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Chapter 9 ❖


Aggregates 
This chapter deals with language features for dealing with aggregates, 
which are data that are structured according to some commonly useful orga­
nization, such as strings, arrays, and databases. Although many program­
ming languages provide general-purpose facilities to structure data (such as 
records) and organize routines that manipulate the data (such as abstract 
data types), some structures are so important that languages deal with them 
specifically in order to make it easier to write clear and efficient programs. 
In this chapter, I concentrate on strings, arrays, databases, and mathematical 
formulas. 

1 ◆ STRINGS 
Most languages provide some facility for dealing with strings, that is, con­
nected groups of characters. Some languages, however, specialize in string 
processing. This chapter will look at both elementary string operations and 
more complex control and data structures introduced in specialized string­
processing languages. 

1.1 Literals and Simple Operations 
String literals are usually enclosed in double quotes ( " ). Some syntax is of­
ten provided to include unusual characters in string literals. For example, 
the C language allows an escape character to precede special forms, such as 
\r for a carriage return, \t for a tab, \" for a double quote, and \023 for 
the character whose internal representation is octal 23. One nice escape se­
quence that doesn’t exist in any language I know of skips to the next non­
white text without including the white space in the string. I use \c to 
represent this special form, as in Figure 9.1. 
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Figure 9.1 StringVar := "this is a very long string that \c 1 
I place on several lines, but it represents \c 2 
a string without line breaks or gaps." 3 

Operations on strings are provided either by predefined procedures or by 
operators in the language. The simplest operations on strings, such as copy­
ing, equality testing, and lexical comparison, are often provided as overloaded 
meanings of := , = , and < . Another simple operation is concatenation, of­
ten represented by the overloaded operator + . (SNOBOL represents con­
catenation by an empty space operator, which is quite confusing, particularly 
since the same invisible operator also represents pattern matching!) In addi­
tion, a few languages, such as ABC, provide operators for string repetition 
("ho" * 3 is "hohoho"), string length, and arcane operations such as finding 
the minimum character in a string. 

Languages usually provide ways to convert other data types to strings. 
This facility is particularly important for output, which is often a long string 
computed from values of various types. Conversions to string are usually 
separate functions for each type to be converted, but C has a single function 
sprintf that can convert and concatenate any combination of basic types ac­
cording to a format string, as in Figure 9.2. 

Figure 9.2 IntVar := 23; 1 
sprintf(ResultString, 2 

"Give me %d number%s between %5g and 10%c.", 3 
IntVar, if IntVar = 1 then "" else "s" end, 4 
4.5, ’0’"); 5 

The format string in line 3 is copied to ResultString, but certain escapes pre­
fixed by % cause later actual parameters to be converted and inserted into 
the string. The formats are specified by %d for integer, %s for string, %g for 
float, and %c for character. Formats can include width specifiers, as shown by 
%5g. This code places in ResultString the value 

"Give me 23 numbers between 4.5 and 100." 

A related and even simpler method is provided by Sal in the form of 
edited strings [Sturgill 89]. Figure 9.3 is the edited string equivalent of Fig­
ure 9.2. 

Figure 9.3 IntVar := 23; 1 
ResultString := 2 

’Give me {IntVar} number\c 3 
{if IntVar = 1 then "" else "s" end} \c  4  
between {4.5:5} and 10{’0’}.’ 5 

Expressions in braces are evaluated at runtime and formatted as appropriate 
to their type and according to any width specification given. Edited strings 
use a different set of delimiters from ordinary strings as a way to warn the 
compiler to inspect them for included expressions, which the compiler inter­
prets to generate code. This code is executed when the edited string is first 
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evaluated; the result is an ordinary string that is not reevaluated later. 
Edited strings are more type-secure than the sprintf function, because there 
is no way to accidentally request that a value of some type be treated as a dif­
ferent type. 

Languages often provide either a special syntax or a function call to ex­
tract substrings of a subject string based on position and length, as in Figure 
9.4. 

Figure 9.4	 substr("A sample", 3, 4) 

This string evaluates to "samp", starting at the third position of "A sample" 
and continuing for 4 characters. 

It is also common to provide for character or substring search. Search can 
be designed to return a Boolean to indicate success, the position of the char­
acter or substring if found (0 otherwise), or a pointer to the character or sub­
string if found (nil otherwise), as in Figure 9.5. 

Figure 9.5	 CharSearch("sample string", ’s’) 1 
StringSearch("Target string", "get") 2 

The search in line 1 could return true, 1, or a pointer to the entire string. 
The search in line 2 could return true, 4, or a pointer to the substring "get 
string". There might also be variants to conduct the search from right to 
left. 

Slightly more complex than searching for characters is extracting data 
from a string while converting types; see Figure 9.6. 

Figure 9.6 MyString := "4 and 4 make 8 in base 10" 1 
sscanf(MyString, "%d and %d make %g.", First, Second, 2 

Third); -- First := 4, Second := 4, Third := 8.0 3 

Here the formats are used not to convert from numeric data to string data, 
but the reverse, to convert parts of the string into numeric data. The occur­
rences of %d in line 2 cause the substring "4" to be converted to the integer 4; 
the %g format converts "8" to the real 8.0. 

Another way to extract data from a string is to split it into fields based on 
some character. Several languages (for example, ABC, Perl, and Sal) provide 
a split procedure that takes a string and a set of characters considered to be 
field separators and a string array (passed by result) into which the given 
string is to be separated, as in Figure 9.7. 

Figure 9.7	 split("Veni, vidi, vici", ",", ResultArray) 

This call would assign "Veni" into ResultArray[0], " vidi" into Result-
Array[1] (with the initial space), and " vici" into ResultArray[2]. 
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1.2 Representation 
Usually, programmers don’t need to worry about how a language implementa­
tion represents strings. However, the representation can affect both the 
speed of computation and the way the program must manipulate strings. For 
example, C defines strings as consecutive characters terminated by a null (bi­
nary zero) character. This representation makes it slow to concatenate a 
string to the end of another (the implementation must find the end of the sec­
ond string by a linear method) and does not allow nulls to be contained within 
strings. It encourages a programming style in which a variable points into 
the string and advances character by character until the terminating null is 
seen. 

Alternative representations have some advantages. If the length of the 
string is encoded, perhaps in the first few bytes, then concatenation becomes 
faster, and strings may contain null characters. If strings are declared with a 
compile-time length, many operations become faster, and the compiler can 
keep track of the length of intermediate strings in complex expressions. 
However, some operations produce results whose length cannot be predicted. 
For example, a substring operation might take a variable length parameter. 
Therefore, languages in which strings are explicitly declared usually declare 
the maximum length that the string value might attain. This information de­
termines storage requirements but does not dictate the length of particular 
values put into storage. 

One attractive proposal is to omit a string-length code at the start of the 
storage area for a string, use a terminating null, but use the last byte of the 
storage area to indicate the distance back to the terminating null [Bron 89]. 
If the string just fits in the storage area, so that the terminating null is in the 
last place, the null looks like the number 0, indicating zero distance to the 
terminating null. This representation makes it a bit harder for programs to 
build new strings directly, but a reasonable library of string-building opera­
tions can circumvent this problem, and programs may still scan through 
strings by using explicit pointers. 

1.3 Pattern Matching 
Sal, Awk, and Perl provide a match operator ˜ that compares a target string 
to a regular expression. The result is Boolean, indicating success. A regular 
expression is a string, where most characters match themselves, but some 
characters and character combinations have special meanings. The following 
table lists some of these special meanings; Perl has an even richer set. 
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Regular expression Matches 

. any character 
\< start of word 
\> end of word 
\s white space 
\d a digit (like [0-9]) 
\w a word 
ˆ the beginning of the target string 
$ the end of the target string 
[abc...] any character in the set; ranges like: [3-7A-P] 
[ˆabc...] any character not in the set 
r1| r2 either r1 or r2 (alternation) 
r* zero or more r’s 
r+ one or more r’s 
r? zero or one r’s 
r{3,5} match 3, 4, or 5 r’s 
(r) match r, call it a group 
\2 string matched by the second group 

Some of these expressions, like . and ‘\s , match (and “use up”) a single 
character. Others, like \< and ˆ , do not use up any characters. For exam­
ple, the \< expression matches the beginning of an alphanumeric region of 
the string; it is used to signal the start of a word. Grouping a subpattern al­
lows you to refer to it later. Groups are numbered according to the left-to-
right order of their opening parentheses. Figure 9.8 shows some examples of 
regular expressions. 

Figure 9.8 "literal" -- matches "literal" 1 
"l*iteral" -- matches "iteral", "literal", "lllliteral" ... 2 
"(l| b)(i| o)b\2" -- matches "libi", "lobo", "bibi", "bobo" 3 
"[lb][io]b" -- matches "lib", "lob", "bib", "bob" 4 

The match operator can return the start and length of the matched substring 
via predeclared global variables or make them available through functions to 
be called after the match. If several matches are possible, one match is cho­
sen. The usual rule is that * extends its match as far as possible and that 
the alternatives indicated by | are tried in the order given. In Perl, the 
search can be made insensitive to the case of the subject string, it can be 
made to start either at the beginning of the string or where the previous 
search left off, and it can be set not to extend the match as far as possible. 

Slightly more sophisticated than matching a pattern is replacing the 
matched substring with new contents. The new contents can depend on parts 
of the matched patterns. Those parts are typically parenthesized groups, 
numbered in the order of their opening parentheses, as in Figure 9.9. 

Figure 9.9	 MyString := "here is a nice sample"; 1 
Substitute(MyString, "(i(s) )", "wa\2"); 2 

The Substitute procedure in line 2 assigns "here was a nice sample" to My-
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String. The ‘\2’ in line 2 fills in what the second group, (s), matched, 
namely, "s". Some languages provide sequences that can be placed in the 
third parameter of Substitute to indicate the part of the target string before 
the match, the entire matched part, and the part after the match, as in Fig­
ure 9.10. 

Figure 9.10	 MyString := "I think, therefore I am"; 1 
Substitute(MyString, ",", " that \‘\&\’,"); 2 

The expression \‘\&\’ in line 2 indicates the entire string, built up of the 
parts before, during, and after the match. The substitution changes MyString 
to "I think that I think, therefore I am, therefore I am". 

1.4 Associative Arrays 
Languages dealing with strings often provide a data type known as an asso­
ciative array, which is indexed by strings instead of by integers or other 
scalar types. Associative arrays are usually implemented by hash tables. In 
some languages, like Sal and SNOBOL, the declaration of such an array indi­
cates how large to make the hash table. If more elements are stored than the 
hash table size, access will become progressively slower but will still work. 
Other languages, like Perl, use extensible hashing and do not require any size 
declaration. ABC uses binary trees instead of hashing, so that a program can 
iterate through the array in key order. Other languages can only iterate in 
an implementation-dependent order. 

Associative arrays are quite helpful in database applications. For exam­
ple, to check for duplicates in a database with one field, say, StudentName, I  
could use the Boolean associative array Present of Figure 9.11. 

Figure 9.11 variable 1 
Present : array string of Boolean; 2 
ThisEntry : string; 3 

loop 4 
ThisEntry := GetNextEntryOfDatabase(); 5 
if ThisEntry = "" then break end; -- exit loop 6 
if defined Present[ThisEntry] then -- found duplicate 7 

write("{ThisEntry} is a duplicate."); 8 
end; 9 
Present[ThisEntry] := true; 10 

end; 11 

In line 7, the defined operator indicates whether a value has been defined for 
the particular index value given; it returns a Boolean. The assignment in 
line 10 could just as easily use false; what counts is that some value is 
placed in Present[ThisEntry]. 

Associative arrays often come with a control structure for iterating over 
all index values that have been defined. Figure 9.12 continues the previous 
example. 
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Figure 9.12 for Entry in Present do 1 
write(Entry); 2 

end; 3 

1.5 Substrings as First-Class Values 
Allowing substrings to be first-class values of a predeclared substring type 
has several advantages [Hansen 92]. Substring values can record not only 
their contents but also the identity of their base string. Dynamic allocation of 
space for substrings can be handled by the language at runtime. 

Each value of the substring type contains a base string (perhaps imple­
mented as a pointer) and the left and right positions in that string that de­
limit the substring. As with Icon, I understand positions to be between 
characters of the string. 

The primitive operations on substrings can be simple and few. Here is a 
reasonable set of primitive operations: 

•	 start(x). Returns a substring with the same base as x, with both left 
and right set to left of x. 

•	 base(x). Returns a substring with the same base as x, left set before the 
first character of x, and right set to after the last character of x. 

•	 next(x). Returns a substring with the same base as x, left set to right of 
x, and right set one character after left if possible. Otherwise, right is set 
to the same position as left. 

•	 prev(x). Returns a substring with the same base as x, right set to left of 
x, and left set one character before right if possible. Otherwise, left is set 
to the same position as right. 

•	 extent(x,y). If  x  and y have different base strings, returns an empty 
substring of the empty base "". Otherwise, returns a substring with right 
set to the right of y and left set to either left of x or right of y, whichever is 
earlier in the base. 

•	 x = y. The base strings of the two substrings are compared character by 
character between their left and right positions. The result is true if and 
only if the lengths are identical and the selected characters match exactly. 

•	 x + y. Returns a substring containing a new base string that is the con­
catenation of the substrings x and y, and left and right at the beginning 
and end of that new base string. 

•	 x := y. The old value of x is discarded; x acquires the same value as y, 
including the base string and the left and right positions. 

Given these primitive operations, I can write a function that takes a sub­
string representing a word terminated by blanks and returns a substring rep­
resenting the next word, as in Figure 9.13 [Hansen 92]. 

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy. 



276 CHAPTER 9 AGGREGATES


Figure 9.13 function NextWord(value aWord : substring) : substring; 1 
begin 2 

loop -- skip to end of word 3 
aWord := next(aWord); 4 
if aWord ≠ " "  then break end; 5 

end; 6 
while next(aWord) ≠ "" and next(aWord) ≠ " "  do 7 

aWord := extent(aWord, next(aWord)); 8 
end; 9 
return aWord; 10 

end; -- NextWord 11 

The primitive substring operations can be used to build slightly more 
sophisticated operations, such as rest, which returns all but the first charac­
ter of its substring parameter, and last, which returns just the last character 
of its substring parameter. They can also be used to build Icon’s matching 
procedures. 

1.6 SNOBOL 
SNOBOL was developed by Ralph E. Griswold and others at Bell Telephone 
Laboratories around 1965 [Griswold 71]. It has a strange syntax, partially 
because it was developed before Algol-like syntax became popular. Spaces act 
as both the concatenation and the match operators. The only statement form 
includes pattern match, replacement, and success and failure gotos. To avoid 
confusion, I translate all the SNOBOL examples into an Ada-like syntax, us­
ing match and replace operators. SNOBOL uses dynamic typing and dy­
namic scope rules; its primitive data types are strings, integers, and reals. 
The structured types include patterns (distinct from strings), nonhomoge­
neous arrays, and associative arrays. 

Variables are not declared; all conceivable strings (even the empty string) 
name variables. Initially, all variables have the value "". In a sense, there­
fore, all string values point to other strings, as in Figure 9.14. 

Figure 9.14	 somewhere := "over"; 1 
over := "the"; 2 
the := "rainbow"; 3 
write(somewhereˆˆ); -- writes "rainbow" 4 

SNOBOL is homoiconic, after a fashion. A program is a string, and it is 
possible at runtime to compile a string and to branch to a label in it. How­
ever, this facility is much less attractive than LISP’s equal treatment of pro­
gram and data structure. SNOBOL has not been heavily used for artificial 
intelligence programming. 

SNOBOL patterns are like regular expressions, but more powerful. They 
are structured values built recursively. The simplest patterns are string liter­
als and string-valued expressions, which match themselves. More complex 
patterns are formed by sequencing (somewhat like and), alternation (some­
what like or), and by invoking pattern-returning predeclared functions. Pat­
terns are matched by a backtracking algorithm, trying earlier alternatives 
first. Backtracking in pattern matching is very similar to backtracking in 
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logic programs (see Chapter 8). Consider Figure 9.15. 

Figure 9.15 aString := "The boy stood on the burning deck, \c 1 
Eating peanuts by the peck."; 2 

aPattern := ("ing" | "the") & " " &  ("deck" | "peck"); 3 
aString match aPattern; 4 

The pattern in line 3 includes alternation, represented by | , and sequencing, 
represented by & . The | operator indicates that if the pattern on its left 
fails to match, the pattern on its right should be tried. The & operator indi­
cates that if the pattern on its left succeeds, the pattern on its right should 
then be matched at the position following the match of the pattern on the left. 
If the pattern on the right fails, the pattern on the left is retried. Line 4 
would succeed, matching "ing deck". If forced to backtrack, it would match 
"the peck". 

The predeclared pattern-returning functions are as follows: 

Pattern Matches 

len(4) any string of 4 characters 
tab(5) to position 5 of the string 
rtab(6) to position 6 from the end of the string 
pos(7) succeeds if at position 7; matches empty string 
rpos(7) succeeds if at position 7 from right; matches empty string 

any("abc") any character in the set 
notany("abc") any character not in the set 
span("abc") until a character not in the set 
break("abc") until a character in the set 

rem 
arb 
bal 

the remainder of the string 
0 chars, on reevaluation any 1 char, then 2, and so on 
like arb, but not matching unbalanced parentheses 

Special patterns control backtracking. The pattern fence succeeds, but 
backtracking refuses to reevaluate it. It is equivalent to Prolog’s cut opera­
tor, except that it does not prevent alternatives elsewhere in the pattern from 
being tried. The succeed pattern succeeds the first time and all succeeding 
times; consider Figure 9.16. 

Figure 9.16 "a string" match (succeed & "p") 

This match will never terminate, because succeed will continue to retry, even 
though "p" keeps failing. A related pattern is fail, which fails each time it is 
attempted. It is used to force subsequent matches of the previous part of the 
pattern, usually for the side effects that matching can produce. Finally, 
abort causes the match attempt to terminate entirely with failure. 

SNOBOL programmers often employ patterns for their side effects. The 
matched substring may be replaced by a new string, as in Figure 9.17. 
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Figure 9.17	 far := "away"; 1 
far match "y" replace "ke"; 2 

Line 2 will assign "awake" into far. The part of the string matched by a sub­
pattern can be immediately assigned into a variable, as in Figure 9.18. 

Figure 9.18	 there := "dream"; 1 
pat := (len(3) =: bluebird);	 2 
there match pat;	 3 

The pattern has a side effect, to assign into variable bluebird the results of 
matching the subpattern len(3). The match in line 3 will succeed and will 
assign "dre" to bluebird. I have used =: to denote the immediate assign­
ment operator. The side effect of assignment takes place as soon as the imme­
diate assignment operator is encountered during pattern matching. I can use 
immediate assignment to construct a pattern that will match any doubled 
string, as in Figure 9.19. 

Figure 9.19 pat := pos(0) & (arb =: firstpart) & (delay firstpart) & 1 
rpos(0); 2 

"abab" match pat; -- succeeds 3 

The four components of the pattern in line 1 are sequenced together. The 
pos(0) and rpos(0) components force the rest of the pattern to apply to the 
entire subject string. The predefined pattern arb matches any length string, 
starting with the empty string. Whatever it matches is immediately assigned 
to firstpart. The pattern then looks for firstpart itself, that is, a repeti­
tion of the first part. The unary delay operator forces lazy evaluation of its 
argument. Otherwise, the value of firstpart at the time the pattern is con­
structed would be embedded in the pattern instead of its value at the time the 
pattern is evaluated during matching. When the pattern is applied in line 2, 
arb first matches "", so  delay firstpart also matches "". But rpos(0) fails, 
so matching backs up. The pattern delay firstpart fails to find an alterna­
tive, but arb finds the alternative "a". This time, delay firstpart fails. The 
next alternative for arb is "ab", and this time the entire match succeeds. 

In addition to immediate assignment, SNOBOL also provides conditional 
assignment, placing the value of a matched substring in a variable only if the 
match completely succeeds. Conditional assignment tends to be more effi­
cient than immediate assignment, since it can avoid multiple assignments as 
the pattern match backtracks, but it can’t be used in the double-word exam­
ple. Finally, the position assignment operator @ assigns the position in the 
subject string (that is, a number such as 6) to a variable during matching. 

Programmers often use immediate and conditional assignment to assign 
values to the pseudovariable output. Every assignment to output causes the 
value to be output from the program. Similarly, every evaluation of input 
reads in a value from the program. 

SNOBOL allows an arbitrary procedure call to be inserted in a pattern. 
The value returned by the procedure is treated as part of the pattern being 
matched. (String values are coerced to patterns for this purpose.) Usually, 
such a call is prefixed by the delay operator to postpone the evaluation of the 
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actual parameters and the invocation of the procedure until match time. If 
the procedure fails, then that part of the pattern match fails, and backtrack­
ing takes over. Information resulting from the match so far can be passed to 
the procedure via immediate assignment to global variables or to local vari­
ables passed as actual parameters. 

1.7 Icon 
Icon was developed by Ralph E. Griswold, one of the developers of SNOBOL, 
in the late 1970s as a result of his dissatisfaction with how SNOBOL’s pat­
terns fit into the language [Griswold 80]. It retains the virtues of SNOBOL’s 
pattern matching without a pattern data type. It is an expression-oriented 
language, with each evaluation resulting in either a value (counted as a suc­
cess) or failure. Instead of using Boolean values, conditionals base their ac­
tions on the success or failure of evaluating their conditions. 

The first novel idea in Icon is the scan statement. (I call it a statement, 
even though all constructs in Icon are actually expressions, because it is usu­
ally not used for its value.) This statement introduces a name scope that cre­
ates a new binding for two predeclared variables, subject and pos, which 
specify the current string being matched and the current position within the 
string. Consider Figure 9.20 (I take liberties with actual Icon syntax to keep 
my examples consistent). 

Figure 9.20 scan "peristalsis" using 1 
write("[" + move(4) + "]") 2 

end; 3 

This program prints "[peri]". The scan in line 1 maps subject to "peri­
stalsis" and sets pos initially to 1. The body of scan is in line 2; it implicitly 
uses both subject and pos (modifying the latter). The predeclared procedure 
move causes the position to be incremented, if subject is long enough, and if 
it succeeds, it returns the substring of subject over which it has advanced. 
The + operator is string concatenation. After the body, both subject and pos 
revert to whatever values they had before. Figure 9.21 shows a more complex 
nested example. 

Figure 9.21 scan MyString using 1 
loop -- each iteration deals with one word 2 

scan tab(upto(" ")) using 3 
if upto("-") then -- word has a hyphen 4 

write(subject); 5 
end; 6 

end; -- scan tab(upto(" ")) 7 
move(1); -- past " " 8 

end; -- loop 9 
end; -- scan MyString 10 

This program prints out all space-delimited words in MyString that contain a 
hyphen. The outer scan (lines 1–10) contains a loop that repeatedly advances 
pos to a space, scans the intervening word (lines 3–7), and then moves past 
the space (line 8). The predefined function upto (lines 3 and 4) returns the 
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position of the first occurrence of any character in its actual parameter. If 
there is no such occurrence, it fails, and this failure is tested by a conditional 
(line 4). The function tab (line 3) moves pos to the value of its actual parame­
ter and returns the substring of subject that it has moved over (in either di­
rection). The expression in line 3 is interpreted in the outer scope; that is, it 
moves the cursor in MyString, and the move in line 8 moves the cursor again. 
The inner scope, lines 4–6, has its own subject and pos. Even if it modified 
pos (it doesn’t), that modification would not be seen by the outer scope. 

The pattern-returning functions of SNOBOL are replaced in Icon by a 
small set of predeclared matching procedures, which return either positions 
or matched strings if they succeed, and which can have the side effect of mod­
ifying pos. These are the procedures: 

Procedure Returns Side effect 

tab(n) string between pos and n pos := n 
move(n) string between pos and pos + n pos := pos + n 

upto(s) position of next character in s none 
many(s) position after 0, 1, . . . characters in s none 
any(s) pos + 1 if current character in s none 

find(s) position before first occurrence of s none 
match(s) position after s starting at pos none 
bal() position of end of balanced string starting at pos none 

The first procedures, tab and move, are the only ones that modify pos. In­
stead of numbering character positions, Icon indexes strings between charac­
ters, starting with 1 before the first character of a string. This convention 
makes it unnecessary to say such things as “up to and including position 4.” 
Each intercharacter position has an alternative index, which is 0 at the end of 
the string and increasingly negative toward the front of the string. So tab(0) 
moves to the end of the string, and tab(-3) moves before the character 3 be­
fore the end. If tab or move would exceed the limits of the string, they fail 
and have no side effect. 

The remaining procedures examine subject and return a position that 
can be given to tab or move. For example, to move past "ThisString", I could 
write the expression in Figure 9.22. 

Figure 9.22 tab(match("ThisString")) 

Icon lets the programmer introduce new matching procedures. The cur­
rently active pos and subject are automatically inherited by procedures, 
since Icon uses dynamic scope rules. Procedures may directly modify pos, or  
they may indirectly modify it by invoking other matching procedures, such as 
the predefined ones. Usually, though, they are designed only to return a posi­
tion, and the invoker may then use tab to modify pos. Figure 9.23 shows a 
procedure MatchDouble that looks for the given string twice in succession: 
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Figure 9.23 procedure MatchDouble(Given) : integer; 1 
return match(Given + Given); 2 

end; 3 

The return statement in line 2 returns failure if its expression fails. A pro­
grammer may also explicitly return failure by a fail statement. 

The second novel idea in Icon is that each expression is, either implicitly 
or explicitly, an iterator in the CLU sense, as discussed in Chapter 2. Back­
tracking can require that an expression be reevaluated, and it may produce a 
different result the next time. 

Some matching procedures, such as match and pos, fail if reevaluated. 
The reason is that if the first success is not good enough for whatever invoked 
it, it wasn’t the fault of the procedure, which has no better result to offer. 
Other matching procedures try to find additional answers if reevaluated. For 
example, upto("a") applied to "banana" at position 1 will first return 2, and 
on successive evaluations will return 4, 6, and then failure. Likewise, find 
and bal locate matches further and further from the original position. 

Backtracking causes the previous value of pos to be restored before reeval­
uation. Reevaluation of a procedure invocation first tries new answers from 
the procedure without changing the actual parameter and then tries reevalu­
ating the actual parameter. For example, tab(upto("a")) applied to "ba­
nana" can be reevaluated after it has succeeded in moving pos to 2. Since tab 
fails on reevaluation, its parameter upto("a") is reevaluated. This reevalua­
tion is in the context before tab had advanced pos; that is, pos is first re­
stored to 1. Now upto("a") returns 4, so  tab will set pos to 4. 

The real novelty comes from the fact that the programmer can explicitly 
build iterator expressions without using predefined matching procedures. 
Such expressions can be built with the alternation operator | . For exam­
ple, 4 | 3  is an iterator expression with values 4, 3, then failure. Iterator ex­
pressions can be used anywhere an expression is expected, such as an actual 
parameter. When first evaluated, tab(4| 3) moves pos to 4. If it is reevalu­
ated, it moves pos to 3 instead. Further evaluations lead to failure. 

The sequence operator & also builds iterator expressions, as in Figure 
9.24. 

Figure 9.24 scan "malarky" using 1 
write(tab(upto("a")) & match("ark")); -- outputs 7 2 

end; 3 

In line 2, upto("a") returns 2, tab advances pos to 2, and match("ark") fails. 
The sequence operator causes tab to reevaluate, which fails, causing 
upto("a") to reevaluate, returning 4. Now tab advances pos to 4, and 
match("ark") succeeds, returning 7. The result of the sequence operator is 
its second operand, so write outputs 7. If the sequence operator were re­
placed by ; , match("ark") would fail once, and write would not be called at 
all. 

Iterator expressions are useful in many surprising contexts, such as in 
conditional and iterative statements; consider Figure 9.25. 
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Figure 9.25	 if (ThisVar| ThatVar) = (5| 2| 10) then ... 1 
while LowBound < (ThisVar & ThatVar) do ... 2 

In line 1, if ThisVar = 4 and ThatVar = 5, reevaluation stops after the second 
alternative of the first clause and the first alternative of the second clause; 
ThatVar is not compared against 2 and 10. Line 2 shows a nice shorthand for 
LowBound < ThisVar and LowBound < ThatVar. 

Backtrack can be invoked directly by an every statement, as in Figure 
9.26. 

Figure 9.26 scan "malarky" using 1 
every place := upto("a") do 2 

write(place); -- 2, 4 3 
end; 4 

end; 5 

This program outputs both 2 and 4. The every statement in lines 2–4 reeval­
uates place := upto("a") until it fails; for each successful evaluation, line 3 
is executed. 

Iterator procedures look just like any other procedure, except that they 
use yield to return a value. Figure 9.27 converts the MatchDouble procedure 
of Figure 9.23 (page 281) to an iterator that will return the position after any 
double instance of its parameter. 

Figure 9.27 procedure MatchDouble(Given : string) : integer; 1 
variable place : integer; 2 
every place := find(Given + Given) do 3 

yield place + 2*length(Given) 4 
end; 5 

end; 6 

-- sample use 7 
scan "committee meets three times" using 8 

variable here : integer; 9 
every here := MatchDouble("e") do 10 

write(here); -- 10, 14, 22 11 
end; 12 

end; 13 

Iterator procedures can be used to parse using a BNF grammar. For ex­
ample, the grammar of balanced parentheses is shown in Figure 9.28. 

Figure 9.28	 Bal ::= ε | "(" Bal ")" Bal 

An iterator procedure that finds longer and longer balanced parenthesis 
strings appears in Figure 9.29. 
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Figure 9.29 procedure Bal() : integer; 1 
every 2 

match("") | ( 3 
tab(match("(")) & tab(Bal()) & 4 
tab(match(")")) & tab(Bal()) 5 

) 6 
do 7 

yield pos; 8 
end; 9 

end; 10 

-- sample use 11 
scan "()(())(" using 12 

variable here : integer; 13 
every here := Bal() do 14 

write(here); -- 1, 3, 7 15 
end; 16 

end; 17 

1.8 Homoiconic Use of Strings: Tcl 
Several syntax rules in Tcl interact to make it homoiconic. Lists are repre­
sented as strings; the individual elements are delimited by white space. Ev­
ery string names a variable. The R-value of a variable is denoted by $ before 
the string that represents the variable. (This rule makes Tcl programs error­
prone, because it is so easy to forget the $ .) Strings need not be delimited by 
quotes unless they have embedded spaces. There are quotes ( { and } ) that 
prevent any evaluation within a string, quotes ( " ) that allow evaluation, and 
quotes ( [ and ] ) that force the string to be evaluated. Evaluating a string 
means treating it as a series of commands delimited by end-of-line characters 
or semicolons. Each command is the name of a procedure (many are prede­
clared; I will show them in bold monospace) followed by parameters. The 
whole program is a string to be evaluated. Figure 9.30 shows a simple Tcl ex­
ample. 

Figure 9.30 set a 4 -- a :=  4  1  
set b [expr $a  + 5] -- b :=  9  2  
while {$b > 0} { 3 

puts "b is now $b" 4 
set b [expr $b - 2] 5 

} 6 

This program prints b is now 9 and then four more similar outputs. Line 1 
is the assignment statement. It takes the name, not the R-value, of the vari­
able to be assigned. Line 2 shows the quotes that force evaluation: [ and ] . 
The expr command evaluates any number of parameters as an arithmetic ex­
pression. It returns the value of that expression. Line 3 introduces the 
quotes that prevent evaluation: { and } . The while command takes two 
unevaluated strings, the first representing a conditional and the second rep­
resenting the body of the loop. It repeatedly invokes expr on the first param­
eter, and if the result is true, it evaluates the second parameter, thereby 
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executing the body. The body contains end-of-line characters, allowing the 
parser to separate it into individual statements. Line 4 shows the last kind of 
quotes, which can build a string containing spaces, but which do not prevent 
evaluation of such constructs as $b. 

To see how Tcl is homoiconic, consider Figure 9.31, a less readable version 
of the same program. 

Figure 9.31	 set a 4 -- a :=  4  1  
set rhs {expr $a +} -- rhs := "expr $a +"	 2 
set rhs [append rhs 5] -- rhs := "expr $a + 5"	 3 
set b [eval $rhs] -- b := 9	 4 
set cond {$b > 0} -- cond := "$b > 0"	 5 
set body {	 6 

puts "b is now $b"	 7 
set b [expr $b - 2] 8 

} 9 
while $cond $body 10 

The condition and the body of the while loop in line 10 are the result of previ­
ous computations. Even commands can be computed, as in Figure 9.32. 

Figure 9.32	 set a ile -- a := "ile" 1 
wh$a {$b > 0} {set b [expr $b - 2]} 2 

Line 2 is actually a while command, because the first word evaluates to 
while. 

2 ◆ ARRAYS: APL 
Arrays are especially important in mathematical computation. One of the 
principal advances in FORTRAN 90 over earlier versions of FORTRAN is its 
ability to manipulate arrays without dealing with the individual array ele­
ments. However, the best example of an array language is not FORTRAN, 
but APL. The APL language was invented by Kenneth E. Iverson in the early 
1960s and has had a small but devoted following ever since. It could be con­
sidered a single-minded language: All computation is cast in the mold of ar­
ray manipulation. Its practitioners point with pride at the conciseness of 
their programs; detractors point with scorn at the unreadability of the same 
programs. APL has long suffered from the fact that most of its operators are 
not normal ASCII symbols, so ordinary keyboards are not adequate for repre­
senting APL programs. Dialects such as J and APL/11 use several ASCII 
characters together to represent the unusual symbols. My examples expand 
unusual symbols into keywords to help you read them. 

APL programs must be studied; they cannot simply be read. Not only does 
APL have an unusual character set, but it lacks control structures such as 
while and conditionals. 

APL’s greatest strength is its ability to handle arrays of any dimension 
with the same operators that apply to scalars (which are zero-dimensional ar­
rays). The meaning is to apply the operator pointwise to each member of the 
array. The resulting uniformity, along with the wealth of arithmetic opera-
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tors, makes it quite a powerful language. Another contributor to uniformity 
is that Booleans are represented (as in C) as numeric values: 0 means false 
and 1 means true. Arrays of Booleans can therefore be manipulated by the 
same means as arrays of numbers. Similarly, strings are treated as arrays of 
characters and can also be handled identically to numeric arrays. 

If an operator requires both operands to have the same dimension, it is of­
ten valid to apply that operator to operands of different dimension. For ex­
ample, x + y  is the pointwise addition of elements of x with elements of y. 
Suppose that y is a matrix (that is, two-dimensional) with bounds 5 and 6, 
and that x is a scalar (zero-dimensional) with value 4. Then x will be coerced 
to two dimensions to conform to y, and each cell of the coerced matrix will 
have value 4. This kind of coercion is called spreading. The value x can be 
spread to conform to y only if the bounds of the dimensions of x match the 
bounds of the initial dimensions of y. In this example, x has no dimensions, 
so the condition is trivially met. Most APL implementations only allow one­
dimensional quantities to be spread. 

2.1 Operators and Meta-operators 
APL is generally interpreted, not compiled. All operators are right­
associative and have the same precedence. Most operator symbols can be 
used either as unary or as binary operators, often with different meanings. 
To keep things clear, I use different keywords for the two meanings. Besides 
ordinary operators such as + , APL has many unusual operators, including 
the following: 

Operator Meaning 

x min y 
floor x 
ceil x 
recip x 
sign x 
abs x 
x max y 
exp x 
x power y 
x log y 
ln x 
x comb y 
fact x 
x deal y 
rand x 
x layout y 
fill x 
shape x 
x drop y 
x take y 
transpose x 
x member y 
x cat y 

min(x,y) -- lesser value 
floor(x) -- greatest integer ≤ x 
ceiling(x) -- least integer ≥ x 
1/x -- reciprocal 
abs(x) /  x  -- sign of x 
abs(x) -- absolute value 
max(x,y) -- greater value 
exp(x) -- e to power x 
x ̂ y -- x to power y 
logarithm (base x) of  y  
logarithm (base e) of x 
C(y,x) -- number of combinations of y taken x at a time 
factorial(x) -- x  can be fractional 
x integers picked randomly (no replacement) from 1. . .y 
random integer from 1..ceiling(x) 
array with dimensions x and initial value y 
one-dimensional array with initial values 1. . .x 
array of bounds of x 
remove first x elements of y 
keep only first x elements of y 
reverse the order of dimensions of x 
0 or 1, depending on whether x is found in y 
x concatenated with y (spread if necessary) 
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ravel x array x reduced to one dimension (row-major) 
x rotate y array y left-rotated in first dimension by x places 
x matdiv y x / y, where both are matrices 
matinv x inverse(x), where x is a matrix 
x compress y only members of y in positions where x is true 

If you call an operator a verb, then APL provides not only many verbs but 
also a few adverbs that modify verbs. You might call adverbs meta­
operators, because they convert operators to new operators. Here are some 
meta-operators, where v and w are the operators on which they act. 

Adverb Meaning 

x outer v y  outer product with operator v on x and y 
x v  inner w y  inner product with operators v and w on x and y 
v accumulate x apply operator v to one-dimensional array x repeatedly 
v scan x accumulate, generating all intermediate results 
x v  rank n y  operator v applied to n-dim cells of x and y 
x v  birank n m y  operator v applied to n-dim cells of x 

and m-dim cells of y 
n power v x  operator v applied n times to x. 

The operators v and w can be any binary operators, including programmer­
defined procedures. This ability to create new operators out of old ones is 
quite powerful indeed. The power operator is equivalent in purpose to power 
loops, described in Chapter 2. 

Figure 9.33 presents some examples to help clarify this welter of opera­
tors. 

Figure 9.33 in:  3 4 5 -- one-dimensional array 1 
out: 3 4 5 2 

in:  a := 3 4 5  3  
recip a -- applies pointwise to each element 4 

out: .333333333 .25 .2 5 

in:  3 + a -- 3 is  spread to same dimension as a 6 
out: 6 7 8 7 

in: + accumulate a -- like 3 + 4 + 5  8 
out: 12 9 

in: - accumulate a -- like 3 - (4 - 5) 10 
out: 4 11 

in: - scan a -- 3, 3-4, 3-(4-5) 12 
out: 3 -1 4 13 
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in: max accumulate a  14  
out: 5 15 

in: * accumulate recip a -- .333333333 * .25 * .2 16 
out: .0166666667 17 

in: a=a -- pointwise comparison 18 
out: 1 1 1 19 

in: ≠ accumulate a=a -- determine parity 20 
out: 1 21 

in: fill 4 22 
out: 1 2 3 4  23  

in: recip fill 4  24  
out: 1 .5 .333333333 .25 25 

in: (2 3) layout fill 6  26  
out: 1 2 3 27 

4 5 6  28 

in:  a := (2 3)  layout fill 6  29  
a[1,1] := 9 -- indices start at 1 30 
a[2,] := 8 -- entire row; 8 is spread 31 
a[,2] := 7 -- entire column; 7 is spread 32 
a 33 

out: 9 7 3 34 
8 7 8  35 

in: (2 3) layout (5 6) -- last parens not needed 36 
out: 5 6 5 37 

6 5 6  38 

in: + accumulate (2 3) layout (5 6) 39 
out: 16 17 40 

in: + scan (2 3) layout (5 6) 41 
out: 5 11 16 42 

6 11 17  43  

in: 1 rotate (3 2) layout fill 6  44  
out: 3 4 45 

5 6  46 
1 2  47 

in: (fill 4) + inner * (fill 4) 48 
-- sum of products; last parens not needed 49 

out: 30 50 

in: (fill 2) + inner * ((2 3) layout fill 6) 51 
-- sum of products 52 

out: 9 12 15 53 
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in: (fill 2) * inner + ((2 3) layout fill 6) 54 
-- product of sums 55 

out: 12 21 32 56 

in: (fill 2) outer + (fill 2) 57 
out: 2 3 58 

3 4  59 

in: (fill 2) outer * (fill 2) 60 
out: 1 2 61 

2 4  62 

in: (1 2 3) cat (4 5 6) 63 
out: (1 2 3 4 5 6)  64  

in: (1 2 3) cat rank 0 (4 5 6) 65 
out: 1 4 66 

2 5  67 
3 6  68 

As you can see, APL allows a great many usual and unusual manipulations to 
be performed readily. The computations lend themselves to vector-processing 
hardware on modern supercomputers. 

Although APL has no structured control structures, it does have goto, and 
the label can be computed, as in Figure 9.34. 

Figure 9.34 goto ((a > 0) cat (a < 0) cat (a=0)) compress 1 
(positive cat negative cat zero) 2 

Line 2 builds an array of labels (I ignore how labels are declared). Line 1 
compresses that array to one element based on a Boolean array only one of 
whose elements can be true. It then executes a goto to the selected label. 

Figure 9.35 shows how to generate the first n Fibonacci numbers. 

Figure 9.35 (n - 2) power 1 
(right cat + accumulate -2 take right) -- OneStep 2 
1 1  3  

The power meta-operator replicates the anonymous operator given in line 2 
(let me call it OneStep) n-2 times and then applies the resulting operator to 
the array 1 1.  OneStep uses the predeclared identifier right to refer to its 
right-hand operand, which is an initial Fibonacci string. Since it has no oc­
currence of left, OneStep is unary. OneStep takes the last two elements of 
the operand, since the left argument to take is a negative number. These last 
two elements are summed by the accumulation and are then concatenated to 
the previous sequence. 
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2.2 An APL Evaluator 
One of the most delightful things about APL is that it lends itself to lazy eval­
uation. For example, transpose need not actually create a new array and fill 
it with data; it needs only to wait until one of its values is required. It can 
then convert the indices of the desired access into the nontransposed indices 
and fetch the value from its operand. Likewise, the fill operator need not 
actually build an array; it can easily return values when they are actually re­
quired. Although lazy evaluation will generally not be faster than full evalu­
ation, it can avoid allocating large amounts of space. 

A lazy evaluator can be written for APL in an object-oriented language. In 
Smalltalk nomenclature, the class Expression has instance variables dimen­
sion, bounds, and values. For example, (3 4) layout 4 can be represented by 
an object in which dimension = 2 and bounds = (3 4). The instance variable 
values caches the values that have already been computed, so they do not 
need to be computed again. The Expression class has a method inRange: 
that reports whether a given index expression is valid for the dimensions and 
bounds given. It also provides methods store:at: and retrieve:at: for 
caching computed values in values, a method write for displaying all values, 
and methods dimension and bounds to report these instance variables. 

The Expression class has subclasses for every operator. Each subclass 
has methods for initialization (to set the dimension and bounds) and for ac­
cess at any index. For example, Fill sets dimension = 1. It can compute the 
value at any valid index without needing to store any array. Subclasses like 
Matinv that wish to cache computed values may do so via store:at:. The Ex­
pression class has methods for creating and initializing an instance of each 
subclass. One final subclass of Expression is Spread, which is used to accom­
plish coercion to a higher dimension. It can be called explicitly, but it will 
also be called implicitly by operators such as Plus when necessary. 

Some of the examples above could be cast as shown in Figure 9.36 into 
Smalltalk. 

Figure 9.36 APL: fill 5 1 
OOP: Expression fill: 5 2 

APL: ≠ accumulate a=a 3 
OOP: Expression accumulate: NotEqual of: 4 

(Expression equal: a and: a) 5 

APL: (fill 4) + inner * (fill 4) 6 
OOP: Expression inner: Plus with: Times of: 7 

(Expression fill: 4) and: (Expression fill: 4) 8 

APL: (2 3) layout fill 6 9 
OOP: Expression layout: #(2 3) with: 10 

(Expression fill: 6) 11 

In Line 2, the fill: method in Expression returns an instance of the Fill 
subclass, suitably initialized. I have omitted an invocation to write that 
would display all the values of this object. In lines 4–5, the accumulate:of: 
method of Expression creates an instance of the Accumulate subclass and 
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gives it both an operator, represented as the class NotEqual, and an expres­
sion to manipulate (all of line 5). If it needs to make calculations, it can in­
stantiate NotEqual as many times as needed and initialize those instances to 
the appropriate values. Array literals such as #(2 3) (line 10) could be co­
erced to the appropriate constant Expression, or I could require that they be 
explicitly converted by saying Expression constant: #(2 3). 

2.3 Incremental Evaluation 
In some applications, the same program is executed repeatedly on slightly dif­
ferent inputs. For example, spreadsheet programs are often reevaluated with 
slightly different data. Functional programming languages have been de­
signed that can quickly evaluate expressions given new data expressed as a 
modification of previous data [Yellin 91]. 

I want to show you how this idea can be embedded in an APL interpreter. 
To keep the discussion simple, I do not use a lazy interpreter, and I assume 
that the program is a single function with no internal variables. Given an old 
value and a new value, a delta represents how to change the old value to the 
new value. Of course, by value I mean an array of some shape. The delta and 
the old value together are enough to completely specify the new value. 

Every operator instance records the most recent value it has produced. It 
provides that value to its caller as a delta. The ultimate caller is typically the 
outer-level write routine, which uses the delta it receives to display the value 
of the program. (It might even display the delta, if the user is interested in 
that representation instead of the fully expanded result.) The first time the 
program is run, the deltas show the difference between the void value (not 
even a zero-dimensional array!) and the initial value. 

In order for this scheme to be efficient, incremental computation should 
usually not be more expensive than computing from scratch. If we are lucky, 
incremental computation is very inexpensive. An occasional inefficient re­
computation is perfectly acceptable, though. 

Achieving efficiency has two parts. First, the format for the deltas should 
not be longer than the new value. If a value has changed in major ways, it is 
better just to provide the new value outright. For APL arrays, a delta might 
indicate dimensions to delete, indices within a dimension to delete, particular 
values to change, and new indices within a dimension to add (with their val­
ues). For example, the delta from 1 3 4 5 7  to 1 2 4 5  might be represented as 
“change at index 2 to value 2, delete index 5.” 

Second, each operator and meta-operator should be implemented to take 
advantage of deltas. For example, the + operator generates an output delta 
that only includes indices where the input deltas indicate a change. The ac­
cumulate meta-operator could make use of an inverse to the operator it is 
given, if one exists, in order to remove the effects of any deleted array ele­
ments before adding the effects of inserted elements. 
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3 ◆ DATABASE LANGUAGES 
Databases are much more varied in structure than strings or arrays. The 
range of languages designed for databases is also quite wide. Database lan­
guages tend to look like ordinary algebraic languages and are often Algol­
based. They integrate database operations by providing additional data types 
and control constructs. Typically, programmers need to keep two “current lo­
cations” in mind: the current point of execution of the program, and the cur­
rent record of a database. In some languages, it is also necessary to keep the 
current relation in mind. 

3.1 Data Types 
There are several ways to represent data in a database, known as hierarchi­
cal, network, and relational. I concentrate on relational databases, in which 
information is stored in relations, which are persistent homogeneous arrays 
of records. 

My examples are taken from dBASE [Simpson 87], Sal [Sturgill 89], and a 
higher-level language, SQL. My examples will be based on the relations 
shown in Figure 9.37. 

Figure 9.37 People : relation 1 
FirstName, LastName : string; 2 
BirthYear : integer; 3 

end; 4 

Events : relation 5 
Place, What : string; 6 
EventYear : integer; 7 

end; 8 

That is, People and Events are homogeneous persistent arrays of records 
with the fields as shown. I have not limited the length of the string fields 
(dBASE requires declaring the exact length; Sal does not, but does allow pat­
terns that restrict valid values) nor the range of the integer fields (dBASE re­
quires specifying the number of characters in a string version of the field; Sal 
allows explicit range specification). The data specifications, known as 
schemata, are usually stored in files, as are the relations themselves. 
Schemata are built either interactively (dBASE) or by a specification file 
(Sal). 

In dBASE, a program that uses a relation opens it for use, at which time 
the field names become defined. dBASE is dynamic-typed. Runtime func­
tions are available to determine the types of fields. In Sal, a program must 
read the relation into a local relation variable before using it and must specify 
which fields are to be read. Runtime type checking verifies that the specified 
fields actually exist and are consistent with the uses to which they are put. 

Both dBASE and Sal allow the programmer to restrict attention to those 
records in a relation for which some Boolean expression holds. In dBASE, 
there are two techniques for restriction. First, a filter statement causes 
records to be invisible, as in Figure 9.38. 
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Figure 9.38 filter BirthYear < 1990 and LastName ≠ FirstName; 

Until filtering is turned off, accesses to the currently open relation will not 
see any record for which field BirthYear ≥ 1990 or for which LastName = 
FirstName. This statement causes a runtime error if the currently open 
database does not have fields with the given names or if there is a type mis­
match (for example, if BirthYear is not compatible with integer). 

Second, control constructs that iterate through a relation can explicitly 
avoid certain records, as I describe shortly. In Sal, the statement to copy an 
external relation into an internal variable has an optional where clause to se­
lect appropriate records only. The advantage of Sal’s approach is that the 
same relation can be read into multiple variables, possibly with different re­
strictions, after which each can be independently accessed. In dBASE, it is 
not possible to have two filters on the same relation, nor to have the same re­
lation open multiple times. It is easy in Sal, but quite awkward in dBASE, to 
generate a list of all first names combined with all last names. The advan­
tage of dBASE’s approach is that entire relations do not need to be read into 
memory before access may begin. Large relations are not usable in Sal. Of 
course, Sal could be implemented to evaluate relation variables in a lazy fash­
ion or to represent them on external store altogether. 

Both languages allow the programmer to construct Boolean expressions 
involving the fields of a relation. In addition to arithmetic and string compar­
ison, both have pattern matching. In dBASE, pattern matching is restricted 
to determining if one string expression is contained within another. dBASE 
also has an inexact string-comparison mode in which strings are considered 
equal if the first is a prefix of the second. Sal has a regular-expression pat­
tern matcher. 

In dBASE, multiple orders can be imposed on the records of a single rela­
tion. They include natural order (the order in which records have been added 
to the relation) and sorting (either increasing or decreasing) on any field or 
expression based on fields. These orders are built under program control, are 
given names, and persist after the program finishes, as shown in Figure 9.39. 

Figure 9.39 open People; -- make the relation available and current 1 
order BirthOrder; -- increasing BirthYear 2 
seek 1950; -- move to the first record matching expression 3 
makeorder NameOrder := LastName + " " +  FirstName; 4 
order NameOrder; -- use the order 5 
seek "Newman Alfred" 6 

In line 1, People is opened for use. Line 2 establishes which order is to be 
used. BirthOrder must already be part of the persistent representation of 
the relation. Line 3 moves the current-record mark to the first record for 
which 1950 is the value under the current order. The programmer needs to 
remember the expression that defines BirthOrder, since it is not given in the 
program. I am assuming it is simply the BirthYear field and is of type inte­
ger. Line 4 shows how a new order can be added to the relation and given a 
name. I use + for string concatenation. The success of the seek statement 
in lines 3 and 6 can be queried later by a library routine. 
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Some database languages, such as DMAWK [Sicheram 91], permit a field 
to have multiple values within a single record. Each field is an implicit zero­
based array; the programmer can refer to FirstName[2], for example, to get a 
person’s third name. DMAWK has the strange rule that omitting the sub­
script represents the last element of the array for R-values, but one past the 
end for L-values. Assigning a nil value to a field deletes the field. Therefore, 
in a record that is initially empty, Figure 9.40 

Figure 9.40 FirstName := "Jones"; -- FirstName[0] := "Jones" 1 
FirstName := FirstName; -- FirstName[1] := FirstName[0] 2 
FirstName[1] := nil; -- delete FirstName[1] 3 
FirstName := "Hamzah"; -- FirstName[1] := "Hamzah" 4 

would have the effect of setting FirstName[0] and FirstName[1] both to 
"Jones" (lines 1 and 2) before clearing the latter (line 3), later resetting the 
latter to "Hamzah" (line 4). 

Since database languages deal heavily with string data, they can take ad­
vantage of the data structures and string operations discussed earlier in this 
chapter, particularly associative arrays and pattern matching. Sal, for exam­
ple, has both. 

3.2 Control Structures 
Control structures are needed for setting the current-record mark and for it­
erating through all relevant records in a relation. Sal has no methods for ex­
plicitly moving the current-record mark; it only provides for iteration. 

In dBASE, seek uses the current order to search quickly for a record 
whose order value matches the given expression. In addition, the program­
mer can undertake a search within a subset of the records for one whose 
fields match any Boolean expression. Such a search is slower than seek, be­
cause the order information allows an O(log n) binary search, where n is the 
number of records. Finally, dBASE provides a goto statement that sets the 
current-record mark to any given record by serial number in the natural or­
der, and a skip statement that moves any number of records relative to the 
current record in the current order. There are predeclared routines that indi­
cate the value of the current-record mark and the number of records in the 
relation. 

Iteration is accomplished in Sal by a foreach statement. In Sal, foreach 
indicates which relation variable to use and names a control variable, as in 
Figure 9.41. 

Figure 9.41 variable 1 
People : relation 2 

FirstName, LastName : string; 3 
BirthYear : integer; 4 

end; 5 
Person : tuple of People; 6 
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put FirstName, LastName 7 
into People 8 
from "People.data" 9 
where BirthYear < 1990; 10 

foreach Person in People do 11 
if LastName > "Jones" then 12 

write(FirstName, LastName); 13 
end; 14 

end; 15 

Lines 7–10 explicitly copy the external data into an internal variable. It is a 
runtime error if the declaration in lines 2–5 does not match the contents of 
file People.data at this time. A tuple (line 6) is a record in a relation. 

In dBASE, the scan statement implicitly uses the currently open relation, 
as in Figure 9.42. 

Figure 9.42 open People; -- make the relation available and current 11
filter BirthYear < 1990; 2 
scan for LastName > "Jones" do 3 

write(FirstName, LastName); 4 
end; 5 

Natural order is used in lines 3–5, since no order statement was encountered. 
Nested scan statements iterating over the same relation are useful. Fig­

ure 9.43 shows how to list all people by age category. 

Figure 9.43 variable TheYear : integer; 1 

open People; -- make the relation available and current 2 
order BirthOrder; -- increasing BirthYear 3 

scan do -- each iteration covers one birth year 4 
TheYear := BirthYear; 5 
write("During ", TheYear); 6 
scan rest while BirthYear = TheYeardo 7 

write(FirstName, LastName); 8 
end; 9 
skip -1; -- don’t ignore first record of next set 10 

end; 11 

The rest keyword on line 7 prevents this scan statement from resetting the 
current-record mark to the start of the relation every time it begins to exe­
cute. The while clause indicates a stopping condition for this scan loop. The 
surprising code of line 10 is necessary because the scan statement of lines 7–9 
leaves the current-record mark on the first record that does not match 
BirthYear = TheYear, but when control returns to line 4, the current-record 
mark will be advanced again. 

Nested scan statements iterating over different relations are also quite 
useful. For example, the code of Figure 9.44 prints the events that occurred 
in every person’s birth year: 
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Figure 9.44 variable TheYear : integer; 1 

open People; 2 
order BirthOrder; -- increasing BirthYear 3 

open Events; 4 
order EventOrder; -- increasing EventYear 5 

use People; -- make relation current 6 
scan do -- each iteration covers one person 7 

write(FirstName, LastName); 8 
TheYear := BirthYear; 9 
use Events; -- ready for nested scan 10 
seek TheYear; 11 
scan rest while EventYear = TheYear do 12 

write(What, Place); 13 
end; 14 
use People; -- ready for next iteration 15 

end; 16 

Because only one relation is current, and the scan statements do not remem­
ber which relation they are scanning, I need to employ use to explicitly 
reestablish context before each scan (lines 6 and 10) and before each iteration 
(line 15). Luckily, the current-record mark, current order, and filtering infor­
mation are retained independently for each relation. The seek in line 11 
moves the current-record mark in Events efficiently to the first relevant 
record. 

It is possible to link the People and Events relations to form a pseudorela­
tion (not persistent) with fields from both, as in Figure 9.45. 

Figure 9.45 variable ThePerson : string; 1 

open Events; 2 
order EventOrder; -- increasing EventYear 3 
open People; -- natural order 4 
link Events on BirthYear; 5 

scan do -- each iteration covers one person 6 
write(FirstName, LastName); 7 
ThePerson := LastName + " " +  FirstName; 8 
scan rest while LastName + " " +  FirstName = ThePerson 9 
do -- each iteration covers one event 10 

write(What, Place); 11 
end; 12 
skip -1; -- don’t ignore first record of next set 13 

end; 14 

The link statement in line 5 connects the currently open relation, People, 
with the stated relation, Events, using People.BirthYear (explicitly) and 
Events.EventYear (implicitly: that is the order field). Each record in the 
linked relation has fields FirstName, LastName, What, and Place. For every 
person, there are as many records as there are events that share the same 
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date. 
The Sal code for this algorithm, shown in Figure 9.46, has fewer surprises, 

although Sal has no concept of orders, cannot seek information efficiently, 
and has no concept of linking relations. 

Figure 9.46 variable 1

People : relation 2


FirstName, LastName : string; 3

BirthYear : integer; 4


end; 5

Person : tuple of People; 6


Events : relation 7

Place, What : string; 8

EventYear : integer; 9


end; 10

Event : tuple of Events; 11


put FirstName, LastName, BirthYear 12

into People 13

from "People.data"; 14


put What, Place, EventYear 15

into Events 16

from "Events.data"; 17


foreach Person in People do 18

write(FirstName, LastName); 19

foreach Event in Events do 20


if Event.EventYear = Person.BirthYear then 21

write(What, Place); 22


end; -- if  23 

end; -- foreach Event 24


end; -- foreach Person 25


3.3 Modifying Data 
Sal is not intended for modifying data (there are related programs for that 
purpose in the package that contains Sal). dBASE modifies data in the cur­
rent record by a replace statement, which indicates new field-value pairs. 
Fields that are not mentioned are left alone. New records are added to the 
end of the relation by an append statement, after which it is necessary to re­
place the values of all fields. The current record can be deleted or undeleted; 
a separate statement is needed to accomplish the fairly expensive operation 
of physically removing all records that have been deleted and rebuilding or­
der information. dBASE is also capable of copying a relation (or a part of it 
based on Boolean expressions) to a new relation, with an option to sort the 
new relation in the process. 
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3.4 SQL 
SQL (Structured Query Language) was developed during the mid-1970s and 
introduced commercially in 1979. Since then, it has become widely available. 
SQL is in a sense a single-minded language: All computation is cast in the 
mold of relation manipulation. This is just the right level of abstraction for 
many database operations. I concentrate on expressions that access existing 
relations; there are also commands that update existing relations. First, Fig­
ure 9.47 shows how to compute all people born before 1990 with distinct first 
and last names. 

Figure 9.47 select * 1 
from People 2 
where BirthYear < 1990 and LastName ≠ FirstName; 3 

This program fragment is an expression. If it stands by itself, the resulting 
data are be displayed; it can be placed in an assignment statement or any­
where else that a relation is expected. The * in line 1 indicates that the re­
sulting relation is to contain all fields of the underlying relation, which in line 
2 is specified to be People. Line 3 restricts which records are to be selected 
for the result. 

Figure 9.48 shows how to find the names of people whose last name ap­
pears after "Jones" and were born before 1990. 

Figure 9.48 select FirstName, LastName 1 
from People 2 
where BirthYear < 1990 and LastName > "Jones" 3 

Figure 9.49 shows how to find all people by age category. 

Figure 9.49 select FirstName, LastName, BirthYear 1 
from People 2 
orderby BirthYear; 3 

The orderby clause in line 3 indicates that the resulting relation is to be 
sorted by birth year. 

The code of Figure 9.50 will print the events that occurred in every per-
son’s birth year. 

Figure 9.50 select FirstName, LastName, What, Place 1 
from People, Events 2 
where EventYear = BirthYear 3 
orderby LastName + FirstName; 4 

This example builds a single relation from multiple relations. Such a compu­
tation is known as a join. In this case, line 2 specifies that the fields of Peo­
ple and Events are to be combined. Line 3 restricts attention to those 
records where the EventYear is the same as the BirthYear. Such restriction 
is common, but not required. It is not necessary to build the restriction out of 
an equality test. Line 1 restricts attention to four of the resulting fields. Line 
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4 sorts the resulting relation by person. It shows that the sort condition can 
be any expression. One difference between this code and what I showed pre­
viously for dBASE is that people born in years without events are omitted 
from the result. Another difference is that the result is a relation, which can 
be manipulated further before printing. 

SQL provides several accumulation operators, such as count, sum, min, 
max, and average. Figure 9.51 shows how to find the average birth year and 
the alphabetically last name of all people. 

Figure 9.51 select average(BirthYear), max(LastName + FirstName) 1 
from People; 2 

Accumulated values are particularly helpful in conjunction with grouping, 
since the accumulation is computed independently for each group. Figure 
9.52 shows how to count how many people were born in each year. 

Figure 9.52 select BirthYear, Count(*) 1 
from People 2 
groupby BirthYear; 3 

The * in line 1 refers to entire records instead of a particular field. The re­
sult of this expression is a relation with two fields: BirthYear and Count1 (the 
latter is automatically named). The relation has one record for each distinct 
value of BirthYear. 

Individual groups can be suppressed by a having clause, much as individ­
ual records can be suppressed by a where clause. Figure 9.53 shows how to 
get the number of people born in each year, but only show those years where 
the number is greater than 100. 

Figure 9.53 select BirthYear, Count(*) 1 
from People 2 
groupby BirthYear 3 
having Count(*) > 100; 4 

Expressions can be combined in several ways. The simplest is to take the 
union of two expressions. Those expressions must result in structurally 
equivalent relations (although the names of the fields may differ). Duplicate 
records are removed. Figure 9.54 shows how to get a relation with all first or 
last names, along with birth date. 

Figure 9.54 select BirthYear, FirstName called Name 1 
from People 2 

union 3 
select BirthYear, LastName 4 

from People; 5 

Line 1 introduces a new name for the second field in the result. 
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A more complex way to join expressions is by subordinating one to an­
other, as shown in Figure 9.55, which will find those people born after the av­
erage birth year. 

Figure 9.55 select FirstName, LastName 1 
from People 2 
where BirthYear > average( 3 

select BirthYear from People 4 
); 5 

Line 4 is an expression embedded inside the invocation of average. Similarly, 
Figure 9.56 shows how to find people born after Ramachandran. 

Figure 9.56 select FirstName, LastName 1 
from People 2 
where BirthYear > ( 3 

select BirthYear 4 
from People 5 
where LastName = "Ramachandran" 6 

); 7 

If there are several records with LastName = "Ramachandran", this expression 
will fail. In that case, I can modify the expression slightly, as in Figure 9.57. 

Figure 9.57 select FirstName, LastName 1 
from People 2 
where BirthYear > any( 3 

select BirthYear 4 
from People 5 
where LastName = "Ramachandran" 6 

); 7 

The accumulator any in line 3 allows the where clause of line 3 to be satisfied 
for anyone born after even one of the several Ramachandrans. This accumu­
lator is, in effect, an Icon iterator (described earlier in this chapter). A re­
lated iterating accumulator is all; if I had used it in line 3 instead of any, I  
would only get those people born after all Ramachandrans. Finally, the accu­
mulator exists reduces the result of a subexpression to a Boolean indicating 
whether the subexpression’s value contains any records. 

The outer expression can communicate values to the inner expression. 
Figure 9.58 shows how to find all people born in the year the last occurrence 
of each event took place. 
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Figure 9.58 select FirstName, LastName 1 
from People, Events called OuterEvents 2 
where BirthYear = ( 3 

select max(EventYear) 4 
from Events called InnerEvents 5 
where InnerEvents.What = OuterEvents.What 6 

); 7 

Lines 2 and 5 give two aliases for Events, so that the two uses of this relation 
can be distinguished in line 6. 

The select mechanism of SQL allows programmers to deal with data in­
stead of control structures. The APL language discussed in the next section 
takes this idea to an extreme. 

4 ◆ SYMBOLIC MATHEMATICS 
Early languages like FORTRAN were intended primarily for numeric mathe­
matical computation. A completely different class of languages has been de­
veloped for symbolic mathematical computation. The major novelty of these 
languages is that unbound identifiers can be treated as algebraic symbols to 
be manipulated. The best-known languages in this family are Macsyma, 
Maple, and Mathematica. These languages can simplify algebraic expres­
sions, perform symbolic integration and differentiation, calculate limits, gen­
erate series and sequences, solve systems of equations, and produce graphs. 
They are almost always used interactively. 

Since there are so many different mathematical manipulations possible, 
mathematical programming languages tend to organize their functions into 
libraries that are dynamically loaded when they are needed. This organiza­
tion reduces the amount of memory that a typical session will need. For ex­
ample, Maple’s linear algebra library contains routines for solving linear 
systems of equations, inverting matrices, and finding eigenvectors and eigen­
values. There are also libraries for combinatorics, for the simplex method, for 
trigonometric functions, and many other applications. Arrays can be manipu­
lated much as in APL, including extraction of slices in any dimension, so op­
erations like Gaussian elimination are easy to write. In fact, Mathematica 
has APL’s inner and outer operators. 

Figure 9.59 shows some examples of the manipulations possible in these 
languages. 

Figure 9.59 in: poly := 2*xˆ5 - 3*xˆ4 + 38*xˆ3 - 57*xˆ2 - 300*x+450; 1 
solve(poly=0,x); -- solve with respect to x 2 

out: 1/2 1/2 3 
3/2, 5 I, - 5 I, 6 , - 6 4 

in:  e1  :=  a + b + c + d = 1;  5  
e2 := 2*a + 5*b + c + 4*d = 4; 6 
e3 := -5*a + 4*b + 5*c - 3*d = -1; 7 
e4 := b + 4*c - 5*d = 0; 8 
SolutSet := solve({e1,e2,e3,e4},{a,b,c,d}); 9 

out: SolutSet := {d = 0, c = -2/13, a = 7/13, b = 8/13} 10 
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in: f:=xˆ2 - yˆ2;	 11 
diff(f,x); 12 

out: 2x 13 

in: yˆ2 + 2*y;	 14 
factor(%+1); -- % means previous expression 15 

out: 2 16 
(1+y)	 17 

The output in lines 3–4 and lines 16–17 is carefully formatted over several 
lines to look like typeset mathematics. Matrices are also displayed in multi­
ple lines. The identifier I in line 4 is the mathematical constant i, the square 
root of −1. Not only can Maple differentiate polynomials (and other sorts of 
expressions), it can also differentiate programmer-defined functions, as in 
Figure 9.60. 

Figure 9.60	 f :=  procedure (x); 1 
variable 2 

i : integer; 3 
result := 0; 4 

begin 5 
for i := 1  to 2 do 6 

result := result + x ˆ i;  7 
end; 8 
return result; 9 

end; 10 

g := differentiate(f);	 11 

Line 11 assigns into g a procedure with the declaration shown in Figure 9.61. 

Figure 9.61	 procedure g(x); 1 
variable 2 

i : integer; 3 
resultx := 0; 4 

begin 5 
for i := 1  to 2 do 6 

resultx := resultx + i * x ˆ (i - 1);  7 
end; 8 
return resultx; 9 

end; 10 

Much more complicated examples are possible, involving trigonometric func­
tions, for example. The ability to differentiate programmer-defined functions 
makes it possible to program Newton’s method for finding roots of functions, 
as shown in Figure 9.62. 
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Figure 9.62 findRoot := procedure (f : procedure); 1 
variable 2 

result := 0; -- or any other initial guess 3 
epsilon := 0.001; -- or any other desired precision 4 

begin 5 
while abs(f(result)) > epsilon do 6 

result := result - f(a)/differentiate(f)(a); 7 
end; 8 
return result; 9 

end; 10 

The data types available in mathematical languages include integer, real, 
arrays, strings, and lists, in addition to symbolic expressions. They also in­
clude arbitrarily large integers and fractions of arbitrarily large integers. 
Maple also provides associative arrays, which are useful for storing values of 
functions, and arrays with programmer-defined indexing functions, which 
can introduce structure such as symmetry or triangularity in matrices and 
can provide default values for arrays at indices that have not been given val­
ues. Maple implicitly associates an associative array called the remember 
table with every procedure. The programmer can request that values com­
puted by the procedure be remembered in that array to short-circuit future 
evaluations with the same parameters. In other words, dynamic program­
ming is trivial to add to any program, such as the one shown in Figure 9.63 
for Fibonacci numbers. 

Figure 9.63 Fibonacci := procedure[remember](n); 1 
begin 2 

Fibonacci(n-1) + Fibonacci(n-2); 3 
end; 4 

Fibonacci(0) := 0; -- assigns to the remember table 5 
Fibonacci(1) := 1; -- assigns to the remember table 6 

The option remember in line 1 causes Fibonacci to store and use previously 
computed values. The assignments in lines 5 and 6 explicitly place values in 
Fibonacci’s remember table, making it unnecessary to put special cases in 
the body of the procedure itself. 

5 ◆ FINAL COMMENTS 
Languages that are aimed at special applications tend to concentrate on par­
ticular aggregates in order to help the programmer write clear and efficient 
code. SNOBOL and Icon are particularly designed for applications that need 
to read and manipulate textual data. The related scripting languages are 
used to scan text files, extract information, print reports, construct input for 
other programs, and collect output from other programs. Such languages in­
clude command interpreters like Csh, stream editors like Awk and Sed, and 
interpreted languages such as Perl and Tcl. These languages generally have 
many features for manipulating strings. Extensions to Prolog (see Chapter 8) 
for dealing with strings are actively being researched, giving rise to lan­
guages such as CLP(Σ). The problem that string Prolog must grapple with is 
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that unification over strings is intractable (it is at least NP hard, although it 
is decidable) [Rajasekar 94]. Which language to use depends, of course, on 
what is available (Csh is only available under Unix), how fast the program 
must run (interpreted programs are generally slower), and how sophisticated 
the string manipulations need to be. 

SNOBOL has some excellent points. The fact that backtracking is built 
into the language frees the SNOBOL programmer from writing backtrack 
code, which is tricky to get right. Patterns free the programmer from worry­
ing about maintaining an explicit variable for the focus of attention (the posi­
tion in the subject string that is being matched). Patterns can be assigned to 
variables and used to build more complex patterns. In fact, the BNF for a 
context-free (and even a context-sensitive) language can be represented di­
rectly in SNOBOL, so it is easy to write parsers. 

SNOBOL also has some unfortunate points. 

1.	 There are many ways to build patterns, and it takes a significant 
amount of effort to learn how to use these methods. Patterns can grow 
so complex that they become difficult to understand, debug, and main­
tain. 

2.	 The programmer must remember the difference between pattern­
construction time and pattern-matching time. It is easy to write ineffi­
cient programs that construct patterns each time they are used instead 
of saving them in pattern variables. Variables used in a pattern often 
need to be marked for lazy evaluation. 

3.	 The fact that side effects are an essential part of pattern application 
makes programs unclear, especially if the pattern is stored in a pattern 
variable and applied in a different part of the program. 

4.	 Although patterns are something like procedures, they do not take pa­
rameters, and they do not introduce a name scope, so they are forced to 
communicate and perform local computations through global variables. 

5.	 The pattern-matching part of SNOBOL is mostly divorced from the rest 
of the language. For example, a good way to find if the first comma in a 
string Subject is at least 10 characters from the beginning is shown in 
Figure 9.64 [Griswold 80]. 

Figure 9.64 Subject match ((break(",") @ here) & fence & 1 
(delay ge(here,10))); 2 

The ‘@’ operator assigns the position in Subject achieved by finding the 
first comma. It is prevented from finding a later comma by the fence 
operator. The ge integer-comparison procedure is invoked lazily to 
make sure that here is current when the parameters to ge are evalu­
ated. This example shows how awkward it is to build programs that in­
volve both pattern matching and arithmetic. 

The two novel ideas of Icon, the concept of scanning strings by matching 
procedures and the idea of iterator expressions, are both unusual and power­
ful. However, this power has a price. The global nature of subject and pos, 
and the fact that matching procedures have side effects on these pseudovari­
ables, can make programs hard to follow. It is possible to directly assign into 
both subject and pos, which can wreak havoc, especially in a scan body. Al-
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though Icon iterator expressions are as powerful as CLU iterators (and often 
easier to encode), they are not general-purpose coroutines. They cannot be 
used, for example, to solve the binary-tree equality puzzle from Chapter 2. 

On the positive side, the concept of scanning strings is easily generalized 
to scanning other data structures, such as trees. A programmer may intro­
duce matching procedures that inspect a subject of any type and modify posi­
tion variables to indicate progress. Instead of using scan, which is specific to 
subject and pos, all that is needed is a new name scope with local variables 
properly initialized, as in Figure 9.65. 

Figure 9.65 variable 1 
target : ... := ...; -- can be any data structure 2 
position : ... := ...; -- in any representation 3 

begin 4 
... -- expression using matching procedures 5 

end; 6 

In fact, scan is just a name scope with variables subject and pos automati­
cally declared and initialized. It is not necessary to use scan, because all pre­
declared matching procedures have overloaded versions with more 
parameters that explicitly specify the subject. So everything that is done au­
tomatically by scan and the matching procedures could be done (maybe with 
increased clarity) by name scopes, explicit variables, and extra parameters. 
Some adjustment would be needed to pass parameters like pos by reference 
or value result mode; Icon only has value mode. 

Arrays are primarily important in mathematical calculations. However, 
APL shows that adequately powerful array operations can take the place of 
control structures; it is possible to build very sophisticated nonmathematical 
programs in APL. These programs may appear to be inefficient to execute, 
with very large intermediate results, but clever evaluation techniques allow 
APL interpreters to work in limited memory. Unfortunately, the programs 
are difficult to read, especially in the natural APL syntax. 

The simplest databases are just ASCII files, with one line per tuple. 
Scripting languages like Awk, Sed, Perl, and Tcl often suffice to manipulate 
these databases. More complex databases can be accessed through subrou­
tines in other languages. It is quite common to embed SQL calls, for instance, 
in a C program. Commercial databases often come with their own languages. 
dBASE, for example, is a generally Algol-like language interwoven with spe­
cific constructs for accessing databases. Paradox, in contrast, is built on an 
object-oriented model. 

Symbolic computation is important to mathematicians and engineers, and 
especially to students in these disciplines. Languages like Mathematica and 
Maple allow these users to construct symbolic equations, manipulate them, 
and view their behavior graphically. 

There are other aggregates that I have not covered in this chapter. In par­
ticular, specialty languages are very important for statistics, controlling ma­
chine tools, and text formatting. 
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EXERCISES 

Review Exercises 
9.1	 In Icon, is the expression tab(4| 3) equivalent to tab(4)| tab(3)? 

9.2	 Write a regular expression that matches either "begin" or "end". 

9.3	 Write a regular expression that matches any word starting with "pre" 
and ending with "ion". 

9.4	 Modify the Icon program of example 21 on page 279 so that the final 
word in MyString may continue to the end of MyString without a final 
space character. 

9.5	 What is the Icon equivalent of SNOBOL’s fence pattern? 

9.6	 In dBASE, it is quite awkward to generate a list of all first names com­
bined with all last names in the People relation. Suggest how to man­
age such a feat. 

9.7	 Design an SQL expression that builds a relation containing the first 
name of everyone born before all earthquakes in San Francisco. 

9.8	 Write a SNOBOL pattern that prints all contiguous substrings of the 
subject and then fails. 

Challenge Exercises 
9.9	 Referring to Figure 9.5 (page 271), design a variety of CharSearch that 

finds the second s in "sample string". 

9.10	 Write a regular expression that matches all words that can be typed by 
alternating hands on a standard qwerty keyboard. 

9.11	 Refer to Figure 9.11 (page 274), and suggest a better component type 
than Boolean for Present. 

9.12	 Write a SNOBOL program that has the same effect as the Icon program 
in Figure 9.20 (page 279). 

9.13	 Modify the Icon program of Figure 9.21 (page 279) so that it writes all 
words that contain telephone numbers, that is, sequences of only digits 
and an obligatory single hyphen. 

9.14	 The simple program for MatchDouble in Figure 9.23 (page 281) becomes 
more complex if it doesn’t use concatenation. Show how to code it, using 
neither concatenation nor explicit reference to pos. 

9.15	 Write an Icon program that generates all binary trees on n nodes, simi­
lar to the ones written in C and CLU in Chapter 2. 

9.16	 Why is it impossible to write an Icon program that solves the binary­
tree equality puzzle of Chapter 2? 

9.17	 Can Icon iterator expressions and iterator procedures be implemented 
with a single stack? 
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9.18	 Show how to implement rest and last, mentioned on page 276, using 
the primitive substring operations. 

9.19	 Use primitive substring operations to implement Icon’s upto matching 
procedure. Don’t worry about integrating your result into Icon’s back­
tracking mechanism. 

9.20	 Use primitive substring operations to build a function NewBase(x) that 
returns a substring that is equal to x, has a new base, has left set to the 
beginning of the new base, and right set to the end of the new base. 

9.21	 What is the subtle bug in Figure 9.45 (page 295)? How would you fix it? 

9.22	 Describe what the APL program in Figure 9.66 does. 

Figure 9.66 in: n := 30 1 
a := 1  ≠  or accumulate (1 1) drop 2 

(transpose 0 =  3  
(fill n) outer mod fill n) - 4 
(fill n) outer = fill n 5 

a compress 1 drop fill n 6 
out: 2 3 5 7  11  13  17  19  23  29  7 

9.23	 In Figure 9.36 (page 289), the accumulate operator is represented by an 
instance of the Accumulate class. What would be the response of this in­
stance to a dimension query and to a bounds query, given that the vari­
able a is currently bound to the three-dimensional array with bounds 2 
3 4?  

9.24	 Does it make sense in APL to turn a lazy evaluator into an incremental 
lazy evaluator? 
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