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Chapter 10 ❖


Formal Syntax and Semantics 

1 ◆ SYNTAX 
A programming language is defined by specifying its syntax (structure) and 
its semantics (meaning). Syntax normally means context-free syntax be­
cause of the almost universal use of context-free grammars as a syntax­
specification mechanism. Syntax defines what sequences of symbols are 
valid; syntactic validity is independent of any notion of what the symbols 
mean. For example, a context-free syntax might say that A := B + C  is syntac­
tically valid, while A := B +; is not. 

Context-free grammars are described by productions in BNF (Backus-
Naur Form, or Backus Normal Form, named after John Backus and Peter 
Naur, major designers of Algol-60). For example, part of the syntax of Pascal 
is shown in Figure 10.1. 

Figure 10.1 Program ::= program IDENTIFIER ( FileList ) ; 1 
Declarations begin Statements end . 2 

FileList ::= IDENTIFIER | IDENTIFIER , FileList 3 
Declarations ::= ConstantDecs TypeDecs VarDecs ProcDecs 4 
ConstantDecs ::= const ConstantDecList | ε 5 
ConstantDecList ::= IDENTIFIER = Value; ConstantDecList | ε 6 

The identifiers on the left-hand sides of the rules are called nonterminals. 
Each rule shows how such a nonterminal can be expanded into a collection of 
nonterminals (which require further expansion) and terminals, which are 
lexical tokens of the programming language. In our example, program and 
IDENTIFIER are terminals, and Program and Statements are nonterminals. I 
use | to indicate alternatives and ε to indicate an empty string. 
������������������������������������ 
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Sometimes, a clearer notation may be used for BNF; the purpose of nota­
tion, after all, is to specify ideas precisely and clearly. The FileList and Con­
stantDecList productions use recursion to represent arbitrarily long lists. I 
can rewrite those productions as shown in Figure 10.2, introducing iteration 
for the recursion. 

Figure 10.2	 FileList ::= [ IDENTIFIER +,] 1 
ConstantDecList ::= [ IDENTIFIER = Value ; *] 2 

Here I use brackets [ and ] to surround repeated groups. I end the group 
either with * , which means 0 or more times (line 2), with + , which means 1 
or more times (line 1), or with neither, which means 0 or 1 time. Optionally, 
following the * or + is a string that is to be inserted between repetitions. So 
line 1 means that there may be one or more identifiers, and if there are more 
than one, they are separated by , characters. Line 2 means there may zero 
or more constant declarations; each is terminated by the ; character. This 
notation obscures whether the repeated items are to be associated to the left 
or to the right. If this information is important, it can be specified in some 
other way, or the productions can be written in the usual recursive fashion. 

The BNF specification is helpful for each of the three software-tool aspects 
of a programming language. 

1.	 It helps the programming language designer specify exactly what the 
language looks like. 

2.	 It can be used by automatic compiler-generator tools to build the parser 
for a compiler. 

3.	 It guides the programmer in building syntactically correct programs. 

BNF is inadequate to describe the syntax for some languages. For exam­
ple, Metafont dynamically modifies the meanings of input tokens, so that it is 
not so easy to apply standard BNF. 

BNF also fails to cover all of program structure. Type compatibility and 
scoping rules (for example, that A := B + C  is invalid if B or C is Boolean) can­
not be specified by context-free grammars. (Although context-sensitive gram­
mars suffice, they are never used in practice because they are hard to parse.) 
Instead of calling this part of program structure static semantics, as has be­
come customary, let me call it advanced syntax. Advanced syntax aug­
ments context-free specifications and completes the definition of what valid 
programs look like. Advanced syntax can be specified in two ways: 

1.	 Informally via a programming language report, as is done for most pro­
gramming languages. An informal specification can be compact and 
easy to read but is usually imprecise. 

2.	 Formally (for example, via two-level van Wijngaarten grammars or at­
tribute grammars). 

Attribute grammars are one popular method of formal specification of ad­
vanced syntax. They formalize the semantic checks often found in compilers. 
As an example of attribute grammars, the production E ::= E + T might be 
augmented with a type attribute for E and T and a predicate requiring type 
compatibility, as shown in Figure 10.3. 
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Figure 10.3 (E2.type = numeric) ∧ (T.type = numeric) 

where E2 denotes the second occurrence of E in the production. Attribute 
grammars are a reasonable blend of formality and readability, and they are 
relatively easy to translate into compilers by standard techniques, but they 
can still be rather verbose. 

2 ◆ AXIOMATIC SEMANTICS 
Semantics are used to specify what a program does (that is, what it com­
putes). These semantics are often specified very informally in a language 
manual or report. Alternatively, a more formal operational semantics in­
terpreter model can be used. In such a model, a program state is defined, and 
program execution is described in terms of changes to that state. For exam­
ple, the semantics of the statement A := 1  is that the state component corre­
sponding to A is changed to 1. The LISP interpreter presented in Chapter 4 is 
operational in form. It defines the execution of a LISP program in terms of 
the steps needed to convert it to a final reduced form, which is deemed the re­
sult of the computation. The Vienna Definition Language (VDL) embodies an 
operational model in which abstract trees are traversed and decorated to 
model program execution [Wegner 72]. VDL has been used to define the se­
mantics of PL/I, although the resulting definition is quite large and verbose. 

Axiomatic semantics model execution at a more abstract level than op­
erational models [Gries 81]. The definitions are based on formally specified 
predicates that relate program variables. Statements are defined by how 
they modify these relations. 

As an example of axiomatic definitions, the axiom defining var := exp usu­
ally states that a predicate involving var is true after statement execution if 
and only if the predicate obtained by replacing all occurrences of var by exp is 
true beforehand. For example, for y > 3  to be true after execution of the state­
ment y := x +  1, the predicate x + 1 > 3  would have to be true before the state­
ment is executed. 

Similarly, y = 21  is true after execution of x := 1  if y = 21  is true before its 
execution, which is a roundabout way of saying that changing x doesn’t affect 
y. However, if x is an alias for y (for example, if x is a formal reference-mode 
parameter bound to an actual parameter y), the axiom is invalid. In fact, 
aliasing makes axiomatic definitions much more complex. This is one reason 
why attempts to limit or ban aliasing are now common in modern language 
designs (for example, Euclid and Ada). 

The axiomatic approach is good for deriving proofs of program correctness, 
because it avoids implementation details and concentrates on how relations 
among variables are changed by statement execution. In the assignment ax­
iom, there is no concept of a location in memory being updated; rather, rela­
tions among variables are transformed by the assignment. Although axioms 
can formalize important properties of the semantics of a programming lan­
guage, it is difficult to use them to define a language completely. For exam­
ple, they cannot easily model stack overflow or garbage collection. 

Denotational semantics is more mathematical in form than operational 
semantics, yet it still presents the notions of memory access and update that 
are central to von Neumann languages. Because they rely upon notation and 
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terminology drawn from mathematics, denotational definitions are often 
fairly compact, especially in comparison with operational definitions. Denota­
tional techniques have become quite popular, and a definition for all of Ada 
(excluding concurrency) has been written. Indeed, this definition was the ba­
sis for some early Ada compilers, which operated by implementing the deno­
tational representation of a given program.1 A significant amount of effort in 
compiler research is directed toward finding automatic ways to convert deno­
tational representations to equivalent representations that map directly to or­
dinary machine code [Wand 82; Appel 85]. If this effort is successful, a 
denotational definition (along with lexical and syntactic definitions) may be 
sufficient to automatically produce a working compiler. 

The field of axiomatic semantics was pioneered by C. A. R. Hoare 
[Hoare 69]. The notation 

{P} S {R} 

is a mathematical proposition about the semantics of a program fragment S. 
It means, ‘‘If predicate P is true before program S starts, and program S suc­
cessfully terminates, then predicate R will be true after S terminates.’’ 

The predicates (P and R) typically involve the values of program variables. 
P is called the precondition and R the postcondition of the proposition 
above. The precondition indicates the assumptions that the program may 
make, and the postcondition represents the result of correct computation. If 
P and R are chosen properly, such a proposition can mean that S is a condi­
tionally correct program, which means it is correct if it terminates. 

Relatively strong conditions hold for very few program states; relatively 
weak conditions hold for very many. The strongest possible condition is false 
(it holds for no program state); the weakest possible condition is true (it holds 
for every program state). A strong proposition is one with a weak precondi­
tion or a strong postcondition (or both); thus 

{true} S {false} 

is exceptionally strong. In fact, it is so strong that it is true only of nontermi­
nating programs. It says that no matter what holds before S is executed, 
nothing at all holds afterward. Conversely, 

{false} S {true} 

is an exceptionally weak proposition, true of all programs. It says that given 
unbelievable initial conditions, after S finishes, one can say nothing interest­
ing about the state of variables. 

������������������������������������ 
1 The first Ada implementation to take this approach was the NYU Ada/Ed system, infa­

mous for its slowness. Its authors claim this slowness is due primarily to inefficient implemen­
tation of certain denotational functions. 
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2.1 Axioms 
The programming language designer can specify the meaning of control 
structures by stating axioms, such as the axiom of assignment in Figure 10.4. 

Figure 10.4 Axiom of assignment 1 
{P[x → y]} x := y {P} 2 
where 3 

x is an identifier 4 
y is an expression without side effects, possibly containing x 5 

This notation says that to prove P after the assignment, one must first prove 
a related predicate. P[x → y] means the predicate P with all references to x 
replaced by references to y. For instance, 

{y < 3 ∧ z < y} x :=  y {x < 3  ∧  z < y}  

is a consequence of this axiom. 
In addition to axioms, axiomatic semantics contain rules of inference, 

which specify how to combine axioms to create provable propositions. They 
have the form: 

if X and Y then Z 

That is, if one already knows X and Y, then proposition Z is proven as well. 
Figure 10.5 shows some obvious rules of inference. 

Figure 10.5	 Rules of consequence 1 
if {P} S {R} and R ⇒ Q then {P} S {Q}	 2 
if {P} S {R} and Q ⇒ P then {Q} S {R}	 3 

Since R ⇒ S means “R is stronger than S,” the rules of consequence say that 
one may always weaken a postcondition or strengthen a precondition. In 
other words, one may weaken a proposition that is already proven. 

The easiest control structure to say anything about is the composition of 
two statements, as in Figure 10.6. 

Figure 10.6	 Axiom of composition 1 
if {P} S1 {Q} and {Q} S2 {R} then {P} S1; S2  {R} 2 

Iteration with a while loop is also easy to describe, as shown in Figure 
10.7. 

Figure 10.7	 Axiom of iteration 1 
if {P ∧ B} S {P} then 2 

{P} while B do S end {¬ B ∧ P}	 3 

That is, to prove that after the loop B will be false and that P still holds, it suf­
fices to show that each iteration through the loop preserves P, given that B 
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holds at the outset of the loop. P is called an invariant of the loop, because 
the loop does not cause it to become false. 

Figure 10.8 presents an axiom for conditional statements. 

Figure 10.8 Axiom of condition 1 
if {P ∧ B} S {Q} and {P ∧ ¬B} T {Q} then 2 

{P} if B then S else T end {Q} 3 

2.2 A Simple Proof 
I will now use these axioms to prove a simple program correct. The program 
of Figure 10.9 is intended to find the quotient and remainder obtained by di­
viding a dividend by a divisor. It is not very efficient. 

Figure 10.9 remainder := dividend; 1 
quotient := 0; 2 
while divisor ≤ remainder do 3 

remainder := remainder - divisor; 4 
quotient := quotient + 1 5 

end; 6 

I would like the predicate shown in Figure 10.10 to be true at the end of this 
program. 

Figure 10.10 {FINAL: remainder < divisor ∧ 1 
dividend = remainder + (divisor * quotient)} 2 

The proposition I must prove is {true} Divide {FINAL}. Figure 10.11 pre­
sents a proof. 

Figure 10.11 true ⇒ dividend = dividend + divisor * 0 [algebra] 1 

{dividend = dividend + divisor*0} remainder := dividend 
{dividend = remainder + divisor*0} [assignment] 2 

{dividend = remainder + divisor*0} quotient := 0 
{dividend = remainder + divisor*quotient} [assignment] 3 

{true} remainder := dividend {dividend = remainder+divisor*0} 
[consequence, 1, 2] 4 

{true} remainder := dividend; quotient := 0 
{dividend = remainder+divisor*quotient} 
[composition, 3, 4] 5 

dividend = remainder+divisor*quotient ∧ divisor ≤ remainder ⇒ 
dividend=(remainder-divisor)+divisor*(1+quotient) 
[algebra] 6 
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{dividend=(remainder-divisor)+divisor*(1+quotient)} 
remainder := remainder-divisor 
{dividend=remainder+divisor*(1+quotient)} [assignment] 7 

{dividend=remainder+divisor*(1+quotient)} 
quotient := quotient+1 
{dividend=remainder+divisor*quotient} [assignment] 8 

{dividend=(remainder-divisor)+divisor*(1+quotient)} 
remainder := remainder-divisor; quotient := quotient+1 
{dividend=remainder+divisor*quotient} 
[composition, 7, 8] 9 

{dividend = remainder+divisor*quotient ∧ divisor ≤ remainder} 
remainder := remainder-divisor; quotient := quotient+1 
{dividend=remainder+divisor*quotient} 
[consequence, 6, 9] 10 

{dividend = remainder+divisor*quotient} 
while divisor≤remainder do


remainder := remainder-divisor;

quotient := quotient+1


end 
{remainder < divisor ∧ 

dividend=remainder+divisor*quotient} 
[iteration, 10] 11 

{true} Divide {FINAL} [composition, 5, 11] 12 

This style of proof is not very enlightening. It is more instructive to deco­
rate the program with predicates in such a way that an interested reader (or 
an automated theorem prover) can verify that each statement produces the 
stated postcondition given the stated precondition. Each loop needs to be dec­
orated with an invariant. Figure 10.12 shows the same program with decora­
tions. 

Figure 10.12 {true} 1 
{dividend = dividend + divisor*0} 2 
remainder := dividend; 3 
{dividend = remainder + divisor*0} 4 
quotient := 0; 5 
{invariant: dividend = remainder + divisor*quotient} 6 
while divisor ≤ remainder do 7 

{dividend = (remainder − divisor) + 8 
divisor * (quotient+1)} 9 

remainder := remainder - divisor; 10 
{dividend = remainder + divisor * (quotient + 1)} 11 
quotient := quotient + 1 12 
{dividend = remainder + divisor * quotient} 13 

end; 14 
{remainder<divisor ∧ 15 

dividend = remainder + (divisor*quotient)} 16 
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Unfortunately, the program is erroneous, even though I have managed to 
prove it correct! What happens if dividend = 4 and divisor = -2? The while 
loop never terminates. The program is only conditionally, not totally, correct. 

The idea of axiomatic semantics has proved fruitful. It has been applied 
not only to the constructs you have seen, but also to more complex ones such 
as procedure and function call, break from a loop, and even goto. Figure 
10.13 shows two examples of concurrent programming constructs to which it 
has been applied [Owicki 76]. 

Figure 10.13 Parallel execution axiom 1 
if ∀ 0 ≤ i ≤ n, {Pi} Si  {Qi}, 2 
and no variable free in Pi or Qi is changed in Sj≠i 3 
and all variables in I(r) belong to resource r, 4 
then 5 

{P1 ∧ ... ∧ Pn ∧ I(r)} 6 
resource r: cobegin S1 // ... // Sn coend 7 

{Q1 ∧... ∧ Qn} 8 

Critical section axiom 9 
if I(r) is the invariant from the cobegin statement 10 
and {I(r) ∧ P ∧ B} S {I(r) ∧ Q) 11 
and no variable free in P or Q is changed in 12 

another thread 13 
then {P} region r await B do S end {Q} 14 

The cobegin and region statements are described in Chapter 7. If the formal 
axiomatic specification of a construct would suffice to make it intelligible, this 
example should require no further clarification. However, it may help to 
point out several facts. 

• A resource is a set of shared variables. 
• The region statement may only appear in a cobegin. 
• Region statements for the same resource may not be nested. 

The axiomatic method has given rise to an attitude summarized in the fol­
lowing tenets: 

1.	 Programmers should be aware of the propositions that are meant to 
hold at different stages of the program. 

2.	 The precondition and the postcondition of each whole program should be 
stated explicitly. 

3.	 Students learning to program should write out the loop invariant explic­
itly for each loop. 

4.	 Language constructs that do not have simple axioms (such as goto and 
multiple assignment) should not be used. 

5.	 Programmers should prove their programs correct. 
6.	 Proof checkers should be built to assist programmers in proving their 

programs correct. Such checkers should understand the axioms and 
enough algebra so that only occasional decorations (such as loop invari­
ants) should be needed. 

7.	 Programmers should develop their programs by starting with the post­
condition and working slowly backward, attempting to render it true. 
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8.	 Programming languages should allow the programmer to explicitly 
show loop invariants, preconditions and postconditions to procedure 
calls, and other decorations, and the compiler should include a proof 
checker. 

This attitude has led to extensive research in programming language de­
sign (Alphard and Eiffel were designed with the last point in mind) and auto­
matic theorem provers. However, these tenets are not universally accepted. 
The strong argument can be made, for example, that program proofs are only 
as good as the precondition/postcondition specification, and that it is just as 
easy to introduce a bug in the specifications as it is in the program. For ex­
ample, a sorting routine might have a postcondition that specifies the result 
be sorted but might accidentally omit the requirement that the elements be a 
permutation of the values in the input. Furthermore, it is hard to put much 
faith in an automated proof that is so complex that no human is willing to fol­
low it. 

2.3 Weakest Preconditions 
The suggestion that a program can itself be developed by attention to the ax­
iomatic meaning of language constructs and that programmers should de­
velop their programs backward was elucidated by Edsger W. Dijkstra 
[Dijkstra 75]. Instead of seeing the axioms as static relations between pre­
conditions and postconditions, Dijkstra introduced the concept of weakest 
precondition. I will say that P = wp(S, Q) if the following statements hold: 

•	 {P} S {Q}. That is, P is a precondition to S. 
•	 S is guaranteed to terminate, given P. That is, S shows total correct­

ness, not just conditional correctness. 
• If  {R} S {Q}, then R ⇒ P. That is, P is the weakest precondition, so {P} S 

{Q} is the strongest proposition that can be made given S and Q. 

Weakest preconditions satisfy several properties: 

1.	 For any statement S, wp(S, false) = false (law of the excluded mira­
cle). 

2.	 If P ⇒ Q, then wp(S, P) ⇒ wp(S, Q) (related to the rules of consequence). 
3.	 wp(S, P) ∧ wp(S, Q) = wp(S, P ∧ Q) (again, related to rules of conse­

quence). 

The axioms shown earlier can be restated in terms of wp, as shown in Fig­
ure 10.14. 

Figure 10.14	 Empty statement 1 
wp(skip, R) = R  2  

Assignment statement 3 
wp(x := y, R) = R[x → y] 4 

Composition 5 
wp(S1, S2) = wp(S1, wp(S2)) 6 
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Condition 7 
wp(if B then S else T end, R) =  8  

B  ⇒  wp(S, R) ∧ ¬ B ⇒ wp(T, R) 9 

Iteration 10 
wp(while B do S end, R) =  11  

∃ i  ≥ 0  such that Hi(R) 12 
where 13 

H0(R) = R ∧ ¬B  14  
Hk(R) = wp(if B then S else skip end,Hk−1(R)) 15 

Given these axioms, it is possible to start at the end of the program with the 
final postcondition and to work backward attempting to prove the initial pre­
condition. With enough ingenuity, it is even possible to design the program in 
the same order. Let us take a very simple example. I have two integer vari­
ables, x and y. I would like to sort them into the two variables a and b. A  
proposition R that describes the desired result is shown in Figure 10.15. 

Figure 10.15 R = a  ≤  b  ∧  ((a = x ∧ b = y)  ∨  (a = y ∧ b = x)) 

My task is to find a program P such that wp(P,R) = true; that is, the initial 
precondition should be trivial. In order to achieve equalities like a = x, I will 
need to introduce some assignments. But I need two alternative sets of as­
signments, because I can’t force a to be the same as both x and y at once. I 
will control those assignments by a conditional statement. The entire pro­
gram P will look like Figure 10.16. 

Figure 10.16 P =  if B then S else T end 

I will determine B, S, and T shortly. The condition axiom gives me wp(P,R), as  
in Figure 10.17. 

Figure 10.17 wp(P,R) = B ⇒ wp(S,R) ∧ ¬ B ⇒ wp(T,R) 

I will now make a leap of faith and assume that S should contain assignment 
statements in order to force part of R to be true, as in Figure 10.18. 

Figure 10.18 S = a := x; b :=  y;  

The assignment statement axiom gives me wp(S,R), as shown in Figure 
10.19. 

Figure 10.19 wp(S,R) = x ≤ y ∧ ((x = x ∧ y = y)  ∨  (x = y ∧ y = x)) 1 
= x  ≤  y 2 

This equation tells me that statement S alone would almost serve as my pro­
gram, except that it would have a remaining precondition. A similar set of 
assignments can force the other part of R to be true, as in Figure 10.20. 
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Figure 10.20 T = a := y; b :=  x;  1  
wp(T,R) = y ≤ x ∧ ((y = x ∧ x = y)  ∨ (y = y ∧ x = x)) 2 

= y  ≤ x 3 

I can now combine statements S and T into the conditional statement P, giv­
ing me Figure 10.21. 

Figure 10.21 wp(P,R) = B ⇒ x ≤ y ∧ ¬ B ⇒ y ≤ x 

I can now choose B to be x < y  (it would also work if I chose x ≤ y). This choice 
allows me to demonstrate that wp(P,R) is true. The entire program P is 
shown in Figure 10.22. 

Figure 10.22 if x < y  then 1 
a := x;  2  
b := y;  3  

else 4 
a := y;  5  
b := x;  6  

end 7 

Examples involving loops are even less intuitive. Although the concept of 
weakest precondition is mathematically elegant, it has not caught on as a tool 
for programmers. 

3 ◆ DENOTATIONAL SEMANTICS 
The study of denotational semantics was pioneered by Dana Scott and 
Christopher Strachey of Oxford University, although many individuals have 
contributed to its development. A denotational definition is composed of 
three components: a syntactic domain, a semantic domain, and a number of 
semantic functions. Semantic functions map elementary syntactic objects 
(for example, numerals or identifiers) directly to their semantic values (inte­
gers, files, memory configurations, and so forth). Syntactic structures are de­
fined in terms of the composition of the meanings of their syntactic 
constituents. This method represents a structured definitional mechanism in 
which the meaning of a composite structure is a function of the meaning of 
progressively simpler constituents. As you might guess, unstructured lan­
guage features (most notably gotos) are less easily modeled in a denotational 
framework than structured features. 

The syntactic domain contains the elementary tokens of a language as 
well as an abstract syntax. The syntax specified by a conventional context­
free grammar is termed a concrete syntax because it specifies the exact 
syntactic structure of programs as well as their phrase structure. That is, a 
concrete syntax resolves issues of grouping, operator associativity, and so 
forth. An abstract syntax is used to categorize the kinds of syntactic struc­
tures that exist. It need not worry about exact details of program representa­
tion or how substructures interact; these issues are handled by the concrete 
syntax. Thus, in an abstract syntax, an if statement might be represented 
by 
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Stmt → if Expr then Stmt else Stmt 

without worrying that not all expressions or statements are valid in an if 
statement or that if statements are closed by end to deal with the dangling­
else problem. 

Semantic domains define the abstract objects a program manipulates. 
These include integers (the mathematical variety, without size limits), 
Booleans, and memories (modeled as functions mapping addresses to primi­
tive values). Semantic functions map abstract syntactic structures to corre­
sponding semantic objects. The meaning of a program is the semantic object 
produced by the appropriate semantic function. For simple expressions, this 
object might be an integer or real; for more complex programs it is a function 
mapping input values to output values, or a function mapping memory before 
execution to memory after execution. 

Concrete examples will make this abstract discussion much clearer. I will 
build a denotational description of a programming language by starting with 
very simple ideas and enhancing them little by little. As a start, I present in 
Figure 10.23 the semantics of binary literals—sequences of 0s and 1s. Be­
cause syntactic and semantic objects often have a similar representation (for 
example, 0 can be a binary digit or the integer zero), I will follow the rule that 
syntactic objects are always enclosed by [ and ] . The syntactic domain will 
be named BinLit and defined by abstract syntax rules. The semantic domain 
will be N, the natural numbers. The semantic function will be named E (for 
“Expression”) and will map binary literals into natural numbers. The symbol 
| separates alternative right-hand sides in productions. 

Figure 10.23 Abstract syntax 1 

BN ∈ BinLit 2 

BN → Seq 3 
Seq → 0 | 1 | Seq  0 | Seq  1  4  

Semantic domain 5 

N = {0,1,2, ...} 6 

Semantic function 7 

E: BinLit → N 8 

E[0] = 0 9 
E[1] = 1 10 
E[Seq 0] = 2 × E[Seq] 11 
E[Seq 1] = 2 × E[Seq] + 1 12 

The operators used in the semantic function ( × , + , = ) are standard integer 
operators. 

I have made a small start at defining the semantics of a programming lan­
guage. At the heart of each denotational-semantics definition is a set of se­
mantic functions. The meaning of a program is, in general, a function 
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(usually built up out of other functions) that maps program inputs to program 
outputs. In the simple example so far, the programming language has no in­
put or output, so the semantic function just takes literals and produces num­
bers. I will refine this definition until I can describe a significant amount of a 
programming language. 

A summary of all the syntactic and semantic domains and the semantic 
functions I introduce is at the end of this chapter for quick reference. First, 
however, I need to introduce some background concepts and notation. 

3.1 Domain Definitions 
Denotational semantics is careful to specify the exact domains on which se­
mantic functions are defined. This specification is essential to guarantee that 
only valid programs are ascribed a meaning. I will use the term domain to 
mean a set of values constructed (or defined) in one of the ways discussed be­
low. This careful approach allows me to talk about actual sets and functions 
as the denotations of syntactic objects while avoiding the paradoxes of set 
theory. 

I will always begin with a set of basic domains. For a simple program­
ming language, basic syntactic domains might include: Op, the finite domain 
of operators; Id, the identifiers; and Numeral, the numerals. Basic semantic 
domains include N, the natural numbers, and Bool, the domain of truth val­
ues. I can also define finite basic domains by enumeration (that is, by simply 
listing the elements). For example the finite domain {true, false} defines 
the basic semantic domain of Boolean values. I assume the basic domains are 
familiar objects whose properties are well understood. 

New domains can be defined by applying domain constructors to exist­
ing domains. I will show three domain constructors corresponding to Carte­
sian product, disjoint union, and functions. For each constructor, I will show 
an ML equivalent. All the denotational semantic specifications I will show 
can be coded (and tested) in ML (discussed in Chapter 3). 

3.2 Product Domains 
Given domains D1 and D2, their product domain, D = D1 ⊗ D2, consists of or­
dered pairs of elements of the component domains. That is, 

x ∈ D1 ⊗ D2 ≡ x = < x1, x2 > 

where x1 ∈ D1 and x2 ∈ D2. 
Product domain D provides two selector functions, HdD (the head of a tu­

ple), and TlD (the tail). These behave in a fairly natural way, as shown in 
Figure 10.24. 

Figure 10.24	 HdD(< x1, x2 >) = x1 1 
TlD(< x1, x2 >) = x2 2 

Again, x1∈D1, and x2∈D2. I will rarely need to mention these functions ex­
plicitly. 
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The ML equivalent of a product domain is a tuple with two elements. 
That is, if D1 and D2 are ML types, then the product type D = D1 ⊗ D2 is just 
D1 * D2. Instead of selectors, I will use patterns to extract components. The 
tuple constructor will serve as a domain constructor. 

3.3 Disjoint-Union Domains 
Let D1 and D2 be domains. Their disjoint union, D1 ⊕ D2, consists of ele­
ments of either D1 or D2, where each value carries with it an indication of 
which domain it came from. Formally, the elements of D = D1 ⊕ D2 are 

{ < 1, x1 > |  x1∈D1}  ∪  {  <  2,  x2  > |  x2∈D2} .  

Disjoint-union domain D provides two injection functions, InD1 and InD2, as  
in Figure 10.25. 

Figure 10.25 InD1(x1) = < 1, x1 > 1 
InD2(x2) = < 2, x2 > 2 

As usual, x1 ∈ D1, and x2 ∈ D2. 
This form of disjoint union may seem unnecessarily complicated, but it 

has the advantage that the meaning of D1 ⊕ D2 is independent of whether D1 
and D2 are disjoint. For example, such obvious properties as 

∀x1 ∈ D1 ∀x2 ∈ D2 . InD1(x1) ≠ InD2(x2) 

remain true even if D1 = D2. 
The ML equivalent of a disjoint union is a datatype. That is, if D1 and D2 

are ML types, then Figure 10.26 shows the disjoint-union type D = D1⊕D2. 

Figure 10.26 datatype D 1 
= FirstComponent of D1 2 
| SecondComponent of D2; 3 

The ML notation allows me to introduce names for the two components, 
which will be helpful in testing from which underlying domain a member of 
the disjoint-union domain comes. 

3.4 Function Domains 
Given domains D1 and D2, their function domain D1 → D2 is a set of func­
tions mapping elements of D1 to elements of D2. For technical reasons, 
D1 → D2 means not all functions from D1 to D2, but rather a subset of them, 
called the continuous ones. Every computable function (hence every function 
I will need) is continuous. If f ∈ D1 → D2 and x1∈D1, the application of f to 
x1, written f(x1) or  f x1, is an element of D2. 

There are several ways to package multiple parameters to a function. 
Just as in ML, they can be packaged into a single tuple or curried. Function 
values can be parameters or returned results, just like values of any other 
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type. 
I will need notation for a few simple functions. First, there is the constant 

function. For example, 

f(x:D) = 17 

denotes the function in D → N that always produces the value 17. 
Second, I will need a function that differs from an existing function on 

only a single parameter value. Suppose f ∈ D1 → D2, x1 ∈ D1, and x2 ∈ D2. 
Then 

f[x1 ← x2] 

denotes the function that differs from f only by producing result x2 on param­
eter x1; that is: 

f[x1 ← x2] y =  if y = x1  then x2 else f y  

This simple device allows me to build up all almost-everywhere-constant 
functions—functions that return the same result on all but finitely many dis­
tinct parameter values. This mechanism is particularly useful in modeling 
declarations and memory updates. 

3.5 Domain Equations 
I will define a collection of domains D1,  . . .  ,  Dk by a system of formal equa­
tions, as in Figure 10.27. 

Figure 10.27 D1 = rhs1 1 
... 2 
Dk = rhsk 3 

Each right-hand side rhsi is a domain expression, built from basic domains 
(and possibly from some of the Di themselves) using the domain constructors 
given above. 

For technical reasons, it is important that I not treat these formal equa­
tions as meaning strict equality. Instead, I use a somewhat more liberal in­
terpretation. I say that domains D1, . . . ,  Dk comprise a solution to the above 
system of domain equations if, for each i, Di is isomorphic to the domain de­
noted by rhsi; that is, there exists a one-to-one, onto function between them. 

While I have not shown that this liberal interpretation of domain equa­
tions is technically necessary, you can certainly appreciate its convenience. 
Consider the single equation: 

D = N  ⊕  Bool . 

Intuitively, the set N∪Bool has all the properties required of a solution to this 
equation. The right-hand side of this equation denotes 
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N ⊕ Bool ≡ { < 1, x > |x∈N} ∪ { < 2, y > |  y∈Bool} 

which is clearly not equal to N∪Bool. However, it is easy to see that the two 
sets are isomorphic, since N and Bool are disjoint, so by the liberal interpre­
tation of equations as isomorphisms, N∪Bool is a solution to the equation. 
Thus, as intuition suggests, if D1 and D2 are disjoint domains, no confusion re­
sults from taking D1 ⊕ D2 to be D1∪D2 rather than using the full mechanism 
of the disjoint-union domain constructor. 

3.6 Nonrecursive Definitions 
I need to introduce just a bit more terminology. In a system of domain equa­
tions, each right-hand side is a domain expression, consisting of applications 
of domain constructors to basic domains and possibly to some of the domains 
Di being defined by the system of equations. A right-hand side that uses no 
Di, that is, one that consists entirely of applications of domain constructors to 
basic domains, is closed. A right-hand side rhs that is not closed has at least 
one use of a Di; I will say that Di occurs free in rhs. For example, in 

D17 = D11 ⊕ (D11 ⊗ N) ⊕ (D12 ⊗ N) 

rhs17 has two free occurrences of the name D11 and one free occurrence of the 
name D12; no other names occur free in rhs17. 

A system S of domain equations is nonrecursive if it can be ordered as in 
Figure 10.28, 

Figure 10.28 D1 = rhs1 1 
... 2 
Dk = rhsk 3 

where only the names D1, . . . ,  Di−1 are allowed to appear free in rhsi. In par­
ticular, this definition implies that rhs1 is closed. 

A solution to a nonrecursive system of domain equations S can be found 
easily by a process of repeated back substitution, as follows. Begin with the 
system S, in which rhs1 is closed. Build a new system S2 from S by substitut­
ing rhs1 for every occurrence of the name D1 in the right-hand sides of S. 
You should convince yourself of the following: 

1.	 S2 has no free occurrences of D1. 
2.	 S2 is equivalent to S in the sense that every solution to S2 is a solution 

to S, and conversely. 
3.	 Both rhs2 2 are closed. 1 and rhs2 

Now build system S3 from S2 by substituting rhs2 2 for every occurrence of 
D2 in the right-hand sides of S2 . Just as above, the following hold: 

1.	 S3 has no free occurrences of D1 or D2. 
2.	 S3 is equivalent to S2 (and hence to S). 
3.	 All of rhs3 2, and rhs3 1, rhs3 3 are closed. 

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy. 



3 DENOTATIONAL SEMANTICS 323


The pattern should now be clear: Repeat the substitution step to produce 
Sk, in which all of rhs1, . . .  ,  rhsk are closed. There is an obvious solution to 
Sk: Evaluate all the right-hand sides. 

A simple example may help. Let S be the nonrecursive system shown in 
Figure 10.29. 

Figure 10.29 D1 = N ⊗ N 1 
D2 = N ⊕ D1 2 
D3 = D1 ⊗ D2 3 

Then S2 is given in Figure 10.30. 

Figure 10.30 D1 = N ⊗ N 1 
D2 = N ⊕ (N ⊗ N )  2  
D3  =  (N  ⊗  N)  ⊗  D2  3  

Finally S3 is given in Figure 10.31. 

Figure 10.31 D1 = N ⊗ N 1 
D2 = N ⊕ (N ⊗ N )  2  
D3  =  (N  ⊗  N)  ⊗  (N  ⊕  (N  ⊗  N)) 3 

Now all right-hand sides are closed. 

3.7 Recursive Definitions 
A system of domain equations is recursive if no matter how it is ordered there 
is at least one i such that rhsi contains a free occurrence of Dj for some 
j ≥ i. That is, a system is recursive if it cannot be reordered to eliminate for­
ward references. Intuitively, such a system is an inherently circular defini­
tion. 

BNF definitions for syntax can be recursive as well. The context-free 
grammar descriptions of typical programming languages routinely contain re­
cursive production rules like: 

Expr → Expr op Expr 

Intuitively, this rule states that an expression can be built by applying an op­
erator to two subexpressions. A recursive collection of grammar rules defines 
the set of all objects that can be constructed by finitely many applications of 
the rules. Such recursive rules are indispensable; they are the only way a fi­
nite set of context-free production rules can describe the infinite set of all 
valid programs. Similarly, if you try to define semantics with only nonrecur­
sive domain equations, you will soon discover they are not powerful enough. 

Unfortunately, interpreting a recursive system of domain equations can be 
subtle. In an ML representation of domain equations, I will just declare the 
equations with the rec modifier, so that they can depend on each other. I will 
ignore any problems that circularity might raise. But consider the innocu-
ous-looking equation of Figure 10.32. 
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Figure 10.32 D = N  ⊕  (N  ⊗  D) 

Interpreting this equation as if it were a production, you might conclude that 
the domain D consists of (or is isomorphic to) the set of all nonempty finite se­
quences of elements of N. However, the set D′ of all sequences (finite or infi­
nite) over N is also a solution to Figure 10.32, since every (finite or infinite) 
sequence over N is either a singleton or an element of N followed by a (finite or 
infinite) sequence. 

Where there are two solutions, it makes sense to look for a third. Con­
sider the set of all (finite or infinite) sequences over N in which 17 does not oc­
cur infinitely often. This too is a solution. This observation opens the 
floodgates. Rather than 17, I can exclude the infinite repetition of any finite 
or infinite subset of N to get yet another solution to Figure 10.32—for exam­
ple, the set of all sequences over N in which no prime occurs infinitely often. 

By this simple argument, the number of distinct solutions to Figure 10.32 
is at least as big as 2N —the power set, or set of all subsets, of N. Which solu­
tion to Figure 10.32 is the right one? The one I want is the one that corre­
sponds to a BNF-grammar interpretation—the set of finite sequences. 

Any solution to Figure 10.32 need only satisfy the equation up to isomor­
phism; but I will find an exact solution. From Figure 10.32 I can determine 
the (infinite) set of all closed expressions denoting elements of D. A few of 
these are shown in Figure 10.33. 

Figure 10.33 <1,0> 1 
<1,1> 2 
<1,2> 3 
<1,3> 4 
... 5 
<2,(0 ⊗ <1,0>> 6 
<2,(1 ⊗ <1,0>> 7 
<2,(2 ⊗ <1,0>> 8 
<2,(3 ⊗ <1,0>> 9 
... 10 
<2,(0 ⊗ <1,1>> 11 
<2,(0 ⊗ <1,2>> 12 
<2,(0 ⊗ <1,3>> 13 
... 14 

The (infinite) set of the values of these expressions yields an exact solution 
to Figure 10.32. It can also be shown that this is the smallest solution, in that 
it is isomorphic to a subset of any other solution. In general, the solution to 
prefer when there are many possible solutions to a recursive system of do­
main equations is the smallest one. 

Equations of the form of Figure 10.32 arise so frequently that their solu­
tions have a notation: If D is already defined, then the solution to 

D′ = D  ⊕  (D ⊗ D′) 

is called D*. 
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Function domains cause problems in recursive systems of domain equa­
tions. Even a simple recursive equation like 

D = . . .  ⊕  (D →  D)  ⊕  . . .  

is suspect. Any solution to this equation would have the property that some 
subset of itself was isomorphic to its own function space. Unfortunately, if a 
set has more than one element, then the cardinality of its function space is 
strictly greater than the cardinality of the set itself, so no such isomorphism 
is possible! 

Am I stuck? Not really. As mentioned above, I interpret D → D to mean 
not all functions from D to D, but just a distinguished set of functions called 
the continuous ones. There are sufficiently few continuous functions that the 
above cardinality argument does not apply, but sufficiently many of them that 
all functions computable by programming languages are continuous. 

3.8 Expressions 
Now that I have discussed domains, I can begin to create richer and more re­
alistic semantic functions. I first extend my definition of binary literals to in­
clude infix operators; see Figure 10.34. 

Figure 10.34 Abstract syntax 1 

T ∈ Exp 2 

T → T + T  3  
T  →  T - T  4  
T  →  T * T  5  
T  →  Seq 6 
Seq → 0 | 1 | Seq  0 | Seq  1  7  

Semantic domain 8 

N = {0,1,2, ..., -1, -2, ...} 9 

Semantic function 10 

E: Exp → N  11  

E[0] = 0 12 
E[1] = 1 13 
E[Seq 0] = 2 × E[Seq] 14 
E[Seq 1] = 2 × E[Seq] + 1 15 

E[T1 + T2] = E[T1] + E[T2] 16 
E[T1 − T2] = E[T1] − E[T2] 17 
E[T1 * T2] = E[T1] × E[T2] 18 

This example can be specified in ML as shown in Figure 10.35. 
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Figure 10.35 -- abstract syntax 1 

datatype Operator = plus | minus | times; 2 
datatype Exp 3 

= BinLit of int list -- [0,1] means 10 = 2 4 
| Term of Exp*Operator*Exp; 5 

-- semantic functions 6 

val rec E =  7  
fn BinLit([0]) => 0 8 
| BinLit([1]) => 1 9 
| BinLit(0 :: tail) => 2*E(BinLit(tail)) 10 
| BinLit(1 :: tail) => 1+2*E(BinLit(tail)) 11 
| Term(x, plus, y) => E(x) + E(y) 12 
| Term(x, minus, y) => E(x) - E(y) 13 
| Term(x, times, y) => E(x) * E(y); 14 

Because it is easier to access the front of a list than the rear, I chose to let 
BinLits (line 4) store least-significant bits at the front of the list. A benefit of 
the ML description is that it can be given to an ML interpreter to check. For 
instance, I have checked the code shown in Figure 10.36. 

Figure 10.36 in: E(Term(BinLit([1,1]), plus, 1 
BinLit([0,1]))); -- 3 + 2 2 

out: 5 : int 3 

To include division, I must define what division by zero means. To do so, I 
augment the semantic domain with an error element, ⊥. That is, I now have 
a domain of R = N  ⊕  {⊥}, where R represents “results.” Because this is a dis-
joint-union domain, I can test which subdomain a given semantic element be­
longs to. I use the notation v?D to test if value v is in domain D. I also will 
use the following concise conditional-expression notation: 

b ⇒ x,y means if b then x else y 

Errors must propagate through arithmetic operations, so I need to upgrade 
the semantic functions. Figure 10.37 presents the denotation of expressions 
with division. 

Figure 10.37 Semantic domain 1 

R = N ⊕ {⊥} 2 

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy. 



3 DENOTATIONAL SEMANTICS 327


Semantic function 3 

E: Exp → R 4 

E[0] = 0 5 
E[1] = 1 6 
E[Seq 0] = 2 × E[Seq] 7 
E[Seq 1] = 2 × E[Seq] + 1  8  

E[T1  + T2]  = E[T1]?N ∧ E[T2]?N ⇒ E[T1] + E[T2], ⊥ 9 
E[T1 − T2] = E[T1]?N ∧ E[T2]?N ⇒ E[T1] − E[T2], ⊥ 10 
E[T1 * T2] = E[T1]?N ∧ E[T2]?N ⇒ E[T1] × E[T2], ⊥ 11 
E[T1 / T2]  = E[T1]?N ∧ E[T2]?N ⇒ (E[T2] = 0 ⇒ ⊥,  E[T1] /  E[T2]), ⊥ 12 

This definition is unrealistic in that it ignores the finite range of computer 
arithmetic. Since I have an error value, I can use it to represent range errors. 
I will introduce a function range such that: 

range: N → {minInt..maxInt} ⊕ {⊥}. 1 
range(n) = minInt ≤ n ≤ maxInt ⇒ n, ⊥ 2 

Figure 10.38 shows how to insert Range into the definition of E. 

Figure 10.38 Semantic function 1 

E: Exp → R 2 

E[0] = 0 3 
E[1] = 1 4 
E[Seq 0] = E[Seq]?N ⇒ range(2 × E[Seq]), ⊥ 5 
E[Seq 1] = E[Seq]?N ⇒ range(2 × E[Seq] + 1), ⊥ 6 

E[T1 + T2] = E[T1]?N ∧ E[T2]?N ⇒ range(E[T1] + E[T2]), ⊥ 7 
E[T1 − T2] = E[T1]?N ∧ E[T2]? ⇒ range(E[T1] − E[T2]), ⊥ 8 
E[T1 * T2] = E[T1]?N ∧ E[T2]?N ⇒ range(E[T1] × E[T2]), ⊥ 9 
E[T1/T2] = E[T1]?N ∧ E[T2]?N ⇒ 10 

(E[T2] = 0 ⇒ ⊥,  range(E[T1] /  E[T2])), ⊥ 11 

It is time to show the ML equivalent, given in Figure 10.39. 

Figure 10.39 -- tools 1 

val SayError = fn (str, result) => -- report error 2 
( output(std_out, str); 3 

result -- returned 4 
); 5 

-- limits 6 
val MaxInt = 1000; -- or whatever 7 
val MinInt = -1000; -- or whatever 8 
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-- abstract syntax 9


datatype Operator = plus | minus | times | divide; 10

datatype Exp 11


= BinLit of int list -- [0,1] means 10 = 2 12

| Term of Exp*Operator*Exp; 13


-- semantic domains 14


datatype R  15 

= NaturalR of int 16

| ErrorR; 17


-- semantic functions 18


val Range = 19

fn NaturalR(a) => 20


if MinInt ≤ a and a ≤ MaxInt then 21

NaturalR(a) 22


else 23

SayError("overflow", ErrorR) 24


| _ => ErrorR; 25


val Add = 26

fn (NaturalR(a),NaturalR(b)) => NaturalR(a+b); 27


val Sub = 28

fn (NaturalR(a),NaturalR(b)) => NaturalR(a-b); 29


val Mul = 30

fn (NaturalR(a),NaturalR(b)) => NaturalR(a*b); 31


val Div = 32

fn (NaturalR(a),NaturalR(0)) => 33


SayError("Divide by zero", ErrorR) 34

| (NaturalR(a),NaturalR(b)) => 35


NaturalR(floor(real(a)/real(b))); 36


val rec E =  37 

fn BinLit([0]) => NaturalR(0) 38

| BinLit([1]) => NaturalR(1) 39

| BinLit(0 :: tail) => 40


let val NaturalR(num) = E(BinLit(tail)) 41

in NaturalR(2*num) 42

end 43


| BinLit(1 :: tail) => 44

let val NaturalR(num) = E(BinLit(tail)) 45

in NaturalR(2*num + 1) 46

end 47


| Term(x, plus, y) => Range(Add(E(x), E(y))) 48

| Term(x, minus, y) => Range(Sub(E(x), E(y))) 49

| Term(x, times, y) => Range(Mul(E(x), E(y))) 50

| Term(x, divide, y) => Range(Div(E(x), E(y))); 51


I have introduced an error routine SayError (lines 2–5) so that a user can see 
exactly what sort of error has occurred instead of just getting a result of ⊥. 
The Range function (lines 19–25) not only checks ranges, but also makes sure 
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that its parameter is a natural number. I have split out Add, Sub, Mul, and 
Div (lines 26–36), so that they can check the types of their parameters. I 
could have given them alternatives that return ⊥ if the types are not right. 
The semantic function E (lines 37–51) needs to convert parameters of type 
BinLit to results of type R. 

Any realistic programming language will have more than one type, which 
I illustrate by adding the semantic domain Bool corresponding to Booleans. I 
also add the comparison operator = that can compare two integers or two 
Booleans. The additions I need to upgrade Figure 10.38 are given in Figure 
10.40. 

Figure 10.40 Abstract syntax 1 

T → T = T  2  

Semantic domain 3 

R = N ⊕ Bool ⊕ {⊥} 4 

Semantic function 5 

E[T1 = T2] = (E[T1]?N ∧ E[T2]?N) ∨ (E[T1]?Bool ∧ E[T2]?Bool) ⇒ 6 
(E[T1] = E[T2]), ⊥ 7 

3.9 Identifiers 
I can now introduce predeclared identifiers, including true and false, max­
int, minint, and so forth. Let Id be the syntactic domain of identifiers, and 
let L be a semantic lookup function such that L: Id → V, where 
V = N ⊕ Bool ⊕ {udef}. That is, L returns an integer or Boolean value, or 
udef if the identifier is undefined. The additions needed for Figure 10.40 are 
given in Figure 10.41. 

Figure 10.41 Abstract syntax 1 

I ∈ Id 2 
T → I 3 

Semantic domains 4 

V = N ⊕ Bool ⊕ {udef} 5 

Semantic functions 6 

L: Id → V 7 

E[I] = L[I]?{udef} ⇒ ⊥,  L[I]  8  
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3.10 Environments 
The next step is to introduce programmer-defined named constants. This 
step requires the concept of an environment that is updated when declara­
tions are made. An environment is a function that maps identifiers (drawn 
from the syntactic domain) into results. I will denote the domain of environ­
ments as U, where U = Id → V and V = N ⊕ Bool ⊕ {udef} ⊕ {⊥}, as in Fig­
ure 10.42. If u ∈ U and I ∈ Id, then u[I] is an integer, Boolean, udef, or  ⊥,  
depending on how and whether I has been declared. I can incorporate the 
definition of predeclared named constants by including them in u0, a prede­
fined environment. I no longer need the lookup function L. 

Figure 10.42 Semantic domain 1 

V = N ⊕ Bool ⊕ {udef} ⊕ {⊥} 2 
U = Id → V 3 

Semantic functions 4 

E[I] = u0[I]?{udef} ⇒ ⊥,  u0[I]  5  

The environment approach is useful because environments can be computed 
as the results of semantic functions (those that define the meaning of a local 
constant declaration). 

It is time to expand my abstract syntax for a program into a sequence of 
declarations followed by an expression that yields the result of a program. I 
can specify whatever I like for the meaning of a redefinition of an identifier. 
In Figure 10.43, redefinitions will have no effect. 

I will introduce two new semantic functions: D, which defines the semantic 
effect of declarations, and M, which defines the meaning of a program. D is 
curried; it maps a declaration and an old environment into a new environ­
ment in two steps. There is a major change to E; it now maps an expression 
and an environment into a result. Pr is the syntactic domain of all programs; 
Decls is the syntactic domain of declarations. 

Figure 10.43 Abstract syntax 1 

P ∈ Pr -- a program 2 
T ∈ Exp -- an expression 3 
I ∈ Id -- an identifier 4 
Def ∈ Decls -- a declaration 5 

P → Def T 6 
Def → ε -- empty declaration 7 
Def → I = T ; -- constant declaration 8 
Def → Def Def -- declaration list 9 
T → I -- identifier expression 10 
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Semantic domains 11 

R = N ⊕ Bool ⊕ {⊥} -- program results 12 
V = N ⊕ Bool ⊕ {udef} ⊕ {⊥} -- lookup values 13 
U = Id → V -- environments 14 

Semantic functions 15 

E: Exp → U → R  16  
D: Decls → U → U  17  
M: Pr → R  18  

M[Def T] = E[T]u  19  
where u = D[Def]u0.  20  

D[ε]u  = u  21  
D[I  = T]u  = u[I]?{udef} ⇒ u[I ← e], u  22  

where e = E[T]u. 23 
D[Def1 Def2] u = D[Def2]v  24  

where v = D[Def1]u. 25 

E[I] = u[I] ?{udef} ⇒ ⊥,  u[I]  26 
E[0]u = 0  27  
E[1]u  = 1  28  
E[Seq 0] u = E[Seq]u?N ⇒ range(2 × E[Seq]u), ⊥ 29 
E[Seq 1] u = E[Seq]u?N ⇒ range(2 × E[Seq]u + 1), ⊥ 30 

E[T1 + T2] u = E[T1]u?N ∧ E[T2]u?N ⇒ 31 
range(E[T1] u + E[T2]u), ⊥ 32 

E[T1 − T2] u = E[T1]u?N ∧ E[T2]u?N ⇒ 33 
range(E[T1] u − E[T2]u), ⊥ 34 

E[T1 * T2] u = E[T1]u?N ∧ E[T2]u?N ⇒ 35 
range(E[T1] u × E[T2]u), ⊥ 36 

E[T1 / T2] u = E[T1]u?N ∧ E[T2]u?N ⇒ 37 
(E[T2] u = 0 ⇒ ⊥,  range(E[T1] u / E[T2]u)), ⊥ 38 

E[T1 = T2]u = (E[T1]u?N ∧ E[T2]u?N) ∨ (E[T1]u?Bool ∧ E[T2]u?Bool) ⇒ 39 
(E[T1]u = E[T2]u), ⊥ 40 

Lines 19–20 define the meaning of a program to be the value of the expres­
sion T in the environment u formed by modifying the initial environment u0 
by the declarations. Lines 22–23 show how declarations modify a given envi­
ronment u by substituting the meaning of T for the identifier I in u. Multiple 
declarations build the final environment in stages (lines 24–25). 

Line 22 explicitly ignores attempts to redefine an identifier, but I can 
make the language a bit more realistic. I will let a redefinition of an identi­
fier return an environment in which the identifier is bound to a new kind of 
error value named redef. E of a redefined identifier will yield ⊥. I extend the 
domain V of possible environment values to include redef. Figure 10.44 
shows the differences. 
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Figure 10.44 Semantic domains 1 

V = N ⊕ Bool ⊕ {⊥} ⊕ {udef} ⊕{redef} 2 

Semantic functions 3 

D[I = T]u = u[I]?{udef} ⇒ u[I ← e], u[I ← redef] 4 
where e = E[T]u. 5 

E[I]u = u[I]?({udef} ⊕ {redef}) ⇒ ⊥,  u[I]  6  

At this point I could add block structure, but since programs only compute 
a single expression, scoping isn’t needed yet. Instead, I will put in variables. 

3.11 Variables 
I can model variables in several ways. The most general model employs an 
environment that maps identifiers to locations and a store that maps loca­
tions to values. This is how most languages are implemented, and it would 
allow me to model aliasing, reuse of storage, and so forth. 

For the present, I’ll use a simpler interpreter model and continue to use 
the environment function to map identifiers directly to values. I will also 
store a flag that indicates if a value can be changed (that is, if it’s an L-value, 
not an R-value). An interpreter does roughly the same thing, maintaining a 
runtime symbol table for all program variables. From the semantic point of 
view, the distinction between interpreters and compilers is irrelevant—what 
is important is what the answer is, not how it’s produced. The interpreter ap­
proach will allow interesting variations. For example, an untyped language 
(like Smalltalk) is just as easy to model as a strongly typed language. 

I begin by extending the environment domain U as in Figure 10.45 to in­
clude an indication of how an identifier can be used: 

U = Id → {var, const, uninit} ⊗ V 

Uninit models the fact that after a variable is declared, it may be assigned to, 
but not yet used. After a variable is assigned a value, its flag changes from 
uninit to var. It is time to introduce statements. (In denotational for­
malisms, statements are usually called commands.) A statement maps an en­
vironment into a new environment (or ⊥). That is, 

S: Stm → U → (U ⊕ {⊥}) 

where S is the semantic function for statements, and Stm is the syntactic do­
main of statements. 

I will first add only variable declarations and assignment statements to 
the programming language. Since there is no I/O, I will define the result of 
the program to be the final value of an identifier that is mentioned in the pro­
gram header, as in Figure 10.45, which produces 1 as its result. 
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Figure 10.45 program(x) 1 
x : integer; 2 
x := 1;  3  

end 4 

To simplify the definitions, I will use ∧ and ∨ as short-circuit operators: 
Only those operands needed to determine the truth of an expression will be 
evaluated. Thus, 

e?N ∧ e > 0 

is well defined even if e is a Boolean, in which case e > 0  is undefined. 
Further, if some e ∈ D, where D = (D1 ⊗ D2) ⊕ D3, and D3 isn’t a product do­

main, then Hd(e)?D1 will be considered well defined (with the value false) if  
e  ∈ D3. That is, if e isn’t in a product domain, I will allow Hd(e) or Tl(e) to 
be used in a domain test. This sloppiness should cause no confusion, since if 
e isn’t in a product domain, then Hd(e) or Tl(e) isn’t in any domain. Use of 
Hd(e) or Tl(e) in other than a domain test is invalid if e isn’t in a product do­
main. 

Figure 10.46 presents a new language specification, building on the one in 
Figure 10.43 (page 330). 

Figure 10.46 Abstract syntax 1 

P ∈ Pr -- a program 2 
T ∈ Exp -- an expression 3 
I ∈ Id -- an identifier 4 
Def ∈ Decls -- a declaration 5 
St ∈ Stm -- a statement 6 

P → program (I) Def St end -- program 7 
Def → ε -- empty declaration 8 
Def → I = T; -- constant declaration 9 
Def → I : integer; -- integer variable declaration 10 
Def → I : Boolean; -- Boolean variable declaration 11 
Def → Def Def -- declaration list 12 

St → ε -- empty statement 13 
St → I := T -- assignment statement 14 
St → St St -- statement list 15 

Semantic domains 16 

R = N ⊕ Bool ⊕ {⊥} -- program results 17 
V = N ⊕ Bool ⊕ {⊥} ⊕ {udef} ⊕{redef} -- id value 18 
U = Id → {var, const, uninit} ⊗ V -- environments 19 
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Semantic functions 20


E: Exp → U → R  21 

D: Decls → U → U  22 

M: Pr → R  23 

S: Stm → U → (U ⊕ {⊥}) 24


M[program (I) Def St end] = c?U ⇒ E[I]c, ⊥ 25

where u = D[Def]u0; c = S[St]u. 26


D[ε]u = u  27 

D[I  = T]u  = u[I]?{udef} ⇒ u[I ← f], u[I ← redef] 28


where e = E[T]u;  f  = e?⊥ ⇒ ⊥, <  const, e > .  29

D[I: integer]u = u[I]?{udef} ⇒ u[I ← e], u[I ← redef] 30


where e = <uninit, InN(0)> 31

D[I: Boolean]u = u[I]?{udef} ⇒ u[I ← e], u[I ← redef] 32


where e = <uninit, InBool(true)>. 33

D[Def1 Def2]u = D[Def2]v  34 


where v = D[Def1]u. 35

E[I]u = v?({redef} ⊕ {udef} ⊕ {⊥}) ⇒ ⊥,  36


(Hd(v) = uninit ⇒ ⊥,  Tl(v)) 37

where v = u[I]. 38


S[ε]u = u  39 

S[I:  = T]u  = v?({redef}⊕{udef}⊕{⊥}) ∨ (Hd(v) = const) ∨ e?{⊥} ⇒ 40


⊥, (e?N  ∧ Tl(v)?N) ∨ (e?Bool ∧ Tl(v)?Bool) ⇒ 41

u[I ← < var, e >], ⊥ 42


where e = E[T]u; v = u[I]. 43

S[St1 St2] u = g?U ⇒ S[St2]g, ⊥ 44


where g = S[St1]u. 45


The easiest way to read the semantic functions is to first look at the where

clauses to see the local shorthands. (These are like ML let blocks.) Then

look at the definition itself, following the case where no errors are encoun­

tered. Much of each definition necessarily deals with checking for error situ­

ations, which tend to confuse the central issue. When I describe definitions, I

will generally ignore all the error cases and concentrate on the usual case.

Lastly, assure yourself that the functions are given parameters of the correct

domains and produce results in the correct domains.


For example, lines 40–43 describe what an assignment does to the envi­
ronment u. Start with line 43. The local variable e stands for the value of 
the right-hand side of the assignment in environment u, and v stands for the 
meaning of the identifier on the left-hand side. This meaning is evaluated in 
the same environment u, so if evaluating the right-hand side had a side effect 
(it can’t yet, but it might later), that effect is ignored in determining the iden-
tifier’s meaning. Then (line 40) given that v is properly declared and not a 
constant, given that e evaluates successfully, and given (line 41) that the ex­
pression and identifier are the same type, the statement creates a new envi­
ronment (line 42) that is just like the old one with the identifier reassigned. 

To check domain consistency, I will ignore all error cases and write out 
these few lines again in Figure 10.47. 
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Figure 10.47 S[I: = T]u = u[I ← < var, e >] 1 
where e = E[T]u. 2 

Now I can painstakingly infer the type of S, as shown in Figure 10.48. 

Figure 10.48 E: Exp → U → R 1 
E[T]: U → R 2 
e = E[T]u: R 3 
e: V, since V is a superset of R 4 

u: U 5 
u: Id → {var, const, uninit} ⊗ V 6 
u[I]: {var, const, uninit} ⊗ V 7 

< var, e > :  {var, const, uninit} ⊗ V 8 
u[I ← < var, e >]: U 9 
u[I ← < var, e >]: U ⊕ {⊥}, which is a superset of U 10 

S: Stm → U → (U ⊕ {⊥}) 11 
S[I: = T]: U → (U ⊕ {⊥}) 12 
S[I: = T]u: U ⊕ {⊥}  13  

Line 10 shows the type of the right-hand side of the equation in line 1, and 
line 13 shows the type of the left-hand side. They match. It was necessary to 
raise several types; see lines 4 and 10. If this example were coded in ML, I 
would need to use explicit type converters. 

Other notes on Figure 10.46: The value of 0 in line 31 is arbitrary since I 
don’t allow access to variables with an uninit flag. In the definition of state­
ment execution (lines 43–44), as soon as a statement yields ⊥, all further 
statement execution is abandoned. 

As I suggested earlier, my definitions can easily be modified to handle un­
typed languages like Smalltalk. I would of course modify the variable­
declaration syntax to omit the type specification. A variable would assume 
the type of the object assigned to it. The definitions of E and S would be writ­
ten as in Figure 10.49. 

Figure 10.49 E[I]u = v?({redef} ⊕ {udef} ⊕ {⊥}) ⇒ ⊥,  Tl(v) 1 
where v = u[I]. 2 

S[I: = T]u = v?({redef}⊕{⊥}) ∨ (Hd(v) = const) ∨ e?{⊥} ⇒ 3 
⊥, u[I ← < var, e >] 4 
where e = E[T]u; v = u[I]. 5 

3.12 Conditional and Iterative Statements 
Conditional execution and iterative execution for a fixed number of iterations 
are readily modeled with the additions to the previous definition shown in 
Figure 10.50. 
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Figure 10.50 Abstract syntax 1 

St → if T then St else St 2 
St → do T times St 3 

Semantic functions 4 

S[if T then St1 else St2]u = e?Bool ⇒ 5 
(e ⇒ S[St1]u, S[St2]u), ⊥ 6 
where e = E[T]u. 7 

S[do T times St]u = e?N ⇒ vm , ⊥ 8 
where e = E[T]u; m = max(0, e); v0 = u; 9 
vi+1 = vi?U ⇒ S[St]vi, ⊥.  10  

In lines 8–10, vi is the environment after i iterations of the loop. 
The semantic definition of a while loop requires special care. The problem 

is that some while loops will never terminate, and I would like a mathemati­
cally sound definition of all loops. I might try to build on the definition for 
the do loop, but for nonterminating loops that would create an infinite se­
quence of intermediate environments (vi’s). 

I will follow standard mathematical practice for dealing with infinite se­
quences and try to determine if a limit exists. I will then be able to conclude 
that infinite loops have a value of ⊥, though the semantic function for while 
loops will not always be computable (because of decidability issues). Follow­
ing Tennent, I will define a sequence of approximations to the meaning of a 
while loop [Tennent 81]. 

Let p0 ≡ ⊥. This formula represents a while loop whose Boolean expres­
sion has been tested zero times. Since a loop can’t terminate until its Boolean 
expression has evaluated to false, p0 represents the base state in which the 
definition hasn’t yet established termination. Now I define pi+1 recursively, 
as in Figure 10.51. 

Figure 10.51 pi+1(u) = e?Bool ⇒ (e ⇒ (v?{⊥}⇒⊥, pi(v)), u), ⊥ 1 
where e = E[T]u; v = S[St]u. 2 

If a while loop terminates without error after exactly one evaluation of the 
control expression (because the expression is initially false), p1(u) returns u 
(the environment after zero iterations through the loop). In all other cases, 
p1(u) returns ⊥. 

If a while loop terminates without error after at most two evaluations of 
the control expression, p2(u) returns v, the environment after loop termina­
tion. In all other cases, p2(u) returns ⊥. In general, if a loop terminates after 
n iterations, pm(u) for m ≥ n will yield the environment after termination, 
given an initial environment u. For all terminating loops, the limit of pi(u) as  
i  → ∞  is the environment after loop termination. If the loop doesn’t termi­
nate or encounters a runtime error, then all pi’s return ⊥, which is then triv­
ially the limit as i → ∞. The sequence of pi’s always converges, so the limit is 
always defined. This leads to the definition of a while loop given in Figure 
10.52. 
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Figure 10.52 S[while T do St]u = 
i→∞ 
lim pi(u) 1 

where pi+1(w) = e?Bool ⇒ (e ⇒ (v?{⊥} ⇒ ⊥,  pi(v)), w), ⊥; 2 
e = E[T]w; v = S[St]w. 3 

In general, the above limit is not computable (because the halting problem is 
undecidable), but the limit can be computed for some infinite loops (and all fi­
nite loops). For example, it doesn’t take an oracle to decide that the loop in 
Figure 10.53 has some problems. 

Figure 10.53 while true do 1 
x := x + 1  2  

What does the denotational definition say about this loop? Assuming true 
hasn’t been redefined, the semantic function is shown in Figure 10.54. 

Figure 10.54 pi+1(u) = (true ⇒ (v?{⊥} ⇒ ⊥,  pi(v)), u) = v?{⊥} ⇒ ⊥,  pi(v)  1  
where v = S[St]u. 2 

Now, pi+1(u) is either equal to ⊥ or pi(v). Similarly, pi(v) is either equal to ⊥ 
or pi−1(v′). But p0(s) ≡ ⊥ for all s, so each pi must reduce to ⊥, so  ⊥  is the 
limit of the sequence. The loop fails either because x overflows or because the 
loop doesn’t terminate. Since both failings are represented by ⊥, the denota­
tional definition has correctly handled this example. 

3.13 Procedures 
I now consider simple procedures of the abstract form shown in Figure 10.55. 

Figure 10.55 procedure I; 1 
St 2 

Procedures are invoked by a call statement (for example, call I). Since 
there are no scope rules yet, a procedure invocation is equivalent to macro 
substitution and immediate execution of the procedure’s body. A procedure 
can call another procedure, but I will forbid recursion for now. Since a proce­
dure name is a synonym for a list of statements, it represents a mapping from 
an environment to an updated environment or to ⊥. The semantic domain for 
procedure declarations is given in Figure 10.56. 

Figure 10.56 Proc = U → (U ⊕ {⊥}) 

I need to upgrade the environment domain to include procedures, as well as 
introduce a new flag opencall. I will set opencall when a procedure call is 
in progress, but not yet completed. To prevent recursion, I will disallow in­
voking a procedure that has opencall set. The environment domain U is now 
as shown in Figure 10.57. 
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Figure 10.57	 V = N ⊕ Bool ⊕ Proc ⊕ {⊥} ⊕ {udef} ⊕{redef} -- id value 1 
U = Id → {var, const, uninit, opencall} ⊗ V -- environments 2 

These domain equations are recursive: U references Proc, and Proc refer­
ences U. Before, I used f[x ← y] to denote the function equal to f for all pa­
rameters except x, where y is to be returned. In the case that y is a member 
of a product domain, I will extend the notation; 

f[Hd[x ← y]] 

will denote the function equal to f for all parameters except x, where 
Hd(f(x)) = y, but Tl(f(x)) is unchanged; f[Tl[x ← y]] will have an analo­
gous definition. Figure 10.58 gives the new part of the definition, building on 
Figure 10.46 (page 333). 

Figure 10.58 Abstract syntax 1 

Def → procedure I; St 2 
St → call I 3 

Semantic domains 4 

Proc = U → (U ⊕ {⊥}) -- procedure declaration 5 
V = N ⊕ Bool ⊕ Proc ⊕ {⊥} ⊕ {udef} ⊕{redef} -- id value 6 
U = Id → {var, const, uninit, opencall} ⊗ V -- environments 7 

Semantic functions 8 

D[procedure I; St]u = u[I]?{udef} ⇒ u[I ← c], u[I ← redef] 9 
where c = < const, InProc(S[St]) > . 10 

S[call I]u = Tl(v)?Proc ∧ Hd(v) = const ∧ w?U ⇒ 11 
w[Hd[I ← const]], ⊥ 12 
where v = u[I]; w = Tl(v)(u[Hd[I ← opencall]]); 13 

A procedure declaration (lines 9–10) updates the current environment u by 
calculating the meaning of the body St and converting the result to domain 
Proc (line 10). This result is used to build a meaning for I in the environ­
ment (line 9). The definition of procedure invocation in lines 11–13 first mod­
ifies I in the environment u to indicate the call is open, then applies the body 
of procedure I (Tl(v) in line 13), storing the resulting environment in w. It  
then returns w, but first restores the definition of I (line 12). 

3.14 Functions 
Functions, like procedures, execute a list of statements. They also return a 
value by evaluating an expression immediately prior to return. For the pre­
sent, I will constrain functions to be nonrecursive. The abstract syntax of in­
teger functions will be as shown in Figure 10.59. 
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Figure 10.59 integer function I; 1 
St; 2 

return(T) 3 

Boolean functions have an analogous structure. Functions can be called to 
yield a value via the eval operator (for example, eval F). 

Introducing function calls into the language raises the specter of side ef­
fects. Since I am building a definition, I can handle side effects pretty much 
as I wish. I might, for example, make them invalid and enforce this rule by 
comparing the environment after function invocation with that in place be­
fore invocation. Any changes would indicate side effects and yield an error 
result. Alternately, I could erase side effects by resuming execution after a 
function call with the same environment in place before the call. Although 
these alternatives are easy to denote, neither would be particularly easy for a 
compiler writer to implement, especially after the language definition in­
cludes I/O. 

In the interests of realism, I will bite the bullet and allow side effects. The 
structure of the E function, which defines the meaning of expressions (which 
must now include function calls), will change. It will return not only the re­
sult value but also an updated environment. I add this facility by defining 
RR, the new domain of results: 

RR = U ⊗ (N ⊕ Bool ⊕ {⊥}) 

The semantic domain for function calls is: 

Func = U → RR 

The semantic domain V is also extended to include Func. 
The language allows constant declarations of the form I = T. Now that T 

includes function calls, the definition of constants is complicated by the fact 
that a call may induce side effects in the environment. This situation is un­
desirable (though it could be modeled, of course), so I will follow the lead of 
most languages and assume that a function call in this context is forbidden by 
the concrete syntax. Figure 10.60 shows what functions add to the definition 
of Figure 10.46 (page 333). 

Figure 10.60 Abstract syntax 1 

Def → Integer function I; St; return(T); 2 
Def → Boolean function I; St; return(T); 3 

T → eval I -- function invocation 4 
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Semantic domains 

RR = U ⊗ (N ⊕ Bool ⊕ {⊥}) -- expression result 6

Func = U → RR 7

V = N ⊕ Bool ⊕ Proc ⊕ Func {⊥} ⊕ {udef} ⊕{redef} -- id value 8

U = Id → {var, const, uninit, opencall} ⊗ V -- environments 9


Semantic functions 

E: Exp → U → RR 11


M[program (I) Def St end] = c?U ⇒ Tl(E[I]c), ⊥ 12

where u = D[Def]u0; c = S[St]u. 13


D[I = T]u = u[I]?{udef} ⇒ u[I ← f], u[I ← redef] 14

where e = E[T]u; f = e?{⊥} ⇒ ⊥, <  const, Tl(e) > . 


D[Boolean function I; St; return(T)]u =


D[Integer function I; St; return(T)]u = 16

u[I]?{udef} ⇒ u[I ← f], u[I ← redef] 17

where f = < const, InFunc(v) > ;  c  = S[St]; e(w) = E[T](c(w)); 18

v(w) = c(w)?{⊥} ∨ e(w)?{⊥} ⇒ ⊥, (Tl(e(w))?N ⇒ e(w), ⊥). 19


u[I]?{udef} ⇒ u[I ← f], u[I ← redef] 21

where f = < const, InFunc(v) > ;  c  = S[St]; e(w) = E[T](c(w)); 22

v(w) = c(w)?{⊥} ∨ e(w)?{⊥} ⇒ ⊥, (Tl(e(w))?Bool ⇒ e(w), ⊥). 23


E[0]u = < u, 0 > 24

E[1]u = < u, 1 >

E[Seq 0] u = e?N ∧ range(2 × e)?N ⇒ < u, 2 × e > ,  ⊥  26


where e = Tl(E[Seq]u). 27

E[Seq 1] u = e?N ∧ range(2 × e + 1)?N ⇒ < u, 2 × e + 1 > ,  ⊥  28


where e = Tl(E[Seq]u). 29


E[T1 + T2] u = Tl(e)?N ∧ Tl(f)?N ∧

range(Tl(e) + Tl(f))?N ⇒ < Hd(f), Tl(e) + Tl(f) > ,  ⊥  31


where e = E[T1]u; f = E[T2]Hd(e).


range(Tl(e) /  Tl(f))?N ⇒ < Hd(f), Tl(e)/Tl(f) > ,  ⊥ 


E[eval I]u = Tl(v)?Func ∧ Hd(v) = const ∧ w≠⊥ ⇒


where v = u[I].


where e = E[T1]u; f = E[T2]Hd(e). 32

E[T1 − T2] u = Tl(e)?N ∧ Tl(f)?N ∧ 33


range(Tl(e) − Tl(f))?N ⇒ < Hd(f), Tl(e) − Tl(f) > ,  ⊥  34


E[T1 * T2] u = Tl(e)?N ∧ Tl(f)?N ∧ 36

range(Tl(e) × Tl(f))?N ⇒ < Hd(f), Tl(e) × Tl(f) > ,  ⊥  37

where e = E[T1]u; f = E[T2]Hd(e). 38


E[T1 / T2] u = Tl(e)?N ∧ Tl(f)?N ∧ Tl(f)≠0 ∧ 39


where e = E[T1]u; f = E[T2]Hd(e). 41

E[T1 = T2] u = (Tl(e)?N ∧ Tl(f)?N) ∨ (Tl(e)?Bool ∧ Tl(f)?Bool) ⇒ 42


< Hd(f), (Tl(e) = Tl(f)) > , ⊥ 43

where e = E[T1]u; f = E[T2]Hd(e). 44


w[Hd[I ← const]], ⊥ 46

where v = u[I]; w = Tl(v)(u[Hd[I ← opencall]]). 47


E[I]u = v?({redef} ⊕ {⊥} ⊕{udef}) ⇒ ⊥,  48

(Hd(v) = uninit ⇒ ⊥, <  u,  Tl(v) >)  49
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S[I: = T]u = v?({redef} ⊕ {⊥} ⊕{udef}) ∨ 51 
(Hd(v) = const) ∨ e?{⊥} ⇒ ⊥,  52 
(Tl(e)?N ∧ Tl(v)?N) ∨ (Tl(e)?Bool ∧ Tl(v)?Bool) ⇒ 53 
Hd(e)[I ←< var, Tl(e) >], ⊥ 54 
where e = E[T]u; v = u[I]. 55 

S[if T then St1 else St2]u = 56 
Tl(e)?Bool ⇒ (Tl(e) ⇒ S[St1]Hd(e), S[St2]Hd(e)), ⊥ 57 
where e = E[T]u. 58 

S[do T times St]u = Tl(e)?N ⇒ vm(Hd(e)), ⊥ 59 
where e = E[T]u; m = max(0, Tl(e)); 60 
v0(w) = w; vi+1(w) = vi(w)?U ⇒ S[St]vi(w), ⊥. 61 

S[while T do St]u = 
i → ∞ 
lim pi(u) 62 

where p0(w) = ⊥;  63 
pi+1(w) = Tl(e)?Bool ⇒ 64 

(Tl(e) ⇒ (v?{⊥} ⇒ ⊥,  pi(v)), Hd(e)), ⊥; 65 
e = E[T]w; v = S[St]Hd(e). 66 

In line 14, I assume that the concrete syntax forbids function calls in the defi­
nition of a constant. 

3.15 Recursive Routines 
The danger in allowing recursive routines is that the definitions may become 
circular. As it stands, I define the meaning of a call in terms of the meaning 
of its body. If recursion is allowed, the meaning of a routine’s body may itself 
be defined in terms of any calls it contains. My current definition breaks this 
potential circularity by forbidding calls of a routine (directly or indirectly) 
from its own body. 

I will generalize the definition of a subroutine call to allow calls of 
bounded depth. The meaning of a routine with a maximum call depth of n 
will be defined in terms of the meaning of the subroutine’s body with subse­
quent calls limited to a depth of n−1. The meaning of a call with a maximum 
depth of zero is ⊥. 

If a call to a routine will ever return, then it can be modeled by a call lim­
ited to depth n as long as n is sufficiently large. As n approaches ∞, the 
bounded-call-depth model converges to the unbounded-call model if the latter 
ever returns. But if a routine call doesn’t ever return, then the bounded-call-
depth model will always produce an error result ⊥, which is a correct defini­
tion of an infinite recursion. Thus the limit as n approaches ∞ of the 
bounded-call-depth model is ⊥, which I will take as the definition of the 
meaning of a call of unbounded depth that never returns. This approach par­
allels how I handled unbounded iteration, which isn’t surprising, given the 
similarity of looping and subroutine call. 

I will redefine U to replace the opencall flag with an integer representing 
the maximum depth to which a given procedure or function can be called. If 
this value is zero, the call is invalid. What used to be opencall is now repre­
sented by 0; the previous model always had a maximum call depth of 1. Fig­
ure 10.61 shows the necessary additions. 
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Figure 10.61 U = Id → ({var, const, uninit} ⊕ N) ⊗ V 1 

S[call I]u = Tl(v)?Proc ⇒ 
i → ∞ 
lim pi(u, v), ⊥ 2 

where v = u[I]; 3 
p0(u′, v′) = ⊥;  4  
pi+1(u′,  v′)  = Hd(v′) = const ⇒ (w?U ⇒ w[Hd[I ← const]], ⊥), 5 

Hd(v′) >  0  ∧ y?U  ⇒ y[Hd[I ← Hd(v′)]], ⊥; 6 
w = Tl(v′)(u′[Hd[I ← i]]); 7 
y = Tl(v′)(u′[Hd[I ← Hd(v′) − 1]]). 8 

E[eval I]u = Tl(v)?Func ⇒ 
i → ∞ 
lim pi(u, v), ⊥ 9 

where v = u[I]; 10 
p0(u′, v′) = ⊥;  11 
pi+1(u′, v′) = Hd(v′) = const ⇒ (w≠⊥{⊥}⇒{⊥}  12  

w[Hd[I ← const]], ⊥), 13 
Hd(v′) >  0  ∧ y≠⊥ ⇒ y[Hd[I ← Hd(v′)]], ⊥; 14 

w = Tl(v′)(u′[Hd[I ← i]]); 15 
y = Tl(v′)(u′[Hd[I ← Hd(v′) − 1]]). 16 

3.16 Modeling Memory and Files 
I am now ready to model variables more accurately. I will use a finite seman­
tic domain Loc to name addressable memory locations. A semantic domain 
Mem will model memories as a mapping from Loc to an integer or Boolean 
value or to error values uninitInt, uninitBool, unalloc: 

Mem = Loc → N ⊕ Bool ⊕ uninitInt ⊕ uninitBool ⊕ unalloc 

The uninitialized flag will now be in the memory mapping, not the environ­
ment mapping. Two different uninit flags are used to remember the type an 
uninitialized location is expected to hold. If a memory location is marked as 
unalloc, then it can be allocated for use (and possibly deallocated later). If 
m ∈ Mem, then I define alloc as follows: 

alloc(m) = any l ∈ Loc such that m(l) = unalloc 
= ⊥ if no such l exists 

Alloc specifies no particular memory allocation pattern; this definition allows 
implementations the widest latitude in memory management. 

I will model files as finite sequences over integers, Booleans, and eof, the 
end-of-file flag. I define the semantic domain File as: 

File = (N ⊕ Bool ⊕ eof) *  

That is, a file is a potentially infinite string of typed values. My definitions 
will never consider values in files following the first eof. Programs will now 
take an input file and produce an output file (or ⊥). To model this semantics, 
I will have a semantic domain State that consists of a memory and a pair of 
files: 
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State = Mem ⊗ File ⊗ File 

At any point during execution, the current state is a combination of the cur­
rent memory contents, what is left of the input file, and what has been writ­
ten to the output file. 

My definition of environments will now more nearly match the symbol ta­
bles found in conventional compilers. I will map identifiers to constant val­
ues, locations or routines: 

V = N ⊕ Bool ⊕ Loc ⊕ Proc ⊕ Func ⊕ {⊥} ⊕ {udef} ⊕ {redef}

U = Id → V


Statements will take an environment and a state and will produce an up­
dated state or an error value. Declarations will take an environment and 
state and will produce an updated environment and state (since memory allo­
cation, performed by declarations, will update the original state). Figure 
10.62 shows the additions and changes to the formal definition. 

Figure 10.62 Abstract syntax 1


P → program Def St end -- program 2


St → read I -- read statement 3

St → write T -- write statement 4


Semantic domains 5


State = Mem ⊗ File ⊗ File 6

RR = State ⊗ (N ⊕ Bool ⊕ {⊥}) 7

Proc = (U → State → (State ⊕ {⊥})) ⊗ Loc 8

Func = (U → State → RR) ⊗ Loc 9

Mem = Loc → N ⊕ Bool ⊕ {uninitInt} ⊕ {uninitBool} ⊕ 10


{unalloc} 11

File = (N ⊕ Bool ⊕ {eof}) *  12

V = N ⊕ Bool ⊕ Loc ⊕ Proc ⊕ Func ⊕ {⊥}⊕{udef}⊕{redef} 13

U = Id → V  14 


Semantic functions 15


E: Exp → U → State → RR 16

D: Decls → (U ⊗ State) → (U ⊗ State) 17

M: Pr → File → File ⊕ {⊥}  18 

S:  Stm → U → State → (State ⊕ {⊥}) 19


E[0] u s  =  <  s,  0  >  20

E[1] u s  =  <  s,  1  >  21

E[Seq0] u s  =  e?N  ∧  range(2 × e)?N ⇒ < s, 2 × e > ,  ⊥  22


where e = Tl(E[Seq] u s). 23

E[Seq1] u s  =  e?N  ∧  range(2 × e + 1)?N ⇒ < s, 2 × e + 1 > ,  ⊥  24


where e = Tl(E[Seq] u s). 25
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E[I] u s  = v?({⊥} ⊕ {redef} ⊕ {udef}) ⇒ ⊥,  26

v?Loc ⇒ (m(v)?({uninitInt}⊕{uninitBool}) ⇒ ⊥,  27

< s, m(v) >), < s, v > 28

where v = u[I]; s = < m, i, o > .  29


E[T1 + T2] u s  = Tl(e)?N ∧ Tl(f)?N ∧ 30

range(Tl(e) + Tl(f))?N ⇒ < Hd(f), Tl(e) + Tl(f) > ,  ⊥  31

where e = E[T1] u s;  f  = E[T2]  u Hd(e). 32


E[T1 − T2] u s  = Tl(e)?N ∧ Tl(f)?N ∧ 33

range(Tl(e) − Tl(f))?N ⇒ < Hd(f), Tl(e) − Tl(f) > ,  ⊥  34

where e = E[T1] u s;  f  = E[T2]  u Hd(e). 35


E[T1 * T2] u s  = Tl(e)?N ∧ Tl(f)?N ∧ 36

range(Tl(e) × Tl(f))?N ⇒ < Hd(f), Tl(e) × Tl(f) > ,  ⊥  37

where e = E[T1] u s;  f  = E[T2]  u Hd(e). 38


E[T1 / T2] u s  = Tl(e)?N ∧ Tl(f)?N ∧ Tl(f) ≠ 0 ∧ 39

range(Tl(e)/Tl(f))?N ⇒ < Hd(f), Tl(e)/Tl(f) > ,  ⊥  40

where e = E[T1] u s;  f  = E[T2]  u Hd(e). 41


E[T1 = T2] u s  = (Tl(e)?N ∧ Tl(f)?N) ∨ (Tl(e)?Bool ∧ Tl(f)?Bool) ⇒ 42

< Hd(f), (Tl(e) = Tl(f)) > , ⊥ 43

where e = E[T1] u s;  f  = E[T2]  u Hd(e). 44


E[evalI] u s  = v?Func ⇒ lim pi(s, v), ⊥ 45

i → ∞ 

where v = u[I]; p0(s′, v′) = ⊥;  46

pi+1(s′, v′) = m(l)?{uninitInt} ⇒ 47


(w?{⊥} ⇒ ⊥,  w[Hd[l ← uninitInt]]); 48

m(l) >  0  ∧ y?{⊥}  ⇒ ⊥,  y[Hd[l ← m(l)]]; 49

s′ = <  m,  I,  O  > ;  v′ = <  f,  l  > ;  w  = fu < m[l ← i], I, O > ;  50

y = fu < m[l ← m(l) − 1], I, O > .  51


D[ε] <  u,  s  >  = <  u,  s  >  52

D[I: integer] <  u,  s  >  = u[I]?{udef} ⇒ 53


(l ?{⊥} ⇒ < u[I ← ⊥], s > , <  u[I  ← l], 54

i< m[l ← uninitInt], i, o >>), < u[I ← redef], s > 55

where s = < m, i, o > ;  l  = alloc(m). 56


D[I: Boolean] <  u,  s  >  = u[I]?{udef} ⇒ 57

(l ?{⊥} ⇒ < u[I ← ⊥], s > ,  58

< u[I ← l], < m[l ← uninitBool], i, o >>), 59

< u[I ← redef], s > 60

where s = < m, i, o > ;  l  = alloc(m). 61


D[Def1 Def2] <  u,  s  >  = D[Def2] <  v,  t  >  62

where < v, t > = D[Def1] <  u,  s  > .  63


D[I = T] <  u,  s  >  = u[I]?{udef} ⇒ < u[I ← f], s > ,  64

< u[I ← redef], s > 65

where e = E[T] u s;  f  = e?{⊥}  ⇒ ⊥,  Tl(e). 66


D[procedure I; St] <  u,  s  >  = u[I]?{udef} ⇒ 67

(l ?{⊥} ⇒ < u[I ← ⊥], s > ,  <  u[I  ←<  c,  l  >], 68

< m[l ← uninitInt], i, o >>), < u[I ← redef], s > 69

where c = S[St]; s = < m, i, o > ;  l  = alloc(m). 70


D[Integer function I; St; return(T)] < u, s > = 71

u[I]?{udef} ⇒ (l ?{⊥} ⇒ < u[I ← ⊥], s > ,  72

< u[I ←< v, l >], < m[l ← uninitInt], i, o >>), 73

< u[I ← redef], s > 74

where s = < m, i, o > ;  l  = alloc(m); c = S[St]; 75

e(w, t) = E[T] w c(w,  t); 76

v(w, t) = c(w, t)?{⊥} ∨ e(w, t)?{⊥} ⇒ ⊥,  77


(Tl(e(w, t))?N ⇒ e(w, t), ⊥). 78
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D[Boolean function I; St; return(T)] < u, s > = 79 
u[I]?{udef} ⇒ (l ?{⊥} ⇒ < u[I ← ⊥], s > ,  80 
< u[I ←< v, l >], < m[l ← uninitInt], i, o >>), 81 
< u[I ← redef], s > 82 
where s = < m, i, o > ;  l  = alloc(m); c = S[St]; 83 
e(w, t) = E[T] w c(w,  t); 84 
v(w, t) = c(w, t)?{⊥} ∨ e(w, t)?{⊥} ⇒ ⊥,  85 

(Tl(e(w, t))?Bool ⇒ e(w, t), ⊥). 86 

M[program Def St end]i = c?{⊥} ⇒ ⊥,  Tl(Tl(c)) 87 
where < u, s > = D[Def] <  u0, <  m0,  i,  eof >> ; 88 
c = S[St] u s  89  

S[ε]  u s  = s  90  
S[St1 St2] u s  = g?{⊥}  ⇒ ⊥,  S[St2] u g  91  

where g = S[St1] u s.  92 
S[I: = T] u s  = v?Loc ∧ 93 

((Tl(e)?N ∧ m(v)?N ⊕{uninitInt}) ∨ 94 
(Tl(e)?Bool ∧ m(v)?Bool ⊕{uninitBool})) ⇒ 95 
< m[v ← Tl(e) >], i, o > ,  ⊥  96 
where e = E[T] u s;  Hd(e) = < m, i, o > ;  v  = u[I]. 97 

S[read I] u s  = v?Loc ∧ i≠eof ∧ 98 
((Hd(i)?N ∧ m(v)?N ⊕{uninitInt}) ∨ 99 
(Hd(i)?Bool ∧ m(v)?Bool ⊕{uninitBool})) ⇒ 100 
< m[v ← Hd(i) >], Tl(i), o > ,  ⊥  101 
where s = < m, i, o > ;  v  = u[I]. 102 

S[write T] u s  = e?{⊥}  ⇒ ⊥, <  m,  i,  append(o, <  Tl(e), eof >) > 103 
where e = E[T] u s;  Hd(e) = < m, i, o > .  104 

S[if T then St1 else St2] u s  =  105 
Tl(e)?Bool ⇒ (Tl(e) ⇒ S[St1] u Hd(e), S[St2] u Hd(e)), ⊥ 106 
where e = E[T] u s.  107 

S[do T times St] u s  = Tl(e)?N ⇒ vm(Hd(e)), ⊥ 108 
where e = E[T] u s;  m  = max(0, Tl(e)); v0(w) = w; 109 
vi+1(w) = vi(w)?{⊥} ⇒ ⊥,  S[St] u vi(w). 110 

S[while T do St] u s  =  lim pi(s) 111 
i → ∞ 

where p0(w) = ⊥;  112 
pi+1(w) = Tl(e)?Bool ⇒ (Tl(e) ⇒ 113 

(v?{⊥} ⇒ ⊥,  pi(v)), Hd(e)), ⊥; 114 
e = E[T] u w;  v  = S[St] u Hd(e). 115 

S[call I] u s  = v?Proc ⇒ lim pi(s, v), ⊥ 116 
i → ∞ 

where v = u[I]; 117 
p0(s′, v′) = ⊥;  118 
pi+1(s′, v′) = m(l)?{uninitInt} ⇒ (w?{⊥} ⇒ ⊥,  119 

w[Hd[l ← uninitInt]]), 120 
m(l) >  0  ∧ y?{⊥}  ⇒ ⊥,  y[Hd[l ← m(l)]]; 121 

s′ = <  m,  I,  O  > ;  v′ = <  f,  l  > ;  w  = f u  <  m[l  ← i], I, O > ;  122 
y = f u  <  m[l  ← m(l)  − 1], I, O > .  123 

The syntax for programs (line 2) no longer needs an identifier in the header. I 
assume integers and Booleans each require one location in memory. I still 
forbid function calls in the definition of a constant. Append (line 102) concate­
nates two sequences, each terminated by eof. The initial memory configura­
tion, in which all locations map to unalloc, is  m0  (line 87). 
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The location associated with procedures and functions (lines 8 and 9) is 
used to hold the depth count, which appears in the definition of procedure 
(lines 115–122) and function (lines 44–50) calls. This count is no longer kept 
in the environment, because expressions and statements now update states, 
not environments. If no calls of a routine are in progress, its associated mem­
ory location will contain uninitInt. 

3.17 Blocks and Scoping 
I will now model block structure and name scoping by adding a begin-end 
block to the syntax, as in Figure 10.63. 

Figure 10.63	 St → begin Def St end 

As in most block-structured languages, declarations within a block are lo­
cal to it, and local redefinition of a nonlocal identifier is allowed. Rather than 
a single environment, I will employ a sequence of environments, with the first 
environment representing local declarations, and the last environment repre­
senting the outermost (predeclared) declarations. The new semantic domain 
UU = U* will represent this sequence of environments. All definitions will be 
made in the head of the environment sequence, while lookup will proceed 
through the sequence of environments, using the functions Top and Find, 
shown in Figure 10.64. 

Figure 10.64 Top: UU → U 1 
Top(u) = u?U ⇒ u, Hd(u) 2 

Find: UU → Id → V 3 
Find(u)[I] = Top(u)[I]?{udef} ⇒ 4 

(u?U ⇒ ⊥,  Find(Tl(u))[I]), Top(u)[I] 5 

Block structure introduces a memory-management issue. Most languages 
specify that memory for local variables is created (or allocated) upon block en­
try and released upon block exit. To model allocation, I create a function Free 
(Figure 10.65) that records the set of free memory locations. 

Figure 10.65	 Free: Mem → 2Loc 1 
Free(m) = {l | m(l)=unalloc} 2 

I will record free locations at block entry and reset them at block exit. Most 
implementations do this by pushing and later popping locations from a run­
time stack. My definition, of course, does not require any particular imple­
mentation. 

Figure 10.66 presents the definition of block structure, updating all defini­
tions that explicitly use environments so that they now use sequences of envi­
ronments. I also modify slightly the definition of the main program to put 
predeclared identifiers in a scope outside that of the main program. 
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Figure 10.66 Abstract syntax 1 

St → begin Def St end 2 

Semantic domains 3 

UU = U * -- sequence of environments 4 
Proc = (UU → State → (State ⊕ {⊥})) ⊗Loc 5 
Func = (UU → State → RR) ⊗ Loc 6 

Semantic functions 7 

E: Exp → UU → State → RR 8 
D: Decls → (UU ⊗ State) → (UU ⊗ State) 9 
S: Stm → UU → State → (State ⊕ {⊥}) 10 

S[begin Def St end] u s  = c?{⊥}  ⇒ ⊥,  11 
< m[Free(Hd(s)) ← unalloc], i, o > 12 
where < v, t > = D[Def] <<  ue,  u  > ,  s  > ;  13 
c = S[St] v t  = <  m,  i,  o  > .  14 

M[program Def St end]i = c?{⊥} ⇒ ⊥,  Tl(Tl(c)) 15 
where < u, s > = D[Def] <<  ue,  u0  > ,  <  m0,  i,  eof >> ; 16 
c = S[St] u s.  17 

E[I] u s  = v?({⊥} ⊕ {redef} ⊕ {udef}) ⇒ ⊥,  18 
v?Loc ⇒ (m(v)?({uninitInt}⊕{uninitBool}) ⇒ ⊥,  19 
< s, m(v) >), < s, v > 20 
where v = Find(u)[I]; s = < m, i, o > .  21 

E[eval I] u s  = v?Func ⇒ lim pi(s, v), ⊥ 22 
i → ∞ 

where v = Find(u)[I]; 23 
p0(s′, v′) = ⊥;  24 
pi+1(s′, v′) = m(l)?{uninitInt} ⇒ (w?{⊥} ⇒ 25 

⊥, w[Hd[l ← uninitInt]]), 26 
m(l) >  0  ∧ y?{⊥}  ⇒ ⊥,  y[Hd[l ← m(l)]]; 27 

s′ = <  m,  I,  O  > ;  v′ = <  f,  l  > ;  28 
w = f u  <  m[l  ← i], I, O > ;  29 
y = f u  <  m[l  ← m(l)  − 1], I, O > .  30 

D[I: integer] <  u,  s  >  = Hd(u)[I]?{udef} ⇒ 31 
(l ?{⊥} ⇒ < u[Hd[I ← ⊥]], s > ,  <  u[Hd[I ← l]], 32 
< m[l ← uninitInt], i, o >>), < u[Hd[I ← redef]], s > 33 
where s = < m, i, o > ;  l  = alloc(m). 34 

D[I: Boolean] <  u,  s  >  = Hd(u)[I]?{udef} ⇒ 35 
(l ?{⊥} ⇒ < u[Hd[[I ← ⊥]], s > ,  <  u[Hd[[I ← l]], 36 
< m[l ← uninitBool], i, o >>), < u[Hd[[I ← redef]], s > 37 
where s = < m, i, o > ;  l  = alloc(m). 38 

D[I = T] <  u,  s  >  = Hd(u)[I]?{udef} ⇒ < u[Hd[I ← f]], s > ,  39 
< u[Hd[I ← redef]], s > 40 
where e = E[T] u s;  f  = e?{⊥}  ⇒ ⊥,  Tl(e). 41 
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D[procedure I; St] <  u,  s  >  = Hd(u)[I]?{udef} ⇒ 42

(l ?{⊥} ⇒ < u[Hd[I ← ⊥]], s > ,  <  u[Hd[I ←< c, l >]], 43

< m[l ← uninitInt], i, o >>), < u[Hd[I ← redef]], s > 44

where c = S[St]; s = < m, i, o > ;  l  = alloc(m). 45


D[Integer function I; St; return(T)] < u, s > = 46

Hd(u)[I]?{udef} ⇒ (l ?{⊥} ⇒ < u[Hd[I ← ⊥]], s > ,  47

< [Hd[I ←< v, l >]], < m[l ← uninitInt], i, o >>), 48

< u[Hd[I ← redef]], s > 49

where s = < m, i, o > ;  l  = alloc(m); c = S[St]; 50

e(w, t) = E[T] w c(w,  t); 51

v(w, t) = c(w, t)?{⊥} ∨ e(w, t)?{⊥} ⇒ 52


⊥, (Tl(e(w, t))?N ⇒ e(w, t), ⊥). 53

D[Boolean function I; St; return(T)] < u, s > = 54


Hd(u)[I]?{udef} ⇒ (l ?{⊥} ⇒ < u[Hd[I ← ⊥]], s > ,  55

< u[Hd[I ←< v, l >]], < m[l ← uninitInt], i, o >>), 56

< u[Hd[I ← redef]], s > 57

where s = < m, i, o > ;  l  = alloc(m); c = S[St]; 58

e(w, t) = E[T] w c(w,  t); 59

v(w, t) = c(w, t)?{⊥} ∨ e(w, t)?{⊥} ⇒ ⊥,  60


(Tl(e(w, t))?Bool ⇒ e(w, t), ⊥). 61


S[I: = T] u s  =  62

v?Loc ∧ ((Tl(e)?N ∧ m(v)?N ⊕{uninitInt}) ∨ 63

(Tl(e)?Bool ∧ m(v)?Bool ⊕{uninitBool})) ⇒ 64

< m[v ← Tl(e) >], i, o > ,  ⊥  65

where e = E[T] u s;  Hd(e) = < m, i, o > ;  v  = Find(u)[I]. 66


S[read I] u s  = v?Loc ∧ i ≠ eof ∧ 67

((Hd(i)?N ∧ m(v)?N ⊕{uninitInt}) ∨ (Hd(i)?Bool ∧ 68

m(v)?Bool ⊕ {uninitBool})) ⇒ < m[v ← Hd(i) >], Tl(i), o > ,  ⊥  69

where s = < m, i, o > ;  v  = Find(u)[I]. 70


S[call I] u s  = v?Proc ⇒ lim pi(s, v), ⊥ 71

i → ∞ 

where v = Find(u)[I]; 72

p0(s′, v′) = ⊥;  73

pi+1(s′, v′) = m(l)?{uninitInt} ⇒ (w?{⊥} ⇒ ⊥,  74


w[Hd[l ← uninitInt]]), 75

m(l) >  0  ∧ y?{⊥}  ⇒ ⊥,  y[Hd[l ← m(l)]]; 76


s′ = <  m,  I,  O  > ;  v′ = <  f,  l  > ;  77

w = f u  <  m[l  ← i], I, O > ;  78

y = f u  <  m[l  ← m(l)  − 1], I, O > .  79


In lines 13 and 16, ue is the empty environment in which all identifiers map 
to udef. 

3.18 Parameters 
Now that I have scoping, I will turn my attention to procedures and func­
tions. As defined above, procedures and functions execute in the environ­
ment of the call, not the environment of definition. No environment is stored 
with a procedure or function definition; rather, they use an environment pro­
vided at the point of call. In other words, I have provided dynamic scoping 
and shallow binding, which is common in interpreted, but not in compiled, 

of scoping. 
languages. I will now refine the model to use the more common static model 
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I will also include reference-mode parameters to illustrate how parameter 
definition and binding are handled. The approach will be similar to that used 
with blocks. However, when a procedure or function is called, I will provide 
an initial local environment in which parameter names have been bound to 
the locations associated with corresponding actual parameters. This ap­
proach allows the possibility of aliasing. I will be careful therefore not to re­
lease storage associated with formal parameters, since this storage will 
belong to the actual parameters (which persist after the call). However, other 
local definitions will be treated like locals declared in blocks and released af­
ter the call. 

Figure 10.67 extends the syntax of routine definitions and calls to include 
parameters: 

Figure 10.67 Abstract syntax 1 

Actuals ∈ Aparms 2 
Formals ∈ Fparms 3 

Def → procedure I ( Formals ); begin Def St end 4 
Def → Integer function I ( Formals ); 5 

Def St return(T); 6 
Def → Boolean function I ( Formals ); 7 

Def St return(T); 8 
St → call I (Actuals) 9 
T → eval I (Actuals) 10 
Formals → I : integer; 11 
Formals → I : Boolean; 12 
Formals → ε 13 
Formals → Formals Formals 14 
Actuals → ε 15 
Actuals → I  16  
Actuals → Actuals Actuals 17 

In the concrete syntax, a routine with no parameters may well omit parenthe­
ses, and actuals will be separated by commas. I don’t have to worry about 
such details at the level of abstract syntax. 

I will also create two new semantic functions, FP and AP, to define the 
meaning of formal and actual parameters. Figure 10.68 shows the changes to 
the definition. 

Figure 10.68 Semantic domains 1 

Parms = ((N ⊕ Bool) ⊗ Id ⊕ eol) *  2  
Proc = (UU → State → (State ⊕ {⊥})) ⊗ Loc ⊗ Parms 3 
Func = (UU → State → RR) ⊗ Loc ⊗ Parms 4 

Semantic functions 5 

FP: Fparms → Parms → Parms -- Formals 6 
AP: Aparms → (UU ⊗Parms) → State → ((UU ⊗Parms) ⊕ {⊥}) 7 

-- Actuals 8 
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FP[I: integer]p = append(p, <<  0,  I > ,  eol >) 9

FP[I: Boolean]p = append(p, <<  false, I > ,  eol >) 10

FP[ε]p = p  11 

FP[Formals1 Formals2] p = FP[Formals2]q  12 


where q = FP[Formals1]p. 13


AP[I] <  u,  p  >  s  = v?Loc ∧ p≠eol ∧ 14

((Hd(pp)?N ∧ m(v)?N ⊕ {uninitInt}) ∨ (Hd(pp)?Bool ∧ 15

m(v)?Bool ⊕ {uninitBool})) ⇒ 16

< u[Hd[Tl(pp) ← v]], Tl(p) > ,  ⊥  17

where v = Find(Tl(u))[I]; pp = Hd(p); s = < m, i, o > .  18


AP[ε] <  u,  p  >  s  = <  u,  p  >  19

AP[Actuals1 Actuals2] <  u,  p  >  s  = q?{⊥}  ⇒ ⊥,  20


AP[Actuals2] q s  21 

where q = AP[Actuals1] <  u,  p  >  s.  22


D[procedure I (Formals); Def St] <  u,  s  >  =  23

Hd(u)[I]?{udef} ⇒ (l ?{⊥} ⇒ < u[Hd[I ← ⊥]], s > ,  24

< uu, <  m[l  ← uninitInt], i, o >>), < u[Hd[I ← redef]], s > 25

where f(v, t) = S[St]v′t′; <  v′,  t′ >  = D[Def] <<  v,  uu > ,  t  > ;  26

s = < m, i, o > ;  l  = alloc(m); 27

uu = u[Hd[I ←< f, l, p >]]; p = FP[Formals]eol. 28


D[Integer function(Formals) I; Def St return(T)] 29

< u, s > = Hd(u)[I]?{udef} ⇒ 30

(l ?{⊥} ⇒ < u[Hd[I ← ⊥]], s > ,  31

< uu, <  m[l  ← uninitInt], i, o >>), < u[Hd[I ← redef]], s > 32

where s = < m, i, o > ;  l  = alloc(m); e(w, r) = E[T](w c(w,  r)); 33

c(v, t) = S[St]v′t′; <  v′,  t′ >  = D[Def] <<  v,  uu > ,  t  > ;  34

f(vv, tt) = c(vv, tt)?{⊥} ∨ e(vv, tt)?{⊥} ⇒ 35


⊥, (Tl(e(vv, tt))?N ⇒ e(vv, tt), ⊥); 36

uu = u[Hd[I ←< f, l, p >]]; p = FP[Formals]eol. 37


D[Boolean function(Formals) I; Def St return(T)] 38

< u, s > = Hd(u)[I]?{udef} ⇒ 39

(l ?{⊥} ⇒ < u[Hd[I ← ⊥]], s > ,  40

< uu, <  m[l  ← uninitInt], i, o >>), < u[Hd[I ← redef]], s > 41

where s = < m, i, o > ;  l  = alloc(m); e(w, r) = E[T](w c(w,  r)); 42

c(v, t) = S[St]v′t′; <  v′,  t′ >  = D[Def] <<  v,  uu > ,  t  > ;  43

f(vv, tt) = c(vv, tt)?{⊥} ∨ e(vv, tt)?{⊥} ⇒ 44


⊥, (Tl(e(vv, tt))?Bool ⇒ e(vv, tt), ⊥); 45

uu = u[Hd[I ←< f, l, p >]]; p = FP[Formals]eol. 46


S[call I(Actuals)] u s  = v?Proc ∧ 47

q≠⊥ ∧ Tl(q) = eol ⇒ lim pi(s, Hd(Hd(q))), ⊥ 48


i → ∞ 
where v = Find(u)[I] = < f, l, r > ;  49

p0(s′, u′) = ⊥;  50

pi+1(s′, u′) = m(l)?{uninitInt} ⇒ (w?{⊥} ⇒ ⊥,  ww), 51


m(l) >  0  ∧ y?{⊥}  ⇒ ⊥,  yy; 52

q = AP[Actuals] <<  ue,  u  > ,  r  >  s;  53

s′ = <  m,  I,  O  > ;  54

w = f u′ <  m[l  ← i], I, O > ;  55

ww = w[Hd[l ← uninitInt]][Hd[Free(m) ← unalloc]]; 56

y = f u′ <  m[l  ← m(l)  − 1], I, O > ;  57

yy = y[Hd[l ← m(l)]][Hd[Free(m) ← unalloc]]. 58
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E[eval I(Actuals)] u s  = v?Func ∧ q ≠ ⊥ ∧ Tl(q) = eol ⇒ 59 
lim pi(s, Hd(Hd(q))), ⊥ 60 
i → ∞ 
where v = Find(u)[I] = < f, l, r > ;  61 
p0(s′, u′) = ⊥;  62 
pi+1(s′, u′) = m(l)?{uninitInt} ⇒ (w?{⊥} ⇒ ⊥,  ww), 63 

m(l) >  0  ∧ y?{⊥}  ⇒ ⊥,  yy; 64 
q = AP[Actuals] <<  ue,  u  > ,  r  >  s;  65 
s′ = <  m,  I,  O  > ;  66 
w = f u′ <  m[l  ← i], I, O > ;  67 
ww = w[Hd[l ← uninitInt]][Hd[Free(m) ← unalloc]]; 68 
y = f u′ <  m[l  ← m(l)  − 1], I, O > ;  69 
yy = y[Hd[l ← m(l)]][Hd[Hd[Free(m) ← unalloc]]]. 70 

The eol in line 2 represents “end of list.” 

3.19 Continuations 
The denotational approach is very structured; the meaning of a construct is 
defined in terms of a composition of the meanings of the construct’s con­
stituents. The meaning of a program can be viewed as a top-down traversal 
of an abstract syntax tree from the root (the program nonterminal) to the 
leaves (identifiers, constants, and so forth). The meanings associated with 
the leaves are then percolated back up to the root, where the meaning of the 
whole program is determined. 

This structured approach has problems with statements such as break or 
goto that don’t readily fit the composition model. Further, it forces values to 
percolate throughout the whole tree, even if this action is unnecessary. Con­
sider, for example, a stop statement. When stop is executed, I would like to 
discontinue statement evaluation and immediately return to the main pro­
gram production, where the final result (the output file) is produced. But I 
can’t; the meaning of stop must be composed with that of the remaining 
statements (even though stop means one must ignore the remaining state­
ments!). As it stands, my definition of the meaning of a statement sequence 
(see lines 90–91 in Figure 10.62, page 345) checks for error on the first state­
ment before evaluating the second. I could add another sort of value, like ⊥, 
that indicates that execution should stop, even though there is no error. This 
device would work but would be rather clumsy, as I would model stop not by 
stopping but by continuing to traverse program statements while ignoring 
them. 

Continuations were invented to remedy these problems. A continuation 
is a function passed as a parameter to every semantic function. The semantic 
function determines its value as usual and then calls (directly or indirectly) 
the continuation with its value as a parameter. This approach is quite clever 
but is much less intuitive than the structured approach I have presented so 
far. 

I will first consider expression continuations, which have a semantic do­
main EC, defined as: 

EC = (N ⊕ Bool) → State → R 

The expression continuation takes a value and a state (since side effects in 
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evaluating the expression can change the state) and produces a result. The E 
semantic function will now include an expression continuation as a parame­
ter: 

E: Exp → UU → State → EC → R 

E now produces a result rather than a state-result pair because state changes 
are included in the continuation component. Figure 10.69 now redefines the 
meaning of simple integer-valued bit strings. The expression continuation, k, 
uses the value and state computed by the semantic function E. 

Figure 10.69 Semantic functions	 1 

E[0] u s k  = k(0,  s)  2  
E[1]  u s k  = k(1,  s)  3  
E[Seq 0] u s k  = E[Seq] u s k1  4  

where k1(r, t) = range(2 × r)?{⊥} ⇒ ⊥,  k(2 × r,  t). 5 
E[Seq 1] u s k  = E[Seq] u s k1  6  

where k1(r, t) = range(2 × r + 1)?{⊥} ⇒ ⊥,  k(2  × r  + 1,  t). 7 

It is no longer necessary to test if a construct produces ⊥; if it does, the 
construct returns ⊥ immediately. Otherwise, it calls its continuation parame­
ter with values it knows to be valid. To see how evaluation proceeds, consider 
the following example. Evaluate E[111]ue s0 K, where ue and s0 are the empty 
environment and initial state, and K(r,s)=r returns the final result. 

1.	 E[111]ue s0 K = E[11]ue s0 k1, where 
k1(r1, s1) = range(2 × r1 + 1)?{⊥} ⇒ ⊥,  K(2 × r1  + 1,  s1).  

2.	 E[11]ue s0 k1 = E[1]ue s0 k2, where 
k2(r2, s2) = range(2 × r2 + 1)?{⊥} ⇒ ⊥,  k1(2 × r2  + 1,  s2).  

3.	 E[1]ue s0 k2 = k2(1, s0) = range(2 × 1 + 1)?{⊥} ⇒ ⊥,  k1(2 × 1 + 1,  s0)  =  
k1(3,  s0)  = range(2 × 3 + 1)?{⊥} ⇒ ⊥,  K(2 × 3  + 1,  s0)  = K(7,  s0)  = 7.  

Figure 10.70 shows how the binary operators are handled. 

Figure 10.70 Semantic functions	 1 

E[T1 + T2] u s k  = E[T1]  u s k1 	 2  
where k1(r1, s1) = r1?N ⇒ E[T2] u s1 k2,  ⊥; 	 3  
k2(r2,  s2)  = r2?N  ∧ range(r1 + r2)?N ⇒ k(r1 + r2, s2), ⊥. 4 

Consider this example: Compute E[22 + 33]ue s0 K, where again K(r, s) = r. 

1.	 E[22 + 33]ue s0 K = E[22]ue s0 k1, where 
k1(r1, s1) = r1?N ⇒ E[33] u s1 k2,  k2(r2,  s2)  = r2?N  and 
range(r1 + r2)?N ⇒ k(r1 + r2, s2), ⊥. 

2.	 E[22]ue s0 k1 = k1(22, s0) = 22?N ⇒ E[33]ue s0 k2, ⊥ =  
E[33]ue s0 k2 = k2(33, s0) = 33?N and 
range(22 + 33)?N ⇒ K(22 + 33, s0), ⊥ = K(55, s0) = 55. 

The rest of the binary operators are similar in form, as shown in Figure 
10.71. 
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Figure 10.71 Semantic functions	 1 

E[T1 − T2] u s k  = E[T1]  u s k1  2  
where k1(r1, s1) = r1?N ⇒ E[T2] u s1 k2,  ⊥;  3  
k2(r2,  s2)  = r2?N  ∧ range(r1 − r2)?N ⇒ k(r1 − r2, s2), ⊥. 4 

E[T1 * T2] u s k  = E[T1]  u s k1  5  
where k1(r1, s1) = r1?N ⇒ E[T2] u s1 k2,  ⊥;  6  
k2(r2,  s2)  = r2?N  ∧ range(r1 × r2)?N ⇒ k(r1 × r2, s2), ⊥. 7 

E[T1/T2] u s k  = E[T1]  u s k1  8  
where k1(r1, s1) = r1?N ⇒ E[T2] u s1 k2,  ⊥;  9  
k2(r2,  s2)  = r2?N  ∧ r2≠0  ∧ range(r1/r2)?N ⇒ k(r1/r2, s2), ⊥. 10 

E[T1 = T2] u s k  = E[T1]  u s k1  11 
where k1(r1,s1) = E[T2] u s1 k2;  12 
k2(r2, s2) = (r1?N ∧ r2?N) ∨ (r1?Bool ∧ r2?Bool) ⇒ 13 

k(r1 = r2, s2), ⊥.	 14 

Identifier lookup is straightforward; see Figure 10.72. 

Figure 10.72 E[I] u s k  = v?({⊥} ⊕ {redef} ⊕ {udef}) ⇒ ⊥,  1  
v?Loc ⇒ (m(v)?({uninitInt}⊕{uninitBool}) ⇒ 2 
⊥, k(m(v), s)), k(v, s) 3 
where v = Find(u)[I]; s = < m, i, o > .  4  

To see how side effects are handled, I will introduce an assignment expression 
similar to that found in C: I ← T is an expression that evaluates to T and (as a 
side effect) sets I to T, as in Figure 10.73. 

Figure 10.73 E[I ← T] u s k  = E[T]  u s k1  1  
where k1(r, t) = v?Loc ∧ 2 

((r?N ∧ m(v)?N ⊕ {uninitInt}) ∨ 3 
(r?Bool ∧ m(v)?Bool ⊕ {uninitBool})) ⇒ 4 
k(r, <  m[v ← r], i, o >), ⊥. 5 

t = < m, i, o > ;  v  = Find(u)[I]. 6 

Consider this example: Compute E[I + I ← 0]u0 s0 K, where u0 and s0 contain a 
variable I with value 10 and K(r, s) = r + Hd(s)(u0[I]) adds the final value of I to 
the value of the expression. 

1.	 E[I + I ← 0]u0 s0 K = E[I]u0 s0 k1, where 
k1(r1, s1) = r1?N ⇒ E[I ← 0] u s1 k2,  ⊥.  k2(r2,  s2)  = r2?N.  
range(r1 + r2)?N ⇒ K(r1 + r2, s2), ⊥. 

2.	 E[I]u0 s0 k1 = v?({⊥} ⊕ {redef} ⊕ {udef}) ⇒ ⊥.  
v?Loc ⇒(m(v)?({uninitInt}⊕{uninitBool}) ⇒ ⊥,  k1(m(v), s0)), k1(v, s0), 
where v = Find(u0)[I], s0 = < m, i, o >. 

3.	 E[I]u0 s0 k1 = k1(m(v), s0) = k1(10, s0) = 10?N ⇒ 
E[I ← 0] u s0 k2,  ⊥ = E[I  ← 0]  u s0 k2.  

4.	 E[I ← 0]u0 s0 k2 = E[0]u0 s0 k3, where 
k3(r, t) = v?Loc ∧ ((r?N ∧ m(v)?N ⊕ {uninitInt}) ∨ 
(r?Bool ∧ m(v)?Bool⊕{uninitBool})) ⇒ k2(r, <  m[v ← r], i, o >), ⊥. 
t = < m, i, o > ,  v  = Find(u)[I]. 
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5.	 E[0] u s0 k3  = k3(0,  s0)  = v?Loc ∧ ((0?N ∧ m(v)?N ⊕{uninitInt}) ∨ 
(0?Bool ∧ m(v)?Bool⊕{uninitBool})) ⇒ k2(0, <  m[v ← 0], i, o >), ⊥. 
s0 = < m, i, o > .  v  = Find(u)[I]. 

6.	 E[0] u s0 k3  = k2(0, <  m[v ← 0], i, o >) = k2(0, ss0), where 
ss0 = < m[v ← 0], i, o > .  k2(0,  ss0) = 0?N. 
range(10 + 0)?N ⇒ K(0 + 10, ss0), ⊥ = K(0 + 10, ss0). 

7.	 K(10, ss0) = 10 + Hd(ss0)(u0[I]) = 10 + 0 = 10. 

Continuations execute in the state that is current when they are evalu­
ated, not in the state that is current when they are defined (that’s why they 
take state as a parameter). 

3.20 Statement Continuations 
I am now ready to consider statement continuations, which are particularly 
useful because they allow me to handle nonstructured control flows. I will 
first define SC, the semantic domain of statement continuations (see Figure 
10.74). I will also slightly alter EC, the semantic domain of expression contin­
uations. In both cases, the continuations will return Ans, the domain of pro­
gram answers, reflecting the fact that expressions and statements are not 
executed in isolation, but rather in contexts in which they contribute to the fi­
nal answer to be computed by the whole program. 

Figure 10.74 Semantic domains	 1 

Ans = File ⊕ {⊥} 2 
EC = (N ⊕ Bool) → State → Ans 3 
SC = State → Ans 4 

Statement continuations take only one parameter because the only program 
component updated by a statement is the state. Figure 10.75 extends the S 
semantic function to include a statement continuation parameter. All seman­
tic functions now return Ans because they all execute by evaluating (directly 
or indirectly) some continuation function. The values that change during the 
computation of a semantic function (a result, environment, or state) are now 
parameters to a continuation function. 

Figure 10.75 Semantic functions	 1 

E: Exp → UU → State → EC → Ans	 2 
S: Stm → UU → State → SC → Ans	 3 

To see the utility of statement continuations, consider the definition of state­
ment composition in Figure 10.76. 

Figure 10.76 S[St1 St2] u s c  = S[St1] u s c′  1  
where c′(s′) = S[St2] u s′c.  2  

The statement continuation has a fairly intuitive interpretation: what to exe­
cute after the current statement. The advantage of the continuation ap-

Copyright © Addison-Wesley. Reproduction fee $.02 per page, per copy. 



3 DENOTATIONAL SEMANTICS 355


proach is now evident. A statement need not execute its continuation if an 
abnormal transfer of control is indicated. A stop statement executes by re­
turning an answer (the current value of the output file). Similarly, goto exe­
cutes by looking up (and executing) a statement continuation stored in the 
environment as the value of the label! 

I can now consider other statements, as shown in Figure 10.77. 

Figure 10.77 S[ε] u s c  = c(s)  1  
S[I:  = T]  u s c  = E[T]  u s k  2  

where k(r, t) = v?Loc ∧ 3 
((r?N ∧ m(v)?N ⊕ {uninitInt}) ∨ 4 
(r?Bool ∧ m(v)?Bool ⊕ uninitBool)) ⇒ 5 
c(< m[v ← r], i, o >), ⊥; 6 
t = < m, i, o > ;  v  = Find(u)[I]. 7 

S[read I] u s c  = v?Loc ∧ i ≠ eof ∧ 8 
((Hd(i)?N ∧ m(v)?N ⊕ uninitInt) ∨ 9 
(Hd(i)?Bool ∧ m(v)?Bool ⊕ uninitBool)) ⇒ 10 
c(< m[v ← Hd(i)], Tl(i), o >), ⊥ 11 
where s = < m, i, o > ;  v  = Find(u)[I]. 12 

S[write T] u s c  = E[T]  u s k  13  
where k(r, t) = c(< m, i, append(o, <  r,  eof >) >); t = < m, i, o > .  14 

S[if T then St1 else St2] u s c  =  15 
E[T] u s k  16  
where k(r, t) = r?Bool ⇒ (r ⇒ S[St1] u t c,  S[St2] u t c), ⊥. 17 

S[do T times St] u s c  = E[T]  u s k  18  
where k(r, t) = r?N ⇒ vm(t), ⊥; 19 
m = max(0, r); v0(s′) = c(s′); vi+1(s′) = S[St] u s′vi.  20 

S[while T do St] u s c  =  lim pi(s) 21 
i → ∞ 

where p0(s′) = ⊥;  pi+1(s′)  = E[T]  u s′ ki+1;  22 
ki+1(r, t) = r?Bool ⇒ (r ⇒ S[St] u t pi,  c(t)), ⊥ 23 

3.21 Declaration Continuations 
A declaration continuation will map an environment and state into an an­
swer. The D function will now take a declaration continuation from the do­
main DC, as in Figure 10.78. 

Figure 10.78 DC = UU → State → Ans 1 
D: Decls → UU → State → DC → Ans 2 
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D[I: integer] u s d  = Hd(u)[I]?{udef} ⇒ 3 
(l ?{⊥} ⇒ d(u[Hd[I ← ⊥]], s), 4 
d(u[Hd[I ← l]], < m[l ← uninitInt], i, o >)), 5 
d(u[Hd[I ← redef]], s) 6 
where s = < m, i, o > ;  l  = alloc(m). 7 

D[I: Boolean] u s d  = Hd(u)[I]?{udef} ⇒ 8 
(l ?{⊥} ⇒ d(u[Hd[I ← ⊥]], s), 9 
d(u[Hd[I ← l]], < m[l ← uninitBool], i, o >)), 10 
d(u[Hd[I ← redef]], s) 11 
where s = < m, i, o > ;  l  = alloc(m). 12 

D[I = T] u s d  = E[T]  u s k  13  
where k(r, t) = Hd(u)[I]?{udef} ⇒ 14 

d(u[Hd[I ← r]], t), d(u[Hd[I ← redef]], t). 15 

The expression T (line 13) can be allowed to contain function calls. If evalua­
tion of T faults, E will simply return ⊥; otherwise, it executes the declaration 
continuation (d) with the value that T returns and a possibly updated state. 
Other definitions are given in Figure 10.79. 

Figure 10.79 D[ε] u s d  = d(u,  s)  1  
D[Def1 Def2] u s d  = D[Def1] u s d′  2  

where d′(v, t) = D[Def2] v t d.  3  

S[begin Def St end] u s c  = D[Def] <  ue,  u  >  s d  4  
where d(v, t) = S[St] v t c′;  5  
c′(t′)  = c(t′[Hd[Free(Hd(s)) ← unalloc]]). 6 

3.22 Procedures, Functions, and 
Parameters 

I now define routines and parameters in the new continuation notation. 
First, declarations need to be handled, using D, DC, FP, and FC (formal param­
eter continuation), as shown in Figure 10.80. 

Figure 10.80 FC = Parms → Ans 1 

FP: Fparms → Parms → FC → Ans 2 

FP[I : integer] p f  = f(append(p, <<  0,  I > ,  eol >)) 3 
FP[I : Boolean] p f  = f(append(p, <<  false, I > ,  eol >)) 4 
FP[ε] p f  = f(p)  5  
FP[Formals1 Formals2] p f  = FP[Formals1] p f′  6  

where f′(p′) = FP[Formals2]p′f. 7 

Procedures are generalizations of statements, and, like all statements, take a 
statement continuation as a parameter. This continuation is essentially the 
return point of the procedure; see Figure 10.81. 
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Figure 10.81 Proc = (U → State → SC → Ans) ⊗ Loc ⊗ Parms 1 

D[procedure I (Formals); Def St] u s d  =  2  
FP[Formals]eol f, 3 
where f(p) = Hd(u)[I]?{udef} ⇒ 4 

(l ?{⊥} ⇒ d(u[Hd[I ← ⊥]], s), 5 
d(uu, <  m[l  ← uninitInt], i, o >)), 6 
d(u[Hd[I ← redef]], s); 7 

s = < m, i, o > ;  l  = alloc(m); uu = u[Hd[I ←< r, l, p >]]; 8 
r(v, t, cc) = D[Def] <  v,  uu > t d′;  9  
d′(v′,  t′)  = S[St]v′t′c′; 10 
c′(tt) = cc(tt[Hd[Free(t) ← unalloc]]). 11 

Since functions are a generalization of expressions, they will now include an 
expression continuation that represents the mechanism through which the 
function’s value is returned, as in Figure 10.82. 

Figure 10.82 Func = (U → State → EC → Ans) ⊗ Loc ⊗ Parms 1 

D[Integer function(Formals) I; St; return(T)] u s d  =  2  
FP[Formals]eol f, 3 
where f(p) = Hd(u)[I]?{udef} ⇒ 4 

(l ?{⊥} ⇒ d(u[Hd[I ← ⊥]], s), 5 
d(uu, <  m[l  ← uninitInt], i, o >)), 6 
d(u[Hd[I ← redef]], s); 7 

s = < m, i, o > ;  l  = alloc(m); uu = u[Hd[I ←< r, l, p >]]; 8 
r(u′, s′, ec) = D[Def] <  u′,  uu > s′d′; 9 
d′(v, t) = S[St] v t c;  10 
c(v′, t′) = E[T]v′t′k; 11 
k(r, tt) = r?N ⇒ ec(r, tt[Hd[Free(s′) ← unalloc]]), ⊥. 12 

D[Boolean function(Formals) I; St; return(T)] u s d  =  13 
FP[Formals]eol f, 14 
where f(p) = Hd(u)[I]?{udef} ⇒ 15 

(l ?{⊥} ⇒ d(u[Hd[I ← ⊥]], s), 16 
d(uu, <  m[l  ← uninitInt], i, o >)), 17 
d(u[Hd[I ← redef]], s); 18 

s = < m, i, o > ;  l  = alloc(m); uu = u[Hd[I ←< r, l, p >]]; 19 
r(u′, s′, ec) = D[Def] <  u′,  uu > s′ d′; 20 
d′(v, t) = S[St] v t c;  21 
c(v′, t′) = E[T]v′ t′ k; 22 
k(r, tt) = r?Bool ⇒ ec(r, tt[Hd[Free(s′) ← unalloc]]), ⊥. 23 
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It is time to consider actual-parameter evaluation and procedure and function 
calls; see Figure 10.83. AC is the semantic domain of actual-parameter contin­
uations. 

Figure 10.83 AC = UU → Parms → Ans 1


AP: Aparms → UU → Parms → State → AC → Ans 2


AP[I] u p s a  = v?Loc ∧ p ≠ eol ∧ 3

((Hd(pp)?N ∧ m(v)?N ⊕ uninitInt) ∨ 4

(Hd(pp)?Bool ∧ m(v)?Bool ⊕ uninitBool)) ⇒ 5

a(u[Hd[Tl(pp) ← v]], Tl(p)), ⊥ 6

where v = Find(Tl(u))[I]; pp = Hd(p); s = < m, i, o > .  7 


AP[ε] u p s a  = a(u,  p)  8 

AP[Actuals1 Actuals2] u p s a  =  9 


AP[Actuals1] u p s a′  10

where a′(u′, p′) = AP[Actuals2]u′ p′ s a.  11


S[call I(Actuals)] u s c  = v?Proc ⇒ 12

AP[Actuals] <  ue,  u  >  r sa,  ⊥  13

where a(u′, q) = (q = eol) ⇒ 14


lim pi(s, Hd(u′)), ⊥; 15

i → ∞ 

v = Find(u)[I] = < f, l, r > ;  16

p0(s′, w) = ⊥;  17

pi+1(s′, w) = m(l) = uninitInt ⇒ 18


f w  <  m[l  ← i], I, O > c1, 19

m(l) >  0  ⇒ f w  <  m[l  ← m(l)  − 1], I, O > c2, ⊥; 20


s′ =<  m,  I,  O  > ;  21

c1(t1) = c(t1[Hd[l <- uninitInt]]); 22

c2(t2) = c(t2[Hd[l <- m(l)]]). 23


E[eval I (Actuals)] u s k  = v?Func ⇒ 24

AP[Actuals] <  ue,  u  >  r sa,  ⊥  25

where a(u′, q) = (q = eol) ⇒ 26


lim pi(s, Hd(u′)), ⊥; 27

i → ∞ 

v = Find(u)[I] = < f, l, r > ;  28

p0(s′, w) = ⊥;  29

pi+1(s′, w) = m(l) = uninitInt ⇒ 30


f w  <  m[l  ← i], I, O > k1, 31

m(l) >  0  ⇒ f w  <  m[l  ← m(l)  − 1], I, O > k2, ⊥; 32


s′ = <  m,  I,  O  > ;  33

k1(r1, t1) = k(r1, t1[Hd[l ← uninitInt]]); 34

k2(r2, t2) = k(r1, t2[Hd[l ← m(l)]]). 35


Finally, I redefine the M function using continuations, as shown in Figure 
10.84. 
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Figure 10.84 M: Pr → File → Ans 1 

M[program Def St end] i = 2 
D[Def] <  ue,  u0  > <  m0,  i,  eof > d 3 
where d(v, t) = S[St] v tc;  c(t′)  = Tl(Tl(t′)). 4 

3.23 Flow of Control 
Now that I have the machinery of continuations in place, I can illustrate how 
to implement statements that alter the flow of control. I begin with the stop 
statement, which forces immediate termination of execution. Figure 10.85 
shows the semantic function. 

Figure 10.85 S[stop] u s c  = Tl(Tl(s)) 

Stop returns the output file component of the current state. It avoids the nor­
mal flow of control by ignoring its continuation parameter. 

A more interesting illustration is break, which I will use to exit any of the 
structured statements in the language (if, do, while, begin-end). I will let 
any of these statements be optionally labeled with an identifier, which will 
follow normal scoping rules. I define break I to cause execution to immedi­
ately break out of the structure labeled with I and then to continue execution 
with the normal successor to the labeled statement. If I isn’t declared as a la­
bel in the scope of the break, the statement produces an error value. 

I extend V, the domain of environment contents, to include statement con­
tinuations: 

U = Id → V 
V = N ⊕ Bool ⊕ Loc ⊕ Proc ⊕ Func ⊕ SC ⊕ {⊥}⊕{udef}⊕{redef} 

The meaning of a label on a structured statement will be the continuation as­
sociated with that statement. Figure 10.86 adds definitions for structured 
statements with labels (the definitions for unlabeled statements are, of 
course, retained). 

Figure 10.86 S[I: if T thenSt1 else St2] u s c  = E[T]  uu s k 1 
where k(r, t) = r?Bool ⇒ (r ⇒ S[St1] uu t c, S[St2] uu t c), ⊥; 2 
uu = Hd(u)[I]?{udef} ⇒ u[Hd[I ← c′]], u[Hd[I ← redef]]; 3 
c′(t′) = c(t′[Hd[Free(Hd(s)) ← unalloc]]). 4 

S[I: do T times St] u s c  = E[T]  uu s k 5 
where k(r, t) = r?N ⇒ vm(t), ⊥; 6 
m = max(0, t); v0(s′) = c(s′); 7 
vi+1(s′) = S[St] uu s′ vi; 8 
uu = Hd(u)[I]?{udef} ⇒ u[Hd[I ← c′]], u[Hd[I ← redef]]; 9 
c′(t′) = c(t′[Hd[Free(Hd(s)) ← unalloc]]). 10 

S[I: while T do St] u s c  =  lim pi(s) 11 
i → ∞ 

where p0(s′) = ⊥;  pi+1(s′)  = E[T]  uu s′ ki+1; 12 
ki+1(r, t) = r?Bool ⇒ (r ⇒ S[St] uu t pi, c(t)), ⊥; 13 
uu = Hd(u)[I]?{udef} ⇒ u[Hd[I ← c′]], u[Hd[I ← redef]]; 14 
c′(t′) = c(t′[Hd[Free(Hd(s)) ← unalloc]]); 15 
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S[I: begin Def St end] u s c  =  16 
D[Def] <  ue,  uu > s d,  17 
where d(v, t) = S[St] v t c′;  18 
c′(t′) = c(t′[Hd[Free(Hd(s)) ← unalloc]]); 19 
uu = Hd(u)[I]?{udef} ⇒ u[Hd[I ← c′]], u[Hd[I ← redef]]. 20 

Break looks up its identifier, and if it is bound to a statement continuation, it 
executes that continuation in the current state; see Figure 10.87. 

Figure 10.87 S[break I] u s c  =  v?SC ⇒ v(s), ⊥ 1 
where v = Find(u)[I]. 2 

3.24 Summary of Syntactic and Semantic 
Domains and Semantic Functions 

The domains used in the denotational definitions in this chapter have been 
upgraded during the progression of examples. Figure 10.88 lists the most re­
cent meanings. 

Figure 10.88 Syntactic domains 1 

BinLit: binary literals; nonterminals BN, Seq 2 
Exp: expressions; nonterminal T 3 
Id: identifiers; nonterminal I 4 
Pr: programs; nonterminal P 5 
Decls: declarations; nonterminal Def 6 
Stm: statements; nonterminal St 7 

Semantic domains 8 

Basic: 9 
N = {0, 1, 2, ...} (natural numbers) 10 
Bool = {false, true} (Boolean values) 11 

Complex: 12 
Loc = {0, 1, . . .  } -- finite domain of memory locations 13 
Mem = Loc → N ⊕ Bool ⊕ {uninitInt} ⊕ {uninitBool} ⊕ 14 

{unalloc} -- memory location 15 
File = (N ⊕ Bool ⊕ {eof}) *  -- contents of a file 16 
R = N ⊕ Bool ⊕ {⊥} -- value of an expression 17 
RR = State ⊗ (N ⊕ Bool ⊕ {⊥}) 18 

-- result of function 19 
State = Mem ⊗ File ⊗ File -- program state 20 
Ans = File ⊕ {⊥} -- program result 21 
V = N ⊕ Bool ⊕ Loc ⊕ Proc ⊕ Func ⊕ SC ⊕ {⊥} ⊕ {udef} ⊕ 22 

{redef} -- value of an identifier 23 
U = Id → V -- environment 24 
UU = U * -- sequence of environments 25 
Proc = (U → State → SC → Ans) ⊗ Loc ⊗ Parms 26 

-- procedure 27 
Func = (U → State → EC → Ans) ⊗ Loc ⊗ Parms 28 

-- function 29 
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Parms = ((N ⊕ Bool) ⊗ Id ⊕ eol) *  -- parameters 30 
SC = State → Ans -- statement continuation 31 
EC = (N ⊕ Bool) → State → Ans -- expression contin. 32 
DC = UU → State → Ans -- declaration continuation 33 
AC = UU → Parms → Ans -- actual parameter contin. 34 
FC = Parms → Ans -- formal parameter continuation 35 

Semantic functions 36 

L: Id → V -- lookup 37 
E: Exp → UU → State → EC → Ans -- expression 38 
S: Stm → UU → State → SC → Ans -- statement 39 
D: Decls → UU → State → DC → Ans -- declaration 40 
M: Pr → File → Ans -- program 41 
FP: Fparms → Parms → Parms -- formal parameters 42 
AP: Aparms → UU → Parms → State → AC → Ans 43 

-- actual parameters 44 

4 ◆ FINAL COMMENTS 
This long (and somewhat tedious) exercise shows that it is possible to specify 
exactly what a programming language designer allows in the syntax and 
means by the constructs of the language. Such a specification can guide the 
designer (to make sure that all cases are properly covered), the implementer 
(to make sure that the compiler and runtime support live up to the specifica­
tions), and the programmer (to make sure that language constructs are used 
as intended). 

Formal specification can also be used to evaluate the clarity of a language. 
If the axiomatic semantics of a construct are hard to build and hard to under­
stand, then perhaps the construct itself is hard to understand. For example, 
a multiple assignment statement has this structure: 

x, y, z := 13, 16, x + 3; 

Three assignments are made simultaneously. However, x + 3  on the right­
hand side depends on x, which is on the left-hand side. The order of evalua­
tion makes a difference. It is not easy in axiomatic semantics to specify the 
rule for multiple assignment for this reason. Perhaps that complexity is a 
symptom that multiple assignment is itself an unclear concept. 

As my brief forays into ML have shown, the specification can even be writ­
ten in a programming language so that it can be checked for syntax and 
meaning. (Have you really read all the specifications? Did you find any mis­
takes?) Such a specification can even be used to interpret programs (written 
in abstract syntax, of course), more as a way of debugging the specification 
than understanding the meaning of the programs. 

However, the fact that the specification is in a language, albeit a program­
ming language, seems to reduce the question of formally specifying one lan­
guage (the target) to specifying another (ML, for example). It requires that 
someone who wants to understand the target language specification needs to 
learn and understand some fairly complex notions, such as domain equations. 
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There is no guarantee that every error case has been dealt with, and the no­
tation is complex enough that such an omission would probably pass unno­
ticed. 

The fact that I have succeeded in denoting standard features of a pro­
gramming language gives me no particular confidence that I could handle 
such constructs as CLU coroutines (Chapter 2), ML higher-level functions 
(Chapter 3), Prolog resolution (Chapter 8), Post guardians (Chapter 6), 
SNOBOL patterns (Chapter 9), or Modula monitors (Chapter 7). An enor­
mous amount of cleverness is required to build denotational semantic defini­
tions. As you have seen, introducing a single concept into a language is likely 
to modify the definitions for everything else. A typical modification involves 
making functions like E even higher-order. The result is anything but 
straightforward. 

Several excellent books deal with programming language semantics. I can 
especially recommend Tennent [Tennent 81] and Pagan [Pagan 81]. 

EXERCISES 

Review Exercises 
10.1	 Describe the language (that is, the set of strings) generated by this BNF 

grammar: 

S ::=  ( S ) S |  ε  

10.2	 Show a different BNF grammar that generates exactly the same lan­
guage as the grammar in Exercise 10.1. 

10.3 Write BNF productions for if statements. 

10.4	 An ambiguous grammar is one that generates strings that have more 
than one parse tree. Is the grammar of Figure 10.89 ambiguous? Does 
it have any other problems? 

Figure 10.89 Expression ::= 1 
Expression + Expression | 2 
Expression * Expression | 3 
INTEGER 4 

10.5 Prove the program in Figure 10.90 correct. 

Figure 10.90	 {a < 3} 1 
if a < 4  then x := 2  else x := 10  end; 2 
{x = 2} 3 
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10.6	 Compute: 

wp(if	a < 4  then x := 2  else x := 10  end, x = 2)  

Challenge Exercises 
10.7	 In Figure 10.43 (page 330), I specify that redefinition of an identifier has 

no effect. Show how to modify the example so that redefinition hides 
the previous definition. 

10.8	 In line 25 of Figure 10.46 (page 333), why check that c is a member of 
U? What else could it be? 

10.9	 On page 331, I introduce redef. Why not just use udef for this pur­
pose? 

10.10 How would you code the semantics of a while loop (see Figure 10.52, 
page 337) in ML? 
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