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Chapter 8 ❖


Logic Programming 
Although LISP has long been the language of choice for artificial intelligence 
(AI) research, other languages are increasingly common for some branches of 
AI. C and C++ have become quite popular. Some AI programs are meant to 
reason about the world, given some initial knowledge. Knowledge can be rep­
resented in property lists of LISP atoms, but it can also be stored as a set of 
rules and facts. One form of reasoning is to try to derive new facts or to prove 
or disprove conjectures from the current set of facts. Programs that follow 
this approach are called “inference engines.” 

In this chapter, I will present several languages intended for knowledge 
representation and inference engines. These logic languages tend to be 
declarative. Programs state goals and rules to achieve goals, but do not ex­
plicitly invoke those rules in order to achieve the goals. In contrast, both im­
perative and functional languages tend to be procedural; that is, programs 
are organized around control structures such as iteration and procedure invo­
cation. 

1 ◆ PROLOG 
Prolog is a declarative programming language designed in 1972 by Philippe 
Roussel and Alain Colmerauer of the University of Aix-Marseille and Robert 
Kowalski at the University of Edinburgh. Prolog programs are related to 
computations in a formal logic. A programmer first provides a database of 
facts and rules of inference. Programs are formulated as assertions involving 
facts in the database. Programs are executed by proving or disproving a par­
ticular assertion. 
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1.1 Terms, Predicates, and Queries 
Elementary values in Prolog are called terms. Terms are either constants 
(numbers like 43 and identifiers like parsley, starting with a lowercase let­
ter), variables (identifiers like X, starting with an uppercase letter), or struc­
tures (identifiers starting with a lowercase letter, followed by parameters that 
are themselves terms, such as tasty(parsley)). The identifier that heads a 
structure (like tasty) is called a functor, based on its similarity in appear­
ance to a function name. Figure 8.1 shows a sample term. 

Figure 8.1 near(house, X, 22, distance(Y)) 

There are two constants (22 and house), two variables (X and Y), one unary 
functor (distance), one 4-ary functor (near), and two structures (distance(Y) 
and the whole term). This term has no inherent meaning; a program could 
use it to mean that house is within 22 miles of some object X, and that the ac­
tual distance is Y miles. 

Programs are built out of facts, rules, and queries, which are all based on 
predicates. A predicate has the same form as a structure: a name in lower­
case followed by parameters, which must be terms. Predicates represent a 
fact (actual or to be proven) relating the values of their parameters. I will of­
ten call the predicate name itself a predicate when there is no chance for con­
fusion. 

Although structures and predicates have parameters and otherwise look 
like function calls, this appearance is deceiving. Structures are used as pat­
terns, and predicates are used to define rules and facts and to pose queries. 
Only in their role as queries are predicates at all like function calls. 

A database is constructed out of facts and rules. To build a simple family­
relation database, I will start with constants representing people: tom, dick, 
harry, jane, judy, and mary. I describe relationships among these people 
with binary predicates: fatherOf, motherOf, parentOf, grandparentOf, and 
siblingOf. 

One of the hardest problems in reading Prolog programs is figuring out 
what predicates are supposed to mean. The predicate motherOf(mary,judy) 
could be taken to mean that Judy is the mother of Mary or that Mary is the 
mother of Judy; the proper interpretation is up to the programmer. I follow 
the convention that the first parameters represent the traditional inputs, and 
the last parameters represent outputs, although Prolog does not make this 
distinction. I therefore understand motherOf(mary,judy) to mean that the 
mother of Mary is Judy. The predicate motherOf(mary,judy) may be true, 
but motherOf(mary,tom) is very likely to be false. 

My Prolog program begins by stating facts that define fundamental rela­
tions among the terms. Facts are predicates that are assumed true, such as 
those in Figure 8.2. 
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Figure 8.2 fatherOf(tom,dick) . /* read: "father of tom is dick" */ 1 
fatherOf(dick,harry) . 2 
fatherOf(jane,harry) . 3 
motherOf(tom,judy) . 4 
motherOf(dick,mary) . 5 
motherOf(jane,mary) . 6 

The period is used to terminate facts and rules, which are allowed to cross 
line boundaries. 

Given this database of facts, I can form queries. A query is a request to 
prove or disprove an assertion built of predicates. Interactive Prolog imple­
mentations expect that anything the user types in is a query. To input facts, 
the user must type a pseudoquery that causes Prolog to load the user’s file of 
facts. My examples just show facts and queries together; I distinguish 
queries by prefixing them with the question symbol ?- , which is the usual 
prompt in an interactive Prolog session. Prolog will determine if the queried 
predicate is true or false and will reply Yes or No. Figure 8.3 shows an inter­
active example of queries (all examples in this chapter are in syntactically 
correct Prolog). 

Figure 8.3	 in: ?- fatherOf(dick,harry) . 1 
out: Yes 2 

in: ?- fatherOf(harry,tom) . 3 
out: No 4 

Any predicate that Prolog cannot prove true is assumed to be false. In logic, 
this rule is known as the closed-world assumption. When Prolog says No, 
it means “not as far as can be proven.” 

Queries can include variables, which are distinguished from constants by 
their initial capital letter. A variable that appears in a query acts like an un­
known in an equation. Prolog tries to find an assignment to the variable that 
will make the predicate true. The assignment is then reported as the result 
of the query. In a sense, variables in queries are like result parameters, and 
the rest of the parameters are like value parameters. Consider Figure 8.4. 

Figure 8.4	 in: ?- fatherOf(X,harry) . 1 
out: X = dick ;	 2 

X = jane ;	 3 
No	 4 

Line 1 presents a query with one variable, X, and one constant, harry. It asks 
for matches in the database to the given predicate name (fatherOf) that 
match the constant second parameter (harry); the first parameter is to be re­
turned in the variable X. This query has two solutions. Prolog first presents 
the first (line 2). The user may request another solution by typing ; (at the 
end of line 2). When there are no more solutions, Prolog prints No. In the ex­
amples that follow, I omit the final No. 

Variables may be placed in any number of parameters, as shown in Figure 
8.5. 
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Figure 8.5	 in: ?- fatherOf(jane,X) . 1 
out: X = harry 2 

in: ?- motherOf(X,Y) .	 3 
out: X = tom, Y = judy; 4 

X = dick, Y = mary; 5 
X = jane, Y = mary 6 

A complex query is built from multiple predicates joined by , , which rep­
resents logical and. Each predicate is then called a conjunct. Consider Fig­
ure 8.6. 

Figure 8.6	 in: ?- fatherOf(jane,X) , motherOf(jane,Y) . 1 
out: X = harry, Y = mary 2 

in: ?- fatherOf(tom,X) , fatherOf(X,harry) . 3 
out: X = dick 4 

The query in line 1 asks for both parents of jane; the query in line 3 asks for 
the person who is both the father of tom and the son of harry. If a variable 
appears more than once in a query, as X does in line 3, it must be replaced by 
the same solution in all its occurrences. 

What makes Prolog particularly interesting as a programming language is 
that it allows us to write rules that define one predicate in terms of other 
predicates. A rule is of the form shown in Figure 8.7. 

Figure 8.7 predicate1(param,param, ...) :- 1 
predicate2(param,param, ...) , ... , 2 
predicateN(param,param, ...) . 3 

The predicate on the left is called the head of the rule; the predicates on the 
right form its body. A rule states that if the predicates in the body can all be 
proved (they have a simultaneous solution), then the head is true. You can 
read :- as if. Continuing Figure 8.2 (page 233), typical rules might include 
those of Figure 8.8. 

Figure 8.8	 /* grandmotherOf(X,GM) means the grandmother of X is GM */ 1 
grandmotherOf(X,GM) :- motherOf(M,GM) , motherOf(X,M) . 2 
grandmotherOf(X,GM) :- motherOf(F,GM) , fatherOf(X,F) . 3 

/* siblingOf(X,Y) means a sibling of X is Y */ 4 
siblingOf(X,Y) :- motherOf(X,M) , fatherOf(X,F) , 5 

motherOf(Y,M) , fatherOf(Y,F) , not(X = Y) . 6 

There are two ways in which GM can be a grandmother of X, so there are two 
alternative rules (lines 2–3). However, there is only one way for X and Y to be 
siblings, although it is fairly complicated (lines 5–6). This rule introduces 
variables M and F just to force X and Y to have the same parents. 

Given these rules, I can pose the queries in Figure 8.9. 
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Figure 8.9 in: ?- grandmotherOf(tom,X) . 1 
out: X = mary 2 

in: ?- siblingOf(X,Y) . 3 
out: X = dick, Y = jane; 4 

X = jane, Y = dick 5 

The query in line 3 generates two results because siblingOf is symmetric. 
These examples begin to demonstrate the power of Prolog. The program­

mer states facts and rules, but queries don’t specify which facts and rules to 
apply. This is why Prolog is called declarative. 

Prolog attempts to satisfy a query by satisfying (that is, finding a way to 
prove) each conjunct of the query. Rules are applied as necessary by substi­
tuting the body of a rule for its head. This process isn’t at all trivial, because 
more than one rule may apply to the same predicate. Each rule is tried in 
turn, which may lead to backtracking, in which alternative possibilities are 
tried (recursively) if a particular possibility fails. The way Prolog selects 
goals and subgoals during backtracking distinguish it from a more abstract 
language, LP (for logic programming), which selects goals and subgoals non­
deterministically. 

To demonstrate Prolog backtracking, I will return to the query grandmoth-
erOf(tom,X). The database is consulted to find either facts or rules with a 
grandmotherOf predicate as the head. (A fact is a rule with the given predi­
cate as the head and true as the body.) The order of facts and rules is signifi­
cant in Prolog (but not in LP); they are scanned from first to last. This 
ordering can affect the speed of a query and even determine if it will termi­
nate, as you will see soon. In this case, no facts match, but two rules define 
grandmother. The first applicable rule is 

grandmotherOf(X,GM) :- motherOf(M,GM) , motherOf(X,M) . 

It is applicable because its head matches the query: they both use the binary 
predicate grandmotherOf. To avoid confusion, Prolog renames any variables 
in the rule that appear in the query. Since X appears in both, it is renamed in 
the rule, perhaps to Y. Prolog then binds the rule’s Y (which is like a formal 
parameter) to the query’s tom (which is like an actual parameter), and the 
rule’s GM (a formal) to the query’s X (an actual). The rule effectively becomes 

grandmotherOf(tom,X) :- motherOf(M,X) , motherOf(tom,M) . 

This matching, renaming, and binding is called unification. 
There is a new subgoal: to prove 

motherOf(M,X) , motherOf(tom,M) . 

The only applicable rules are facts involving motherOf. These facts are uni­
fied in turn with the first conjunct, motherOf(M,X). Each unification binds M 
and X (in both conjuncts). For each unification, the second conjunct, which is 
now fully bound, is matched against existing facts. No match succeeds, so 
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Prolog backtracks to the point where the first grandmotherOf rule was se­
lected and tries the second rule instead. Unifying the query and the second 
grandmotherOf rule gives rise to the new subgoal 

motherOf(F,X) , fatherOf(tom,F) . 

This subgoal can be satisfied with F = dick and GM = mary. If the second rule 
had failed, the entire query would have failed, since no other rules apply. 

The backtrack tree of Figure 8.10 shows these steps in more detail. 

Figure 8.10 goal: grandmotherOf(tom,X) 1 
rule: motherOf(M,X), motherOf(tom,M) 2 

fact: motherOf(tom,judy) [M = tom, X = judy] 3 
goal: motherOf(tom,tom) 4 
fail 5 

fact: motherOf(dick,mary) [M = dick, X = mary] 6 
goal: motherOf(tom,dick) 7 
fail 8 

fact: motherOf(jane,mary) [M = jane, X = mary 9 
goal: motherOf(tom,jane) 10 
fail 11 

fail 12 
rule: motherOf(F,X), fatherOf(tom,F) 13 

fact: motherOf(tom,judy) [F = tom, X = judy] 14 
goal: fatherOf(tom,tom) 15 
fail 16 

fact: motherOf(dick,mary) [F = dick, X = mary] 17 
goal: fatherOf(tom,dick) 18 
succeed 19 

succeed; F = dick, X = mary 20 
succeed; X = mary 21 

I have bound all identifiers based on the unification steps so far. For exam­
ple, in lines 2 and 13 I have changed GM to X. 

The Prolog unification algorithm can be fooled by having it unify a vari­
able with a term containing that same variable, as in Figure 8.11. 

Figure 8.11 strange(X) :- X = strange(X) . 1 

in: ?- strange(Y) . 2 

The variable Y in the query is unified with X in the rule in line 1, leading to Y 
= strange(Y). The = constraint causes Y to be unified with strange(Y), 
which represents a result, but one that cannot be displayed in a finite space. 
Prolog will try to print the nonsense result, which begins strange(strange(. 
It turns out to be relatively difficult to solve this “occur-check” problem and 
prevent such mistaken unification, so most Prolog implementations don’t try. 
They do, however, handle the easier situation encountered in Figure 8.12. 

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy. 



1 PROLOG 237 

Figure 8.12 yellow(green(X)) :- X=puce . 1 

in: ?- yellow(X) . 2 
out: X = green(puce) . 3 

The query lin line 2 matches the actual parameter X with the formal parame­
ter green(X). Since one X is actual and the other formal, Prolog does not con­
fuse them. 

The backtracking algorithm can also be represented by a box model 
[Byrd 80]. Each predicate is represented as a box with two inputs and two 
outputs, as shown in Figure 8.13. 

Figure 8.13 Box Start 
Predicate 

Succeedmodel of a predicate 

Fail Retry 

The first invocation of a predicate enters from the left. If the predicate is sat­
isfied, control continues out to the right. If a different solution is required, 
control reenters from the right. If there are no (more) solutions, control exits 
to the left. 

The logical and of two predicates is formed by joining them together, as in 
Figure 8.14. 

Figure 8.14 Logical 
and of two predicates 

Start 
Predicate 2 Predicate 1 

Succeed 

Fail Retry 

The logical or of two predicates is formed by a different combination, shown 
in Figure 8.15. 

Figure 8.15 Logical 
or of two predicates 

Start 

Predicate 2 

Predicate 1 
Succeed 

Fail Retry 

When control returns from the right in a retry attempt, it goes to whichever 
of the two predicates provided the most recent success. 

The query grandmotherOf(tom,X) can be represented in Figure 8.16 in a 
box model: 
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Retry 

Succeed 

Fail 

Start 

grandmotherOf(X,GM) 

fatherOf(X,F) 

motherOf(X,M)motherOf(M,GM) 

Figure 8.16 

motherOf(F,GM) 

The box model shows execution paths and what happens when a goal suc­
ceeds or fails. It doesn’t show variable substitutions, however. 

Backtracking examines the backtrack tree by depth-first search, that is, in 
a top-down order. The order of alternatives tried when more than one rule or 
fact can be applied can have a startling effect on the speed at which a query is 
satisfied (or found to be unsatisfiable). Assume that an evaluator must go 
through n levels of rules and facts to provide a solution for a query, and that 
at each level, it must choose between two alternatives. If the right decision is 
made at each point, the evaluator will operate in O(n) time, because only n 
decisions are made. However, if the wrong decision is made at each point, it 
is possible that O(2n) time will be required, because there are that many dif­
ferent settings for the decisions. As a result, Prolog programmers tend to sort 
rules and introduce other aids I will present shortly to help the evaluator 
make the decisions. For example, the rules for grandmotherOf in Figure 8.8 
(page 234) can be improved by reordering the bodies, as shown in the exer­
cises. Nonetheless, except in the case of recursive rules (in which an infinite 
expansion of rules can occur), the issue is one of speed, not correctness. 

1.2 Separating Logic and Control 
A well-known textbook on data structures by Niklaus Wirth is titled 
Algorithms + Data Structures = Programs [Wirth 76]. This equation defines 
the programming model implicit in modern procedural languages. The pro­
gramming task is essentially to design data structures and the algorithms 
that manipulate them. 

An interesting alternative view is presented by Robert Kowalski in ‘‘Algo­
rithms = Logic + Control’’ [Kowalski 79]. This article proposes a declarative 
programming view. The programmer first specifies the logic of an algorithm. 
This component specifies what the result of the algorithm is to be. Then the 
control component is defined; it specifies how an evaluator may proceed to ac­
tually produce an answer. The logic component is essential because it defines 
what the programmer wants the program to generate. The control compo­
nent may be optional, since it controls how fast an answer may be obtained. 
This represents a two-tiered approach in which you think first about getting 
the correct answer, and then about making the computation sufficiently fast. 

Prolog supports this view of programming; its facts and rules are essen­
tially the logic component of a program. The control component is largely 
hidden in Prolog’s evaluator, although certain Prolog commands have been 
devised to aid an evaluator, as you will see shortly. 
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In theory, a language that cleanly separates logic and control has great ad­
vantages over conventional languages, which thoroughly intermix the defini­
tion of what is wanted and how to compute it. The logic component is the 
essential part of the program and often suffices to produce an answer. The 
control component allows efficiency issues to be addressed. It may be com­
plex and detailed but can be ignored by most users of the program. 

1.3 Axiomatic Data Types 
One advantage of languages that support abstract data types is that the spec­
ification of an abstract data type can be separated from its implementation 
details. Prolog carries this idea further still: you can specify an abstract data 
type by axioms without any implementation at all. The axioms define the 
properties of the abstract data type, which is all the programmer really cares 
about. Of course, the evaluator must find some way to actually realize the op­
erations of an abstract data type, but since Prolog is declarative, this isn’t the 
programmer’s concern! 

I will show you how to define lists, a fundamental data structure of LISP, 
as seen in Chapter 5, based on terms, predicates, facts, and rules. I define 
the set of valid lists by indicating when cons generates a list, as in Figure 
8.17. 

Figure 8.17	 isList(nil) . 1 
isList(cons(_, T)) :- isList(T) . 2 

Line 1 indicates that nil is a valid list, and line 2 shows that cons is a binary 
functor that builds new lists if the second parameter is a list. Because the 
body of this rule does not refer to the first parameter, I use the don’t-care 
variable _ . If  _  is used more than once in a rule or fact, each occurrence 
represents a different don’t-care variable. If you want the same value to be 
forced in two different positions, you must use an explicit variable name. 
Line 2 shows that predicates can take parameters that are arbitrary terms, 
including structures. Although you may be tempted to treat cons(_,T) as a 
procedure call, it is only a structure. When it appears nested in the head of a 
rule, it is treated as a pattern to be matched to a query. 

Predicates specifying the car and cdr functors are easy, as shown in Fig­
ure 8.18. 

Figure 8.18	 /* car(X,Y) means the car of X is Y */ 1 
car(cons(H,T),H) :- isList(T) . 2 

/* cdr(X,Y) means the cdr of X is Y */ 3 
cdr(cons(H,T),T) :- isList(T) . 4 

Once again, the functor cons is used in the head of rules as a pattern. Using 
these definitions, I can pose queries like those in Figure 8.19. 
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Figure 8.19	 in: ?- car(cons(2,cons(3,nil)),X) . 1

out: X = 2 2


in: ?- car(cons(a,b),X) . 3

out: No 4


in: ?- car(cons(X,nil),2) . 5

out: X = 2 6


in: ?- car(cons(a,X),a) .	 7

out: X = nil;	 8


X = cons(_1, nil);	 9

X = cons(_2, cons(_1, nil));	 10

...	 11


The first query (line 1) asks for the car of a particular valid list. The second

(line 3) asks for the car of an invalid list. It fails because the rules only allow

car to be applied to valid lists. The third query (line 5) inverts the question

by asking what has to be consed to a list to obtain a car of 2. The fourth

query (line 7) requests lists whose car is a. There are infinitely many an­

swers. Prolog invents internal temporary names for unbound results, which I

display as _1, _2, and so on (lines 9–10). I call such names don’t-care re­

sults.


In this example, both car and cdr can be used to form queries. However, 
cons cannot be used that way; there are no rules with heads matching cons. 
In other words, cons is a functor, whereas car and cdr are predicate names. 

Stacks are frequently used to illustrate abstract data types, so let me pre­
sent an axiomatic definition of stacks in Figure 8.20. 

Figure 8.20	 isStack(nil) . 1

isStack(push(_,S)) :- isStack(S) . 2

top(push(Elem,S),Elem) :- isStack(S) . 3

pop(push(_,S),S) :- isStack(S) . 4


in: isStack(push(a,push(b,nil))) . 5

out: Yes 6


in: pop(push(a,push(b,nil)),X) . 7

out: X = push(b, nil) 8


I have used push as a functor, whereas top and pop are predicates. I leave 
making pop a functor as an exercise. The Prolog definition of stacks is simi­
lar to that of lists, which shouldn’t be surprising, since lists are often used to 
implement stacks in conventional languages. The stacks defined above are 
heterogeneous. The exercises explore restricting stacks to hold only integers. 

These examples show that Prolog can deal fairly directly with algebraic 
specification of data types, a field pioneered by Guttag [Guttag 77]. In the no­
tation of algebraic specification, an integer stack looks like this: 
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Figure 8.21 type IntegerStack 1 

operations 2 
create: → IntegerStack 3 
push: IntegerStack × integer → IntegerStack 4 
pop: IntegerStack → IntegerStack 5 
top: IntegerStack → integer 6 

axioms 7 
top(create) = error 8 
top(push(S,I)) = I 9 
pop(create) = error 10 
pop(push(S,I)) = S 11 

Operations are first defined by naming their input and output types. In pro­
cedural languages, the operations are analogous to the specification part of 
an abstract data type. In Prolog, which has no need to distinguish input from 
output, the operations can be predicates or functors. Operations that result 
in IntegerStacks are called constructors; here, create, push, and pop are 
all constructors. Actually, pop is a special kind of constructor because it re­
duces the amount of information; such constructors are called destructors. 
Operations that do not result in the abstract data type are called inspectors; 
here, top is the only inspector. The axioms are simplification rules. It is not 
always easy to see what axioms are needed; a rule of thumb is that an axiom 
is needed for all combinations of inspectors and non-destructive constructors 
(lines 8 and 9) and all combinations of destructors and non-destructive con­
structors (lines 10 and 11). In Prolog, axioms are expressed as rules, which 
means that inspectors (top) and destructors (pop) will be predicates, whereas 
non-destructive constructors (push) will be functors. 

An algebraic specification could in general be satisfied by many different 
models. The axioms equate such elements as create and 
pop(push(create,4)), which some models would keep distinct. If only those 
elements that the axioms equate are considered equal, the resulting algebra 
is called an initial algebra. If all elements are equated that cannot be dis­
tinguished by inspectors, the resulting algebra is called a final algebra. In  
the case of stacks, these two algebras are the same. In an algebraic specifica­
tion of arrays, however, the order in which elements are assigned values does 
not affect what an inspector returns, so the final algebra is more appropriate 
than the initial algebra, which would distinguish arrays with the same ele­
ments that happen to have acquired the elements in a different order. 

1.4 List Processing 
Because lists are such a familiar and flexible data structure, Prolog provides 
a notation for the structures that represent lists. Predefining lists also 
makes their manipulation more efficient. Predefined arithmetic operators 
are provided for much the same reason. In Prolog, lists are delimited by 
brackets. The empty list is [], and [[a,b],[c,d,e]] is a list containing two 
sublists (with 2 and 3 elements respectively). The notation [H | T] is used to 
represent any list with car H and cdr T, as in Figure 8.22. 
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Figure 8.22 p([1,2,3,4]) . 1 

in: ?- p([X| Y]) . 2 
out: X = 1, Y = [2,3,4] 3 

in: ?- p([_,_,X| Y]) . 4 
out: X = 3, Y = [4] 5 

Using this notation, Figure 8.23 defines the list operation append in a manner 
analogous to its definition in LISP (actually, append is often predefined). 

Figure 8.23 /* append(A,B,C) means C is the list formed by 1 
appending element B to the end of list A */ 2 

append([],[],[]) . 3 
append([],[H| T],[H| T]) . 4 
append([X| L1],L2,[X| L3]) :- append(L1,L2,L3) . 5 

in: ?- append([1,2],[3,4],S) . 6 
out: S = [1,2,3,4] 7 

The correspondence to the LISP definition of append is almost exact, except 
that no explicit control structure is given. Instead, rules that characterize 
append are defined; they allow Prolog to recognize (or build) correctly ap­
pended lists. A LISP-like approach to list manipulation can be used to struc­
ture Prolog rules. Thus I could define a list-membership predicate memberOf 
(again, it is often predefined) as shown in Figure 8.24. 

Figure 8.24 /* memberOf(X,L) means X is a member of list L */ 1 
memberOf(X,[X| _]) . 2 
memberOf(X,[_| Y]) :- memberOf(X,Y) . 3 

in: ?- memberOf(4,[1,2,3]) . 4 
out: No 5 
in: ?- memberOf(4,[1,4,3]) . 6 
out: Yes 7 

This definition is strongly reminiscent of LISP’s tail recursion. However, Pro-
log’s declarative nature allows definitions that are quite foreign to LISP’s pro­
cedural nature. Consider the alternative definition of memberOf in Figure 
8.25. 

Figure 8.25 memberOf(X,L) :- append(_,[X| _],L) . 

This definition says that X is a member of L exactly if there exists some list 
that can be appended to a list beginning with X to form list L. 

Although both definitions of memberOf are correct, the first one will proba­
bly be more efficiently executed, because it is somewhat more procedural in 
flavor. In fact, Prolog definitions are often structured specifically to guide an 
evaluator toward a more efficient evaluation of a query. Sorting is a good ex­
ample. The simplest abstract definition of a sort is a permutation of elements 
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that puts the elements in nondecreasing (or nonincreasing) order. This defi­
nition has a direct Prolog analogue, shown in Figure 8.26. 

Figure 8.26 naiveSort(L1,L2) :- permutation(L1,L2) , inOrder(L2) . 1 

permutation([],[]) . 2 
permutation(L,[H| T]) :- append(V,[H| U],L) , 3 

append(V,U,W) , permutation(W,T) . 4 

inOrder([]) . 5 
inOrder([_]) . 6 
inOrder([A,B| T]) :- A =< B , inOrder([B| T]) . 7 

Since a list with n distinct elements has n! permutations, the above definition 
may well lead to long and tedious searches in an effort to find a sorting of a 
list. An alternative is to define inOrder in a manner that leads to a more effi­
cient evaluation sequence. For example, using the infamous bubble sort 
(shame on me!) as inspiration, I create the alternative definition in Figure 
8.27. 

Figure 8.27 bubbleSort(L,L) :- inOrder(L) . 1 
bubbleSort(L1,L2) :- append(X,[A,B| Y],L1), A > B ,  2 

append(X,[B,A| Y],T), bubbleSort(T,L2) . 3 

inOrder([]) . 4 
inOrder([_]) . 5 
inOrder([A,B| T]) :- A =< B , inOrder([B| T]) . 6 

Actually, a trace of execution of bubbleSort will show that it always looks for 
and then swaps the first out-of-order pair in the list. There are O(n2) swaps, 
each of which requires O(n) effort to discover by searching from the start of 

2the list. The result is an O(n3) algorithm, which is worse than the O(n ) ex­
pected for bubble sort. 

1.5 Difference Lists 
List processing can be expensive. The append operation must step to the end 
of the first parameter in a recursive fashion before it can begin to construct 
the result. Prolog programmers have invented a programming trick called a 
difference list to alleviate this problem [Sterling 94]. Each list is repre­
sented in two pieces, which I will call listextra and extra. The actual list is 
listextra with extra removed from the end. What extra information to 
place at the end of a list is arbitrary and is based on convenience. For exam­
ple, the list [a,b] can be represented in many ways, including [a,b] [] and 
[a,b,c,d] [c,d]. In general, I can represent the list as [a,b| Extra] [Ex­
tra] and not specify what Extra might be. The append routine can now be 
written as a single, nonrecursive rule, as in Figure 8.28. 
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Figure 8.28 append(diff(A,B), diff(B,C), diff(A,C)) . 1 

in: ?- append(diff([1,2|X],X), diff([3,4|Y],Y), 2 
diff(ListExtra,Extra)) . 3 

out: X = [3,4|_1], 4 
Y = _1, 5 
ListExtra = [1,2,3,4|_1], 6 
Extra = _1 7 

The append predicate defined in line 1 takes three parameters, each of which 
is a pattern representing a list in difference-list form. Figure 8.28 shows how 
line 1 represents appending two lists by explicitly showing A, B, and C. Lines 
2–3 use this definition to append [1,2] and [3,4]. Each of these lists is rep­
resented with a variable (X and Y) to represent the extra parts. Lines 4–5 
show how these variables get bound during match. The result is represented 
by (ListExtra,Extra), which (according to lines 6–7) is [1,2,3,4|_1] _1. So  
long as I am willing to use difference-list form, I have not needed to perform 
any recursion. 

Figure 8.29 Difference (A,B) (B,C)
lists 

(A,C) 

A 

B 

C 

1.6 Arithmetic 
In Prolog, the infix equality predicate = can be used for two purposes. In α = 
β, if  α  and β are both constants, literals, structures, or bound variables, then 
the predicate succeeds or fails depending on whether or not the two operands 
are identical. Thus 1 = 1  is true, [1,2] = [] is false, and X = 2  is true if X has 
been bound to 2. This is the natural interpretation of the equality operator. 

However, if α or β (or both) are unbound variables, then α = β succeeds and 
binds them together. So the same symbol acts both as an equality operator 
and as an assignment operator. Actually, the symbol introduces a constraint. 
Figure 8.30 illustrates this point. 
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Figure 8.30 set(A,B) :- A=B . 1 

in: ?- set(1,2) . 2 
out: No 3 

in: ?- set(X,2) . 4 
out: X = 2 5 

in: ?- set(3,X) . 6 
out: X = 3 7 

in: ?- set(Y,Z) . 8 
out: Y = _1, Z = _1 9 

For free (unbound) variables, = constrains the value of the variable, and this 
binds it, as shown in lines 4 and 6. These values hold only for the duration of 
the search for solutions, not afterward. Line 9 shows that Y and Z have been 
bound together, both to the same don’t-care result. 

For programmers accustomed to procedural programming, using = to 
bind variables is familiar, but in Prolog a few pitfalls await the unwary. For 
example, you will probably be surprised that the query (1+1) = 2 results in 
No. In fact, in Prolog 1+1 doesn’t equal 2, because 1+1 is taken as an abbrevia­
tion for the structure +(1,1). This structure isn’t the same as the integer 2, 
so the negative response is justified. Prolog doesn’t automatically evaluate 
arithmetic expressions. 

To force arithmetic expressions to be evaluated, Prolog provides the is op­
erator, which effects assignment. It first evaluates its second operand as an 
arithmetic expression (it must not have any unbound variables), then tests 
for equality, and (if necessary) binds the free variable in the first operand. 
However, is will not invert expressions to bind free variables. Consider Fig­
ure 8.31. 

Figure 8.31	 in: ?- 1 is 2*2-3 . 1 
out: Yes 2 

in: ?- X is 2*2 . 3 
out: X = 4 4 

in: ?- 4 is X*3-7 . 5 
out: Unbound variable in arithmetic expression. 6 

As lines 5–6 show, Prolog avoids the complexity of solving arbitrary equa­
tions. (Metafont can solve linear equations, and mathematics languages like 
Mathematica, discussed in Chapter 9, can handle a wide variety of equa­
tions.) Unfortunately, this restriction violates the symmetry between inputs 
and outputs found in other Prolog constructs. 
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1.7 Termination Issues 
If free variables in queries may be bound only to a finite set of values, a Pro­
log evaluator should be able to prove or disprove any query. However, Prolog 
allows recursive definitions (such as the ones I showed earlier for lists and 
stacks) that imply infinite domains, as well as primitive objects (such as inte­
gers) with infinite domains. Not all queries will necessarily terminate. Pro­
log specifies that the order in which rules and facts are specified determines 
the order in which an evaluator attempts to apply them in proofs. Bad orders 
can sometimes lead to an infinite recursion. Suppose that I define the isList 
predicate as in Figure 8.32. 

Figure 8.32	 isList(cons(H,T)) :- isList(T) . 1 
isList(nil) . 2 

A query like isList(nil) works fine, but isList(X) runs into a real snag. 
The top-down evaluator will set X = cons(H,T) and try to prove isList(T). 
To do this, it will set T = cons(H′,T′)1 and try to prove isList(T′), and so 
forth. Eventually, the evaluator runs out of stack space. Putting the fact is-
List(nil) before the rule solves the problem. 

Other problems may arise because of an inadequate set of rules. For ex­
ample, I might provide a definition for odd integers and ask if any odd integer 
is equal to 2, as in Figure 8.33. 

Figure 8.33 in: odd(1) . 1 
odd(N) :- odd(M), N is M + 2 .  2  
?- odd(2) . 3 

out: [does not terminate] 4 

The evaluator never finishes the query in line 3. It keeps generating odd 
numbers (1, 3, ...) to match M in line 2, but none of them satisfies 2 is M + 2. It  
doesn’t know that after considering 1, all succeeding odd numbers will be 
greater than 2 and hence not equal to 2. The query is false, but Prolog has no 
mechanism to prove it! 

1.8 Resolution Proof Techniques 
Prolog is designed to be amenable to a particular class of automatic proof 
techniques termed “resolution techniques.” Resolution is a general infer­
ence rule shown in Figure 8.34. 

������������������������������������ 
1 All variable names in a rule are local to that rule; hence, recursive applications cause no 

naming conflicts. 
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Figure 8.34 if A1 ∧ . . .  ∧ An  ⇒ B1  ∨ . . .  ∨ Bm  ∨ C  1 
and D1 ∧ . . .  ∧ Dp  ∧ C  ⇒ E1  ∨ . . .  ∨ Eq  2 

then A1 ∧ . . .  ∧ An  ∧ D1  ∧ . . .  ∧ Dp  ⇒ B1  ∨ . . .  ∨ Bm  ∨ E1  ∨ . . .  ∨ Eq  3 

That is, if a term C appears on the right-hand side of one implication and on 
the left-hand side of a second implication, it can be removed, and the two 
rules can be joined. If C contains any free (that is, unbound) variables, these 
must be unified (that is, matched). This resolution operation doesn’t appear 
to lead to any great simplification. Fortunately, Prolog limits the form of 
rules of inference to “Horn clauses,” which are those that have only one term 
on the right-hand side of an implication (the head of a rule) and only ‘∧’ as a  
connective. That is, Prolog rules of the form 

A or B :- X, ... . 

aren’t allowed. For Prolog, the resolution rule takes the form shown in Fig­
ure 8.35. 

Figure 8.35	 if A1 ∧ . . .  ∧ An  ⇒ C  1 
and D1 ∧ . . .  ∧ Dp  ∧ C  ⇒ E  2 

then A1 ∧ . . .  ∧ An  ∧ D1  ∧ . . .  ∧ Dp  ⇒ E 	 3 

This rule is the basis of the substitution technique employed earlier in top­
down evaluation. Still, this substitution appears to make things more, rather 
than less complex. However, a Prolog fact F can be viewed as an implication 
of the form true ⇒ F. When a fact is resolved, resolution in effect replaces a 
term with true, and since true ∧ X ≡ X, this substitution does lead to a sim­
plification. 

Resolution is interesting in that it doesn’t actually try to prove a query di­
rectly from known facts and rules. If 

A1 ∧ . . .  ∧ An  ⇒ B  

then 

A1 ∧ . . .  ∧ An  ∧ ¬ B  ⇒ false . 

That is, if B is implied from known rules and facts, then ¬ B must lead to a 
contradiction. If a resolution theorem-prover is asked to prove B, it intro­
duces ¬ B by introducing the implication B ⇒ false. It then manipulates 
implications by resolution, trying to establish the implication true ⇒ false. 

Resolution theorem-provers use this unintuitive approach because resolu­
tion is “refutation complete”; that is, if a set of rules and facts are contradic­
tory (that is, inconsistent), then resolution will always be able to conclude 
that true ⇒ false. It doesn’t guarantee that an evaluator will not pursue 
useless paths of unbounded length. Rather it says that if a finite resolution 
path exists, a smart enough evaluator will find it. 
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1.9 Control Aspects 
So far I have emphasized the logic component of Prolog. The language also 
contains features that exercise control over the evaluation process. Such fea­
tures in general compromise the otherwise declarative nature of Prolog. (Pro­
log also contains I/O, testing, and debugging features that are not purely 
declarative.) 

The most frequently used control operator is cut (represented by ! in 
Prolog syntax). Cut terminates backtracking within a rule. (Cut is similar to 
fence in SNOBOL, described in Chapter 9. SNOBOL patterns use a back­
track mechanism that is very similar to the one Prolog uses.) In particular, if 
cut is encountered, all alternatives prior to cut in the rule are frozen, as 
shown in the box model in Figure 8.36. 

Figure 8.36 Cut 
operator 

Start 
Cut Predicate 2 Predicate 1	

Succeed 

Fail Retry 

Prolog will not try alternative matches to earlier conjuncts of the rule’s body. 
In fact, it will not try alternative rules to the rule that contains cut. Consider 
Figure 8.37. 

Figure 8.37 even(X) :- X=2 , X>0, !, X < 0 .  1 
even(X) :- X=10 . 2 

in: even(E) . 3 
out: No 4 

The query in line 3 matches the rule in line 1. The first conjunct binds X to 2, 
the second succeeds, but the last conjunct fails. The cut prevents not only a 
reevaluation of the first conjuncts (which wouldn’t find anything new in any 
case) but also any attempt to use the rule of line 2, which would succeed. 
Without the cut operation, Prolog would report that X = 10.  

Cut can be useful in cases where once one rule is found to match, it is un­
necessary to try other rules. For example, recall the list membership predi­
cate, memberOf, shown in Figure 8.38. 

Figure 8.38	 memberOf(X,[X| _]) . 1 
memberOf(X,[_| Y]) :- memberOf(X,Y) . 2 

Since an element may appear in a list more than once, if a goal containing a 
successful memberOf conjunct later fails, Prolog might try to resatisfy it by 
looking for an alternative match to memberOf. In general this search will be 
futile, since once an item is known to be in a list, backtracking can’t establish 
anything new. Thus, we have Figure 8.39. 
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Figure 8.39 memberOf(X,[X| _]) :- ! . 1 
memberOf(X,[_| Y]) :- memberOf(X,Y) . 2 

This code implements our observation that once membership is established, 
further backtracking should be avoided. Unfortunately, cut changes the 
meaning of the memberOf rule. If the program uses this rule not to verify that 
X is a member of some list L but to find a list L with X as a member, cut will 
force X to be the first element in L, which prevents other perfectly good lists 
from being formed. 

Another control operator in Prolog is fail, which always fails; that is, it 
can never be proven true. (Again, SNOBOL has an analogous fail pattern.) 
A program may use fail to state that a goal can’t be established. For exam­
ple, given a predicate male(X), I might create the rule in Figure 8.40. 

Figure 8.40 grandmotherOf(X,GM) :- male(GM) , fail . 

This rule states that if GM is male, then GM can’t be anyone’s grandmother. In­
terestingly, this rule doesn’t achieve its intended purpose. The problem is 
that backtracking takes effect, saying (in effect) that if this rule doesn’t work, 
maybe some other rule will. To avoid backtracking, cut must added, as in 
Figure 8.41. 

Figure 8.41 grandmotherOf(GM,X) :- male(GM) , ! , fail . 

Cut is often used in conjunction with fail when backtracking is to be sup­
pressed. Another use for fail is to create a sort of while loop, as in Figure 
8.42. 

Figure 8.42	 while(X) :- cond(X) , body(X) , fail . 1 
cond(X) :- memberOf(X, [1,2,3,7]) . 2 
body(X) :- write(X) , write(’ ’) . 3 

in: while(_) . 4 
out: 1 2 3 7  5 

No 6 

Other more complex Prolog operators exist. For example, assert and re­
tract can be used to add or remove facts and rules from the database while 
evaluation is in progress. These operators can be used to allow a program to 
learn, but since they have the flavor of self-modifying code, they are poten­
tially very dangerous. 

1.10 An Example of Control Programming 
To illustrate some of the subtleties of programming in Prolog, I will consider 
the canonical (mis-)example of recursive programming, factorial. The obvious 
definition appears in Figure 8.43. 
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Figure 8.43	 fact(N,F) :- N >= 0, N =< 1 , F = 1 .  1 
fact(N,F) :- N > 1 , M  is N-1 , fact(M,G) , F is N*G . 2 

This definition, though correct, is not entirely satisfactory. The problem is 
that fact can be used in a surprisingly large number of ways, depending on 
what values are bound (that is, input parameters) and what values are to be 
computed (that is, output parameters). Possible combinations that should be 
handled are the following: 

1.	 Both N and F are bound: Fact should succeed or fail depending on 
whether or not N! = F.  

2.	 N is bound, but F is free: F should be correctly computed. Attempts to re­
satisfy fact to obtain a different value for F should fail (since N! is  
unique for bound N). 

3.	 F is bound, but N is free: If an integer N exists such that N! = F, it should 
be computed; else fact should fail. Attempts to resatisfy fact to obtain 
a different value for N should fail, except when F=1. 

4.	 Both N and F are free: The initial solution fact(1,1) should be found. 
Attempts to resatisfy fact to obtain different values for N and F should 
succeed, producing monotonically increasing (N,F) pairs. 

The program in Figure 8.43 works when N is bound, but not when it is 
free. This isn’t too surprising, since the definition I chose is the one used in 
languages that assume that N must be bound. The problem is that my defini­
tion gives no clue as to how to choose a value for N when it is free. I can take 
a step toward a better solution by dealing with the simpler case in which N is 
bound.2 The predeclared predicates bound and free (in some implementa­
tions nonvar and var) can be used to determine whether a parameter is 
bound or not. That is, bound(X) is true whenever X is bound (even temporar­
ily, by resolution during backtrack) to a value. Consider Figure 8.44. 

Figure 8.44 fact(0,1) . 1 
fact(N,F) :- bound(N) , N > 0 , M is N-1  ,  2 

fact(M, G) , F is N*G . 3 
fact(N,F) :- free(N) , bound(F) , fact(M,G) , N is M+1 , 4 

F2  is  N*G  , F =< F2 , ! , F = F2 .  5  
fact(N,F) :- free(N) , free(F) , fact(M,G) , N is M+1 , 6 

F is N*G . 7 

The rule in line 1 defines the base case for factorial. The rule in line 2 covers 
the case where N is bound and greater than 0. Cut is used to prohibit back­
tracking, since N! is single-valued. The rule in line 3 covers the case where N 
is bound and greater than 1. It recursively computes or verifies N!. The case 
in which N is free but F is bound is more interesting. The rule in lines 4–5 
covers this case. It computes factorial pairs (using the rule in lines 6–7) until 
the factorial value is ≥ the bound value of F. At this point it cuts the back­
tracking. If the computed factorial value F2 is equal to F, it succeeds, and N is 
correctly bound. Otherwise it fails, indicating that F isn’t a factorial value. 
������������������������������������ 

2 This solution was provided by Bill Pugh. 
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Finally, the general case in which both N and F are free is considered in lines 
1 and 6–7. Prolog first matches the base case of fact(0,0), then generates 
the next solution, fact(1,1), from it, using the rule in lines 6–7. Successive 
solutions are obtained by building upon the most recently discovered factorial 
pair. 

1.11 Negation 
If a query cannot be satisfied by any binding of its free variables, Prolog con­
siders it false. Prolog has a built-in higher-order predicate not that tests for 
unsatisfiability. (It is higher-order in that it takes a predicate, not a term, as 
its parameter.) Consider Figure 8.45. 

Figure 8.45 motherOf(nora, fatima) . 1 

in: ?- not(motherOf(nora, jaleh)) . 2 
out: Yes 3 

in: ?- not(motherOf(nora, fatima)) . 4 
out: No 5 

Line 1 introduces a new fact. Line 2 tests to see if a particular fact is un­
known. Because it is, the response is Yes. Line 4 tests to see if a known fact 
is unknown; it elicits No. 

Under the closed-world assumption that facts that cannot be proved are 
false, the facts and rules known to the program constitute the entire world; 
no new facts or rules from “outside” will be added that might render a previ­
ously unprovable conclusion true. The closed-world assumption is an exam­
ple of nonmonotonic reasoning, which is a property of a logic in which 
adding information (in the form of facts and rules) can reduce the number of 
conclusions that can be proved. 

It is only safe to use not with all parameters bound. Otherwise, unex­
pected results may occur, as in Figure 8.46. 

Figure 8.46 motherOf(nora, fatima) . 1 

in: ?- not(motherOf(X,jaleh)) . 2 
out: X=_1 3 

in: ?- not(motherOf(_,jaleh)) . 4 
out: Yes 5 

in: ?- not(motherOf(X, fatima)) . 6 
out: No 7 

in: ?- not(motherOf(nora, Y)) . 8 
out: No 9 

in: ?- not(motherOf(X, fatima)), X=jaleh . 10 
out: No 11 
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in: ?- X=jaleh, not(motherOf(X,fatima)) . 12 
out: X=jaleh 13 

In line 2, since no facts match motherOf(X,jaleh), any substitution for X 
serves to satisfy its negation. Prolog returns a don’t-care result. Line 4 asks 
the same query, without expecting a binding; it replaces the free variable X 
with the don’t-care pattern _ . The result, Yes, shows that any substitution 
works. The next two queries produce surprising results. Lines 6 and 8 pre­
sent queries where the free variable could be set to a known constant to make 
the query fail (X could be nora in line 5, and Y could be fatima in line 7); all 
other settings allow the query to succeed. If Prolog implemented construc­
tive negation, it would be able to report X ≠ nora in line 7 and Y ≠ fatima in 
line 9. But most implementations of Prolog do not provide constructive nega­
tion. Prolog can’t even represent the answers by a single don’t-care result, 
such as Y=_1, because at least one value is not part of the answer. Instead, 
Prolog gives up and fails. Line 10 tries to suggest a reasonable result: X =  
jaleh. However, Prolog binds variables from left to right in a query, and X is 
unbound within the not predicate. Line 12 succeeds in binding X by reorder­
ing the query. In short, unbound variables inside not only give the expected 
result if either all bindings succeed (as in line 2) or no bindings succeed. In­
termediate possibilities just lead to failure. 

A different problem is shown by Figure 8.47. 

Figure 8.47 blue(sky) . 1 

in: not(not(blue(X)) . 2 
out: X = _1 3 

The query in line 2 begins by unifying blue(X) with blue(sky), binding X to 
sky. This unification succeeds. The first not therefore fails, causing the 
binding of X to be lost. The second not therefore succeeds, but X has no bind­
ing, so it is presented as a don’t-care result. 

Negation in rules can also lead to anomalies, as shown in the rule in Fig­
ure 8.48. 

Figure 8.48	 wise(X) :- not(wise(X)) . 

This rule appears to be a conundrum. A person is wise if that person is not 
wise. In symbolic logic, there is a solution to this puzzle: everyone is wise. 
The derivation in Figure 8.49 demonstrates this result. 

Figure 8.49	 ¬ wise(X) => wise(X) 1 
¬ ¬ wise(X) ∨ wise(X) 2 
wise(X) ∨ wise(X) 3 
wise(X) 4 

However, Prolog enters an unterminated loop when a query such as 
wise(murali) is presented. In general, there is no completely accurate way 
to handle logical negation, and most Prolog implementations don’t do very 
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well with it. 

1.12 Other Evaluation Orders 
Prolog programmers must sort rules to avoid infinite loops. They must also 
sort the conjuncts within rules for the sake of efficiency. The naiveSort ex­
ample in Figure 8.26 (page 243) would fail to terminate if line 1 were written 
as in Figure 8.50. 

Figure 8.50 naiveSort(L1,L2) :- inOrder(L2) , permutation(L1,L2) . 

The Prolog interpreter builds more and more fanciful values of L2 that have 
nothing at all to do with L1 and fails on each one. Prolog programmers learn 
to build rules so that the first conjunct generates potential solutions, and the 
remaining conjuncts test them for acceptability. If the generator builds too 
many unacceptable results, the rule will be very inefficient. 

The fact that rule and conjunct order is so crucial to efficiency detracts 
from the declarative nature of Prolog. It would be nice if the rules merely 
stated the desired result, and if the implementation were able to dynamically 
sort the rules and conjuncts to generate the result efficiently. 

One proposal for a different evaluation strategy is found in Specint 
[Darlington 90]. A static version of the idea, called “sideways information 
passing,” appears in Datalog. The idea is to reorder the conjuncts as they are 
satisfied, so that attention is directed to the first conjunct that has not yet 
been satisfied. As each conjunct is satisfied, it is rotated to the end of the list 
of conjuncts; it may be retested (and resatisfied) later if other conjuncts fail in 
the meantime. The programmer can supply hints for each predicate that sug­
gest what parameters will satisfy that predicate. Predefined predicates have 
their own hints. For example, Figure 8.51 gives a slightly different version of 
naiveSort. 

Figure 8.51 naiveSort(L1,L2) :- permutation(L1,L2) , inOrder(L2) . 1 

permutation(X,Y) :- X = Y 2 
permutation(X| Z,Y) :- delete(X,Y,T) , permutation(Z,T) 3 

inOrder([]) . 4 
inOrder([_]) . 5 
inOrder([A,B| T]) :- A =< B , inOrder([B| T]) . 6 

To evaluate naiveSort([1,3,2],result), the evaluator first tries to satisfy 
the first conjunct of line 1. This conjunct brings it to line 2 to find an accept­
able permutation Y of X = [1,3,2]. By default, permutation will first try the 
empty list for Y. It fails, because it satisfies neither line 2 nor line 3. How­
ever, the equality test of line 2 has a default hint: set Y to X. Now permuta-
tion(X,Y) is satisfied, so the Specint evaluator moves to the inOrder 
conjunct of line 1, bringing it to line 6. In line 6, A is 1, B is 3, and T is [2]. 
The first conjunct succeeds, and inOrder is called recursively on [3,2]. In  
the recursive call of line 6, A is 3, B is 2, and T is []. The first conjunct fails. 
The hint for satisfying =< is to interchange the two values. Now line 6 suc-
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ceeds (after a brief further recursion), and the new values are backed up to 
the first instance of line 6. Now A is 1, B is 2, and T is [3]. This instance 
rechecks the first conjunct. It was previously satisfied, but values have 
changed. Luckily, the new values still satisfy this conjunct. Evaluation re­
turns to line 1. Now L2 is [1,2,3], and the second conjunct is satisfied. The 
first conjunct is rechecked. After several instantiations of line 3, this check is 
satisfied. Specint ends up with something like insertion sort, using quadratic 
time, instead of Prolog’s exponential-time evaluation. 

Standard Prolog evaluation starts at the goal and moves to subgoals; this 
approach is called top-down evaluation. Another evaluation order that has 
been proposed is bottom-up evaluation. In its pure form, bottom-up evalua­
tion would mean starting with facts and deriving consequences, both direct 
and indirect. But this sort of undirected evaluation is unlikely to tend toward 
the desired goal. Luckily, bottom-up evaluation can be implemented in a 
more directed fashion. Given a query, some preprocessing based on the top­
down tree can lead to insight concerning a reasonable ordering of the con­
juncts in the bodies of rules. This insight is based on sideways information 
passing, which determines what information is passed in variables between 
the conjuncts. The result is a transformed program that can be executed bot-
tom-up. The bottom-up approach leads to certain simplifications. In particu­
lar, the unification algorithm is not needed if every variable that appears in 
the head of the rule also appears in its body. This restriction does not seem 
unreasonable. Avoiding unification can be essential in some domains. In par­
ticular, strings can be introduced into Prolog with matching rules that match 
"abcd" to A + B, matching any initial substring to A and the rest to B. Unifica­
tion is intractable in this setting. 

1.13 Constraint-Logic Programming (CLP) 
A small extension to Prolog’s evaluation mechanism simplifies programs like 
factorial in Figure 8.44 (page 250). This extension, called constraint-logic 
programming, or CLP, lets identifiers have a constrained status, which lies 
between bound and free [Fruhwirth 92]. CLP(R) is Prolog with constraints 
expressed with respect to real numbers. 

A conjunct in CLP(R) such as X < 5  is merely checked if X is bound, but if X 
is free or constrained, this conjunct introduces a constraint on X. If the new 
constraint, in combination with previous constraints, makes a variable unsat­
isfiable, the evaluator must backtrack. The power of this idea can be seen in 
Figure 8.52. 

Figure 8.52 in: Nice(X, Y) :- X = 6 , Y < 5 .  1 
?- Nice(A,B) . 2 

out: A = 6, B < 5 3 

in: ?- Nice(A,B) , B > 7 .  4 
out: No 5 

Line 2 is only satisfied by a restricted set of values; the output shows the ap­
plicable constraints. When I add a conflicting constraint in line 4, no results 
can be found. Figure 8.53 is a factorial predicate. 
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Figure 8.53	 fact(N,F) :- N <= 1 , F = 1 .  1 
fact(N,F) :- N > 1 , M = N-1  ,  fact(M,G) , F = N*G  .  2  

Line 2 does not use the is predicate, because my intent is to introduce a con­
straint, not to perform arithmetic. The query fact(X,Y) elicits the following 
solutions: 

X ≤ 1,  Y = 1 

X = Y, 1 < Y  ≤  2.

2 < X  ≤  3, Y = X*(X-1)

3 < X  ≤  4, Y = X*(X-1)*(X-2)

4 < X  ≤  5, Y = X*(X-1)*(X-2)*(X-3)

...


If we add the constraint that all numbers are integers, not arbitrary reals, 
then these values reduce to exact solutions. Figure 8.54 computes Fibonacci 
numbers. 

Figure 8.54	 fib(0,1). 1 
fib(1,1). 2 
fib(N, X1 + X2) :- N > 1 ,  fib(N - 1, X1) , fib(N - 2, X2) . 3 

This program works correctly no matter whether the parameters are free or 
bound. Figure 8.55 shows how to multiply two complex numbers. 

Figure 8.55 complexMultiply(c(R1, I1), c(R2, I2), c(R3, I3)) :- 1 
R3 = R1 * R2 - I1 * I2 , 2 
I3 = R1 * I2 + R2 * I1 . 3 

The functor c is used as a pattern. We can give CLP(R) queries about com­
plexMultiply, as in Figure 8.56. 

Figure 8.56	 in: ?- complexMultiply(X, c(2,2), c(0,4)) 1 
out: X = c(1,1) 2 

in: ?- complexMultiply(X, Y, c(0,0)) 3 
out: X = c(A,B), Y = c(C,D), A*C = B*D, A*D = -B*C 4 

There are rare occasions when a term someFunctor(3 + 4) is meant to be dif­
ferent from the term someFunctor(4 + 3). CLP(R) allows the programmer to 
prevent evaluation of the + operator in such cases by means of a quoting 
mechanism. 

As a final example of constraint-logic programming, consider the program 
of Figure 8.57, which finds the circuits that can be built from two available 
resistors in series and a single voltage source so that the drop in voltage 
across the second resistor is between 14.5 and 16.25 volts [Jaffar 92]: 
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Figure 8.57 /* available resistors */ 1 
Resistor(10) . 2 
Resistor(14) . 3 
Resistor(27) . 4 
Resistor(60) . 5 
Resistor(100) . 6 

/* available voltage sources */ 7 
Voltage(10) . 8 
Voltage(20) . 9 

/* electrical law */ 10 
Ohm(Voltage, Amperage, Resistance) :­ 11 

Voltage = Amperage * Resistance . 12 
/* query about our circuit */ 13 
?- 14.5 < V2, V2 < 16.25 , /* voltage constraints */ 14 

Resistor(R1) , Resistor(R2), /* choice of resistors */ 15 
Voltage(V) , /* choice of voltages */ 16 
Ohm(V1,A1,R1) , Ohm(V2,A2,R2), /* electrical laws */ 17 
A1 = A2, V = V1 + V2 . /* series circuit */ 18 

An evaluator might choose to solve linear constraints before nonlinear ones in 
order to achieve the three solutions. 

1.14 Metaprogramming 
Chapter 4 shows how a LISP interpreter may be written in LISP. Prolog pro­
vides a similar ability. As with LISP, the trick is to make the language ho­
moiconic, that is, to be able to treat programs as data. Programs are just sets 
of rules (a fact is a rule with a body of true). The body of a rule is a comma­
separated list of predicates. In addition to the bracket-delimited lists shown 
earlier, Prolog also accepts simple comma-separated lists.3 The head of a rule 
is also a predicate, and the :- separator can be treated as an infix binary 
predicate. 

So a program is a set of predicates, and Prolog provides a way to inspect, 
introduce, and delete the predicates that currently make up the program, 
that is, to treat the program as data. The clause predicate is used for in­
specting rules, as in Figure 8.58. 

Figure 8.58	 grandmotherOf(X,GM) :- motherOf(M,GM) , motherOf(X,M) . 1 
grandmotherOf(X,GM) :- motherOf(F,GM) , fatherOf(X,F) . 2 

������������������������������������ 
3 Comma-separated lists are the underlying concept. The list a,b,c is equivalent to 

a,(b,c). The bracketed list [H | T] is syntactic sugar for the predicate .(H,T), where the dot is 
a binary cons functor. 
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in: ?- clause(grandmotherOf(A,B),Y). 3 
out: A = _1, 4 

B = _2, 5 
Y = motherOf(_3 _2), motherOf(_1, _3); 6 

A = _1, 7 
B = _2, 8 
Y = motherOf(_3, _2), fatherOf(_1, _3) 9 

motherOf(janos,hette) . 10 

in: ?- clause(MotherOf(X,Y),Z) . 11 
out: X = janos, 12 

Y = hette, 13 
Z = true 14 

Lines 1–2 reintroduce the grandmotherOf predicate that I used before. Line 3 
asks for all rules that have a left-hand side matching grandmotherOf(A,B). 
This line treats grandmotherOf(A,B) as a structure, not a predicate. Prolog 
finds the two results shown, which are expressed in terms of don’t-care re­
sults. The result Y treats motherOf as a functor, not a predicate name. This 
ability to interchange the treatment of structures and predicates is essential 
in making Prolog homoiconic, because structures are data, whereas predi­
cates are program. Facts, such as the one shown in line 10, are also discov­
ered by clause; the second parameter to clause matches true for facts. 

The clause predicate can be used to build an evaluation predicate eval, as  
in Figure 8.59. 

Figure 8.59 eval(true). 1 
eval((A,B)) :- eval(A), eval(B). 2 
eval(A) :- clause(A,B), eval(B). 3 

This set of rules defines standard Prolog evaluation order. Line 1 is the base 
case. Line 2 indicates how to evaluate a list of conjuncts. (The parenthesized 
list notation (A,B) matches any list with at least two elements; the first 
matches A, and the rest match B. This alternative list notation is not inter­
changeable with [A | B]; it is a historical relic.) Line 3 shows how to evaluate 
a single conjunct that happens to match the left-hand side of some rule or 
fact. (Some implementations of Prolog have a more generous implementation 
of clause; for these, I would need to introduce cut at the start of the body of 
line 2.) 

The fact that you can write your own evaluator means that you can over­
ride the standard interpretation of conjuncts. Building new evaluators is 
called metaprogramming. The ordinary Prolog evaluator remains available 
to metaprograms as the call predicate. The exercises pursue these ideas. 

So far, I have concentrated on the static aspect of Prolog, which treats 
rules as an unchangeable set of givens. Prolog also allows rules to be intro­
duced and deleted during the execution of queries by using assert and re­
tract, as in Figure 8.60. 
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Figure 8.60 allow(X) :- assert(person(zul)) , 1

assert(person(Y) :- Y=kealoha), person(X). 2


deny(X) :- retract(person(X)). 3


in: ?- person(X) . 4

out: No 5


in: allow(fred) . 6

out: No 7


in: ?- person(X) . 8

out: X = zul; 9


X = kealoha 10


in: ?- deny(beruria) . 11

out: No 12


in: ?- person(X) . 13

out: X = zul; 14


X = kealoha 15


in: ?- deny(zul) . 16

out: Yes 17


in: ?- person(X) . 18

out: X = kealoha 19


in: ?- deny(kealoha) . 20

out: No 21


in: ?- retract(person(X) :- Y) . 22

out: X = _1, 23


Y = _1 = kealoha 24


in: ?- person(X) . 25

out: No 26


Lines 1–3 introduce rules that, when evaluated, cause facts and rules to be 
introduced and deleted. Lines 4–5 show that at the start, nobody is known to 
be a person. The query in line 6 fails, but it still manages to execute two as­
sert conjuncts, which introduce new rules. It is valid to introduce duplicate 
rules; Prolog does not automatically check for or remove duplicates. Lines 
8–10 prove that new rules have been introduced. Evaluating the deny predi­
cate in line 11 tries to retract a rule that is not present; it fails. However, 
deny(zul) (line 16) succeeds and does retract a rule. Line 20 tries to retract 
the fact person(kealoha). However, this predicate does not correspond to 
any fact, even though it is currently derivable that kealoha is a person. The 
way to remove that derivation is by retracting the rule. Line 22 retracts the 
first rule whose head is person(X). There is only one such rule, and retract 
succeeds in removing it. 

All asserted facts and rules are added to the top-level environment. In 
fact, Prolog rules do not follow scope; there is only one environment. A pro­
gram can simulate dynamic scope for rules, however, by introducing new 
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rules in the first conjunct of a body and retracting those rules in the last con­
junct. The programmer must make sure that the rules are retracted in case 
the intervening conjuncts fail. Also, the programmer must be careful not to 
introduce rules with heads that already exist in the environment; such intro­
duced rules will be added to, not replace, existing rules, and retraction might 
accidentally remove more rules than are intended. 

.. 
2 ◆ GODEL 

Go..del, developed by P. M. Hill, is intended to be the successor of Prolog 
[Hill 94]. It borrows much of Prolog’s form, but attempts to address many of 
the problems and deficiencies of Prolog. It provides modules to make the lan­
guage suitable for large projects, has a strong type system, permits enhanced 
logical forms, and has more consistent search-pruning operators. Go..del also 
directly supports integers, floats, rational numbers, strings, lists, and sets. 

2.1 Program Structure 
A program in Go..del consists of at least one module. Each module is divided 
into several parts, most of which are optional. 

•	 module names the module. Modules can also be declared closed (which 
means the implementation is not provided, and may well be in a different 
language), export (all definitions are exported to other modules), or local 
(all definitions are private). 

•	 import lists the modules whose declarations are imported. 
•	 base declares types. 
•	 constructor declares type constructors. 
•	 constant declares constants. 
•	 function lists functions and declares their type. (These are like functors 

in Prolog.) 
•	 predicate lists predicates and defines their type. 
•	 delay lists conditions for controlling evaluation of predicates. 
•	 proposition lists propositions. 
•	 Finally, there is a list of rules. 

For example, the module in Figure 8.61 calculates factorials. 

Figure 8.61 module Factorial.	 1 
import Integers.	 2 
predicate Fact : Integer * Integer.	 3 

Fact(0,1). 4 
Fact(1,1). 5 
Fact(n,f) <- n > 1 &  Fact(n-1,g) & f = g * n.  6 

The module is named Factorial and imports types, functions, and predicates 
from the (library) module Integers. It has one predicate, Fact, which has 
two integer parameters. Three rules define Fact (lines 4–6). The program is 
executed by supplying a query, as in Figure 8.62. 
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Figure 8.62	 in: <- Fact(4,x). 1 
out: x = 24 2 

2.2 Types 
Figure 8.63 illustrates construction of programmer-defined types. 

Figure 8.63 module M1. 1 
base Day, ListOfDay. 2 
constant 3 

Nil : ListOfDay; 4 
Monday, Tuesday, Wednesday, Thursday, Friday, 5 

Saturday, Sunday : Day. 6 
function Cons : Day * ListOfDay -> ListOfDay. 7 
predicate Append : ListOfDay * ListOfDay * ListOfDay. 8 

/* Append(a,b,c) means list a appended to list b; 9 
results in list c. */ 10 

Append(Nil,x,x). 11 
Append(Cons(u,x),y,Cons(u,z)) <- Append(x,y,z). 12 

Day and ListOfDay (line 2) are the only types of this program. Cons (line 7) is 
not a pattern symbol, as it would be in Prolog, but rather a function. Every 
constant, function, proposition, and predicate of the language must be de­
clared, but variable types are inferred, as in ML. Constructors can be used in 
type declarations. They may be applied to the ground types defined in the 
base clause to create new types. This process can be recursively applied to 
make an infinite number of types. I can improve this module by making the 
concept of list polymorphic, as in Figure 8.64. 

Figure 8.64 module M2. 1 
base Day, Person. 2 
constructor List/1. 3 
constant 4 

Nil : List(’a); 5 
Monday, Tuesday, Wednesday, Thursday, Friday, 6 

Saturday, Sunday : Day; 7 
Fred, Barney, Wilma, Betty : Person. 8 

function Cons : ’a * List(’a) -> List(’a). 9 
predicate Append : List(’a) * List(’a) * List(’a). 10 

Append(Nil,x,x). 11 
Append(Cons(u,x),y,Cons(u,z)) <- Append(x,y,z). 12 

The constructor List (line 3) is followed by an integer indicating its arity. 
The identifier ’a in lines 5, 9, and 10 is a type identifier. The types for this 
program are Day, Person, List(Day), List(Person), List(List(Day)), and so 
forth. 

LISP-like lists form such a common structure in declarative programming 
that Go..del, like Prolog, predeclares the List constructor, the Cons function, 
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and the Nil constant. The constructors for lists are the same as in Prolog; 
the list Cons(Fred,Cons(Bill,x)) can be written as [Fred, Bill | x]. 

2.3 Logic Programming 
Unlike Prolog programs, Go..del programs are not limited to Horn clauses. 
The following quantifiers and connectives are allowed. 

Symbol Meaning 

& conjunction (and) 
\/ disjunction (or) 
˜ negation (not) 
<- implication 
-> right implication 
<-> equivalence 
all universal quantifier 
some existential quantifier 

The quantifiers have two parameters, a list of variables and the body, as in 
Figure 8.65. 

Figure 8.65 module Inclusion. 1 
import Lists. 2 
predicate IncludedIn : List(a) * List(a) 3 

-- IncludedIn(a,b) means list a is included in list b. 4 

IncludedIn(x,y) <- all [z] (MemberOf(z,y) <- MemberOf(z,x)). 5 
-- MemberOf(a,b) means element a is a member of list b. 6 

The rule in line 5 indicates that list x is included in list y if all members of x 
are also members of y. This example also illustrates some of the use of mod­
ules. The predicate MemberOf (used in line 5) is declared in the imported 
module Lists. 

Queries are quite simple to write. For example, assume that a module has 
been declared with the classic family relationship predicates and facts Fa­
therOf, MotherOf, ParentOf, AncestorOf, and so forth. Then the query “Does 
everyone who has a mother also have a father?” can be written, as in Figure 
8.66. 

Figure 8.66 <- all [x] 1 
(some [z] FatherOf(x,z) <- some [y] MotherOf(x,y))). 2 

In practice, some is seldom used, because Go..del provides _ as a don’t-care 
pattern. The above query can be written more simply as in Figure 8.67. 
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Figure 8.67	 <- all [x] (FatherOf(x,_) <- MotherOf(x,_)) 

The quantifier some may also be used in queries to restrict the display of re­
sults to the variables of interest to the user. For example, the query in Figure 
8.68 

Figure 8.68	 <- some [y] (ParentOf(x,y) & ParentOf(y,Jane)). 

will display the value to which x is bound, but not y. The same query can be 
written using the colon notation ( : is read “such that”), as in Figure 8.69. 

Figure 8.69	 <- x : ParentOf(x,y) & ParentOf(y,Jane). 

2.4 Conditionals 
Go..del allows the use of conditional statements primarily as a concession to 
computational efficiency. The structure if condition then formula is logi­
cally equivalent to condition -> formula. The semantics of conditionals dif­
fer procedurally from implications, however. Unlike implications, the 
evaluation of a conditional waits until the condition has no free variables. 

If the condition and the formula share local variables, the form in Figure 
8.70 is used. 

Figure 8.70 if some [r1, ..., rn] condition then formula 

This form is equivalent to that in Figure 8.71. 

Figure 8.71 (some [r1, ..., rn] (condition & formula)) \/ 1 
˜ some [r1, ..., rn] condition. 2 

The if construct is defined similarly, but oddly enough, the rule for resolving 
the dangling-else problem is contrary to standard convention. 

The module for defining LISP-like association lists in Figure 8.72 illus­
trates conditionals. 

Figure 8.72	 module AssocList. 1 
import Strings. 2 
base PairType. 3 
function Pair : Integer * String -> PairType. 4 
predicate Lookup : Integer * String * List(PairType) 5 

* List(PairType).	 6 
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Lookup(key, value, assoc_list, new_assoc_list) <­ 7 
if some [v] 8 

MemberOf(Pair(key,v), assoc_list) 9 
then 10 

value = v & 11 
new_assoc_list = assoc_list 12 

else 13 
new_assoc_list = [Pair(key,value)| assoc_list]. 14 

2.5 Control 
Logic programming in its pure form allows the parameters of predicates to be 
arbitrarily bound or unbound. As you saw in Prolog, it is often difficult (and 
unnecessary) to write rules that cover all cases. Go..del uses something like 
Prolog’s bound predicate, but it enhances it with a control structure that de­
lays evaluation of predicates until certain conditions are met. Predicates in a 
conjunction can be processed like coroutines. For example, the definition of 
Permutation in Figure 8.73 might be placed in the Lists module. 

Figure 8.73 predicate Permutation : List(a) * List(a). 1 
-- Permutation(a,b) means list a is 2 
-- a permutation of list b 3 

delay Permutation(x,y) until bound(x) \/ bound(y).	 4 

Permutation([],[]).	 5 
Permutation([x| y],[u| v]) <- 6 

Delete(u,[x| y],z) & Permutation(z,v). 7 
-- Delete(a,b,c) means deleting element a 8 
-- from list b gives list c 9 

The delay construct in line 4 causes Permutation to pause until one of its pa­
rameters is bound. If it is invoked with both parameters unbound and no 
other predicates can be explored to bind one of the parameters, as in Figure 
8.74, Permutation will fail. (This behavior is nonmonotonic.) 

Figure 8.74	 in: <- Permutation(x,y). 1 
out: No 2 

in: <- Permutation(x,y) & x = [1,2]. 3 
out: x = [1,2], y = [1,2]; 4 

x = [1,2], y = [2,1] 5 

In line 1, neither parameter is bound, so the query fails. In line 3, evaluation 
of Permutation delays until the second conjunct is evaluated. That conjunct 
binds x to a value, so now Permutation may be invoked. 

In order to build a sort program similar to naiveSort in Figure 8.26 (page 
243), I will introduce in Figure 8.75 a Sorted predicate for the Lists module. 
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Figure 8.75 predicate Sorted : List(integer). 1 
delay 2 

Sorted([]) until true; 3 
Sorted([_]) until true; 4 
Sorted([x,[y| _]) until bound(x) & bound(y). 5 

Sorted([]). 6 
Sorted([_]). 7 
Sorted([x,y| z]) <- x =< y & Sorted([y| z]). 8 

The delay construct in line 2 takes multiple patterns, each of which may be 
treated differently. If Sorted is invoked with a list of length 0 or 1, it will not 
delay, even if the list element is not bound (lines 3–4). For more complex 
lists, Sorted will be delayed until the first two elements of the list are both 
bound. I can now use Sorted and Permutation to define a Sort module, as in 
Figure 8.76. 

Figure 8.76	 module Sort. 1 
import Lists. -- brings in Sorted and Permutation	 2 
predicate SlowSort : List(Integer) * List(Integer).	 3 

SlowSort(x,y) <- Sorted(y) & Permutation(x, y). 4 
-- SlowSort(a,b) means list a is sorted to produce b. 5 

SlowSort works if either x or y (or both) is bound. If y is bound, Sorted will 
not be delayed. If Sorted succeeds, Permutation will either verify that x is a 
permutation of y if x is bound or find all values of x that are permutations of 
y. If  y  is not bound and x is, then Sorted(y) will delay, and Permutation will 
instantiate y to a permutation of x. The entire permutation need not be pro­
duced before Sorted continues; only the first two elements of the permutation 
are necessary. Perhaps these elements are enough to show that y is not 
sorted, and this permutation may be abandoned. If the first two elements of y 
are in order, Sorted makes a recursive call, which may again be delayed. At 
this point, Permutation will continue producing more elements of the permu­
tation. If Sorted fails at any point, Permutation will backtrack to an alterna­
tive permutation. In effect, delay gives Go..del lazy evaluation, which makes 
SlowSort much faster than Prolog’s equivalent naiveSort in Figure 8.26 
(page 243). It is still a very poor sorting method, however. 

The delay construct also helps the programmer to guarantee termination. 
Consider the definition of Delete in Figure 8.77, which is needed to define 
Permutation in Figure 8.73 (page 263). 

Figure 8.77	 -- Delete(a,b,c) means deleting element a 1 
-- from list b gives list c 2 
predicate Delete : a * List(a) * List(a). 3 
delay Delete(_,y,z) until bound(y) \/ bound(z). 4 

Delete(x,[x| y],y). 5 
Delete(x,[y| z],[y| w]) <- Delete(x,z,w). 6 

Without the delay in line 4, the query Permutation(x, [1, 2, 3]) would first 
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produce the answer x = [1, 2, 3] and then go into an infinite loop. With the 
delay present, the six possible permutations are produced, and then Permu­
tation fails. 

Go..del also allows the programmer to prune the backtrack search tree in a 
fashion similar to Prolog’s cut, but in a more consistent fashion. The simplest 
version of pruning is bar commit. Bar commit works like conjunction but with 
the added meaning that only one solution will be found for the formula in its 
scope (to its left); all branches arising from other statements for the same 
predicate are pruned. The order of statement evaluation is not specified, so 
bar commit lacks the sequential property of cut. For example, a Partition 
predicate to be used in Quicksort is shown in Figure 8.78. 

Figure 8.78	 -- Partition(a,b,c,d) means list a partitioned about 1 
-- element b results in lists c and d. 2 
predicate Partition : List(Integer) * Integer * 3 

List(Integer) * List(Integer)	 4 
delay 5 

Partition([],_,_,_) until true; 6 
Partition([u| _],y,_,_) until bound(u) & bound(y). 7 

Partition([],y,[],[]) <- bar. 8 
Partition([x| xs],y,[x| ls],rs) <- x =< y bar 9 

Partition(xs,y,ls,rs). 10 
Partition([x| xs],y,ls,[x| rs]) <- x > y bar 11 

Partition(xs,y,ls,rs). 12 

In this case, I use bar commit (I denote it just by bar in lines 8–11) because 
the statements in the definition of Partition (lines 8–12) are mutually exclu­
sive, so it prunes useless computation. It is possible to use bar commit to 
prune answers as well. 

Go..del also provides singleton commit. A formula enclosed in curly brack­
ets { and } will only produce one answer. For example, the query {Permu-
tation([1,2,3], x)} will produce only one of the permutations instead of all 
six. 

The delay construct can prevent premature bar commits that could lead to 
unexpected failures. Figure 8.79 shows how to code the Delete predicate dif­
ferently. 

Figure 8.79	 -- Delete(a,b,c) means deleting element a 11
-- from list b gives list c 22
predicate Delete : Integer * List(Integer) * List(Integer). 3 
delay Delete(x,[u| _],_) until bound(x) & bound(u). 4 

Delete(x,[x| y],y) <- bar . 5 
Delete(x,[y| z],[y| w]) <- x ˜= y bar Delete(x,z,w). 6 

If the program did not delay Delete until x was bound, the query Delete(x, 
[1,  2,  3],  y)  & x = 2  could commit with x bound to 1, by line 5. Then x = 2  
would fail, causing the entire query to fail, because the bar in line 6 prevents 
backtracking for another binding to x. 
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3 ◆ FINAL COMMENTS 
In some ways, Prolog is a hybrid of three ideas: LISP data structures, recur­
sive pattern matching as in SNOBOL, and resolution theorem-proving. As a 
programming language, Prolog lacks mechanisms for structuring programs 
and has no type facilities. It is hard to read Prolog programs, because the or­
der of parameters in predicates is not always obvious. This is a problem in 
other languages, but it seems especially severe in Prolog. For all its short­
comings, Prolog is widely used, especially in Europe, for artificial intelligence 
rule-based programs. It has been successfully used in such applications as 
genetic sequence analysis, circuit design, and stock-market analysis. 

Enhancements of Prolog to give it an understanding of constraints and to 
organize search differently reduce the difficulty of writing clear and efficient 
programs. Various constraint-based extensions to Prolog have been devel­
oped, including CLP(Σ*), which understands regular expressions 
[Walinsky 89], and versions that deal with strings in general [Rajasekar 94]. 

Concurrent logic programming is an active research topic. All the con­
juncts in the body of a rule can be evaluated simultaneously, with bindings of 
common variables communicated as they arise between otherwise indepen­
dent evaluators. This technique is called and-parallelism. Similarly, multiple 
rules whose heads match a goal can be evaluated simultaneously; this tech­
nique is called or-parallelism. Research topics include the ramifications of 
using shared and distributed memory, how to manage bindings for variables, 
how much parallelism can be discovered by the compiler in ordinary Prolog 
programs, and how the programmer can assist that task in extensions to Pro­
log. One such extension, called Guarded Horn Clauses, allows guard predi­
cates, much like the guards in Ada’s select statement (discussed in Chapter 
7), to restrict the rules that are to be considered during concurrent evalua­
tion. Much of the literature on concurrent logic programming has been sur­
veyed by Shapiro [Shapiro 89]. 

Go..del manages to blend Prolog with strong typing, some type polymor­
phism, and modularization, while increasing the range of logical operators. It 
also provides lazy evaluation, which makes some naive programs far more ef­
ficient. However, it is a much more complex language; one of Prolog’s advan­
tages is its relative simplicity. 

There are other languages specifically intended for knowledge-based rea­
soning. In particular, OPS5 shares with Prolog and Go..del the concept of 
rules, facts, and queries [Brownston 86]. It is based on an inference engine, 
which repeatedly (1) determines which rules match existing facts, (2) selects 
one of those rules based on some strategy, and then (3) applies the actions 
specified in the selected rule, usually adding to or altering the set of facts. 
Step 1 can be extremely costly, but step 3 can propagate changes to a data 
structure to make step 1 reasonably efficient. 
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EXERCISES 

Review Exercises 
8.1	 Figure 8.10 (page 236) shows the backtrack tree for the query grand-

motherOf(tom,X). Show the backtrack tree with the rules for grand­
motherOf in Figure 8.8 (page 234) reordered as in Figure 8.80. 

Figure 8.80	 grandmotherOf(X,GM) :- motherOf(X,M) , motherOf(M,GM) . 1 
grandmotherOf(X,GM) :- fatherOf(X,F) , motherOf(F,GM) . 2 

8.2	 It appears that the rules on lines 3 and 4 of Figure 8.23 (page 242) can 
be replaced by the single rule append([],X,X). Is this so? 

8.3	 What is the result of the query in Figure 8.81? 

Figure 8.81	 in: ?- append([1,2],X,[1,2,3,4]) . 

8.4	 Modify the eval rules in Figure 8.59 (page 257) so that bodies are inter­
preted from right to left, that is, with the last conjunct first. 

8.5	 Design a functor fraction with two parameters (the numerator and de­
nominator) and predicate lessThan that takes two fractions and is satis­
fied if the first fraction is less than the second. The lessThan predicate 
does not need to be defined for unbound parameters. 

Challenge Exercises 
8.6	 Does Prolog have static or dynamic scope rules for formal parameters? 

8.7	 Are predicates in Prolog first-, second-, or third-class values? How 
about predicate names, functors, and terms? 

8.8	 Show how to build a stack containing {1,2,3} and to verify that it is a 
stack, using the definitions of Figure 8.20 (page 240). 

8.9	 In Figure 8.20 (page 240), I defined nonhomogeneous stacks. Show how 
the existence of a built-in integer predicate allows you to define integer 
stacks. 

8.10	 In Figure 8.20 (page 240), pop is a predicate name. Rewrite this exam­
ple so that pop is a functor. 

8.11	 In Figure 8.26 (page 243), how many solutions are there to naive-
Sort([11,2,11],S)? 

8.12	 In Figure 8.26 (page 243), how many solutions are there to 
naiveSort(S,[1,2])? 

8.13	 As an alternative to naiveSort and bubbleSort, encode insertionSort 
in Prolog. Make sure your program works correctly in all four cases of 
insertionSort(α,β), whether α or β is a constant or a variable. 
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8.14	 In Figure 8.33 (page 246), modify the definition of odd so that odd(2) 
evaluates to No instead of leading to an infinite computation. 

8.15	 In Chapter 2, a CLU program is shown for generating all binary trees 
with n nodes. Write a Prolog program that accomplishes the same task. 

8.16	 Prolog’s cut operator is not quite the same as SNOBOL’s fence, which 
only freezes alternatives selected within the current body, but does not 
prohibit the evaluator from trying other rules whose heads match. How 
can we achieve SNOBOL semantics in Prolog? 

8.17	 Modify the eval rules in Figure 8.59 (page 257) so that eval takes an 
additional parameter, which matches a tree that shows the subgoals 
that succeed leading to each result. 

8.18	 What is the complexity of SlowSort in Figure 8.76 (page 264) when x is 
bound and y is free? 

8.19	 Write SlowSort from Figure 8.76 (page 264) using CLU iterators to 
achieve the lazy evaluation needed. 
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