the Merge-
Sort example, I could place arrive at line 16 and depart after line 17. Sepa­
rating arrive from depart, however, can lead to programming errors in 
which the operations fail to balance. I am tempted to place depart after line 
11, but then threads would depart before arriveing. 
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2.9 Performance Issues 
Concurrent programs may fail not only because they contain programming 
errors that lead to incorrect results, but also because they make no progress 
due to blocking. They may also run more slowly than necessary because of 
poor programming. 

I have already mentioned that signal usually occurs as the last operation 
in a monitor’s exported procedure. In Modula-3, where the exported proce­
dure must explicitly acquire a mutex, it is advisable to release the mutex be­
fore signaling. Otherwise, the awakened thread will try to acquire the 
mutex and immediately block again. The same problem occurs with broad­
cast, but now many threads will try to acquire the mutex, and only one will 
succeed. It may be preferable (although clumsier) to use signal and to have 
each awakened thread signal the next one. 

Starvation is a form of unfairness in which a thread fails to make 
progress, even though other threads are executing, because of scheduling de­
cisions. Although starvation can be the fault of the thread scheduler, it is 
more often a programming error. For example, a poorly programmed solution 
to the readers-writers problem will block writers so long as there are any 
readers. New readers can come and go, but so long as there are any readers, 
all writers starve. The solution to starvation is to prevent new threads from 
acquiring mutexes until old threads have completed. In the readers-writers 
case, new readers can be kept out if any writers are waiting. 

Deadlock occurs when a group of threads is blocked waiting for resources 
(such as mutexes) held by other members of the group. For example, the code 
of Figure 7.14 will deadlock. 

Figure 7.14 variable 1 
Mutex1, Mutex2 : mutex; 2 
BarrierA : barrier; 3 

procedure ThreadA(); 4 
begin 5 

lock Mutex1 do 6 
lock Mutex2 do 7 

-- anything 8 
end; 9 

end; 10 
end; -- ThreadA 11 

procedure ThreadB(); 12 
begin 13 

lock Mutex2 do 14 
lock Mutex1 do 15 

-- anything 16 
end;  17  

end; 18 
end; -- ThreadB 19 

ThreadA might reach line 7 just as ThreadB reaches line 15. Each will then 
try to lock a mutex held by the other. Neither can make any progress. 
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The standard and simplest way to avoid deadlock is always to acquire re­
sources in the same order. If ThreadB would first lock Mutex1 and then Mu­
tex2, then there is no schedule that will lead to deadlock between these 
threads. For this reason, languages that provide conditional critical regions 
implicitly sort the necessary mutexes and acquire them in a standard order. 
Of course, nested conditional critical regions can still deadlock. 

Another way to deal with deadlock is to provide a way for wait statements 
to be interrupted. Modula-3 provides a version of wait that will unblock if an 
exception is raised in the thread. This exception can be raised by another 
thread by the alert statement. The alert statement also sets a flag in the 
alerted thread that it can inspect in case it is busy with a long computation 
and is not waiting on a condition. 

3 ◆ TRANSACTIONS: ARGUS 
The concept of acquiring exclusion over data structures is often extended to 
deal gracefully with failure. This behavior is especially important for pro­
grams that modify large shared databases. A transaction is a set of opera­
tions undertaken by a thread. Transactions have two important properties. 
First, these operations are indivisible when taken as a whole. From the point 
of view of other threads, either they have not started or they have all fin­
ished. Second, the transaction is recoverable; that is, it can either commit, 
in which case all modifications to shared data take effect, or it can abort, in  
which case none of its modifications takes effect. Because transactions are 
indivisible, threads cannot see modifications performed by other transactions 
that are still in progress. 

For example, in an airline reservation database, a customer may wish to 
exchange a seat on a given flight for a seat on another flight. The program 
might give up the first seat and then reserve the second. If the second plane 
is full, it is necessary to get back the initial seat, which may already have 
been allocated to another passenger. If both actions (releasing the first seat 
and reserving the second) are part of a transaction, then the program can just 
abort when it fails to reserve the second seat. The first seat will still be re­
served by the original customer. 

Transactions can be nested. In order to increase concurrency, programs 
might want to start several threads as children of an initial thread. Each can 
enter its own subtransaction. If any child thread fails, its own data modifica­
tions are recovered, but the parent transaction can still proceed. Unrelated 
transactions do not see any data modifications until and unless the top-level 
transaction commits. 

Argus provides programming-language support for nested transactions 
[Liskov 83a]. The statements comprising a transaction are the body of a 
transaction statement. Of course, a procedure may be called from inside a 
transaction, and the procedure may be recursive, so the lexical nature of 
transaction entry does not limit the number of transactions. If the transac­
tion statements finish execution, the transaction commits. The statement 
abort causes the current transaction to fail. 

Data that are shared among threads must be built out of recoverable 
types. Argus provides recoverable versions of primitive types, such as inte­
gers and arrays. Read and write locks are implicitly acquired when recover-
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able variables are accessed. (These locks are typically held until the 
transaction completes.) If a lock cannot be granted immediately because of 
conflicting locks held by other threads, the accessing thread is blocked. Dead­
lock is automatically detected and handled by aborting one or more transac­
tions. It is also possible for a program to explicitly acquire a read or write 
lock and to avoid blocking if the lock is not currently grantable. Structured 
types can be made recoverable by providing access procedures that use mu­
tual exclusion and ensure that exclusion is only released when the structure’s 
value is internally consistent. 

These facilities can be used to build, for example, a bounded buffer of inte­
gers for which GetBuffer does not necessarily get the oldest remaining data 
[Weihl 90], as in Figure 7.15. 

Figure 7.15 module BoundedBuffer; 1


export GetBuffer, PutBuffer; 2


type 3

Entry = recoverable -- choice type 4


Valid : integer; 5

Invalid : void; 6


end; 7

variable 8


Buffer : array of Entry -- flexible; 9


procedure PutBuffer(value What : integer); 10

begin 11


region Buffer do -- get exclusion 12

Append(Buffer, 13


MakeRecoverable(Entry, Valid, What)); 14

end;  15 


end; -- PutBuffer; 16


procedure GetBuffer(result Answer : integer); 17

variable Item : Entry; 18

begin 19


region Buffer do -- get exclusion 20

loop -- iterate until success 21


for Item in Buffer do 22

tagcase Item of 23


when writeable Valid(Answer) 24

=> ChangeRecoverable 25


(Item, Invalid); 26

return;  27 

-- releases exclusion 28


end; -- writeable 29

end; -- tagcase 30


end; -- for Item 31
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duckout; -- release exclusion 32 
sleep(); 33 
duckin; -- regain exclusion 34 

end; -- iterate until success 35 
end; -- mutual exclusion 36 

end; -- GetBuffer; 37 

end; -- BoundedBuffer; 38 

Enqueued integers are kept in the flexible array Buffer (line 9). Both Put-
Buffer and GetBuffer acquire mutual exclusion over the array by using re­
gion statements. Each item in the array is a recoverable object, which is a 
choice type (lines 4–7). PutBuffer (lines 10–16) puts a new recoverable entry 
in Buffer with the appropriate initial value. I use Append to add to the end of 
a flexible array and MakeRecoverable to generate a new recoverable item 
with an initial value. GetBuffer searches the array for an item on which it 
can acquire a write lock and which is valid. I use a for loop (lines 22−31) to 
scan through the flexible array. The tagcase statement (lines 23–30) checks 
both the variant (I am interested only in Valid items) and whether a write 
lock can be achieved. For those items where the variant is wrong or a write 
lock cannot be achieved, the single branch of tagcase is not selected. For the 
first item where the variant is correct and the write lock can be achieved, 
GetBuffer stores the value in Answer (line 24), changes the value to Invalid 
(Lines 25–26), and returns, releasing exclusion. If it fails to find such an 
item, it releases exclusion, waits a while, then tries again (lines 32–34). Any 
value returned by GetBuffer is guaranteed to have been placed there by a 
transaction that is visible to the current one (that is, one that has committed 
or is an ancestor of the current one) and not to have been removed by any ac­
tive or committed transaction. Invalid initial elements of the buffer can be 
removed by a separate thread that repeatedly enters a top-level transaction 
and removes elements that are writeable and invalid. 

This example shows a few drawbacks to the way Argus deals with recover­
able types. Given the Argus facilities, it appears that the algorithm shown is 
the most efficient that can be achieved. However, GetQueue is inefficient, be­
cause it needs to glance at all initial buffer entries, even if they are in use by 
other transactions. It uses busy waiting in case it cannot find anything at the 
moment. Programmers have no control over when commit and abort actually 
make their changes, so it is possible for a consumer to get several items pro­
duced by the same producer out of order. Attempts to enhance the language 
by adding transaction identifiers and explicit finalization code to be executed 
upon commit or abort can relieve these shortcomings, but at the expense of 
far more complicated programs [Weihl 90]. 
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4 ◆ 

Figure 7.16 

COOPERATION BY PROCEDURE CALL 
So far, I have described ways in which threads that cooperate through shared 
variables can synchronize access to those variables. A different sort of coop­
eration is achieved by procedure calls. When one thread (the client) calls an­
other (the server), information can be passed in both directions through 
parameters. Generally, parameters are restricted to value and result modes. 
A single thread can act as a client with respect to some calls and a server 
with respect to others. 

4.1 Rendezvous 
In Ada, SR, and Concurrent C, procedure calls between threads are handled 
by a mechanism called a rendezvous, which is an explicit way for the server 
to accept procedure calls from another thread. A thread executes within a 
module. This module exports entries, which are the procedurelike identi­
fiers that may be invoked by other threads. The declaration of an entry in­
cludes a declaration of its formal parameters. 

A server accepts a call from a client by an accept statement, which names 
the entry and the formal parameters. The accept statement blocks until 
some client invokes this procedure. At that time, the actuals provided by the 
client are bound to the formals, and the server executes the body of the ac­
cept. The accept statement may be nested in a select statement, which 
may enable several rendezvous, based on values of current variables and even 
on the values of the actual parameters presented. 

A client invokes a rendezvous by a syntax that looks like procedure call. 
The client blocks until the server executes a matching accept statement and 
either completes the body of that accept or explicitly releases the client. Fig­
ure 7.16 shows a bounded buffer (in Ada syntax). 

task BoundedBuffer is 1 
entry GetBuffer(Answer : out Datum); 2 
entry PutBuffer(What : in Datum); 3 

end; 4 

task body BoundedBuffer is 5 
Size := constant 10; -- capacity of the buffer 6 
type Datum is ... -- contents of the buffer 7 
Buffer : array (0..Size-1) of Datum; 8 
InCount, OutCount : integer := 0; 9 
entry GetBuffer(Answer : out Datum); 10 
entry PutBuffer(What : in Datum); 11 
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begin -- body of BoundedBuffer 12 
loop -- each iteration accepts one call 13 

select 14 
when InCount - OutCount > 0 => 15 

accept GetBuffer(Answer) do 16 
Answer := 17 

Buffer[OutCount mod Size]; 18 
return;  19  
OutCount := OutCount + 1; 20 

end; -- accept 21 
or 22 

when InCount - OutCount < Size => 23 
accept PutBuffer(What) do 24 

return;  25  
Buffer[InCount mod Size] := What; 26 
InCount := InCount + 1; 27 

end; -- accept 28 
end; -- select 29 

end; -- loop 30 
end; -- BoundedBuffer 31 

BoundedBuffer is a task, that is, a module that contains a thread. Ada sepa­
rates the specification (lines 1–4) from the implementation (lines 5–31). This 
module would be declared in the same block as a producer and a consumer 
module. The entry declarations in lines 2–3 (repeated in lines 10–11) provide 
procedurelike headers that clients of this module may call. 

Each of the alternatives in the select statement (lines 14–29) is headed 
by a Boolean guard. When BoundedBuffer executes the select command, the 
guards are evaluated. Those that evaluate to true dictate which branches 
are open. BoundedBuffer is then blocked until a client invokes a procedure 
accepted by one of the open branches. If more than one client has already in­
voked such a procedure, then select is nondeterministic; one branch is arbi­
trarily chosen. It is up to the implementation to attempt to be fair, that is, 
not to always prefer one branch over another. 

The accept statements (lines 16–21 and 24–28) introduce new name 
scopes in which the formal parameters are defined. A client remains blocked 
until the rendezvous is finished or the server executes return (lines 19 and 
25). I have placed the return statements as early as possible to allow the 
client to proceed with its own activities. 

There is no danger that InCount and OutCount will be simultaneously ac­
cessed by several threads, because they are not shared variables. Only 
BoundedBuffer itself can access them. By the same token, it is not possible 
for two rendezvous to be active simultaneously. Therefore, rendezvous have 
less parallelism than can be obtained by, for instance, event counts. 
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Figure 7.17 Rendezvous Time Producer Bounded buffer Consumer 
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Figure 7.17 shows how the rendezvous code might execute. Time starts at the 
top and progresses downward. Solid vertical lines indicate execution; spaces 
indicate waiting. The producer invokes PutBuffer at time 1 and gets a re­
sponse at time 3. Between those times, the producer and the bounded buffer 
are in rendezvous. The consumer invokes GetBuffer at time 5 and gets a re­
sponse at time 7. The producer makes its second call at time 9. This call is 
still in progress when the consumer calls GetBuffer at time 10. The con­
sumer is blocked until the producer’s rendezvous finishes at time 10. The 
consumer calls the bounded buffer again at time 16. The buffer is empty, so 
its call is not accepted. The consumer is blocked until the following ren­
dezvous between the producer and bounded buffer finishes. 

I have written BoundedBuffer as an unterminated loop. Ada terminates 
all remaining threads in a name scope if all are blocked in calls, accept, or  
select statements. Therefore, when the producer thread finishes, the con­
sumer will be allowed to consume all the remaining entries from the bounded 
buffer. Then the consumer will block on a call to GetBuffer, and Bounded-
Buffer will block in the select statement. Both will be terminated. 

SR and Concurrent C add extra features to Ada’s rendezvous to affect the 
scheduler’s decision about which branch of select to prefer if several are 
open and have incoming calls. Each branch can be given a numeric priority. 
(Ada has the concept of static task priority, but not dynamic branch priority.) 
If there are several waiting calls on a particular accept, they may be sorted 
based on the values of the actual parameters. (In Ada, calls are processed 
strictly in first-come, first-served order.) To show these features, in Figure 
7.18 I have rewritten the select loop from Figure 7.16 to prefer producers to 
consumers unless the buffer is nearly full, and to prefer low values of data to 
high values. 
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Figure 7.18 select 1 
priority -- high number is better 2 

if Size - (InCount - OutCount) < 2 3 
then 1 else 0 4 

accept GetBuffer(Answer) 5 
when InCount - OutCount > 0 6 
do 7 

Answer := Buffer[OutCount mod Size]; 8 
return; 9 
OutCount := OutCount + 1; 10 

end; -- accept 11 
or 12 

priority -- high number is better 13 
if Size - (InCount - OutCount) < 2 14 

then 0 else 1  15  
accept PutBuffer(What) 16 
when InCount - OutCount < Size 17 
sortedby (-What) -- prefer low values 18 
do 19 

return;  20  
Buffer[InCount mod Size] := What 21 
InCount := InCount + 1; 22 

end; -- accept 23 
end; -- select 24 

The priority clauses (lines 2–4, 13–15) decide which branch to prefer if sev­
eral are open. In this case, the second branch has higher priority unless the 
buffer is nearly full. I have placed the when guard (lines 6, 17) after the ac­
cept clause so that the guard can take advantage of the formal parameters 
introduced by accept, even though this example doesn’t do so. (SR uses this 
order.) The sortedby clause (line 18) reorders multiple calls to PutBuffer 
based on the formal parameter What. 

4.2 Remote Procedure Call (RPC) 
If threads do not share variables (for example, if they are running on differ­
ent machines connected by a network), the only way they can cooperate is by 
procedure call or messages. Rendezvous is one way of accepting procedure 
calls. The only calls that are handled are those that match open accept 
statements. Remote procedure call (RPC) means an invocation that is 
handled not by accept statements, but by an ordinary exported procedure. 
Such calls can cross compilation units, processes, computers, and even pro­
grams that are written at different times in different languages. 

The model of computation for remote procedure calls is somewhat differ­
ent from what I have been discussing so far. Each address space may have 
multiple threads, which may share variables in that address space, subject to 
any scope rules the language imposes. Threads in separate address spaces do 
not share variables. 

A thread may invoke an exported procedure inside another address space 
by a remote procedure call. There are two equivalent ways to picture the ef­
fect of such a call. You can imagine the thread migrating temporarily to the 
address space of the server, performing the call there, and then returning to 
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the client’s address space. Address spaces thus share information by sending 
their threads to visit other address spaces, bringing and returning data in 
their parameters. Alternatively, you can imagine the calling thread sending a 
message to the server and then blocking. A new service thread starts in the 
server address space for the purpose of handling the call. When it finishes, it 
sends results back to the blocked client thread, causing the client to awaken. 
The service thread then terminates. The first view is simpler. The underly­
ing implementation is likely to use something closer to the second view. 

In the DP (Distributed Processes) language of Brinch Hansen 
[Brinch Hansen 78], each address space starts with one thread, which starts 
running the main program of that address space. That thread cannot create 
new threads, but it may wait for conditions (using an await statement). Re­
mote procedure calls are blocked until no thread is active in the server. A 
thread is considered inactive if it has terminated or if it is blocked waiting for 
a condition. It is active, however, if it is in the middle of a remote procedure 
call to some other address space. Therefore, the programmer does not need to 
be afraid that variables will suddenly have different values after a remote 
procedure call returns; such a call is indivisible. An await relaxes exclusion, 
though, allowing a client thread to visit. Therefore, data can change during 
await, but await checks a Boolean condition that can prevent it from un­
blocking until the situation is appropriate. 

Figure 7.19 is an implementation of a bounded buffer in DP. 

Figure 7.19 -- declarations as in Figure 7.4 (page 192). 1 

procedure PutBuffer(value What : Datum); 2 
begin 3 

await InCount - OutCount < Size do 4 
Buffer[InCount mod Size] := What; 5 
InCount := InCount + 1; 6 

end; -- region 7 
end -- PutBuffer; 8 

procedure GetBuffer(result Answer : Datum); 9 
begin 10 

await InCount - OutCount < Size do 11 
Answer := Buffer[OutCount mod Size]; 12 
OutCount := OutCount + 1; 13 

end; -- region 14 
end GetBuffer; 15 

This code is remarkably similar to Figure 7.4 (page 192). The only difference 
is that there is no need to lock any mutexes, since the thread executing either 
PutBuffer or GetBuffer is guaranteed exclusion in any case. 

Languages like C that do not have remote procedure call built in can take 
advantage of a stub compiler, which takes a specification of the exported 
procedures and builds suitable code for both the client and the server 
[Nelson 81]. One widely available stub compiler is Sun RPC, a remote-
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procedure-call library designed by Sun Microsystems, Inc.2 This library in­
cludes procedures for both the client (c) and server (s) for establishing a con­
nection between them (c and s), sending a remote procedure call (c), receiving 
a remote procedure call (s), sending a response (s), and receiving the response 
(c). Parameters are transmitted in both directions in a machine-independent 
data format called “External Data Representation” (XDR); the client and 
server must call conversion routines to package and unpackage parameters to 
and from this format. 

Many experimental languages have been designed to offer RPC directly, 
without explicit recourse to library packages. They all offer some mechanism 
for establishing a connection between a client and server, typically involving 
search through some name space (so the client can find a server) and connect­
ing to some interface (to make sure the client and the server agree on what 
calls are valid). They might provide synchronization methods based on any of 
the methods I have described earlier to control access to variables that are ac­
cessed by multiple threads in the same address space. They often include au­
tomatic transmission of structured parameters. Argus even allows the 
parameters to contain pointer types. The runtime routines expand such val­
ues for transmission by traversing all the pointers. Argus also supports re­
mote invocation of CLU iterators and lets the invoked procedure raise 
exceptions. 

The compiler sees to it that remote procedure calls are packaged into mes­
sages in the client and unpackaged in the server by using a stub compiler. It 
also tries to ensure that RPC is type-secure, that is, that the procedure 
header in the server matches the call that the client is making. One mecha­
nism for type security is to represent the type of the procedure (that is, its 
name and the types and modes of its parameters) as a string and then to de­
rive a hash value from that string [Scott 88]. These hash values can be com­
piled; they need not be computed at runtime. The hash value is sent in each 
call message from client to server. The server checks that the hash value is 
correct; if not, there is a type error. A related idea is to represent each type 
as a tree, derive a polynomial from the tree, and evaluate the polynomial at a 
special point to produce a hash value [Katzenelson 92]. 

4.3 Remote Evaluation (REV) 
Remote procedure call only works if the server exports the procedure that the 
client needs. But clients are often written long after the server, and they may 
have needs that were not foreseen in the server. Some clients may need the 
server to run specialized procedures that most clients would not be interested 
in but which could run far more efficiently on the server than on a client, be­
cause the client would need to repeatedly invoke server routines remotely. 

Remote evaluation (REV) is a technique that allows clients to send not 
only parameters, but also procedures, to the server [Stamos 90]. The proce­
dures may refer to other procedures exported by the server. For example, a 
mail-delivery server might export a procedure DeliverMail. A client that 
wants to send a hundred identical messages could use RPC, invoking Deliv­
erMail a hundred times, each time passing the message. Alternatively, it 
������������������������������������ 
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could use REV, sending a small procedure to the server that invokes Deliver-
Mail a hundred times. The REV method is likely to be far more efficient. It 
also frees the mail-server designer of worries that the set of procedures ex­
ported by the server is not exactly right for every client. 

A programming-language implementation of REV must be able to deter­
mine whether the server exports enough operations to support an REV re­
quest; if not, it must decide how much code actually needs to be sent. At one 
extreme, the procedure that is to be evaluated is itself exported by the server. 
In that case, the client needs to send only the parameters and receive the re­
sults; REV becomes RPC. At the other extreme, not only does the server not 
export the procedure, but several other procedures that it calls in turn are 
also not exported. The client must bundle and send enough procedures to en­
sure that the server will be able to complete the REV request. Any nonlocal 
variables needed by those procedures must also be bundled, and they must be 
returned by the server to update the values in the client. 

The client can bundle the procedures needed by an REV request either at 
compile time or runtime. Compile-time bundling is more efficient but more 
restrictive. To make a compile-time bundle, the compiler must know what 
procedures are exported by the server, and it must traverse the invocation 
graph of the invoked procedure to discover all the procedures that must be in­
cluded. To make a runtime bundle, the compiler must prepare the invocation 
graph and keep it until runtime. When an REV request is encountered, the 
client must query the server to discover its list of exported procedures and 
traverse the invocation graph. 

REV requests may be nested. A procedure that is sent from a client to a 
server may contain another REV request to some other server. Compile-time 
bundling is unlikely to work for nested requests, because the contents of the 
nested bundle depend on the invocation graph in the server, which is not nec­
essarily available to the compiler of the client. 

REV requests that pass procedures as parameters cause a special prob­
lem. Compile-time bundling might refuse to deal with such parameters un­
less their binding is known at compile time. 

REV can cause a major security headache. The server must be protected 
against misbehaving procedures that are sent to it. Authentication protocols 
can be used to restrict clients to those on an approved list. Running the pro­
cedure in a separate thread on the server under some sort of time slicing can 
protect the server against wasting all its time on a nonterminating computa­
tion. Giving that separate thread readonly access to server variables can pro­
tect the server against data corruption, but it restricts REV to operations that 
do not need to modify server data. Interpreting the REV request in the 
server instead of running it can allow the server to refuse potentially danger­
ous operations. 

REV can be made implicit in every call and divorced from language de­
sign. The language runtime support can choose on every RPC whether to im­
plement the request by sending a message for RPC, sending a bundle for 
REV, or requesting a bundle from the server for local evaluation. This deci­
sion can be based on statistics gathered during execution in an attempt to 
balance communication and computational resources among machines 
[Herrin 93]. The contents of the bundle need not include more than the pro­
cedure mentioned in the RPC; there is no need either at compile time or run-
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time to deal with invocation graphs. Any procedure that cannot be resolved 
locally can certainly be resolved remotely. 

5 ◆ COOPERATION BY MESSAGES 
Although a procedure-call syntax makes concurrent programming look super­
ficially like sequential programming, not all cooperation is easily shoehorned 
into the procedure-call model. First, a single query might generate multiple 
results spread over time. If the query is represented as a procedure call, then 
the results must either be result parameters, which means the client is 
blocked until the last result is ready, or the results are independent calls in 
the other direction, which confuses the issue of which thread is client and 
which is server. Second, some cooperation is unidirectional; there is no need 
to block the client until the server receives, acts on, and responds to a call. 
Third, some computations are best viewed as interactions among peers, 
where no simple client-server hierarchy applies. Fourth, some computations 
require multicast of the same data to groups of address spaces. It is wasteful 
to program multicast as multiple procedure calls. Fifth, it might be necessary 
to reply to requests in a different order from the order in which they arrive. 

For these reasons, some experimental languages provide more primitive 
message-passing notions instead of or in addition to RPC. Often, message 
passing is provided as a library package to be used within some other lan­
guage such as C. Operating-system support is needed to make the individual 
operations efficient. The following table indicates some of the facilities that 
can be provided as simple language extensions or in library packages. 

Operation Parameters Results 

connect partner connection 
group set of partners connection 
send connection, data 
receive connection data 
reply data 
forward connection 

This list is neither complete (library packages often provide many more rou­
tines) nor required (many library packages have no group or forward opera­
tions, for example). Still, it provides a reasonable set of functions for message 
passing. 

The connect operation builds a connection, that is, a channel across which 
communication takes place; thus, individual send operations need not specify 
which process is to receive the message. Such a specification is given only 
once. It might be as simple as a process identifier or as complex as giving a 
process name or other characteristics to be looked up in a database. The 
group operation builds a connection that leads to multiple recipients. This fa­
cility is helpful for multicast. 

The send operation might be designed to block the sender until the mes­
sage can be copied to a safe place, until the message is sent, until the destina-
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tion machine(s) receives it, until the destination thread(s) receives it, or until 
a response arrives back to the sender from the destination thread(s). Seman­
tics that do not wait for the destination machine are usually called asyn­
chronous, and those that wait for a response are called synchronous. There 
is a wide spectrum of synchronicity, so these terms are not very precise. The 
data that are sent can be treated just as an array of characters, or they may 
have associated type information. 

The receive operation is used to accept incoming messages. It may be se­
lective; that is, it might only accept messages that arrive on a set of connec­
tions or messages that match some pattern. It might reorder messages based 
on their contents. It might block until such a message arrives; it may have a 
timeout period, after which it fails if no message arrives; or it may just enable 
a receive but allow the thread to continue executing other statements. 

The reply operation sends data back to the originator of the most recent 
message. In some languages, such as SR and Hermes, the program can spec­
ify which message is being responded to, so replies need not follow the order 
of receives. Packages that provide reply often have a single operation that 
combines send and receive. The client uses send/receive and the server 
uses receive followed by reply. 

The forward operation redirects the most recent incoming message (or a 
specified message) to a different destination. The recipient can then reply di­
rectly to the original sender. This facility is called delegation. 

5.1 CSP 
CSP (Communicating Sequential Processes) is a proposal made by 
C. A. R. Hoare for message passing between threads that do not share vari­
ables [Hoare 78]. It is the framework upon which Occam was developed 
[May 83]. Communication is accomplished by send and receive statements. 
Although the send statement looks like a procedure invocation, in fact it is a 
pattern specification, much like Prolog (discussed in Chapter 8). The pattern 
is built out of an identifier and actual parameters. It is matched against a 
pattern in a receive statement in the destination thread. Variables in the 
receive pattern are like formal parameters; they acquire the values of the ac­
tual parameters in the matching send pattern. Patterns match if the pattern 
name and the number of parameters are the same and all formal parameter 
patterns match the actual parameter patterns. Matching is even used for the 
assignment statements, as in the examples shown in Figure 7.20. 

Figure 7.20 left := 3; 1 
right := 4; 2 
x := cons(left, right); -- assigns pattern "cons(3,4)" 3 
form(right) := form(right+1); -- right := right+1 4 
factor(cons(left,right)) := factor(cons(5,6)); 5 

-- left := 5; right := 6 6 
right = imply(); -- pattern with no parameters 7 
muckle(left) := mickle(left+1); -- match error 8 

Variables can hold pattern values, as in line 3. Here, cons is not a procedure 
call, just a pattern constructor. Line 4 shows that matching the actual to the 
formal is like an ordinary assignment. Line 5 shows that matching works re-
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cursively. Patterns need not have parameters (line 7). If the pattern name 
disagrees, match fails (line 8). In each of these cases (except the last), a re­
ceive in one thread with the pattern on the left-hand side would match a 
send in another thread with the pattern on the right-hand side. 

CSP’s control structures include Ada’s nondeterministic select and also a 
nondeterministic while, which iterates open branches until no branch is 
open. Guards can be Boolean expressions, but they may also have as a final 
condition a send or receive statement. If the guard has such a statement, it 
is called an output guard or an input guard. For implementation reasons, 
original CSP did not allow output guards. It is hard, but not impossible, for 
an implementation to pair communicating threads when several have both 
send and receive guards open. Pairing is easier under the restriction that a 
guarded send or receive can only be matched with an absolute (unguarded) 
receive or send; some implementations of CSP make that restriction and al­
low output guards. 

Figure 7.21 shows how a bounded buffer can be implemented in CSP, us­
ing both input and output guards. 

Figure 7.21 type 1 
Datum = ... -- contents of the buffer 2 

thread BoundedBuffer; 3 
constant 4 

Size = 10; -- capacity of the buffer 5 
variable 6 

Buffer : array 0..Size-1 of Datum; 7 
InCount, OutCount : integer := 0; 8 

begin 9 
while -- each iteration handles one interaction 10 

when InCount - OutCount > 0 and 11 
receive PutBuffer(Buffer[InCount mod Size]) 12 
from Producer => 13 

InCount := InCount + 1; 14 
when InCount - OutCount < Size and 15 

send TakeBuffer(Buffer[OutCount mod Size]) 16 
to Consumer => 17 

OutCount := OutCount + 1; 18 
end; -- while 19 

end; -- thread Buffer 20 

thread Producer; 21 
begin 22 

loop 23 
Value := ...; -- generate value 24 
send PutBuffer(Value) to BoundedBuffer; 25 

end; -- loop 26 
end; -- Producer 27 
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thread Consumer; 28 
begin 29 

loop 30 
receive TakeBuffer(Value) from BoundedBuffer; 31 
...; -- use value 32 

end; -- loop 33 
end; -- Consumer 34 

The Producer thread (lines 21–27) repeatedly generates a value and sends it  
to the BoundedBuffer thread inside a PutBuffer pattern. This send blocks 
Producer if BoundedBuffer is not able to accept the match immediately, ei­
ther because it is occupied with something else or because there is no match­
ing receive currently open. The Consumer thread (lines 28–34) repeatedly 
receives a value from BoundedBuffer with a TakeBuffer pattern. This re­
ceive can block Consumer if BoundedBuffer does not have a matching send 
currently open. BoundedBuffer spends all its time in a nondeterministic 
while loop (lines 10–19) with two branches, one to accept data from Producer 
(lines 11–14), and the other to feed data to Consumer (lines 15–18). Each 
branch is guarded to make sure that the buffer situation allows it to be se­
lected. The first guard is an input guard, and the second is an output guard. 
If the buffer is neither full nor empty, both guards will be open, and 
whichever of Producer and Consumer is ready first will match its respective 
receive or send statement. If both are ready, then the scheduler will select 
one in an arbitrary, but in the long run fair, way. The while will always have 
at least one branch open, so it will never terminate. 

5.2 Lynx 
Lynx is an experimental language implemented at the University of Wiscon­
sin and at the University of Rochester [Scott 84, 86]. Address spaces and 
modules in Lynx reflect the structure of a multicomputer, that is, a dis-
tributed-memory machine. Each outermost module represents an address 
space. As in DP, each address space begins executing a single thread. That 
thread can create new threads locally and arrange for threads to be created in 
response to messages from other processes. Threads in the same address 
space do not execute simultaneously; a thread continues to execute until it 
blocks, yielding control to some other thread. It is not an error for all threads 
to be blocked waiting for a message to be sent or received. 

Lynx is quite helpful for programming long-running processes (called 
server processes) that provide assistance to ephemeral processes (called 
client processes). Typically, server processes are programmed to build a 
separate thread for each client process to keep track of the ongoing conversa­
tion between server and client processes. That thread may subdivide into 
new threads if appropriate. Lexical scope rules determine what variables are 
visible to any thread; the runtime organization uses a cactus stack. 

Lynx provides two-way communication links as first-class values. A link 
represents a two-way channel between address spaces. The program dynami­
cally binds links to address spaces and entries. Links can be used for recon­
figurable, type-checked connections between very loosely coupled processes 
that are designed in isolation and compiled and loaded at disparate times. 
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A link variable accesses one end of a link, much as a pointer accesses an 
object in Pascal. The only link constant is nolink. Built-in functions allow 
new links to be created (both ends start by being bound to the creator’s ad­
dress space) and old ones to be destroyed. Neither end of a destroyed link is 
usable. 

Objects of any data type can be sent in messages. If a message includes 
link variables or structures containing link variables, then the link ends ref­
erenced by those variables are moved to the receiving address space. This 
method could be called “destructive value” mode, since the value is transmit­
ted, but becomes inaccessible at the sender. Link variables in the sender that 
refer to those ends become dangling references; a runtime error results from 
any attempt to use them. 

Message transmission looks like RPC from the client’s point of view. The 
client dispatches a request and waits for a reply from the server. From the 
server’s point of view, messages may be received by rendezvous, using an ac­
cept statement, or by thread creation, in which a new service thread is built 
to execute a procedure when a message arrives. 

Servers decide dynamically which approach to use for each link. They ar­
range to receive requests by thread creation through the bind statement, 
which binds a link to an exported procedure (I will call it an “entry”). This ar­
rangement is cancelled by unbind. A link may be simultaneously bound to 
more than one entry and may even be used in accept statements. These pro­
visions make it possible for threads to multiplex independent conversations 
on the same link. If a client invokes an entry via a link that is not currently 
bound to that entry, the invocation blocks until the server either binds the 
link to that entry, enters a rendezvous for that entry, or destroys the link. 

When all threads in an address space are blocked, the runtime support 
package attempts to receive a message on any link that is bound or is the 
subject of an outstanding accept. Since messages are like RPC, they specify 
the exported procedure that they are attempting to invoke. The name of the 
procedure is matched against those of the active accepts and the bound links 
to decide whether to resume a blocked thread or create a new one. Bindings 
or accepts that cause ambiguity are runtime errors. 

Lynx provides type-secure RPC in the fashion described earlier on page 
213. Its exception-handling mechanism permits recovery from errors that 
arise in the course of message passing, and allows one thread to interrupt an­
other. 

Figure 7.22 shows how a bounded buffer can be programmed in Lynx. 

Figure 7.22 constant 1 
Size = 10; -- capacity of the buffer 2 

type 3 
Datum = ... -- contents of the buffer 4 

variable 5 
Buffer : array 0..Size-1 of Datum; 6 
InCount, OutCount : integer := 0; 7 
ParentLink, ProducerLink, ConsumerLink : link; 8 

entry 9 
Initialize(value link, link); -- for rendezvous 10 
PutBuffer, GetBuffer; -- full header and bodies below 11 
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procedure PutBuffer(value What : Datum); 12

begin 13


Buffer[InCount mod Size] := What; 14

InCount := InCount + 1; 15

if InCount - OutCount = 1 then -- no longer empty 16


bind ConsumerLink to GetBuffer; 17

end; 18

if InCount - OutCount = Size then -- now full 19


unbind ProducerLink from PutBuffer; 20

end; 21


end -- PutBuffer; 22


procedure GetBuffer(result Answer : Datum); 23

begin 24


Answer := Buffer[OutCount mod Size]; 25

OutCount := OutCount + 1; 26

if InCount - OutCount = 0 then -- now empty 27


unbind ConsumerLink from GetBuffer; 28

end; 29

if InCount - OutCount = Size-1 then -- no longer full 30


bind ProducerLink to PutBuffer; 31

end; 32


end; -- GetBuffer 33


begin -- main 34

accept Initialize(ProducerLink, ConsumerLink) 35


on ParentLink; 36

bind ProducerLink to PutBuffer; 37


end; -- main 38


The program defines three entries (lines 9–11); one is for rendezvous, and the 
others are handled by thread creation. This program begins with one thread 
that executes accept (lines 35–36) to get values for the links to the producer 
and consumer. It gets these values in a startup message from its parent, to 
which it is connected by ParentLink. I ignore how ParentLink gets initial­
ized. Then the program binds ProducerLink (line 37) to its entry PutBuffer. 
It makes no sense to bind ConsumerLink yet, because there is nothing yet to 

threads as needed. Both PutBuffer and GetBuffer arrange for binding and 
unbinding entries when the buffer gets full, empty, or no longer full or empty 
(lines 16–21 and 27–32). PutBuffer and GetBuffer themselves do not need to 
block if the buffer is not ready for them, because the pattern of bindings and 
the nonpreemptive scheduler assure that they cannot be called unless the 
state of the buffer permits them to proceed. 

consume. Then the main thread terminates. Incoming RPC will create new 

5.3 Linda 
Like CSP, Linda also uses patterns instead of procedure calls in its messages 
[Gelernter 85]. Unlike CSP, the send statement does not indicate the thread 
to which data are to be sent, nor does receive indicate from which thread the 
data are coming. Instead, send places the data in a global data pool that can 
be accessed by any thread, and receive takes data from that pool. It is up to 
the implementation to organize data so that threads running on multiple ma-
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chines can find data in the global pool. Typically, implementations will hash 
on the pattern name3 and store each bucket redundantly on n1/2 out of n ma­
chines. The receive pattern can include parameters that are variables (like 
actual parameters in result mode, to be bound to values during matching), 
constants (to selectively receive by restricting what data match this pattern), 
and don’t-cares. Receive blocks the caller until matching data appears in the 
pool, and then it indivisibly removes the matching data from the pool. There 
is also a read statement with the same semantics as receive except that the 
data are not removed from the pool. 

A Linda implementation of the bounded buffer would be identical to the 
CSP one in Figure 7.21 (page 217), except that the send and receive state­
ments would not indicate which thread was the intended partner. Multiple 
producers and consumers could use the same code. However, such a bounded 
buffer thread would be illogical in Linda, since the data pool itself is an un­
bounded buffer. Even if the bounded buffer is full, the producer would still be 
able to repeatedly send the PutBuffer pattern. It would be more straightfor­
ward for the producer to just send a BufferData pattern and for the con­
sumer to receive that pattern. A truly bounded buffer can actually be 
implemented in Linda; see the exercises for details. 

The advantage of the Linda approach is that programs need not consider 
the destination and synchronization aspects of each message that is passed. 
If a particular destination thread is important, that can be coded into the pat­
tern, of course, but many applications will not need such explicit control. 

One set of applications to which Linda is well suited involves problems 
whose solutions create subproblems. All problems are placed in a “problem 
heap” as they are generated. The heap is stored in the global pool. Each 
thread repeatedly extracts a problem (using receive) and solves it, putting 
any new subproblems back on the heap (using send). This situation is much 
like a bounded buffer, but there is no concept of order connecting the ele­
ments of the buffer. 

Linda is generally implemented as a library package added to some other 
language, such as C. A more type-safe design called Lucinda, which combines 
Linda with Russell, has also been devised [Butcher 91]. 

5.4 SR 
The SR language was developed over a period of ten years by Gregory An­
drews at the University of Arizona [Andrews 88]. It contains features for 
both distributed- and shared-memory concurrency. 

SR modules are separately compiled. A module specification and its body 
may be compiled separately. At runtime, modules are dynamically instanti­
ated and given initial actual parameters. By default, a new module shares 
the address space of its creator, but it can be placed on any machine (physical 
or virtual) instead. 

Ordinary modules may import declaration modules. Each declaration 
module may import other declaration modules and introduce constants, 
������������������������������������ 

3 What I call the pattern name would actually be the first element of a tuple in Linda, but I 
find CSP nomenclature a bit easier to understand. 
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types, variables, entries, and procedures. These may appear in any order, so 
dynamic-sized arrays are easy to build. Declaration modules also have ini­
tialization code. The declaration modules are instantiated (at most once 
each) and initialized at runtime in whatever order is dictated by the partial 
order of imports. One copy is created dynamically per address space the first 
time it is needed, so that threads in each space have access to the declara­
tions. Global variables imported from declaration modules should be treated 
as readonly; modifying a global variable only affects the copy in the current 
address space. 

SR contains a wide variety of synchronization and communication meth­
ods. It provides synchronization by semaphores (implemented as a module 
type with entries for up and down), and communication by rendezvous, RPC, 
and messages. The client may choose whether to use synchronous or asyn­
chronous calls, that is, RPC or messages. The server may choose to receive 
messages by thread creation or by rendezvous. It may inspect how many 
calls are outstanding on any entry. The rendezvous accept statement4 in­
cludes both a synchronization (when) clause and a scheduling (sortedby) 
clause, both of which may depend on the formal parameters of the call. Both 
a reply and a forward statement are included. 

Destinations for calls can be represented by pointers to modules, which 
can even reference modules across machine boundaries. The declaration for 
module pointers includes which module type they may reference. Every mod­
ule instance has a pseudovariable self that points to itself. Calls and replies 
may pass module pointers, so communication paths may vary dynamically. In 
addition, threads may invoke an entry imported from a declaration module. 
Any module instance that imports that declaration module may receive such 
an invocation. 

In addition to initialization code, a module can be contain a thread decla­
ration, much as in Modula. The compiler converts that declaration to an 
anonymous entry with no parameters; the act of instantiating the module im­
plicitly sends a message to that entry, which creates the new thread. A mod­
ule may also contain finalization code, which is invoked in any instance when 
the instance is terminated. All instances are terminated when deadlock oc­
curs, as in Ada. 

5.5 Object-Oriented Programming 
The object-oriented paradigm (see Chapter 5) lends itself nicely to dis-
tributed-memory machines, because each object may reside entirely within a 
single memory, and interaction between that object and the rest of the compu­
tation is entirely mediated by messages. There are several object-oriented 
languages for concurrent programming. For example, DC++ is a version of 
C++ with threads [Carr 93], Distributed Eiffel [Gunaseelan 92] and Eiffel 
Linda [Jellinghaus 90] extend the object-oriented Eiffel language, and CST 
(Concurrent Smalltalk) extends Smalltalk [Dally 89]. You can read a survey 
of these languages and others in [M. Nelson 91]. 
������������������������������������ 

4 I am changing the keywords, as usual, for the sake of consistency. 
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To show you a concrete example, I will focus on the ALBA language 
[Herná ndez 93], another example of an object-oriented concurrent program­
ming language. ALBA is strongly typed and is in many ways a typical object­
oriented language; that is, it provides classes and inheritance. What sets it 
apart is its recognition that it executes in a distributed environment. Unfor­
tunately, the ALBA document is incomplete, so I have added further specifi­
cations of my own that the authors may not agree with. 

There are no class variables, because different instances of a class are 
likely to be in different memories. Instance variables, of course, exist. Any 
number of threads may simultaneously execute methods in an object unless 
the object is an instance of a serialized class, which allows only one thread 
at a time. It is unclear whether serialized ALBA objects accept new threads 
when the existing thread is blocked waiting for a call or when the existing 
thread is in the middle of invoking a method in some other object. 

Objects may be created at any time; their identity is stored in an instance 
variable of their creator, so that the creator can send them messages. This 
identity can be passed to other objects in a parameter in order to allow them 
to invoke methods in the newly created object. Each object has a pseudovari­
able creator that points to the creator and self that points to itself. 

When an object is created, the programmer has some control over where it 
will be placed initially. The ALBA implementation does not dynamically 
move objects once they are created, but techniques for such migration are 
well understood [Artsy 89]. The class declaration may restrict its instances to 
a subset of the machines, and the instance-creation request may further re­
strict the positioning. For this purpose, ALBA has a data type for sets of ma­
chine identifiers. 

As in Ada, Lynx, and SR, ALBA objects can accept incoming messages by 
rendezvous. Alternatively, an invocation of a method may be handled by 
thread creation. 

During execution of a method, two more pseudovariables are defined: 
sender and reply. Typically, they are identical, pointing to the object that in­
voked the method. However, ALBA provides for delegation. A method may 
be invoked with an explicit “reply-to” specification, which will be copied to the 
recipient’s reply pseudovariable. 

Figure 7.23 shows an ALBA implementation of merge sort. 

Figure 7.23 type 1 
DataArray = array whatever of integer; 2 

class MergeSort; 3 

method Done -- for rendezvous 4 
(Sorted : DataArray; LowIndex, HighIndex : Integer); 5 

method Sort -- thread-creating 6 
(Tangled : DataArray; LowIndex, HighIndex : integer); 7 

variable 8 
MidPoint : integer := (LowIndex + HighIndex) div 2; 9 
LeftChild, RightChild : MergeSort; 10 
Responses : integer := 0; 11 
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begin -- method Sort 12 
if LowIndex + 1 < HighIndex then -- worth sorting 13 
MidPoint : integer := (LowIndex + HighIndex) div 2; 14 

create LeftChild; 15 
create RightChild; 16 
send LeftChild.Sort(Tangled, 1, MidPoint); 17 
send RightChild.Sort 18 

(Tangled, MidPoint+1, HighIndex); 19 
while Responses < 2 do 20 

accept Done(Sorted, LowIndex, HighIndex) 21 
from {LeftChild, RightChild} 22 
do 23 

Tangled[LowIndex .. HighIndex] := 24 
Sorted[LowIndex .. HighIndex]; 25 

Responses := Responses + 1; 26 
end; -- accept 27 

end -- while 28 
Merge(Tangled, 1, MidPoint, MidPoint+1, 29 

HighIndex); 30 
end; -- worth sorting 31 
send creator.Done(Tangled, 1, HighIndex); 32 
destroy(self); 33 

end; -- method Sort 34 

end; -- class MergeSort 35 

A client that wishes to sort an array creates an instance of MergeSort (I will 
call it the “worker”) and invokes the thread-creating Sort method (lines 
6–34). Because objects do not share memory, all parameters to Sort are 
passed in value mode. The worker creates left and right child instances (lines 
15–16); they are declared in line 10. The worker then invokes the Sort 
method in the children on the appropriate regions of the array (lines 17–19). 
These calls are marked send to indicate that the call is asynchronous; that is, 
the caller need not wait for a response. Asynchronous calls are only allowed 
on methods that do not return values. When the children are finished, they 
will invoke the Done method in their creator, the worker. The worker accepts 
these invocations in a rendezvous (lines 21–27), placing the result that comes 
with the invocation back into a slice of the local array (lines 24–25). When it 
has received both responses, the worker merges the two halves of the array 
(lines 29–30). It then tells its own creator that it is done (line 32), providing 
the sorted array as a parameter. This invocation of Done is asynchronous, but 
it does not create a new thread, because it is accepted in a rendezvous by the 
creator. The worker then destroys its instance (line 33), including all threads 
that may currently be active. Its purpose has been accomplished. 

ALBA supports multicast by letting a program asynchronously invoke a 
non-value-returning method on any subset of the existing instances of a class. 
The destination of an invocation can be an instance (the usual case), a set of 
instances, or a class (all existing instances are sent the message). Ren­
dezvous can be selective by restricting attention to messages from a given in­
stance, a set of instances, or a class. In line 22, I have restricted attention to 
the two children, although such a restriction is not necessary. 

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy. 



5 COOPERATION BY MESSAGES 225


5.6 Data-Parallel Programming 
Scientific applications often require similar computations across very large 
data sets, which may represent a connected physical entity. For example, a 
weather simulator might advance time in small increments while keeping 
track of wind patterns, cloud cover, precipitation, sunlight-induced wind cur­
rents, and so forth over a large geographical area represented as intercon­
nected records, each covering a few square miles. Such applications often 
strain the computational ability of any single computer, so they are pro­
grammed on shared-memory or distributed-memory computers. Each com­
puter is given a region of the data and computes as independently as possible 
of the other computers. When necessary, computers exchange information 
with others that deal with neighboring data. This style of computing is called 
data-parallel computing with coarse-grain parallelism. That is, the ma­
chines work in parallel on different parts of the data, and they only coordi­
nate their activities on occasion. 

Several languages have been implemented specifically to deal with coarse­
grain parallelism. Some, like PVM [Sunderam 89], are implemented as li­
brary packages to be invoked from any conventional language for passing 
messages. Charm is a more complex language that extends C with dynami­
cally creatable threads that inhabit modules [Kalé 90]. Global variables can 
be accessed only by a runtime procedure because they may be stored any­
where. The threads communicate both by messages (much like method invo­
cations in object-oriented programming) and through serialized modules that 
accumulate data, creating such results as sums and averages. 

The Canopy language is more complex yet. It is implemented as a library 
package to be used by ordinary C programs. Unlike PVM and Charm, it im­
poses a distinctively data-parallel view on the programmer. 

Data in Canopy are represented as records stored on a grid of sites. Grids 
are dynamically constructed by calls to a runtime routine. Definition rou­
tines are provided for many standard topologies, such as three-dimensional 
meshes, and the programmer may define any desired topology by using a 
more primitive routine. A computation may use several different grids, al­
though using more than one is unusual. Each site in a grid has coordinates 
and is connected to its neighbors by links. Data records are associated with 
each site and each link. 

The runtime support software arranges for sites to be located on physical 
machines. Typically, there are far more sites than machines; a typical prob­
lem may have a million sites running on a hundred machines. The program­
mer has no control over the mapping of sites to machines, and there is no way 
for a program to discover that mapping. Each machine has a complete copy 
of all code and global data and has space to allocate site-local data. 

Computation proceeds in phases. Each phase is initiated by a distin­
guished site called the controller, which executes the control program. Before 
the first phase, the controller establishes the grids, site sets, mappings be­
tween grids, and record fields (local variables) that will be used. It then calls 
CompleteDefinitions to activate these definitions. For each phase, the con­
trol program may initialize global variables by broadcasting a copy to all sites 
(actually, to all machines). Individual sites should treat such global data as 
readonly. The controller then invokes a procedure on each site in a grid or 
subset of a grid by calling DoTask. Each such site gets its own thread to exe-
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cute that procedure simultaneously with all other sites. (Actually, the imple­
mentation has each machine cycle through all the sites that reside on that 
machine, but the programmer doesn’t need to know that.) When all sites 
have finished, the control program resumes to begin the next phase. 

The controller passes information to the sites and receives information 
back from them via parameters of DoTask. These parameters are arranged in 
triples, which represent the parameter-passing mode, the address of the pa­
rameter, and its length. (A true compiler, instead of a library package for C, 
would not use addresses and would not need to be told the lengths.) The 
modes available are value, procedure (that is, passing a procedure), and accu­
mulate, which combines results from all the sites and presents them to the 
controller. The accumulation techniques include summation, maximum, and 
minimum, and the programmer may provide other accumulation techniques. 
The parameter-passing mode is presented as a pointer to a record that in­
cludes a routine that combines two values. This routine, which should be 
commutative and associative, is repeatedly invoked as sites terminate. (The 
implementation invokes it on the site’s own machine until it has exhausted 
all its sites, and then repeatedly on the controller’s machine until all ma­
chines have reported values.) 

During a phase, each thread has access not only to its own local variables 
(those in the records associated with its site) and the local variables of its ad­
jacent links, but all local variables in every site and link. Canopy provides li­
brary routines that fetch and store the values of these variables. Fetches 
return a pointer, which either points to the data itself, if it is on the same ma­
chine, or to a temporary copy, if it is not. Therefore, threads should treat 
fetched data as readonly. 

Sites can be described in various ways for the purpose of fetching and stor­
ing. The pseudovariable home is the thread’s own site. Site variables point to 
sites. Their values can be computed based on a path from home or any other 
site, or based on absolute site coordinates. 

Synchronization is sometimes needed among threads to prevent conflicts 
over local variables. For example, the sites may be arranged in a two­
dimensional grid, and each site may need read access to local variables owned 
by adjacent sites. Canopy provides several alternative synchronization meth­
ods. First, the controller can choose to start only a subset of the sites during 
each phase. For example, the sites in the two-dimensional grid may be “col­
ored” red or black as on a checkerboard. The controller can start only black 
sites during one phase, and then red sites in the next. Then each thread is 
assured that its neighbors are not active when it is. Second, the sites in a 
grid can be given priorities. A thread may call a synchronize routine specify­
ing any site. This routine will block until that site has finished the current 
phase if it is of higher priority than the thread’s own site. So the controller 
can start all the sites in the two-dimensional grid, but assign black sites 
higher priority than red sites. Each site will synchronize with its neighbors 
before fetching their local variables. The effect is that black sites will execute 
first, then red sites, but if the amount of computation varies across sites, 
some black sites may still be executing when red sites elsewhere are already 
in progress or even finished. Thus this technique allows greater parallelism 
than the first one. Since it is so useful, Canopy provides a synchronized ver­
sion of the fetch routine that combines it with synchronize. 
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Good programming practice in Canopy suggests that a thread should only 
update local variables on its home site, and that if it updates a local variable, 
it should never read the same variable from another site that is currently ac­
tive. This second rule is achieved by using synchronized fetch for such vari­
ables, but the faster ordinary fetch for variables that are not modified locally. 

Canopy programmers must be careful with global variables of the underly­
ing language, C. They can be used for readonly initialized data, but only if 
the value is broadcast by the controller before the phase starts. If a site 
writes into a global variable, the change is observable only by those sites that 
happen to be on the same machine. A thread that uses a global variable for 
communication between procedures runs the risk of having the variable over­
written by another site when the local machine chooses to suspend that 
thread to achieve synchronization or to batch cross-machine communication. 

6 ◆ FINAL COMMENTS 
Concurrent programming has been studied for at least twenty years, but it 
has been steadily gaining popularity. One reason is that high-performance 
computers have turned increasingly to parallelism as a way of achieving a 
high rate of computation. Another is that workstation clusters are increas­
ingly common in research environments. The former trend has led to in­
creased interest in threads that cooperate by shared variables; the latter 
makes message passing attractive. Operating systems are being designed 
that make shared variables meaningful across memories and that make mes­
sage passing fast within a single memory, so the correspondence between 
physical architecture and programming language approach is not straightfor­
ward. 

Languages that provide some modest extensions to successful sequential 
languages, such as ML, C++, or even FORTRAN, might be more successful in 
the long run than specialty languages, because they already have widespread 
use and are perhaps easier to learn than completely new languages. Concur­
rent C, Concurrent Pascal, and HPF (High Performance FORTRAN) extend 
standard imperative languages; CST (Concurrent Smalltalk), DC++, and Dis­
tributed Eiffel extend object-oriented languages. 

High-level operations can go a long way toward efficient use of the under­
lying architecture without introducing concurrency explicitly into the lan­
guage. For example, FORTRAN 90 specifies vector and matrix operations 
that a subroutine library may implement quite efficiently in a concurrent 
fashion. As another example, speculative evaluation in functional program­
ming languages, as discussed in Chapter 4, can take advantage of implicit 
concurrency. 
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EXERCISES 

Review Exercises 
7.1	 What is the usual initial value for the Value field in a semaphore? 

7.2	 Show a code fragment that, if executed by two threads, can leave the 
value of x either 0 or 14, depending on the order in which the two 
threads interleave their execution. Don’t use any synchronization. 

7.3	 Show how to use each of the following methods to restrict a code frag­
ment C so that it can only be executed by one thread at a time: 
semaphores, mutexes, conditional critical regions. 

7.4	 Make a deadlock situation with only one thread, using each of the fol­
lowing methods: semaphores, mutexes, conditional critical regions. 

7.5	 What will be the effect in a CSP program if I misspell a pattern in an in­
put guard? 

Challenge Exercises 
7.6	 On page 189, I say that arguments to fork are usually restricted to 

global procedures so that cactus stacks do not need to be built. What is 
the connection between using global procedures and cactus stacks? 

7.7	 Does Ada require cactus stacks? 

7.8	 What will be the effect of a semaphore whose Value field is initialized to 
2 if it is used for mutual exclusion? 

7.9	 What would be the use of a semaphore whose Value field is initialized to 
-2 with two dummy threads initially enqueued on its Waiters field? 

7.10	 Show how to implement conditional critical regions using semaphores. 
You will need an indivisible updown statement that ups one semaphore 
and downs another, and upall which performs up until there are no 
more threads blocked on the semaphore. 

7.11	 Show how to implement a capacity-2 barrier using two semaphores. You 
may use different code for the two threads involved. Implement not 
only meet, but also arrive and depart. 

7.12	 Show how to build a multiple-producer, multiple-consumer bounded 
buffer using event counts and sequencers. 

7.13	 Figure 7.9 (page 197) shows a Mesa solution to the bounded buffers 
problem. It assumes that signal only awakens one waiter. Actually, 
Mesa provides only broadcast, not signal. Fix the code. 

7.14	 Show how to build semaphores with event counts and sequencers. The 
up and down operations should not require mutual exclusion. 

7.15	 I suggest on page 213 representing the type of a procedure as a string in 
order to implement type-secure RPC. What sort of type equivalence 
does this method represent? 
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7.16	 What are the ramifications of using REV in an environment where each 
address space has several threads? 

7.17	 The CSP implementation of a bounded buffer Figure 7.21 (page 217) 
uses both input and output guards. Can bounded buffers be imple­
mented without output guards? Without input guards? Without either? 

7.18	 On page 221, I suggest that a proper Linda implementation of the 
bounded buffer (one that does not use an intermediate thread to hold 
the data and is truly bounded) is possible. Show how. Hint: Use anti­
data to indicate an available slot in the buffer. 

7.19	 Languages like Lynx, ALBA, and SR allow servers to handle messages 
either by rendezvous or by thread creation. Would it make sense to al­
low a single entry to be handled both ways? 
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