Chapter 9 [ 1

Aggregates

This chapter deals with language features for dealing with aggregates,
which are data that are structured according to some commonly useful orga-
nization, such as strings, arrays, and databases. Although many program-
ming languages provide general-purpose facilities to structure data (such as
records) and organize routines that manipulate the data (such as abstract
data types), some structures are so important that languages deal with them
specifically in order to make it easier to write clear and efficient programs.
In this chapter, | concentrate on strings, arrays, databases, and mathematical
formulas.

1 =6TRINGS

Most languages provide some facility for dealing with strings, that is, con-
nected groups of characters. Some languages, however, specialize in string
processing. This chapter will look at both elementary string operations and
more complex control and data structures introduced in specialized string-
processing languages.

1.1 Literals and Simple Operations

String literals are usually enclosed in double quotes (" ). Some syntax is of-
ten provided to include unusual characters in string literals. For example,
the C language allows an escape character to precede special forms, such as
\r for a carriage return, \t for a tab, \" for a double quote, and \023 for
the character whose internal representation is octal 23. One nice escape se-
gquence that doesn't exist in any language | know of skips to the next non-
white text without including the white space in the string. | use \c to
represent this special form, as in Figure 9.1.
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StringVar := "this is a very long string that \c 1
I place on several Tlines, but it represents \c 2
a string without 1line breaks or gaps." 3

Operations on strings are provided either by predefined procedures or by
operators in the language. The simplest operations on strings, such as copy-
ing, equality testing, and lexical comparison, are often provided as overloaded
meanings of :=, =, and <. Another simple operation is concatenation, of-
ten represented by the overloaded operator + . (SNOBOL represents con-
catenation by an empty space operator, which is quite confusing, particularly
since the same invisible operator also represents pattern matching!) In addi-
tion, a few languages, such as ABC, provide operators for string repetition
("ho" * 3 is "hohoho"), string length, and arcane operations such as finding
the minimum character in a string.

Languages usually provide ways to convert other data types to strings.
This facility is particularly important for output, which is often a long string
computed from values of various types. Conversions to string are usually
separate functions for each type to be converted, but C has a single function
sprintf that can convert and concatenate any combination of basic types ac-
cording to a format string, as in Figure 9.2.

IntVar := 23;

sprintf(ResultString,
"Give me %d number%s between %59 and 10%c.",
IntVar, if IntVar = 1 then "" else "s" end,
4.5, ’'0°");

v WN R

The format string in line 3 is copied to ResultString, but certain escapes pre-
fixed by % cause later actual parameters to be converted and inserted into
the string. The formats are specified by %d for integer, %s for string, %g for
float, and %c for character. Formats can include width specifiers, as shown by
%5g. This code places in ResultString the value

"Give me 23 numbers between 4.5 and 100."

A related and even simpler method is provided by Sal in the form of
edited strings [Sturgill 89]. Figure 9.3 is the edited string equivalent of Fig-
ure 9.2.

IntVar := 23;

ResultString :=
"Give me {IntVar} number\c
{if IntVar = 1 then "" else "s" end} \c
between {4.5:5} and 10{’0’}.’

v WN R

Expressions in braces are evaluated at runtime and formatted as appropriate
to their type and according to any width specification given. Edited strings
use a different set of delimiters from ordinary strings as a way to warn the
compiler to inspect them for included expressions, which the compiler inter-
prets to generate code. This code is executed when the edited string is first
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evaluated; the result is an ordinary string that is not reevaluated later.
Edited strings are more type-secure than the sprintf function, because there
is no way to accidentally request that a value of some type be treated as a dif-
ferent type.

Languages often provide either a special syntax or a function call to ex-
tract substrings of a subject string based on position and length, as in Figure
9.4.

substr("A sample", 3, 4)

This string evaluates to "samp", starting at the third position of "A sample"
and continuing for 4 characters.

It is also common to provide for character or substring search. Search can
be designed to return a Boolean to indicate success, the position of the char-
acter or substring if found (@ otherwise), or a pointer to the character or sub-
string if found (ni1 otherwise), as in Figure 9.5.

CharSearch("sample string", ’s’)
StringSearch("Target string", "get")

N =

The search in line 1 could return true, 1, or a pointer to the entire string.
The search in line 2 could return true, 4, or a pointer to the substring "get
string"”. There might also be variants to conduct the search from right to
left.

Slightly more complex than searching for characters is extracting data
from a string while converting types; see Figure 9.6.

MyString := "4 and 4 make 8 in base 10" 1
sscanf(MyString, "%d and %d make %g.", First, Second, 2
Third); -- First := 4, Second := 4, Third := 8.0 3

Here the formats are used not to convert from numeric data to string data,
but the reverse, to convert parts of the string into numeric data. The occur-
rences of %d in line 2 cause the substring "4" to be converted to the integer 4;
the %g format converts "8" to the real 8.0.

Another way to extract data from a string is to split it into fields based on
some character. Several languages (for example, ABC, Perl, and Sal) provide
a split procedure that takes a string and a set of characters considered to be
field separators and a string array (passed by result) into which the given
string is to be separated, as in Figure 9.7.

split("Veni, vidi, vici", ",", ResultArray)

This call would assign "Veni" into ResultArray[0], " vidi" into Result-
Array[1] (with the initial space), and " vici" into ResultArray[2].
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1.2 Representation

Usually, programmers don't need to worry about how a language implementa-
tion represents strings. However, the representation can affect both the
speed of computation and the way the program must manipulate strings. For
example, C defines strings as consecutive characters terminated by a null (bi-
nary zero) character. This representation makes it slow to concatenate a
string to the end of another (the implementation must find the end of the sec-
ond string by a linear method) and does not allow nulls to be contained within
strings. It encourages a programming style in which a variable points into
the string and advances character by character until the terminating null is
seen.

Alternative representations have some advantages. If the length of the
string is encoded, perhaps in the first few bytes, then concatenation becomes
faster, and strings may contain null characters. If strings are declared with a
compile-time length, many operations become faster, and the compiler can
keep track of the length of intermediate strings in complex expressions.
However, some operations produce results whose length cannot be predicted.
For example, a substring operation might take a variable length parameter.
Therefore, languages in which strings are explicitly declared usually declare
the maximum length that the string value might attain. This information de-
termines storage requirements but does not dictate the length of particular
values put into storage.

One attractive proposal is to omit a string-length code at the start of the
storage area for a string, use a terminating null, but use the last byte of the
storage area to indicate the distance back to the terminating null [Bron 89].
If the string just fits in the storage area, so that the terminating null is in the
last place, the null looks like the number 0, indicating zero distance to the
terminating null. This representation makes it a bit harder for programs to
build new strings directly, but a reasonable library of string-building opera-
tions can circumvent this problem, and programs may still scan through
strings by using explicit pointers.

1.3 Pattern Matching

Sal, Awk, and Perl provide a match operator ~ that compares a target string
to a regular expression. The result is Boolean, indicating success. A regular
expression is a string, where most characters match themselves, but some
characters and character combinations have special meanings. The following
table lists some of these special meanings; Perl has an even richer set.
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Regular expression  Matches

any character

\< start of word

\> end of word

\s white space

\d a digit (like [0-9])

\w a word

" the beginning of the target string

$ the end of the target string
[abc...] any character in the set; ranges like: [3-7A-P]
[Tabc...] any character not in the set

ri]r2 either r1or r2 (alternation)

r* Zero or more r’'s

r+ one or more r’'s

r? Zero or one r's

r{3,5} match 3, 4,0r 5 r’s

(r) match r, call it a group

\2 string matched by the second group

Some of these expressions, like . and ‘\s, match (and “use up”) a single
character. Others, like \< and ", do not use up any characters. For exam-
ple, the \< expression matches the beginning of an alphanumeric region of
the string; it is used to signal the start of a word. Grouping a subpattern al-
lows you to refer to it later. Groups are numbered according to the left-to-
right order of their opening parentheses. Figure 9.8 shows some examples of
regular expressions.

"literal" -- matches "literal"

"1*jiteral" -- matches "iteral", "literal"”, "111Titeral" ...
"(T1b) G Jo)b\2" -- matches "Tibi", "lobo", "bibi", "bobo"
"[1b] [io]b" -- matches "1ib", "lob"™, "bib", "bob"

A WNR

The match operator can return the start and length of the matched substring
via predeclared global variables or make them available through functions to
be called after the match. If several matches are possible, one match is cho-
sen. The usual rule is that * extends its match as far as possible and that
the alternatives indicated by | are tried in the order given. In Perl, the
search can be made insensitive to the case of the subject string, it can be
made to start either at the beginning of the string or where the previous
search left off, and it can be set not to extend the match as far as possible.
Slightly more sophisticated than matching a pattern is replacing the
matched substring with new contents. The new contents can depend on parts
of the matched patterns. Those parts are typically parenthesized groups,
numbered in the order of their opening parentheses, as in Figure 9.9.

MyString := "here is a nice sample"; 1
Substitute(MyString, "(i(s) )", "wa\2"); 2

The Substitute procedure in line 2 assigns "here was a nice sample" to My-
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String. The \2' in line 2 fills in what the second group, (s), matched,
namely, "s". Some languages provide sequences that can be placed in the
third parameter of Substitute to indicate the part of the target string before
the match, the entire matched part, and the part after the match, as in Fig-
ure 9.10.

MyString := "I think, therefore I am"; 1
Substitute(MyString, ",", " that \‘\&\’,"); 2

The expression \‘\&\’ in line 2 indicates the entire string, built up of the
parts before, during, and after the match. The substitution changes MyString
to "I think that I think, therefore I am, therefore I am".

1.4 Associative Arrays

Languages dealing with strings often provide a data type known as an asso-
ciative array, which is indexed by strings instead of by integers or other
scalar types. Associative arrays are usually implemented by hash tables. In
some languages, like Sal and SNOBOL, the declaration of such an array indi-
cates how large to make the hash table. If more elements are stored than the
hash table size, access will become progressively slower but will still work.
Other languages, like Perl, use extensible hashing and do not require any size
declaration. ABC uses binary trees instead of hashing, so that a program can
iterate through the array in key order. Other languages can only iterate in
an implementation-dependent order.

Associative arrays are quite helpful in database applications. For exam-
ple, to check for duplicates in a database with one field, say, StudentName, I
could use the Boolean associative array Present of Figure 9.11.

variable
Present : array string of Boolean;
ThisEntry : string;

wWN =

Toop
ThisEntry := GetNextEntryOfDatabase();
if ThisEntry = "" then break end; -- exit Toop
if defined Present[ThisEntry] then -- found duplicate
write("{ThisEntry} is a duplicate.");
end;
Present[ThisEntry] := true;

R OoNO VA

S

end;

In line 7, the defined operator indicates whether a value has been defined for
the particular index value given; it returns a Boolean. The assignment in
line 10 could just as easily use false; what counts is that some value is
placed in Present[ThisEntry].

Associative arrays often come with a control structure for iterating over
all index values that have been defined. Figure 9.12 continues the previous
example.
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for Entry in Present do 1
write(Entry); 2
end; 3

1.5 Substrings as First-Class Values

Allowing substrings to be first-class values of a predeclared substring type
has several advantages [Hansen 92]. Substring values can record not only
their contents but also the identity of their base string. Dynamic allocation of
space for substrings can be handled by the language at runtime.

Each value of the substring type contains a base string (perhaps imple-
mented as a pointer) and the left and right positions in that string that de-
limit the substring. As with Icon, | understand positions to be between
characters of the string.

The primitive operations on substrings can be simple and few. Here is a
reasonable set of primitive operations:

e start(x). Returns a substring with the same base as x, with both left
and right set to left of x.

= base(x). Returns a substring with the same base as x, left set before the
first character of x, and right set to after the last character of x.

= next(x). Returns a substring with the same base as x, left set to right of
x, and right set one character after left if possible. Otherwise, right is set
to the same position as left.

= prev(x). Returns a substring with the same base as x, right set to left of
x, and left set one character before right if possible. Otherwise, left is set
to the same position as right.

= extent(x,y). If x and y have different base strings, returns an empty
substring of the empty base "". Otherwise, returns a substring with right
set to the right of y and left set to either left of x or right of y, whichever is
earlier in the base.

e x = y. The base strings of the two substrings are compared character by
character between their left and right positions. The result is true if and
only if the lengths are identical and the selected characters match exactly.

e x + y. Returns a substring containing a new base string that is the con-
catenation of the substrings x and y, and left and right at the beginning
and end of that new base string.

e x :=y. The old value of x is discarded; x acquires the same value as vy,
including the base string and the left and right positions.

Given these primitive operations, | can write a function that takes a sub-
string representing a word terminated by blanks and returns a substring rep-
resenting the next word, as in Figure 9.13 [Hansen 92].
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function NextWord(value aWord : substring) : substring; 1
begin 2
loop -- skip to end of word 3
aWord := next(aWord); 4
if aword # " " then break end; 5
end; 6
while next(aWord) # "" and next(aWord) # " " do 7
aWord := extent(aWord, next(aWord)); 8
end; 9
return aWord; 10
end; -- NextWord 11

The primitive substring operations can be used to build slightly more
sophisticated operations, such as rest, which returns all but the first charac-
ter of its substring parameter, and last, which returns just the last character
of its substring parameter. They can also be used to build Icon’s matching
procedures.

1.6 SNOBOL

SNOBOL was developed by Ralph E. Griswold and others at Bell Telephone
Laboratories around 1965 [Griswold 71]. It has a strange syntax, partially
because it was developed before Algol-like syntax became popular. Spaces act
as both the concatenation and the match operators. The only statement form
includes pattern match, replacement, and success and failure gotos. To avoid
confusion, | translate all the SNOBOL examples into an Ada-like syntax, us-
ing match and replace operators. SNOBOL uses dynamic typing and dy-
namic scope rules; its primitive data types are strings, integers, and reals.
The structured types include patterns (distinct from strings), nonhomoge-
neous arrays, and associative arrays.

Variables are not declared; all conceivable strings (even the empty string)
name variables. Initially, all variables have the value "". In a sense, there-
fore, all string values point to other strings, as in Figure 9.14.

somewhere := "over"; 1
over := "the"; 2
the := "rainbow"; 3
write(somewhere””); -- writes "rainbow" 4

SNOBOL is homoiconic, after a fashion. A program is a string, and it is
possible at runtime to compile a string and to branch to a label in it. How-
ever, this facility is much less attractive than LISP’s equal treatment of pro-
gram and data structure. SNOBOL has not been heavily used for artificial
intelligence programming.

SNOBOL patterns are like regular expressions, but more powerful. They
are structured values built recursively. The simplest patterns are string liter-
als and string-valued expressions, which match themselves. More complex
patterns are formed by sequencing (somewhat like and), alternation (some-
what like or), and by invoking pattern-returning predeclared functions. Pat-
terns are matched by a backtracking algorithm, trying earlier alternatives
first. Backtracking in pattern matching is very similar to backtracking in
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logic programs (see Chapter 8). Consider Figure 9.15.

aString := "The boy stood on the burning deck, \c 1

Eating peanuts by the peck."; 2
aPattern := ("ing" | "the"™) & " " & ("deck" | "peck"); 3
aString match aPattern; 4

The pattern in line 3 includes alternation, represented by | , and sequencing,
represented by & . The | operator indicates that if the pattern on its left
fails to match, the pattern on its right should be tried. The & operator indi-
cates that if the pattern on its left succeeds, the pattern on its right should
then be matched at the position following the match of the pattern on the left.
If the pattern on the right fails, the pattern on the left is retried. Line 4
would succeed, matching "ing deck". If forced to backtrack, it would match
"the peck".
The predeclared pattern-returning functions are as follows:

Pattern Matches

len(4) any string of 4 characters

tab(5) to position 5 of the string

rtab(6) to position 6 from the end of the string

pos(7) succeeds if at position 7; matches empty string

rpos(7) succeeds if at position 7 from right; matches empty string
any("abc") any character in the set

notany("abc") any character not in the set

span("abc") until a character not in the set

break("abc")

until a character in the set

rem the remainder of the string
arb 0 chars, on reevaluation any 1 char, then 2, and so on
bal like arb, but not matching unbalanced parentheses

Special patterns control backtracking. The pattern fence succeeds, but
backtracking refuses to reevaluate it. It is equivalent to Prolog’s cut opera-
tor, except that it does not prevent alternatives elsewhere in the pattern from
being tried. The succeed pattern succeeds the first time and all succeeding
times; consider Figure 9.16.

"a string" match (succeed & "p")

This match will never terminate, because succeed will continue to retry, even
though "p" keeps failing. A related pattern is fail, which fails each time it is
attempted. It is used to force subsequent matches of the previous part of the
pattern, usually for the side effects that matching can produce. Finally,
abort causes the match attempt to terminate entirely with failure.

SNOBOL programmers often employ patterns for their side effects. The
matched substring may be replaced by a new string, as in Figure 9.17.
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far := "away"; 1
far match "y" replace "ke"; 2

Line 2 will assign "awake" into far. The part of the string matched by a sub-
pattern can be immediately assigned into a variable, as in Figure 9.18.

there := "dream";
pat := (1en(3) =: bluebird);
there match pat;

wN =

The pattern has a side effect, to assign into variable bluebird the results of
matching the subpattern Ten(3). The match in line 3 will succeed and will
assign "dre" to bluebird. | have used =: to denote the immediate assign-
ment operator. The side effect of assignment takes place as soon as the imme-
diate assignment operator is encountered during pattern matching. | can use
immediate assignment to construct a pattern that will match any doubled
string, as in Figure 9.19.

pat := pos(Q) & (arb =: firstpart) & (delay firstpart) & 1
rpos(0); 2
"abab" match pat; -- succeeds 3

The four components of the pattern in line 1 are sequenced together. The
pos (@) and rpos (@) components force the rest of the pattern to apply to the
entire subject string. The predefined pattern arb matches any length string,
starting with the empty string. Whatever it matches is immediately assigned
to firstpart. The pattern then looks for firstpart itself, that is, a repeti-
tion of the first part. The unary delay operator forces lazy evaluation of its
argument. Otherwise, the value of firstpart at the time the pattern is con-
structed would be embedded in the pattern instead of its value at the time the
pattern is evaluated during matching. When the pattern is applied in line 2,
arb first matches "", so delay firstpart also matches "". But rpos(0) fails,
so matching backs up. The pattern delay firstpart fails to find an alterna-
tive, but arb finds the alternative "a". This time, delay firstpart fails. The
next alternative for arb is "ab", and this time the entire match succeeds.

In addition to immediate assignment, SNOBOL also provides conditional
assignment, placing the value of a matched substring in a variable only if the
match completely succeeds. Conditional assignment tends to be more effi-
cient than immediate assignment, since it can avoid multiple assignments as
the pattern match backtracks, but it can't be used in the double-word exam-
ple. Finally, the position assignment operator @ assigns the position in the
subject string (that is, a number such as 6) to a variable during matching.

Programmers often use immediate and conditional assignment to assign
values to the pseudovariable output. Every assignment to output causes the
value to be output from the program. Similarly, every evaluation of input
reads in a value from the program.

SNOBOL allows an arbitrary procedure call to be inserted in a pattern.
The value returned by the procedure is treated as part of the pattern being
matched. (String values are coerced to patterns for this purpose.) Usually,
such a call is prefixed by the delay operator to postpone the evaluation of the
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actual parameters and the invocation of the procedure until match time. If
the procedure fails, then that part of the pattern match fails, and backtrack-
ing takes over. Information resulting from the match so far can be passed to
the procedure via immediate assignment to global variables or to local vari-
ables passed as actual parameters.

1.7 lcon

Icon was developed by Ralph E. Griswold, one of the developers of SNOBOL,
in the late 1970s as a result of his dissatisfaction with how SNOBOL's pat-
terns fit into the language [Griswold 80]. It retains the virtues of SNOBOL's
pattern matching without a pattern data type. It is an expression-oriented
language, with each evaluation resulting in either a value (counted as a suc-
cess) or failure. Instead of using Boolean values, conditionals base their ac-
tions on the success or failure of evaluating their conditions.

The first novel idea in Icon is the scan statement. (I call it a statement,
even though all constructs in Icon are actually expressions, because it is usu-
ally not used for its value.) This statement introduces a name scope that cre-
ates a new binding for two predeclared variables, subject and pos, which
specify the current string being matched and the current position within the
string. Consider Figure 9.20 (I take liberties with actual Icon syntax to keep
my examples consistent).

scan "peristalsis" using 1
write("[" + move(4) + "]1") 2
end; 3

This program prints "[peri]". The scan in line 1 maps subject to "peri-
stalsis" and sets pos initially to 1. The body of scan is in line 2; it implicitly
uses both subject and pos (modifying the latter). The predeclared procedure
move causes the position to be incremented, if subject is long enough, and if
it succeeds, it returns the substring of subject over which it has advanced.
The + operator is string concatenation. After the body, both subject and pos
revert to whatever values they had before. Figure 9.21 shows a more complex
nested example.

scan MyString using 1
loop -- each iteration deals with one word 2

scan tab(upto(" ")) using 3

if upto("-") then -- word has a hyphen 4

write(subject); 5

end; 6

end; -- scan tab(upto(" ")) 7

move(1l); -- past " " 8

end; -- loop 9
end; -- scan MyString 10

This program prints out all space-delimited words in MyString that contain a
hyphen. The outer scan (lines 1-10) contains a loop that repeatedly advances
pos to a space, scans the intervening word (lines 3—7), and then moves past
the space (line 8). The predefined function upto (lines 3 and 4) returns the
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position of the first occurrence of any character in its actual parameter. If
there is no such occurrence, it fails, and this failure is tested by a conditional
(line 4). The function tab (line 3) moves pos to the value of its actual parame-
ter and returns the substring of subject that it has moved over (in either di-
rection). The expression in line 3 is interpreted in the outer scope; that is, it
moves the cursor in MyString, and the move in line 8 moves the cursor again.
The inner scope, lines 4-6, has its own subject and pos. Even if it modified
pos (it doesn’t), that modification would not be seen by the outer scope.

The pattern-returning functions of SNOBOL are replaced in Icon by a
small set of predeclared matching procedures, which return either positions
or matched strings if they succeed, and which can have the side effect of mod-
ifying pos. These are the procedures:

Procedure Returns Side effect
tab(n) string between pos and n pos :=n
move(n) string between pos and pos + n pos :=pos +n
upto(s) position of next character in s none

many (s) position after 0, 1, ... charactersin s none

any(s) pos + 1 if current character in s none
find(s) position before first occurrence of s none
match(s) position after s starting at pos none

bal() position of end of balanced string starting at pos  none

The first procedures, tab and move, are the only ones that modify pos. In-
stead of numbering character positions, Icon indexes strings between charac-
ters, starting with 1 before the first character of a string. This convention
makes it unnecessary to say such things as “up to and including position 4.”
Each intercharacter position has an alternative index, which is O at the end of
the string and increasingly negative toward the front of the string. So tab (@)
moves to the end of the string, and tab(-3) moves before the character 3 be-
fore the end. If tab or move would exceed the limits of the string, they fail
and have no side effect.

The remaining procedures examine subject and return a position that
can be given to tab or move. For example, to move past "ThisString", | could
write the expression in Figure 9.22.

tab(match("ThisString™))

Icon lets the programmer introduce new matching procedures. The cur-
rently active pos and subject are automatically inherited by procedures,
since Icon uses dynamic scope rules. Procedures may directly modify pos, or
they may indirectly modify it by invoking other matching procedures, such as
the predefined ones. Usually, though, they are designed only to return a posi-
tion, and the invoker may then use tab to modify pos. Figure 9.23 shows a
procedure MatchDoub1le that looks for the given string twice in succession:
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procedure MatchDouble(Given) : integer; 1
return match(Given + Given); 2
end; 3

The return statement in line 2 returns failure if its expression fails. A pro-
grammer may also explicitly return failure by a fail statement.

The second novel idea in Icon is that each expression is, either implicitly
or explicitly, an iterator in the CLU sense, as discussed in Chapter 2. Back-
tracking can require that an expression be reevaluated, and it may produce a
different result the next time.

Some matching procedures, such as match and pos, fail if reevaluated.
The reason is that if the first success is not good enough for whatever invoked
it, it wasn't the fault of the procedure, which has no better result to offer.
Other matching procedures try to find additional answers if reevaluated. For
example, upto("a") applied to "banana" at position 1 will first return 2, and
on successive evaluations will return 4, 6, and then failure. Likewise, find
and bal locate matches further and further from the original position.

Backtracking causes the previous value of pos to be restored before reeval-
uation. Reevaluation of a procedure invocation first tries new answers from
the procedure without changing the actual parameter and then tries reevalu-
ating the actual parameter. For example, tab(upto("a")) applied to "ba-
nana" can be reevaluated after it has succeeded in moving pos to 2. Since tab
fails on reevaluation, its parameter upto("a") is reevaluated. This reevalua-
tion is in the context before tab had advanced pos; that is, pos is first re-
stored to 1. Now upto("a") returns 4, so tab will set pos to 4.

The real novelty comes from the fact that the programmer can explicitly
build iterator expressions without using predefined matching procedures.
Such expressions can be built with the alternation operator | . For exam-
ple, 4 | 3 is an iterator expression with values 4, 3, then failure. Iterator ex-
pressions can be used anywhere an expression is expected, such as an actual
parameter. When first evaluated, tab(4 | 3) moves pos to 4. If it is reevalu-
ated, it moves pos to 3 instead. Further evaluations lead to failure.

The sequence operator & also builds iterator expressions, as in Figure
9.24.

scan "malarky" using
write(tab(upto("a")) & match("ark")); -- outputs 7

wWN =

end;

In line 2, upto("a") returns 2, tab advances pos to 2, and match("ark™) fails.
The sequence operator causes tab to reevaluate, which fails, causing
upto("a") to reevaluate, returning 4. Now tab advances pos to 4, and
match("ark") succeeds, returning 7. The result of the sequence operator is
its second operand, so write outputs 7. If the sequence operator were re-
placed by ; , match("ark™) would fail once, and write would not be called at
all.

Iterator expressions are useful in many surprising contexts, such as in
conditional and iterative statements; consider Figure 9.25.
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Figure 9.25

Figure 9.26

Figure 9.27

Figure 9.28
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if (ThisvVar| Thatvar) = (5]2]10) then ... 1
while LowBound < (ThisVar & ThatVar) do ... 2

In line 1, if ThisVar = 4 and ThatVar = 5, reevaluation stops after the second
alternative of the first clause and the first alternative of the second clause;
ThatVar is not compared against 2 and 10. Line 2 shows a nice shorthand for
LowBound < ThisVar and LowBound < ThatVar.

Backtrack can be invoked directly by an every statement, as in Figure
9.26.

scan "malarky" using 1
every place := upto("a") do 2
write(place); -- 2, 4 3

end; 4

5

end;

This program outputs both 2 and 4. The every statement in lines 2—4 reeval-
uates place := upto("a") until it fails; for each successful evaluation, line 3
is executed.

Iterator procedures look just like any other procedure, except that they
use yield to return a value. Figure 9.27 converts the MatchDouble procedure
of Figure 9.23 (page 281) to an iterator that will return the position after any
double instance of its parameter.

procedure MatchDouble(Given : string) : integer; 1
variable place : integer; 2
every place := find(Given + Given) do 3

yield place + 2*1ength(Given) 4
end; 5

end; 6

-- sample use 7

scan "committee meets three times" using 8
variable here : integer; 9
every here := MatchDouble("e") do 10

write(Chere); -- 10, 14, 22 11
end; 12
end; 13

Iterator procedures can be used to parse using a BNF grammar. For ex-
ample, the grammar of balanced parentheses is shown in Figure 9.28.

Bal ::=¢ | "(" Bal ")" Bal

An iterator procedure that finds longer and longer balanced parenthesis
strings appears in Figure 9.29.
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Figure 9.29

Figure 9.30
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procedure Bal() : integer; 1
every 2
match("™) | ( 3
tab(match(" (")) & tab(Bal()) & 4
tab(match(")")) & tab(Bal()) 5
) 6
do 7
yield pos; 8
end; 9
end; 10
-- sample use 11
scan " (Q) (" using 12
variable here : integer; 13
every here := Bal() do 14
writeChere); -- 1, 3, 7 15
end; 16
end; 17

1.8 Homoiconic Use of Strings: Tcl

Several syntax rules in Tcl interact to make it homoiconic. Lists are repre-
sented as strings; the individual elements are delimited by white space. Ev-
ery string names a variable. The R-value of a variable is denoted by $ before
the string that represents the variable. (This rule makes Tcl programs error-
prone, because it is so easy to forget the $.) Strings need not be delimited by
quotes unless they have embedded spaces. There are quotes ( { and } ) that
prevent any evaluation within a string, quotes ( " ) that allow evaluation, and
quotes ( [ and ] ) that force the string to be evaluated. Evaluating a string
means treating it as a series of commands delimited by end-of-line characters
or semicolons. Each command is the name of a procedure (many are prede-
clared; 1 will show them in bold monospace) followed by parameters. The
whole program is a string to be evaluated. Figure 9.30 shows a simple Tcl ex-
ample.

set a4 --a :=4
set b [expr $a + 5] -- b =9
while {$b > 0} {

puts "b is now $b"

set b [expr $b - 2]

SOV h WN R

This program prints b is now 9 and then four more similar outputs. Line 1
is the assignment statement. It takes the name, not the R-value, of the vari-
able to be assigned. Line 2 shows the quotes that force evaluation: [ and ] .
The expr command evaluates any number of parameters as an arithmetic ex-
pression. It returns the value of that expression. Line 3 introduces the
quotes that prevent evaluation: { and } . The while command takes two
unevaluated strings, the first representing a conditional and the second rep-
resenting the body of the loop. It repeatedly invokes expr on the first param-
eter, and if the result is true, it evaluates the second parameter, thereby
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Figure 9.32
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executing the body. The body contains end-of-line characters, allowing the
parser to separate it into individual statements. Line 4 shows the last kind of
quotes, which can build a string containing spaces, but which do not prevent
evaluation of such constructs as $b.

To see how Tcl is homoiconic, consider Figure 9.31, a less readable version
of the same program.

set a4 -- a :=4
set rhs {expr $a +} -- rhs := "expr $a +"
set rhs [append rhs 5] -- rhs := "expr $a + 5"
set b [eval $rhs] -- b := 9
set cond {$b > 0} -- cond := "$b > 0"
set body {
puts "b is now $b"
set b [expr $b - 2]
3
while $cond $body

R OWooNOOUVIAh WN R

S

The condition and the body of the while loop in line 10 are the result of previ-
ous computations. Even commands can be computed, as in Figure 9.32.

set a ile -- a = "ile"
wh$a {$b > 0} {set b [expr $b - 2]}

N B

Line 2 is actually a while command, because the first word evaluates to
while.

2 —ARRAYS: APL

Arrays are especially important in mathematical computation. One of the
principal advances in FORTRAN 90 over earlier versions of FORTRAN is its
ability to manipulate arrays without dealing with the individual array ele-
ments. However, the best example of an array language is not FORTRAN,
but APL. The APL language was invented by Kenneth E. Iverson in the early
1960s and has had a small but devoted following ever since. It could be con-
sidered a single-minded language: All computation is cast in the mold of ar-
ray manipulation. Its practitioners point with pride at the conciseness of
their programs; detractors point with scorn at the unreadability of the same
programs. APL has long suffered from the fact that most of its operators are
not normal ASCII symbols, so ordinary keyboards are not adequate for repre-
senting APL programs. Dialects such as J and APL/11 use several ASCII
characters together to represent the unusual symbols. My examples expand
unusual symbols into keywords to help you read them.

APL programs must be studied; they cannot simply be read. Not only does
APL have an unusual character set, but it lacks control structures such as
while and conditionals.

APL’s greatest strength is its ability to handle arrays of any dimension
with the same operators that apply to scalars (which are zero-dimensional ar-
rays). The meaning is to apply the operator pointwise to each member of the
array. The resulting uniformity, along with the wealth of arithmetic opera-
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tors, makes it quite a powerful language. Another contributor to uniformity
is that Booleans are represented (as in C) as numeric values: 0 means false
and 1 means true. Arrays of Booleans can therefore be manipulated by the
same means as arrays of numbers. Similarly, strings are treated as arrays of
characters and can also be handled identically to numeric arrays.

If an operator requires both operands to have the same dimension, it is of-
ten valid to apply that operator to operands of different dimension. For ex-
ample, x + y is the pointwise addition of elements of x with elements of y.
Suppose that y is a matrix (that is, two-dimensional) with bounds 5 and 6,
and that x is a scalar (zero-dimensional) with value 4. Then x will be coerced
to two dimensions to conform to y, and each cell of the coerced matrix will
have value 4. This kind of coercion is called spreading. The value x can be
spread to conform to y only if the bounds of the dimensions of x match the
bounds of the initial dimensions of y. In this example, x has no dimensions,
so the condition is trivially met. Most APL implementations only allow one-
dimensional quantities to be spread.

2.1 Operators and Meta-operators

APL is generally interpreted, not compiled. All operators are right-
associative and have the same precedence. Most operator symbols can be
used either as unary or as binary operators, often with different meanings.
To keep things clear, | use different keywords for the two meanings. Besides
ordinary operators such as + , APL has many unusual operators, including
the following:

Operator Meaning

X min y min(x,y) -- lesser value

floor X floor(x) -- greatest integer < x

ceil X ceiling(x) -- least integer = x

recip X 1/x -- reciprocal

sign X abs(x) / x -- sign of x

abs x abs(x) -- absolute value

X max y max(x,y) -- greater value

exp X exp(x) -- e to power x

X power Yy x Ny -- x to power y

X log y logarithm (base x) of y

Tn X logarithm (base e) of x

X comb y C(y,x) -- number of combinations of y taken x at a time
fact x factorial(x) -- x can be fractional

X deal y x integers picked randomly (no replacement) from 1...y
rand X random integer from 1..ceiling(x)

X layout y array with dimensions x and initial value y
fi1l x one-dimensional array with initial values 1...x
shape X array of bounds of x

X drop Yy remove first x elements of y

X take y keep only first x elements of y

transpose X reverse the order of dimensions of x

X member y 0 or 1, depending on whether x is found in y

X cat y x concatenated with y (spread if necessary)
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ravel X array x reduced to one dimension (row-major)

X rotate y array y left-rotated in first dimension by x places
X matdiv y x /'y, where both are matrices

matinv X inverse(x), where x is a matrix

X compress y only members of y in positions where x is true

If you call an operator a verb, then APL provides not only many verbs but
also a few adverbs that modify verbs. You might call adverbs meta-
operators, because they convert operators to new operators. Here are some
meta-operators, where v and w are the operators on which they act.

Adverb Meaning

X outer V Yy outer product with operator v on x and y

X V inner w y inner product with operators vand won x and y

vV accumulate X apply operator v to one-dimensional array x repeatedly
V scan X accumulate, generating all intermediate results

X V rank n y operator v applied to n-dim cells of x and y

X Vv birank n m y operator v applied to n-dim cells of x

and m-dim cells of y
n power VvV X operator v applied n times to x.

The operators v and w can be any binary operators, including programmer-
defined procedures. This ability to create new operators out of old ones is
quite powerful indeed. The power operator is equivalent in purpose to power
loops, described in Chapter 2.

Figure 9.33 presents some examples to help clarify this welter of opera-

tors.

Figure 9.33 in: 3 4 5 -- one-dimensional array 1
out: 345 2
int a:=345 3

recip a -- applies pointwise to each element 4
out: .333333333 .25 .2 5
in: 3 + a -- 3 is spread to same dimension as a 6
out: 6 7 8 7
in: + accumulate a -- Tike 3 + 4 + 5 8
out: 12 9
in: - accumulate a -- 1ike 3 - (4 - 5) 10
out: 4 11
in: - scan a -- 3, 3-4, 3-(4-5) 12
out: 3 -1 4 13
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in:

out:

in:

out:

in:

out:

in:

out:

in:

out:

in:

out:

in:

out:

in:

out:

in:

out:

in:

out:

in:

out:

in:

out:

in:

out:

in:

out:
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max accumulate a

5

* accumulate recip a -- .333333333 * .25 *
.0166666667

a=a -- pointwise comparison

111

# accumulate a=a -- determine parity

1

fi11 4

1234

recip fill 4

1 .5 .333333333 .25

(2 3) Tayout fill 6

123

456

a := (2 3) layout fill 6

a[l,1] := 9 -- indices start at 1

a[2,] := 8 -- entire row; 8 is spread
al[,2] := 7 -- entire column; 7 is spread
a

973

8738

(2 3) Tayout (5 6) -- last parens not needed
565

656

+ accumulate (2 3) Tayout (5 6)
16 17

scan (2 3) Tayout (5 6)
11 16
11 17

o v+

1 rotate (3 2) layout fill 6
314
56
12

(Fi11 4) + dnner * (fill 4)

-- sum of products; last parens not needed

30

(fi11 2) + dinner * ((2 3) layout fill 6)

-- sum of products
9 12 15

.2
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14
15

16
17

18
19

20
21

22
23

24
25

26
27
28

29
30
31
32
33
34
35

36
37
38

39
40

41
42
43

44
45
46
47

48
49
50

51
52
53
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Figure 9.34

Figure 9.35
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in:  (Fi11 2) * dnner + ((2 3) Tayout fill 6) 54
-- product of sums 55

out: 12 21 32 56
in: (fi11 2) outer + (Ffill 2) 57
out: 2 3 58
34 59

in: (fi11 2) outer * (fill 2) 60
out: 1 2 61
2 4 62

in: (12 3) cat (4 5 6) 63
out: (12345 6) 64
in: (1 2 3) cat rank @ (4 5 6) 65
out: 1 4 66
25 67

36 68

As you can see, APL allows a great many usual and unusual manipulations to
be performed readily. The computations lend themselves to vector-processing
hardware on modern supercomputers.

Although APL has no structured control structures, it does have goto, and
the label can be computed, as in Figure 9.34.

goto ((a > @) cat (a < @) cat (a=0)) compress 1
(positive cat negative cat zero) 2

Line 2 builds an array of labels (I ignore how labels are declared). Line 1

compresses that array to one element based on a Boolean array only one of

whose elements can be true. It then executes a goto to the selected label.
Figure 9.35 shows how to generate the first n Fibonacci numbers.

(n - 2) power 1
(right cat + accumulate -2 take right) -- OneStep 2
11 3

The power meta-operator replicates the anonymous operator given in line 2
(let me call it OneStep) n-2 times and then applies the resulting operator to
the array 1 1. OneStep uses the predeclared identifier right to refer to its
right-hand operand, which is an initial Fibonacci string. Since it has no oc-
currence of Teft, OneStep is unary. OneStep takes the last two elements of
the operand, since the left argument to take is a negative number. These last
two elements are summed by the accumulation and are then concatenated to
the previous sequence.
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Figure 9.36
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2.2 An APL Evaluator

One of the most delightful things about APL is that it lends itself to lazy eval-
uation. For example, transpose need not actually create a new array and fill
it with data; it needs only to wait until one of its values is required. It can
then convert the indices of the desired access into the nontransposed indices
and fetch the value from its operand. Likewise, the fi11 operator need not
actually build an array; it can easily return values when they are actually re-
quired. Although lazy evaluation will generally not be faster than full evalu-
ation, it can avoid allocating large amounts of space.

A lazy evaluator can be written for APL in an object-oriented language. In
Smalltalk nomenclature, the class Expression has instance variables dimen-
sion, bounds, and values. For example, (3 4) Tayout 4 can be represented by
an object in which dimension = 2 and bounds = (3 4). The instance variable
values caches the values that have already been computed, so they do not
need to be computed again. The Expression class has a method inRange:
that reports whether a given index expression is valid for the dimensions and
bounds given. It also provides methods store:at: and retrieve:at: for
caching computed values in values, a method write for displaying all values,
and methods dimension and bounds to report these instance variables.

The Expression class has subclasses for every operator. Each subclass
has methods for initialization (to set the dimension and bounds) and for ac-
cess at any index. For example, Fill sets dimension = 1. It can compute the
value at any valid index without needing to store any array. Subclasses like
Matinv that wish to cache computed values may do so via store:at:. The Ex-
pression class has methods for creating and initializing an instance of each
subclass. One final subclass of Expression is Spread, which is used to accom-
plish coercion to a higher dimension. It can be called explicitly, but it will
also be called implicitly by operators such as Plus when necessary.

Some of the examples above could be cast as shown in Figure 9.36 into
Smalltalk.

APL: fi11 5 1
OOP: Expression fill: 5 2
APL: # accumulate a=a 3
OOP: Expression accumulate: NotEqual of: 4

(Expression equal: a and: a) 5
APL: (fi11 4) + 1dinner * (fill 4) 6
OOP: Expression inner: Plus with: Times of: 7

(Expression fill: 4) and: (Expression fill: 4) 8
APL: (2 3) layout fill 6 9
O0P: Expression layout: #(2 3) with: 10

(Expression fill: 6) 11

In Line 2, the fi11: method in Expression returns an instance of the Fil1l
subclass, suitably initialized. 1 have omitted an invocation to write that
would display all the values of this object. In lines 4-5, the accumulate:of:
method of Expression creates an instance of the Accumulate subclass and
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gives it both an operator, represented as the class NotEqual, and an expres-
sion to manipulate (all of line 5). If it needs to make calculations, it can in-
stantiate NotEqual as many times as needed and initialize those instances to
the appropriate values. Array literals such as #(2 3) (line 10) could be co-
erced to the appropriate constant Expression, or | could require that they be
explicitly converted by saying Expression constant: #(2 3).

2.3 Incremental Evaluation

In some applications, the same program is executed repeatedly on slightly dif-
ferent inputs. For example, spreadsheet programs are often reevaluated with
slightly different data. Functional programming languages have been de-
signed that can quickly evaluate expressions given new data expressed as a
modification of previous data [Yellin 91].

I want to show you how this idea can be embedded in an APL interpreter.
To keep the discussion simple, | do not use a lazy interpreter, and | assume
that the program is a single function with no internal variables. Given an old
value and a new value, a delta represents how to change the old value to the
new value. Of course, by value | mean an array of some shape. The delta and
the old value together are enough to completely specify the new value.

Every operator instance records the most recent value it has produced. It
provides that value to its caller as a delta. The ultimate caller is typically the
outer-level write routine, which uses the delta it receives to display the value
of the program. (It might even display the delta, if the user is interested in
that representation instead of the fully expanded result.) The first time the
program is run, the deltas show the difference between the void value (not
even a zero-dimensional array!) and the initial value.

In order for this scheme to be efficient, incremental computation should
usually not be more expensive than computing from scratch. If we are lucky,
incremental computation is very inexpensive. An occasional inefficient re-
computation is perfectly acceptable, though.

Achieving efficiency has two parts. First, the format for the deltas should
not be longer than the new value. If a value has changed in major ways, it is
better just to provide the new value outright. For APL arrays, a delta might
indicate dimensions to delete, indices within a dimension to delete, particular
values to change, and new indices within a dimension to add (with their val-
ues). For example, the deltafrom 13457 to1 2 4 5 might be represented as
“change at index 2 to value 2, delete index 5.”

Second, each operator and meta-operator should be implemented to take
advantage of deltas. For example, the + operator generates an output delta
that only includes indices where the input deltas indicate a change. The ac-
cumulate meta-operator could make use of an inverse to the operator it is
given, if one exists, in order to remove the effects of any deleted array ele-
ments before adding the effects of inserted elements.
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Figure 9.37

3 —DATABASE LANGUAGES

Databases are much more varied in structure than strings or arrays. The
range of languages designed for databases is also quite wide. Database lan-
guages tend to look like ordinary algebraic languages and are often Algol-
based. They integrate database operations by providing additional data types
and control constructs. Typically, programmers need to keep two “current lo-
cations” in mind: the current point of execution of the program, and the cur-
rent record of a database. In some languages, it is also necessary to keep the
current relation in mind.

3.1 Data Types

There are several ways to represent data in a database, known as hierarchi-
cal, network, and relational. | concentrate on relational databases, in which
information is stored in relations, which are persistent homogeneous arrays
of records.

My examples are taken from dBASE [Simpson 87], Sal [Sturgill 89], and a
higher-level language, SQL. My examples will be based on the relations
shown in Figure 9.37.

People : relation 1
FirstName, LastName : string; 2
BirthYear : integer; 3

end; 4

Events : relation 5
Place, What : string; 6
EventYear : integer; 7

end; 8

That is, People and Events are homogeneous persistent arrays of records
with the fields as shown. | have not limited the length of the string fields
(dBASE requires declaring the exact length; Sal does not, but does allow pat-
terns that restrict valid values) nor the range of the integer fields (ABASE re-
quires specifying the number of characters in a string version of the field; Sal
allows explicit range specification). The data specifications, known as
schemata, are usually stored in files, as are the relations themselves.
Schemata are built either interactively (dBASE) or by a specification file
(sal).

In dBASE, a program that uses a relation opens it for use, at which time
the field names become defined. dBASE is dynamic-typed. Runtime func-
tions are available to determine the types of fields. In Sal, a program must
read the relation into a local relation variable before using it and must specify
which fields are to be read. Runtime type checking verifies that the specified
fields actually exist and are consistent with the uses to which they are put.

Both dBASE and Sal allow the programmer to restrict attention to those
records in a relation for which some Boolean expression holds. In dBASE,
there are two techniques for restriction. First, a filter statement causes
records to be invisible, as in Figure 9.38.
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Figure 9.39
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filter BirthYear < 1990 and LastName # FirstName;

Until filtering is turned off, accesses to the currently open relation will not
see any record for which field BirthYear = 1990 or for which LastName =
FirstName. This statement causes a runtime error if the currently open
database does not have fields with the given names or if there is a type mis-
match (for example, if BirthYear is not compatible with integer).

Second, control constructs that iterate through a relation can explicitly
avoid certain records, as | describe shortly. In Sal, the statement to copy an
external relation into an internal variable has an optional where clause to se-
lect appropriate records only. The advantage of Sal's approach is that the
same relation can be read into multiple variables, possibly with different re-
strictions, after which each can be independently accessed. In dBASE, it is
not possible to have two filters on the same relation, nor to have the same re-
lation open multiple times. It is easy in Sal, but quite awkward in dBASE, to
generate a list of all first names combined with all last names. The advan-
tage of dBASE's approach is that entire relations do not need to be read into
memory before access may begin. Large relations are not usable in Sal. Of
course, Sal could be implemented to evaluate relation variables in a lazy fash-
ion or to represent them on external store altogether.

Both languages allow the programmer to construct Boolean expressions
involving the fields of a relation. In addition to arithmetic and string compar-
ison, both have pattern matching. In dBASE, pattern matching is restricted
to determining if one string expression is contained within another. dBASE
also has an inexact string-comparison mode in which strings are considered
equal if the first is a prefix of the second. Sal has a regular-expression pat-
tern matcher.

In dBASE, multiple orders can be imposed on the records of a single rela-
tion. They include natural order (the order in which records have been added
to the relation) and sorting (either increasing or decreasing) on any field or
expression based on fields. These orders are built under program control, are
given names, and persist after the program finishes, as shown in Figure 9.39.

open People; -- make the relation available and current 1
order BirthOrder; -- increasing BirthYear 2
seek 1950; -- move to the first record matching expression 3
makeorder NameOrder := LastName + " " + FirstName; 4
order NameOrder; -- use the order 5
seek "Newman Alfred" 6

In line 1, People is opened for use. Line 2 establishes which order is to be
used. BirthOrder must already be part of the persistent representation of
the relation. Line 3 moves the current-record mark to the first record for
which 1950 is the value under the current order. The programmer needs to
remember the expression that defines BirthOrder, since it is not given in the
program. | am assuming it is simply the BirthYear field and is of type inte-
ger. Line 4 shows how a new order can be added to the relation and given a
name. | use + for string concatenation. The success of the seek statement
in lines 3 and 6 can be queried later by a library routine.
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Figure 9.40

Figure 9.41

Some database languages, such as DMAWK [Sicheram 91], permit a field
to have multiple values within a single record. Each field is an implicit zero-
based array; the programmer can refer to FirstName[2], for example, to get a
person’s third name. DMAWK has the strange rule that omitting the sub-
script represents the last element of the array for R-values, but one past the
end for L-values. Assigning a ni1 value to a field deletes the field. Therefore,
in a record that is initially empty, Figure 9.40

FirstName := "Jones"; -- FirstName[@] := "Jones" 1
FirstName := FirstName; -- FirstName[1l] := FirstName[0] 2
FirstName[1l] := nil; -- delete FirstName[1] 3
FirstName := "Hamzah"; -- FirstName[1l] := "Hamzah" 4

would have the effect of setting FirstName[@] and FirstName[1] both to
"Jones" (lines 1 and 2) before clearing the latter (line 3), later resetting the
latter to "Hamzah" (line 4).

Since database languages deal heavily with string data, they can take ad-
vantage of the data structures and string operations discussed earlier in this
chapter, particularly associative arrays and pattern matching. Sal, for exam-
ple, has both.

3.2 Control Structures

Control structures are needed for setting the current-record mark and for it-
erating through all relevant records in a relation. Sal has no methods for ex-
plicitly moving the current-record mark; it only provides for iteration.

In dBASE, seek uses the current order to search quickly for a record
whose order value matches the given expression. In addition, the program-
mer can undertake a search within a subset of the records for one whose
fields match any Boolean expression. Such a search is slower than seek, be-
cause the order information allows an O(log n) binary search, where n is the
number of records. Finally, dBASE provides a goto statement that sets the
current-record mark to any given record by serial number in the natural or-
der, and a skip statement that moves any number of records relative to the
current record in the current order. There are predeclared routines that indi-
cate the value of the current-record mark and the number of records in the
relation.

Iteration is accomplished in Sal by a foreach statement. In Sal, foreach
indicates which relation variable to use and names a control variable, as in
Figure 9.41.

variable
People : relation
FirstName, LastName : string;
BirthYear : integer;
end;
Person : tuple of People;

AUV WNR
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put FirstName, LastName 7

into People 8

from "People.data" 9
where BirthYear < 1990; 10
foreach Person 1in People do 11
if LastName > "Jones" then 12
write(FirstName, LastName); 13
end; 14

end; 15

Lines 7-10 explicitly copy the external data into an internal variable. It is a
runtime error if the declaration in lines 2-5 does not match the contents of
file People.data at this time. A tuple (line 6) is a record in a relation.

In dBASE, the scan statement implicitly uses the currently open relation,
as in Figure 9.42.

Figure 9.42 open People; -- make the relation available and current
filter BirthYear < 1990;
scan for LastName > "Jones" do
write(FirstName, LastName);

v h WN =

end;

Natural order is used in lines 3-5, since no order statement was encountered.
Nested scan statements iterating over the same relation are useful. Fig-
ure 9.43 shows how to list all people by age category.

Figure 9.43 variable TheYear : integer; 1
open People; -- make the relation available and current 2
order BirthOrder; -- increasing BirthYear
scan do -- each iteration covers one birth year 4
TheYear := BirthYear; 5
write("During ", TheYear); 6
scan rest while BirthYear = TheYeardo 7
write(FirstName, LastName); 8
end; 9

skip -1; -- don’t ignore first record of next set 10

end; 11

The rest keyword on line 7 prevents this scan statement from resetting the
current-record mark to the start of the relation every time it begins to exe-
cute. The while clause indicates a stopping condition for this scan loop. The
surprising code of line 10 is necessary because the scan statement of lines 7-9
leaves the current-record mark on the first record that does not match
BirthYear = TheYear, but when control returns to line 4, the current-record
mark will be advanced again.

Nested scan statements iterating over different relations are also quite
useful. For example, the code of Figure 9.44 prints the events that occurred
in every person’s birth year:
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Figure 9.44 variable TheYear : integer; 1
open People; 2
order BirthOrder; -- increasing BirthYear 3
open Events; 4
order EventOrder; -- increasing EventYear 5
use People; -- make relation current 6
scan do -- each iteration covers one person 7

write(FirstName, LastName); 8
TheYear := BirthYear; 9

use Events; -- ready for nested scan 10

seek TheYear; 11

scan rest while EventYear = TheYear do 12
write(What, Place); 13

end; 14

use People; -- ready for next iteration 15

end; 16

Because only one relation is current, and the scan statements do not remem-
ber which relation they are scanning, 1 need to employ use to explicitly
reestablish context before each scan (lines 6 and 10) and before each iteration
(line 15). Luckily, the current-record mark, current order, and filtering infor-
mation are retained independently for each relation. The seek in line 11
moves the current-record mark in Events efficiently to the first relevant
record.

It is possible to link the People and Events relations to form a pseudorela-
tion (not persistent) with fields from both, as in Figure 9.45.

Figure 9.45 variable ThePerson : string; 1
open Events; 2
order EventOrder; -- increasing EventYear 3
open People; -- natural order 4
Tink Events on BirthYear; 5
scan do -- each iteration covers one person 6

write(FirstName, LastName); 7
ThePerson := LastName + " " + FirstName; 8
scan rest while LastName + " " + FirstName = ThePerson 9
do -- each iteration covers one event 10
write(What, Place); 11
end; 12
skip -1; -- don’t ignore first record of next set 13
end; 14

The T1ink statement in line 5 connects the currently open relation, People,
with the stated relation, Events, using People.BirthYear (explicitly) and
Events.EventYear (implicitly: that is the order field). Each record in the
linked relation has fields FirstName, LastName, What, and Place. For every
person, there are as many records as there are events that share the same
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date.

The Sal code for this algorithm, shown in Figure 9.46, has fewer surprises,
although Sal has no concept of orders, cannot seek information efficiently,
and has no concept of linking relations.

variable 1
People : relation 2
FirstName, LastName : string; 3
BirthYear : integer; 4
end; 5
Person : tuple of People; 6
Events : relation 7
Place, What : string; 8
EventYear : integer; 9
end; 10
Event : tuple of Events; 11
put FirstName, LastName, BirthYear 12
into People 13
from "People.data"; 14
put What, Place, EventYear 15
into Events 16
from "Events.data"; 17
foreach Person in People do 18
write(FirstName, LastName); 19
foreach Event in Events do 20
if Event.EventYear = Person.BirthYear then 21
write(What, Place); 22
end; -- if 23
end; -- foreach Event 24
end; -- foreach Person 25

3.3 Modifying Data

Sal is not intended for modifying data (there are related programs for that
purpose in the package that contains Sal). dBASE modifies data in the cur-
rent record by a replace statement, which indicates new field-value pairs.
Fields that are not mentioned are left alone. New records are added to the
end of the relation by an append statement, after which it is necessary to re-
place the values of all fields. The current record can be deleted or undeleted;
a separate statement is needed to accomplish the fairly expensive operation
of physically removing all records that have been deleted and rebuilding or-
der information. dBASE is also capable of copying a relation (or a part of it
based on Boolean expressions) to a new relation, with an option to sort the
new relation in the process.
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Figure 9.47

Figure 9.48

Figure 9.49

Figure 9.50

3.4 SQL

SQL (Structured Query Language) was developed during the mid-1970s and
introduced commercially in 1979. Since then, it has become widely available.
SQL is in a sense a single-minded language: All computation is cast in the
mold of relation manipulation. This is just the right level of abstraction for
many database operations. | concentrate on expressions that access existing
relations; there are also commands that update existing relations. First, Fig-
ure 9.47 shows how to compute all people born before 1990 with distinct first
and last names.

select * 1
from People 2
where BirthYear < 1990 and LastName # FirstName; 3

This program fragment is an expression. If it stands by itself, the resulting
data are be displayed; it can be placed in an assignment statement or any-
where else that a relation is expected. The * in line 1 indicates that the re-
sulting relation is to contain all fields of the underlying relation, which in line
2 is specified to be People. Line 3 restricts which records are to be selected
for the result.

Figure 9.48 shows how to find the names of people whose last name ap-
pears after "Jones" and were born before 1990.

select FirstName, LastName 1
from People 2
where BirthYear < 1990 and LastName > "Jones" 3

Figure 9.49 shows how to find all people by age category.

select FirstName, LastName, BirthYear 1
from People 2
orderby BirthYear; 3

The orderby clause in line 3 indicates that the resulting relation is to be
sorted by birth year.

The code of Figure 9.50 will print the events that occurred in every per-
son’s birth year.

select FirstName, LastName, What, Place
from People, Events
where EventYear = BirthYear
orderby LastName + FirstName;

A WNR

This example builds a single relation from multiple relations. Such a compu-
tation is known as a join. In this case, line 2 specifies that the fields of Peo-
ple and Events are to be combined. Line 3 restricts attention to those
records where the EventYear is the same as the BirthYear. Such restriction
is common, but not required. It is not necessary to build the restriction out of
an equality test. Line 1 restricts attention to four of the resulting fields. Line
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Figure 9.51

Figure 9.52

Figure 9.53

Figure 9.54
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4 sorts the resulting relation by person. It shows that the sort condition can
be any expression. One difference between this code and what | showed pre-
viously for dBASE is that people born in years without events are omitted
from the result. Another difference is that the result is a relation, which can
be manipulated further before printing.

SQL provides several accumulation operators, such as count, sum, min,
max, and average. Figure 9.51 shows how to find the average birth year and
the alphabetically last name of all people.

select average(BirthYear), max(LastName + FirstName) 1
from People; 2

Accumulated values are particularly helpful in conjunction with grouping,
since the accumulation is computed independently for each group. Figure
9.52 shows how to count how many people were born in each year.

select BirthYear, Count(*) 1
from People 2
groupby BirthYear; 3

The * in line 1 refers to entire records instead of a particular field. The re-
sult of this expression is a relation with two fields: BirthYear and Countl (the
latter is automatically named). The relation has one record for each distinct
value of BirthYear.

Individual groups can be suppressed by a having clause, much as individ-
ual records can be suppressed by a where clause. Figure 9.53 shows how to
get the number of people born in each year, but only show those years where
the number is greater than 100.

select BirthYear, Count(*)
from People
groupby BirthYear
having Count(*) > 100;

A WN R

Expressions can be combined in several ways. The simplest is to take the
union of two expressions. Those expressions must result in structurally
equivalent relations (although the names of the fields may differ). Duplicate
records are removed. Figure 9.54 shows how to get a relation with all first or
last names, along with birth date.

select BirthYear, FirstName called Name
from People

union

select BirthYear, LastName
from People;

v WN R

Line 1 introduces a new name for the second field in the result.
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A more complex way to join expressions is by subordinating one to an-
other, as shown in Figure 9.55, which will find those people born after the av-
erage birth year.

Figure 9.55 select FirstName, LastName
from People
where BirthYear > average(
select BirthYear from People

v WN R

);

Line 4 is an expression embedded inside the invocation of average. Similarly,
Figure 9.56 shows how to find people born after Ramachandran.

Figure 9.56 select FirstName, LastName
from People
where BirthYear > (
select BirthYear
from People
where LastName = "Ramachandran"

NoOuvuih wWwN R

);

If there are several records with LastName = "Ramachandran", this expression
will fail. In that case, | can modify the expression slightly, as in Figure 9.57.

Figure 9.57 select FirstName, LastName
from People
where BirthYear > any(
select BirthYear
from People
where LastName = "Ramachandran"

NOoOuvih wWwN R

);

The accumulator any in line 3 allows the where clause of line 3 to be satisfied
for anyone born after even one of the several Ramachandrans. This accumu-
lator is, in effect, an Icon iterator (described earlier in this chapter). A re-
lated iterating accumulator is al1; if | had used it in line 3 instead of any, |
would only get those people born after all Ramachandrans. Finally, the accu-
mulator exists reduces the result of a subexpression to a Boolean indicating
whether the subexpression’s value contains any records.

The outer expression can communicate values to the inner expression.
Figure 9.58 shows how to find all people born in the year the last occurrence
of each event took place.
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select FirstName, LastName
from People, Events called OuterEvents
where BirthYear = (
select max(EventYear)
from Events called InnerEvents
where InnerEvents.What = OQuterEvents.What

NOoOuvih wWwihN B

);

Lines 2 and 5 give two aliases for Events, so that the two uses of this relation
can be distinguished in line 6.

The select mechanism of SQL allows programmers to deal with data in-
stead of control structures. The APL language discussed in the next section
takes this idea to an extreme.

4 —SYMBOLIC MATHEMATICS

Early languages like FORTRAN were intended primarily for numeric mathe-
matical computation. A completely different class of languages has been de-
veloped for symbolic mathematical computation. The major novelty of these
languages is that unbound identifiers can be treated as algebraic symbols to
be manipulated. The best-known languages in this family are Macsyma,
Maple, and Mathematica. These languages can simplify algebraic expres-
sions, perform symbolic integration and differentiation, calculate limits, gen-
erate series and sequences, solve systems of equations, and produce graphs.
They are almost always used interactively.

Since there are so many different mathematical manipulations possible,
mathematical programming languages tend to organize their functions into
libraries that are dynamically loaded when they are needed. This organiza-
tion reduces the amount of memory that a typical session will need. For ex-
ample, Maple’s linear algebra library contains routines for solving linear
systems of equations, inverting matrices, and finding eigenvectors and eigen-
values. There are also libraries for combinatorics, for the simplex method, for
trigonometric functions, and many other applications. Arrays can be manipu-
lated much as in APL, including extraction of slices in any dimension, so op-
erations like Gaussian elimination are easy to write. In fact, Mathematica
has APL’s inner and outer operators.

Figure 9.59 shows some examples of the manipulations possible in these
languages.

in:  poly := 2*x"5 - 3*x"4 + 38%x"3 - 57*x"2 - 300*x+450; 1
solve(poly=0,x); -- solve with respect to x 2
out: 1/2 1/2 3
3/2, 51, -51, 6 , - 6 4
in: el :=a+b+c+d-=1; 5
e2 := 2%a + 5%b + c + 4*d = 4; 6
e3 := -5%a + 4*b + 5%c - 3*d = -1; 7
e4 :=b + 4*c - 5*d = 0; 8
SolutSet := solve({el,e2,e3,e4},{a,b,c,d}); 9
out: SolutSet := {d =0, c = -2/13, a = 7/13, b = 8/13} 10
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in: f:=x"2 - y"2; 11
diff(f,x); 12
out: 2x 13
in: y"2 + 2%y; 14
factor(%+1); -- % means previous expression 15
out: 2 16
(1+y) 17

The output in lines 3—-4 and lines 16-17 is carefully formatted over several
lines to look like typeset mathematics. Matrices are also displayed in multi-
ple lines. The identifier I in line 4 is the mathematical constant i, the square
root of —1. Not only can Maple differentiate polynomials (and other sorts of
expressions), it can also differentiate programmer-defined functions, as in

Figure 9.60.
Figure 9.60 f := procedure (x); 1
variable 2
i : integer; 3
result := 0; 4
begin 5
for i :=1 to 2 do 6
result := result + x ~ 1i; 7
end; 8
return result; 9
end; 10
g := differentiate(f); 11

Line 11 assigns into g a procedure with the declaration shown in Figure 9.61.

Figure 9.61 procedure g(x); 1
variable 2

i : integer; 3

resultx := 0; 4

begin 5

for i :=1 to 2 do 6

resultx := resultx + i * x ~ (i - 1); 7

end; 8

return resultx; 9
end; 10

Much more complicated examples are possible, involving trigonometric func-
tions, for example. The ability to differentiate programmer-defined functions
makes it possible to program Newton’s method for finding roots of functions,
as shown in Figure 9.62.
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findRoot := procedure (f : procedure); 1
variable 2
result := @; -- or any other initial guess 3
epsilon := 0.001; -- or any other desired precision 4
begin 5
while abs(f(result)) > epsilon do 6
result := result - f(a)/differentiate(f)(a); 7
end; 8
return result; 9
end; 10

The data types available in mathematical languages include integer, real,
arrays, strings, and lists, in addition to symbolic expressions. They also in-
clude arbitrarily large integers and fractions of arbitrarily large integers.
Maple also provides associative arrays, which are useful for storing values of
functions, and arrays with programmer-defined indexing functions, which
can introduce structure such as symmetry or triangularity in matrices and
can provide default values for arrays at indices that have not been given val-
ues. Maple implicitly associates an associative array called the remember
table with every procedure. The programmer can request that values com-
puted by the procedure be remembered in that array to short-circuit future
evaluations with the same parameters. In other words, dynamic program-
ming is trivial to add to any program, such as the one shown in Figure 9.63
for Fibonacci numbers.

Fibonacci := procedure[remember](n); 1
begin 2

Fibonacci(n-1) + Fibonacci(n-2); 3
end; 4
Fibonacci(@) := 0; -- assigns to the remember table 5
Fibonacci(1l) := 1; -- assigns to the remember table 6

The option remember in line 1 causes Fibonacci to store and use previously
computed values. The assignments in lines 5 and 6 explicitly place values in
Fibonacci’'s remember table, making it unnecessary to put special cases in
the body of the procedure itself.

5 —FINAL COMMENTS

Languages that are aimed at special applications tend to concentrate on par-
ticular aggregates in order to help the programmer write clear and efficient
code. SNOBOL and Icon are particularly designed for applications that need
to read and manipulate textual data. The related scripting languages are
used to scan text files, extract information, print reports, construct input for
other programs, and collect output from other programs. Such languages in-
clude command interpreters like Csh, stream editors like Awk and Sed, and
interpreted languages such as Perl and Tcl. These languages generally have
many features for manipulating strings. Extensions to Prolog (see Chapter 8)
for dealing with strings are actively being researched, giving rise to lan-
guages such as CLP(X). The problem that string Prolog must grapple with is
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Figure 9.64

that unification over strings is intractable (it is at least NP hard, although it
is decidable) [Rajasekar 94]. Which language to use depends, of course, on
what is available (Csh is only available under Unix), how fast the program
must run (interpreted programs are generally slower), and how sophisticated
the string manipulations need to be.

SNOBOL has some excellent points. The fact that backtracking is built
into the language frees the SNOBOL programmer from writing backtrack
code, which is tricky to get right. Patterns free the programmer from worry-
ing about maintaining an explicit variable for the focus of attention (the posi-
tion in the subject string that is being matched). Patterns can be assigned to
variables and used to build more complex patterns. In fact, the BNF for a
context-free (and even a context-sensitive) language can be represented di-
rectly in SNOBOL, so it is easy to write parsers.

SNOBOL also has some unfortunate points.

1. There are many ways to build patterns, and it takes a significant
amount of effort to learn how to use these methods. Patterns can grow
so complex that they become difficult to understand, debug, and main-
tain.

2. The programmer must remember the difference between pattern-
construction time and pattern-matching time. It is easy to write ineffi-
cient programs that construct patterns each time they are used instead
of saving them in pattern variables. Variables used in a pattern often
need to be marked for lazy evaluation.

3. The fact that side effects are an essential part of pattern application
makes programs unclear, especially if the pattern is stored in a pattern
variable and applied in a different part of the program.

4.  Although patterns are something like procedures, they do not take pa-
rameters, and they do not introduce a hame scope, so they are forced to
communicate and perform local computations through global variables.

5.  The pattern-matching part of SNOBOL is mostly divorced from the rest
of the language. For example, a good way to find if the first comma in a
string Subject is at least 10 characters from the beginning is shown in
Figure 9.64 [Griswold 80].

Subject match ((break(",") @ here) & fence & 1
(delay ge(here,10))); 2

The ‘@ operator assigns the position in Subject achieved by finding the
first comma. It is prevented from finding a later comma by the fence
operator. The ge integer-comparison procedure is invoked lazily to
make sure that here is current when the parameters to ge are evalu-
ated. This example shows how awkward it is to build programs that in-
volve both pattern matching and arithmetic.

The two novel ideas of Icon, the concept of scanning strings by matching
procedures and the idea of iterator expressions, are both unusual and power-
ful. However, this power has a price. The global nature of subject and pos,
and the fact that matching procedures have side effects on these pseudovari-
ables, can make programs hard to follow. It is possible to directly assign into
both subject and pos, which can wreak havoc, especially in a scan body. Al-
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though Icon iterator expressions are as powerful as CLU iterators (and often
easier to encode), they are not general-purpose coroutines. They cannot be
used, for example, to solve the binary-tree equality puzzle from Chapter 2.

On the positive side, the concept of scanning strings is easily generalized
to scanning other data structures, such as trees. A programmer may intro-
duce matching procedures that inspect a subject of any type and modify posi-
tion variables to indicate progress. Instead of using scan, which is specific to
subject and pos, all that is needed is a new name scope with local variables
properly initialized, as in Figure 9.65.

variable 1
target : ... := ...; -- can be any data structure 2
position : ... := ...; -- in any representation 3

begin 4

. —-- expression using matching procedures 5

end; 6

In fact, scan is just a name scope with variables subject and pos automati-
cally declared and initialized. It is not necessary to use scan, because all pre-
declared matching procedures have overloaded versions with more
parameters that explicitly specify the subject. So everything that is done au-
tomatically by scan and the matching procedures could be done (maybe with
increased clarity) by name scopes, explicit variables, and extra parameters.
Some adjustment would be needed to pass parameters like pos by reference
or value result mode; Icon only has value mode.

Arrays are primarily important in mathematical calculations. However,
APL shows that adequately powerful array operations can take the place of
control structures; it is possible to build very sophisticated nonmathematical
programs in APL. These programs may appear to be inefficient to execute,
with very large intermediate results, but clever evaluation techniques allow
APL interpreters to work in limited memory. Unfortunately, the programs
are difficult to read, especially in the natural APL syntax.

The simplest databases are just ASCII files, with one line per tuple.
Scripting languages like Awk, Sed, Perl, and Tcl often suffice to manipulate
these databases. More complex databases can be accessed through subrou-
tines in other languages. It is quite common to embed SQL calls, for instance,
in a C program. Commercial databases often come with their own languages.
dBASE, for example, is a generally Algol-like language interwoven with spe-
cific constructs for accessing databases. Paradox, in contrast, is built on an
object-oriented model.

Symbolic computation is important to mathematicians and engineers, and
especially to students in these disciplines. Languages like Mathematica and
Maple allow these users to construct symbolic equations, manipulate them,
and view their behavior graphically.

There are other aggregates that | have not covered in this chapter. In par-
ticular, specialty languages are very important for statistics, controlling ma-
chine tools, and text formatting.
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Review Exercises

9.1
9.2
9.3

9.4

9.5
9.6

9.7

9.8

In Icon, is the expression tab(4 | 3) equivalent to tab(4) | tab(3)?
Write a regular expression that matches either "begin" or "end".

Write a regular expression that matches any word starting with "pre"
and ending with "ion".

Modify the Icon program of example 21 on page 279 so that the final
word in MyString may continue to the end of MyString without a final
space character.

What is the Icon equivalent of SNOBOL'’s fence pattern?

In dBASE, it is quite awkward to generate a list of all first names com-
bined with all last names in the PeopTe relation. Suggest how to man-
age such a feat.

Design an SQL expression that builds a relation containing the first
name of everyone born before all earthquakes in San Francisco.

Write a SNOBOL pattern that prints all contiguous substrings of the
subject and then fails.

Challenge Exercises

9.9

9.10

9.11

9.12

9.13

9.14

9.15

9.16

9.17

Referring to Figure 9.5 (page 271), design a variety of CharSearch that
finds the second s in "sample string".

Write a regular expression that matches all words that can be typed by
alternating hands on a standard gwerty keyboard.

Refer to Figure 9.11 (page 274), and suggest a better component type
than Boolean for Present.

Write a SNOBOL program that has the same effect as the Icon program
in Figure 9.20 (page 279).

Modify the lIcon program of Figure 9.21 (page 279) so that it writes all
words that contain telephone numbers, that is, sequences of only digits
and an obligatory single hyphen.

The simple program for MatchDouble in Figure 9.23 (page 281) becomes
more complex if it doesn’'t use concatenation. Show how to code it, using
neither concatenation nor explicit reference to pos.

Write an Icon program that generates all binary trees on n nodes, simi-
lar to the ones written in C and CLU in Chapter 2.

Why is it impossible to write an Icon program that solves the binary-
tree equality puzzle of Chapter 2?

Can Icon iterator expressions and iterator procedures be implemented
with a single stack?
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9.18 Show how to implement rest and Tast, mentioned on page 276, using
the primitive substring operations.

9.19 Use primitive substring operations to implement Icon’s upto matching
procedure. Don't worry about integrating your result into Icon’s back-
tracking mechanism.

9.20 Use primitive substring operations to build a function NewBase (x) that
returns a substring that is equal to x, has a new base, has left set to the
beginning of the new base, and right set to the end of the new base.

9.21 What is the subtle bug in Figure 9.45 (page 295)? How would you fix it?
9.22 Describe what the APL program in Figure 9.66 does.

Figure 9.66 in: n := 30
:= 1 # or accumulate (1 1) drop
(transpose 0 =
(fi11 n) outer mod fill n) -
(fi11 n) outer = fill n
a compress 1 drop fill n
out: 2 3 5 7 11 13 17 19 23 29

QO
|

NOoOuVvIhs WN R

9.23 In Figure 9.36 (page 289), the accumulate operator is represented by an
instance of the AccumuTate class. What would be the response of this in-
stance to a dimension query and to a bounds query, given that the vari-
able a is currently bound to the three-dimensional array with bounds 2
347

9.24 Does it make sense in APL to turn a lazy evaluator into an incremental
lazy evaluator?
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