PRACTICAL

TEXT MINING
WITH PERL

ROGER BILISOLY

$)WILEY

Practical Text Mining
With Perl

Roger Bilisoly
Department of Mathematical Sciences
Central Connecticut State University

WILEY
A JOHN WILEY & SONS, INC., PUBLICATION

Practical Text Mining
With Perl

WILEY SERIES ON METHODS AND APPLICATIONS
IN DATA MINING

Series Editor: Daniel T. Larose

Discovering Knowledge in Data: An Introduction to Data Mining ¢ Daniel T. LaRose

Data-Mining on the Web: Uncovering Patterns in Web Content, Structure, and Usage ¢ Zdravko
Markov and Daniel Larose

Data Mining Methods and Models ¢ Daniel Larose
Practical Text Mining with Perl « Roger Bilisoly

Practical Text Mining
With Perl

Roger Bilisoly
Department of Mathematical Sciences
Central Connecticut State University

WILEY
A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2008 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under
Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,
Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at
www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-
6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or completeness of
the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a
particular purpose. No warranty may be created or extended by sales representatives or written sales materials.
The advice and strategies contained herein may not be suitable for your situation. You should consult with a
professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any
other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-
3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic format. For information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Bilisoly, Roger, 1963—

Practical text mining with Perl / Roger Bilisoly.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-470-17643-6 (cloth)

1. Data mining. 2. Text processing (Computer science) 3. Perl (Computer program language) I. Title.
QA76.9.D343.B45 2008

005.74—dc22 2008008144

Printed in the United States of America.

10987654321

http://www.wiley.com/go/permission
http://www.wiley.com
http://www.copyright.com.

To my Mom and Dad & all
their cats.

This Page Intentionally Left Blank

Contents

List of Figures Xiii
List of Tables Y
Preface xvii
Acknowledgments xxiii

1 Introduction 1
1.1 Overview of this Book 1
1.2 Text Mining and Related Fields 2

1.2.1 Chapter 2: Pattern Matching 2
1.2.2 Chapter 3: Data Structures 3
1.2.3 Chapter 4: Probability 3
1.2.4 Chapter 5: Information Retrieval 3
1.2.5 Chapter 6: Corpus Linguistics 4
1.2.6 Chapter 7: Multivariate Statistics 4
1.2.7 Chapter 8: Clustering 5
1.2.8 Chapter 9: Three Additional Topics 5
1.3 Advice for Reading this Book 5

vit

viii

CONTENTS

Text Patterns

2.1
2.2

2.3

24

2.5

2.6

27

2.8

Introduction

Regular Expressions

2.2.1 First Regex: Finding the Word Cat

222 Character Ranges and Finding Telephone Numbers
2.2.3 Testing Regexes with Perl

Finding Words in a Text

2.3.1 Regex Summary

2.3.2 Nineteenth-Century Literature

2.3.3 Perl Variables and the Function split

2.3.4 Match Variables

Decomposing Poe’s “The Tell-Tale Heart" into Words
2.4.1 Dashes and String Substitutions

24.2 Hyphens

2.4.3 Apostrophes

A Simple Concordance

2.5.1 Command Line Arguments

2.5.2 Writing to Files

First Attempt at Extracting Sentences

2.6.1 Sentence Segmentation Preliminaries

2.6.2 Sentence Segmentation for A Christmas Carol
2.6.3 Leftmost Greediness and Sentence Segmentation
Regex Odds and Ends

2.7.1 Match Variables and Backreferences

2.7.2 Regular Expression Operators and Their Output
273 Lookaround

References

Problems

Quantitative Text Summaries

31
32
33
34
35

3.6

37

Introduction

Scalars, Interpolation, and Context in Perl
Arrays and Context in Perl

Word Lengths in Poe’s “The Tell-Tale Heart"
Arrays and Functions

3.5.1 Adding and Removing Entries from Arrays
3.52 Selecting Subsets of an Array

3.53 Sorting an Array

Hashes

3.6.1 Using a Hash

Two Text Applications

o o0 3 N

10
12
15
15
17
17
20
21
23
24
27
28
33
33
34
35
37
41
46
47
48
50
52
52

59

59
59
60
64
66
66
69
69
73
74
77

CONTENTS

3.7.1 Zipf’s Law for A Christmas Carol
3.7.2 Perl for Word Games
3.7.2.1 An Aid to Crossword Puzzles
3722 Word Anagrams
3723 Finding Words in a Set of Letters
3.8 Complex Data Structures
3.8.1 References and Pointers
3.8.2 Arrays of Arrays and Beyond
3.83 Application: Comparing the Words in Two Poe Stories
3.9 References
3.10 First Transition
Problems

Probability and Text Sampling

4.1 Introduction
4.2 Probability
4.2.1 Probability and Coin Flipping
4.2.2 Probabilities and Texts
42.2.1 Estimating Letter Probabilities for Poe and Dickens
4222 Estimating Letter Bigram Probabilities
4.3 Conditional Probability
4.3.1 Independence
44 Mean and Variance of Random Variables
44.1 Sampling and Error Estimates
4.5 The Bag-of-Words Model for Poe’s “The Black Cat"
4.6 The Effect of Sample Size
4.6.1 Tokens vs. Types in Poe’s “Hans Pfaall”
4.7 References
Problems

Applying Information Retrieval to Text Mining

5.1 Introduction
5.2 Counting Letters and Words
5.2.1 Counting Letters in Poe with Perl
5.22 Counting Pronouns Occurring in Poe
5.3 Text Counts and Vectors
5.3.1 Vectors and Angles for Two Poe Stories
5.3.2 Computing Angles between Vectors
53.2.1 Subroutines in Perl
5322 Computing the Angle between Vectors
54 The Term-Document Matrix Applied to Poe

ix

77
83
83
84
85
86
87
90
92
96
97
97

105

105
105
106
108
109
112
115
117
118
120
123
124
124
128
129

133

133
134
134
136
138
139
140
140
143
143

CONTENTS

5.5 Matrix Multiplication
5.5.1 Matrix Multiplication Applied to Poe
5.6 Functions of Counts
5.7 Document Similarity
5.7.1 Inverse Document Frequency
5.7.2 Poe Story Angles Revisited
5.8 References
Problems

Concordance Lines and Corpus Linguistics

6.1 Introduction

6.2 Sampling
6.2.1 Statistical Survey Sampling
6.2.2 Text Sampling

6.3 Corpus as Baseline

6.3.1 Function vs. Content Words in Dickens, London, and Shelley

6.4 Concordancing
6.4.1 Sorting Concordance Lines

6.4.1.1 Code for Sorting Concordance Lines
6.42 Application: Word Usage Differences between London and

Shelley

6.4.3 Application: Word Morphology of Adverbs

6.5 Collocations and Concordance Lines
6.5.1 More Ways to Sort Concordance Lines

6.5.2 Application: Phrasal Verbs in The Call of the Wild
6.5.3 Grouping Words: Colors in The Call of the Wild

6.6 Applications with References
6.7 Second Transition
Problems

Multivariate Techniques with Text

7.1 Introduction
7.2 Basic Statistics
7.2.1 z-Scores Applied to Poe

7.2.2 Word Correlations among Poe’s Short Stories

7.2.3 Correlations and Cosines
7.24 Correlations and Covariances
7.3 Basic linear algebra
7.3.1 2 by 2 Correlation Matrices
7.4 Principal Components Analysis
7.4.1 Finding the Principal Components

147
148
150
152
153
154
157
157

161

161
162
162
163
164
168
169
170
171

172
176
179
179
181
184
185
187
188

191

191
192
193
195
199
201
202
202
205
206

7.5

7.6

CONTENTS

7.4.2 PCA Applied to the 68 Poe Short Stories

7.43 Another PCA Example with Poe’s Short Stories
74.4 Rotations

Text Applications

7.5.1 A Word on Factor Analysis

Applications and References

Problems

8 Text Clustering

8.1
8.2

8.3

8.4
8.5

Introduction

Clustering

8.2.1 Two-Variable Example of k-Means

8.2.2 k-Means with R

8.2.3 He versus She in Poe’s Short Stories

8.2.4 Poe Clusters Using Eight Pronouns

8.2.5 Clustering Poe Using Principal Components
8.2.6 Hierarchical Clustering of Poe’s Short Stories
A Note on Classification

8.3.1 Decision Trees and Overfitting

References

Last Transition

Problems

9 A Sample of Additional Topics

9.1
9.2

9.3
9.4

9.5

Introduction

Perl Modules

9.2.1 Modules for Number Words

9.2.2 The StopWords Module

9.2.3 The Sentence Segmentation Module
9.2.4 An Object-Oriented Module for Tagglng
9.2.5 Miscellaneous Modules

Other Languages: Analyzing Goethe in German
Permutation Tests

9.4.1 Runs and Hypothesis Testing

9.4.2 Distribution of Character Names in Dickens and London
References

Appendix A: Overview of Perl for Text Mining

Al

A2

Basic Data Structures
A.1.1 Special Variables and Arrays
Operators

xi

206
209
209
211
211
211
212

219

219
220
220
223
224
229
230
234
235
235
236
236
236

243

243
243
244
245
245
247
248
248
251
252
254
258

259
259
262
263

xii CONTENTS

A3
A4
A5

Branching and Looping
A Few Perl Functions
Introduction to Regular Expressions

Appendix B: Summary of R used in this Book

B.1

B.2

References

Index

Basics of R

B.1.1 Data Entry

B.1.2 Basic Operators
B.1.3 Matrix Manipulation
This Book’s R Code

266
270
271

275
275
276
277
278
279

283

291

List of Figures

3.1

4.1
4.2
43

44

4.5

4.6

4.7

Log(Frequency) vs. Log(Rank) for the words in Dickens’s A Christmas
Carol.

Plot of the running estimate of the probability of heads for 50 flips.
Plot of the running estimate of the probability of heads for 5000 flips.

Histogram of the proportions of the letter e in 68 Poe short stories based
on table 4.1,

Histogram and best fitting normal curve for the proportions of the letter
e in 68 Poe short stories.

Plot of the number of types versus the number of tokens for “The
Unparalleled Adventures of One Hans Pfaall.” Data is from program 4.5.
Figure adapted from figure 1.1 of Baayen [6] with kind permission
from Springer Science and Business Media and the author.

Plot of the mean word frequency against the number of tokens for
“The Unparalleled Adventures of One Hans Pfaall.” Data is from
program 4.5. Figure adapted from figure 1.1 of Baayen [6] with kind
permission from Springer Science and Business Media and the author.

Plot of the mean word frequency against the number of tokens for “The
Unparalleled Adventures of One Hans Pfaall" and “The Black Cat."
Figure adapted from figure 1.1 of Baayen [6] with kind permission
from Springer Science and Business Media and the author.

84
109
110

120

122

126

127

128

xiii

xiv

LIST OF FIGURES

5.1

52

5.3

7.1

7.2

8.1

8.2

8.3

8.4
8.5
8.6

8.7

8.8

8.9

8.10

8.11
8.12

8.13

9.1

9.2

9.3

The vector (4,3) makes a right triangle if a line segment perpendicular
to the x-axis is drawn to the x-axis.

Comparing the frequencies of the word the (on the x-axis) against city
(on the y-axis). Note that the y-axis is not to scale: it should be more
compressed.

Comparing the logarithms of the frequencies for the words the (on the
x-axis) and city (on the y-axis).

Plotting pairs of word counts for the 68 Poe short stories.

Plots of the word counts for the versus of using the 68 Poe short stories.

A two variable data set that has two obvious clusters.

The perpendicular bisector of the line segment from (0,1) to (1,1)
divides this plot into two half-planes. The points in each form the two
clusters.

The next iteration of k-means after figure 8.2. The line splits the data
into two groups, and the two centroids are given by the asterisks.

Scatterplot of heRate against sheRate for Poe’s 68 short stories.
Plot of two short story clusters fitted to the heRate and sheRate data.

Plots of three, four, five, and six short story clusters fitted to the heRate
and sheRate data.

Plots of two short story clusters based on eight variables, but only
plotted for the two variables heRate and sheRate.

Four more plots showing projections of the two short story clusters
found in output 8.7 onto two pronoun rate axes.

Eight principal components split into two short story clusters and
projected onto the first two PCs.

A portion of the dendrogram computed in output 8.11, which shows
hierarchical clusters for Poe’s 68 short stories.

The plot of the Voronoi diagram computed in output 8.12.

All four plots have uniform marginal distributions for both the x and
y-axes. For problem 8.4.

The dendrogram for the distances between pronouns based on Poe’s 68
short stories. For problem 8.5.

Histogram of the numbers of runs in 100,000 random permutations of
digits in equation 9.1.

Histogram of the runs of the 10,000 permutations of the names Scrooge
and Marley as they appear in A Christmas Carol.

Histogram of the runs of the 10,000 permutations of the names Francois
and Perrault as they appear in The Call of the Wild.

141

151

152

198

199

220

221

222
226
227

228

230

231

233

234
238

240

241

254

256

257

List of Tables

2.1

22
23

24
25
2.6
2.7
2.8
3.1
4.1

4.2

4.3

Telephone number formats we wish to find with a regex. Here d stands
for a digit O through 9. 11

Telephone number input to test regular expression 2.2. 14

Summary of some of the special characters used by regular expressions
with examples of strings that match. 16

Removing punctuation: a sample of five mistakes made by program 2.4. 23

Some values of the Perl variable $/ and their effects. 31
A variety of ways of combining two short sentences. 35
Sentence segmentation by program 2.8 fails for this sentence. 46
Defining true and false in Perl. 48
Comparison of arrays and hashes in Perl. 73

Proportions of the letter e for 68 Poe short stories, sorted smallest to
largest. 119

Two intervals for the proportion of e’s in Poe’s short stories using
table 4.1. 121

Counts of four-letter words satisfying each pair of conditions. For
problem 4.5. 130

XV

XVi CONTENTS

5.1 Character counts for four Poe stories combined. Computed by

program 5.1. 134
52 Pronoun counts from program 5.2 and code sample 5.1 for 4 Poe stories. 144
6.1 Character counts for the EnronSent email corpus. 165
6.2 Twenty most frequent words in the EnronSent email corpus, Dickens’s

A Christmas Carol, London’s The Call of the Wild, and Shelley’s

Frankenstein using code sample 6.1. 168
6.3 Eight phrasal verbs using the preposition up. 169
6.4 First 10 lines containing the word body in The Call of the Wild. 175
6.5 First 10 lines containing the word body in Frankenstein. 175

9.1 Letter frequencies of Dickens’s A Christmas Carol, Poe’s “The Black

Cat," and Goethe’s Die Leiden des jungen Werthers. 249
9.2 Inflected forms of the word the in Goethe’s Die Leiden des jungen

Werthers. 251
9.3 Counts of the six forms of the German word for the in Goethe’s Die

Leiden des jungen Werthers. 251
Al A few special variables and their use in Perl. 263
A2 String functions in Perl with examples. 270
A3 Array functions in Perl with examples. 271
A4 Hash functions in Per] with examples 271
AS Some special characters used in regexes as implemented in Perl. 273
A6 Repetition syntax in regexes as implemented in Perl. 273
B.1 Data in the file test.csv. 276
B.2 R functions used with matrices. 280
B3 R functions for statistical analyses. 281
B.4 R functions for graphics. 281

B.S Miscellaneous R functions. 282

Preface

What This Book Covers

This book introduces the basic ideas of text mining, which is a group of techniques that
extracts useful information from one or more texts. This is a practical book, one that focuses
on applications and examples. Although some statistics and mathematics is required, it is
kept to a minimum, and what is used is explained.

This book, however, does make one demand: it assumes that you are willing to learn
to write simple programs using Perl. This programming language is explicitly designed to
work with text. In addition, it is open-source software that is available over the Web for
free. That is, you can download the latest full-featured version of Perl right now, and install
it on all the computers you want without paying a cent.

Chapters 2 and 3 give the basics of Perl, including a detailed introduction to regular
expressions, which is a text pattern matching methodology used in a variety of programming
languages, not just Perl. For each concept there are several examples of how to use it to
analyze texts. Initial examples analyze short strings, for example, a few words or a sentence.
Later examples use text from a variety of literary works, for example, the short stories of
Edgar Allan Poe, Charles Dickens’s A Christmas Carol, Jack London’s The Call of the Wild,
and Mary Shelley’s Frankenstein. All the texts used here are part of the public domain, so
you can download these for free, too. Finally, if you are interested in word games, Perl plus
extensive word lists are a great combination, which is covered in chapter 3.

Chapters 4 through 8 each introduce a core idea used in text mining. For example,
chapter 4 explains the basics of probability, and chapter 5 discusses the term-document
matrix, which is an important tool from information retrieval.

xvii

xviii PREFACE

This book assumes that you want to analyze one or more texts, so the focus is on the
practical. All the techniques in this book have immediate applications. Moreover, learning
a minimal amount of Perl enables you to modify the code in this book to analyze the texts
that interest you.

The level of mathematical knowledge assumed is minimal: you need to know how to
count. Mathematics that arises for text applications is explained as needed and is kept to
the minimum to do the job at hand. Although most of the techniques used in this book were
created by researchers knowledgeable in math, a few basic ideas are all that are needed to
read this book.

Although I am a statistician by training, the level of statistical knowledge assumed is
also minimal. The core tools of statistics, for example, variability and correlations, are
explained. It turns out that a few techniques are applicable in many ways.

The level of prior programming experience assumed is again minimal: Perl is explained
from the beginning, and the focus is on working with text. The emphasis is on creating
short programs that do a specific task, not general-purpose text mining tools. However, it is
assumed that you are willing to put effort into learning Perl. If you have never programmed
in any computer language at all, then doing this is a challenge. Nonetheless, the payoff is
big if you rise to this challenge.

Finally, all the code, output, and figures in this book are produced with software that
is available from the Web at no cost to you, which is also true of all the texts analyzed.
Consequently, you can work through all the computer examples with no additional costs.

What Is Text Mining?

The text in text mining refers to written language that has some informational content.
For example, newspaper stories, magazine articles, fiction and nonfiction books, manuals,
blogs, email, and online articles are all texts. The amount of text that exists today is vast,
and it is ever growing.

Although there are numerous techniques and approaches to text mining, the overall goal
is simple: it discovers new and useful information that is contained in one or more text
documents. In practice, text mining is done by running computer programs that read in
documents and process them in a variety of ways. The results are then interpreted by
humans.

Text mining combines the expertise of several disciplines: mathematics, statistics, prob-
ability, artificial intelligence, information retrieval, and databases, among others. Some of
its methods are conceptually simple, for example, concordancing where all instances of
a word are listed in its context (like a Bible concordance). There are also sophisticated
algorithms such as hidden Markov models (used for identifying parts of speech). This book
focuses on the simpler techniques. However, these are useful and practical nonetheless,
and serve as a good introduction to more advanced text mining books.

This Book’s Approach to Text Mining

This book has three broad themes. First, text mining is built upon counting and text pattern
matching. Second, although language is complex, some aspects of it can be studied by
considering its simpler properties. Third, combining computer and human strengths is a
powerful way to study language. We briefly consider each of these.

PREFACE xix

First, text pattern matching means identifying a pattern of letters in a document. For
example, finding all instances of the word cat requires using a variety of patterns, some of
which are below.

cat Cat cats Cats cat’s Cat’s cats’ cat, cat. cat!

It also requires rejecting words like catastrophe or scatter, which contain the string
cat, but are not otherwise related. Using regular expressions, this can be explained to a
computer, which is not daunted by the prospect of searching through millions of words.
See section 2.2.1 for further discussion of this example and chapter 2 for text patterns in
general.

It turns out that counting the number of matches to a text pattern occurs again and again
in text mining, even in sophisticated techniques. For example, one way to compute the
similarity of two text documents is by counting how many times each word appears in both
documents. Chapter 5 considers this problem in detail.

Second, while it is true that the complexity of language is immense, some information
about language is obtainable by simple techniques. For example, recent language reference
books are often checked against large text collections (called corpora). Language patterns
have been both discovered and verified by examining how words are used in writing and
speech samples. For example, big, large, and great are similar in meaning, but the exami-
nation of corpora shows that they are not used interchangeably. For example, the following
sentences: “he has big feet," “she has large feet,” and “she has great insight” sound good,
but “he has big insight" or “she has large insight" are less fluent. In this type of analysis, the
computer finds the examples of usage among vast amounts of text, and a human examines
these to discover patterns of meanings. See section 6.4.2 for an example.

Third, as noted above, computers follow directions well, and they are untiring, while
humans are experts at using and interpreting language. However, computers have limited
understanding of language, and humans have limited endurance. These facts suggest an
iterative and collaborative strategy: the results of a program are interpreted by a human
who, in turn, decides what further computer analyses are needed, if any. This back and
forth process is repeated as many times as is necessary. This is analogous to exploratory data
analysis, which exploits the interplay between computer analyses and human understanding
of what the data means.

Why Use Perl?

This section title is really three questions. First, why use Perl as opposed to an existing
text mining package? Second, why use Perl as opposed to other programming languages?
Third, why use Perl instead of so-called pseudo-code? Here are three answers, respectively.

First, if you have a text mining package that can do everything you want with all the texts
that interest you, and if this package works exactly the way you want it, and if you believe
that your future processing needs will be met by this package, then keep using it. However,
it has been my experience that the process of analyzing texts suggests new ideas requiring
new analyses and that the boundaries of existing tools are reached too soon in any package
that does not allow the user to program. So at the very least, I prefer packages that allow
the user to add new features, which requires a programming language. Finally, learning
how to use a package also takes time and effort, so why not invest that time in learning a
flexible tool like Perl.

XX PREFACE

Second, Perl is a programming language that has text pattern matching (called regular
expressions or regexes), and these are easy to use with a variety of commands. It also has
a vast amount of free add-ons available on the Web, many of which are for text processing.
Additionally, there are numerous books and tutorials and online resources for Perl, so it is
easy to find out how to make it do what you want. Finally, you can get on the Web and
download full-strength Perl right now, for free: no hidden charges!

Larry Wall built Perl as a text processing computer language. Moreover, he studied
linguistics in graduate school, so he is knowledgeable about natural languages, which
influenced his design of Perl. Although many programming languages support text pattern
matching, Perl is designed to make it easy to use this feature.

Third, many books use pseudo-code, which excels at showing the programming logic.
In my experience, this has one big disadvantage. Students without a solid programming
background often find it hard to convert pseudo-code to running code. However, once Perl
isinstalled on a computer, accurate typing is all that is required to run a program. In fact, one
way to learn programming is by taking existing code and modifying it to see what happens,
and this can only be done with examples written in a specific programming language.

Finally, personally, I enjoy using Perl, and it has helped me finish numerous text pro-
cessing tasks. It is easy to learn a little Perl and then apply it, which leads to learning more,
and then trying more complex applications. I use Perl for a text mining class I teach at
Central Connecticut State University, and the students generally like the language. Hence,
even if you are unfamiliar with it, you are likely to enjoy applying it to analyzing texts.

Organization of This Book

After an overview of this book in chapter 1, chapter 2 covers regular expressions in detail.
This methodology is quite powerful and useful, and the time spent learning it pays off in
the later chapters. Chapter 3 covers the data structures of Perl. Often a large number of
linguistic items are considered all at once, and to work with all of them requires knowing
how to use arrays and hashes as well as more complex data structures.

With the basics of Perl in hand, chapter 4 introduces probability. This lays the foundation
for the more complex techniques in later chapters, but it also provides an opportunity to
study some of the properties of language. For example, the distribution of the letters of the
alphabet of a Poe story is analyzed in section 4.2.2.1.

Chapter 5 introduces the basics of vectors and arrays. These are put to good use as
term-document matrices, which is a fundamental tool of information retrieval. Because it
is possible to represent a text as a vector, the similarity of two texts can be measured by the
angle between the two vectors representing the texts.

Corpus linguistics is the study of language using large samples of texts. Obviously this
field of knowledge overlaps with text mining, and chapter 6 introduces the fundamental
idea of creating a text concordance. This takes the text pattern matching ability of regular
expressions, and allows a researcher to compare the matches in a variety of ways.

Text can be measured in numerous ways, which produces a data set that has many
variables. Chapter 7 introduces the statistical technique of principal components analysis
(PCA), which is one way to reduce a large set of variables to a smaller, hopefully easier to
interpret, set. PCA is a popular tool among researchers, and this chapter teaches you the
basic idea of how it works.

Given a set of texts, it is often useful to find out if these can be split into groups such
that (1) each group has texts that are similar to each other and (2) texts from two different

PREFACE xxi

groups are dissimilar. This is called clustering. A related technique is to classify texts into
existing categories, which is called classification. These topics are introduced in chapter 8.

Chapter 9 has three shorter sections, each of which discusses an idea that did not fit in
one of the other chapters. Each of these is illustrated with an example, and each one has
ties to earlier work in this book.

Finally, the first appendix gives an overview of the basics of Perl, while the second
appendix lists the R commands used at the end of chapter 5 as well as chapters 7 and 8. R
is a statistical software package that is also available for free from the Web. This book uses
it for some examples, and references for documentation and tutorials are given so that an
interested reader can learn more about it.

ROGER BILISOLY

New Britain, Connecticut
May 2008

This Page Intentionally Left Blank

Acknowledgments

Thanks to the Department of Mathematical Sciences of Central Connecticut State Univer-
sity (CCSU) for an environment that provided me the time and resources to write this book.
Thanks to Dr. Daniel Larose, Director of the Data Mining Program at CCSU, for encourag-
ing me to develop Stat 527, an introductory course on text mining. He also first suggested
that I write a data mining book, which eventually became this text.

Some of the ideas in chapters 2, 3, and 5 arose as I developed and taught text mining
examples for Stat 527. Thanks to Kathy Albers, Judy Spomer, and Don Wedding for taking
independent studies on text mining, which helped to develop this class. Thanks again to
Judy Spomer for comments on a draft of chapter 2.

Thanks to Gary Buckles and Gina Patacca for their hospitality over the years. In particu-
lar, my visits to The Ohio State University’s libraries would have been much less enjoyable
if not for them.

Thanks to Dr. Edward Force for reading the section on text mining German. Thanks
to Dr. Krishna Saha for reading over my R code and giving suggestions for improvement.
Thanks to Dr. Nell Smith and David LaPierre for reading the entire manuscript and making
valuable suggestions on it.

Thanks to Paul Petralia, senior editor at Wiley Interscience who let me write the book
that I wanted to write.

The notation and figures in my section 4.6.1 are based on section 1.1 and figure 1.1
of Word Fequency Distributions by R. Harald Baayen, which is volume 18 of the “Text,
Speech and Language Technology” series, published in 2001. This is possible with the kind
permission of Springer Science and Business Media as well as the author himself.

xxili

XXiv

Thanks to everyone who has contributed their time and effort in creating the wonderful
assortment of public domain texts on the Web. Thanks to programmers everywhere who
have contributed open-source software to the world.

I would never have gotten to where I am now without the support of my family. This
book is dedicated to my parents who raised me to believe in following my interests wherever
they may lead. To my cousins Phyllis and Phil whose challenges in 2007 made writing a
book seem not so bad after all. In memory of Sam, who did not live to see his name in
print. And thanks to the fun crowd at the West Virginia family reunions each year. See you
this summer!

Finally, thanks to my wife for all the good times and for all the support in 2007 as I spent
countless hours on the computer. Love you!

R.B.

CHAPTER 1

INTRODUCTION

1.1 OVERVIEW OF THIS BOOK

This is a practical book that introduces the key ideas of text mining. It assumes that you
have electronic texts to analyze and are willing to write programs using the programming
language Perl. Although programming takes effort, it allows a researcher to do exactly what
he or she wants to do. Interesting texts often have many idiosyncrasies that defy a software
package approach.

Numerous, detailed examples are given throughout this book that explain how to write
short programs to perform various text analyses. Most of these easily fit on one page, and
none are longer than two pages. In addition, it takes little skill to copy and run code shown
in this book, so even a novice programmer can get results quickly.

The first programs illustrating a new idea use only a line or two of text. However, most of
the programs in this book analyze works of literature, which include the 68 short stories of
Edgar Allan Poe, Charles Dickens’s A Christmas Carol, Jack London’s The Call of the Wild,
Mary Shelley’s Frankenstein, and Johann Wolfgang von Goethe’s Die Leiden des jungen
Werthers. All of these are in the public domain and are available from the Web for free.
Since all the software to write the programs is also free, you can reproduce all the analyses
of this book on your computer without any additional cost.

This book is built around the programming language Perl for several reasons. First,
Perl is free. There are no trial or student versions, and anyone with access to the Web
can download it as many times and on as many computers as desired. Second, Larry Wall
created Perl to excel in processing computer text files. In addition, he has a background in

Practical Text Mining with Perl. By Roger Bilisoly 1
Copyright © 2008 John Wiley & Sons, Inc.

2 INTRODUCTION

linguistics, and this influenced the look and feel of this computer language. Third, there
are numerous additions to Perl (called modules) that are also free to download and use.
Many of these process or manipulate text. Fourth, Perl is popular and there are numerous
online resources as well as books on how to program in Perl. To get the most out of this
book, download Perl to your computer and, starting in chapter 2, try writing and running
the programs listed in this book.

This book does not assume that you have used Perl before. If you have never written any
program in any computer language, then obtaining a book that introduces programming
with Perl is advised. If you have never worked with Perl before, then using the free online
documentation on Perl is useful. See sections 2.8 and 3.9 for some Perl references.

Note that this book is not on Perl programming for its own sake. It is devoted to how to
analyze text with Perl. Hence, some parts of Perl are ignored, while others are discussed in
great detail. For example, process management is ignored, but regular expressions (a text
pattern methodology) is extensively discussed in chapter 2.

As this book progresses, some mathematics is introduced as needed. However, it is
kept to a minimum, for example, knowing how to count suffices for the first four chapters.
Starting with chapter 5, more of it is used, but the focus is always on the analysis of text
while minimizing the required mathematics.

As noted in the preface, there are three underlying ideas behind this book. First, much
text mining is built upon counting and text pattern matching. Second, although language
is complex, there is useful information gained by considering the simpler properties of it.
Third, combining a computer’s ability to follow instructions without tiring and a human’s
skill with language creates a powerful team that can discover interesting properties of text.
Someday, computers may understand and use a natural language to communicate, but for
the present, the above ideas are a profitable approach to text mining.

1.2 TEXT MINING AND RELATED FIELDS

The core goal of text mining is to extract useful information from one or more texts.
However, many researchers from many fields have been doing this for a long time. Hence
the ideas in this book come from several areas of research.

Chapters 2 through 8 each focus on one idea that is important in text mining. Each
chapter has many examples of how to implement this in computer code, which is then used
to analyze one or more texts. That is, the focus is on analyzing text with techniques that
require little or modest knowledge of mathematics or statistics.

The sections below describe each chapter’s highlights in terms of what useful information
is produced by the programs in each chapter. This gives you an idea of what this book covers.

1.2.1 Chapter 2: Pattern Matching

To analyze text, language patterns must be detected. These include punctuation marks, char-
acters, syllables, words, phrases, and so forth. Finding string patterns is so important that
a pattern matching language has been developed, which is used in numerous programming
languages and software applications. This language is called regular expressions.
Literally every chapter in this book relies on finding string patterns, and some tasks
developed in this chapter demonstrate the power of regular expressions. However, many
tasks that are easy for a human require attention to detail when they are made into programs.

TEXT MINING AND RELATED FIELDS 3

For example, section 2.4 shows how to decompose Poe’s short story, “The Tell-Tale
Heart," into words. This is easy for someone who can read English, but dealing with
hyphenated words, apostrophes, conventions of using single and double quotes, and so
forth all require the programmer’s attention.

Section 2.5 uses the skills gained in finding words to build a concordance program that
is able to find and print all instances of a text pattern. The power of Perl is shown by the
fact that the result, program 2.7, fits within one page (including comments and blank lines
for readability).

Finally, a program for detecting sentences is written. This, too, is a key task, and one
that is trickier than it might seem. This also serves as an excellent way to show several of
the more advanced features of regular expressions as implemented in Perl. Consequently,
this program is written more than once in order to illustrate several approaches. The results
are programs 2.8 and 2.9, which are applied to Dickens’s A Christmas Carol.

1.2.2 Chapter 3: Data Structures

Chapter 2 discusses text patterns, while chapter 3 shows how to record the results in a
convenient fashion. This requires learning about how to store information using indices
(either numerical or string).

The first application is to tally all the word lengths in Poe’s “The Tell-Tale Heart," the
results of which are shown in output 3.4. The second application is finding out how often
each word in Dickens’s A Christmas Carol appears. These results are graphed in figure 3.1,
which shows a connection between word frequency and word rank.

Section 3.7.2 shows how to combine Perl with a public domain word list to solve certain
types of word games, for example, finding potential words in an incomplete crossword
puzzle. Here is a chance to impress your friends with your superior knowledge of lexemes.

Finally, the material in this chapter is used to compare the words in the two Poe stories,
“Mesmeric Revelations" and “The Facts in the Case of M. Valdemar." The plots of these
stories are quite similar, but is this reflected in the language used?

1.2.3 Chapter 4: Probability

Language has both structure and unpredictability. One way to model the latter is by using
probability. This chapter introduces this topic using language for its examples, and the level
of mathematics is kept to a minimum. For example, Dickens’s A Christmas Carol and Poe’s
"The Black Cat" are used to show how to estimate letter probabilities (see output 4.2).

One way to quantify variability is with the standard deviation. This is illustrated by
comparing the frequencies of the letter e in 68 of Poe’s short stories, which is given in
table 4.1, and plotted in figures 4.3 and 4.4.

Finally, Poe’s “The Unparalleled Adventures of One Hans Pfaall"” is used to show one
way that text samples behave differently from simpler random models such as coin flipping.
It turns out that it is hard to untangle the effect of sample size on the amount of variability
in a text. This is graphically illustrated in figures 4.5, 4.6, and 4.7 in section 4.6.1.

1.2.4 Chapter 5: Information Retrieval

One major task in information retrieval is to find documents that are the most similar to a
query. For instance, search engines do exactly this. However, queries are short strings of

4 INTRODUCTION

text, so even this application compares two texts: the query and a longer document. It turns
out that these methods can be used to measure the similarity of two long texts.

The focus of this chapter is the comparison of the following four Poe short stories: “Hop
Frog," “A Predicament,” “The Facts in the Case of M. Valdemar," and “The Man of the
Crowd." One way to quantify the similarity of any pair of stories is to represent each story
as a vector. The more similar the stories, the smaller the angle between them. See output 5.2
for a table of these angles.

At first, it is surprising that geometry is one way to compare literary works. But as soon
as a text is represented by a vector, and because vectors are geometric objects, it follows
that geometry can be used in a literary analysis. Note that much of this chapter explains
these geometric ideas in detail, and this discussion is kept as simple as possible so that it is
easy to follow.

1.2.5 Chapter 6: Corpus Linguistics

Corpus linguistics is empirical: it studies language through the analysis of texts. At present,
the largest of these are at a billion words (an average size paperback novel has about 100,000
words, so this is equivalent to approximately 10,000 novels). One simple but powerful
technique is using a concordance program, which is created in chapter 2. This chapter adds
sorting capabilities to it.

. Evensomething as simple as examining word counts can show differences between texts.
For example, table 6.2 shows differences in the following texts: a collection of business
emails from Enron, Dickens’s A Christmas Carol, London’s The Call of the Wild, and
Shelley’s Frankenstein. Some of these differences arise from narrative structure.

One application of sorted concordance lines is comparing how words are used. For
example, the word body in The Call of the Wild is used for live, active bodies, but in
Frankenstein it is often used to denote a dead, lifeless body. See tables 6.4 and 6.5 for
evidence of this.

Sorted concordance lines are also useful for studying word morphology (see section 6.4.3)
and collocations (see section 6.5). An example of the latter is phrasal verbs (verbs that
change their meaning with the addition of a word, for example, throw versus throw up),
which is discussed in section 6.5.2.

1.2.6 Chapter 7: Multivariate Statistics

Chapter 4 introduces some useful, core ideas of probability, and this chapter builds on this
foundation. First, the correlation between two variables is defined, and then the connection
between correlations and angles is discussed, which links a key tool of information retrieval
(discussed in chapter 5) and a key technique of statistics.

This leads to an introduction of a few essential tools from linear algebra, which is a
field of mathematics that works with vectors and matrices, a topic introduced in chapter
5. With this background, the statistical technique of principal components analysis (PCA)
is introduced and is used to analyze the pronoun use in 68 of Poe’s short stories. See
output 7.13 and the surrounding discussion for the conclusions drawn from this analysis.

This chapter is more technical than the earlier ones, but the few mathematical topics
introduced are essential to understanding PCA, and all these are explained with concrete
examples. The payoff is high because PCA is used by linguists and others to analyze many
measurements of a text at once. Further evidence of this payoff is given by the references
in section 7.6, which apply these techniques to specific texts.

ADVICE FOR READING THIS BOOK 5

1.2.7 Chapter 8: Clustering

Chapter 7 gives an example of a collection of texts, namely, all the short stories of Poe
published in a certain edition of his works. One natural question to ask is whether or not
they form groups. Literary critics often do this, for example, some of Poe’s stories are
considered early examples of detective fiction. The question is how a computer might find
groups.

To group texts, a measure of similarity is needed, but many of these have been developed
by researchers in information retrieval (the topic of chapter 5). One popular method uses
the PCA technique introduced in chapter 7, which is applied to the 68 Poe short stories, and
results are illustrated graphically. For example, see figures 8.6, 8.7 and 8.8.

Clustering is a popular technique in both statistics and data mining, and successes in these
areas have made it popular in text mining as well. This chapter introduces just one of many
approaches to clustering, which is explained with Poe’s short stories, and the emphasis is
on the application, not the theory. However, after reading this chapter, the reader is ready
to tackle other works on the topic, some of which are listed in the section 8.4.

1.2.8 Chapter 9: Three Additional Topics

All books have to stop somewhere. Chapters 2 through 8 introduce a collection of key
ideas in text mining, which are illustrated using literary texts. This chapter introduces three
shorter topics.

First, Perl is popular in linguistics and text processing not just because of its regular
expressions, but also because many programs already exist in Perl and are freely available
online. Many of these exist as modules, which are groups of additional functions that are
bundled together. Section 9.2 demonstrates some of these. For example, there is one that
breaks text into sentences, a task also discussed in detail in chapter 2.

Second, this book focuses on texts in English, but any language expressed in electronic
form is fair game. Section 9.3 compares Goethe’s novel Die Leiden des jungen Werthers
(written in German) with some of the analyses of English texts computed earlier in this
book.

Third, one popular model of language in information retrieval is the so-called bag-of-
words model, which ignores word order. Because word order does make a difference, how
does one quantify this? Section 9.4 shows one statistical approach to answer this question.
It analyzes the order that character names appear in Dickens’s A Christmas Carol and
London’s The Call of the Wild.

1.3 ADVICE FOR READING THIS BOOK

As noted above, to get the most out of this book, download Perl to your computer. As you
read the chapters, try writing and running the programs given in the text. Once a program
runs, watching the computer print out results of an analysis is fun, so do not deprive yourself
of this experience.

How to read this book depends on your background in programming. If you never
used any computer language, then the subsequent chapters will require time and effort. In
this case, buying one or more texts on how to program in Perl is helpful because when
starting out, programming errors are hard to detect, so the more examples you see, the
better. Although learning to program is difficult, it allows you to do exactly what you want
to do, which is critical when dealing with something as complex as language.

6 INTRODUCTION

If you have programmed in a computer language other than Perl, try reading this book
with the help of the online documentation and tutorials. Because this book focuses on a
subset of Perl that is most useful for text mining, there are commands and functions that
you might want to use but are not discussed here.

If you already program in Perl, then peruse the listings in chapters 2 and 3 to see if there
is anything that is new to you. These two chapters contain the core Perl knowledge needed
for the rest of the book, and once this is learned, the other chapters are understandable.

After chapters 2 and 3, each chapter focuses on a topic of text mining. All the later
chapters make use of these two chapters, so read or peruse these first. Although each of the
later chapters has its own topic, these are the following interconnections. First, chapter 7
relies on chapters 4 and 5. Second, chapter 8 uses the idea of PCA introduced in chapter
7. Third, there are many examples of later chapters referring to the computer programs or
output of earlier chapters, but these are listed by section to make them easy to check.

The Perl programs in this book are divided into code samples and programs. The former
are often intermediate results or short pieces of code that are useful later. The latter are
typically longer and perform a useful task. These are also boxed instead of ruled. The
results of Perl programs are generally called outputs. These are also used for R programs
since they are interactive.

Finally, I enjoy analyzing text and believe that programming in Perl is a great way to do
it. My hope is that this book helps share my enjoyment to both students and researchers.

CHAPTER 2

TEXT PATTERNS

2.1 INTRODUCTION

Did you ever remember a certain passage in a book but forgot where it was? With the advent
of electronic texts, this unpleasant experience has been replaced by the joy of using a search
utility. Computers have limitations, but their ability to do what they are told without tiring
is invaluable when it comes to combing through large electronic documents. Many of the
more sophisticated techniques later in this book rely on an initial analysis that starts with
one or more searches.

Before beginning with text patterns, consider the following question. Since humans are
experts at understanding text, and, at present, computers are essentially illiterate, can a
procedure as simple as a search really find something unexpected to a human? Yes, it can,
and here is an example. Anyone fluent in English knows that the precedes its noun, so the
following sentence is clearly ungrammatical.

Dog the is hungry. (2.1)

Putting the the before the noun corrects the problem, so sentence 2.2 is correct.

The dog is hungry. (2.2)

A systematically collected sample of text is called a corpus (its plural form is corpora),
and large corpora have been collected to study language. For example, the Cambridge
International Corpus has over 800 million words and is used in Cambridge University

Practical Text Mining with Perl. By Roger Bilisoly 7
Copyright (© 2008 John Wiley & Sons, Inc.

8 TEXT PATTERNS

Press language reference books [26]. Since a book has roughly 500 words on a page, this
corresponds to roughly 1.6 million pages of text. In such a corpus, is it possible to find a
noun followed by the? Our intuition suggests no, but such constructions do occur, and, in
fact, they do not seem unusual when read. Try to think of an example before reading the
next sentence.

Dottie gave the small dog the large bone. (2.3)

The only place the appears adjacent to a noun in sentence (2.3) is after the word dog. Once
this construction is seen, it is clear how it works: the small dog is the indirect object (that
is, the recipient of the action of giving), and the large bone is the direct object (that is, the
object that is given.) So it is the direct object’s the that happens to follow dog.

A new generation of English reference books have been created using corpora. For
example, the Longman Dictionary of American English [74] uses the Longman Corpus of
Spoken American English as well as the Longman Corpus of Written American English, and
the Cambridge Grammar of English [26] is based on the Cambridge International Corpus.
One way to study a corpus is to construct a concordance, where examples of a word along
with the surrounding text are extracted. This is sometimes called a KWIC concordance,
which stands for Key Word In Context. The results are then examined by humans to detect
patterns of usage. This technique is useful, so much so that some concordances were made
by hand before the age of computers, mostly for important texts such as religious works.
We come back to this topic in section 2.5 as well as section 6.4.

This chapter introduces a powerful text pattern matching methodology called regular
expressions. These patterns are often complex, which makes them difficult to do by hand,
so we also learn the basics of programming using the computer language Perl. Many pro-
gramming languages have regular expressions, but Perl’s implementation is both powerful
and easy to invoke. This chapter teaches both techniques in parallel, which allows the easy
testing of sophisticated text patterns. By the end of this chapter we will know how to create
both a concordance and a program that breaks text into its constituent sentences using Perl.
Because different types of texts can vary so much in structure, the ability to create one’s
own programs enables a researcher to fine tune a program to the text or texts of interest.
Learning how to program can be frustrating, so when you are struggling with some Perl
code (and this will happen), remember that there is a concrete payoff.

2.2 REGULAR EXPRESSIONS

A text pattern is called a regular expression, often shortened to regex. We focus on regexes
in this section and then learn how to use them in Perl programs starting in section 2.3. The
notation we use for the regexes is the same as Perl’s, which makes this transition easier.

2.2.1 First Regex: Finding the Word Cat

Suppose we want to find all the instances of the word cat in a long manuscript. This type of
task is ideal for a computer since it never tires, never becomes bored. In Perl, text is found
with regexes, and the simplest regex is just a sequence of characters to be found. These are
placed between two forward slashes, which denotes the beginning and the end of the regex.
That is, the forward slashes act as delimiters. So to find instances of cat, the following
regex suggests itself.

/cat/

REGULAR EXPRESSIONS 9

However, this matches all character strings containing the substring “cat," for example,
caterwaul, implicate, or scatter. Clearly a more specific pattern is needed because /cat/
finds many words not of interest, that is, it produces many false positives.

If spaces are added before and after the word caz, then we have / cat /. Certainly this
removes the false positives already noted, however, a new problem arises. For instance, cat
in sentence (2.4) is not found.

Sherby looked all over but never found the cat. (2.4)

At first this might seem mysterious: cat is at the end of the sentence. However, the string
‘ cat." has a period after the ¢, not a blank, so / cat / does not match. Normal texts use
punctuation marks, which pose no problems to humans, but computers are less insightful
and require instructions on how to deal with these.

Since punctuation is the norm, it is useful to have a symbol that stands for a word
boundary, a location such that one side of the boundary has an alphanumeric character and
the other side does not, which is denoted in Perl as \b. Note that this stands for a location
between two characters, not a character itself. Now the following regex no longer rejects
strings such as “cat." or “cat,".

B

/\bcat\b/

Note that alphanumeric characters are precisely the characters a-z (that is, the letters a
through z), A-Z, 0-9 and _. Hence the pattern /\bcat\b/ matches all of the following:

3 "o

cat." “cat,” “cat?" “cat’s" “-cat-" 2.5)

but none of these:

“cat0" “9cat.” “cat_" “implicate” “location” (2.6)

In a typical text, a string such as “car0" is unlikely to appear, so this regex matches most
of the words that are desired. However, /\bcat\b/ does have one last problem. If Cat
appears in a text, it does not match because regexes are case sensitive. This is easily solved:
just add an i (which stands for case insensitive) after the second backslash as shown below.

/\bcat\b/i

This regex matches both “cat" and “Cat." Note that it also matches “cAz,” “cAT," and so
forth.

In English some types of words are inflected, for example, nouns often have singular
and plural forms, and the latter are usually formed by adding the ending -5 or -es. However,
the pattern /\bcat\b/, thanks to the second \b, cannot match the plural form cats. If both
singular and plural forms of this noun are desired, then there are several fixes. First, two
separate regexes are possible: /\bcat\b/i and /\bcats\b/1i.

Second, these can be combined into a single regex. The vertical line character is the
logical operator or, also called alternation. So the following regex finds both forms of cat.

Regular Expression 2.1 A regex that finds the words car and cats, regardless of case.

/\bcat\b|\bcats\b/i

10 TEXT PATTERNS

Other regexes can work here, too. Alternatively, there is a more efficient way to search
for the two words car and cats, but it requires further knowledge of regexes. This is done
in regular expression 2.3 in section 2.2.3.

2.2.2 Character Ranges and Finding Telephone Numbers

Initially, searching for the word cat seems simple, but it turns out that the regex that fi-
nally works requires a little thought. In particular, punctuation and plural forms must be
considered. In general, regexes require fine tuning to the problem at hand. Whatever pat-
tern is searched for, knowledge of the variety of forms this pattern might take is needed.
Additionally, there are several ways to represent any particular pattern.

In this section we consider regexes for phone numbers. Again, this seems like a straight-
forward task, but the details require consideration of several cases. We begin with a brief
introduction to telephone numbers (based on personal communications [19]).

For most countries in the world, an international call requires an International Direct
Dialing (IDD) prefix, a country code, a city code, then the local number. To call long-
distance within a country requires a National Direct Dialing (NDD) prefix, a city code,
then a local number. However, the United States uses a different system, so the regexes
considered below are not generalizable to most other countries. Moreover, because city
and country codes can differ in length, and since different countries use differing ways to
write local phone numbers, making a completely general international phone regex would
require an enormous amount of work.

In the United States, the country code is 1, usually written +1; the NDD prefix is also 1;
and the IDD prefix is 011. So when a person calls long-distance within the United States,
the initial 1 is the NDD prefix, not the country code. Instead of a city code, the United States
uses area codes (as does Canada and some Caribbean countries) plus the local number. So a
typical long-distance phone number is 1-860-555-1212 (this is the information number for
area code 860). However, many people write 860-555-1212 or (860) 555-1212 or (860)555-
1212 or some other variant like 860.555.1212. Notice that all these forms are not what we
really dial. The digits actually pressed are 18605551212, or if calling from a work phone,
perhaps 918605551212, where the initial 9 is needed to call outside the company’s phone
system. Clearly, phone numbers are written in many ways, and there are more possibilities
than discussed above (for instance, extensions, access codes for different long-distance
companies, and so forth). So before constructing a regex for phone numbers, some thought
on what forms are likely to appear is needed.

Suppose a company wants to test the long-distance phone numbers in a column of a
spreadsheet to determine how well they conform to a list of formats. To work with these
numbers, we can copy the column into a text file (or flat file), which is easily readable by
a Perl program. Note that it is assumed below that each row has exactly one number, The
goal is to check which numbers match the following formats: an initial optional 1, the three
digits for the area code within parentheses, the next three digits (the exchange), and then
the final four digits. In addition, spaces may or may not appear both before and after the
area code. These forms are given in table 2.1, where d stands for a digit. Knowing these,
below we design a regex to find them.

To create the desired regex, we must specify patterns such as three digits in a row. A
range of characters is specified by enclosing them in square brackets, so one way to specify
a digit is [0123456789], which is abbreviated by [0-9] or \d in Perl.

To specify a range of the number of replications of a character, the symbol {m,n} is
used, which means that the character must appear at least m times, and at most n times

REGULAR EXPRESSIONS 1

Table 2.1 Telephone number formats we wish to find with a regex. Here d stands for a
digit O through 9.

1 (ddd) ddd-dddd
1(ddd) ddd-dddd
1(ddd) ddd-dddd
(ddd) ddd-dddd
(ddd) ddd-dddd

(so m < n). The symbol {m,m} is abbreviated by {m}. Hence \d{3} or [0-9]1{3} or
[0123456789]{3,3} specifies a sequence of exactly three digits. Note that {m, } means
m or more repetitions. Because some repetitions are common, there are other abbreviations
used in regexes, for example, {0, 1} is denoted ? and is used below.

Finally, parentheses are used to identify substrings of strings that match the regex, so
they have a special meaning. Hence the following regex is interpreted as a group of three
digits, not as three digits in parentheses.

/(\d{3})/

To use characters that have special meaning to regexes, they must be escaped, that is, a
backslash needs to precede them. This informs Perl to consider them as characters, not as
their usual meaning. So to detect parentheses, the following works.

/N3N /

Now we have the tools to specify a pattern for the long-distance phone numbers. The
regex below finds them, assuming they are in the forms given in table 2.1.

/(1)?NAA{3F\) 7\d{3}-\d{4}/

This regex is complicated, so let us take it apart to convince ourselves that it is matching
whatis claimed. First, “1 7" means either “1 "or“1", since 7 means zero or one occurrence
of the character immediately before it. So (1 7)7 means that the pattern inside the
parentheses appears zero or one time. That is, either “1 " or “1" appears zero or one
time. This allows for the presence or absence of the NDD prefix in the phone number.
Second, there is the area code in parentheses, which must be escaped to prevent the regex
as interpreting these as a group. So the area code is matched by \(\d{3}\). The space
between the area code and the exchange is optional, which is denoted by “ 7", that is, zero
or one space. The last seven digits split into groups of three and four separated by a dash,
which is denoted by \d{3}-\d{4}.

Unfortunately, this regex matches some unexpected patterns. For instance, it matches
(ddd) ddd-ddddd and (ddd) ddd-dddd-ddd. Why is this true? Both these strings
contain the substring (ddd) ddd-dddd, which matches the above regex. For example,
the pattern (ddd) ddd-ddddd matches by ignoring the last digit. That is, although the
pattern -\d{4} matches only if there are four digits in the text after the dash, there are no
restrictions on what can come after the fourth digit, so any character is allowed, even more
digits. One way to rule this behavior out is by specifying that each number is on its own
line.

Fortunately, Perl has special characters to denote the start and end of a line of text. Like
the symbol \b, which denotes not a character but the location between two characters, the

12 TEXT PATTERNS

symbol ~ denotes the start of a new line, and this is called a caret. In a computer, text is
actually one long string of characters, and lines of text are created by newline characters,
which is the computer analog for the carriage return for an old-fashioned typewriter. So ~
denotes the location such that a newline character precedes it. Similarly, the $ denotes the
end of a line of text, or the position such that the character just after it is a newline. Both
~ and $ are called anchors, which are symbols that denote positions, not literal characters.
With this discussion in mind, regular expression 2.2 suggests itself.

Regular Expression 2.2 A regex for testing long-distance telephone numbers.

/7L P)NAA{3I\) ?\d{3}-\d{4}$/

Often it is quite hard to find a regex that matches precisely the pattern one wants and no
others. However, in practice, one only needs a regex that finds the patterns one wants, and
if other patterns can match, but do not appear in the text, it does not matter. If one gets too
many false positives, then further fine-tuning is needed.

Finally, note there is a second use of the caret, which occurs inside the square brackets.
When used this way, it means the negation of the characters that follow. For example,
[~abc] means all characters other than the lowercase versions of a, b, and ¢. Problem 2.3
gives a few examples (but it assumes knowledge of material later in this chapter).

We have seen that although identifying a phone number is straightforward to a human,
there are several issues that arise when constructing a regex for it. Moreover, regex 2.2
is complex enough that it might have a mistake. What is needed is a way to test regexes
against some text. In the next section we see how to use a simple Perl script to read in a text
file line by line, each of which is compared with regex 2.2. To get the most out of this book,
download Perl now (gotohttp://www.perl.org/ [45] and follow their instructions) and
try running the programs yourself.

2.2.3 Testing Regexes with Perl

Many computer languages support regexes, so why use Perl? First, Perl makes it easy
to read in a text document piece by piece. Second, regexes are well integrated into the
language. For example, almost any computer language supports addition in the usual form
3+5 instead of a function call like plus(3,5). In Perl, regexes can be used like the first
form, which enables the programmer to employ them throughout the program. Third, it is
free. If you have access to the Internet, you can have the complete, full-feature version of
Perl right now, on as many computers as you wish. Fourth, there is an active Perl community
that has produced numerous sources of help, from Web tutorials to books on how to use it.

Other authors feel the same way. For example, Friedl’s Mastering Regular Expressions
[47] covers regexes in general. The later chapters discuss regex implementation in several
programming languages. Chapter 2 gives introductory examples of regexes, and of all the
programming languages used in this book, the author uses Perl because it makes it easy to
show what regexes can do.

This book focuses on text, not Perl, so if the latter catches your interest, there are
numerous books devoted to learning Perl. For example, two introductory texts are Lemay’s
Sams Teach Yourself Perl in 21 Days [71] and Schwartz, Phoenix, and Foy’s Learning Perl
[109]. Another introductory book that should appeal to readers of this book is Hammond’s
Programming for Linguists [51].

REGULAR EXPRESSIONS 13

To get the most out of this book, however, download Perl to your computer (instructions
are at http://www.perl.org/ [45]) and try writing and running the programs that are
discussed in the text. To learn how to program requires hands-on experience, and reading
about text mining is not nearly as fun as doing it yourself.

For our first Perl program, we write a script that reads in a text file and matches each
line to regular expression 2.2 in the previous section. This is one way to test the regex for
mistakes. Conceptually, the task is easy. First, open a file for Perl to read. Second, loop
through the file line by line. Third, try to match each line with the regex, and fourth, print
out the lines that match. This program is an effective regex testing tool, and, fortunately, it
is not hard to write.

Program 2.1 performs the above steps. To try this script yourself, type the commands
into a file with the suffix .pl, for example, call it test_regex.pl. Perl is case sensitive,
so do not change from lower to uppercase or the reverse. Once Perl is installed on your
computer, you need to find out how to use your computer’s command line interface, which
allows the typing of commands for execution by pressing the enter key. Once you do this,
type the statement below on the command line and then press the enter key. The output will
appear below it.

perl test_regex.pl

open(FILE, "testfile.txt");
while (KFILE>) {
if (/7@ ?2\NAAL3I\) 7\d{3}-\d{4}%/) {
print;
}
¥

Program 2.1 Perl script for testing regular expression 2.2.

Semicolons mark the end of statements, so it is critical to use the them correctly. A
programmer can put several statements on one line (each with its own semicolon), or write
one statement over several lines. However, it is common to use one statement per line,
which is usually the case in this book. Finally, as claimed, the code is quite short, and the
only complex part is the regex itself. Let us consider program 2.1 line by line.

First, to read a file, the Per]l program needs to know where the file is located. Pro-
gram 2.1 looks in the same directory where the program itself is stored. If the file
“testfile.txt" were in another directory, the full path name is required, for exam-
ple, "c:/dirname/testfile.txt". The open statement is a function that acts on two
values, called arguments. The first argument is a name, called a filehandle, that refers to
the file, the name of which is the second argument. In this example, FILE is the filehandle
of "testfile.txt", which is read in by the while loop.

Second, the while loop reads the contents of the file designated by FILE. Its structure
is as follows.

Code Sample 2.1 Form of a while loop.

while (<FILE>) { # commands }

14 TEXT PATTERNS

The angle brackets around FILE indicate that each iteration returns a piece of FILE.
The default is to read it line by line, but there are other possibilities, for example, reading
paragraph by paragraph, or reading the entire file at once. The curly brackets delimit all
the commands that are executed by the while loop. That is, for each line of the file, the
commands in the curly brackets are executed, and such a group of commands is called a
block. Note that program 2.1 has only an if statement within the curly brackets of the
while loop. Finally, the # symbol in Perl denotes that the rest of the line is a comment,
which allows a programmer to put remarks in the code, and these are ignored by Perl. This
symbol is called a number sign or sometimes a hash (or even an octothorp). Hence code
sample 2.1 is valid Perl code, although nothing is done as it stands.

Third, the if statement in program 2.1 tests each line of the file designated by FILE
against the regex that is in the parentheses, which is regular expression 2.2. Note that these
parentheses are required: leaving them out produces a syntax error. If the line matches
the regex, then the commands in the curly brackets are executed, which is only the print
statement in this case.

Finally, the print prints out the value of the current line of text from FILE. This can
print out other strings, too, but the default is the current value of a variable denoted by $_,
which is Perl’s generic default variable. That is, if a function is evaluated, and its argument
is not given, then the value of $_is used. In program 2.1, each line read by the while loop
is automatically assigned to $_. Hence the statement print ; is equivalent to the following.

print "$_";

Assuming that Perl has been installed in your computer, you can run program 2.1 by
putting its commands into a file, and save this file under a name ending in . p1, for example,
test_regex.pl. Then create a text file called testfile. txt containing phone numbers
to test against regular expression 2.2. Remember that this regex assumes that each line has
exactly one potential phone number. Suppose that table 2.2 is typed into testfile. txt.
On the command line enter the following, which produces output 2.1 on your computer
screen.

perl test_regex.pl

Table 2.2 Telephone number input to test regular expression 2.2.

(000) 0600-0000
(000)000-0000
000-000-0000
(000)0000-000
1-000-000-0000
1(000)000-0000
1(000) 000-0000
1 (000)000-0000
1 (000) 000-0000
(0000)000-0000
(000)0000-0000
(000)000-00000

FINDING WORDS IN A TEXT 15

Output 2.1 Output from the program test_regex.pl using table 2.2 as input.

(000) 000-0000
(000)000-0000
1(000)000-000

" 1(000) 000-0000
1 (000)000-0000
1 (000) 000-0000

Regular expression 2.2 is able to find all the forms in table 2.1. It also matches the
pattern 1 (ddd)ddd-dddd, which is not in table 2.1, but it is a reasonable way to write a
phone number.

Program 2.1 prints out the matches, but it is also informative to see what strings do not
match the regex. This can be done by putting the logical operator not in front of the regex.
See problem 2.2 for more on this,

Returning to old business in section 2.2.1, we can now simplify regular expression 2.1
as promised. Instead of using the vertical bar (which denotes the logical operator or),
we can use the zero or one symbol (denoted by a question mark. This is shown in regular
expression 2.3. It turns out that this regex is more efficient than the original version. Instead
of checking for both cat and cats independently, now the regex just checks for cat and when
this is found, it checks for an optional s character.

Regular Expression 2.3 Another regex that finds the words cat and cats.

/\bcats?\b/i

2.3 FINDING WORDS IN ATEXT

In the last section we saw that a little Perl is useful. This section starts with a review of
regexes that we covered so far. Then we consider the task of identifying the words of a
text, and our eventual goal is to write a Perl script that finds and prints these words without
punctuation. That is, the words in a text are segmented, and this is often the initial step in
more complicated analyses, so it is useful later in this book.

2.3.1 Regex Summary

Table 2.3 summarizes parts of regexes already seen as well as a few additional, related
patterns. Remember that regexes search for substrings contained in a string that match the
pattern. For example, \d stands for a single digit, so as long as there is one digit somewhere
in the string, there is a match. Hence “The US NDD prefix is 1." matches \d since there is a
digit in that string. What the string is depends on how the Perl code is set up. For example,
in program 2.1, each line of the input file is the string. If a pattern runs across two different
lines of the input file, then it does not match the regex. However, there are ways to deal
with multiple lines of text at one time, one of which is discussed in table 2.5 in section 2.5.

Recall that {0,1} is denoted 7, and we see that {1, } is denoted + and {0, } is denoted
*, where {m,n} stands for at least mn repetitions and at most n repetitions. Also remember

16 TEXT PATTERNS

Table 2.3 Summary of some of the special characters used by regular expressions with
examples of strings that match.

Regex Description Example of a Match
/cat/ Specified substring “cat" or “scatter”
/[BT]erry/ Choice of characters in [] “Berry" or “Terry"
/cat|dog/ | means or “cats" or “boondoggle"
/\d/ Short for [0123456789] or [0-9] “1963" or “(860)"
/\D/ Not \d, i.e., [~0-9] “(860)" or “Lucy”
/\w/ Alphanumeric: [0-9a-zA-Z_] “Daisy!" or “Pete??"
AW/ [~0-9a-zA-Z.] “Dog!" or “Taffy??"
/\s/ Whitespace: space, tab, newline “Hello, Hattie"
/\8/ Not whitespace “Hello, Wally"
/\b/ Word boundary “Dave!" or “Pam’s"
/\B/ Not a word boundary “Brownie" or “Annie’s"
/.7 Any character Any nonempty string
/~Cat/ " denotes the start of a string “Catastrophic"
/Cat$/ $ denotes the end of a string “The Cat"

/cats?/ 7 matches O or 1 occurrences “scat" or “scats”
/Gary’s+/ + matches 1 or more occurrences “Gary’s" or “Gary’sss"
/Gina’s*/ * matches 0 or more occurrences “Gina’" or “Gina’sss”

/cat(cat)?/ () denotes grouping “ssscat” or “catcatty”

that unless surrounding characters are explicitly specified, the restrictions of {m,n} are
seemingly broken. For example, /\d{3}/ matches both “000" and “0000." However,
/-\d{3}-/ matches “-000-" but not “-0000-." The latter regex demands a pattern of a
hyphen, then exactly three digits, then another hyphen, while the former regex only looks
for a substring of three digits, which can be found in a string of four digits. Finally, note that
the caret inside square brackets signifies negation, so [~0-9] (also denoted by \D) means
any character except a digit. However, the caret outside the brackets means the start of a
string (see problem 2.3 for further examples of how to use a caret). Problem 2.4 has further
regex examples.

In the discussion of phone numbers, it is seen that parentheses have special meaning to
a regex. Specifically, parentheses specify subpatterns. For example, (1 7)7 in regular
expression 2.2 means that the substring (1 ?) is subject to the second 7. That is, the
parentheses designate (1 7) as a unit, and the second 7 says that this unit appears zero or
one time. It turns out that parentheses do more than specify parts: they also store whatever
matches each part into match variables that are available for later use in the program (see
section 2.3.4).

As already noted, to match against a range of characters, square brackets are used. For
example, lowercase letters are represented by [a-z]. However, certain characters have
special meanings in regexes, for example, the question mark means zero or one instance
of the preceding character. To match a literal question mark in a text, one has to use an
escaped version , which is done by placing a backslash in front of the question mark as
follows: \?7. However, to include this character in a range of values, the escaped version is
not needed, so [?7!] means either a question mark or an exclamation point. Conversely,
a hyphen is a special symbol in a range, so [a-z] means only the lowercase letters and
does not match the hyphen. To include a hyphen in the square brackets, just put it first

FINDING WORDS IN A TEXT 17

(or last), so [-a] matches either the letter a or a hyphen. However, the hyphen has no
special meaning elsewhere in a regex. For example, /\d{3}-\d{4}/ matches a U.S.-style
seven-digit phone number.

We have now seen the basic components of regexes: parentheses for grouping; {m,n}
for repetition; characters and anchors; and | for alternation. These, however, do not have
equal weight in Perl. In fact, Perl considers these in the order just given. That is, grouping
is considered first, repetition second, characters and anchors third, and alternation last. For
example, a|b+ means either the letter a or one or more copies of the letter b, So + is
considered first, and only then |. This ordering is called the precedence of these regex
components.

2.3.2 Nineteenth-Century Literature

A general, all-purpose regex would be great to have, but, in practice, different types of texts
vary too much. For example, compared to formal business letters, a file of emails has many
more abbreviations, misspellings, slang words, jargon, and odd symbols like smiley faces.
What might work for analyzing business letters probably fails for emails, and vice versa.
However, even documents from the same source sometimes have systematic differences.
In text mining it always pays to examine the texts at the beginning of a project.

To test the word regexes that we develop below, we use literary texts. These have
several advantages. First, literature comes in a variety of lengths, from short stories to
novels. Second, if older texts are used, for instance, nineteenth-century literature, then
public domain versions are often available from the Web. It is true that these versions may
not be definitive, but they are certainly satisfactory for testing out text mining techniques.
For this task of segmenting words, the short stories of Edgar Allan Poe are used. These
stories are generally short and put all together still fit in one book. Plus Poe wrote in a variety
of styles: although he is most famous for his horror stories (or as he called them, Tales of
the Grotesque and Arabesque), he also wrote detective stories, early science fiction, and
parodies of other genres. Finally, some of his fiction has unusual words in it. For example,
Poe is fond of quoting foreign languages, and several of his stories have dialog with people
using heavy dialects. With the goal of segmenting words for motivation, we need to learn
a few more Perl tools to test our regexes.

2.3.3 Perl Variables and the Function split

Program 2.1 assumes that a line of text contains just one phone number and nothing more.
A file with a Poe short story has many words per line, and so a way to break this into words
is needed. However, the spaces in text naturally break a line into substrings, and Per] has a
function called split that does this. The results require storage, and using variables and
arrays are an effective way to do this, which is the next topic.

Programming languages use variables to store results. In Perl, scalar variables (variables
that contain a single value) always start with a dollar sign. Consider the following statement.

$x = "They named their cat Charlie Brown.";

Perl stores this sentence in the variable $x. Later in the code $x is available for use or
modification. We are interested in taking a line of text and breaking it into substrings that
are potential words. These are tested against a regex, and the substrings that match the regex
are labeled as words, and the nonmatches are declared nonwords. The initial substrings

18 TEXT PATTERNS

are stored in variables so that they can be later tested against the regex. One complication,
however, is that the number of words per line of text varies, and it is not known beforehand.
This requires the ability to store a variable number of substrings, which is easily done with
arrays.

An array is an ordered collection of variables with a common name that starts with an
@ character. Each variable in an array is indexed by the nonnegative numbers 0, 1, 2,
Code sample 2.2 gives an example. Since the text “The sun is rising.” has three blanks, it
splits into four substrings, and “The" is stored in $word [0], “sun" in $word[1], “is" in
$word [2], and “rising." in $word [3]. The array Qword refers to this collection of four
variables as a single unit. One convenient feature of Perl is that the programmer does not
need to specify how big the array is beforehand. So the output of the function split can be
stored in an array despite that the number of substrings produced is unknown beforehand.

Code Sample 2.2 An example of an array as well as string interpolation.

$line = "The sun is rising.";
@uord = split(/ /,$line);
print "$word[0],$word[1],$word[2],$word[3]";

The first line of code sample 2.2 stores the string in the variable $1ine. The function
split in the second line has two arguments: a regex and a string for splitting into pieces.
In this case, the regex is a blank between two forward slashes, which splits at every place
where there is a single space. The string for splitting is the second argument, which is
$line. Finally, the print statement shows the results. Because the string in the print
statement has double quotes, each variable in the this string is replaced by its value. That is,
$word [0] is replaced by its value, as is true for the other three. In Perl, scalar variables in
strings with double quotes are replaced by their values, which is called interpolation. Note
that this does not happen for strings in single quotes.

The regex / / in the function split is not flexible: it only splits on exactly one space.
If the text has two spaces instead of one between words, this causes an unexpected result
which is seen by running code sample 2.3, and the results are output 2.2.

Code Sample 2.3 Note what happens to the double space between the words The and sun.

$line = "The sun is rising.";
@word = split(/ /,$line);
print "$word[0],$word[1],$word[2],$word[3]";

Output 2.2 Output for code sample 2.3.

The, ,sun,is

When split on / /, the double space is split so that the first piece is “The", the second
piece is “" (the empty string), and the third piece is “sun", and so forth. This empty string
produces the two commas in a row in the output. One way to fix this behavior is by changing
the regex in the function split to match all the whitespace between words, as is done in
code sample 2.4.

FINDING WORDS IN A TEXT 19

Code Sample 2.4 Now the double space is treated as a unit, unlike code sample 2.3.

$line = "The sun is rising.";
@word = split(/\s+/,$line);
print "$word[0],$word[1],Sword[2],$word([3]\n";

Recall from table 2.3 that \ s stands for whitespace (space, tab, or newline) and the +
means one or more of the preceding character, which is one or more whitespace characters
in this case. Running this code produces output 2.3, which is what we expect.

Output 2.3 Output for code sample 2.4.

The,sun,is,rising.

Now that we can break a line of text into substrings and store these in an array, these
substrings are tested against a regex. In program 2.1, the if statement has the following
form.

if (/$regex/) { # commands }

Although no variable is explicitly mentioned, Perl understands that the default variable,
denoted $_, is compared with $regex, which contains a string denoting a regex. This is
another example of Perl interpolation: the contents of this variable is used as the regex.
One can use other variables with the following syntax.

if ($x =" /$regex/) { # commands }

Now the variable $x, not $. is compared with the regex. Note that $_ can be written out
explicitly instead of suppressing it, so the following is valid syntax.

if ($_ =" /$regex/) { # commands }

When testing a regex, it is useful to examine which strings match and which do not match
the regex. Using an if-else construction is one way to do this, so if the regex matches,
one set of commands is executed, and if there is no match, then another set is executed. The
form is given in code sample 2.5.

Code Sample 2.5 The structure of an if statement.

if ($x =7 /$regex/) {
commands for a match
} else {
commands for no match

3

Now we can split a line of text as well as test a variable against a regex. However,
splitting text produces an array, not just one variable, so we need to test each component of
the array. Just as the while loop can access the lines of a file, the foreach loop can access
the values of an array by using the following syntax.

20 TEXT PATTERNS

Code Sample 2.6 The structure of a foreach loop.

foreach $x (@word) {
commands

}
$line = "The sun is rising.";
Qword = split(/\s+/, $line);

foreach $x (@word) {
if € $x =" /\w+/) {
print "$x matches; ";
} else {
prinf "$x does not match; ";
}
}

Program 2.2 Code for reading a string a word at a time.

Here the variable $x takes on each value of the array @word. The commands in the curly
brackets then can use these $x values. For example, compare each one against a regex.

Let us put together the individual parts just discussed to create program 2.2. Here
the split function splits on one or more whitespace characters, and the regex in the if
statement matches strings having one or more alphanumeric characters. So there are four
matches, as expected. Note that the semicolons inside the double quotes are characters, not
Perl end-of-the-line delimiters. The output is as follows.

The matches; sun matches; is matches; rising. matches;

Finally, it is sometimes useful to undo split, and Perl has a function to do this called
join. Code sample 2.7 has a short example, and it prints out the same sentence that is
in $linel, except that the double space is replaced by a single space. Note that the first
argument can be any string. For example, using the string > + ’ produces The + sun +
is + rising.

Code Sample 2.7 The function join undoes the results of the function split.

$linel = "The sun is rising.";
Q@uword = split(/\s+/, $linel);
$1line2 = join(’ ’, @word);
print "$line2";

In the next section we learn how to access the substring that matches a regex. For
example, in program 2.2 we do not know which characters actually do match /\w+/.

2.3.4 Match Variables

The content of parentheses in a regex is a unit. However, parentheses also store the substring
that matches this unit in a variable. These are called match variables, and they are written

DECOMPOSING POE’S “THE TELL-TALE HEART" INTO WORDS 21

$1, $2, and so forth. The first, $1, matches the first set of parentheses, $2 matches the
second set of parentheses, and so forth.

Using a match variable we can modify program 2.2 by adding parentheses to \w+.
Now the part of the string that matches this is stored in the match variable $1, and this is a
substring composed completely of alphanumeric characters. In particular, it does not match
punctuation, so this seems like a promising regex for extracting words from a text. Let us
try it out in the script below.

$line = "The sun is rising.";
@word = split(/\s+/, $line);
foreach $x (@word) {
if (8x =" /Qwt)/) {
print "$1 ";
}

}

Program 2.3 Code for removing nonalphanumeric characters.

The sun is rising

Program 2.3 produces the above output. Indeed, the period has been removed. If this
code is placed into a while loop that goes through a file line by line, then we can see how
well punctuation is removed for a longer text. Keep in mind that in text mining, promising
initial solutions often have unexpected consequences, so we may need to patch up the regex
used in program 2.3.

2.4 DECOMPOSING POE’S “THE TELL-TALE HEART" INTO WORDS

As noted earlier, public domain versions of Poe’s short stories are available on the Web and
are not hard to find using a search engine. Qur goal here is to decompose “The Tell-Tale
Heart" [94] into words. This task is called word segmentation. Program 2.3 suggests that
this is not too hard, but there are many details to consider if we are to do this task well.

To extract words from text, punctuation must be removed. The discussion below covers
the basics, but this is not the complete story. The following two references give more
details and background on the grammar of English. First, section 506 of the Cambridge
Grammar of English [26] gives a short synopsis of punctuation use. Second, section 4.2.2
of Foundations of Statistical Natural Language Processing [75] discusses some issues of
the tokenization of a string into words.

Before discussing code, there are two more Perl functions that are useful here. Although
text in files looks like it is stored in lines, in fact, it is stored as one long string of characters.
The lines are created by the program displaying the text, which knows to put them in
wherever a newline character exists. So the last word in a line ends with a newline character,
which is not how humans think of the text. Therefore, it is useful to cut off this newline
character, which is what the following command does.

chomp;

Note that this function has no explicit argument, which implies it is using the default variable
of Perl, $.. In a while loop, each line read is automatically stored in $_, so chomp in a
while loop cuts off the newline character at the end of each line.

The second function is die, which is often used to test for a failure in opening a file. In
Perl, or is the logical operator of the same name, and it has a clever use in the following
command.

open(FILE, "The Tell-Tale Heart.txt") or die("File not found");

22 TEXT PATTERNS

If the file opens successfully, open returns the value true and die is not executed. If the
file fails to open, then die runs, which halts Perl and prints out a warning that starts with
the string in its argument, namely, “File not found." See problem 2.5 for why this happens.

Now let us consider a Perl script to remove punctuation from the short story “The Tell-Tale
Heart." Note that this code assumes that the file "The Tell-Tale Heart.txt" exists in
the same directory as the program itself, which if not true, then the name of the directory that
contains the file requires specification, forexample, open(FILE, "C:/Poe/story.txt");.

open (FILE, "The Tell-Tale Heart.txt") or die("File not found");

while (<FILE>) {
chomp;
@word = split(/\s+/);
foreach $x (@word) {
if ($x =" /Qwt)/) {
print "$1 ";
}
}
}

Program 2.4 Code for extracting words.

Let us consider program 2.4 line by line. First, the open command makes FILE the
filehandle for this short story, and the die command stops execution and prints a warning if
the open command fails to work. Second, the while command loops through the story line
by line. Third, @word is an array with one entry for each substring created by the split
command, which splits on one or more whitespace characters. Note that while splits on
newlines, so the split function only has spaces and tabs left for it.

With each line of text split into substrings, the foreach loop goes through each of these,
which are stored in the variable $x in the body of the loop, that is, for the commands within
the curly brackets. In this case, there is only one command, an 1f statement, which itself
contains one command, a print statement. The if statement tests $x against the regex
/ (\w+)/, and the substring that matches is stored in the variable $1. For example, testing
“dog." puts “dog" in $1, since only these characters are alphanumeric. Finally, $1 is printed
out, so that the output should have no punctuation.

If you obtain a copy of “The Tell-Tale Heart" and run program 2.4, the punctuation seems
entirely removed at first glance. However, depending on the public domain version you
choose, there are exceptions, five of which are shown in table 2.4, The first line should
have the word watch’s, but the apostrophe and the ending -s are both removed, which aiso
happens in line 2. The hyphenated word over-acuteness is reduced to over in the third line,
and o’clock is truncated to the letter o in the fourth. Finally, the last line has underscores
since this character is included in \w, and it is commonly used to denote italics in electronic
texts.

Hence, there is a major problem with program 2.4. The regex / (\w+) / matches all the
alphanumeric characters of a word only if it has no internal punctuation. Otherwise, only
the first group of contiguous alphanumeric characters are matched, and the rest is ignored,
which happened in the first four lines of this table. So problems are caused by contractions,
possessive nouns, and hyphenated words. ‘

DECOMPQOSING POE'’S “THE TELL-TALE HEART" INTO WORDS 23

Table 2.4 Removing punctuation: a sample of five mistakes made by program 2.4.

A watch minute hand moves more quickly
Who there
madness is but over of the sense

it was four o still dark as midnight

I now grew _very. pale

An additional problem not appearing in this version of “The Tell-Tale Heart" are dashes
that are written as double hyphens such that they abut the words on either side of it. For
example, this happens in sentence 2.7. Since punctuation does occur within words, let us
consider the cases noted above one at a time.

Cheryl saw Dave-he wore black-and she ran. 7

2.4.1 Dashes and String Substitutions

Dashes are written in several ways. My version of “The Tell-Tale Heart” uses a single
hyphen with one space on each side, that is, “ - ". As long as the dash is written with
spaces on each side of the dash, thatis, * - " or " —-- ", then splitting on whitespace
never produces a word attached to a dash.

If there are no spaces between the adjacent words and the dash, then the form of the latter
must be "~-", otherwise a dash is indistinguishable from a hyphen. There are two ways to
deal with this situation. First, if dashes are not of interest to the researcher, then these can

be replaced with a single space. Second, if dashes are kept, then "--" can be replaced with

ll n

Perl has string substitutions. For example, s/dog/cat/ replaces the first instance of
the string "dog" with "cat". Note that the letter s stands for substitution. To replace
every instance, just append the letter g, which stands for global. For example, see code
sample 2.8, which produces the output below. Note that using s/--/ /g instead of s/--/
-- /g replaces each dash with a single space, thereby removing them altogether.

Code Sample 2.8 This adds spaces around the dashes in the string stored in the variable

$line.

$line = "Cheryl saw Dave--he wore black--and she ran.";
$line =~ s/--/ -- /g;
print "$line\n";

Cheryl saw Dave -- he wore black -- and she ran.

So dashes are not hard to work with, Unfortunately, sometimes ~- is used in other
ways. For example, Poe sometimes wrote a year as "18--" in his short stories. But such
special cases are detectable by regexes, and then a decision on what to do can be made by
the researcher. For example, the following code finds all instances of "~-", and notes the
nonstandard uses, which means not having a letter or whitespace adjacent to the front and
the back of the dash.

24 TEXT PATTERNS

$line "It was 18--, early April--some snow still lingered.";
@word = split{(/\s+/, $line);
foreach $x (@word) {
if (($x =~ /--/) A
if ($x =~ /[a-2zA-Z 1--[a-2zA-Z 1/) {
print "Standard dash: \"$x\" ";
} else {
print "Non-standard dash: \"$x\" ";
}

¥
b

Program 2.5 Code to search for —-- and to decide if it is between two words or not.

Non-standard dash: "18--," Standard dash: "April--some"

Program 2.5 produces the above output. The first dash is nonstandard since it has a
number on its left, while the second dash is between two words, and so is standard. Looking
at this Perl program, much of the syntax has aiready been introduced above. A string of
text to test is stored in $1line. The results of splitting on whitespace is stored in the array
Qword, and the foreach statement loops over the substrings stored in this array. The first
if statement tests for any instance of —-, while the second if tests if a space or a letter is
both before and after the dash. If this is the case, then the first print statement is executed,
otherwise the second one is. Finally, note that the print statements print out strings that
contain a double quote, yet the strings themselves are delimited by them. To put one in a
string, it must be escaped, that is, a backslash precedes the double quotes inside the string.
Next we consider hyphens.

2.4.2 Hyphens

Hyphens are used in two distinct ways. First, many published works use justified typesetting;
that is, the text is aligned on both its margins so that its width is constant. In order to do
this, some words are broken into two pieces: the first ends a line of text and is followed by
a hyphen, and the second starts the next line. However, for electronic texts, this is typically
not done because the raw text can be entered into a word processing or typesetting program,
which can convert it into justified text. For example, this book was originally written as a
IAIEX text file, which includes typesetting commands.

Second, some words are hyphenated because they are built up from two or more words.
For example, mother-in-law, forty-two, and self-portrait are written with hyphens. So, in
practice, electronic text generally only uses hyphens for words that are themselves hyphen-
ated.

Unfortunately, not everyone agrees on which words should be hyphenated. For example,
is it e-mail or email? Both are used now (the latter is easier to type, so it should win out.)
Moreover, three or more words are combinable. For example, one-size-fits-all is sometimes
written with hyphens.

For many text mining applications, words are counted up as part of the analysis. Should
we count a hyphenated word as one, or as more than one? Note that its components may or
may not be words themselves. For example, e-mail is not a combination of two words. Even

DECOMPOSING POE'S “THE TELL-TALE HEART" INTO WORDS 25

if the components are all words, their individual meanings can differ from the collective
meaning. For example, mother-in-law is composed of mother, in, and law. However, the
connotations of the noun law or the preposition in have little to do with the concept mother-
in-law. Finally, a word like once-in-a-lifetime is roughly equivalent to its four constituent
words. So there is no easy answer to whether a hyphenated word should be counted as one
or several words. In this book, we take the former approach, which is simpler.

Hence, / (\w+)/ used in program 2.3 only matches up to the first hyphen. Because \w
matches digits and underscores, specifying only letters with [a-zA~Z] is helpful. Since the
hyphen is used to denote a range of characters, it must be first or last in the square brackets,
for example, [a-zA~Z~]. So a first attempt at a regex is made by specifying exactly these
characters, one or more times. Consider code sample 2.9, which produces the output below.

Code Sample 2.9 First attempt at a regex that finds words with hyphens.

$line = "Her sister-in-law came--today---and -it- is a-okay!";
@Quord = split(/\s+/, $line);
foreach $x (@word) {
if (8x =" /([a-zA-Z-1+)/) {
print "$1 ";
¥
}

Her sister-in-law came--today---and -it- is a-okay

This is not what we want. The dashes remain as well as three or more hyphens in a row,
but both can be removed by the substitution in code sample 2.8..

In addition, the hyphens of -it- require removal, but sister-in-law cannot be
changed. This can be accomplished by thinking in terms of groups of characters. Hy-
phenated words start with one or more letters, then one hyphen, then one or more letters,
perhaps another hyphen, then one or more letters, and so forth. To include words with no
hyphens, make the first one optional. So the regex starts with ([a~zA-Z]+-7), which says
that any word (hyphenated or not) must start with one or more letters followed by zero or
one hyphen. Now if we specify that this pattern happens one or more times, which is done
by adding a + after the parentheses, then this matches hyphenated words as well as regular
words. Running code sample 2.10 produces the output below.

Code Sample 2.10 Second attempt at a regex that finds words with hyphens.

$line = "Her sister-in-law came--today---and -it- is a-okay!";
$line =" s/--+/ /g;
@word = split(/\s+/, $line);

foreach $x (@word) A{
if ($x =" /(([a-zA-Z]+-7)+)/) {
print "$1 ";
}
}

26 TEXT PATTERNS

Her sister-in-law came today and it- is a-okay

This almost works. The only problem is that it matches a group of letters ending in a
hyphen, so -1t~ still ends in one in the output. This is easily fixed by specifying the last
character as a letter. Code sample 2.11 does this, which produces the desired output below.

Code Sample 2.11 This code extracts words at least two letters long, including hyphenated

ones.
$line = "Her sister-in-law came--today---and -it- is a-okay!";
$line =" s/--+/ /g;

Qword = split(/\s+/, $line);
foreach $x (@word) {
if ($x =" /(([a-zA-Z1+-7)+[a-zA-2])/) {
print "$1 ";
}
}

Her sister-in-law came today and it is a-okay

Although this test is successful, there is one problem with code sample 2.11. It won’t
match words that are exactly one letter long. This is an example of why testing is paramount:
itis easy to make a change that fixes one problem only to discover that a new one arises. Upon
reflection, this regex requires at least two letters because the part in the inner parentheses
requires at least one letter, and the requirement of a final letter forces a potential match to
have at least two. This is not hard to fix, and the solution is given in code sample 2.12. Note
that the word 7 is matched in the output below.

Code Sample 2.12 This code extracts hyphenated and one-letter words.

$line = "Her sister-in-law came--today---and I -am- a-okay!";
$line =" s/--+/ /g;
@word = split(/\s+/, $line);

foreach $x (@word) {
if ($x =" /(([a-zA-Z)+-)*[a-zA-Z]}+)/) {
print "$1 ";
}
}

Her sister-in-law came today and I am a-okay

Remember that * means zero or more occurrences, so this regex matches zero or more
groups of letters followed by exactly one hyphen, and which ends in one or more letters. This
now matches one-letter words. Finally, suppose $1ine is set to the string “She received an
A- on her paper." This regex now improves the grade. This is an example of the difficulties
of writing for the general case instead of for a particular group of texts.

Our work, however, is not quite done. Now that we have considered both dashes and
hyphens, we next discuss the apostrophe.

DECOMPOSING POE’'S “THE TELL-TALE HEART" INTO WORDS 27

2.4.3 Apostrophes

Apostrophes are problematic because they serve more than one purpose. First, they are used
to show possession, for example, Gary’s dog. Second, they are also used for contractions,
for example, Gina’s going home. Third, they are used for quotation marks; see section 488
of [26]. In addition, quotes within quotations use the other type of quotation marks: for
example, if double quotes are used for direct speech, then direct speech that quotes another
person uses single quotes. An example of this is the following sentence.

Katy said, “I thought he said, ‘Sam,” but I was wrong." (2.8)

Moreover, all three uses of the apostrophe are combinable. This is seen in the following
example.

Bart said, “I thought he said, “That’s Scoot’s,’ but I was wrong." 2.9

When processing sentence 2.9, unless care is taken, it is easy to match ‘That’, as the
inner quotation. Although humans can easily use symbols in multiple ways depending on
the context, this makes pattern matching more difficult for a computer.

Two further possible complications are worth noting. First, contractions can have an
initial apostrophe, for example, 'twas. And nouns ending in -s are made into a possessive
noun by adding an apostrophe at the end of the word, for example, my parents’ cats. If
single quotes are used for direct speech, then these examples become harder to deal with.

For the short story “The Tell-Tale Heart," however, double quotes are used, and there are
no quotes within direct speech. So all the single quotes are either contractions or possessive
nouns. If the regex in code sample 2.12 has the single quote added to it, then using this
new regex in program 2.4 extracts the words from this particular short story, which is done
in program 2.6. However, putting the single quote in the range of characters also aliows
multiple single quotes in a row, which may or may not be desired.

open (FILE, "The Tell-Tale Heart.txt") or die("File not found");

while (<FILE>) {
chomp;
s/--/ -- /g;
@word = split(/\s+/);
foreach $x (@word) {
if ($x =" /(([a-zA-Z’]1+-)*[a-zA-Z°]+)/) {
print "$1 ";
}
}
}

Program 2.6 Improved version of program 2.4 for extracting words.

Looking at the output of program 2.6, the problems in table 2.4 are corrected. Hence,
over-acuteness appears, as do watch’s, Who's, and four o’clock. Finally, _very. is changed
to very. Therefore, this program works, at least for the input “The Tell-Tale Heart."

28 TEXT PATTERNS

2.5 A SIMPLE CONCORDANCE

Sections 2.3 and 2.4 give us some tools to extract words from a text. We use these to create
a concordance program in Perl. That is, we want to write code that finds a target word, and
then extracts the same number of characters of text both before and after it. These extracts
are then printed out one per line so that the target appears in the same location in each line.
For example, output 2.4 shows four lines of output for the word the in Poe’s “The Tell-Tale
Heart," which is produced by program 2.7. This kind of listing allows a researcher to see
which words are associated with a target word. In this case, since rhe is a determiner, a
class of words that modify nouns, it is not surprising that the precedes nouns in this output.

Output 2.4 Four lines of concordance output for Poe’s “The Tell-Tale Heart."

say that I am mad? The disease had sharpen
hem. Above all was the sense of hearing ac
heard all things in the heaven and in the e
n the heaven and in the earth. I heard man

Conceptually, a concordance program is straightforward. When the first instance of
the target word is found, its location is determined, and then the characters surrounding
the target are printed out. Starting just after the target, the search continues until the next
instance is found. This repeats until all instances are discovered.

We have already used regexes to find the target word. Here is a second approach. Perl has
a function index that locates a substring within a string, and the function substr extracts
a substring given its position. We first learn how these two functions work, and then apply
them to the concordance program.

Code Sample 2.13 Example of the string function index.

$line = "He once lived in Coalton, West Virginia.";
$target = "lived";

$position = index($line, $target, 0);

print "The word \"$target\" is at position $position.";

For a first example, consider the code sample 2.13. Here index looks for the string
in $target within $1ine starting at position 0 (given by the third argument), which is
the beginning of $1ine. If this string is not found, then $position is assigned the value
—1; otherwise the position of the start of the target string is returned. Running this code
produces the following output.

Output 2.5 Results of code sample 2.13.

The word "lived" is at position 8.

Counting from the first letter of $1ine such that H is O, e is 1, the blank is 2, and so
forth, we do find that the letter 1, the first letter of 1ived, is number 8.

Notice that index only finds the first instance after the starting position. To find the
second instance, the starting position must be updated after the first match. Since the word

A SIMPLE CONCORDANCE 29

lived is at position 8, then the following command finds the second instance of this word,
if any.

$position = index($line, $target, 9);

Ifthe value 8 is used instead, then $positionis still 8 since the nextinstance of $target
is, in fact, at that position. Updating the starting position is achievable as follows. Here
old value of $position is used in the function index, and then it is updated to the result
returned by index.

$position = index($line, $target, $position+1);

Code Sample 2.14 This searches for all instances of the target word she.

$line = "She was, she is, and she will be.";
$target = "she";
$position = index($line, $target, 0);
print "The word \"$target\" is at position(s): ";
while ($position > -1) {

print "$position ";

$position = index($line, $target, $position+1);

3

By repeatedly using this updating of $position, all instances of the target word are
found by code sample 2.14. Running this produces the values 9 and 21, but not the value 0.
However, the reason for this is simple: the first she is capitalized, and so it is not a match.
Unfortunately, the function index does not take a regex for its argument, so we cannot find
all the instances of she by putting the regex /she/i into $target. However, applying the
function lc to the string in $1ine changes all the letters to lowercase. So replacing the
third line in code sample 2.14 to the statement below and making the analogous change to
the seventh line finds all three instances of she, regardless of case.

$position = index(lc($line), $target, 0);

The heart of code sample 2.14 is the while loop, which keeps going aslong as $position
is greater than —1. This is true as long as instances of the target word are found. Once
this does not happen, index returns the value —1, which halts this loop. If the text has no
instance of the target, then the value of $position before the while loop begins is —1,
which prevents the loop from executing even once.

Finally, let us consider the function substr, which extracts substrings from text. It is
easy to use: the first argument is the string, the second is the starting position, and the third
is the length of the substring to be extracted. So the following line prints Nell.

print substr("I saw Nell on A level.", 6, 4);

Combining index and substr can produce a concordance program for a fixed string.
However, regexes are more powerful, so we return to this approach using the ideas just
discussed. Consider the following syntax.

vhile ($var =" /$target/g) { # commands }

30 TEXT PATTERNS

The letter g means to match globally, that is, all matches are found. Each one causes
the commands in the curly brackets to execute once. However, how is the location of the
match determined? Is there a function analogous to index for a regex? Yes, there is. Perl
has pos, which returns the position of the character after the regex match. This is seen in
code sample 2.15, which prints out the numbers 4 and 7. The former is the position of the
space after the word This, which is the first occurrence of the letters is. The latter is the
position of the space after the word is. These ideas are put into action in code sample 2.16.

Code Sample 2.15 An example of the pos function. When run, this code prints out the

numbers 4 and 7.

$test = "This is a test.";
while ($test =~ /is/g) {
$pos = pos($test);
print "$pos ";
}

Code Sample 2.16 Core code for a concordance.

$line = "Cat, cat, cat, catastrophe.";
$target = "(cat)";

while ($line =~ /$target/gi) {
$pos = pos($line);
print "$1 $pos ";

}

The target word, cat, is made into a simple regex, and the parentheses store the matched
text in $1. The variable $pos has the location of the character right after the matched text.
The output has four matches as seen below.

Cat 3 cat 8 cat 13 cat 18

Note that the letter i after the regex makes the match case insensitive, hence the first
Cat is matched. This also can be done in the regex, for example, using /[Cclat/. As
discussed above, finding the substring cat is necessary but not sufficient. For example, the
word catastrophe has the substring cat, but it is not the word caz. However, since $target
can have any regex, this is easily fixed. For example, the regex /\b{Cclat\b/ rules out
words that merely contain the letters car. Similarly, the regex /\b[Cclats?\b/ finds both
the word cat and its plural. This ability to find regexes as opposed to fixed strings makes it
easy to match complex text patterns. Hence, while the function index is useful, the while
loop in code sample 2.16 is much more flexible.

Up to now the text has been stored in the variable $1ine, which has been short. For a
longer text like Poe’s “The Tell-Tale Heart," it is natural to read it in with a while loop.
However, the default is to read it line by line, which can prevent the concordance program
from getting sufficient text surrounding the target. One way around this is to change the unit
of text read in, for example, reading in the entire document at once. This is possible and is
called the slurp mode. However, if the text is very long, this can slow the program down.

A SIMPLE CONCORDANCE 31

A compromise is to read in a text paragraph by paragraph. Many electronic texts use blank
lines between paragraphs, and Perl knows this convention and can read in each paragraph
if these are separated by blank lines. Changing the default only requires changing the value
of the Perl variable $/. Table 2.5 gives some common values, but any string is possible.

Table 2.5 Some values of the Perl variable $/ and their effects.

$/ = undef; Slurp mode
$/ = ", Paragraph mode
$/ = "\n"; Line-by-line mode
$/ = v, Almost word-by-word mode

The reason that $/ set to a blank is not quite a word by word mode is that the last word
of a line of text has a newline character after it, not a space. This combines the last word of
a line with a newline character and then with the first word of the next line.

Now we have the tools to write program 2.7, which creates concordances. Remember
that programming comments follow a #. It is good practice to comment your programs
because it is surprisingly easy to forget the logic of your own code over time. If the program
is used by others, then it is especially helpful to put in comments to explain how it works.

Program 2.7 builds on the discussions above on the index function and the trick of
a while loop that iterates over all the matches of a regex. However, there are several
additional points worth making. First, note that this program requests no input from the
person running it, which restricts it to a concordance just for the “The Tell-Tale Heart" and
for the target the. However, it is easy to modify <FILE> to refer to any other specific text
file, and the target word can be any regex, not just a specific string. It is also straightforward
to enable this code to accept arguments on the command line. This technique is discussed
in section 2.5.1.

Second, note the use of parentheses in the string assigned to $target. This stores the
matching substring in the Perl variable $1, which is then stored in $match. This is later used
to ensure that the number of characters extracted before and after the matched substring
have the precise length given in $radius. If no parentheses were used, then each line
printed has exactly the number of characters in $width instead of length($target) +
$width.

Third, the first while loop goes through the text paragraph by paragraph. For each of
these paragraphs, the second while loop goes through each match found by the regex in
$target. This is not the only way to go through the entire text, but it is one that is easy for
a person to grasp.

Fourth, the if statement checks whether or not there are as many characters as $radius
before the matched text. If not, then $start is negative, and spaces are added to the
beginning of the concordance line, that is, to $extract. The operator x shown below
creates a string of blanks that has length equal to the value of -$start.

" ox -\$start

However, this is not the only way to add spaces to $extract. The function sprintf
creates a string with a specified format, which can be constructed by the program to make
it the correct length. See problem 2.6 for more details.

Finally, running the program produces 150 lines of output, one for each the in “The
Tell-Tale Heart." The first 10 lines of the output are displayed in output 2.6. Remember that
the first 4 lines of this are displayed above in output 2.4.

32 TEXT PATTERNS

open (FILE, "The Tell-Tale Heart.txt") or die("File not found");
$/ = "";, # Paragraph mode for first while loop

Initialize variables

$target = ’\b{the)\b’;

$radius = 20;

$width = 2+$radius; # Width of extract without target

First while loop

while (<FILE>) {
chomp;
s/\n/ /g; # Replace newlines by spaces
s/--/ -- /g; # Add spaces around dashes

Second while loop
while ($§_ =" /$target/gi) {
$match = $1;
$pos = pos($_);
$start = $pos - $radius - length($match);

if ($start < 0) {
$extract = substr($_, 0, $width+$start+length($match));
$extract = (" " x -$start) . $extract;
$len = length($extract);
} else {
$extract = substr($_, $start, $width+length($match));
}

Print the next concordance line
print "$extract\n";

Program 2.7 A regex concordance program.

Program 2.7, although it is short, it is powerful, especially because of its ability to match
regular expressions. Although concordance programs already exist, we know exactly how
this one works, and it is modifiable for different types of texts and tasks. For example, if a
concordance for long-distance phone numbers were desired, then the work of section 2.2.3
provides a regex for this program. Then a document containing such numbers is analyzable
to determine in what contexts these appear. This ability to adapt to new circumstances is
one major payoff of knowing how to program, and when dealing with the immense variety
and complexity of a natural language, such flexibility is often rewarded.

One drawback of program 2.7 is that to change the target regex, the code itself requires
modification. Changing code always allows the possibility of introducing an error. So
enabling the program to accept the regex as input is worth doing. We know how to open a

A SIMPLE CONCORDANCE 33

Output 2.6 First 10 lines of the output of program 2.7.

say that I am mad? The disease had sharpen
them. Above all was the sense of hearing ac
heard all things in the heaven and in the e
n the heaven and in the earth. I heard many
Imly I can tell you the whole story.

le to say how first the idea entered my bra
e was none. I loved the old man. He had nev
it was this! He had the eye of a vulture -
up my mind to take the life of the old man
to take the life of the old man, and thus r

file so that its contents are read into the program, but for something short, this is overkill.
The next section introduces an easy way to give a program a few pieces of information
when it starts.

2.,5.1 Command Line Arguments

Perl is run by using the command line. If text is placed after the name of the program,
then there is a way to access this within the program. For instance, consider the following
command.

perl program.pl dog cat

The two words after the program name are put into the array called @ARGV. The value of
$ARGV [0] is dog, and $ARGV[1] is cat. Clearly this becomes tedious if many strings are
needed, but it is quite useful for only a few values.

As an application, let us modify program 2.7 so that it expects three strings: a word to
match, the size of the radius of the extract, and a file to open. For example, suppose all the
instances of and in the file text .txt are desired along with the 30 characters before and
after it. The modified version finds these by typing the following on the command line.

perl program.pl and 30 text.txt

This is easy to do. In program 2.7, remove all the code before the first while loop and
replace it with code sample 2.17. One point to note: the definition of $target requires
two backslashes before the b since a single backslash is interpreted as the word boundary,
\b. That is, the backslash must be escaped by adding another backslash. Note that the use
of single quotes does not require escaping the backslash, but then $ARGV[0] would not be
interpolated.

This is enough for now on extracting words, but this task is essential since it is typically
the first step of many text mining tasks. An implementation of command line arguments
for a regex concordance is done in section 3.7: see program 3.2.

2.5.2 Writing to Files

For a large text, a concordance program can produce much output, and scrolling through
this on a computer screen is a pain. It is often more convenient to store the output to a text
file, which is doable in three ways.

34 TEXT PATTERNS

Code Sample 2.17 Replace the code prior to the first while loop in program 2.7 with the
commands here to make that program run as described above.

open(FILE, "$ARGV[2]") or die("$ARGV[2] not found");

$/ = "";, # Paragraph mode for first while loop
$target = "\\b($ARGV[0])\\b";
$radius = $ARGVI[1];

$width = 2*3radius; # Width of extract

First, the function open can open a file for output as well as input. Code sample 2.18
gives two examples. Note that OUT1 is a filehandle for filenamel.txt. The greater than
sign means that this file is written to. If this file already exists, then the original contents
are lost.

Second, the use of two greater than signs means to append to the file. So in this case, if
filename?2.txt already exists, then the original contents are appended to, not overwritten.

Code Sample 2.18 How to write or append to a text file.

open (OUT1, ">filenamel.txt") or die;
open (0UT2, ">>filename2.txt") or die;
commands

print OUT1 "$x, $y, etc.\n";

print OUT2 "$x, $y, etc.\n";

Third, redirecting the output from the command line is possible. For example, the
following command stores the output from the program to filename3.txt. In addition,
using a double greater than sign appends the output to the file listed on the command line.

perl program.pl > filename3.txt

Although this is rarely discussed in this book’s code examples, in practice, it is useful
to store voluminous outputs in a file. Now we turn to a new problem in the next section: a
first attempt to identify sentences using regexes.

2.6 FIRST ATTEMPT AT EXTRACTING SENTENCES

The general problem of extracting strings from a text is called tokenization, and the extracts
are called tokens. This is a useful term since it covers any type of string, not just words,
for example, telephone numbers, Web addresses, dollar amounts, stock prices, and so forth.
One challenge of extracting words is how to define what a word is, and this is a complex
issue. For example, in this book, sections 2.4.2 and 2.4.3 discuss the issues of hyphens and
apostrophes, respectively. See section 4.2.2 of Foundations of Statistical Natural Language
Processing [75] for further discussion on defining a word. Moreover, many other specialized
cases come to mind with a little thought. For example, this book has regexes and computer
code, and each of these have unusual tokens. However, we usually focus on tokens arising
from literature.

FIRST ATTEMPT AT EXTRACTING SENTENCES 35

Words are joined to create phrases, which are joined to form clauses, which are com-
bined into sentences. So sentences inherit the complexity of words, plus they have their
own structure, ranging from simple one-word exclamations up to almost arbitrarily long
constructions. An early statistical paper on sentences by Yule in 1939 [128] starts out by
noting that one difficulty he had in his analysis is deciding exactly what constituted both
a word and a sentence. In fact, there is no definitive answer to these questions, and since
language changes over time, any proposed definition becomes out of date. So the general
issues are complex and are not dealt with in this book in detail, but see section 4.2.4 of
the Foundations of Statistical Natural Language Processing [75] and sections 269 through
280 of the Cambridge Grammar of English [26] for further discussion on sentences. Fortu-
nately, breaking a particular text into sentences might be easy because the author uses only
certain kinds of punctuation and syntax. And even if a text cannot be broken into sentences
perfectly, if the error rate is small, the results are useful.

Finally, note that written English and spoken English have many significant differences;
for example, the former typically uses sentences as a basic unit. However, analyses of
speech corpora have revealed that sentences are not the best unit of study for a discourse
among people. Section 83 of the Cambridge Grammar of English [26] states that clauses
are the basic unit of conversations. Although some texts analyzed in this book have dialogs,
these are more structured than what people actually say when they talk to one another.
Due to both its complexity and the lack of public domain transcriptions, this book does not
analyze transcribed spoken English.

2.6.1 Sentence Segmentation Preliminaries

Another term for finding sentences is sentence segmentation. This is equivalent to detecting
sentence boundaries; however, there is no built-in regex command analogous to \b for
sentences. One reason for this difference is that (in English) whitespace typically separates
words. Although there are exceptions, for example, once-in-a-lifetime can be written either
with or without the hyphens, these are not typical. Sentences, however, are combinable in
numerous ways so that a writer has a choice between using many shorter sentences, or a
few medium length sentences, or just one long sentence. The examples in table 2.6 show
several ways to combine the sentences He woke up and It was dark.

Table 2.6 A variety of ways of combining two short sentences.

He woke up, and it was dark.

He woke up, but it was dark.

He woke up when it was dark.
When he woke up, it was dark.
Although he woke up, it was dark.
He woke up; it was dark.

He woke up: it was dark.

He woke up—it was dark.

The freedom of choice in combining adjacent sentences is not the only consideration.
First, sentences can be combined by nesting. For example, this is common in depicting
dialog in a novel (see sentence 2.10 below). Second, sentence ending punctuation marks
can be ambiguous because they serve more than one purpose. We discuss the basics of both

36 TEXT PATTERNS

of these below, but many details are left out. For an in depth discussion of this, see chapters
5,10, and 14 of The Chicago Manual of Style {27].

First, sentences can be nested, that is, one sentence can interrupt the other as in sen-
tence 2.10.

“When I drive to Enfield," Dave said, “I take I-91." (2.10)

Here the direct quote is interrupted by the sentence Dave said. A similar situation occurs
with parenthetical remarks, such as sentence 2.11. Here the sentence I do it daily interrupts
the first sentence.

“When I drive to Enfield-I do it daily-I take I-91." (2.11)

From the examples just discussed, nested sentences are not uncommon. However, am-
biguous punctuation is even more of a problem for sentence segmentation. Sentences end
in question marks, exclamation points, and periods. Unfortunately, all of these symbols
have other uses than terminating sentences.

In many types of texts, question marks and exclamation points are used primarily for
marking the end of a sentence, although we have seen that direct quotes make the situation
more complicated as shown in sentence 2.12.

She said, “You named your cat Charlie Brown?" to me. (2.12)

However, some types of texts use these two punctuation marks for other purposes. For
example, this book also uses the question mark as a regex symbol. In addition, a book on
chess uses the question mark to denote a poor move and an exclamation point to denote a
good move, and a calculus text uses the exclamation point to denote the factorial function.
However, for many kinds of texts, both the question mark and the exclamation point do not
serve any other purpose besides ending a sentence.

Periods, however, have several uses besides ending a sentence, and all these can easily
appear in many types of texts. First, periods are commonly used in numbered lists, right
after the numeral. Second, periods are used as decimal points within numerals. Third, the
ellipsis, used to indicate missing material in a quotation is written with three periods in a
row. But there is another common, alternative use of the period: abbreviations.

Using periods with abbreviations is common, especially in American English. For
example, a person’s name is often accompanied by a social title such as Mr, Mrs., or Dr.
There are many other titles, too: Capt., Prof., or Rev. Academic degrees are sometimes
added to a name, for example, B.A. or Ph.D. Instead of the full name, many times parts of
a name are replaced by an initial, for example, John X. Doe. But this is just a start, and
after some thought, numerous other abbreviations come to mind: U.S. for the United States,
Ave. for avenue, A.D. for anno Domini, in. for inches, Co. for company, and so forth. Of
course, not all abbreviations use periods, for instance, one can use either U.S. or US, and
the symbols for the chemical elements never use them. Yet enough abbreviations do use it
that one should never ignore this possibility. Finally, note that a period can mark the end
of a sentence and denote an abbreviation at the same time. For example, this is true of “I
live in the U.S."

So creating a general-purpose sentence segmentation tool requires more than a few
simple rules. Nonetheless, in the 1990s, error rates below 1% were achieved, for example,
see Palmer’s paper on SATZ [85], which is his software package to do sentence segmentation
(note that Satz is the German word for sentence).

FIRST ATTEMPT AT EXTRACTING SENTENCES 37

However, an imperfect program is still useful, and a regexes written for a particular set
of texts might be quite good at detecting sentences. With the above discussion in mind, we
now try to write such a program.

2.6.2 Sentence Segmentation for A Christmas Carol

Sentence segmentation is an interesting challenge for a regex. We try to solve it in several
different ways for Charles Dickens’s A Christmas Carol [39]. This lacks generality, but the
process of analyzing this novel’s sentence structure to create the regex also increases one’s
familiarity with this text, which is a worthwhile payoff.

Common sense suggests a sentence begins with a capital letter and ends with either
a period, an exclamation point, or a question mark. Let us call these end punctuation,
although as noted above, they do not always mark the end of a sentence.

Since program 2.7 is a regex-based concordance maker, we can easily analyze A Christ-
mas Carol on its use of end punctuation with minor changes to this program. For instance,
the filehandle FILE must be linked to the file containing this novel. Then just changing
$target to the strings * (.)?, ’(?) ?, and ’ (1) ’, respectively, finds all instances of these
three punctuation marks. Remember that the parentheses are needed to save the matched
substring.

Output 2.7 A coding error fails to find just periods.

MARLEY was dead: to begin with.
MARLEY was dead: to begin with.
MARLEY was dead: to begin with. T
MARLEY was dead: to begin with. Th
MARLEY was dead: to begin with. The
MARLEY was dead: to begin with. Ther
MARLEY was dead: to begin with. There
MARLEY was dead: to begin with. There
MARLEY was dead: to begin with. There i
MARLEY was dead: to begin with. There is

Running program 2.7 with the change of FILE and with $target setto ’ (.}’ produces
output 2.7. Clearly something has gone wrong. In this case, the period has a special meaning
in a regex. As stated in table 2.3, the period matches every character. So the reason why
each line in output 2.7 moves over by one is that every single character matches, hence in
the first line M is matched, and so is placed in the center. In the second line, A is matched,
so it is placed in the center, which means that M has moved one space to the left, and so
forth. Consequently, the regexes should be > (\.)* ,>(\?)’, and ’ (!)’ since both the
period and the question mark have special meaning in regexes, but the exclamation point
does not.

Changing $target to ’ (\.)’ produces many lines, and output 2.8 shows the first 10.
Note that the fifth and ninth lines are the end of the paragraph, which explains why there is
no text after either period.

This program lists all uses of the period, but not all of these are of interest. In particular,
the use of abbreviations is important for us to check. There are several ways to do this. First,
find a list of abbreviations and check for these directly. Second, find a list of words and
then flag tokens that do not match this list. However, both of these approaches require more

38

TEXT PATTERNS

Output 2.8 First 10 periods in Dickens’s A Christmas Carol.

MARLEY was dead: to begin with.
s no doubt whatever about that.
ertaker, and the chief mourner.
ng he chose to put his hand to.
ley was as dead as a door-nail.
cularly dead about a door-nail.
ce of ironmongery in the trade.

it, or the Country’s done for.

There is no doubt whatever ab
The register of his burial wa
Scrooge signed it: and Scroog
0ld Marley was as dead as a d

I might have been inclined, m
But the wisdom of our ancesto
You will therefore permit me

ley was as dead as a door-nail.

he was dead? Of course he did. How could it be otherwise? Sc

advanced programming techniques, for example, the use of hashes (discussed in the next
chapter), so a third approach is tried here. We search for periods followed by a lowercase
letter.

A regex to do this needs to find a period followed by a single quote, or double quote or
comma as well as zero or more whitespaces, and all of this is then followed by a lowercase
letter. Remembering that the period and the single quote mark must be escaped, this regex is
reasonably easy to write down: /(\. [\s\’",1*[a-2z])/, which is assigned to $target.
One more change is required: in the second while loop, the letters after the regex must be
changed from gi to just g, otherwise the matches are case insensitive, but now we want
to detect lowercase letters. After making these changes, running program 2.7 produces
output 2.9, which shows exactly one match.

Output 2.9 All instances of a period followed by whitespace followed by a lowercase letter

in A Christmas Carol.

his domestic ball broke up. Mr. and Mrs. Fezziwig took their st

This match occurs starting with the period in Mr. and ends with the first letter of and,
which is in lowercase. So there are apparently no abbreviations in the interior of a sentence
in this story. However, there are clearly social titles since Mr. and Mrs. do exist.

Changing $target to ’ ([MD]rs?7\.)’ matches 3 common social titles. Making this
change to program 2.7 now produces 45 lines, and the first 10 are given in output 2.10.
Looking at the entire output, it turns out that there are no occurrences of Dr. While there
are certainly other titles we might consider, familiarity with this story suggests that these
should account for all of them.

Let us next look at the first 10 uses of either a question mark or a exclamation point by
setting $target to ? ([7!])’. Recall that inside the square brackets, the question mark
has no special meaning, so there is no need to escape it with a backslash here.

Fromoutput 2.11, we see that line 5 has an exclamation point followed by a lowercase let-
ter, so this pattern needs to be checked by setting $target to > ([?1] [\s\’",1*[a-2z]) .
Now rerunning the program produces output 2.12, which shows that this construction hap-
pens 182 times, the first 10 of which are shown. Not surprisingly, most of these examples
are nested sentences arising from conversations in the novel.

FIRST ATTEMPT AT EXTRACTING SENTENCES

39

Output 2.10 First 10 instances of Mr., Mrs., or Dr. in A Christmas Carol.

the pleasure of addressing Mr.
addressing Mr. Scrooge, or Mr.

"Mr.
estive season of the year, Mr.
s First of Exchange pay to Mr.

fty stomach-aches. In came Mrs.
ig stood out to dance with Mrs.
tch for them, and so would Mrs.
And when old Fezziwig and Mrs.

is domestic ball broke up. Mr.

Scrooge, or Mr. Marley?"
Marley?"
Marley has been dead these
Scrooge," said the gentlem
Ebenezer Scrooge or his or
Fezziwig, one vast substan
Fezziwig. Top couple, too;
Fezziwig. As to her, she w
Fezziwig had gone all thro
and Mrs. Fezziwig took the

Output 2.11 The first 10 instances of exclamation points or question marks in A Christmas

Carol.

Mind! I

Scrooge knew he was dead? O

. How could it be otherwise? S
' Oh! B

don’t mean to say that I
f course he did. How coul
crooge and he were partne
ut he was a tight-fisted

at the grind-stone, Scrooge! a squeezing, wrenching, gr

ching, covetous, old sinner! H

ard and sharp as flint, £

y dear Scrooge, how are you? When will you come to see

hen will you come to see me?"
an an evil eye, dark master!"
But what did Scrooge care! I

No beggars implored him t

t was the very thing he 1

Output 2.12 First 10 instances of exclamation points or question marks followed by a

lowercase letter in A Christmas Carol.

at the grind-stone, Scrooge! a squeezing, wrenching, gras

istmas, uncle! God save you!"
lIBah! n

"Christmas a humbug, uncle!"
r of the moment, said, "Bah!"
"Don’t be cross, uncle!"
"Uncle!"

"Nephew!"

"Keep it!"

"But why?"

cried a cheerful voice. It w
said Scrooge, "Humbug!"

said Scrooge’s nephew. "You

again; and followed it up wi
said the nephew.

pleaded the nephew.

returned the uncle sternly,

repeated Scrooge’s nephew. "
cried Scrooge’s nephew. "Why

Note that the first line of this output does not have the exclamation point at the end of
a quote. By dropping the double quotes in the regex, all instances like this first line are
found, and all of these are shown in output 2.13. As far as sentence segmentation goes,
note that many of these lines are ambiguous. For example, line 5 can be rewritten as “Rise
and walk with me!" or “Rise! And walk with me!" However, as in output 2.12, usually the

40 TEXT PATTERNS

lowercase letter after a question mark or exclamation point means that the sentence need not
end at either of these. Adopting this as a rule even for output 2.13 also produces reasonable
sentences, even though alternatives exist. Furthermore, this rule also applies to the period,
although there is only one instance of this in the novel.

Output 2.13 All instances of exclamation points or question marks followed by a lowercase

letter but not immediately followed by quote marks in A Christmas Carol.

at the grind-stone, Scrooge! a squeezing, wrenching, gras
reation. Humbug, I tell you! humbug!"
"Oh! captive, bound, and double-i
misused! Yet such was I! COh! such was I!"
"Rise! and walk with me!"
d it off, God bless my soul! to save my life. As to measu
claimed the Ghost. "Come in! and know me better, man!"
The Grocers’! oh, the Grocers’! nearly clo
Grocers’! oh, the Grocers’! nearly closed, with perhaps
rooge. "Ch, no, kind Spirit! say he will be spared."
is poor man’s child. Oh God! to hear the Insect on the le
"Oh, Man! look here. Look, look, down
"Spirit! are they yours?" Scrooge cou
such things, if he did. Ah! you may look through that sh
YES! and the bedpost was his own.

Based on the above discussion, the following steps for sentence segmentation suggest
themselves. First, for each case of Mr. or Mrs., remove the period. After this is done,
assume that a sentence starts with a capital letter, has a string of symbols ending in a period,
question mark, or exclamation point only if one of these is followed by another capital letter.

Code Sample 2.19 A first attempt to write a simple sentence segmentation program.

$test = "Testing. one, two, three. Hello! What?";

while ($test =" /([A-Z].x[.7!1)\s*[A-2Z]1/g) {
print "$1\n";

}

The initial attempt to write a sentence segmentation program is given in code sam-
ple 2.19, which applies the regex to $test. Looking at the regex, the part in parentheses,
([A-2].%[.71]1), finds a capital letter, zero or more characters, and finally one of the
three sentence-ending punctuation marks. Outside the parentheses, whitespace is matched
up to another capital letter. Note that this regex requires that a sentence be followed by an
uppercase letter, so just ending in a question mark, for example, is not sufficient by itself.
Finally, each match is printed on a separate line. When run, however, this program produces
exactly the one line given below, so there is exactly one sentence match, not three matches
as expected.

What went wrong? To answer this, we need to know more about how matching occurs
for a regex, which is the topic of the next section.

FIRST ATTEMPT AT EXTRACTING SENTENCES 41

Output 2.14 Output of code sample 2.19, which did not run as expected.

Testing. one, two, three. Hello!

2.6.3 Leftmost Greediness and Sentence Segmentation

All regexes start looking for matches at the leftmost character, and if this fails, then it tries
the next character to the right, and if this fails, then it tries the next character, and so forth.
So the regex /(10+) / applied to the string “10010000" matches the first three characters,
“100", but not the last five.

Hence, the default for {m,n} is to find the first match going from left to right. If there is
more than one match starting at the same location, the longest one is picked, which is called
greediness. In particular, this applies to the three special cases of {m,n}, namely * (same
as {0, }), + ({1,}), and ? ({0,1}). With this in mind, output 2.15 of code sample 2.20 is
understandable because instead of matching the first word and period, the regex matches as
much text as possible, which is the entire line. Note that the print statement produces one
slash per iteration of the while loop. Therefore the number of slashes equals the number
of sentences matched.

Code Sample 2.20 The regex matches as many characters as possible starting as far left as
possible.

$test = "Hello. Hello. Hello. Hello.";
while ($test =~ /(.*\.)/g) {

print "$1/"; # Matches separated by a forward slash
}

Output 2.15 Output of code sample 2.20. The single forward slash means that only one

match is made.

Hello. Hello. Hello. Hello./

For sentence segmentation, a greedy match is not wanted. In fact, the shortest substring
is desired. Fortunately, it is easy to denote this pattern in the regex: just append the question
mark to the repetition operators. That is, *?, +7, 77, and {m,n}? match as short a substring
as possible. Thus making code sample 2.20 nongreedy is simple: just add a question mark
after the plus, which creates code sample 2.21, which produces output 2.16. Now each
Hello. is a separate match. Although there are other considerations, usually the heuristic
that a regex is greedy is accurate.

There is another way to fix code sample 2.20. If sentences end only with periods (and no
periods used for abbreviations), then a sentence is precisely what is between two periods.
A regex to match this is /[~.1*\ ./, which means search for as many nonperiods in a row
as possible, then a period. Hence code sample 2.22 produces the same as output 2.16.

Now we can fix code sample 2.19 using the nongreedy zero or more match, which is
given in code sample 2.23. The results are in output 2.17, but there is still only one line,
meaning that there is only one sentence detected, not three. However, unlike output 2.14,

42 TEXT PATTERNS

Code Sample 2.21 The regex matches as few characters as possible since *7 is nongreedy.

$test = "Hello. Hello. Hello. Hello.";
while ($test =" /(.*?\.)/g) {

print "$1/"; # Matches separated by a forward slash
b

Output 2.16 Output of code sample 2.21. Four matches are found.

Hello./ Hello./ Hello./ Hello./

Code Sample 2.22 This regex searches for as many nonperiods as possible, then a period.

$test = "Hello. Hello. Hello. Hello.";
while ($test =" /([".1x\.D/g) {

print "$1/"; # Matches separated by a forward slash
}

the output does give the first sentence correctly. Remember that the word after a period
must be capitalized, so the first sentence does end with the word three. Before reading on,
can you discover the cause of this problem?

Code Sample 2.23 A second attempt using nongreedy matches to write a simple sentence

segmentation program.

$test = "Testing. one, two, three. Hello! What?";

while ($test =" /([A-Z].*7[.7!1)\sx[A-2Z]/g) {
print "$1\n";

}

Output 2.17 Output of code sample 2.23, which still did not run as expected.

Testing. one, two, three.

There are, in fact, two problems in this code. One is that after the first match is found,
the regex searches for another match starting at the character immediately after the prior
match. Since the regex in this case searches for a capital letter following a sentence-ending
punctuation mark, the start of the search for the second match occurs at the letter e in the
sentence Hello! Hence the second sentence is not found. However, why is the third sentence
What? not discovered?

Here the problem is different. Since the regex looks for a capital letter following a
sentence-ending punctuation mark, and because there is no text after the third sentence, it is
undetected. One way to fix this code requires two changes. First, we need a way to backup
where a search starts after a match. Second, the last sentence in a string requires a different
pattern than the other ones.

FIRST ATTEMPT AT EXTRACTING SENTENCES 43

When Perl finds a match for a regex, it stores the position of the character following the
match, which is obtainable by using the function pos. Moreover, the value of pos can be
changed by the programmer, which starts the next search at this new value. Applying these
two ideas to code sample 2.23 produces code sample 2.24. Note that the first line within the
while loop uses a shortcut. In general, ~= decreases the variable on the left by the value
on the right. So the statement below decreases $y by one, then assigns this value to $x.

$x = \$y -= 1;

In addition, the variable $1oc is needed because when the while loop makes its last test,
it fails (which ends the while loop’s execution), and it resets the pos function. Finally,
the substr function with only two arguments returns the rest of the string starting at the
position given in the second argument. That is, starting from the position in $loc, the
remainder of $test is printed.

Code Sample 2.24 A third attempt using nongreedy matches and the function pos to write

a simple sentence segmentation program.

$test = "Testing. one, two, three. Hello! What?";
while ($test ="~ /([A-Z].*7[.7!])\sx[A-Z]/g) {
$loc = pos($test) -= 1;
print "$1\n";
}
print substr($test, $loc);

Output 2.18 Output of code sample 2.24, which succeeds in finding all three sentences.

Testing. one, two, three.
Hello!
What?

Although using pos provides a second way to do sentence segmentation, it means that
the programmer is doing the bookkeeping, and this is best left to Perl itself, if possible.
Fortunately, there is a third technique that finds sentences: the use of character negation in
square brackets. If periods are not used for abbreviations, then sentences are the longest
strings not containing end punctuation, which is denoted by [~.7!]. This does not take into
account lowercase letters after the end punctuation, but that can be tested for. So this is the
idea: use greedy matches to find the longest substrings that do not have end punctuation. If
the next character after one of these substrings is uppercase, then it is a sentence. Otherwise
save and combine it with the next substring without end punctuation. Repeat this process
until either an uppercase letter is found or the end of the paragraph is reached.

Code sample 2.25 uses this approach, and its code has two constructions worth noting.
First, the variable $buffer stores the substrings that conclude with end punctuation but are
followed by a lowercase letter. The two statements below do exactly the same thing: they
concatenate $match to $buffer. Note that if $match has not been assigned anything, then
$buffer is unchanged.

$buffer .= $match;
$buffer = $buffer . $match;

44 TEXT PATTERNS

Second, this code also introduces a new Perl variable, $’. When a regex matches a
substring, it is stored in the variable $&. The string up to the match is assigned to $° (using
a backquote), and the last part of the string is saved in $’ (using a single quote). Hence the
regex matched against $’ is checking either if the next character is a capital letter or if the
end of the string has been reached (not counting whitespace).

Code Sample 2.25 Sentence segmentation by character class negation.

$test = "Testing. one, two, three. Hello! What?";

$buffer = "";
wvhile ($test =~ /(\s*x[".7!11+[.?2' DD /g) {
$match = $1;

Note use of the Perl variable §’

if (0 =" /"\sx[A-Z]|"\sx$/) {
print "$buffer$match\n";
$buffer = ",

} else {
$buffer .= $match;

}

}

Running code sample 2.25 produces output 2.19. Notice that the initial spaces before
the sentences are retained, which is why the second and third sentence are indented.

Output 2.19 Output of code sample 2.25, which succeeds in finding all three sentences.

Testing. one, two, three.
Hello!
What?

Now we have the tools to go back to sentence segmentation in A Christmas Carol. One
complication in this novel (and any novel with dialog) is that quotation marks are used, and
exclamation points and question marks can go either inside or outside these (see sections
5.20 and 5.28 of The Chicago Manual of Style [27] for the details). For example, if a person
is quoted asking a question, then the question mark goes inside the quotation marks, but
if a question is asked about what a person says, then the question mark goes outside. But
including the possibility of quotation marks is easy: justplace ["?]1{0,2} in the appropriate
places in the regex, which is shown in regular expression 2.4. This is needed in case there
are quotes within quotes, which does happen in A Christmas Carol. The heart of this regex
is the character class [~.7!]*, which matches as many nonend punctuation as possible.
This is eventually followed by [.7!], so together these two pieces search for a substring
having no end punctuation except at the end of the substring. Most of the rest of this regex
is checking for possible quotation marks.

If regular expression 2.4 replaces the regex in the while statement of code sample 2.25,
then quotation marks are taken into account. If we add a while loop that goes through
A Christmas Carol paragraph by paragraph, then we have program 2.8, which performs
sentence segmentation. This code has several features that are commented on below.

First, the default variable $_ is explicitly given to emphasize its role, although this is
optional. Second, the beginning of the while loop has four simplifying substitutions,

FIRST ATTEMPT AT EXTRACTING SENTENCES 45

Regular Expression 2.4 A regex that matches a substring up to end punctuation and that
may contain either double or single quotes.

/(["°1{0,2} [a-zA-Z] [.21]*["°]1{0,2} [. 711 ["’1{0,2}\s*)/

open (FILE, "A Christmas Carol.txt") or die("File not found");

$/ = ""; # Paragraph mode for while loop
$regex =

7(I"\?140,2} [a-zA-Z] [~.7t]%["\"]{0,2} [.7¢1 ["\"]{0,2}\s*) *;

while ($_ = <FILE>) {
chomp;
s/\n/ /g; # Replace newlines by spaces
s/--/ -- /g; # Add spaces around dashes
s/Mr\./Mr/g; # Remove period in Mr.
s/Mrs\./Mrs/g; # Remove period in Mrs.

$buffer = "";
while ($_ =" /$regex/g) {
$match = $1;
if ($’ =" /~"?[A-Z1/) { # Check for capital letter
print "$buffer$match\n"; # Print sentence
$buffer = "";
} else {
$buffer .= $match;
if ($’ =" /"\wx$/) { # Check for end of paragraph
print "$buffer\n"; # Print sentence
}
}
}
print "\n";

}

Program 2.8 A simple sentence segmentation program.

for example, the periods in Mr. and Mrs. are removed so that they are not mistaken for
end punctuation. Third, the if statement includes an else clause. This if-then-else
statement checks whether or not a capital letter follows the match found in the while
statement. Hence the underlying structure is given in code sample 2.26.

Running program 2.8 produces much output (hopefully all the sentences of A Christmas
Carol). Visual inspection reveals that the program does a good job, but the results are not
perfect. For example, one error is caused by the sentence in table 2.7. Try to figure out
what went wrong: the solution is given in problem 2.7.

Program 2.8 has been created with A Christmas Carol in mind, so the results of this
program with other texts probably requires further modifications. For more robust sentence
rules see figure 4.1 of section 4.2.4 of the Foundations of Statistical Natural Language

46 TEXT PATTERNS

Code Sample 2.26 The underlying structure of program 2.8.

while ($_ = <FILE>) { # Loop paragraph by paragraph
Make substitutions to simplify text
while ($_ =~ /$regex/g) { # Loop over regex matches
Does a capital letter follow the regex match?

If true, print out a sentence
If false, add current match to \$buffer

Table 2.7 Sentence segmentation by program 2.8 fails for this sentence.

But the great effect of the evening came after the Roast
and Boiled, when the fiddler (an artful dog, mind! The sort
of man who knew his business better tham you or I could
have told it him!) struck up ‘‘Sir Roger de Coverley."

Processing [75]. However, there is another point of view: this program is only 28 lines
long (which counts every line, even the blank ones). Given experience with regexes, creating
this code is not difficult, and the process of fine tuning it helps the programmer understand
the text itself, a worthwhile payoff. As long as a programmer is facing a homogeneous
group of texts, this approach is fruitful. To analyze a heterogeneous group of texts makes
the programming challenge much harder.

Finally, in any programming language a given task can be done in several ways, and this
is especially true in Perl. For another example of sentence segmentation using a different
approach, see section 6.8 of Hammond’s Programming for Linguists {51]. This author
employs regexes to create arrays by using the functions push and splice. In addition, we
return to sentence segmentation in section 2.7.3 after introducing the idea of lookaround.
This solution is the most elegant. Finally, section 9.2.3 has one last approach to this task in
Perl.

The next section introduces a few more Perl techniques for creating regexes. These
examples highlight new programming ideas and syntax.

2.7 REGEX ODDS AND ENDS

This section goes over a few miscellaneous techniques. It is also a chance to review some
of the earlier material discussed in this chapter.

However, there are techniques that we do not discuss, and an excellent book covering
regexes in depth is Friedl’s Mastering Regular Expressions [47]. Although this book dis-
cussions several programming language’s implementations of regexes, chapters 2 and 7
focus on Perl, which pops up in several other chapters, too. Conversely, almost all books

REGEX ODDS AND ENDS 47

on Perl have at least one chapter on regexes. Historically, Perl has been at the forefront of
regexes as both have evolved over the years, and this co-evolution is likely to continue.

2.7.1 Match Variables and Backreferences

We have already seen the match variables $1, $2, and so forth, which store the substrings that
match the parts of a regex inside parentheses. These can be nested as in code sample 2.27,
This program examines a list of plural nouns, and the regex matches the last letter of the base
word as well as the final -5 or -es, if any. This is a simple example of lexical morphology,
the study of the structure of words, and using a larger list of plural nouns would uncover
the rules of plural forms. For information on these rules, see sections 523532 of Practical
English Usage [114]. Notice that the order of the variables $1, $2, $3, and $4, is determined
by the order of the leftmost parenthesis. Hence $1 is the entire word; $2 is the singular
form of the noun; $3 is the last letter before the addition of either -s or -es; and $4 is one
of these two letter groups. The results are given in output 2.20. Note that the code fails for
the word moose, which has an irregular plural form. Finally, see problem 2.8 for two more
comments on this code sample.

Code Sample 2.27 Example of nested parentheses and the associated match variables.

$text = "dogs, cats, wishes, passes, moose.";

while ($text =" /\b((\w+?7(\w)) (es|s)?)\b/g) {
print "$1, $2, $3, $4\n";

}

Output 2.20 Output of code sample 2.27.

dogs, dog, g, s
cats, cat, t, s
wishes, wish, h, es
passes, pass, S, es
moose, moose, e,

Backreferences are related to match variables. While the latter allows the programmer
to use matched text outside of the regex, backreferences allow it to be used inside the regex
itself, For example, given text, let us find the words with doubled letters, that is, two letters
in a row that are the same. Since \w stands for [a-zA-Z.], the goal is to match a letter,
then immediately afterwards, match that letter again. The backreferences \1, \2, ..., store
the substring that matches the part of a regex in parentheses. Hence, the regex / (\w)\1/
matches a double letter since the \ 1 has the value of the previous character.

Code sample 2.28 tests this. The code breaks the string into words using the function
split, and the results are stored in an array. Then the foreach loop tests each word in the
array against this regex. The matches are then printed out, as shown in output 2.21.

Notice that testing $x against the regex informs the if statement whether or not there is
a match. So a true or a false value is generated, which suggests that there is more going on
in $x =~ /(\w)\1/ than meets the eye. These details are discussed in the next section.

48 TEXT PATTERNS

Code Sample 2.28 Example of using the backreference \ 1 to detect double letters in words.

$text = "moose, lamp, truck, Nell, 911";
@word = split(/, /, $text);
foreach $x (@word) {
if ($x =~ /QO\w\1/g) {
print "$x\n";
}
}

Output 2.21 Output of code sample 2.28

moose
Nell
911

2.7.2 Regular Expression Operators and Their Output

Since $x =~ /$regex/ can be put into an if or while statement, both of which require
logical values to operate, then the regex must produce a logical value. This raises the
question of how Perl represents true and false.

Perl only has two types of variables: string and numerical, and we have seen that Perl
is flexible even with these. For example, $x = "3" + "4" assigns the number 7 to $x.
Logical values can be either strings or numbers, and there are exactly seven values that are
equivalent to the logical value false as shown in table 2.8. Note that the empty parentheses
stands for an array with no entries (see section 3.3 for information on arrays).

Table 2.8 Defining true and false in Perl.

0, ‘0°,0", **, “", (), undef false
All other numbers and strings true

If matching regexes returns something, then this can be assigned to a variable, which
then can be printed out. Code sample 2.29 does exactly this using dashes as delimiters. The
output is just --1-, so $resultl has the empty string (since there is nothing between the
first two dashes), and $result?2 has the string or number 1.

Code Sample 2.29 Proof that matching a text to a regex produces either a logical true or
false.

$text = "How do I get to Lower Wacker Drive?";
$resultl = ($text =~ /upper/i);

$result? ($text =~ /lower/i);

print "-$resultil-$result2-";

To see if a string does not match a regex is easily done by replacing =~ by !~. For
example, the following is true for $text in code sample 2.29.

REGEX ODDS AND ENDS 49

$text !~ /upper/i

There is an alternative way to write matching a regex, which is done by putting an m
before the initial forward slash. That is, the two statements below are equivalent. This
parallels the substitution notation, s///.

$x =" /$regex/
$x =" m/$regex/

We have seen two types of regex operators, matching and substitution, denoted m// and
s///, respectively. Not only does the match operator return a value, so does substitution.
For example, s/Mr\./Mr/g removes periods in the abbreviation Mr. However, it also
returns the number of substitutions performed. If none are, then the empty string is returned,
which is equivalent to false. Remember that any positive number returned is equivalent
to true, so s/// can be used in both if and while statements, just like m//. Hence, in
code sample 2.30, $result has the value 2, which means that Mr. appears twice in $text.
This sort of flexibility is common in Perl, which makes it fun to program in but harder to
understand the code.

Code Sample 2.30 Example of the substitution operator returning the number of substitu-

tions made.

$text = "Mr. Scrooge and Mr. Marley";
$result = ($text =" s/Mr\./Mr/g);
print "$result";

Besides matching and substitution, there is one more regex operator, guote regex, denoted
qr//, and this allows precompilation of a regex, which can make the program run quicker.
The syntax is similar to assigning a string representing a regular expression to a variable.
The operator qr// takes this one more step as seen in code sample 2.31, where two regexes
are precompiled and stored into two variables: the first matches Mr. and Mrs., and the
second matches a name. The output of code sample 2.31 is given below.

Mr. Dickens Mrs. Poe

Code Sample 2.31 Example of two quote regex operators.

$title = gqr/(Mrs?\.)/;
$surname = qr/([A-Z][a-z]*)/;

$text = "Mr. Dickens and Mrs. Poe";

while ($text =~ /$title $surname/g) {
print "$1 $2 ";

}

Finally, there is translation (or transliteration), denoted tr///, which does not allow
regexes, but the structure is similar to the operatorsm//, s///, and qr//. See problem 2.9
for some discussion on this.

Now we discuss one last regex technique. This allows us to solve the sentence segmen-
tation problem of A Christmas Carol in a new and better fashion.

50 TEXT PATTERNS

2.7.3 Lookaround

Lookaround allows a regex to test whether or not a condition is true without affecting which
characters are matched. For example, the word boundary, \b, is a location satisfying the
condition that one side has a word character and the other side does not. This idea is also
called a zero-width assertion. The concept of lookaround allows the programmer to test
locations for more complex conditions.

Lookaround comes in four types. It can lookahead (forward in the text) or it can lookbe-
hind (backward in the text), and the lookaround can search either for a regex (positive form)
or the negation of aregex (negative form). Hence, for any regular expression, call it $regex,
there is positive lookahead with the syntax (7=$regex), as well as negative lookahead,
(?7!$regex). In addition, there is positive lookbehind, (?7<=$regex), as well as negative
lookbehind, (7<!$regex). We consider only two examples: a simple introductory one
and positive lookahead for sentence segmentation.

First, in HTML, many tags come in pairs, which surround text. For example, bold font is
indicated by the tags and . One way to match text inside these is to use lookbehind
and lookahead to ensure that the tags exist, but these are not included in the match. This
is done in code sample 2.32, which prints out the word think. Note that lookaround is not
required: the regex /(.*)/ does the same task and is simpler.

Code Sample 2.32 An example of lookahead and lookbehind.

$test = "Don’t even think it!";
$test =" /(7<=) (.*) (?=<\/B>)/;
print "$1\n";

The second example is yet another approach to sentence segmentation. Suppose that no
periods are used for abbreviations (or that this type of period has been removed). Suppose a
sentence is required to start with a capital letter. Then a sentence starts with [A-Z] followed
by one or more occurrences of [*.7!1*[.7!] and ends in whitespace followed by either
a capital letter or the end of the string. Although code sample 2.24 tests for this, it matches
up to and including the capital letter. Lookahead can test for this capital letter, which is not
included in the match.

Consider the regex in code sample 2.33. It breaks into two pieces: regexes 2.5 and 2.6.
The former matches the sentence, which is stored in $1. The latter looks ahead for either
the following capital letter or the end of the string.

Code Sample 2.33 A simple sentence matching regex using positive lookahead.

$regex = 7 ([A-Z]([~.2!11*[.211)+7) (7=\s+[A-Z] [\wx$)’;

$_ = ’Short. a test. A test? a text? No problem!’;

while ($_ =" /$regex/g) {
print "$i\n";
}

REGEX ODDS AND ENDS 51

Regular Expression 2.5 First part of the regex in code sample 2.33.
([A-Z1C[~.211*[.71])+7)

Regular Expression 2.6 Second part of the regex in code sample 2.33.

(?=\s+[A-Z] [\w*$)

It is essential that the +7 at the end of the first pair of parentheses is not greedy. If this is
changed to ([~.7!]1%[.7!]1)+), then only one line of output is produced, which implies
that only one sentence is found. Output 2.22 shows the correct, nongreedy results.

Output 2.22 Output of code sample 2.33.

Short. a test.
A test? a text?
No problem!

As is, this regex does not take into account quotation marks, but including these is not
hard. The result is program 2.9. Note that the qr// construction has been used. Here it
shortens the length of the regex, and it allows the programmer to label the two pieces of
this regex in a more understandable fashion.

open (FILE, "A Christmas Carol.txt") or die("File not found");

$/ = "', # Paragraph mode for while loop
$lockahead = qr/{(?=\s+[\’"1{0,2} [A-Z] [\w*$)/;
$sentence = qr/([\’"]{0,2}[A-Z]([~.7!1]*[.711I\""1{0,2}1)+7)/;

while ($_ = <FILE>) {
chomp;
s/\n/ /g; # Replace newlines by spaces
s/--/ -- /g; # Add spaces around dashes
s/Mr./Mr/g; # Remove period in Mr.
s/Mrs./Mrs/g; # Remove period in Mrs.

while($_ =" /$sentence$lookahead/g) {
print "$1\n";
}

print "\n";

Program 2.9 Using lookahead to segment A Christmas Carol into sentences.

Again the code is not perfect when applied to A Christmas Carol, but the problem arises
from the text: there are sentences that do not end in one of three end punctuation marks.
For example, at the end of the novel, after Mr. Scrooge gives a large sum of money to two

52 TEXT PATTERNS

gentlemen who are collecting funds for charity, one of the men replies, “I don’t know what
to say to such munifi-" This is the end of the paragraph, and there is no end punctuation,
so program 2.9 does not print this out.

This is almost the end of sentence segmentation in this book. It turns out that code to
do this has already been written for Perl and all a programmer needs to do is download a
certain package (called a Perl module). This is discussed in section 9.2.3.

This is a long chapter, yet much about Perl and regexes have been left out. So before
moving on to chapter 3, the last section lists some Perl references for your reading pleasure.
In addition, more advanced references for Perl are given in section 3.9.

2.8 REFERENCES

This section gives some introductory references for Perl. These represent only a small
portion of the documentation on Perl, but it gives the reader a place to start.

There are many books that introduce programming using Perl. Three good beginning
books are Learning Perl by Randal Schwartz, Tom Phoenix, and brian d foy [109], Sams
Teach Yourself Perl in 21 Days by Laura Lemay [71], and Perl 5 Interactive Course by
Jon Orwant [83]. Finally, Programming for Linguists: Perl for Language Researchers
by Michael Hammond [51] is a gentle introduction to both Perl and programming and is
intended for people interested in natural languages.

All of the above books discuss regular expressions, but to learn much more about them,
start with Andrew Watt’s Beginning Regular Expressions [124], where Perl is covered in
chapter 26. Then try Mastering Regular Expressions by Jeffrey Friedl [47]. Chapter 7
covers Perl’s implementation in detail, and chapter 2 introduces regexes mostly using Perl,
which also appears in a few other chapters. It gives the details on how regexes work,
and how to optimize them. Chapter 2 of Daniel Jurafsky and James Martin’s Speech and
Language Processing [64] covers regexes, and the book covers many topics on natural
language processing and computational linguistics. Finally, there is a mathematical theory
of regular expressions. If this interests the reader, try John Hopcroft and Jeffrey Ullman’s
Introduction to Automata Theory, Languages and Computation [58].

Of course, the most up-to-date information on Perl is always online, Web sites change
unpredictably, so only three of them are given here, all of which are by The Perl Foundation.
Perl documentation is available at http://perldoc.perl.org/ [3]; and
http://www.perl.org/ [45] maintains many great links for Perl. Third, the Compre-
hensive Perl Archive Network (known as CPAN) at http://cpan.perl.org [54] has
numerous existing Perl programs for a vast number of applications, and all of these are free.

For more advanced references on Perl, see section 3.9. The next chapter describes Perl’s
data structures. These are useful for many tasks, including counting the matches made by
aregex.

PROBLEMS

2.1 One way to learn a programming language is to copy a piece of code, modify it,
and then rerun it. Try this with some of the Perl code in this chapter. What happens if
a semicolon is removed? Try modifying a regex to find out what it matches after it is
changed. Try adjusting the arguments of a function, for example, index or substr. Be
adventuresome!

PROBLEMS 53

2.2 Program 2.1 finds the lines in table 2.2 that match regular expression 2.2. For this
problem, print out the lines that do not match, which can be done in at least two ways.

First, put the logical operator not in front of the regex in the if statement as shown
below. Try this modification of this program and run the resulting code.

if (not /7(1 ?7)?\N(\d{3}\) ?\d{3}-\d{4}$/) { print "$_"; }

Second, the two statements below are equivalent. The default variable is now explicit in
the second one. Replacing =~ by ! ~ makes the expression inside the parentheses true only
if there is no match. That is, !~ is the nonmatching regex operator. Again, try modifying
program 2.1 in this way and run it.

if (/71 ?)?\NA\d{3}\) 7\d{3}-\d{4}$/) { print "$_"; }
if ($_ =" /71 2)?\N(\d{3}\) ?\d{3}-\d{4}$/) { print "$_"; }

2.3 Asnoted in section 2.2.2, the caret is used in two distinct ways in a regex. Outside
square brackets, it stands for the start of a line, and when it is the first character inside square
brackets, it means to match all characters except for those that follow. Some examples are
given in code sample 2.34. Try to guess what each line of code prints out, and then check
your guess by running this code in Perl.

Code Sample 2.34 The uses of the caret. This is for problem 2.3.

$test = "The wedge product is written as dx"dy.";
if ($test =~ /(d.\"d.)/) { print "match = $1\n";
if ($test =~ /([dxyz"1+)/) { print "match = $i\n";
if ($test =~ /([xyz~1+)/) { print "match = $1\n";
if ($test =" /([""1H) /) { print "match = $1\n";
if ($test =~ /(["xyzl+)/) { print "match = $i\n";
if ($test =~ /(".*\")/) { print "match = $1\n";

1

1]

LN N N

Finally, note that to match the caret outside the square brackets, it must be escaped with
a backslash. However, to include a caret as a character inside square brackets, it does not
require escaping, but it cannot be the first character.

2.4 Insection2.3.1, table 2.3 gives examples of regexes as well as strings that match each
one. Sometimes, however, this is too inclusive, that is, too many matches are obtained. For
example, if a researcher is looking for the word cat, then matching Cat, cats, and cat’s are
probably all desired, but matching scatter or catastrophe are false positives.

It is useful to think about what delimits a target string, that is, what characters might
begin or end this string. Is there punctuation? whitespace? XML tags? the end or beginning
of a line? In addition, what forms of the string are desired?

For this problem, create a regex for the examples below, which represent different parts
of speech.

a) Write aregex to find the noun rat. Remember to prevent matches like vituperation,
but to allow Rat, rat’s, rats.

b) Write aregex to find the adjective old. Remember that adjectives have comparative
and superlative forms, and do not forget about preventing words like golden from
matching.

54 TEXT PATTERNS

¢) Write aregex to find the verb jump in all its forms (past tense, third person singular,
and so forth). Remember to prevent matches like jumper, which is a noun.

d) Write a regex to find all the forms of the verb sit. This, unlike jump, is irregular.
How does this change the task?

2.5 Insection 2.4, the construction given below is used. It stops execution if the file does
not open for any reason.

open(FILE, "filename.txt") or die("Message");

This problem discusses why this works. Recall that the statement A or B is true if either

A is true or B is or both are. In particular, if A is true, then the status of B is irrelevant. For
the Perl command, if open is successful, it returns the value true and then there is no need
to evaluate the second part of the or statement. That is, there is no need to execute die. If
the open statement fails, it returns false and then die is executed. So this command does
what is desired: if the file opens, the program runs on; otherwise, the program is halted.
Perl is famous for shortcuts like this, which is why having an advanced programming book
on Perl is useful.

a) Try changing or to and to see what happens.

b) Try putting die first to see what happens.

2.6 Inthe discussion of program 2.7 it is noted that sprintf that acts like print, but it
allows formatting and produces a string output. The function printf is like print except
that the former allows formatting. Code sample 2.35 shows a simple example of both
functions.

a) Change the numbers in the double quotes to see how the output changes.

b) Look up other types of formats in a Perl book or online.

¢) Try modifying program 2.7 by replacing the existing string construction for

$extract with the sprintf function instead.

Code Sample 2.35 Example of the functions printf and sprintf. For problem 2.6.

$x = 3.1415926535;
printf "%8.3f\n", $x;

$string = sprintf "¥8.5f", $x;
print "$string\n";

$string = "This is a test";
printf "%s?\n", $string;

Output 2.23 Output of code sample 2.35.

3.142
3.14159
This is a test?

PROBLEMS 55

2,7 Program 2.8 does make mistakes. One way to tell this is by a word count (doable in
Perl or in word processing program). Show that the output of this program has less words
than the original story. As noted in the text, table 2.7 shows a sentence that is broken into
two pieces by this program. Where is this sentence broken? Hint: the problem is due to
nesting.

2.8 In code sample 2.27, a simple regex finds the letter just before the -s and -es in a
small list of plural nouns. Whichever ending is appropriate is often determined by the last
letter (or letters) of the noun. For example, nouns that end in -s generally have the plural
form -es: alias becomes aliases; loss becomes losses; and sinus becomes sinuses. More
complete rules are available in section 523 of the Practical English Usage [114].
a) Create or find a larger list of plural nouns and use them as input into this code
sample. What patterns do you see?
b) The regex in this code sample uses a nongreedy version of + (that is, +7). The
greedy version gives different results: try to predict what it does and then test it
using Perl.

2.9 Translation, tr///, is character-by-character substitution. Suppose a programmer
wants to change all letters in a text to lowercase. One way to do this is by using the function
lc. A second way is to specify a letter-by-letter translation with tr/A-Z/a-z/. Note that
no letter g is needed since translation is inherently global. See code sample 2.36 for an
example. The value returned by this function is the number of translations made. If none
are made, then the number 0 is returned. Like s///, this value can be used as a logical
value, where true means one or more translations, and false means no translations. Hence,
$result gets the number 4 because four capital letters are made into lowercase letters.
Like substitution, translation can be used in if and while statements.

Code Sample 2.36 Example of the translation operator returning the number of translations

made. For problem 2.9.

$text = "Mr. Scrooge and Mr. Marley";
$result = ($text =" tr/A-Z/a-z/);
print "$result";

a) The Caesar cipher takes each letter and replaces it by the letter three places ahead
where the alphabet is seen as cyclic (see section 1.1 of Abraham Sinkov’s Ele-
mentary Cryptanalysis [110] for a discussion), Hence, D replaces A, E replaces
B, ..., Breplaces Y, and C replaces Z. Use tr/// to accomplish this.

b) DNA are long molecules that contain sequences of four bases, which are abbre-
viated as A, T, C, and G. DNA is double stranded, and the bases in one strand
have the following relationship with the bases in the other: A and T always pair
up as well as C and G. For example, given the fragment ATTTCTG, then the
other strand must be TAAAGAC. Try implementing this conversion in Perl using
tr/ACGT/TGCA/. Note that the letter translations are all done in parallel.

Although the above DNA sequence is made up, there are vast amounts of real
DNA sequences available at the National Center for Biotechnology Information
(NCBI) via their Web page: http://www.ncbi.nlm.nih.gov/ [81]. For infor-
mation on using Perl to analyze DNA, see the excellent book Per! for Exploring
DNA by Mark LeBlanc and Betsey Dexter Dyer [70].

56 TEXT PATTERNS

¢) Use tr/// to count the number of vowels in Dickens’s A Christmas Carol. As-
sume that these are a, e, i, 0, and u.

d) How hard is it to find vowels if y is included? Remember that it is not always a
vowel, for example, it is a consonant in yellow.

2.10 This problem illustrates how Perl combined with a word list can be applied to word
recreations. Fortunately, there are word game word lists that are in the public domain, and
we use Grady Ward’s CROSSWD . TXT, which is one of the Moby Word Lists [123] available
at Project Gutenberg. It contains all inflections; for example, nouns appear both in singular
and plural forms; verbs appear in all their conjugated forms, and so forth.

Regexes find strings that have a certain pattern, and this is applicable to a word list.
Program 2.10 shows a simple program that prints out all words that match a regex that is
entered on the command line.

open(WORDS, "C:/CROSSWD.TXT") or die("No such file");

while (<WORDS>) {
if (§_ =" /$ARGV(01/i) {
print;
X
}

Program 2.10 Searching for words that match a regex. For problem 2.10.

The name of the file CROSSWD. TXT suggests one use: filling in words in a crossword
puzzle. Here the length of any word is known, and if there are one or more letters known,
so are their positions. This is also the situation in the game hangman. To solve any puzzie
of these types, create a regex such that each unknown letter is represented by \w, and each
known letter is put into the regex at its proper place. Finally, anchor the start and end of the
word. Note that using Perl for word games is also discussed further in section 3.7.2 of this
book.

a) Find an eight-letter word where the middle two letters are p and m. By the above
discussion, this corresponds to the following regex. Note the use of starting and
ending anchors.

/\w\w\wpm\w\w\w$/

It is possible to shorten this regex, for example, \w{3} can replace the three
letters before and after pm. Try finding all such words using program 2.10. For
example, chipmunk and shipment both match.

b) Find all four-letter words that start with p and end with m.

¢) Code sample 2.28 shows how to find double letters. Generalize this to find triple
letters, which are much rarer. Examples of words with three or more repeated
letters in a row are given in section 32 of Ross Eckler’s Making the Alphabet
Dance [41].

d) The above puzzles just scratch the surface. The book The Oxford A to Z of Word
Games by Tony Augarde [4] lists numerous games, many of which have the goal
of finding as many words as possible with certain patterns of letters. Often the
length of the word is not specified, but this makes it even easier to write the regex.

PROBLEMS 57

For example, find all words that contain the letters pm (in that order) using /pm/
in program 2.10. For instance, find all the words that end in mp (in that order)
using /mp$/, which has an ending anchor. Tony Augarde also wrote a book on
the history of a selection of word games, which is called The Oxford Guide to
Word Games [5]. Both of his books are enjoyable and informative.

This Page Intentionally Left Blank

CHAPTER 3

QUANTITATIVE TEXT SUMMARIES

3.1 INTRODUCTION

There are a number of text mining techniques, many of which require counts of text patterns
as their starting point. The last chapter introduces regular expressions, a methodology to
describe patterns, and this chapter shows how to count the matches.

As noted in section 2.6, literary texts consist of tokens, most of which are words. One
useful task is counting up the number of times each distinct token appears, that is, finding the
frequency of fypes. For example, sentence 3.1 has five tokens but only four types because
the word the appears twice, while the rest appear only once.

The cat ate the bird. 3.1

Although counting four types at once is not hard, it requires deeper knowledge of Perl
to count thousands of patterns simultaneously. We begin this chapter by learning enough
Perl to do this.

3.2 SCALARS, INTERPOLATION, AND CONTEXT IN PERL

We have already encountered scalar variables, which start with a dollar sign and store exactly
one value. Several examples are given in code sample 3.1, which also contrasts the usage
of single and double quotes for strings. First, notice that $a and $b have the same value
because it does not matter which type of quote marks are used to specify a specific string.

Practical Text Mining with Perl. By Roger Bilisoly 59
Copyright © 2008 John Wiley & Sons, Inc.

60 QUANTITATIVE TEXT SUMMARIES

However, $g and $h are different because when $a is in double quotes, it is replaced by its
value, but this is not true with single quotes. This is another example of interpolation (see
the discussion near code sample 2.2).

Code Sample 3.1 Ten examples of scalar variables. Each has only one value, either a

number or a string.

$a = ’Text’;
$b = "Text";
$c = 7;

$d = 7.00;
$e = "7V,
$f = .

$g = ’$a’;
$h = u$au;
$i = $e + 5;

$j = "twenty" . $c;
prin "$a, $b, $C, $d, $e, $f’ $g’ $h’ $1’ $j”;

Output 3.1 Output of code sample 3.1.

Text, Text, 7, 7, 7, , $a, Text, 12, twenty7

Second, $c, $d, $e all print out the value 7. If the two zeros after the decimal point are
desired (for instance, if $d represents a dollar amount), there is a formatted print statement,
printf, to do this. For an example, see problem 2.6.

Third, the string "7" acts like a number when it is added to 5 to compute $i. That is,
Perl converts the string "7" to the number 7, and then adds these together to get 12. In
general, Perl tries to determine what context is appropriate for any operation, and addition
implies a numerical context. For a programmer used to declaring all variables before using
them, this allows some unusual programming techniques. Here is another example using
the period, which stands for string concatenation. When computing $j, Perl pastes the
string twenty with $c, expecting the latter is a string. However, $c is a number, but it is
in a string context, hence Perl converts it into one, and the final result is twenty7. Perl
recognizes other contexts, for example, strings and numbers can be used as logical truth
values as discussed in section 2.7.2 (see table 2.8). In the next section we discuss scalar
and array contexts.

Finally, we have already seen in section 2.3.3 that when using split to break text into
words, it is natural to store the results in an array because prior knowledge of the number
of words is not needed. Arrays are useful in other ways, and the next section begins our
study of them.

3.3 ARRAYS AND CONTEXT IN PERL

Arrays can be defined by putting values inside parentheses, which is called a listz. This
explicitly shows its values, for example, ("The", "Black", "Cat"). Looking at code

ARRAYS AND CONTEXT IN PERL. 61

sample 3.2, an array can have both numbers and strings as entries. Finally, note that the
two print statements produce exactly the same text: both give the array entries in the same
order.

Code Sample 3.2 Example of initializing an array. Note that both numbers and strings can

be used in one array.

@array = ("the", 220, "of", 149);
print "$array[0] $array[1l] Sarray[-2] $array[-1]\n";
print "Qarray\n";

Array numbering starts at 0, so that $array[1] is the second value in the list. Negative
values start at the end of the array, so $array [-1] is the last entry, and $array [-2] is the
next to last entry, and so forth. All scalars in Perl start with the dollar sign, so the entries of
@array all start with a dollar sign, for example, $array [0].

An array is also interpolated in a string if double quotes are used, and the default is to
separate its entries with a space. However, the separator is the value of the Perl variable $".
For instance, the following code prints out the entries of @array with commas.

$" = ,’; print "Qarray";

It is valid syntax to use print Qarray; but then the entries are printed without any
separator at all. So the following two commands print 1234567, which does not allow a
person to determine what the entries of this array are. Consequently, interpolation of an
array by putting it into double quotes is usually what a programmer wants.

Qarray = (1, 2, 34, 56, 7); print Qarray;

Just as there are string and number contexts, there are also scalar and array contexts. This
allows various shortcuts, but it can lead to unexpected results for the unwary. For example,
code sample 3.3 shows examples of assigning arrays to scalars and vice versa. Try to guess
what each print statement produces before reading on.

Code Sample 3.3 An example of scalar and array contexts.

$scalarl = ("Damning", "with", "faint", "praise");
Qarrayl = ("Damning", "with", "faint", "praise');
$scalar2 = Qarrayl;

Qarray2 = $scalaril;

print "$scalari, $scalar2, @arrayl, Qarray2";

The two scalar values are hard to guess unless one is familiar with Perl. First, $scalari
is assigned the last element of a list of values. But if an array is assigned to a scalar, then
the scalar context is in force. In this case, Perl assigns the length of the array to the scalar.
Hence, $scalari has the string "praise", but $scalar2 has the number 4. Thinking
that $scalarl and $scalar?2 both have the same value is reasonable, but it is not what
Perl does. When trying to find errors in a program, knowing these sort of details prevents
frustration.

62 QUANTITATIVE TEXT SUMMARIES

Setting an array equal to a scalar forces the latter into an array context. The result,
however, is not surprising. The array that is created has only one element, which is equal
to the scalar. Hence @array?2 has just the value of $scalarl.

When defining an array using a list of values, these can include variables, or even other
arrays. Entries of an array are accessed by using an index in square brackets, and portions
of an array are accessed by giving ranges of values. One shortcut for consecutive indices
is the range operator, which is formed by two periods in a row. For example, (1..5)
produces an array with the numbers 1 through 5, This also works for strings: (’a’..’e?)
produces an array with the letters a through e. If one array has indices in it, say @indices,
then @array[@indices] consists of exactly the elements of @array with the indices of
@indices. Examples are given in code sample 3.4.

Code Sample 3.4 Examples of making new arrays from parts of an existing array.

Qarrayl = ("Tip", "of", "the", "iceberg");
Qarray2 = ("Time", "is", "of", "the", "essence");
$scalar = "not";

@indices = (0..2);

Qarray3 = Qarrayl[@indices];
@array4 = Qarrayl[0,1,2];
Qarrayb = Qarrayl[0..2];

Qarray6 = Qarray1[(0..2)];
Qarray7 = (Qarrayl, Qarray2);
Qarray8 = (Qarray2[0..1], $scalar, Qarray2[2..4]);

print "@array3\n@array4\nQarray5\n@array6\n@array7\n@array8\n";

This produces output 3.2. Note that Qarray3, Qarray4, @array5, Qarrays are exactly
the same. In addition, Perl flattens arrays, that is, constructing an array by including arrays
(as done for @array7) still produces a one-dimensional array. Note that the print statement
has arrays separated by newline characters, which makes the output easier to read.

Output 3.2 Output of code sample 3.4.

Tip of the

Tip of the

Tip of the

Tip of the

Tip of the iceberg Time is of the essence
Time is not of the essence

Keeping in mind that Perl is context driven, try to guess what code sample 3.5 prints out
before reading further.

Perl does not treat an array like a vector, so the results are not what a mathematician
expects. Since $x1 is a scalar, @vectorl is in scalar context, which means its value (in
this context) is the length of the array, which is 6. Therefore Perl multiplies 6 by 2 to get
12. Of course, $x2, $x3 and $x4 are also scalars, so all the arrays on the right-hand side
are converted to lengths. Hence, $x2 equals 11, and $x3 is set to 30. Finally, $x4 forces
the right hand side into scalar context, and the period, which is the string concatenation

ARRAYS AND CONTEXT IN PERL 63

Code Sample 3.5 Examples of scalar context.

@vectorl (1, 1, 2, 3, 5, 8);
@vector2 (1, 3, 4, 7, 11);
$x1 = Qvectorl * 2;

$x2 = Qvectorl + Qvector2;

$x3 = @vectorl * @vector2;

$x4 = Q@vectorl . Qvector2;
print "$x1, $x2, $x3, $x4";

operator, interprets the lengths of the arrays as strings. The result is the concatenation of
“6" and “5", which produces “65".

Lists can be used to create new arrays, and there is one rule to keep in mind: assignment
takes place from left to right. This is illustrated in the examples of code sample 3.6.

Code Sample 3.6 Examples of assigning arrays to lists and scalars.

Qarray = (Ca’..’g’);
($first) = Qarray;
print "$first\n";

($first, $second, Qrest) = Qarray;
print "$first, $second, Qrest\n";

($first, $second) = ($second, $first);
print "$first, $second\n";

$first = Qarray;
print "$first\n";

The first line in output 3.3 is the first element of Qarray, which is an example of
assignment going from left to right. With this rule in mind, the output of the second print
statement is no surprise. These assignments are done as if in parallel, so the third print
statement reveals that the values previously in $first and $second have been switched.
Finally, ($first) is an array, while $first is a scalar. Consequently, the last print
statement shows that the length of the array is stored in $first, which differs from the first
print statement.

Output 3.3 Output of code sample 3.6.

, b, cdefg
a

s

~No e

Before moving to the next section, a word of caution. Perl allows the programmer to
use the same name for both a scalar and an array. That is, it is valid to use both $name and

64 QUANTITATIVE TEXT SUMMARIES

@name, and these are treated as unrelated variables, However, doing this is confusing, so it
is not recommended.

3.4 WORD LENGTHS IN POE’S “THE TELL-TALE HEART"

Instead of learning more Perl syntax in this section, we analyze the word lengths of a text.
To do this, we split the text into words, find their lengths, and tally these. Since arrays
use numerical indices and these lengths are numbers, using an array to store the tallies is
straightforward.

The goal of section 2.4 is to write a program that extracts words from “The Tell-Tale
Heart" [94]. This culminates in program 2.6, which is the starting point for the counting
task at hand. A length of a string is easily obtained by the function length. So consider
code sample 3.7, which is described below.

Code Sample 3.7 A program to tally the lengths of words in “A Tell-Tale Heart."

open (FILE, "The Tell-Tale Heart.txt") or die("File not found");

Segment words from text file
while (<FILE>) {
chomp;
s/--/ -~ /g;
@word = split(/\s+/);
foreach $x (@word) <
if ($x =~ /(([a-zA-Z’]1+-)*[a~zA~Z°]+)/) {
$count [length($1)] += 1;
}
}
¥

Print out tallies for each word length

$i = 0;

while ($i <= $#count) {
print "There are $count($i] words of length $i\n";
$i += 1;

}

The overall structure is simple. The first while loop goes through the “The Tell-Tale
Heart" line by line, removes the punctuation marks, and breaks each line into words. The
heart of the first while loop is the regular expression. Its parentheses store each word in
$1. The length function computes the length of each word, which becomes the index of
the array called @count, and $count [length($1)] is incremented by 1. The entries of
this array are set to the empty string by default, but this is converted to 0 when addition is
attempted, which is a case of a numeric context.

The second while loop prints out the number of times each word length appears. The
variable $#count gives the largest index of @count, which is the upper limit of the variable
$i. Finally, the print statement produces the final tallies, as shown in output 3.4. Note
that the first line does not give a value for the number of words of length 0. This happens

WORD LENGTHS IN POE'S “THE TELL-TALE HEART" 65

because $count [0] is never incremented, so that its value remains the empty string. Not
printing a number, however, is not as clear as printing out a zero. There is an easy solution
to this: before printing out the value of $count [$1i], add zero to it. This does not change
any of the numerical values, and it converts the empty string to zero, as desired.

Output 3.4 Output of code sample 3.7.

There are words of length O
There are 168 words of length
There are 335 words of length
There are 544 words of length
There are 408 words of length
There are 231 words of length
There are 167 words of length
There are 137 words of length
There are 69 words of length 8
There are 45 words of length 9
There are 23 words of length 10
There are 9 words of length 11
There are 6 words of length 12

1

3

~N OO WN =

There are 1 words of length 13
There are 3 words of length 14

In fact, besides adding zero to $count [$1i], there are other ways to improve this code.
First, counting something is a common task in programming, so there is a shorter way to
do this than using +=1. The operator ++ placed before a variable does the same thing.
Similarly, the operator -~ placed before a variable decreases it by 1. These operators can
also be placed after a variable, but they work slightly differently when this is done. Consult
Day 3 of Lemay’s Perl in 21 Days [71] for an explanation of this technical point.

Second, this program only works for the short story “The Tell-Tale Heart." As discussed
in section 2.5.1, inputting information from the command line is easy. Instead of placing
the filename in the open statement, the Perl variable $ARGV[0] can be used instead. If
the name of the program were word_lengths.pl, then the command line looks like the
following. Note that the quotes are required because this filename has blanks in it.

perl word_lengths.pl "The Tell-Tale Heart.txt"

Third, although the second while loop works fine, it is replaceable by a for loop, which
is more compact. The while statement is used when the number of iterations is not known
prior to running the code, but a for statement is often used when it is known. In this case,
the number of iterations is unknown beforehand because it depends on the length of the
longest word in the text, but it is stored in the Perl variable $#count, so a for loop makes
sense.

The for loop requires an initial value for a variable, a logical test of an ending condition,
and a way to change the value of this variable. For example, consider the following line of
code.

for ($i = 0; $i <= $#count; ++$i) { # commands }

This for loop is equivalent to the while loop in code sample 3.7. The while loop
initializes $i before the loop and changes $1i inside the loop, but the for loop does all this

66 QUANTITATIVE TEXT SUMMARIES

in one place. Making these four changes in code sample 3.7 produces program 3.1. This
revised version is more general and prints out 0 if there is no instances for a specific word
length.

open (FILE, $ARGV[0]) or die("$ARGV[0] not found");

Segment words from text file
while (<FILE>) {
chomp;
s/~~/ -- /g;
@word = split(/\s+/);
foreach $x (Qword) {
if ($x =~ /(([a-zA-2°)+-)*[a-zA-Z°]+)/) {
++$count [length($1)];
}
}
}

Print out tallies for each word length
for ($i = 0; $i <= $#count; ++$i) {
print "There are ", $count[$i]+0, " words of length $i\n";

}

Program 3.1 A refined version of code sample 3.7.

Finally, the print statement is a function that can have multiple arguments, all of which
are printed. In program 3.1 these are separated by commas.

The output of program 3.1 is exactly the same as output 3.4 except for one item. The
first line has a zero, not an empty string. With this application finished, the next section
discusses functions that use arrays for either input or output.

3.5 ARRAYS AND FUNCTIONS

In section 2.3.3 the functions split and join are introduced. The former breaks a string
into the pieces that are between the matches of a regex, which form an array. The join
function reverses this process: it takes an array and glues its entries to form a string. For
a simple example, see code sample 2.7. Both of these commands involve arrays, and this
section introduces more such functions.

3.5.1 Adding and Removing Entries from Arrays

An array is a one-dimensional list of entries indexed by nonnegative integers. It is possible
to modify an array by adding or removing entries from either the right or left end of it. Perl
has functions to do each combination of these modifications, which we now consider.

First, an array can be lengthened by appending an entry on the right. For example, code
sample 3.8 adds the word Cat after the last entry of @title, so that the print statements
produces The Black Cat.

ARRAYS AND FUNCTIONS 67

Code Sample 3.8 The function push adds the word Cat to the end of @title.

@title = ("The", "Black");
push(@title, "Cat");
print "Q@title";

Note that push modifies its array argument, @title. Also notice that declaring arrays
beforehand is not required. When elements are added to an array, Perl knows it must be
lengthened. Finally, the first argument of push must be an array: using a list instead
produces an error.

The function push can create an array from scratch. For example, suppose an array
of square numbers (called squares) is desired. Recalling that a square equals an integer
multiplied by itself, we can use push inside a for loop to create it, and this is done in code
sample 3.9. The results are shown in output 3.5. Since the for loop makes $i go from 1
through 10, @squares contains the first 10 squares from lowest to highest.

Code Sample 3.9 This program creates an array containing the first 10 squares by using
push.

@squares = ();

for ($i = 1; $i <= 10; ++8i) {
push(@squares, $i**2);

X

print "@squares";

Output 3.5 Output of code sample 3.9.

149 16 25 36 49 64 81 100

Second, the left end of an array can be added to by using unshift. For example, the
following commands change @title to ("The", "Black", "Cat").

@title = ("Black", "Cat"); unshift(@title, "The");

As with push, unshift can be used to create arrays. For example, code sample 3.10
replaces push in code sample 3.9 by unshift. This change still produces the first 10
square numbers, but in reverse order because the numbers are now added on the left, which
is shown in output 3.6.

Third, instead of adding to an array, removal of entries is possible. To remove the last
(rightmost) element of an array, use pop (@array). To remove the first (leftmost) element,
use shift(Qarray).

As a final example of these four functions, consider the operation of taking the last
element of an array and making it the first. This can be done by using pop followed by
unshift. Similarly, taking the first element and making it the last can be done by using
shift followed by push. These types of operations are sometimes called rotations or

68 QUANTITATIVE TEXT SUMMARIES

Code Sample 3.10 This program creates an array with the first 10 squares in reverse order
by using unshift.

@squares = ();
for ($i = 1; $i <= 10; ++$i) {
unshift(@squares, $ix*2);

b

print "@squares';

Output 3.6 Output of code sample 3.10

100 81 64 49 36 25 16 9 4 1

cyclic permutations. See code sample 3.11 for an example of rotating an array. The first
line of output 3.7 shows that the last three letters of the alphabet have been moved to the
beginning, and the second line shows that the first three letters have been moved to the end.
In both cases, three letters have been rotated, though in opposite directions.

Code Sample 3.11 Example of using pop and unshift as well as push and shift to rotate
the alphabet by three letters.

Rotating the alphabet by three letters

Qletters = (PA’..°Z°);

for (81 = 1; $i <= 3; ++81) {
unshift(@letters, pop(@letters));

}

print Q@letters, "\n";

Rotating the alphabet in the opposite direction
@letters = (PA’..°Z7);
for ($i = 1; $i <= 3; ++8i) {

push(@letters, shift(@letters));

3
print Qletters;

Output 3.7 Output of code sample 3.11.

XYZABCDEFGHIJKLMNOPQRSTUVW
DEFGHIJKLMNOPQRSTUVWXYZABC

In this section, functions that manipulate arrays one entry at a time are discussed. Some-
times subsets of an array are desired, and Perl has a function called grep that can select
entries that match a given regular expression. Chapter 2 shows the utility of regexes, so this
function is powerful, as seen in the next section.

ARRAYS AND FUNCTIONS 69

3.5.2 Selecting Subsets of an Array

The syntax for grep is given below. It selects entries of a matrix that match a regex and is
based on a utility of the same name.

grep(/$regex/, Qarray);

Recalling code sample 2.28, which uses a regex to check for double letters in a word, we
create code sample 3.12. It also uses the qr// construction, which is demonstrated in code
sample 2.31. For this task the regex can be placed in grep directly, but using qr// can
speed up the code (the regex is precompiled), and this technique allows the programmer to
build up complex patterns. Finally, note that $regex must be inside forward slashes, as
shown in this code. When run, only the word lerters is printed out.

Code Sample 3.12 Example of using grep to select a subset of an array.

Q@words = qw(A test for double letters);
$regex = qr/(\w)\1/;
Q@double = grep(/$regex/, Qwords);

print "@double";

The next section discusses how to sort an array. Perl has built-in functions to sort strings
in alphabetical order and numbers in numerical order, but the function sort is able to use
programmer-defined orders, too.

3.5.3 Sorting an Array

Not surprisingly, the Perl function sort does sorting. However, this function does have
some surprising results, one of which is shown by code sample 3.13.

Code Sample 3.13 Two examples of sorting the entries of an array.

$data = "Four score and seven years ago';

@words = split(/ /, $data); # Break the phrase into words
@sorted_words = sort(@words); # Sort the words

print "@sorted_words\n";

@numbers = (1, 8, 11, 18, 88, 111, 118, 181, 188);
@sorted_numbers = sort(Gnumbers); # Sort the numbers
print "@sorted_numbers";

It seems obvious what the output should be for these two arrays when they are sorted.
Unfortunately, the results in output 3.8 are unexpected.

Both arrays have been sorted using the order given by the American Standard Code for
Information Interchange (ASCII) standard, where the numbers O through 9 precede the
uppercase letters A through Z, which precede the lowercase letters a through z. These three
ranges of characters are not contiguous in ASCII, but the others that come between are not

70 QUANTITATIVE TEXT SUMMARIES

Output 3.8 Output of code sample 3.13.

Four ago and score seven years
111 111 118 18 181 188 8 88

present in these arrays, so they do not matter here. Hence Four precedes ago because the
former word is capitalized, which precedes lowercase.

Moreover, dictionary order is used both for the words and the numbers. For example,
even though both start with the same three letters, bee precedes beech. This is equivalent
to adding spaces at the end of the shorter word and declaring that a space precedes all the
alphanumeric characters (which is true for ASCII). Hence 1 comes before 11, which comes
before 111. And 118 precedes 18 since both start with 1, but for the second character, 1
precedes 8.

Since numbers are usually sorted by numerical value, the default used by sort is typically
not appropriate with them. It turns out, fortunately, that it is easy to make sort use other
orders.

The general form of sort is as follows.

sort { code } Qarray;

Here code must use the arguments $a and $b, and it must return a numerical value. A
positive value means $a comes after $b, and a negative value means $a comes before $b.
Finally, 0 means that $a and $b are equivalent. This function is often <=> or cmp, which is
discussed below, but it is possible to use an explicit block of code or a user-defined function.
Creating the latter requires the use of subroutines, which is discussed in section 5.3.2.1. In
this section, we focus on the first two methods and only give a short example of the third
method in code sample 3.20.

The default of sort is cmp, which uses the dictionary order. It returns one of three
values: —1, 0, and 1, and these have the effect described in the previous paragraph. Hence
code sample 3.14 reproduces output 3.8.

Code Sample 3.14 This example is equivalent to the default use of sort in code sample 3.13.

$data = "Four score and seven years ago";
@words = split(/ /, $data);

@sorted_words = sort { $a cmp $b } @words;
print "@sorted_words";

Even with cmp, it is still the case that the word Four is put first because its first letter is
in uppercase. But this is easy to fix by applying the function 1c to $a and $b, so that all
strings are changed into lowercase when compared. One can also use uc, which transforms
text into uppercase, because the key is to have all text in the same case. Changing code
sample 3.14 this way produces code sample 3.15.

Output 3.9 now shows the desired results. Note that @sorted_words contains the sorted
words, but that the entries of @words are unchanged. Unlike pop or shift, sort does not
modify its argument.

Switching $a and $b sorts in reverse order, so $a and $b are not interchangeable. The
function reverse reverses the order of an array, so if reverse alphabetical order is desired,
then either of the two methods in code sample 3.16 works.

ARRAYS AND FUNCTIONS 71

Code Sample 3.15 This modification of code sample 3.14 produces the results one expects
in output 3.9.

$data = "Four score and seven years ago";

Q@words = split(/ /, $data);

Osorted_words = sort { lc($a) cmp lc($b) } @Qwords;
print "@sorted_words";

Output 3.9 Output of code sample 3.15.

ago and Four score seven years

Code Sample 3.16 Two ways to obtain reverse alphabetical order.

$data = "Four score and seven years ago";
Qwords = split(/ /, $data);

Reverse alphabetical order, method 1
Qreverse_sorted_wordsl = sort { lc($b) cmp lc($a) } Qwords;

Reverse alphabetical order, method 2
@reverse_sorted_words2 = reverse sort {lc($a) cmp lc(3b)} @words;

print "@reverse_sorted_wordsi\n@reverse_sorted_words2";

Remember that code sample 3.13 did not sort the numbers into numerical order. The
numerical analog of cmp is <=>, which is sometimes called the spaceship operator because
of its appearance. Like its analog, it returns one of three values: —1, 0, and 1, which
correspond to less than, equal to, and greater than, respectively. Code sample 3.17, which
uses the spaceship operator, now sorts the numbers as expected: @sorted_numbers is
identical to @rhumbers.

Code Sample 3.17 Example of a numerical sort.

@numbers = (1, 8, 11, 18, 88, 111, 118, 181, 188);
@sorted_numbers = sort{ $a <=> $b } Q@numbers;
print "@sorted_numbers";

We end this section with two types of sorts, each one of interest to anyone who enjoys
word games. The first sorts an array of words in alphabetical order, but considering the
letters from right to left. The second is a double sort: first sort by word length, and within
the words of a fixed length, then sort by the usual alphabetical order. Although the output
of the code shown below is not that informative, there are extensive word lists on the Web
(for example, see Grady Ward’s Moby Word Lists {123]), and if these two sorts are applied
to such a list, that output is interesting.

72 QUANTITATIVE TEXT SUMMARIES

To accomplish right to left alphabetical word order, we use the function reverse, which
is used above to reverse the entries in an array. In scalar context, this function reverses the
characters in a string. If applied to a number, the number is acted upon as if it were a string.
Code sample 3.18 shows how to perform this sort.

Code Sample 3.18 Example of a right to left alphabetical word sort.

@words = qw(This is a list of words using qw);
@sorted_words = sort {lc(reverse($a)) cmp lc(reverse($b))} Qwords;
print "@sorted_words";

Note that 1c is used so that case differences are ignored. Because writing a list of words,
each with double quotes, is tedious, Perl has the operator qw that informs it that strings are
involved. To remember this, think of the initial letters of quote word. Output 3.10 gives the
results, which make sense if the ends of the words are considered.

Output 3.10 Output of code sample 3.18.

a of using words is This list qw

For the second example, we sort words first by using length, then by alphabetical order
for all the words of a given length. Code sample 3.19 shows an example of this using the
following logic. First, compare the lengths of $a and $b using the function length and
the comparison operator <=>. If these lengths are the same, then compare the strings using
1c and cmp.

Code Sample 3.19 Example of sorting strings first by length then by alphabetical order.

Q@words = qw(This is a list of words using qw);
@sorted_words =
sort { $value = (length($a) <=> length($b));
if ($value == 0) { return lc($a) cmp 1lc($b);
} else { return $value }; }
Qwords;

print "@sorted_words";

Output 3.11 Output of code sample 3.19.

a is of gqw list This using words

Although it works, code sample 3.19 is becoming hard to read. This sorting code can be
defined as a separate function, which is done in code sample 3.20. The technique is almost
the same as making a user-defined function, except that the arguments are the special Perl
variables $a and $b. Notice that the function name lengthSort is put between sort and
the name of the array, and curly brackets are not needed. Finally, the output of this code
sample is the same as output 3.11.

HASHES 73

Code Sample 3.20 Rewriting code sample 3.19 using a subroutine for sorting.

@words = qw(This is a list of words using qw);
@sorted_words = sort bylLength Qwords;
print "@sorted_words';

sub byLength {
$value = (length($a) <=> length($b));
if ($value == 0) {
return lc($a) cmp lc($b);
} else {
return $value;
}
1

3.6 HASHES

Arrays are excellent tools for storing a sequence of values. For example, when splitting a
sentence into words, the order is important. However, suppose the goal is the following:
for a specific text, determine what set of words are in it and then count the frequency of
each of these. To use an array, each numerical index must represent a unique word, and the
problem becomes how to keep track of which index represents which word.

Fortunately, there is a better way. Instead of indexing with the numbers 0, 1, 2, .., itis
more convenient to use the words themselves for indices. This idea is exactly what a hash
does.

Just as arrays start with their own unique symbol (an @), hashes must begin with the
percent sign, that is, %. Recall that the entries of Qarray are accessed by $array[0],
$array[1],$array[2],... Similarly, the entries of %hash are accessedby $hash{"the"},
$hash{"and"}, and so forth. The strings that have associated values are the keys. See ta-
ble 3.1 for a summary of these points.

Table 3.1 Comparison of arrays and hashes in Perl.

Arrays Hashes
@name /name
$name [0] $name{"stringl"}
$name [1] $name{"string2"}
Indices are numbers Indices are strings
Uses square brackets Uses curly brackets
Ordered No inherit order

Like arrays, lists can be used to define a hash. Moreover, it is easy to convert a hash
to an array, as well as the reverse. Examples of hashes and hash conversions to arrays are
given in code sample 3.21. Unlike arrays, hashes cannot be interpolated in double quotes
because they are unordered.

Note that %hashi through %hash4 are identical. Although a hash can be defined using
a list with all commas, its entries naturally come in key-value pairs, so Perl provides the

74 QUANTITATIVE TEXT SUMMARIES

Code Sample 3.21 Examples of defining hashes and converting them into arrays.

%hashl = ("the", 220, "of", 149);
%hash2 = ("the" => 220, "of" => 149);
%hash3 = (the, 220, of, 149);

%hash4 = (the => 220, of => 149);
%hashs = (1..9);

@arrayl = %hashl;
Qarray2 = %hash2;
@array3 = %hash3;
@array4 = %hash4;
Qarrayb = %hashb;
$" = "o

print "@arrayi\n@array2\nQarray3\nQarray4\nQarray5\n";

=> operator, which is equivalent to a comma, but it is easier to read. Perl also expects that
the keys are strings, so quotes (either single or double) are optional as long as there are no
embedded blanks. Since pairs of entries are the norm for a hash, a list usually has an even
number of entries. However, %hash5 has an odd length, which means the key 9 has no
value paired to it in the list. Whenever this happens, Perl assigns the empty string as the
value.

Output 3.12 Output of code sample 3.21.

the,220,0f,149
the,220,0f, 149
the,220,0f,149
the,220,0f,149
1,2,3,4,7,8,9,,5,6

The first four lines of output 3.12 contain no surprises. The arrays are identical to the
hashes assigned to them. However, the fifth line shows that the hash has changed the order
of some of the key-value pairs. In particular, key 5 has been moved to the last position.
Hashes are ordered so that storage and retrieval of values are optimized.

As is the case with arrays, there are Perl functions that manipulate hashes. The most
important of these are discussed in the next section.

3.6.1 Using a Hash

Hashes have no particular order, so functions such as push and pop do not make sense, and
using them with a hash produces a compilation error. However, hashes do have keys and
values, which are returned as arrays by the functions keys and values, respectively. The
former is particularly useful for looping through a hash. We consider this next.

Consider code sample 3.22. The variable $sentence is a string, and the punctuation is
removed by using the s/// operator. Then split extracts the individual words, which are
put into the array @words. The foreach loop goes through this array one at a time, which
are keys for the hash, Jcounts. Initially, each key has the empty string for its value, but
the increment operator ++ forces this empty string into number context, where it acts like

HASHES 75

0, so it works even for the first appearance of a word. Note that 1c is used to put all the
letters into lowercase, so that capitalization is ignored. For example, the words The and the
are counted as the same.

Code Sample 3.22 This code counts the frequency of each word in the sentence by using
a hash.

$sentence = "The cat that saw the black cat is a calico.";
$sentence =" s/[.,?!;;?"O{}\\1]//g; # Remove punctuation
@words = split(/ /,$sentence);
foreach $word (@words) {

++$counts{lc($word)};
¥

foreach $word (keys %counts) {
print "$word, $counts{$word¥\n";

:

The second foreach loop prints out the frequencies of each word by looping over the
array produced by keys. Remember that the order of these keys typically looks random to
a human, as is the case in output 3.13. However, these keys can be sorted.

Output 3.13 Output of code sample 3.22.

the, 2

a, 1
that, 1
is, 1
cat, 2
saw, 1
black, 1
calico, 1

Alphabetical order is commonly used to list the keys of a hash. Since this is the default
order of sort, it is easy to do: just put this function in front of keys in code sample 3.22,
which produces code sample 3.23. This prints output 3.14.

Code Sample 3.23 Example of sorting the keys of the hash %counts, which is created in
code sample 3.22.

foreach $word (sort keys %counts) {

print "$word, $counts{$word}\n";
}

Suppose that the least frequent words in $sentence are of interest. In this case, listing
the values of the hash in numerical order is desired, which is done by the following trick.
The value of key $a is $counts{$a}, and an analogous statement is true for $b. Hence, we

76 QUANTITATIVE TEXT SUMMARIES

Output 3.14 Output of code sample 3.23.

a, 1
black, 1
calico, 1
cat, 2
is, 1
saw, 1
that, 1
the, 2

apply the spaceship operator to $counts{$a} and $counts{$b}, which is done in code
sample 3.24, which produces output 3.15.

Code Sample 3.24 The sort function puts the values of %counts (from code sample 3.22)
into numerical order.

foreach $word (sort {$counts{$a} <=> $counts{$b}} keys %counts) {
print "$word, $counts{$word}\n";
}

Output 3.15 Output of code sample 3.24.

a, 1
that, 1
is, 1
saw, 1
black, 1
calico, 1
the, 2
cat, 2

Although the values are in order, for a fixed value, the keys are not in alphabetical order.
This is fixed by byValues in code sample 3.25, which is an extension of byLength in code
sample 3.20. By using this user-defined function, this sort statement is much easier to
read. Finally, the results of using this order is given in output 3.16.

We end this section with a quick mention of one additional Perl hash function. The
function exists checks to see whether or not a key has a value in a hash. Here is an
example of its use.

if (exists($counts{$key})) { # commands }

Up to this point, much of this chapter discusses how to use arrays and hashes in Perl.
Now it is time to apply this knowledge. The next section discusses two longer examples
where we implement our new programming skills to analyze text.

TWO TEXT APPLICATIONS 77

Code Sample 3.25 The subroutine byValues first orders the values of %counts (from
code sample 3.22) numerically and then by alphabetical order.

foreach $word (sort byValues keys Y%counts) {
print "$word, $counts{$word}\n";
}

sub byValues {
$value = $counts{$a} <=> $counts{$b};
if ($value == 0) {
return %a cmp $b;
} else {
return $value;
}
}

Output 3.16 Output of code sample 3.25.

a, 1
black, 1
calico, 1
is, 1
saw, 1
that, 1
cat, 2
the, 2

3.7 TWO TEXT APPLICATIONS

This section discusses two applications, which are easy to program in Perl thanks to hashes.
The first illustrates an important property of most texts, one that has consequences later in
this book. The second develops some tools that are useful for certain types of word games.
We have worked hard learning Perl, and now it is time to reap the benefits.

Before starting these applications, we generalize the concordance code, program 2.7,
which is hard-coded to read in Charles Dickens’s A Christmas Carol [39] and to find the
word the. Section 2.5.1 discusses the command line, which is also used in program 3.1.
The version here, program 3.2, uses the command line to read in a file name, a regex, and
a text radius (to determine the size of the text extracts). This program proves useful below.

As for the code itself, note that the first two lines are comments, which tell the user
about the code. The regex from the command line is put into parentheses when assigned
to the variable $target, which causes the match to be stored in $1. If the parentheses are
included on the command line, however, the code still works.

3.7.1 Zipf's Law for A Christmas Carol

This section determines which words are in Dickens’s A Christmas Carol and how often
each of these appears. That is, we determine all the word frequencies. This sounds like

78 QUANTITATIVE TEXT SUMMARIES

USAGE > perl regex_concordance.pl FileName.txt Regex Radius
This program is case insensitive.

open (FILE, "$ARGV[0]") or die("$ARGV[0] not found");
$/ = ""; # Paragraph mode for first while loop

Initialize variables

$target = "($ARGV[1])"; # Parentheses needed for $1 in 2nd while
$radius = $ARGV[2];

$width = 2*$radius;

while (<FILE>) {
chomp;
s/\n/ /g; # Replace newlines by spaces

wvhile ($. =" /$target/gi) {
$match = $1;
$pos = pos($.);
$start = $pos - $radius - length($match);

if ($start < 0) {

$extract = substr($_, 0, $width+$start+length($match));
$extract = (" " x -$start) . S$extract;
$len = length($extract);

} else {
$extract = substr($_, $start, $width+length($match));

}

print "$extracti\n";

}
}

Program 3.2 A concordance program that finds matches for a regular expression. The file
name, regex, and text extract radius are given as command line arguments,

a straightforward task, but punctuation is trickier than one might expect. As discussed in
sections 2.4.2 and 2.4.3, hyphens and apostrophes cause problems. Using program 3.2,
we can find all instances of potentially problematic punctuation. These cases enable us
to decide how to handle the punctuation so that the words in the novel change as little as
possible.

First, we check for dashes in the novel and whether or not there are spaces between the
dashes and the adjacent words. The following command produces output 3.17.

perl regex_concordance.pl A_Christmas_Carol.txt -- 30

Notice the name of the file containing the novel has no blanks in it. If it did, double
quotes must be placed around this name (single quotes do not work).

The complete output has 82 lines, and the first 10 are shown here. Certainly A Christmas
Carol does use dashes, and these are generally placed in between words without spaces, so

TWO TEXT APPLICATIONS 79

Output 3.17 Output from program 3.2, which prints out extracts containing dashes. Only
the first 10 lines shown.

ut after dark in a breezy spot--say Saint Paul’s Churchyard fo
Paul’s Churchyard for instance-- literally to astonish his son
Once upon a time--of all the good days in the ye
in the year, on Christmas Eve--o0ld Scrooge sat busy in his co
but it was quite dark already-- it had not been light all day
it had not been light all day--and candles were flaring in th
s time, when it has come round--apart from the veneration due
g to it can be apart from that--as a good time; a kind, forgiv
oge said that he would see him--yes, indeed he did. He went th
stablishments I have mentioned--they cost enough; and those wh

the few spaces that do appear are typos. Substituting a space for each dash removes them,
and this is easily done by s/--/ /g;.

Next we check for single hyphens, which should only appear in hyphenated words. The
regex \w-\w detects them since it specifies a hyphen between two alphanumeric characters.
This gives the following command, which produces 226 examples, the first 10 of which are
given in output 3.18. Note that the regex is in double quotes, which are optional here, but
are required if the regex has spaces or quotes.

perl regex_concordance.pl A_Christmas_Carol.txt "\w-\w" 30

Output 3.18 Output from program 3.2, which prints out extracts containing hyphenated
words. Only the first 10 lines shown.

1d Marley was as dead as a door-nail.

particularly dead about a door-nail. I might have been incline

ned, myself, to regard a coffin-nail as the deadest piece of ir

at Marley was as dead as a door-nail.

re would be in any other middle-aged gentleman rashly turning o
Oh! But he was a tight-fisted hand at the grind-stone,

tight-fisted hand at the grind-stone, Scrooge! a squeezing, wr

generous fire; secret, and self-contained, and solitary as an o

; he iced his office in the dog-days; and didn’t thaw it one de

crooge sat busy in his counting-house. It was cold, bleak, biti

Since this text has just over 200 hyphenated words, we need to decide what to do with
them. The 3 simplest choices are: leave them as is; split them into separate words; or
combine them into one word. In this case, Dickens is an acknowledged great writer, so let
us leave his text as is.

Third, and trickiest, are the apostrophes. This text uses double quotes for direct quota-
tions. Apostrophes are used for quotes within quotations as well as for possessive nouns.
The latter produces one ambiguity due to possessives of plural nouns ending in s, for ex-
ample, seven years’. Another possible ambiguity is a contraction with an apostrophe at
either the beginning or the end of a word. To check how common the latter is, the regex

80 QUANTITATIVE TEXT SUMMARIES

\w?’\W checks for an alphanumeric character, an apostrophe, and then a nonalphanumeric
character. Running the following command creates output 3.19, which gives all 13 cases.

perl regex_concordance.pl A_Christmas_Carol.txt "\w’\W" 30

Output 3.19 Output from program 3.2, which matches words ending with .

oes about with ’Merry Christmas’ on his lips, should be boiled
uddy as they passed. Poulterers’ and grocers’ trades became a s
passed. Poulterers’ and grocers’ trades became a splendid joke:
last mention of his seven years’ dead partner that afternoon. A
ave become a mere United States’ security if there were no days
azing away to their dear hearts’ content. There was nothing ver
f it went wrong. The poulterers’ shops were still half open, an
1 half open, and the fruiterers’ were radiant in their glory. T
rapes, made, in the shopkeepers’ benevolence to dangle from con
The Grocers’! oh, the Grocers’! nearly clos

The Grocers’! oh, the Grocers’! nearly closed, with perhaps t
ing their dinners to the bakers’ shops. The sight of these poor
"Are spirits’ lives so short?" asked Scrooge

The only example other than a possessive noun is the first line, which is a quote within
a quote that ends in the letter s. In particular, none of these are a contraction with an
apostrophe at the end of the word. So if no single quotes after the final letter of a word
are removed, only one error arises. If one error is unacceptable, then add a line of code to
handle this exception.

Finally, there is the possibility of a contraction starting with an apostrophe, which does
happen in this text. Using the regex \W’\w, we find all cases of this. This results in 24
matches, the first 10 of which are given in output 3.20.

Output 3.20 Output from program 3.2, which matches words starting with . Only the first
10 lines shown.

d Scrooge’s name was good upon ’Change, for anything he chose t
books and having every item in ’em through a round dozen of mon
very idiot who goes about with ’Merry Christmas’ on his 1lips, s

"Couldn’t I take ’em all at once, and have it ove
fter sailing round the island. ’Poor Robin Crusoe, where have y

in, accompanied by his fellow-’prentice.

shutters--one, two, three--had ’em up in their places--four, fi
laces—-four, five, six--barred ’em and pinned ’em--seven, eight
ve, six--barred ’em and pinned ’em--seven, eight, nine--and cam
rybody had retired but the two ’prentices, they did the same to

The only contractions that appear are 'Change (short for the Exchange, a financial insti-
tution), 'em (them), and ’prentices (apprentices). Again we can check for these three cases,
or we can always remove an initial single quote, and this produces only one ambiguity: it

TWO TEXT APPLICATIONS 81

is not possible to distinguish between "Change and the word change (which does appear in
this text). For more on contractions, see problem 3.1.

Turning the above discussion into Perl code, we get program 3.3. There are several
points to note. First, there are two open statements. The first opens the text file containing
A Christmas Carol. The second opens a file for the output, which is indicated by the greater
sign at the start of the filename (see section 2.5.2 for more on this). Since this program
produces many lines of output (one for each distinct word), this is easier to handle if it is
in a file. To write to this, the print statement must have the filehandle immediately after
it as shown in the last foreach loop.

open(TEXT, "A_Christmas_Carol.txt") or die("Text not found");
open(QUT, ">Word_Counts.csv");

while (KTEXT>) {
chomp;
$_ = 1lc; # Convert to lowercase
s/--/ /g; # Replace dash with space
s/ +/ /g; # Replace multiple spaces to one space
s/[.,:;7"1(0)1//g; # Remove punctuation (except ’)

@words = split(/ /);
foreach $word (@words) {

if /Qw+)’\W/) {

if ($1 eq ’Christmas’) {

$word =~ s/’//g; # Remove single quote

}
}
if C/AWQwH)/) {

if (($1 ne ’change’) and ($1 ne ’em’) and

($1 ne ’prentices’)) {

$word =~ s/’//g; # Remove single quote
}
}

$dictionary{$word} += 1; # Increment count for $word
}
}

foreach $word (sort byDescendingValues keys %dictionary) {
print OUT "$word, $dictionary{$word}\n";
}

Program 3.3 This program counts the frequency of each word in A Christmas Carol. The
output is sorted by decreasing frequencies.

82 QUANTITATIVE TEXT SUMMARIES

Second comes the while loop. It starts with chomp, which removes the final newline
character from the default variable, $_. Then $_ = 1c; converts the default variable to
lowercase. The next three lines are substitutions that remove all of the punctuation except
for the single quote. Next, the line of text is split into words.

Third, the foreach loop inside the while loop decides whether or not to remove apos-
trophes. If it is inside the word itself, it is not removed. If it is at the end of the word, it is
removed only if the word is Christmas, which is an odd rule, but one discovered by looking
at output 3.19. If the single quote is at the start of the string, it is removed unless it is one
of the following: 'change, ’em, or 'prentices.

Fourth, since $word has no punctuation (except apostrophes), we use the hash
#dictionary to increment the count associated with $word. Once the while loop is
done, the last foreach loop prints out the results to the file Word _Counts. csv. The order
of the sort is determined by byDescendingValues, which sorts by values, from largest
to smallest. Code sample 3.26 gives the subroutine for this function, and the first 10 lines it
produces are given in output 3.21. Note that the suffix of this file, . csv, stands for comma-
separated variables. Many types of programs know how to read such a file, and they are a
popular way to store data.

Code Sample 3.26 This subroutine sorts the values of %dictionary (computed by pro-
gram 3.3) from largest to smallest.

sub byDescendingValues {
$value = $dictionary{$b} <=> $dictionary{$a};
if ($value == 0) {
return $a cmp $b;
} else {
return $value;
}
}

Output 3.21 First 10 lines of output from program 3.3, which uses code sample 3.26.

the, 1563
and, 1052
a, 696
to, 658
of, 652
in, 518
it, 513
he, 485
was, 427
his, 420

Finally, the file used for A Christmas Carol has chapter titles. These have been included
in program 3.3. If a programmer wants to leave these out, this requires modifying this code.
Now we can state and illustrate Zipf’s law. First, the words in the text are listed from
most to least frequent. Then assign ranks for each word by numbering them 1, 2, 3,

TWO TEXT APPLICATIONS 83

For example, from output 3.21 we see that the is most common (appearing 1563 times),
so it has rank 1. Since the sequence continues and, a, o, these words have ranks 2, 3, 4,
respectively. If there are ties, then arrange these alphabetically, and rank them in that order.
For example, but and not both appear 177 times, so give the former rank 24, and the latter
rank 25. As the counts get smaller, the number of ties goes up. For instance, there are 2514
out of 4398 words that appear exactly once (just over 57%). Such words are called hapax
legomena.

The total number of words in A Christmas Carol is determined by adding all the numbers
produced by program 3.3, which is 28,514. We can also count the number of distinct words,
or types. This is the number of lines of output, which equals 4398.

Once the ranks are given, each word has two values associated with it: its frequency and
its rank. Zipf’s law says that plotting the logarithm of the frequency against the logarithm
of the rank produces an approximately straight line. Figure 3.1 shows such a plot, which
is approximately straight. More importantly, since the horizontal lines in the lower right
corner represent numerous ties, the conclusion is clear: the lower the frequency, the larger
the number of ties, on average.

3.7.2 Perl for Word Games

Now we take a break for some fun. There are various types of word lists on the Web, and
for word games we want one that includes inflected words. That is, nouns include both
singular and plural forms; verbs include all the conjugated forms; adjectives include the
comparative and superlative forms, and so forth. We use Grady Ward’s CROSSWD . TXT from
the Moby Word Lists [123]. This has more than 110,000 words total, including inflected
forms.

In this section we consider three types of word games. First, in a crossword puzzle
the length of a word is known. In addition, a few letters and their locations in the word
can be known. Using CROSSWD.TXT, we find all words that match these two constraints.
Second, given a group of letters, we find out if it is possible to rearrange them so that they
form a word. For example, the letters eorsstu can form seven words: estrous, oestrus,
ousters, sourest, souters, stoures, and tussore. Third, given a group of letters, what are
all the possible words that can be formed from all or some of these letters? For example,
using all or some of the letters in textmining, what words can be formed? There are many
possibilities, some obvious like text and mining, and others that are harder to discover, like
emitting and tinge.

3.7.2.1 An Aid to Crossword Puzzles Finding words to fit in a crossword puzzle
is easy to do. Suppose the goal is to find a seven-letter word with a j in the third position
and an n in the sixth. All the other letters must match \w, so the following regex works
because CROSSWD . TXT has exactly one word per line, so the initial caret and ending dollar
sign guarantee that the matches are exactly seven letters long.

/\w{2}j\w{2}In\w$/

Program 3.4 is straightforward to create. For flexibility, it uses a command line argument
to supply the regex, which is constructed by the qr// operator. The if statement prints out
each word that matches this regex.

If we run the following command, we get output 3.22, assuming that program 3.4 is
stored under the filename crossword.pl.

84 QUANTITATIVE TEXT SUMMARIES

20 25
¥

Log(Frequency)
15
L

1.0

0.0
1

Log(Rank)

Figure3.1 Log(Frequency) vs. Log(Rank}) for the words in Dickens’s A Christmas Carol.

perl crossword.pl "~\w{2}j\w{2}n\w$"

The usefulness of this program depends on the number of matches found. The extreme
case is using something like the regex /~\w{7}$/, which returns all 21,727 seven-letter
words, which is not much help in solving a crossword clue.

3.7.2.2 Word Anagrams Here we create an anagram dictionary, which is a listing of
words indexed by the letters of each word sorted in alphabetical order. For example, the
word abracadabra has the index string aaaaabbedrr. By making this index string a key,
we can create a hash that stores the entire anagram dictionary. Unfortunately, sort does
not have a string context, but the following approach works.

The function split(//) turns a string into an array, which sort can order. Finally,
the function join turns the array back into a string. Its first argument is the text to place

TWO TEXT APPLICATIONS 85

USAGE > perl crosswd.pl "regex"

open(WORDS, "CROSSWD.TXT") or die;
$regex = qr/$ARGV[0]/;

while (<WORDS>) {
if (/$regex/) {
print;
}
}

Program 3.4 Finding words fitting crossword-puzzle-type constraints.

Output 3.22 All matches from running program 3.4 as described in the text.

adjoins
adjoint
enjoins
rejoins
sejeant

between array entries, and if the empty string is used, then the entries of the array are
concatenated together. So using these three functions can create the index string discussed
above.

There is one last issue. Some keys work for more than one word. This requires checking
to see if any value has been assigned to the current key. If so, then the program appends
the new word to the old list using a comma as a separator. If not, then the current word
becomes the value for this key. Using these ideas results in program 3.5. The first 10 lines
produced by this program are given in output 3.23. Finally, note that this same technique
is applicable to all sorts of strings, not just words. See problem 3.9 for an example.

3.7.2.3 FindingWords in a Set of Letters The finaltask is harder because it requires
considering not just a group of letters, but also all subgroups. Unfortunately, the number
of nonempty subsets of » letters is 2" — 1, which grows quickly. For instance, eight letters
has 255 subsets. Fortunately, there is a trick to avoid considering all these explicitly.

Suppose we want to find all the words that can be formed from some or all of the letters
in the word algorithm. Sorting the letters of this word produces aghilmort. Now loop
through all the keys of the anagram dictionary created by program 3.5. For each key, sort
its letters, then create a regex from these by placing . * at the beginning, between each pair
of letters, and at the end. For example, for the key pull, we sort to get llpu, and then create
the regex /.*1.*1.*p.*u.*/. The only way that aghilmort can match this regex is that
all the letters of pull are contained in the letters of algorithm. In this case, this is not true,
so pull cannot be formed.

It is true that they are many keys, but computers are fast. Taking the logic of the last
paragraph, and reusing the anagram dictionary code of program 3.5, we get program 3.6.
In this code, $index contains the sorted letters of the string entered on the command line.
The foreach loop sorts each key of %dictionary, creates a regex from these sorted letters

86 QUANTITATIVE TEXT SUMMARIES

open(WORDS, "CROSSWD.TXT") or die;

while (<WORDS>) {
chomp;
@letters = split(//);
$key = join(’’,sort(Q@letters));
if (exists($dictionary{$key})) {
$dictionary{$key} .= ",$_";
} else {
$dictionary{$key} = $_;
}
}

foreach $key (sort keys %dictionary) {
print "$key, $dictionary{$key}\n";
}

Program 3.5 Creates an anagram dictionary.

Output 3.23 First 10 lines from running program 3.5

aa, aa
aaaaabbcdrr, abracadabra
aaaabcceeloprsttu, postbaccalaureate
aaaabcceelrstu, baccalaureates
aaaabcceelrtu, baccalaureate
aaaabdilmorss, ambassadorial
aaaabenn, anabaena

aaaabenns, anabaenas
aaaaccdiiklllsy, lackadaisically
aaaaccdiiklls, lackadaisical

as described above, then checks if $index matches. This technique is another example of
interpolation, and it demonstrates how powerful it can be.

Finally, 10 lines of program 3.6 are given in output 3.24. Lines with more than one entry
contain anagrams. For example, algorithm is an anagram of logarithm. Although the order
of these words seems random, they are in alphabetical order of their keys.

In this section we have seen the power of hashes. In the next, we consider more complex
data structures, which are essential later in this book.

3.8 COMPLEX DATA STRUCTURES

For a single text, hashes and arrays are sufficient. However, if a collection of texts are of
interest, it is unwieldy to use numerous data structures, each with its own name. Fortunately,
Perl supports complex data structures like arrays of arrays. But to understand how these
work, we must learn about references, the topic of the next section.

COMPLEX DATA STRUCTURES 87

USAGE > perl subsetwords.pl string
open(WORDS, "CROSSWD.TXT") or die;

while (<WORDS>) {
chomp;
$key = join(’’,sort(split(//)));
if (exists($dictionary{$key})) {
$dictionary{$key} .= ",$_";
} else {
$dictionary{$key} = $_;
+
}

$index = join(’’,sort(split(//,$ARGV[0])));

foreach $key (sort keys %dictiomary) {
$regex = join(’.*’, split(//,$key));
$regex = ’.*’ . Pregex . ’.%’;
if ($index =~ /$regex/) {
print "$dictionary{$key}\n";

¥
X

Program 3.6 This program finds all words formed from subsets of a group of letters.

Output 3.24 First 10 lines from running program 3.6 with algorithm as the input.

hag

laigh
algorithm,logarithm
alright

alight

aright

ogham

garth

ghat

glioma

3.8.1 References and Pointers

So far, we have assigned values to variables. For example, the command below assigns the
string the to the scalar $word.

$word = "the";

However, it is possible to assign not the value, but the memory location of the value,
which is called a reference. For example, the command below now stores the location of
the in the variable $wordref.

88 QUANTITATIVE TEXT SUMMARIES

$wordref = \"the";

The backslash in front of the string indicates that a reference to that string is desired.
Backslashes in front of arrays and hashes also produce references. Printing out $wordref
on my computer produced SCALAR (0x184ba64), where the value in the parentheses is a
memory location written out as a base 16 number (as indicated by the first two characters,
0x).

The actual memory location is not directly useful to a programmer, so a method to retrieve
the value is needed, which is called dereferencing. A scalar reference is dereferenced by
putting it inside the curly brackets of ${}. An example of this is given in code sample 3.27.

Code Sample 3.27 Example of referencing and dereferencing scalars.

$word = "the";

$wordrefl = \"the";

$wordref2 = \$word;

print "$wordrefl, $wordref2\n";

print "${$wordref1}, ${$wordref2}\n";
print "$$wordrefl, $$wordref2\n";

Running this code sample produces output 3.25. The print statements show that
$wordrefl and $wordref2 have memory locations, and that ${$wordrefi} and
${$wordref2} do access the values. In addition, these can be abbreviated to $$wordref1
and $$wordref2.

Output 3.25 Results of code sample 3.27.

SCALAR(0x1832824), SCALAR(0x18327f4)
the, the
the, the

Analogous examples can be created for both arrays and hashes. Code sample 3.28
shows an example for the array @sentence. Note that there are two ways to make an array
reference. First, put the backslash operator in front of an array name. Second, use square
brackets instead of parentheses for a list, which is also called an anonymous array. Note
that putting a backslash in front of a list does not create an array reference.

Looking at output 3.26, putting the array reference inside @{} does work. That is,
@{$sentencerefl} is an array, so, for example, @{$sentenceref1}->[0] or
@{$sentenceref1}[0] accesses the first element of the array. However, this notation
is a bit cumbersome, so two equivalent forms exist in Perl: $sentenceref1->[0] and
$$sentenceref1[0]. References are also called pointers, and so a pointing arrow is an
appropriate symbol. Notice that when $sentenceref1->[-1] is set to a different word,
the original array, @sentence is itself changed. Hence changing a reference changes what
it points to.

Finally, code sample 3.29 shows a hash example of referencing and dereferencing. As
with arrays, there are two ways to specify a hash reference: using the backslash or using
curly brackets, and the latter is called an anonymous hash. Again using either the arrow or
the double dollar notations work with hash references, similar to arrays. The results of this
code sample are given in output 3.27.

COMPLEX DATA STRUCTURES 89

Code Sample 3.28 Example of referencing and dereferencing an array.

@sentence = qw(This is a sentence.);
$sentencerefl = \@sentence;
$sentenceref2 = ["This", "is", "a", "sentence."];

print "$sentencerefl, $sentenceref2\n";
print "@{$sentencerefi}\n";
print "@{$sentenceref2}\n\n";

print "@{$sentenceref1}->[0]\n";
print "@{$sentenceref1}[0]\n";
print "$sentenceref1->[0]\n";
print "$$sentenceref1[0]\n\n";
print "$sentencerefi~>[-1]\n";

$sentencerefi->[-1] = "banana";
print "@sentence\n";

Output 3.26 Results of code sample 3.28.

Arrays

ARRAY (0x1832974), ARRAY(0x2356f0)
This is a sentence.
This is a sentence.

This
This
This
This

sentence.
This is a banana

If you are new to programming, creating a reference to a memory location, and then
dereferencing it to access its value may seem crazy. After all, why not just work with the
value itself? It turns out that references are useful in more than one way, but we consider
just one important application here.

Before stating this application, the need for it comes from one unfortunate fact about
Perl: it only handles one-dimensional data structures. However, complex data structures
like multidimensional arrays are possible in Perl, so how is this one-dimensional limitation
overcome? Consider this concrete example: suppose a one-dimensional array $array2d
contained references to other arrays. Then $array2d (0] is a reference to another array,
as is $array2d[1], $array2d [2], and so forth. By dereferencing $array2d[0], we are
able to access this new array, and the same is true for $array2d 1], $array2d 2], The

90 QUANTITATIVE TEXT SUMMARIES

Code Sample 3.29 Example of referencing and dereferencing a hash.

Y%counts = (the => 1563, and => 1052, a => 696);
$countsrefl = \%counts;
$countsref2 = {the => 1563, and => 1052, a => 696};

print "$countsrefl, $countsref2\n";
print "$countsrefil->{and}\n";
print "$countsref2->{the}\n";
print "$$countsref2{the}\n";

Output 3.27 Results of code sample 3.29.

HASH(0x1832d04), HASH(0x1832ca4)
1052
1563
1563

result is a data structure that has two indices. In fact, it is more general than a traditional
two-dimensional, rectangular array.

But before moving on, the following facts are useful to memorize. First, the backslash
in front of a scalar variable, an array, or a hash creates a reference to these respective data
structures, and this reference is a scalar in all cases (its scalar value is the memory location).
Second, the dereferencing operators, ${}, @{}, %{} all start with the symbol that begins the
respective names of the data structures. Third, anonymous arrays use square brackets, and
array indices are put into square brackets. Similarly, anonymous hashes use curly brackets,
and hash indices are put into curly brackets. In the next section we create an array of arrays,
and see how it works in detail.

3.8.2 Arrays of Arrays and Beyond

The construction of an array of arrays discussed in the last section is straightforward. A
one-dimensional array can be constructed by putting the entries inside parentheses. Array
references can be created by listing entries inside square brackets, which are called anony-
mous arrays. So if we create a list of anonymous arrays, then that is an array of arrays. A
simple example is done in code sample 3.30.

Code Sample 3.30 Example of an array of arrays using a list of anonymous arrays.

@data = ([1, 2, 3], [’a’, ’b’, ’c’, ’°d’], [3.3, 2.06]);

print "$data0]\n";
print "@{$datal0]}\n";
print "$datal1]->[0]\n";
print "$data[2] [1]1\n";

COMPLEX DATA STRUCTURES 91

The results from this code sample is given in output 3.28. The first line shows that
$data[0] is indeed a reference to an array. By putting $data[0] into @{} this is derefer-
enced. Note that the following three expressions are equivalent, and all access an entry of
an array of arrays. However, do not use double dollar signs in this situation.

e{$data[2]}->[1]
$datal2]->[1]
$datal2] [1]

Knowing that two sets of square brackets imply the existence of the arrow between them,
the last form is the easiest to use. However, it is prudent to remember that @data is not
a two-dimensional array, but instead an array of references that happen to point to more
arrays.

Output 3.28 Results of code sample 3.30.

ARRAY (0x18b12ac)
1,2,3

a

2.06

To get a complete listing of the elements of @data, one can use several techniques,
two of which are shown in code sample 3.31. To understand the first method, remember
that $#data gives the last index of @data, so the for loop iterates over the number of
anonymous arrays in @data. The join function makes a string out of each dereferenced
array using commas as separators. Finally, note that since @data has scalar entries that are
references, the references must start with a dollar sign. Hence in join, the dereferencing
operator @{} must contain the scalar variable $data[$i]. The second method iterates
over the number of anonymous arrays, just like the first method. And the second for loop
iterates over the length of each anonymous array since $#{} gives the value of the last index
for the referenced array within the curly brackets. Output 3.29 shows the results.

Hashes of hashes are similar to arrays of arrays. In code sample 3.32, we see that arrows
can be used, but similar to arrays of arrays, they are implied when two curly brackets are side
by side. For printing out of all the values, notice that the first foreach loop iterates over
the keys of %data, which is a hash of references. In the second foreach loop, $data{$i}
is a reference, so it must start with a dollar sign, and it is dereferenced by %{}, which allows
the use of keys. Finally, note that the order of the values printed by the two foreach loops
in output 3.30 is not the order used in the definition of %data. Remember that Per] stores
hashes using its own ordering. '

Finally, arrays and hashes can be mixed together. An example of an array of hashes is
seen in code sample 3.33, which produces output 3.31. Note that dropping the arrows is
possible between square brackets and curly brackets, similar to the two cases above. Note
that the for loop iterates through the array of hash references, and the foreach loop iterates
through the keys of each hash. i

Hashes of arrays are very similar to arrays of hashes. Moreover, it is possible to have
more than two levels of references, for example, arrays of hashes of hashes, or even varying
number of levels, for instance, @array where $array[0] refers to a hash, $array[1]
refers to an array of arrays, $array[2] refers to a scalar, and so forth. For this book,

92 QUANTITATIVE TEXT SUMMARIES

Code Sample 3.31 Two examples of printing out an array of arrays using for loops.

@data = ([1, 2, 3], [’a’, ’b’, ’¢’, ’d’], [3.3, 2.06]1);

print "Method #1\n";

for ($i = 0; $i <= $#data; ++$i) {
$line = join(’, ’,@{$datal$il});
print "$line\n";

}

print "\nMethod #2\n";

for ($i = 0; $i <= $#data; ++$i) {
for ($j = 0; $j <= $#{$datal$il}; ++8j) {
print "$data[$il [$j1, ";
}
print "\n";

+

Output 3.29 Results of code sample 3.31.

Method #1
1, 2, 3

a, b, ¢, d
3.3, 2.06

Method #2
1, 2, 3,
a, b, ¢, d,
3.3, 2.06,

two levels suffice, but the above examples suggest how a programmer might proceed. For
example, it is not surprising that $data{$i} [$j] [$k] accesses a value of a hash of arrays
of arrays.

There is more to know about references, but the material above suffices for the tasks in
this book. Now we apply the tools discussed in this section to text. In the next section, we
learn how to compare the words in two texts by using an array of hashes.

3.8.3 Application: Comparing the Words in Two Poe Stories

In this section we compare the vocabulary of Edgar Allan Poe’s “Mesmeric Revelation”
and “The Facts in the Case of M. Valdemar." With only two texts, two hashes can be used,
but our goal is to use the techniques of the last section so that the code is generalizable to
many texts, which is used in chapter 5. ,

We assume that the two stories are in one file, and the beginning of each story is marked
by its title put between two XML tags as follows.

<TITLE> MESMERIC REVELATIONS </TITLE>

COMPLEX DATA STRUCTURES 93

Code Sample 3.32 Examples of a hash of hashes and how to print out all its values.

%data = (order => {a
length => {a => 1, b

print "$data{order}->{b}\n";

print "$data{length}{c}\n";

>1, b =>2, ¢ => 3},
>1, ¢ =>1});

print "\nListing\n";
foreach $i (keys %data) {
foreach $j (keys %{$data{$i}}) {
print "$i, $j, $data{$il{$jF\n";
}
}

Output 3.30 Results of code sample 3.32.

2

1

Listing
length, c, 1
length, a, 1
length, b, 1

order, c, 3
order, a, 1
order, b, 2

XML (eXtensible Markup Language) is related to HTML (HyperText Markup Lan-
guage), which are the tags used in creating Web pages. XML and HTML are the most
famous instances of SGML (Standard Generalized Markup Language). The need for XML
in this case is modest: only title tags are used. Conveniently, we only need to know that
XML tags come in matched pairs, as is shown above.

These title tags inform the program when one story ends and another one begins. The
words of all the stories are stored in an array of hashes, one hash for each story. Notice that
it is not necessary to know the number of stories in advance since hashes can be added as
needed. Once Perl code exists to analyze one story, looping through all the stories is easy
to do.

To create the array of hashes, a counter (just a variable that counts something up) is
incremented each time a title tag is detected (by a regex, of course). This counter is also the
current array index of the array of hashes. We already have segmented a text into words, so
the first part of the program is familiar. Our first new task is to count the number of words
shared by each pair of stories, which includes a story with itself (this equals the number of
words in that story). Program 3.7 contains this code, which is described below.

After opening the input file and assigning it to the filehandle IN, the counter $nstory is
initialized to —1. This counter is incremented in the while loop each time a title tag pair
is matched, and it is also the index to the array @name.

94 QUANTITATIVE TEXT SUMMARIES

Code Sample 3.33 Example of an array of hashes and how to print out all its values.

@data = ({a => 1, b => 2, ¢ => 3}, {a => "first", b => "second"});

print "$datal0]\n";
print "$datal0]->{a}\n";
print "$datal0]{a}\n";
print "$data[1]{b}\n";

print "\nListing\n";
for ($i = 0; $i <= $#data; ++$i) {
foreach $j (keys %{$data{$il}) {
print "$i, $j, $datal$il{$j}r\n";
+
}

Output 3.31 Results of code sample 3.33.

HASH(0x1858408)
1

1

second

, b, second

The if statement switches between two tasks. If a <TITLE> </TITLE> pair is detected,
then the counter $nstory is incremented, and the story title is saved in the array @name.
Otherwise, the line of text is processed: itis transformed into lowercase, dashes are removed,
multiple spaces are reduced to one space, and then all punctuation except for the apostrophe
is removed. It turns out that these two stories both use dashes, but one uses a single
hyphen, the other a double hyphen. In addition, the only apostrophes used in both are either
contractions or possessives. That is, none are single quotes used within quotations.

With the punctuation removed, since the default regex for split is one space, the words
on each line are assigned to the array @words. The foreach loop goes through these one
by one, and then two hashes are incremented. The first is the array of hashes, @dict. Note
that ++$dict [$nstory] {$w} increments the count of $w in the story indexed by $nstory
in @dict. Even though the text file used here has only two stories, this code works for
any number as long as each one starts with XML title tags. The second hash, ,combined,
keeps track of word counts for all the stories combined, which is used in the next step.

When the while loop is finished, the raw data is in place. The two for loops after it keep
track of each pair of stories, and then the foreach loop iterates through all the words in both
stories (which are in the hash %combined). The if statement finally determines whether

COMPLEX DATA STRUCTURES 95

open (IN, "PoeMesmerismStories.txt") or die;
$nstory = -1; # Counter for number of stories

while (<IN>) { # Read the file

chomp;

if ($_ =" /<TITLE> *(.x) *<\/TITLE>/) {
$name [++$nstory] = $1; # Save the name of the story
print "$1 detected.\n";

} else {
$_ = 1c; # Convert to lower case
s/ -- / /g; # Remove double hyphen dashes
s/ - / /g; # Remove single hyphen dashes
s/ +/ /g; # Replace multiple spaces with one space
s/[.,:;?"'_O\I\]11//g; # Remove punctuation

@words = split;
foreach $w (@words) {
++$dict [$nstory]{$w}; # Array of hashes for each story
++$combined{$w}; # Hash with all words
}
}
}

Compute number of words in common between any two stories
for $i (0 .. $#dict) {
for $j (0 .. $#dict) {
foreach $word (keys Y%combined) {
if (exists($dict[$il{$word}) and exists($dict[$j]{$word}))
{ ++$count [$i] [$j] 2}

Print results

for $i (0 .. $#dict) {
print "@{$count[$i]}\n";

}

Program 3.7 This program reads stories in from a file that has titles inside XML tags.
Shared word counts are computed for each pair of stories, including a story with itself.

each word is a key for both hash references $dict [$i] and $dict [$;] by applying the
function exists.

Finally, the last for loop prints out the counts between each pair of stories, and out-
put 3.32 shows the results. The order of the stories is printed out, and the counts form
a two-by-two table, which reveals that “Mesmeric Revelation” has 1004 types (distinct

96 QUANTITATIVE TEXT SUMMARIES

words), and “The Facts in the Case of M. Valdemar" has 1095. Finally, these two stories
have 363 types in common.

Output 3.32 The results of program 3.7.

MESMERIC REVELATION detected.

THE FACTS IN THE CASE OF M. VALDEMAR detected.
1004,363

363,1095

Program 3.7 is easily modified to count the number of words in the first story but not
the second. Code sample 3.34 shows the nested for loops that do this. It gives the answer
641, which is confirmed by output 3.32, since of the 1004 types in the first story, 363 are
shared by the second, which leaves 1004 — 363 = 641 types unique to the first.

Code Sample 3.34 If these for loops replace the analogous for loops in program 3.7, the
resulting code computes the number of distinct words in the first story that are not in the
second.

Qcount = undef; # Clear this array

for $i (0 .. $#dict-1) {
for $j ($i .. $#dict) {
foreach $word (keys %combined) {
if (exists($dict[$i]{$word}) and
not exists($dict[$j]l{$word}))
{ ++3count [$1] [$j] }

Thinking in terms of sets, program 3.7 computes the size of the intersection of the keys of
two hashes, and code sample 3.34 computes the size of the complement of a hash. Finally,
the keys of the hash %combined is the union of the keys of the hashes for each story. Recall
that sets do not allow repeated elements, which is also true of hash keys. So these act like
sets. For a discussion of working with sets in Perl see chapter 6 of Mastering Algorithms
with Perl by Orwant et al. [84].

3.9 REFERENCES

Section 2.8 lists some introductory books on Perl and on regular expressions. This section
lists some more advanced books on Perl programming as well as a few that apply Perl to
text-mining-related topics.

Larry Wall created Perl, and he co-authored Progamming Per! with Tom Christiansen and
Jon Orwant [120]. A companion volume to this book is the Perl Cookbook by Tom Chris-
tiansen and Nathan Torkington [28]. A third that covers the details of Perl is Professional
Perl Programming by Peter Wainwright and six other authors [119].

FIRST TRANSITION 97

If you want to learn about algorithms, try Mastering Algorithms with Perl by Jon Orwant,
Jarkko Hietaniemi, and John Macdonald [84]. It covers many of the important tasks of
computer science. Also, chapter 9 covers strings, and it gives the details on how regular
expressions are actually implemented in Perl.

The book Data Munging with Perl by David Cross [36] focuses on how to use Perl to
manipulate data, including text data. It is a good introduction to more advanced ideas such
as parsing. One great source of text is the Web, which begs to be analyzed. A book that
uses Perl to do just this is Spidering Hacks by Kevin Hemenway and Tara Calishain [53].

Genetics has discovered another type of text: the genome. This has an alphabet of four
letters (A, C, G, T), and the language is poorly understood at present. However, looking for
patterns in DNA is text pattern matching, so it is not surprising that Perl has been used to
analyze it. For an introduction on this topic, try one of these three books: Per! for Exploring
DNA by Mark LeBlanc and Betsey Dexter Dyer [70]; Beginning Perl for Bioinformatics by
James Tisdall [116]; and Mastering Perl for Bioinformatics by James Tisdall [117].

There are many more areas of Perl that are useful to text mining but are not used in
this book. Here are four example topics, each with a book that covers it. First, many Perl
modules (bundled code that defines new functions; see section 9.2) are object oriented.
Hence, this kind of programming is supported by Perl, and this can be learned from Object
Oriented Perl by Damian Conway [33]. Second, a programmer can use Perl for graphics
using the add-on package Perl/Tk. For more on this topic, see Mastering Perl/Tk by Steve
Lidie and Nancy Walsh [72]. Third, text mining is related to data mining, which uses
databases. There is a Perl DBI (Data Base Interface), which is covered in Programming
the Perl DBI by Alligator Descartes and Tim Bunce [38]. Finally, text is everywhere on
the Web, and the Perl module LWP can download Web pages into a running program. For
more on this see Perl & LWP by Sean Burke [20]. Remember if you fall in love with Perl,
these topics are just the beginning. A book search on the term Perl reveals many more.

3.10 FIRST TRANSITION

Chapter 2 introduces regular expressions and how to use them. This chapter introduces
some data structures and how to implement these in Perl. Both of these together are an
introduction to a subset of Perl that can do basic analyses of texts. The core of these analyses
are text pattern matching (with regexes) and counting up matches in the text (which are kept
track of by arrays and hashes). Working through these two chapters has taught you enough
Perl to understand the programming after this point. If you started this book with no
knowledge of Perl and little knowledge of programming, these two chapters required much
thought and effort, and congratulations on getting this far.

At this point in this book, there is a transition. Prior to this, analyses of texts have
been mixed with extensive discussions on how to use Perl. After this point, the focus is on
analyzing texts with more complicated techniques, and Perl is more of a tool, not the focus
of the discussion. However, if new features are used, these are pointed out and explained.
But in general, the focus in the upcoming chapters is on text mining techniques, with Perl
playing a supporting role.

PROBLEMS

3.1 Find all the words containing interior apostrophes in Dickens’s A Christmas Carol.
Hence, on each side of the apostrophe there is an alphanumeric character. There are quite

98 QUANTITATIVE TEXT SUMMARIES

a few of these, some familiar to today’s reader (like it’s or I’ll), and some unfamiliar (like
thank’ee or sha’n’t). For each of these, find its frequency in the novel.

3.2 A lipogram is a text that is written without one or more letters of the alphabet. This
is usually done with common letters because, for example, not using ¢ is not much of a
challenge. In English, many lipograms do not use the letter e, the most common letter.
An impressive example is A Void, a translation into English from French by Gilbert Adair
of Georges Perec’s La Disparition. Both the original and the translation do not have the
letter e.

Several people have written about the lipogram. See chapter 13 of Tony Augarde’s The
Oxford Guide to Word Games [5] for a history of lipograms. For a more detailed history,
see the paper “History of the Lipogram" by Georges Perec {86], who is the same author
noted in the above paragraph for writing a lipogrammic novel. Also see sections 11 and 12
of Ross Eckler’s Making the Alphabet Dance [41]. For an example of a phonetic lipogram
(the text is missing a particular sound), see pages 12—14 of Ross Eckler’s Word Recreations
[40].

The goal of this problem is to create a lipogram dictionary, that is, a list of words not
containing some set of letters. This is not hard to do using a word list such as Grady Ward’s
CROSSWD. TXT from the Moby Word Lists [123]. Have Perl read in this file and test each
word against the appropriate regex. For example, code sample 3.35 disallows the letter e.
Modify this code sample to answer the questions below.

Code Sample 3.35 Assuming that WORDS is a filehandle to a word list, this prints out the
words not containing the letter e. For problem 3.2.

$regex = qr/ " ["el+$/1;

while (<WORDS>) {
if ($_ =" $regex) {
print;
}
}

a) How many words do not have any of the letters a, e, i, 0, and u?

b) How many words do not have any of the letters a, e, i, 0, 4, and y? Surprisingly,
an exhaustive word list does have such words. For example there is crwth, which
is borrowed from Welsh.

¢) How many words require only the middle row of the keyboard? That is, how
many words are composed of letters strictly from the following list: a, s, d, f, g,
h,j, k,and I?

d) Compose a dictionary of words using only the vowel u. For discussion of this
property, see section 12 of Ross Eckler’s Making the Alphabet Dance [41].

e) Find words that have exactly the five vowels, each appearing once, for example,
facetious. For examples of such words for every permutation of the vowels, see
section 12 of Ross Eckler’s Making the Alphabet Dance [41].

3.3 Section 3.7.2.2 discusses word anagrams, which are two (or more) words using the
same group of letters, but with different orders. For example, algorithm is an anagram of
logarithm since the former is a permutation of the latter.

PROBLEMS 99

Instead of allowing all permutations, one challenge is finding word anagrams limited to
only certain types of permutations, examples of which are given below. Examples can be
found by using a word list, for example, Grady Ward’s CROSSWD . TXT from the Moby Word
Lists [123].

a) The easiest permutation to check is reversing the letters because there is already
a Perl function to do this, reverse. Find all the words that are also words when
read backwards.

Hint: One way to do this is to create a hash, say %1ist, where its keys are the
words in the word list. Then loop through the keys checking to see if the reversal
of the word is also a key, as done in code sample 3.36. Note that this also finds
palindromes, that is, words that are the same backwards as forwards, for example,
deified.

Code Sample 3.36 A loop to find words that are still words when reversed. For prob-
lem 3.3.a.

foreach $x (sort %list) {
if (exists($list{reverse($x)})) {
print "$x\n";
}
}

b) Another simple permutation is taking the last letter and putting it first (sometimes
called a rotation). Find words for which this rotation is also a word. For example,
rotating trumpets produces strumpet, or rotating elects produces select.

Hint: Use the function rotate in code sample 3.37 instead of reverse in
code sample 3.36.

Code Sample 3.37 A function to move the last letter of a word to the front for problem 3.3.b.

sub rotate {
my $word = $_[0];
my Qletters = split(//, $word);
unshift (Q@letters, pop(Qletters));
return join(’’, @letters);

c) Create a function that is a rotation in the opposite sense of rotate in code
sample 3.37. Then find all words that are still words under this new rotation. For
example, rotating swear in this way produces wears. Question: how does this list
compare with the list from problem 3.3.b?

3.4 Using a word list, for example, Grady Ward’s CROSSWD . TXT from the Moby Word
Lists [123], find all the words where every letter appears exactly twice using a regex. For
example, this is true of the word hotshots.

This property is called an isogram. For more information on these, see section 29 and
figure 29¢c of Ross Eckler’s Making the Alphabet Dance [41].

100 QUANTITATIVE TEXT SUMMARIES

First hint: Sort the letters of each word into alphabetical order, then try to create a regex
that matches pairs of letters. Note that /~((\w)\1)+$/ seems promising, but does not
work.

Second hint: define a pair of letters regex using qr// as shown below.

$pattern = qr/(\w)\1/;

Then use the regex /~$pattern+$/. This regex allows false positives (describe them).
Is there a simple way to correct this?

3.5 One way to associate a numeric value to a word is as follows. LetA=1,B=2,C =
3, ..., and Z = 26, then for a given word, sum up its letter values, for example, cat produces
3+ 1+ 20, or 24. This method is sometimes used in word puzzles, for example, see section
59 of Ross Eckler’s Making the Alphabet Dance [41]. Here the goal is to write a function
that takes a word and returns its number.

Code sample 3.38 shows one way to do this for all the numerical values at once using a
hash of hashes. To figure out how the code works, refer back to section 3.8.2. The function
ord changes an ASCII character into a number, which makes it easy to convertato 1, b
to 2, and so forth. The function map applies a function defined with $_ as its argument to
every entry in an array. For more information on this command, try looking it up online at
http://perldoc.perl.org/ [3]. Finally, note that using an array of hashes is another
approach to this task.

Code Sample 3.38 Assuming that WORDS is a filehandle to word list, this code finds all
words having the same numerical value using the procedure given in problem 3.5.

$baseline = ord(’a’)-1;

while (<WORDS>) {
chomp;
Qletters = split(//);
@values = map(ord($_)-$baseline, Q@letters);
$total = 0; foreach $x (@values) { $total += $x; }
push(@{$list{$totall}}, $_);
}

foreach $value (sort {$a <=> $b} keys %list) {
print "$value\n";
foreach $word (@{$list{$value}}) {
print "$word ";
}

print "\n\n";

a) Perhaps this problem can be a start of a new type of pseudoscience. For your
name, find out its value, then examine the words that share this value to discover
possible clues to your personality (or love life, or career paths, ...). For example,
the name Roger has the value 63, which is shared by acetone, catnip, and quiche.
Not surprisingly, these words describe me quite well.

PROBLEMS 101

b) Another numerology angle arises by concatenating the letter values together to
form a string. For example, Roger becomes 18157518. It can happen that some
numbers are associated with more than one word. For example, abode and lode
both have the number 121545. For this problem write a Perl program that finds all
such words. See the article Concatenating Letter Ranks [13] for more information.

3.6 Transaddition is the following process: take a word, add a letter such that all the
letters can be rearranged to form a new word. For example, adding the letter ¢ to learn
produces antler (or learnt or rental). A transdeletion is the removal of a letter so that what
remains can be rearranged into a word, for example, removing / from learn produces earn
(or near). For an extensive discussion on these two ideas, see sections 41 and 49 of Ross
Eckler’s Making the Alphabet Dance [41].

Code sample 3.39 shows how to take a word and find what words can be found by adding
a letter and then rearranging all of them. Starting with this code, try changing it so that it
can find transdeletions instead. Assume that WORDS is the filehandle for a word list.

Code Sample 3.39 Code to find all transadditions of a given word. For problem 3.6.

while (<WORDS>) {
chomp;
$key = join(’’,sort(split(//, $.)));
if (exists($list{$key})) {
$list{$key} .= ",$_";
} else {
$list{$key} = 3_;
}
}

Transaddition

$word = $ARGV[O0];

Q@letters = split(//, $word);

foreach $x (’a’ .. ’z’) {
Qtemp = Qletters;
push(@temp, $x);
$key = join(’’, sort(Qtemp));
if (exists($list{$key})) {

print "$list{$key}\n";

}

}

3.7 Lewis Carroll created the game called Doublets, where the goal is to transform one
word into another (of the same length) by changing one letter at a time, and such that each
intermediate step is itself a word. For example, red can be transformed into kot as follows:
red, rod, rot, hot.

One approach to this is to create a word network that shows all the one-letter-change
linkages. The programming task of creating and storing such a network in a (complex) data
structure is challenging because the network can be quite large (depending on the number
of letters), and it is possible to have loops in the network (the network is not a tree in the
graph-theoretic sense).

102 QUANTITATIVE TEXT SUMMARIES

This problem presents an easier task: given one word, find all other words that are only
a one-letter change from the given word. For example, the words deashed, leached, and
leashes are all exactly one letter different from leashed.

Here is one approach. Create a hash from a word list (using, for example, Grady Ward’s
CROSSWD. TXT from the Moby Word Lists [123]). Then take the given word, replace the first
letter by each letter of the alphabet. Check each of these potential words against the hash.
Then do this for the second letter, and the third, and so forth. See code sample 3.40 to get
started.

Code Sample 3.40 Hint on how to find all words that are one letter different from a specified
word. For problem 3.7.

$len = length of the word in $ARGVI[O]
The keys of Jlist are from a word list

for ($i = 0; $i < $len; ++%$i) {
foreach $letter (’a’ .. 'z’) {
$word = $ARGV[0];
substr($word, $i, 1) = $letter;
if (exists($list{$word}) and $word ne $ARGV[0]) {
print "$word\n";
}
}
}

Finally, for more information on Doublets, see chapter 22 of Tony Augarde’s The Oxford
Guide to Word Games [5]. Moreover, sections 42 through 44 of Ross Eckler’s Making the
Alphabet Dance [41] give examples of word networks.

3.8 With HTML, it is possible to encode a variety of information by modifying the font
in various ways. This problem considers one such example. Section 3.6.1 shows how to
compute word frequencies. Given these frequencies, the task here is to convert them into
font sizes, which are then used to write an HTML page.

Code sample 3.41 assumes that the hash %size contains font sizes in points for each
word in Poe’s “The Black Cat." The HTML is printed to the file BlackCat .html.

These font sizes are based on word counts using all of Poe’s short stories, and $size{$word}
was set to the function below.

int(1.5%log($freq)+12.5)

In this case, the frequencies went from 1 to 24,401, so the this function reduces this wide
range of counts to a range appropriate for font sizes. Output 3.33 has the beginning of the
HTML that is produced by this code.

For a text of your own choosing, create a word frequency list, and then modify the
frequencies to create font sizes.

3.9 Section 3.7.2.2 shows how to find distinct words that have the same letters, but in
different orders, which are called anagrams. The same idea is applicable to numerals. For
example, are there many square numbers with anagrams that are also square numbers?
Examples are the squares 16,384 (equals 1282), 31,684 (1782), 36,481 (191?), 38,416

PROBLEMS 103

Code Sample 3.41 Code to vary font size in an HTML document. For problem 3.8.

open(STORY, "The_Black_Cat.txt");
open(0UT, ">BlackCat.html") or die;
print OUT "<html>\n<body>\n<marquee>\n";

while (<STORY>) {
chomp;
@words = split{(/\s+/);
it (/7$/) 4
print OUT "\n</marquee><marquee>\n";
} else {
foreach $x (Qwords) {
$x =~ /(\w-1+08)7)/;
if (exists($size{lc($D})) {
print OUT "<span style=\"font-size:",
"$size{lc($1)}pt\">$x\n";
} else { print "Missing Value for $i\n"; }
}
}
}
close (STORY) ;
print OUT "</marquee>\n</body>\n</html>\n";

Output 3.33 A few lines from code sample 3.41.

<html>

<body>

<marquee>

FOR
the
most
wild,
yet
most
homely
narrative
which

(1962), and 43,681 (209?), and all five of these five-digit numbers use the same digits. This
is called an anasquare.

Although word anagrams are not that common, this is not true for anasquares. See
“Anasquares: Square anagrams of squares” {14] for a discussion of this.

3.10 As noted in problem 2.9.b, at present, there are plenty of DNA sequences available
to the public at the National Center for Biotechnology Information (NCBI) at its Web page:
http://www.ncbi.nlm.nih.gov/ [81].

104 QUANTITATIVE TEXT SUMMARIES

Since DNA is text (though its words and grammar are mostly unknown), it makes sense to
use Perl and regexes to analyze DNA, which is exactly the point made in Per! for Exploring
DNA by Mark LeBlanc and Betsey Dexter Dyer [70]. Note that these authors also enjoy
word games, and they introduce the idea of text patterns in DNA by analyzing letter patterns
in English words. Even without a background in biology, the book is quite readable, and I
recommend it.

For this problem, get a copy of LeBlanc and Dyer’s book and see how they use Perl
for DNA pattern finding. With the data of the NCBI, perhaps you can discover something
notable.

CHAPTER 4

PROBABILITY AND TEXT SAMPLING

4.1 INTRODUCTION

Chapters 2 and 3 introduce and explain many features of Perl. Starting at this point, however,
the focus shifts to using it for text analyses. Where new features are introduced, these are
noted and explained, but the emphasis is on the texts.

This chapter focuses on some of the statistical properties of text. Unfortunately, some
of the common assumptions used in popular statistical techniques are not applicable, so
care is needed. This situation is not surprising because language is more complex than, for
example, flipping a coin.

We start off with an introduction to the basics of probability. This discussion focuses on
the practical, not the theoretical, and all the examples except the first involve text, keeping
in the spirit of this book.

4.2 PROBABILITY

Probability models variability. If a process is repeated, and if the results are not all the same,
then a probabilistic approach can be useful. For example, all gambling games have some
element of unpredictability, although the amount of this varies. For example, flipping a fair
coin once is completely unpredictable. However, when flipping a hundred coins, there is a
95% probability that the percentage of heads is between 40% and 60%.

Practical Text Mining with Perl. By Roger Bilisoly 105
Copyright © 2008 John Wiley & Sons, Inc.

106 PROBABILITY AND TEXT SAMPLING

Language has both structure and variability. For example, in this chapter, what word
appears last, just before the start of the exercises? Although some words are more likely
than others, and given all the text up to this point, it is still impossible to deduce this with
confidence.

Even guessing the next word in a sequence can be difficult. For example, there are many
ways to finish sentence 4.1.

Crazed by lack of sleep, Blanche lunged at me and screamed “...." 4.1)

Because language is so complex, coin flipping is our first example, which introduces the
basic concepts. Then with this in mind, we return to analyzing English prose.

4.2.1 Probability and Coin Flipping

First, we define some terms. A process produces outcomes, which are completely specified.
How these arise need not be well understood, which is the case for humans producing a text.
However, ambiguous outcomes are not allowed. For example, a person typing produces an
identifiable sequence of characters, but someone writing longhand can create unreadable
output, which is not a process in the above sense.

For processes, certain groups of outcomes are of interest, which are called events. For
example, if a coin is flipped five times, getting exactly one head is an event, and this consists
of the five outcomes HTTTT, THTTT, TTHTT, TTTHT, and TTTTH, where H stands for
heads and T for tails. Notice that each of these sequences completely specifies the result
of the process.

The probability of an event is a number that is greater than or equal to zero and less
than or equal to one. For a simple process, probabilities can be computed exactly. For
example, the probability of exactly one head in five flips of a fair coin is 5/32. However,
because language is complex and ever changing, probabilities for text events are always
approximate, and our interest is in computing empirical probabilities, which are estimates
based on data.

For the first example, we estimate the empirical probability of heads from the results of
computer-simulated coin flips. The simplest method for doing this is to count the number of
events and divide by the number of results. Let n() be the function that returns the number
of times its argument occurs, then equation 4.2 summarizes the above description.

n(events)

n(results) *+-2)

P(event) =

We use this equation to estimate the probability of getting a head. Perl has a function

called rand that returns a random number between 0 and 1. This can generate coin flips

as follows: if rand is greater than 0.5, then the result is H, else it is T. Note that rand is

not truly random (such computer functions are called pseudorandom), but we assume that

it is close enough for our purposes. Using this idea, the following command line argument
runs program 4.1 to simulate 50 flips.

perl flip.pl 50
The argument after the program name (50 in the above example) is stored in $ARGV [0],

which determines the number of iterations of the for loop. When this is finished, the
empirical probability estimate of getting a head is computed.

PROBABILITY 107

USAGE > perl flip.pl value
This program simulates flipping a coin $ARGV[0O] times.

for ($n = 1; $n <= $ARGV[0]; ++$n) {
if (rand > 0.5) {
print "H";
++$count;
} else {
print "T";
}
1

$proportion = $count/$ARGV[0]; # Empirical probability
print "\nProbability of heads = $proportion";

Program 4.1 This program simulates coin flips to estimate the probability of heads.

Output 4.1 shows one run of program 4.1 that produces 23 heads out of 50 flips, which
is 46%. By equation 4.2, this proportion is the empirical probability estimate of getting a
head. Clearly running this program a second time is likely to give a different estimate, so
this estimate is an approximation.

Output 4.1 Output of program 4.1 for 50 flips.

HTHHHHHHHTHHHTTTTHTHTHTTTTHHTTTHTTHTHTTTHTTHTTTHHT
Probability of heads = 0.46

Because it is well known that the probability of heads is 0.5, program 4.1 might seem
like a waste of time. But keep in mind two points. First, to estimate the probability of
the word the occurring in some text, there is no theoretical solution, so we must use an
empirical estimate. Second, even for coin tossing, there are events that are hard to compute
from theory, and the empirical answer is useful either for an estimate or a check of the true
probability. See problems 4.1 and 4.2 for two examples of this,

In addition, the above output can be used to estimate the probability of heads after the
first flip, after the second flip, and so forth, until the last flip. If empirical estimates are
useful, then as the number of flips increases, the probability estimates should get closer and
closer to 0.5 (on average). Although this is tedious to do by hand, it is straightforward to
modify program 4.1 to print out a running estimate of the probability of heads. This is done
with the variable $proportion inside the for loop of program 4.2.

This program produces the running probability estimates shown in figure 4.1. Note that
near the end of the 50 flips the estimates gets worse. Large deviations are always possible,
but they are more and more unlikely as the number of flips increases. Finally, figure 4.2
shows an example of 5000 flips. Here the initial large deviations die out as the number of
flips gets larger.

Although coins can be flipped more and more, samples of text have an upper limit. For
example, Edgar Allan Poe is dead, and any new works are due to discovering previously
unknown manuscripts, which is rare. Hence, it is often true with texts that either the sample

108 PROBABILITY AND TEXT SAMPLING

USAGE > perl flip.pl value
This program simulates flipping a coin $ARGV[0] times.

$record

nn .,
H

for ($n = 1; $n <= $ARGV[0]; ++$n) {
if (ramd > 0.5) {

$record .= "H";
++$count ;

} else {
$record .= "T";

}
$proportion = $count/$n;
print "$proportion\n";

}

print "$record\n";

Program 4.2 Modification of program 4.1 that produces a running estimate of the probability
of heads.

cannot be made larger, or it is labor intensive to increase its size. Unfortunately, there are
measures of a text that do not converge to a fixed value as the sample size increases to
its maximum possible value (see section 4.6). Hence working with texts is trickier than
working with simpler random processes like coins.

4.2.2 Probabilities and Texts

Consider this problem: find an estimate of the probability of each letter of the alphabet in
English. For a fair coin, assuming the probabilities of heads and tails are equal is reasonable,
but for letters this is not true. For example, the letter a is generally more common than the
letter z. Quantifying this difference takes effort, but anyone fluent in English knows it.

To estimate letter frequencies, taking a sample of text and computing the proportion of
each letter is a reasonable way to estimate these probabilities. However, a text sample that
is too short can give poor results. For example, sentence 4.3 gives poor estimates.

Ed’s jazz dazzles with its pizazz. 4.3)

Here z is the most common letter in this sentence comprising 7 out of the 27, or a
proportion of almost 26%. Qbviously, most texts do not have z occurring this frequently.

There is an important difference between the coin example in the last section and this
example. In output 4.1, an estimate of 46% for the probability of heads is found by flipping
a coin 50 times, which is close to the correct answer of 50%. However, there are 26 letters in
the alphabet (ignoring case and all other characters), and letters are not used equally often.
Such a situation requires larger sample sizes than coin flipping.

Note that sentence 4.3 has no bs, which is a proportion of 0%, but all the letters of the
alphabet have a nonzero probability, so this estimate is too low. This reasoning is true for all
the letters that do not appear in this sentence. Moreover, the existence of estimates that are
too low imply that one or more of the estimated probabilities for the letters that do appear

PROBABILITY 109

Qo _
S
v
o

L <«

T s

£

=

]

w

o M

£ o 7]

c

=

3

[ons
N
(=
-
o
o |
o

Figure 4.1 Plot of the running estimate of the probability of heads for 50 flips.

are too high. Having estimates that are known to be either too high or too low is called bias.
The existence of zero counts produces biased probability estimates, and, to a lesser degree,
so do very low counts.

Hence using proportions from samples as estimates of probabilities requires sample
sizes that are large enough. Quantifying this depends on the size of the probabilities to be
estimated, but if there are possible events that do not appear in the sample, then a larger
sample is useful. However, as noted above, a larger example may not be possible with text.

Finally, coin flipping is not immune to the problem of bias. For instance, if we flip the
coin only one time, the empirical probability of heads is either O or 1, and both of these
answers are the furthest possible from 0.5. However, additional flips are easy to obtain,
especially if a computer simulation is used. With the above discussion in mind, we estimate
letter probabilities.

4.2.2.1 Estimating Letter Probabilities for Poe and Dickens As noted in the
last section, using sentence 4.3 to estimate the probability of each letter gives misleading
results. However, a larger text sample should do better. Because counting letters by hand is
tedious, this calls for Perl. It is easy to break a string into characters by using the function
split with the empty regular expression as its first argument (empty meaning having no

110 PROBABILITY AND TEXT SAMPLING

0.9 1.0
1

0.8

Running Estimate
0.7

0.5

0.4

T l T I I l
0 1000 2000 3000 4000 5000

Figure 4.2 Plot of the running estimate of the probability of heads for 5000 flips.

characters at all). Keeping track of the character counts is done by using the hash %freq
(see section 3.6 to review hashes).

To try out program 4.3, we first analyze Poe’s “The Black Cat" [88] using the following
command line statement.

perl count_characters.pl The_Black_Cat.txt

The output has two parts. First, all of the characters in the story are listed from most
frequent to least frequent. Second, the frequencies of the letters a through z are listed in
that order. It turns out that the blank is the most frequent (where newline characters within
paragraphs are counted as blanks), with a frequency of 4068. The most frequent letter is
e (appearing 2204 times), and the least frequent is z (6 times), which is out of a total of
17,103 letters. Hence, e appears almost 13% of the time, while z appears only 0.035% of
the time.

The story “The Black Cat" is only a few pages long, so let us also try a longer work,
Charles Dickens’s A Christmas Carol, which can be done by replacing The Black_Cat.txt
with A_Christmas_Carol.txt in the open statement. Output 4.2 ranks the letters with
respect to frequency for both these works of fiction. Although the orders do not match
exactly, they are similar. For example, the letter e appears 2204/17, 103 =~ 12.89% of the
time in “The Black Cat," as compared to 14, 869/121, 179 =~ 12.27% for A Christmas Carol.

PROBABILITY 111

USAGE > perl count_characters.pl FileName.txt
This program is case insensitive.
This program counts all characters, not just letters.

open (FILE, "$ARGV[0]") or die("$ARGV[0] not found");
$/ = ""; # Paragraph mode used

while (<FILE>) {

chomp;
s/\n/ /g; # Replace newlines by spaces
$_ = lc; # Make letters lowercase

@chars = split(//);

foreach $char (@chars) {
++$freq{$char};
¥
}

$count = O; # Stores total number of letters
foreach $char (sort byReverseValues keys Y%freq) {
if (’a’ le $char and $char le ’2z’) {
$count += $freq{$char};
}
print "$char: $freq{$char}\n";
}

print "\nTotal number of letters: $count\n";

foreach $letter (’a’..’z’) {
print "$letter: $freq{$letter}\n";
X

sub byReverseValues {
$value = $freq{$b} <=> $freq{$al;
if ($value == 0) { return $a cmp $b;
} else { return $value; 1};

Program 4.3 This program counts the frequency of each character in a text file.

Both of these are close to the value of 13% cited in Sinkov’s Elementary Cryptanalysis [110],
which is based on a larger text sample. These similarities suggest that these two works are
representative of English prose with respect to letter frequencies.

This question of representativeness is key. In sampling, the researcher hopes that the
sample is similar to the population from which it is taken, but he or she can always get
unlucky. For example, Georges Perec wrote the novel La Disparition without using the
letter e, which is the most common letter in French (and English). This novel was translated
by Gilbert Adair into English with the title A Void [87]. He was faithful to the original in

112 PROBABILITY AND TEXT SAMPLING

Output 4.2 Output of program 4.3 for both Dickens’s A Christmas Carol and Poe’s “The
Black Cat". Letters are listed in decreasing frequency.

e: 14869 e: 2204
t: 10890 t: 1600
0: 9696 a: 1315
a: 9315 o: 1279
h: 8378 i: 1238
i: 8309 n: 1121
n: 7962 h: 985
s: 7916 r: 972
r: 7038 s: 968
d: B5676 d: 766
1: 4555 1: 684
u: 3335 m: 564
w: 3096 f: 496
c: 3036 c: 488
g: 2980 u: 471
m: 2841 y: 387
f: 2438 w: 358
y: 2299 p: 329
p: 2122 g: 292
b: 1943 b: 286
k: 1031 v: 152
v: 1029 k: 80
x: 131 x: 33
j: 113 j: 16
q: 97 q: 13
z: 84 z: 6

that he also did not use the letter e. So if we pick the English version of this novel, the
estimate of the probability of the letter e is 0%, which is clearly anomalous. However, A
Void is not a representative sample of English prose. This kind of a literary work (one that
does not use a specific letter) is called a lipogram.

Finally, output 4.2 shows that both stories use all the letters of the alphabet. Unfortu-
nately, for more complex sets of strings that are of interest to linguistics, usually some are
not represented in any given sample. For example, the next section shows that counting
letter pairs produces many zero counts. As noted at the start of this section, these are under-
estimates, which makes at least some of the nonzero counts overestimates, both of which
cause biases in the probability estimates.

4.2.2.2 Estimating Letter Bigram Probabilities From single letters, the next step
up in string complexity are pairs, which are called letter bigrams. These are ordered pairs,
that is, the order of the letters matters. For example, the title “The Black Cat" has the
following letter bigrams: th, he, bl, la, ac, ck, ca, and at. Here both case and the spaces
between the words are ignored. Depending on the application, however, treating a space as
a character can be useful. Also, a decision on whether to keep or to ignore punctuation is
needed. For this section, nonletter characters are deleted, except for hyphenated words. In

PROBABILITY 113

this case, the hyphens are replaced with spaces, for example, self-evident is split into self
and evident.

To do this, first, substitute all nonletters with spaces with s/[~a-zA-2Z]1/ /g. Second,
change multiple spaces into one space, which is done by another substitution. Third,
convert all the letters to lowercase with the 1¢ function. Then convert the text into words
with the split function (splitting on whitespace), followed by splitting each word into
letters. Finally, the letters are combined into pairs with the join function. All these steps
are done in code sample 4.1, which produces output 4.3.

Code Sample 4.1 Code to find letter bigrams contained in the string stored in $_.

$_ = "Well!!! No surprise, this.";

s/["a-zA-Z]/ /g; # Substitute spaces for nonletters
s/ +/ /g; # Substitute one space for many
$_. = lc; # Convert to lowercase

Q@uwords = split(/\s/); # Split into words

foreach $word (@words) {
@letters = split(//, $word); # Split into letters
for ($i = 0; $i < $#letters; ++3i) {
$bigram = join(’’, @letters[$i..($i+1)]1);
print "$bigram ";
}
}

Output 4.3 The bigram output of code sample 4.1.

we el 11 no su ur rp pr ri is se th hi is

Code sample 4.1 works for the test string, so we use it to construct a bigram counting
program. The result is program 4.4, which uses byReverseValues from program 4.3.

Program 4.4 produces much more output than program 4.3 since there are 262 = 676
possible bigrams. Applying this to A Christmas Carol produces 415 bigrams, the 10 most
frequent are given in output 4.4. Note that 676 — 415 = 261 bigrams that do not appear in
this novel.

The fact that many bigrams are missing (a little more than a third) is not surprising. For
example, it is difficult to think of a word containing xx or tx. However, such words exist.
For example, for a list of 676 words that contains each of the 676 possible bigrams, see
section 31 of Making the Alphabet Dance [41] by Eckler. However, words are not the only
way these bigrams can appear. For example, XX is the roman numeral for 20 and 7X is the
postal code for Texas. Moreover, there are many other types of strings besides words that
can be in a text. For example, a license plate can easily have one of these two bigrams.
Hence, the missing bigrams are possible, so a proportion of 0% is an underestimate.

In general, with even long texts it is not hard to find words or phrases that are not unusual
yet do not appear in the text. For example, of the days of the week, Tuesday, Wednesday,

114 PROBABILITY AND TEXT SAMPLING

USAGE > perl count_bigrams.pl FileName.txt
This program is case insensitive
Nonletters are ignored

open (FILE, "$ARGV[0]") or die("$ARGV[O] not found");
$/ = ""; # Paragraph mode used

$count = 0; # Tallies number of bigrams
while (<FILE>) {

chomp;

s/["a-zA-Z]/ /g; # Substitute spaces for nonletters
s/ +/ /g; # Substitute one space for many

$_ = lc; # Convert to lowercase

@words = split(/\s/);

foreach $word (@words) {
@letters = split(//, $word);
for ($i = 0; $i < $#letters; ++$i) {
$bigram = join(’’, Qletters[$i..($i+1)1);
++$freq{$bigram};
++$count ;
}
¥
}

Print out results

foreach $bigram (sort byReverseValues keys %freq) {
print "$bigram: $freq{$bigram}\n";

}

print "\nTotal number of bigrams: $count";

sub byReverseValues {
$value = $freq{$b} <=> $freq{$al};
if ($value == 0) { return $a cmp $b;
} else { return $value; };

Program 4.4 This program counts the frequency of each bigram in the text file specified
on the command line.

and Thursday do not appear in A Christmas Carol (although Friday does appear, it refers to
the character with that name in Robert Louis Stevenson’s Treasure Island.) Unfortunately,
this means the problem of having proportions that are 0% is generally unavoidable when
working with texts.

CONDITIONAL PROBABILITY 115

Output 4.4 The 10 most frequent bigrams found by program 4.4 for Dickens’s A Christmas
Carol.

th: 3627
he: 3518
in: 2152
an: 2012
er: 1860
re: 1664
nd: 1620
it: 1435
ha: 1391
ed: 1388

Finally, before moving on, it is not hard to write a Perl program to enumerate letter
triplets (or trigrams). See problem 4.4 for a hint on doing this. We now consider two key
ideas of probability in the next section: conditional probability and independence.

4.3 CONDITIONAL PROBABILITY

The idea of conditional probability is easily shown through an example. Consider the
following two questions. First, for a randomly picked four-letter word (from a list of
English words), what is the probability that the second letter is u? Second, for a randomly
picked four-letter word that starts with the letter g, what is the probability that the second
letter is u?

Given a word list and a Per! program, these questions are answerable, and with regular
expressions, it is not hard to create such a program. Grady Ward’s Moby Word Lists [123]
has the file CROSSWD. TXT, which has more than 110,000 total words, including inflected
forms. Code sample 4.2 counts the following: all four-letter words, all four-letter words
starting with g, all four-letter words with u as the second letter, and all four-letter words
starting with qu. Note that chomp must be in the while loop: try running this code sample
without it to see what goes wrong. Finally, the results are given in output 4.5.

Now we can answer the two probability questions. Since there are 3686 four-letter words,
and 378 of these have u as their second letter, the probability that a randomly selected four-
letter word has u as the second letter is 378/3686, which is close to 10%. But for the second
question, only the 12 four-letter words starting with g are considered, and of these, 10 have
u as the second letter, so the answer is 10/12, which is close to 83%.

Knowing English, it is no surprise that the most common letter following ¢ is u. In fact,
having an answer as low as 83% may be surprising (the two exceptions are gaid and goph).
Because u is typically the least common vowel (true in output 4.2 for “The Black Cat" and
A Christmas Carol), it is not surprising that as little as 10% of four-letter words have u in
the second position.

Although the above example is a special case, the general idea of estimating conditional
probabilities from data does not require any more theory, albeit there is some new notation.
However, the notation is simple, widely used, and saves time, so it is worth knowing.

Suppose A is an event. For example, let A stand for obtaining a head when flipping a
coin once. Then P(A) is the probability of event A happening, that is, the probability of

116 PROBABILITY AND TEXT SAMPLING

Code Sample 4.2 An analysis of four-letter words.

open(WORDS, "CROSSWD.TXT") or die;

while (<WORDS>) {

chomp;

if (length == 4) {
++$n;
Af (/q.../) { ++$n_q_first }
if (/.u../) { ++$n_u_second }
it (/qu../) { ++$n_q_then_u }

)
b

print "# 4 letter words = $n\n";

print "# 4 letter words with q first = $n_q_first\n";
print "# 4 letter words with u second = $n_u_second\n";
print "# 4 letter words starting with qu = $n_g_then_u\n";

Output 4.5 Word counts computed by code sample 4.2.

4 letter words = 3686

4 letter words with g first = 12

4 letter words with u second = 378
4 letter words starting with qu = 10

getting heads. In statistics, the first few capital letters are typically used for events. For
example, let B stand for a randomly picked four-letter word with u as its second letter.
Then, as discussed above, P(B) = 378/3686, at least for Grady Ward’s CROSSWD. TXT
word list.

In symbols, conditional probability is written P(B|C), which means “the probability
of event B happening given that event C' has already happened." This is usually read as
“the probability of B given C." For example, let B be the event defined in the preceding
paragraph, and let C' be the event that a randomly selected four-letter word has g as its first
letter. Then P(B]C) is the probability that the second letter is u given that the first letter
of a randomly selected four-letter word is g. As computed above, P(B{C) = 10/12.

The general formula is straightforward. For any two events E and F, P(E|F') assumes
that F' has, in fact, happened. So the computation requires two steps. First, enumerate
all outcomes that comprise event F'. Second, of these outcomes, find the proportion that
also satisfies event E, which estimates P(E|F'). Equation 4.4 summarizes this verbal
description as a formula, where and is used as in logic. That is, both events connected by
and must happen.

n(E and F)
n(F)

For the example of four-letter words discussed above, “B and C" means that both B and
C must occur at the same time, which means a four-letter word starting with gu. There are

P(E|F) = (4.4)

CONDITIONAL PROBABILITY 117

10 words that satisfy this in the file CROSSWD. TXT (they are quad, quag, quai, quay, quey,
quid, quip, quit, quiz, quod). This is out of all the four-letter words starting with ¢ (which
also includes gaid and goph to make a total of 12). Finally, equation 4.4 says P(B|C) is
the ratio of these two numbers, so it is 10/12, as claimed above.

Here is one more way to think about conditional probability. Let n be the total number
of possibilities. Then equation 4.5 holds.

P(Eand F) n(Eand F)/n _ n(E and F)
P(F) — aF)/n nF)

Using B and C as defined above, let us check this result. In equation 4.6, note that the
number of four-letter words (3686) cancels out to get 10/12.

P(E|F) =

(4.5)

n(B and C)
n(four-letter words)
10
3686

P(Band C)

n(C)
n(four-letter words)
12
3686
P(Band C)
P(C)
10/3686 10
12/3686 12

P(B|IC) =

(4.6)

Finally, it is important to realize that order of events matters in conditional probability.
That is, P(B|C) is generally different from P(C|B), and this is the case for B and C
defined above. For these events, P(C|B) is the probability of a randomly picked four-
letter word having g as its first letter given that u is its second letter. Given this, there are
many four-letter words that begin with letters other than ¢, for example, aunt, bull, cups,
dull, euro, and full. Hence this probability should be much smaller than 83%, the value of
P(B|C). Using output 4.5, it is 10/378, or about 2.6%. Note that this numerator is the
same as the one for P(B|C), which is no accident since “B and C" is the same event as
“C and B." However, the denominators of P(B|C) and P(C|B) are quite different, which
makes these probabilities unequal.

Related to conditional probability is the concept of independence of events, which allows
computational simplifications if it holds. With text, however, independence may or may
not hold, so it must be checked. This is the topic of the next section.

4.3.1 Independence

Examples of two independent events are easy to give. For instance, as defined above, let A
stand for a coin flip resulting in a head, and let B stand for a randomly picked four-letter
word that has u as its second letter. Since coin flipping has nothing to do with four-letter
words (unless a person has lost large sums of money betting on the coin), knowing that A has
occurred should not influence an estimate of the probability of B happening. Symbolically,
this means P(B|A) = P(B), and, in fact, this can be used as the definition of independence

118 PROBABILITY AND TEXT SAMPLING

of A and B. Moreover, since four-letter words do not influence coin flips, it is also true that
P(A|B) = P(A).

These two equalities and equation 4.5 imply that equation 4.7 holds when E and F are
independent events. This result is called the multiplication rule.

PEF) = Dot
P(E|F) = P(E)
P(E and F)
PE= T
= P(Eand F) = P(E)P(F) 4.7

The closer P(E and F') is to P(E)P(F), the more likely it is that £ and F are indepen-
dent. Returning to events B and C of the last section, we can check if these are independent,
although intuition of English suggests that g at the beginning of a four-letter word and « in
the second position are not independent. That is, they are dependent.

Fortunately, all the needed probabilities are already computed, which are summarized in
equation 4.8. The two values are different by a factor of 8.1. Although the precise boundary
that distinguishes dependence from independence is not obvious, a factor of 8.1 seems large
enough to support the intuition that ¢ and u are dependent. See problem 4.5 for a statistical
test that strongly confirms this.

1
12
P(B)P(C) = 336;86 25zg ~ 00003339 (4.8)

With the ideas of conditional probability and independence introduced, let us consider
one more theoretical idea. In text mining, counting is a key step in many analyses. In the
next section we consider the ideas of the mean and variance of a numeric measurement.

4.4 MEAN AND VARIANCE OF RANDOM VARIABLES

This section introduces random variables, which are widely used in the statistical literature.
These are a convenient way to model random processes.

Random variables are written as uppercase letters, often toward the end of the alphabet,
for example, X, Y, or Z. In this book, a random variable is a numeric summary of a sample
of text. For example, let X be the number of times the word the appears in a randomly
selected text.

Random variables look like algebraic variables and can be used in algebraic formulas.
However, unlike algebraic equations, we do not solve for the unknown. Instead, think of
random variables as random number generators. For text mining, random variables are
often counts or percentages, and the randomness comes from picking a text at random.

As a second example, let Y be the proportion of the letter ¢ in a text. Once a text is
specified, then Y is computable. For example, in section 4.2.2.1 the letters of A Christmas
Carol are tabulated. For this text Y equals 14,869/121,179, or about 0.1227. If the Poe
short story “The Black Cat" were picked instead, then Y is 2204/17,103, or about 0.1289.
Clearly Y depends on the text.

MEAN AND VARIANCE OF RANDOM VARIABLES 119

The hope of formulating this problem as a random variable is that as more and more
texts are sampled, some pattern of the values becomes clear. One way to discover such a
pattern is to make a histogram. For example, if all the values are close together, then an
accurate estimate based on this sample is likely.

Let us consider the 68 Poe short stories from [96], [97], [98], [99] and [100] with respect
to the proportion of the letter e in each one. For some hints on how to do this, see problem 4.6.
The results are listed in table 4.1 and then plotted in figure 4.3. This histogram shows a clear
peak just below (.13, and all the values are between 0.11 and 0.14, except for an unusually
low one of 0.0989. This comes from “Why the Little Frenchman Wears His Hand in a
Sling," which is narrated in a heavy dialect with many nonstandard spellings. Otherwise,
Poe is consistent in his use of the letter e.

Table 4.1 Proportions of the letter e for 68 Poe short stories, sorted smallest to largest.

0.0989 0.1245 0.1285 0.1309
0.1141 0.1247 0.1286 0.1310
0.1145 0.1248 0.1286 0.1312
0.1164 0.1260 0.1287 0.1317
0.1182 0.1263 0.1289 0.1318
0.1201 0.1264 0.1294 0.1320
0.1213 0.1267 0.1294 0.1323
0.1216 0.1271 0.1295 0.1325
0.1219 0.1273 0.1296 0.1326
0.1221 0.1273 0.1296 0.1329
0.1226 0.1274 0.1297 0.1329
0.1239 0.1274 0.1297 0.1342
0.1239 0.1281 0.1300 0.1343
0.1241 0.1283 0.1302 0.1356
0.1241 0.1284 0.1303 0.1357
0.1245 0.1284 0.1303 0.1372
0.1245 0.1285 0.1304 0.1385

The histogram in figure 4.3 is an empirical approximation of the proportion of e’s in Poe’s
short stories. It suggests that a normal distribution is a good model, which is supported by
the good fit of the curve drawn in figure 4.4. The mean and standard deviation of this curve
are estimated by the respective sample values, which are 0.1274 and 0.0060.

The standard deviation is one popular measure of variability. In general, to say precisely
what it measures depends on the shape of the data. For distributions that are roughly
bell-shaped (also called normally distributed), it can be shown that the mean and standard
deviation provide an excellent summary of the shape.

Nonetheless, there are constraints and heuristics for this concept. For example, the
standard deviation is a number greater than or equal to zero. Zero only occurs if there is no
variability at all, which means that all the values in the data set are exactly the same. The
larger the standard deviation, the more spread out the values, which makes the histogram
wider. To say more than this, we need to know something about the shape of the data.
Below we assume that the histogram is approximately bell-shaped.

First, we define some notation. Let the mean value of the data (called the sample mean)
be denoted by a bar over the letter used for the associated random variable, or Y in this
case. Second, let the standard deviation of the data (called the sample standard deviation)
be denoted by the letter s with the random variable given as a subscript, for example, sy .

120 PROBABILITY AND TEXT SAMPLING

0 _
aY]
Q
4]
3
g 92 A
[
=
o
o
w o |
m —
— T T T]
0.10 0.11 0.12 0.13 0.14
Proportion_e

Figure 4.3 Histogram of the proportions of the letter ¢ in 68 Poe short stories based on
table 4.1.

Now we consider the range of values Y — sy to Y + sy. This is an interval centered at Y,
and its length is 2sy, a function of only the standard deviation. Assuming bell-shaped data,
then about 68% of the values lie in this interval. A more popular interval is Y — 2sy to
Y + 2sy, which contains about 95% of the data. Note that the length of this is 4sy-, which
makes it twice as wide as the first interval.

For the Poe stories, sy is 0.0060 (see equation 7.2 for a formula), and we can construct
the two intervals given above, which is done in table 4.2. Note that 55 out of the 6§
stories have e proportions in the smaller interval, and this is 80.9%, which is bigger than the
predicted 68%. However, the second interval has 65 out of the 68 stories, which is 95.6%, or
practically 95%. In general, data that looks roughly bell-shaped need not fit the theoretical
normal curve perfectly, yet the predicted percentages are often close to the theoretical ones.

Finally, there are other types of intervals. The next section, for example, considers
intervals to estimate the population mean.

4.4.1 Sampling and Error Estimates

One common framework in statistics is taking a sample from a population. The latter is
a group of items of interest to the researcher, but measuring all of them is too expensive

MEAN AND VARIANCE OF RANDOM VARIABLES 121

Table 4.2 Two intervals for the proportion of ¢’s in Poe’s short stories using table 4.1.

Lower Limit Upper Limit Predicted Actual
_7 — sy =0.1214 Y + sy =0.1334 68% 55/68 = 80.9%
Y — 2sy =0.1154 Y + 2sy =0.1394 95% 65/68 = 95.6%

(either in time or resources or both). Measuring only a subset of these items is one way to
reduce the costs. The smaller the sample, the cheaper the analysis, but also the larger the
error in the estimates (on average). So there is always a trade-off between accuracy and
cost in sampling.

Numerical properties of the population are called parameters. These can be estimated
by constructing a list of the population and then selecting a random subset from this list.
For this discussion, a random sample is a method of picking items so that every item has the
same probability of selection, which is called a simple random sample. There are, however,
many types of samples: see section 6.2.1 for an example.

Now reconsider the proportion of the letter e data from the last section. Suppose we
believe that Poe’s use of this letter is not something he tried to purposely manipulate.
Then it is plausible that Poe has a typical proportion of its use. This value is an unknown
parameter, and we want to estimate it by taking a sample of his works and computing its
average. Since different stories use different words, the percentage of e in each work varies,
and so an estimate of the standard deviation is also of interest. Again this is an unknown
parameter of Poe, so we estimate it by computing the standard deviation of the sample. If
the data in the sample is roughly bell-shaped, then the mean and the standard deviation is
a good summary of the data. For more on what is meant by this, see problem 4.7,

For conciseness, let us introduce these symbols. First, let the unknown population mean
be 1, where the p stands for Poe. This is estimated by computing the sample mean Y.
Second, let the unknown population standard deviation be o,. This is estimated by the
sample standard deviation, sy .

If we believe our data model that the sample has a bell-shaped histogram, which is
visually plausible in figure 4.4, then not only can y,, be estimated, but its error is estimable,
too. One way of doing this is to give an interval estimate of 1, along with an estimate of
the probability this interval contains (1,,. For example, equation 4.9 gives a 95% confidence
interval for the population mean. That is, constructing such an interval successfully contains
the true population mean 95% of the time, on average.

- SY <= Sy
Y 2\/ﬁ’Y+2\/5) (4.9

Using the sample mean and standard deviation of the Poe stories, this formula produces
the interval 0.1259 to 0.1289. Notice that this is much smaller than the ones in table 4.2.
This happens because predicting the mean of a population is more premse than predicting
an individual value for a sample size of 68.

Another way to view this equation is that Y is the best estimate of the population mean,
and that 2sy-/+/7 is an error estimate of Y. For more information on a variety of confidence
intervals, see Statistical Intervals: A Guide for Practitioners by Hahn and Meeker [49].

Finally, we consider the randomness of the selection of the 68 Poe short stories used
above, which are obtained from a public domain edition available on the Web. First, some
of these are not short stories, for example, “Maelzel’s Chess Player” [91] is an analysis of a

122 PROBABILITY AND TEXT SAMPLING

30
I

>

(8]

&

g ©

[o}]

S

L
[
=)
LO—‘
o - | 1 /I/]

| 1 | | |
0.10 0.11 0.12 0.13 0.14

Proportion_e

Figure 4.4 Histogram and best fitting normal curve for the proportions of the letter e in
68 Poe short stories.

touring mechanical device that was claimed to play chess (and Poe concludes correctly that
it hid a human chess player). Second, not all of Poe’s short stories are included in these five
volumes, for example, “The Literary Life of Thingum Bob, Esq." is missing. However, most
of them are represented. Third, Poe wrote many short pieces of nonfiction, for example,
book reviews and opinion pieces. In fact, one of these is included, “The Philosophy of
Furniture,” in which he discusses his ideas on interior design. Hence, these 68 works are
closer to the complete population of his short stories than to a random sample of these.

There is one more complication to consider. If Poe is thought of as a generator of short
stories, then these 68 are just a subset of his potential short stories. With this point of view,
the population is not clear. In addition, the idea that his existing stories are a random sample
of this population is unlikely. For example, he might have written the stories he thought
would sell better. Note that in either of these points of view, the stories analyzed are not a
random sample of some population. For more on text sampling, see section 6.2.2.

Next we switch from letters to words in a text. Words can be studied themselves or
as the building blocks of linguistic objects like sentences. The next section introduces an
important, but limited, probability model for words.

THE BAG-OF-WORDS MODEL FOR POE'S “THE BLACK CAT" 123

4.5 THE BAG-OF-WORDS MODEL FOR POE’S “THE BLACK CAT"

In the next chapter the bag-of-words model is used. In this section we define it and discuss
some of its limitations. However, in spite of these, it is still useful.

Analyzing a text by only analyzing word frequencies is essentially the bag-of-words
model. Because any random permutation of the text produces the same frequencies as the
original version, word order is irrelevant. Note that cutting out each word of a paper version
of the text, putting them into a bag, and then picking these out one by one produces a random
order. So the term bag-of-words is an appropriate metaphor.

Since the bag-of-words model completely ignores word order, it clearly loses important
information. For example, using Perl it is not hard to randomize the words of a text.
Output 4.6 contains the first few lines of a random permutation of “The Black Cat" by Poe.
For a hint on how to do this, see problem 4.8.

Output 4.6 The first few lines of the short story “The Black Cat" after its words have been

randomized and converted to lowercase.

hideous me at above this breast something fell impression had
the as between down a i body scream caresses the the on and

put night make or of has ascended been brute into similar blood
and bosom hit but from entire destroying and search evidence
frequent to could had and i they why investigation dislodged

and rid day inquiries from the time the steadily to oh me be

i and chimney the the old violence graven dared blow understand
was for appeared in i1 and of at feelings of took stood aimed hot
i the concealment of period trouble assassination the for better
off evident a him this shriek and nook immortal it easily wish

Although output 4.6 is ungrammatical, it does preserve some of Poe’s writing style. For
example, it is appropriate (though accidental) that it starts off with sideous me. And it does
include many words with negative connotations: hideous, scream, brute, blood, destroying,
and so forth. On the other hand, reading the original story is much more enjoyable.

An example of a word frequency text analysis is done in section 3.7.1, which illustrates
Zipf’s law applying program 3.3 to Dickens’s novel A Christmas Carol. This program
produces the counts needed to create figure 3.1.

Zipf’s law implies words that appear once are the most common, which suggests that
authors do not use all the words they know in a text (empirical evidence of this is given in the
next section). Hence a text has many zero counts for words known by the author. As noted
in section 4.2.2, this implies that these word frequencies have biases. This is an important
conclusion, and one based on a bag-of-words model, which shows that a simplistic language
model can produce interesting results.

Finally, to finish this chapter, we analyze how word frequencies depend on the size
of the text used. This reveals an important difference between coin tossing and texts.
Unfortunately, this difference makes the latter harder to analyze.

124 PROBABILITY AND TEXT SAMPLING

4.6 THE EFFECT OF SAMPLE SIZE

Section 4.2.1 shows an example of estimating the probability of getting heads by simulating
coin flips. Although the results are not exact, as the number of flips increases, the accuracy
of the estimate increases on average, as shown by figures 4.1 and 4.2. In this simulation,
all the bigger deviations from 0.5 occur below 1000 flips. For coins, the exact answer is
known, so an estimate based on simulation is easily checked. However, with a text sample,
the exact answer is unknown, and so using samples to make estimates is the only way to
proceed.

In the next section, we examine how the number of types is related to the number of
tokens as the sample size increases. The texts used are Poe’s “The Unparalleled Adventures
of One Hans Pfaall” [95] and “The Black Cat" [88]. We find out below that coins are better
behaved than texts. Finally, this example uses the approach described in section 1.1 of
Harald Baayen’s book Word Frequency Distributions [6], which analyzes Lewis Carroll’s
Alice in Wonderland and Through the Looking Glass. If word frequencies interest the reader,
then read Baayen for an in-depth discussion of modeling them.

4.6.1 Tokens vs. Types in Poe’s “Hans Pfaall"

In section 3.1, a distinction is made between tokens and types, which we now apply to
words. First, as tokens, every word is counted, including repetitions. Second, as types,
repetitions are ignored. Recall sentence 3.1: The cat ate the bird. It has five tokens, but
only four types.

In this section we show that the number of types is a function of the number of tokens,
which is the length of a text sample. Because some words are very common (for example,
prepositions and pronouns), the number of tokens is generally much greater than the number
of types. We consider just how much greater this is as a function of text size.

First, let us define some notation, which is almost the same as Baayen’s [6] except that
his Greek omega is changed to a w here. Let N be the size of the text sample, which is
the number of tokens. Suppose the words of a text are known, say by using code similar
to program 3.3. Label these words wy, we, ws, Although the order used here is not
specified, for any particular example, it is determined by how the program works. Let
V(N) be the number of types in a text of size N. Let f(w;, N) be the frequency of word
w; in a text of size N. Finally, define the proportion of word w; in a text of size N by
equation 4.10.

f (wia N)
N
Now that the notation is given, let us consider the concrete example of Poe’s “The

Unparalleled Adventures of One Hans Pfaall” [95], which is one of his longer short stories.

To create samples of varying sizes, we select the first N words for a sequence of values.

Then the results can be plotted as a function of V.

First, consider V' (V) as a function of N. Since there are only a finite number of types
for an author to use, if the sample size were big enough, V() should flatten out, which
means that no new vocabulary is introduced. In practice, an author can coin new words
or create new names (of characters, of locations, of objects, and so forth), so even for an
enormous sample, V (V) can keep increasing to the end. But the hope is that this rate of
increase eventually becomes small. Mathematically speaking, this means that the slope
decreases to near zero.

plw;, N) = 4.10)

THE EFFECT OF SAMPLE SIZE 125

Programming this in Perl is straightforward. First, convert the text to lowercase, then
remove the punctuation. Use split to break lines into words. The number of tokens is
Jjust the number of words, which can be used as hash keys. Then the size of the hash is the
number of types at any given point. These ideas are implemented in program 4.5.

USAGE > perl Pfaall_word_richness.pl

open(IN, ’Hans_Pfaall.txt’) or die;
open(0UT, ">Pfaall_word_richmess.csv") or die;

while(<IN>) {

chomp;

$_ = lc; # Convert to lowercase
s/[.,:;7"1()]//g; # Remove most punctuation

s/--//g; # Remove dashes

s/ +/ /g; # Replace multiple spaces by one space

if (not /°$/) { # Ignore empty lines
@words = split(/ /);
foreach $x (@words) {
++$tokens;
++$freq{$x};
}
$types = scalar keys Yfreq;
$ratio = $tokens/$types;
print OUT "$tokens, $types, $ratio\n";

Program 4.5 This program computes the ratio of tokens to types for Poe’s “The Unparalleled
Adventures of One Hans Pfaall.”

In this program, the size of the hash %freq is stored in $types as follows. The function
keys returns the keys as an array. Then function scalar forces this array into a scalar
context, but this is just the size of the array, which is the number of types in the text. So
the combination scalar keys returns the size of the hash. Finally, the results are stored
in a comma-separated variable file called Pfaall word_richness.csv, which then can
be imported to a statistical package for plotting (R is used in this book).

Figure 4.5 is the resulting plot, which clearly shows that V() steadily increases as
N increases, even at the end of the story. Although the rate of increase is slowing, it is
never close to converging to some value. In fact, in the last thousand or so words the slope
increases a little, so the limiting value of V' (V) is not yet reached. This suggests that Poe’s
vocabulary is much bigger than the vocabulary that is contained in this story.

Since V(N) is an increasing function of N, we should take into account the sample
size. For example, for coin tossing, the number of heads steadily increases as the number
of flips increases, but the proportion of heads stabilizes around 0.5. This suggests that it
might be useful to form a ratio of V/(N) with N. In section 1.1 of [6], Baayen suggests

126 PROBABILITY AND TEXT SAMPLING

V(N)
1500 2000 2500 3000
1 | ! |

1000
L

500
|

0 5000 10000 15000

Figure4.S Plot of the number of types versus the number of tokens for “The Unparalleled
Adventures of One Hans Pfaall." Data is from program 4.5. Figure adapted from figure
1.1 of Baayen [6] with kind permission from Springer Science and Business Media and the
author.

using the mean word frequency, N/V (N), which is the mean number of tokens per type.
Program 4.5 already computes this, and the results are plotted in figure 4.6.

Unfortunately, this second plot does not flatten out either, In fact, the rate of increase
(or slope) of the plot for N in the range of 3000 to 17,000 is close to constant. Although
at the highest values of V the slope of the plot decreases somewhat, it is not clear that it is
close to reaching a plateau.

This lack of convergence might be due to the small sample size. After all, this text
is not even 20,000 words long, and perhaps longer texts behave as we expect. However,
section 1.1 of Baayen [6] states that even for text samples on the order of tens of millions
of words, the mean word frequency still does not converge to a fixed value.

This has practical consequences. Suppose we want to compare “The Black Cat" and
“The Unparalleled Adventures of One Hans Pfaall" with respect to vocabulary diversity.
The stories have different lengths, and it is tempting to believe that this can be taken into

THE EFFECT OF SAMPLE SIZE 127

Lr) .
< —
z
2
p-d
m g
SO
/
!!
T I l l
0 5000 10000 15000

Figure 4.6 Plot of the mean word frequency against the number of tokens for “The
Unparalleled Adventures of One Hans Pfaall.” Data is from program 4.5. Figure adapted
from figure 1.1 of Baayen [6] with kind permission from Springer Science and Business
Media and the author.

account by computing the mean word frequency for both stories. The results seem quite
significant: “The Black Cat" has an average of 3.17 tokens per type, while “Hans Pfaall"
has a value of 5.61, which is about 75% higher.

However, the mean word frequency depends on sample size. So if we plot N/V(N) vs.
N for both stories on the same plot, then we can make a fairer comparison. Program 4.5 is
easily modified to count up the number of tokens and types for “The Black Cat." Once this
is done, the plots for both stories are put into figure 4.7 for comparison.

This figure shows that “The Black Cat" has the slightly higher mean word frequency
when we compare both stories over the range of 1000 to 4000 (the latter is approximately
the length of “The Black Cat"). Hence the initial comparison of 3.17 to 5.61 tokens per type
is mistaken due to the effect of text length. Note that this approach compares the shorter
story to the initial part of the longer story, so the two texts are not treated in a symmetric
manner. :

128 PROBABILITY AND TEXT SAMPLING

wn -~
<
z
2
P
o -

0 5000 10000 15000

Figure 4.7 Plot of the mean word frequency against the number of tokens for “The
Unparalleled Adventures of One Hans Pfaall" and “The Black Cat." Figure adapted from
figure 1.1 of Baayen [6] with kind permission from Springer Science and Business Media
and the author.

In corpus linguistics, researchers typically take samples of equal size from a collection
of texts. This size is smaller than each text, so that all of them are analyzed in a similar
fashion. The corpora built by linguists use this approach. For example, the Brown Corpus
uses samples of about 2000 words. For more information on the construction of this corpus,
see the Brown Corpus Manual [46].

4.7 REFERENCES

This chapter introduces the basics of probability using text examples. These ideas occur
again and again in the rest of this book since counting and computing proportions of strings
or linguistic items is often useful by itself and is a common first step for more sophisticated
statistical techniques.

PROBLEMS 129

To learn more about statistics with an exposition intended for language researchers, there
are several options. First, an excellent book devoted to this is Christopher Manning and
Hinrich Schiitze’s Foundations of Statistical Natural Language Processing [75]. The first
four chapters introduce the reader to statistical natural language processing (NLP), and
chapter 2 introduces probability theory along with other topics.

Second, Statistics for Corpus Linguistics by Michael Oakes [] reviews statistics in its
first chapter, then covers information theory, clustering, and concordancing. It is a good
book both for reviewing statistics and seeing how it is useful in analyzing corpora.

Third, there is Brigitte Krenn and Christer Samuelsson’s manual called “The Linguist’s
Guide to Statistics" [67], which is available for free online at CiteSeer [29]. It starts with
an overview of statistics and then discusses corpus linguistics and NLP.

Fourth, for more advanced examples of probability models used in linguistics, see Prob-
abilistic Linguistics, which is edited by Rens Bod, Jennifer Hay, and Stefanie Jannedy [17].
Each chapter shows how different areas in linguistics can benefit from probability mod-
els. Another book with probabilistic models for analyzing language is Daniel Jurafsky and
James Martin’s Speech and Language Processing [64]. For example, chapter 5 discusses a
Bayesian statistical model for spelling, and chapter 7 covers hidden Markov models.

The next chapter introduces a useful tool from the field of information retrieval (IR),
the term-document matrix. Think of this as a spreadsheet containing counts of words from
a collection of texts. It turns out that geometry is a useful way of thinking about this.
Although the next chapter is the first one so far to discuss geometric concepts, it is not the
last.

PROBLEMS

4.1 A fair coin is flipped until either HHH or THH is obtained. If HHH occurs first, then
Player A wins, and if THH occurs first, then Player B wins. For example, the sequence
HTTTTHH is a win for Player B because THH occurs in the last three flips, but HHH does
not appear. Although both sequences are equally likely when flipping a coin three times,
one of the two players is a favorite to win. Write a Perl program to simulate this process,
find who wins, and then estimate Player A’s probability of winning.

This problem is just one case of a game described by Walter Penney. See pages 59-63 of
John Haigh’s Tuking Chances.: Winning with Probability [50] for a description of Penney’s
game and how it has counterintuitive properties.

4.2 Suppose two people are betting the outcome of a fair coin where Player A loses a
dollar if the flip is tails and otherwise wins a dollar. A running tally of Player A’s net
winnings or loses is kept where the initial value is $0. For example, if the game starts off
with HTTHT, then Player A has $1, $0, —$1, $0, —$1, respectively.

Write a Perl simulation of this game for 20 tosses, then compute the proportion of the
flips where Player A is ahead or even. Then repeat this simulation 10,000 times. The result
will be 10,000 proportions each based on 20 flips. One guesses that since the coin is fair,
that Player A should be ahead about 50% of the time, but this is not true. Surprisingly, the
most probable scenario is that Player A is either ahead or behind the entire game. See pages
64-69 of John Haigh’s Taking Chances: Winning with Probability [50] for a discussion
of this process. For a mathematical exposition, see section II1.4 of An Introduction to
Probability Theory and Its Applications by William Feller [44].

4.3 [Requires a statistical package] Output 4.2 gives the frequencies of the letters ap-
pearing in the fictional works A Christmas Carol and “The Black Cat."” For this problem,

130 PROBABILITY AND TEXT SAMPLING

focus on the former. The ranks of the letters in A Christmas Carol are easy to assign since
these values are already in numerical order; that is, the letter on the first line (e¢) has rank
1, the letter on the second line (¢) has rank 2, and so forth. Using a statistical package such
as R, make a plot of the Log(Rank) vs. Log(Frequency) for the 26 letters. How does this
compare to figure 3.1? In your opinion, how well does Zipf’s law hold for letters?

4.4 Modify program 4.4 to make it enumerate trigrams. Hint: In the foreach loop that
iterates over the array @words, modify the join statement so that it takes three instead of
two letters in a row. A modification of the for loop’s ending condition is needed, too.

4.5 [Mathematical] For four-letter words, equation 4.8 suggests that the events “first letter
is a ¢" and “second letter is an u" are dependent as language intuition suggests. However,
how strong is this evidence? This problem gives a quantitative answer to this.

The problem of independence of events can be solved with contingency tables. There
are several ways to do this, and this problem applies Fisher’s exact test. Equation 4.11
shows the computation needed, which gives the probability of seeing the counts in table 4.3
if independence were true. Since this answer is about six in a billion, the reasonable
conclusion is that the two events are dependent.

Table 4.3 Counts of four-letter words satisfying each pair of conditions. For
problem 4.5.

Istis g Ist not g Row Sums
2ndis u 10 368 378
2nd not u 2 3306 3308
Column Sums 12 3674 3686

. . 3781 3308! 12! 3674! _g
Probability of independence = 1013681 21 33061 36861 — 6.17222 x 10 4.11)

For this problem, find a statistics text that shows how to analyze categorical data. Then
look up Fisher’s exact test to see why it works. For example, see section 3.5.1 of Alan
Agresti’s Categorical Data Analysis [2].

4.6 In section 4.4, the proportions of the letter e in 68 Poe stories are given. Here are
some steps to compute these values. First, download the five volumes from the Web, and get
rid of the initial and ending text so that just the titles and stories are left. Second, although
the titles are easy for a person to read, it helps to make them completely unambiguous. One
common way to add information to a text is by XML tags. These work the same way as
HTML tags except that they can stand for anything, not just how to display a Web page.
Here we put the story titles in between two title tags, for example, <TITLE>The Black
Cat</TITLE>. Third, scan these five files line by line using a while loop. Finally, use
code sample 4.3 as a start for counting the total number of letters (in $count) and the
number of e’s (in $count_e).

4.7 [Mathematical] For some distributions, the sample data can be summarized by a
few sufficient statistics without loss of any information about the population parameters.
However, this assumes that the data values are really generated by the assumed population
distribution, which is rarely exactly true when working with a real data set. Hence, in
practice, reducing the data to sufficient statistics can lose information about how well the
population distribution fits the observed data.

PROBLEMS 131

Code Sample 4.3 Code sample for problem 4.6.

if (/<TITLE>(.*)<\/TITLE>/) {

$title = $1;

$count = O;

$count_e = 0;
} else {

$_ = lc;

s/["a-zl//g;

$count_e += tr/e/e/;
$count += length;

Here is an example that is discussed in section 9.4.1. Equation 9.1 gives a sequence of
0’s and 1’s reproduced here as equation 4.12.

1111111111110000000011111 (4.12)

Suppose we assume that this sequence is generated by a coin, where 1 stands for heads and
0 for tails. Assume that the probability of heads is p, which we wish to estimate. Assuming
that this model is true, then the sufficient statistic for p is estimated by the number of 1’s
divided by the number of flips, which gives 17/25 = 68%.

However, this data set does not look like it comes from flipping a coin because the 0’s
and 1’s tend to repeat. For this problem, compute the probability of getting the data in
equation 4.12 assuming that a coin with p = 0.68 is, in fact, used.

If this probability is low, then the assumption of a biased coin model is cast into doubt.
However, reducing the data set to the sufficient statistic for p makes it impossible to decide
on the validity of this coin model; that is, information is lost by ignoring the original data
in favor of the estimate p = 0.68.

Hint: see section 9.4.1 for one approach of estimating the probability observing equa-
tion 4.12 if seventeen 1’s and eight 0’s can appear in any order with equal probability.

For more on sufficient statistics see chapter 10 of Lee Bain and Max Engelhardt’s Intro-
duction to Probability and Mathematical Statistics [7]. In addition, the point that the data
set does have more information than the sufficient statistic is made in section 8.7 of John
A. Rice’s Mathematical Statistics and Data Analysis [106].

For the normal distribution, the sample mean and sample standard deviation are sufficient
for the population mean and population standard deviation. See theorem 7.1.1 of James
Press’s Applied Multivariate Analysis [103] for a proof.

4.8 Torandomize the words in a story requires two steps. First, they must be identified.
Second, they are stored and then permuted. The task of identifying the words is discussed
in section 2.4 (and see program 2.6). So here we focus on rearranging them. For each word,
store it in a hash using a string generated by the function rand as follows.

$permutation{rand ()} = $word;

Then print out the hash % permutation by sorting on its keywords (either a numerical or
an alphabetical sort works). Since the keywords are randomly generated, the sort randomly
permutes the values of this hash.

This Page Intentionally Left Blank

CHAPTER 5

APPLYING INFORMATION RETRIEVAL
TO TEXT MINING

5.1 INTRODUCTION

Information retrieval (IR) is the task of returning relevant texts for a query. The most
famous application is the online search engine where the texts are Web pages. The basic
underlying concept is simple: a measure of similarity is computed between the query and
each document, which are then sorted from most to least relevant.

The details of search engines are more complex, of course. For example, Web pages
must be found and indexed prior to any queries. For an introduction to this, see chapter 1
of Data Mining the Web by Markov and Larose [77]. For details of how the computations
are made, see Google’s PageRank and Beyond by Langville and Meyer [68].

We are interested in using the similarity scores from IR to compare two texts. With
these scores a number of statistical techniques can be employed, for example, clustering,
the topic of chapter 8.

IR has a number of approaches, and we consider only one: the vector space model.
Vector space is a term from linear algebra, but our focus is the specific application of this
model to texts, and all the required mathematics is introduced in this chapter. This includes
geometric ideas such as angles.

Practical Text Mining with Perl. By Roger Bilisoly 133
Copyright © 2008 John Wiley & Sons, Inc.

134 APPLYING INFORMATION RETRIEVAL TO TEXT MINING

5.2 COUNTING LETTERS AND WORDS

To keep the focus on text, not mathematics, we study the distribution of third-person pro-
nouns by gender in four Edgar Allan Poe short stories. Section 4.6.1 shows that the length
of a text influences the estimates, so these four stories are picked because they are approxi-
mately the same length: all are between 3529 and 3607 words long. These are: “Hop Frog"
[90], “A Predicament” [93], “The Facts in the Case of M. Valdemar" {89], and “The Man
of the Crowd" [92].

Before concentrating on the pronouns, we first discuss what programming techniques
are needed to count all the words in these stories. This reviews some of the material in the
earlier chapters and provides another example of dealing with the quirks of a text analysis.

5.2.1 Counting Letters in Poe with Perl

To extract words, the punctuation must be removed, which requires knowing which ones
are present. So we first run a program that determines all the different characters used in
these four stories. To inform the computer on where each story starts, the tags <TITLE>
and </TITLE> are used to enclose the titles, as shown below.

<TITLE>Hop Frog</TITLE>

These are XML tags, which are similar to the HTML tags used in Web pages. However,
the former are used to indicate information, not page layouts. For another example, see
problem 4.6.

The hash %£freq keeps track of the character counts in program 5.1. This reveals which
nonalphanumeric characters are among the four stories. These counts are printed out in
descending order in table 5.1 using multiple columns for compactness.

Table 5.1 Character counts for four Poe stories combined. Computed by program 5.1.

, 13219 m, 1723 ;117 8,2
e, 8526 f, 1601 q.97 L1
t, 5921 w, 1429 i, 87 é 1
a, 5056 p, 1294 1, 82 >, 1
0, 4668 . 1251 ' 65 -1
i, 4573 g, 1248 (, 36 @, 1
n, 4465 y, 1242), 36 e 1
s, 3885 b, 935 z,34 0,1
h, 3816 v, 670 2,27 3,1
r, 3738 . 641 521 9,1
d, 2893 -, 490 L4

1, 2587 k, 392 L3

¢, 1774 " 140 13

u, 1742 x, 122 2,2

Note that the space is the most common character, and the famous ordering ETAOIN
SHRDLU almost appears after it: see problem 5.1 for more information. Double quotes
and single quotes are both present, and the concordance program (program 3.2 in section
3.7) confirms that double quotes are used for quotations. Poe likes to use dashes, and these

COUNTING LETTERS AND WORDS 135

open(IN, "Poe_4_Stories.txt") or die;

while (KIN>) {
chomp;
if (/<TITLE>(.*)<\/TITLE>/) A
print "$1\n";
} else {
$_ = 1c;
if (not /°8/) {
Qcharacters = split(//);
foreach $char (Q@characters) {
++$freq{$char};
}
}
}
}

Print out character counts in decreasing order

foreach $char (sort { $freq{$b} <=> $freq{$a} } keys %freq) {
print "$char, $freq{$char}\n";

1

Program 5.1 This program counts every instance of each character in four Poe short stories.
Note that uppercase letters are changed to lowercase.

stories are no exception. This program reveals, however, that double hyphens are used in
all the stories except “The Man of the Crowd," which uses a single hyphen.

There are a few odd characters found by program 5.1, which can be checked, if desired.
For instance, a greater sign (>) appears, and it turns out that it comes from the string the
"PL> O BDT ,B,L, which makes no sense. By checking a book of Poe’s writings, it turns
out that this should be the Greek phrase: axAve n mpuv ernev, which was mangled when
the electronic document was created. Besides the zero from this string, the other numbers
come from the strings 1839, a year, and [page 228:], a reference of some sort.

Finally, this text uses apostrophes for both contractions and quotations. A simple way to
handle these is to always keep them within a word, and to always remove them at the start
or end of a word. This is not a perfect solution due to contractions that start or end with an
apostrophe, but this is uncommon.

Putting the above ideas together produces program 5.2. Note that each story’s word
counts are stored in the same hash of hashes, a data structure discussed in section 3.8. The
story names are used as keys. Finally, note that removing the initial and ending apostrophes
is done with a nongreedy regular expression. See problem 5.2 for why this is necessary.

As program 5.2 stands, it prints out the counts for all the words for all four stories, which
requires many lines of output. Adding the counts for a story produces the total number of
words in it, and the story lengths quoted above are obtained in this way. But remember our
original goal: to study the use of masculine and feminine pronouns, so only a small subset
of this output is needed.

136 APPLYING INFORMATION RETRIEVAL TO TEXT MINING

open(IN, "Poe_4_Stories.txt") or die;

while (<IN>) {
chomp;
if (/<TITLE>(.*)<\/TITLE>/)
$title = $1; print "TITLE =
} else {
if ($title eq ’’) { print "NULL TITLE\n"; }
$_ = 1c; # Change letters to lowercase
s/--/ /g; # Remove dashes
s/ - / /g; # Remove dashes
s/[,.";107:_\[\11//g; # Remove non-apostrophes
s/\s+/ /g; # Replace multiple spaces with one space
s/"\s+//g; # Remove spaces at the start of a line
@words = split(/ /);
foreach $word (@words) {
if ($word =" /7’7(.*7)’7$/) { # Must be non-greedy
$word = $1; # Remove initial and final apostrophes
++$freq{$title}{$word};
}
}

{
$title\n";

}
X

foreach $title (sort keys ¥freq) {
foreach $word (sort keys %{$freq{$title}}) {
print "$title, $word, $freq{$title}{$word}\n";
T
)

Program 5.2 This program keeps track of word counts for four Poe stories.

5.2.2 Counting Pronouns Occurring in Poe

Of the four Poe stories that we are considering, we start with “A Predicament,” since its
narrator talks about both males and females. In program 5.2, replace the final foreach
loop with code sample 5.1. This now prints out the counts for just the words in the array
@pronouns.

Output 5.1 gives the pronoun counts for “A Predicament." Both genders are represented,
but not equally. However, there are differences in the grammar of the pronouns by gender,
which we review now.

The forms he and she are used when the pronoun is the subject of the sentence. When
the pronoun is the object of the sentence, then him and her are used. To indicate possession
of an object, the terms his and her are used. For example, a person can say her bike or his
book. Used in this way, his and her are called possessive determiners. Finally, a person can
say the bike is hers or the book is his. These are examples of possessive pronouns. For a
detailed explanation of these grammatical ideas see sections 198 and 201 of the Cambridge
Grammar of English [26].

COUNTING LETTERS AND WORDS 137

Code Sample 5.1 This prints out the pronoun counts when placed at the end of program 5.2.

@pronouns = gw(he she him her his hers himself herself);

foreach $title (sort keys Yfreq) {
foreach $word (@pronouns) {
$freq{$title}{$word} += 0; # In case of empty strings
print "$title, $word, $freq{$title}{$word}\n";
}
}

Output 5.1 Output of program 5.2 and code sample 5.1 for Poe’s “A Predicament."

he, 19
she, 9
him, 7
her, 13
his, 22
hers, 0
himself, 1
herself, 2

With this terminology, the asymmetry in gender can be specified. The masculine forms
of the possessive determiner and the possessive pronoun are identical, but the feminine
forms differ: her versus hers, respectively. However, the feminine forms of the object form
and the possessive determiner are identical, but the masculine forms differ: him versus
his, respectively. Finally, recall that if the gender of a person is not known, generally the
masculine pronoun is used, which can inflate these counts.

These facts complicate the interpretation of output 5.1. Note that se and she counts are
directly comparable since both are subject forms of the pronoun and nothing else. However,
does her outnumber him because the former serves two roles and the latter only one? The
analogous statement is possible for his and Aers.

One way to avoid this issue is to combine counts. For example, compare ke versus she
and himself versus herself, but combine the counts for his and him, which is compared to
the combined counts for ser and hers. Another solution is to combine all four counts for
each gender; that is, compare the total numbers of masculine and feminine pronouns.

The most involved solution is using a person to classify each use of an ambiguous pronoun
and record these with XML tags in the text, as is done in sentence 5.1.

Is that <PD>his</PD> book? Yes, it’s <PP>his</PP>. .1

Here PD stands for possessive determiner and PP for possessive pronoun. For a shorter
text this is doable by using the concordance program 3.2, which can find all the uses of the
pronouns in question and print out each context. Then a person can decide which is the
case. For a longer text, there are Perl programs that tag words by parts of speech, but not
without errors. See section 9.2.4 for how to do this. Returning to these counts, we now
introduce the mathematical concepts of vectors and matrices.

138 APPLYING INFORMATION RETRIEVAL TO TEXT MINING

5.3 TEXT COUNTS AND VECTORS

Output 5.1 is a convenient way to display the results of counting up masculine and feminine
pronouns. In this section, we introduce vectors and matrices to do the same thing. If
unfamiliar with linear algebra, then the advantages of this are not apparent at first, but there
is a practical payoff.

The numbers of output 5.1 are easily written in vector notation by thinking of it as a list
of values in parentheses. This is also how Perl creates an array as shown below.

Qvector = (19, 9, 7, 13, 22, 0, 1, 2);

In mathematical notation, letters are often used to denote vectors. A linear algebra book
writes the following.

x = (19,9,7,13,22,0,1,2) (5.2)

The order of the entries in a vector is important. But there is one drawback: equation 5.2
records pronoun counts, but how does one know which counts go with which pronouns?
This requires stating the order explicitly in the definition of this vector. That is, while
output 5.1 makes it clear which counts are which, if equation 5.2 is given without any
explanation, then a person can only guess at what the numbers represent.

Horizontal vectors such as equation 5.2 are called row vectors. Vectors can also be
written vertically, which are called column vectors. For example, equation 5.3 has the same
entries as equation 5.2, but is written as a column.

19
9
7

13

X=1 99 (5.3)
0
1

2

As far as information content, it does not matter whether a vector is written as a row or a
column. But for mathematical manipulations, it does matter. We follow the mathematical
convention that a vector denoted just by a letter is a column. However, it is convenient to
have an operator that transforms column to row vectors and the reverse. This is denoted
with a superscript T, which stands for transpose. For example, equation 5.3 can be rewritten
as equation 5.4,

xt =(19,9,7,13,22,0,1,2) (5.4)

If notation were the only contribution of mathematics to vectors, then it is not worth
learning since Perl’s array notation is both workable and ready for programming. However,
mathematics has methods of comparing two vectors, which is useful in text mining. In
particular, geometric ideas are applicable.

The next section introduces a key geometric idea, which is the concept of the angle
between two vectors. Fortunately, angles are relatively easy to compute, and we discuss
how to do this. For a mathematical introduction to the geometry underlying linear algebra,
my favorite book is Strang’s Linear Algebra and Its Applications [113].

TEXT COUNTS AND VECTORS 139

5.3.1 Vectors and Angles for Two Poe Stories

For this section, we focus on two Poe stories: “A Predicament" and “The Man of the Crowd."
Let the pronoun counts be represented by two vectors given in equation 5.5.

x' =(19,9,7,13,22,0,1,2), yT = (33,0,17,3,32,0,1,0) (5.5)

These vectors have eight entries (since there are eight pronouns under consideration).
The number of entries is called the dimension of the vector, so these vectors are eight-
dimensional. Finally, remember that these two stories have almost the same number of
words, so that the differences in the counts reflect differences in usage.

Comparing two numbers just means determining which is bigger. However, comparing
vectors is not as simple. First, let us use the notation in equation 5.6. Note that the indices
start with 1, not 0 as done in Perl.

xT = (71,22,23, T4, T5, L6, T7,T8), Y© = (Y1, Y2, Y3, Y4, U5, Y6, U7, ¥s) (5.6)

Unlike numbers, there are eight entries to compare, and in this case some entries of x are
bigger than the respective entries of y, some are smaller and some are ties. For example,
z1 < Y1, T > Y2, T3 < Y3, and & = ys. Soitis not clear how these two vectors compare.

One solution is to compute the angle between the two vectors. The more similar the two
vectors are, the closer this angle is to zero. Notice this converts comparing eight entries to
the easier task of considering one angle.

To compute angles, it turns out that only one technique is needed, which is called either
the inner product or the dot product. Fortunately, the formula for this operation is simple.
For two vectors that have the same number of entries, multiply the first entries of each
vector, and add this to the product of the second entries, then add this to the product of the
third entries, and repeat this until all the entries are included.

For the two vectors given in equation 5.5, the inner product is shown in equation 5.7. As
suggested by the first row, there are two different notations. First, as a row vector adjacent
to a column vector, where the row vector must go first. Second, with a dot between the
two vectors, which is called the dot product.

x~yExTy

1933 4+9%x0+7x17+13x3+22%32+0x0+1%14+2%0
627 +0+1194+394+7044+0+14+0 =

1490 (5.7)

Since counts are always at least zero, they are nonnegativeinxxnonnegative. This implies
that the inner product is also nonnegative for these types of vectors. Note that for other
applications, negative entries are possible, in which case the inner product can be negative,
t0o0.

Before computing angles, we need to compute vector lengths, which is denoted |x|.
The square of the length of a vector is its inner product with itself, that is, |x|? = xTx.

Equation 5.5 gives an example.

140 APPLYING INFORMATION RETRIEVAL TO TEXT MINING

X'XEXTX

1919+ 99+ 7#7+13%x13+22%22+0%x0+1*x1+2%2
361+814+49+169+484+0+1+4 =
1149 (5.8)

i

Since each number in the sum is a square, the result is always at least zero. To get the
length of a vector, take the square root as shown in equation 5.9. So the length of x in
equation 5.8 is +/1149, or about 33.9. Check that the length of y is +/2412,

x| = VxTx (5.9)

Although eight-dimensional vectors sound esoteric, it reflects the source of the data:
the counts of the eight pronouns he, she, him, and so forth. Even the length computation
is based on a simple mathematical idea, which is illustrated with an example. Suppose
the length of the two-dimensional vector (4, 3) is desired. This can be interpreted as the
hypotenuse of a right triangle by dropping the perpendicular to the x-axis, which is shown
in figure 5.1. By the Pythagorean theorem, the square of the hypotenuse equals the sum
of the squares of the other two sides, and this triangle has sides of length 4 and 3. Hence
(4,3)]2 = 42 + 32 = 16 + 9 = 25, which implies |(4,3)| = v/25 = 5. But taking the
dot product of this vector with itself gives 4 x4 + 3 x 3 = 16 + 9 = 25. That is, for two
dimensions the inner product method is the same as the Pythagorean theorem. For more
than two dimensions, inner products are equivalent to applying the Pythagorean theorem
multiple times.

Finally, we are in a position to define angles between two vectors (with equal dimensions).
Let this angle be denoted 8 (the lowercase Greek letter theta). Then equation 5.10 gives the
formula to compute the cosine of 6.

XTy

x[ly|

To get § itself, apply the arccos function to this equation. For some insight on why the
inner product is related to the cos 8, see problem 5.3.

Word counts are one source of vectors in text mining, and even a short text can have
thousands of them. Hence high-dimensional vectors are common, and computing these by
hand is not feasible. One solution is obvious: use Perl. After all, it produced the counts in
the first place. The next section shows how to do this.

cosf =

(5.10)

5.3.2 Computing Angles between Vectors

Perl has many useful functions, but it does not have an inner product or a cosine function
for vectors. However, Perl allows the programmer to create new functions by writing
subroutines. Note that this technique is used for the function sort; for example, see code
sample 3.20. So first we discuss writing subroutines and then create one that computes
cosines.

5.3.2.1 Subroutines in Perl The function 1c changes letters to lowercase. How this
is done is usually not of interest to the programmer: what matters is that a certain task is
done. If Perl is missing a function, then a programmer can write a subroutine to do it. The
payoff is that once written, this can be reused.

Subroutines are created by the sub declaration followed by a block of code contained
in curly brackets. As an introductory example, code sample 5.2 has a subroutine called

TEXT COUNTS AND VECTORS 141

A 3-4-5 Right Triangle

® 7 P
[a VI |
>
o —_
T T T T T
0 1 2 3 4

Figure 5.1 The vector (4,3) makes a right triangle if a line segment perpendicular to the
x-axis is drawn to the x-axis.

print_hello that prints “Hello." Since this is in a for loop, it is executed 10 times. The
code outside the subroutines is called the main program. In this case, the subroutine is at
the end, but it can be placed anywhere.

Code Sample 5.2 A subroutine that only prints out the string “Hello."

for ($i = 0; $1i < 10; ++$i) {
print_hello();
}

sub print_hello {
print "Hello.\n"
}

Note that print_hello() has parentheses, but since it needs no argument, the paren-
theses contain nothing. There are other ways to write a subroutine, which is discussed in
problem 5.4.

142 APPLYING INFORMATION RETRIEVAL TO TEXT MINING

Arguments are put inside the parentheses, and these are passed to the subroutine in an
array called @_, which is analogous to the array @QARGV that passes values to a program from
the command line. Finally, the subroutine can return a value using return.

Our first example of a function returns the length of a vector. The last section shows
how to do this computation, so creating code sample 5.3 is straightforward.

Code Sample 5.3 A subroutine that returns the length of a vector.

@vector = (19, 9, 7, 13, 22, 0, 1, 2);
$length = vector_length(@vector) ;
print "Length of vector = $length\n";

sub vector_length {
my $sum = O;
for(my $i = 0; $i <= $#_; ++8i) {
$sum += $_[$i]*$_[$i];
}

return(sqrt ($sum)) ;

This program prints out the value 33.9 (when rounded to one decimal place), which
equals the value found earlier. Notice that within the subroutine, the array @_ appears in the
forms $#. (the value of the last array index) and $.[]. Finally, $sum keeps a running sum
of the squares of the entries of @_, and the square root is taken inside the function return.

The first time $sum and $i appear, they are preceded by my. Doing this is optional, but
it is good practice. This makes the variables in the subroutine local. For example, if $i
were used in the subroutine without my, and if it were used in the main program, then both
of these variables would refer to the same memory location. This allows interactions that
can cause perplexing errors, so it is a good habit to make all variables local in subroutines.
See problem 5.5 for an example of not using my.

Based on code sample 5.3, creating a function to compute the inner product of two vectors
seems straightforward. However, there is one complication. It is tempting to invoke this
functionas inner_product (@vectorl, @vector2). However, these two vectors are first
combined into @_ so the first half consists of @vector1, and the rest consists of @vector?2.

The array @_ can be split into two pieces to recover the original array, but this assumes
that the two input arrays are equal in length. Although this should be true, it is certainly
possible that the lengths are different due to an error, so this should be checked. Hence
another approach is needed.

Since Perl passes all arguments to the array @_, it seems that we are stuck. But there is a
solution: instead of using arrays, references to them can be used instead. Then @_ has two
values, both of which point to an array, so after dereferencing with the @{} operator, these
are now available to the subroutine. To review references, see section 3.8.1.

Using references, code sample 5.4 shows the function dot, which computes the dot
product of two vectors. Notice the two dereferences just before the if statement. The
result is 1490, confirming the calculations made above.

With the idea of passing references to the subroutine, along with a subroutine to compute
the dot product, we are ready to convert equation 5.10 into Perl code, which is done in the
next section.

THE TERM-DOCUMENT MATRIX APPLIED TO POE 143

Code Sample 5.4 A subroutine that returns the dot product of two vectors.

it

@x (19, 9, 7, 13, 22, 0, 1, 2);
Qy (33, 0, 17, 3, 32, 0, 1, 0);
$answer = dot(\@x, \@y);

print "Dot product = $answer\n";

sub dot {
my ($vector_refl, $vector_ref2) = Q_;
ny $sum_cross = 0;
my Qvectorl = @{$vector_refl}; # Dereference pointer
my @vector2 = Q@{$vector_ref2}; # Dereference pointer

if ($#vectorl == $#vector2) { # Ensure vectors have same length
for (my $i=0; $i <= $#vectorl; ++$i) {
$sum_cross += $vectorli[$il*$vector2[$i];
}
return($sum_cross);
}
}

5.3.2.2 Computing the Angle between Vectors Using subroutine dot from code
sample 5.4, we write another one to compute the cosine of the angle between two vectors
using equation 5.10. In general, breaking a complicated programming task down into
smaller pieces makes it easier to do, which is done in program 5.3.

Note that the if statement checks to see if the vectors have the same length. If they are
not, then the string Error is returned to the main program. Running this produces 0.89503
for the cosine. This corresponds to an angle of 0.46230 radians, which is about 26.5°.

We know that the closer this angle is to zero, the higher the similarity between the two
vectors. However, this heuristic does not indicate how close 26.5° is to zero. In general, it
is not enough to quantify a measurement, a researcher also needs to calibrate it.

We do not have any calibration for 26.5°, which requires either (1) a model of the
variability of angles or (2) an empirical analysis of a group of texts. In the next section we
do the latter for four Poe stories and then compare the six resulting angles. This analysis
also introduces the term-document matrix, an important tool in IR and text mining.

5.4 THE TERM-DOCUMENT MATRIX APPLIED TO POE

Program 5.2 and code sample 5.1 compute the counts of eight pronouns for all 4 Poe
stories mentioned at the start of section 5.2. Our goal is to compare each pair of stories by
computing the angle between each pair of pronoun count vectors.

Table 5.2 gives the counts for each pronoun and each story. These counts clearly show
a bias toward the masculine pronouns, with “The Facts in the Case of M. Valdemar" as the
most lop-sided with no feminine pronouns at all.

It is easy to convert this table into a term-document matrix because it only requires
putting the numbers between large parentheses and dropping the pronouns on the left and

144 APPLYING INFORMATION RETRIEVAL TO TEXT MINING

$answer = cosine(\@x, \@y);
print "Cosine = $answer\n";

sub cosine {
This uses the subroutine dot
my ($vector_refl, $vector_ref2) = @_;
my @vectorl = @{$vector_refl};
my @vector2 = Q{$vector_ref2};

if ($#vectorl == $#vector2) { # Do vectors have the same length?
my $lengthl = sqrt(dot(\@vectorl, \@vectorl));
my $length2 = sqrt(dot(\@vector2, \@vector2));
my $answer = dot{(\Qvectorl, \@vector2)/($lengthl*$lengthl);
return($answer) ;

} else {
return(’Error’);

Program 5.3 A subroutine that returns the cosine of the angle between the two vectors in
equation 5.5. This uses subroutine dot from code sample 5.4.

Table 5.2 Pronoun counts from program 5.2 and code sample 5.1 for 4 Poe stories.

Predicament Hop-Frog Valdemar Crowd

he 19 27 24 33
she 9 5 0 0
him 7 10 28 17
her 13 11 0 3

his 22 55 35 32
hers 0 0 0 0
himself 1 4 3 1

herself 2 0 0 0

the story titles on the top, which is done in equation 5.11.

to the table is obvious.

The relationship of this matrix

19 27 24 33
9 5 0 0
7 10 28 17
13 11 0 3
22 55 35 32 .10
0 0 0 0
14 03 1
5 0 0 0

In equation 5.11, each row stands for a pronoun, and each column stands for a document.
The size of a matrix is called its dimensions, which are just the number of rows and columns.
For example, this is an 8 by 4 matrix.

THE TERM-DOCUMENT MATRIX APPLIED TO POE 145

In this book, a term-document matrix typically has rows representing words and columns
representing documents, so the dimensions are the number of words by the number of
documents. However, some authors reverse the role of the rows and columns, so pay
attention to how such a matrix is defined when reading an article. Although the example
given in equation 5.11 is small, these matrices can be enormous. For example, if there are
rows for each word in a document, then tens of thousands of rows are possible.

There are two ways to consider a term-document matrix such as equation 5.11. First,
each column is a vector of pronoun counts occurring in a particular story. For example, the
first column is the same vector given in equation 5.3. Second, each row represents counts
for a particular pronoun. For example, the first row represents he. Both of these points of
view can be useful in analyzing a collection of texts.

To finish this section, we compute the angles between each pair of columns in equa-
tion 5.11 by using program 5.2 to count all the types and saving these in the hash of hashes
%freq. Then code sample 5.5 computes the angles (in degrees) for all pairs of stories by
using program 5.3 (which itself uses code sample 5.4).

Code Sample 5.5 The computation of cosines assuming that the hash of hashes %freq
has already been computed by program 5.2. This requires program 5.3, which uses code

sample 5.4.

Angles are in degrees
Requires subroutines cosine() and dot()
Requires the existence of the hash Yfreg

use Math::Trig; # Load all trig functions and pi
@pronouns = qw(he she him her his hers himself herself);

foreach $story (keys %freq) { # Print out the story names
print "$story\n";
}

print "\nCOSINE ANGLES\n\n";
foreach $storyl (keys %freq) {
foreach $story2 (keys %freq) {
%hashl = %{$freq{$storyil}};
%hash2 = %{$freq{$story2}l};
@vectorl = G@hashi{@pronouns};
@vector2 = Qhash2{@pronouns};
$angle = acos(cosine(\@vectorl, \@vector2))/pi*180;
printf " %.1f", $angle;
}
print "\n";

¥

Notice that code sample 5.5 has three new features. First, it uses printf, which is a
formatted print statement, similar to the one in the programming language C. The %.1f
means that only one decimal place is printed out, which makes the output more readable.

146 APPLYING INFORMATION RETRIEVAL TO TEXT MINING

Second, the trigonometric function acos is not part of Perl’s core functions. However,
when downloading Perl, a number of additional packages (called modules) are provided,
and these are loaded by using the command use. The syntax is as follows.

use PackageName;

Many packages have a two-part name (but one or three is not uncommon), with each
part separated by double colons. In particular, there are many packages that go under the
name Math, and Math: : Trig is the one that supplies all the usual trigonometric functions.
Moreover, use can define constants as well as other items. For this code sample, pi is the
famous value from geometry and is used by the program to convert radians to degrees. For
more examples of Perl modules and how to use them, see section 9.2.

Third, remember that %freq has word counts for all the words that appear among the
four stories, but we are interested only in the eight pronouns. These can be obtained all at
once by the following trick. First, %hash1 stores the part of %freq corresponding to one
of the four stories (the current one selected by the foreach loop). Note that the following
Perl statement writes the hash with an @ symbol, but still uses curly brackets.

@vectori = @Qhashl{@pronouns};

The result is that @vector1l stores the values correspondmg to the keys in @pronouns
from %hashi. This is a useful trick.

Output 5.2 shows the results of code sample 5.5. The story names are printed out to
show the order of the stories in the hash %freq. Remember that this order need not be the
original order in the text file. The main diagonal goes from the upper left to the lower right
of the matrix. All these entries have 0° since this is the angle between a story and itself.

The rest of the entries come in pairs. For example, the value in the second row and fourth
column is the same as the one in the fourth row and second column. This makes the matrix
symmetric about the main diagonal.

Output 5.2 Output of code sample 5.5.

THE FACTS IN THE CASE OF M. VALDEMAR
THE MAN OF THE CROWD

HOP-FROG

A PREDICAMENT

0.0 17.1 27.4 34.4
17.1 0.0 23.3 26.5
27.4 23.3 0.0 22.5
34.4 26.5 22.5 0.0

This symmetry leaves six distinct angles, one for each pair of stories. For example,
the angle between “The Man of the Crowd" and “A Predicament" is 26.5°. These are the
two stories represented in equation 5.5, and this angle agrees with the value computed in
section 5.3.2.2.

Putting these six angles into order produces: 17.1°, 22.5°, 23.3°, 26.5°, 27.4°, 34.4°,
Although this is a small sample, we do get some sense of the size of 26.5°, namely, it is close
to the median angle, so itis not unusually small or large. However, ““The Man of the Crowd,"
which is narrated by a man who decides to follow another man, and “A Predicament,” which

MATRIX MULTIPLICATION 147

is narrated by a woman about her misadventure with a male servant and her female dog,
have dissimilar literary plots. This suggests an angle larger than average, yet this is not true
of 26.5°. However, looking at only four of the 68 short stories is a small sample, so it is
rash to read too much into this result. See section 7.4.3 for a pronoun analysis of all his
stories.

The examples above show that vectors and matrices are numbers displayed in a rectangu-
lar layout. However, their power comes from geometric ideas. Although the mathematics
of these objects has been extensively analyzed in linear algebra, we require only a few basic
tools to analyze text. The most important of these is matrix multiplication, which is based
on the inner (or dot) product and is the topic of the next section.

5.5 MATRIX MULTIPLICATION

Vectors are a special type of matrix. For example, equation 5.12 has a row and a column
vector. The first is also a 1 by 8 matrix, the second is 8 by 1. Since these have the same
number of entries, the inner product is possible. The resultis 1x19+1%x9+...+1%2 = 73.
Now viewing these two vectors as matrices, the matrix product is the same as the inner
product for this special case. Finally, note that since the row vector has all 1’s, this result is
the sum of the entries of the column vector, which is the total number of these pronouns in
“A Predicament.” This is the first example of how matrix multiplication can perform useful
tasks in text analysis.

19
9
7
13
22
0
1
2

For an inner product to exist, the number of entries of both vectors must be the same.
Likewise, for the matrix product to exist, there are constraints on the dimensions. To
multiply the matrices M and My, the number of columns of M; must be the same as the
number of rows of M5, and no other restrictions are required.

When matrix multiplication is permitted, the product of two matrices is a matrix. Even
in equation 5.12, although the final result is a number, it is also a 1 by 1 matrix (containing
the value 73). Suppose that the product of M7 and My is the matrix P. The value of the
entry in the ith row and jth column of P equals the inner product of row i of M and column
j of My, which requires this row and column have the same number of entries. However,
the length of the rows of Mj is its number of columns, and the length of the columns of M,
is its number of rows, and the preceding paragraph requires that these are the same.

60 50
1 2 3) (200 140)
40 30 | = (5.13)
(4 5 6 20 10 560 410

Let us do a small, concrete example to see how this works. Equation 5.13 shows a 2 by
3 matrix and a 3 by 2 matrix. Since the number of columns of the first matrix equals the
number of rows of the second matrix, these can be multiplied. A common notation is to

(11111111) (5.12)

148 APPLYING INFORMATION RETRIEVAL TO TEXT MINING

represent the ith row and jth column of matrix P by P;;. Hence Pp; is the inner product
of (1, 2, 3) and (60, 40, 20)T, which equals 1 * 60 + 2 * 40 + 3 * 20 = 200. Continuing,
Pio=1%50+2%30+3%10 = 140, P,; =4 %60 + 5% 40 4 6 » 20 = 560 and Py =
4% 504 5% 30+ 6 %10 =410.

Note that a 2 by 3 times a 3 by 2 matrix results in a 2 by 2 matrix. In general, an m
by n matrix times an n by p matrix produces an m by p matrix, so the two n’s “cancel."
In addition, the order of the two matrices count. For example, an n by p matrix cannot be
multiplied by an m by n matrix unless p = m. For another example, see problem 5.6. For
an example of applying matrix multiplication to texts, see the next section.

5.5.1 Matrix Multiplication Applied to Poe

In this section we find the angles between pairs of stories by using matrix multiplication.
Doing this by hand is tedious, so we use the statistical package R. Like Perl, it is freely
available on the Web, so you can download it right now and try the computations yourself.
The commands and output given below is discussed briefly, and it is used again in the last
three chapters, but this book does not teach R beyond a few specific applications. Hopefully
these examples show that R is both powerful and relatively easy to use.

To compute angles from a term-document matrix, first normalize each column; that is,
each entry is divided by the length of its column. This changes its length to 1, which makes
it a unit vector. Call this new matrix N (for Normalized). Second, by problem 5.3, the
cosine of the angle between unit vectors is their inner product. Computing N7 N obtains all
of these at the same time. Doing these two steps shows how to work with matrices in R, but
note that there are faster ways to get the final results. For example, the function scale()
is useful: see problem 5.9. Moreover, chapter 7 shows a connection between angles and
correlations, and the latter are easy to compute in R.

Output 5.3 Output from the statistical package R. M is the term-document matrix for the
eight pronouns analyzed in the text.

> M = matrix(c(19,9,7,13,22,0,1,2,27,5,10,11,55,0,4,0,24,0,28,0,
35,0,3,0,33,0,17,3,32,0,1,0) ,nrow=8,ncol=4)
> M
(,11 [,2]1 [,3] [,4]
[1,] 19 27 24 33
[2,] 9 5 0 0
[3,] 7 10 28 17
(4,1 13 11 0 3
[5,] 22 55 35 32

(6,1 0 0 0 0
7,1 1 4 3 1
(s,] 2 0 0 0

Note that R is interactive, and the > shows where to type in each line of code, which is
run after the enter key is pressed. Output 5.3 defines the term-document matrix A/, which
is constructed by matrix () from a vector that is defined by listing its entries within c().
Note that the default in R is to construct a matrix using columns, not rows. However, the
latter can be done by using byrow=T as shown in problem 5.8.

MATRIX MULTIPLICATION 149

Also note that the following convention for R is used throughout this book. Since
Perl does not require parentheses for its functions, when these are named in the text, they
are not used, for example, keys. However, R does require them, so they are written
with parentheses, for example, matrix (). This distinguishes functions between these two
computer languages.

Output 5.4 Computing the matrix product M T M.

> product = t(M) %% M
> product

[,11 ,21 [,3] [,4]
(1,] 1149 1985 1425 1490
[2,] 1985 4016 2865 2858
{3,] 1425 2865 2594 2391
(4,1 1490 2858 2391 2412

The matrix product M T M is shown in output 5.4. Note the diagonal entries are the
squared length of each column (do you recognize the [1,1] and [4,4] entries?). Because we
want to multiply each column of M by the reciprocal of its length, these diagonal entries
are used below. Finally, %*7 is the matrix multiplication operator in R.

Output 5.5 Each diagonal entry is the reciprocal of the respective column length of M.

> solve(diag(sqrt(diag(product))))

[,1] [,2] [,3] [,4]
[1,] 0.02950122 0.00000000 0.00000000 0.00000000
[2,] 0.00000000 0.01577986 0.00000000 0.00000000
[3,1 0.00000000 0.00000000 0.01963428 0.00000000
[4,] 0.00000000 0.00000000 0.00000000 0.02036157

Output 5.5 shows a matrix with only diagonal entries, which is called a diagonal matrix.
Each nonzero entry is the reciprocal of the corresponding column length. For example,
the first entry is 0.02950122 = 1/4/1149. The R function diag() has two uses. First, it
extracts the diagonal elements from a matrix to form a vector. Second, it takes a vector and
makes a diagonal matrix out of it (that is, the vector becomes the main diagonal, and the
other entries are all zeros). In addition, solve () computes the inverse of a matrix. When
this is diagonal, it is equivalent to taking the reciprocal of the nonzero entries.

The column-normalized version of M, denoted by N, is computed in output 5.6. Now
each column has length 1, which means the sum of the squares of the column entries
must be 1. For example, the first column satisfies 0.560523192 + 0.26551099% + ... +
0.05900244? = 1 (up to round-off error).

Output 5.7 computes the cosines of the angles. Finally, the R function t () returns the
transpose of a matrix, which is obtained by interchanging the rows and the columns of a
matrix. A special case of this is the transpose of a vector, which is done in equations 5.3
and 5.4.

The conversion from cosines to angles is done in output 5.8. Most of the functions are
used to print the results with one decimal place. Comparing this to output 5.2, we see that
all the values are the same, but the order is different. This happens because the Perl hash
changed the order of the stories.

150 APPLYING INFORMATION RETRIEVAL TO TEXT MINING

Output 5.6 Matrix N equals M with its columns normalized to have length 1.

> N = M %% solve(diag(sqrt(diag(product))))

>N

{,1] [,2] [,3] [,4]
[1,] 0.56052319 0.42605622 0.47122276 0.67193194
[2,] 0.26551099 0.07889930 0.00000000 0.00000000
[3,] 0.20650854 0.15779860 0.54975988 0.34614676
[4,] 0.38351587 0.17357846 0.00000000 0.06108472
[5,] 0.64902685 0.86789230 0.68719985 0.65157037
[6,] 0.00000000 0.00000000 0.00000000 0.00000000
[7,] 0.02950122 0.06311944 0.05890284 0.02036157
[8,]1 0.05900244 0.00000000 0.00000000 0.00000000

Output 5.7 NTN is the matrix of cosines of the columns of M.

> cos_matrix = t(N) %*% N

[,1] [,2] [,3] [,4]
.0000000 0.9240674 0.8254103 0.8950300
.9240674 1.0000000 0.8876521 0.9182834
.8254103 0.8876521 1.0000000 0.9558856
.8950300 0.9182834 0.9558856 1.0000000

L e I v I e |
™ W N -
I_ILII_II_I
O O O

Output 5.8 The cosines of output 5.7 are converted to degrees.

> matrix(as.numeric(sprintf("%.1f",acos(cos_matrix)/pi*180)),4,4)
[,11 [,2]1 [,3] [,4]

0.0 22.5 34.4 26.5

2 2

17.

W~ o
w s o
-

~N o~
o
o ~N W
or W

With these ideas, the next section discusses two tasks. First, how two entire texts are
compared. The examples up to this point use only a few words at a time. Second, the
examples so far use counts. However, this can cause problems, and one solution is discussed.

5.6 FUNCTIONS OF COUNTS

So far in this chapter, unmodified word counts are used (called raw counts). However, there
is a downside to this, which is shown by a simple example. Suppose we analyze the four
Poe stories with respect to the two words the and city. This is easily done by reusing code
sample 5.5, replacing @pronouns by an array containing just these two words.

Once this medification is made, then the foreach prints out the counts for the four
stories. The results are given in output 5.9. Since there are only two words, these can be
plotted to visually compare the four vectors, which is done in figure 5.2.

FUNCTIONS OF COUNTS 151

Output 5.9 Counts of the words the and city, respectively.

THE FACTS IN THE CASE OF M. VALDEMAR
231,0

THE MAN OF THE CROWD

236,4

HOP-FROG

302,0

A PREDICAMENT

242,7

The two axes of the plot in figure 5.2 are not drawn on the same scale: the y-axis should
be about three times more compressed, but this makes the plot too thin to read. Hence
the angles shown are about three times too big. In fact, the largest is only 1.66°. These
vectors are so close to the x-axis because the has high counts (it is the most common word in
English), and city only appears 7 times at most. Hence, all the vectors are nearly horizontal.

0
1
i

Frequency
5
1
\

Frequency

Figure 5.2 Comparing the frequencies of the word the (on the x-axis) against city (on the
y-axis). Note that the y-axis is not to scale: it should be more compressed.

However, city is a useful word for distinguishing these stories. Both “The Man of the
Crowd" and “A Predicament” take place in an urban environment as the narrator walks
around. In the other two stories, all the action takes place inside. The fact that city splits
these stories into two groups is disguised by the large counts of the.

High-frequency words are often used for grammatical purposes. For example, the is
used with nouns to emphasize a particular instance of that noun, as in the picture. So words
like that, this, is, and so forth, are common, but add little to the imaginative, creative part
of a text. These are called function words.

There are two common solutions to the problem of high-frequency function words.
First, these can be ignored. All such words are called a stoplist (see section 9.2.2 for further
discussion). For the above analysis, instead of using the and city, the former can be replaced
with a more interesting word.

Second, using functions of the counts is common. For example, if f is a term frequency,
then this can be replaced by log(f + 1). This compresses the values together. Now the
goes from 0 to 6, and city from O to 2, so these scales are more comparable. In addition,
the largest angle in figure 5.3 is now 20.7°, compared to 1.60° before. The four stories are
now clearly split into two groups, so applying log(f + 1) is helpful in this case.

152 APPLYING INFORMATION RETRIEVAL TO TEXT MINING

Log Frequency
1.0 15 2.0

0.5
|

0.0
I

Log Frequency

Figure 5.3 Comparing the logarithms of the frequencies for the words the (on the x-axis)
and city (on the y-axis).

In the next section, we consider a popular similarity function from IR that penalizes
common words. This is applied to the four Poe stories in their entirety, not just a small
subset of words such as pronouns.

5.7 DOCUMENT SIMILARITY

The core application in information retrieval is returning the documents most similar to a
query. For example, a person goes to a search engine and enters “text mining." The results
are Web pages that are listed in order from most to least similar based on a numerical score.

In the case of search engines, this score is a combination of similarity and a Web link
analysis. The latter assumes that the importance of a Web page is a function of both the
number and the importance of the other pages that link to this page. The importance of
these other in-linking pages is determined by the same idea, so the importance of all Web
pages must be computed simultaneously. Because the number of pages on the Web is quite
large, this makes for a massive computation, but one that is doable using linear algebra
and many computers. For the details of link analysis, see Langville and Meyer’s Google’s
PageRank and Beyond [68].

However, for this book, documents do not have any linkages. The preceding section
shows how to compute the cosine of the angle between two vectors, and there are no
constraints on how many entries these vectors can have. Hence angles between two long
texts are computable using the same idea. First, find all the words that appear in both texts.
Second, create vectors where each entry is the frequency of a word. Third, use the technique
given in the last section to compute the angle between these two vectors.

DOCUMENT SIMILARITY 153

To make this idea clear, here is a simple example of the angle between sentence 5.14 and
sentence 5.15.

The gray cat is called Misty. (5.14)

Ashford is the gray and white cat. (5.15)

The set of words (in alphabetical order) that appear in at least one sentence is: and,
Ashford, called, cat, gray, is, Misty, the, and white. A frequency vector for sentence 5.14 is
given by equation 5.16. Equation 5.17 is the vector for the other sentence. Each number is
the count with respect to the order of the words just given.

(0,0,1,1,1,1,1,1,0) (5.16)

(1,1,0,1,1,1,0,1,1) (5.17)

Remember that these vectors do not record the order of the words in the original sen-
tences. For example, equation 5.16 is also the vector for sentence 5.18 as well as any other
permutation of these words.

The cat called Misty is gray. (5.18)

Finally, the cosine of the angle between these two vectors is 4/ (\/6\/7), which is about
0.617. This is an angle of 51.9°.

In this example, raw frequencies are used. In the last section, the function log(f + 1)
is applied to the entries of the vectors, but in this case, this transformation does not change
the angle. See problem 5.10 for why this is so. In general, log(f + 1) is useful when the
counts vary a lot, and by Zipf’s law (see section 3.7.1) this is typical, for example, a few
words like the are extremely common, but the most common situation is that words only
appear once.

So far, the only modification of counts attempted is log(f + 1), but this is only one
function among many. The next section discusses another, the inverse document frequency.

5.7.1 Inverse Document Frequency

This section introduces the inverse document frequency (IDF), which provides information
about how a term is distributed among a collection of texts. Itis another technique to modify
counts.

The less a term appears in a collection of documents, the higher its value of IDF. Specif-
ically, let N be the total number of documents in the collection, and let N, be the total
number of documents containing the term ¢. Then the IDF of ¢ is given in equation 5.19.

N
IDF; = log — 5.19
t = 10g N, ()
As N, gets larger, the IDF of a term gets smaller. In fact, if N; = N, then IDF; = 0,
so words like the are given no weight whatsoever. This effectively puts these words on a
stoplist.

154 APPLYING INFORMATION RETRIEVAL TO TEXT MINING

For an example, we compute the IDFs for the words in sentences 5.14 and 5.15 of the last
section, treating each one as a text. Hence, N = 2 and V; is either 1 or 2 for any word that
appears. Finally, when N; = 1, IDF; = log(2), and when N; = 2, IDF; = log(1) = 0.
Note that the base of the logarithm is not critical since changing it only multiplies the result
by a constant, which is removed by making the columns have unit length.

In practice, the term weight (or a function of it) is multiplied by the IDF to produce the
term frequency-inverse document frequency or TF—IDF. The resulting weights are com-
monly normalized because unit vectors make computing angles easier. However, there
are numerous ways proposed in the research literature on how to combine term frequen-
cies and IDFs. For additional weightings and combinations, see section 15.2 of Manning
and Schiitze’s Foundations of Statistical Natural Language Processing [75], and for an
overview, see section 3.2 of Berry and Browne’s Understanding Search Engines [10].

5.7.2 Poe Story Angles Revisited

This section recalculates the angles between pairs of Poe’s stories using TF-IDF. This is
done in Per! using the following steps. First, all the words are counted, which produces the
term frequencies. Second, the number of stories in which each word appears is counted,
which are the document frequencies. Third, the TF-IDF values are computed. Fourth, the
document vectors are normalized; and, fifth, the cosines are computed by taking the inner
products. These five steps are done in programs 5.4 and 5.5, which must be run together.
They are split into two pieces so that each fits on one page.

In program 5.2, the word frequencies are stored in a hash of hashes, where the title of
each story is used as the key. However, hashes typically change the order of the index
strings as they are constructed, so in this case, the order of the four stories in the file
Poe_4_stories.txt is probably not the order used in the hash of hashes %freq. This
reordering can be prevented by using an array of hashes, although which number corresponds
to which story must be remembered. Hence the word counts (term frequencies) are stored
in $t£ [$nstory] {$word}.

In step 1, the term frequencies for each story are stored in the array of hashes, @t£, while
the hash J%granddict stores the frequencies for all the stories combined. Step 2 computes
and stores the document frequencies in %d£.

In step 3, the array of hashes @weight stores the TF-IDFs. The first foreach loop in
step 4 computes the square of the length of the hash @weight [$1], and the second divides
each @weight [$i] by this length, so that the result, when viewed as a vector, has unit
length. Then step 5 takes the dot product of these normalized vectors, which equals the
cosine of the angle between each story.

Finally, running programs 5.4 and 5.5 together produces the list of story names in the
order they appear in the file Poe_4_Stories.txt, which is also the order they appear in
the array of hashes, @f. Output 5.10 produces a four by four array of cosines, where
each row and each column represents a story. Besides the zeros on the diagonal, there
are six cosines: 0.0277, 0.0214, 0.0323, 0.0270 ,0.0442, 0.0224. These represent angles
from 87.5° to 88.8°. Comparing these with output 5.2, there are differences in how pairs
of stories are ranked. For example, the smallest angle in output 5.2 (17.1°) is between
“The Facts in the Case of M. Valdemar" and “The Man of the Crowd." In output 5.10 the
largest cosine is 0.0442 (corresponding to the smallest angle 87.5°), and this is between
“A Predicament” and “The Man of the Crowd." Hence the IDF part of TF-IDF does make
a difference in rankings. It clearly enlarges the angles, too: all the stories are now nearly
orthogonal.

DOCUMENT SIMILARITY 155

open(IN, "Poe_4_Stories.txt") or die;
$nstory = -1;

Step 1: Compute the term frequencies
while (<IN>) {

chomp;
if (/<TITLE>(.*)<\/TITLE>/) {
$title = $1;
++3nstory;
print "Title of story $nstory = $title\n";
} else {
if ($title eq ’’) { print "NULL TITLE\n"; }
$_ = 1c; # Change letters to lowercase

s/--/ /g; # Remove dashes

s/ - / /g; # Remove dashes

s/[,.";10O7:_\[\]11//g; # Remove non-apostrophes
s/\s+/ /g; # Replace multiple spaces with one space
s/"\s+//g; # Remove spaces at the start of a line
@words = split(/ /);

foreach $word (@words) {
if ($word =~ /~’7(.%7)°78/) { # Must be non-greedy
$word = $1; # Remove initial and final apostrophes
++$tf [$nstoryl {$word};
++$granddict{$word};
}
}
}
}

Step 2: Compute the document frequencies
foreach $word (sort keys Y%granddict) {
$sum = 0;
for $i (0 .. $#tf) {
if ($t£[$il{$word} > 0) {
++$sum;
}
$df{$word} = $sum;
}
}

Program 5.4 Part 1 of computing the cosine similarities between Poe stories.

156

APPLYING INFORMATION RETRIEVAL TO TEXT MINING

#

Step 3: Compute the tf-idf weights

$n = $#tf + 1; # number of stories
foreach $word (sort keys Jgranddict) {

i

#

for $i (0 .. $#tf) {
$weight [$1i] {$word} = $tf[$i]l{$word}*log($n/$df{$word})/log(2);
}

Step 4: Normalize the columns of weights

for $i (0 .. $#tf) {

¥

#

$len2 = 0;

foreach $word (sort keys %granddict) {
$len2 += $weight [$i]{Sword}**2;

}

$len = sqrt($len2);

foreach $word (sort keys %granddict) {
$unit [$i]l{$word} = Pweight [$i] {$word}/$len;

}

Step 5: Compute cosine similarities between each pair of stories

for $i (0 .. $#tf) {

#

for $j (0 .. $#tf) {
$sum = O;
foreach $word (sort keys Y%granddict) {
$sum += $unit [$i}{$word} * Sunit([$j]{$word};
}
$cosine[$i] [$j] = $sum;

Print out the cosine similarities

print "\n";
for $i (0 .. $#tf) {

3

for $j (0 .. $#tf) {
printf "%.4f ", $cosinel$1][$j];
}

print "\n";

Program 5.5 Part 2 of computing the cosine similarities between Poe stories.

REFERENCES 157

Output 5.10 Output of programs 5.4 and 5.5. Values are cosines of angles between pairs
of stories.

THE FACTS IN THE CASE OF M. VALDEMAR
A PREDICAMENT

HOP-FROG

THE MAN OF THE CROWD

Title of story O
Title of story 1
Title of story 2
Title of story 3

1.0000 0.0277 0.0214 0.0323
0.0277 1.0000 0.0270 0.0442
0.0214 0.0270 1.0000 0.0224
0.0323 0.0442 0.0224 1.0000C

To understand these six values better, using more Poe stories for more comparisons is
needed. In addition, using these similarities for input to other statistical techniques is often
profitable. For instance, this can be done with clustering algorithms, which are discussed
in chapter 8.

5.8 REFERENCES

This chapter focuses on one small part of IR. The three main ideas discussed are (1) the
term-document matrix, a natural way to analyze the words in a collection of texts; (2) the
idea of representing texts by vectors, and then applying geometric concepts; and (3) the
TF-IDF for computing similarities between texts.

Of course, IR has many other ideas and techniques beyond the vector space model.
For further information on IR, here are three introductory books. First, Michael Berry
and Murray Browne’s Understanding Search Engines [10] has an excellent introduction
to the vector space model. Second, David Grossman and Ophir Frieder’s Information
Retrieval [48] has a good overview of the many approaches of IR. Third, Dominic Widdows’s
Geometry and Meaning [126] is a fascinating book that considers how to use geometry to
analyze language, and his level of mathematics is similar to this book. Finally, for more
information on linear algebra itself, my favorite book is Gilbert Strang’s Linear Algebra
and Its Applications [113].

In the next chapter, we turn to corpus linguistics, which studies language through the
computer analysis of corpora (plural of corpus). These are collections of texts representative
of an aspect of language.

PROBLEMS

5.1 In table 5.1, the most common letters in the four Poe stories are almost ETAOIN
SHRDLU. This sequence of letters is relatively famous, and originally arose in Linotype
keyboards because printers believed this was the true frequency order of letters. Also
compare this order to the results in output 4.2. How well does it fit?

ETAOIN SHRDLU has taken a life of its own. Try searching the Web for this term. Here
are two examples of this phrase in the literature. First, read the dialog called SHRDLU, Toy of
Man’s Designing in Douglas Hofstadter’s excellent book Géodel, Escher, Bach: An Eternal
Golden Braid [55]. This dialog includes the characters Eta Oin and SHRDLU. Second,
read problem 112, called ETAOIN SHRDLU, of Dmitri Borgmann’s Beyond Language:

158 APPLYING INFORMATION RETRIEVAL TO TEXT MINING

Adventures in Word and Thought [18]. Its answer section gives some background on this
phrase.

5.2 Inprogram 5.2, the following line appears.
if ($word =~ /~’7(.*7)’7$/) { # Must be non-greedy

Why must this be nongreedy? One way to understand this is to change .*7 to .* and
see what happens. Or try to figure it out from first principles, keeping in mind the following
two points. First, .* is greedy, so it matches as much as possible including apostrophes.
Second, ’? is greedy and means zero or one apostrophe. How do these two greedy operators
act when put together?

5.3 [Mathematical] Why is there a connection between the inner product and the cosine
of the angle between two vectors? The first time a person sees equation 5.10, it is often
unclear why this formula works. Using linear algebra, this problem offers some geometric
insight.

First, when a vector is divided by its length, the result is a unit vector. Because equa-
tion 5.10 is rewritable as equation 5.20, it is sufficient to consider just unit vectors.

xly < X)T y
cosff=——={(—1} =— (5.20)
x|yl x|/ |yl

Second, suppose the unit vectors are two-dimensional, and suppose these are (1, 0) and
(z1,29). Remember that cosf for a right triangle equals the length of the adjacent side
over the length of the hypotenuse. For example, in figure 5.1, the cosine of the angle at the
origin = 4/5. So for these two vectors, the cosine equals z1/1 = ;. But the dot product
also equals x;, so we have confirmed the result for this special case.

Third, consider two unit vectors of arbitrary dimension. These still lie in a two-
dimensional plane, so by a (high-dimensional) rotation, these two vectors can be brought
to the (x, y)-plane so that one of the vectors is (1,0,0, ..., 0) and the other is arbitrary, say
(21,22,0,0,...,0). By the reasoning in the previous paragraph, cosf = x1, but this is
again the inner product.

Finally, as long as both vectors are rotated in the same way, the angle between them
is not affected. So the inner product of the original two vectors is the same as the inner
product of the rotated vectors, which, by the previous paragraph, equals cos 6.

If the above is not clear to you, find a text on linear algebra. My favorite is Gilbert Strang’s
Linear Algebra and Its Applications [113] because it is well-written and emphasizes the
underlying geometry. See chapter 3 for an explanation of the above ideas.

5.4 Like scalars, arrays, and hashes, there is an initial symbol to denote a subroutine,
which is the ampersand. In addition, parentheses can be used or left out. This makes four
possibilities, which are shown in code sample 5.6.

Run this code to see what happens. Which form of the subroutine call must come before
its use in the main program? Why is this true?

5.5 Run code sample 5.7. Then remove the my statement in interference to see how
it modifies the variable $1i in the main code. How does this effect the for loop?

5.6 Reversing the two matrices in equation 5.13 gives us a 3 by 2 times a 2 by 3 matrix
multiplication and now the result is a 3 by 3 matrix, not a 2 by 2 matrix as before. Carry
out the multiplication of equation 5.21 to find the entries of this 3 by 3 matrix.

Hint: Pj; =60 %1+ 50%4 = 260.

PROBLEMS 159

Code Sample 5.6 For problem 5.4.

$x1 = yes;
$x2 = yes();
$x3 = &yes;
$x4 = &yes();

print "$x1, $x2, $x3, $x4\n";

sub yes { return "jawohl"; }

$x1 = yes;
$x2 = yes();
$x3 = &yes;
$x4 = &yes();

print "$x1, $x2, $x3, $x4\n";

Code Sample 5.7 For problem 5.5.

for ($1i = 0; $1 < 10; ++$i) {
print "$i\n";
interference();

X

sub interference {
my $i;
if (rand() > 0.5) {
++$1;
} else {
--$1;
}
}

60 50
40 30 (41152) (5.21)
20 10

5.7 Make sure that you understand how the matrix manipulations are done in section 5.5.1.
Do this by verifying by hand the following results given by R.
a) In output 5.4 verify the first row of the product AT M.
b) Inoutput 5.6 verify that the first column shown is the first column of M/ multiplied
by the [1, 1] entry of output 5.5.
¢) Verify the second column of the cosines in output 5.7.

5.8 Thedefault for Risto treat matrices as columns; for example, see output 5.3. However,
the option byrow=T changes this to working with rows as seen in output 5.11. With this
example in mind, rewrite output 5.3 so that the matrix M is defined by a vector that contains
its rows, not its columns.

160 APPLYING INFORMATION RETRIEVAL TO TEXT MINING

Output 5.11 Creating a matrix row by row with option byrow=T for problem 5.8.

> matrix(c(1,2,3,4,5,6), 2, 3, byrow=T)
[,11 [,2] [,3]

[1,] 1 2 3

[2,1] 4 5 6

5.9 In section 5.5.1, a series of matrix multiplications are done to compute the cosine
of the angles between column vectors in a matrix. This problem shows a shortcut. Try to
understand why the method given in output 5.12 has the same result as the method given in
this chapter. In particular, why is the matrix product divided by 7?7 What is the connection
between 7 and the size of the matrix, M?

Output 5.12 A shortcut method to compute the cosine of the angles between column vectors
of a matrix. Note that this agrees with output 5.7. For problem 5.9.

> out=scale(M,center=F,scale=T)
> t(out) %*% out/7

[,1] [,2] [,3] [,4]
1,] 1.0000000 0.9240674 0.8254103 0.8950300
2,1 0.9240874 1.0000000 0.8876521 0.9182834
3,] 0.8254103 0.8876521 1.0000000 0.9558856
4,7 0.8950300 0.9182834 0.9558856 1.0000000

(1,
C
L
[

2

5.10 [Mathematical] The vectors in equations 5.16 and 5.17 have only zeros and ones as
entries. Show that the angle between two vectors with only zeros and ones is the same as
the angle between these vectors after the transformation by log (f + 1).

Hint: Consider the vector in equation 5.16. Applying log (f + 1) to each entry of
(0,0,1,1,1,1,1,1,0) produces (0, 0,log 2, log 2, log 2, log 2, log 2, log 2, 0), but this new
vector is the original vector multiplied by log 2. Hence both vectors point in the same
direction (in nine-dimensional space). Since the angle between two vectors is only a function
of the directions, not the lengths, the angle for vectors of only zeros and ones is not affected
by the transformation log (f + 1). For readers with a mathematical background, convert
this argument into a general proof.

CHAPTER 6

CONCORDANCE LINES AND
CORPUS LINGUISTICS

6.1 INTRODUCTION

A corpus (plural corpora) is a collection of texts that have been put together to research one
or more aspects of language. This term is from the Latin and means body. Not surprisingly,
corpus linguistics is the study of language using a corpus.

The idea of collecting language samples is old. For example, Samuel Johnson’s dictio-
nary was the first in English to emphasize how words are used by supplying over 100,000
quotations (see the introduction of the abridged version edited by Lynch [61] for more
details). Note that his dictionary is still in print. In fact, a complete digital facsimile of the
first edition is available [62].

In the spirit of Samuel Johnson, a number of large corpora have been developed to
support language references, for example, the Longman Dictionary of American English
[74] or the Cambridge Grammar of English [26]. To analyze such corpora, this chapter
creates concordances.

The next section introduces a few ideas of statistical sampling, and then considers how to
apply these to text sampling. The rest of this chapter discusses examples of concordancing,
which provide ample opportunity to apply the Perl programming techniques covered in the
earlier chapters.

Practical Text Mining with Perl. By Roger Bilisoly 161
Copyright © 2008 John Wiley & Sons, Inc.

162 CONCORDANCE LINES AND CORPUS LINGUISTICS

6.2 SAMPLING

Sampling replaces measuring all of the objects in a population with those from a subset.
Assuming that the sample is representative of the population, then estimates are computable
along with their accuracy. Although taking a subset loses information, it also requires less
resources to measure. For example, asking questions of a thousand adults in the United
States is cheaper and faster than contacting all the adults across America. Hence, sampling
is a trade-off between accuracy and costs. The next section introduces a few basic ideas of
sampling, and while reading this, think about how these ideas might apply to text.

6.2.1 Statistical Survey Sampling

This section gives one example of statistical survey sampling, which is compared to text
sampling in the next section. The former is a well-researched area and many methods of
sample selection have been proposed and analyzed.

We consider this example: for an upcoming statewide election, the percentage of voters
for Candidate X is desired. A survey is the usual way to answer this question.

The underlying idea of a survey is straightforward. Some unknown properties (called
parameters) of a population are desired. Measuring all the members is too expensive (in
time or money or both), so a sample of the population is taken. The members of this are
measured, which are used to compute an estimate of the population parameters.

In this election survey, the population is all people who do, in fact, vote on election day.
However, it is not known who these voters are prior to that time. Although there exist lists
of registered voters, even if these were without error, they only indicate who can vote, not
who will vote on election day. Let us call the actual voters in the upcoming election the
target population, while the registered voters are the frame population. The percentage of
target voters in favor of Candidate X over Candidate Y is the desired parameter, but we
must sample the frame population to make an estimate.

A good sample is representative of the population. A variety of demographic variables
such as gender and marital status have been measured by region, for example, by ZIP codes.
Assume that these two variables are available for registered voters, say from a marketing
firm. Then the sample can be selected to ensure that its demographics match those of the
registered voters.

Consider the following sampling design. A subset of the registered voter lists (the frame
population) is taken so that every person on it has an equal chance of selection, which is
called a simple random sample. When these people are contacted, each person is asked
if he or she plans to vote in the next presidential election. If the answer is no, then the
questioning ends. Otherwise, three more questions are asked. First, “What is your gender?"
Second, “Are you single, married, or divorced?” Third, “Who do you prefer: Candidate X
or Candidate Y?" Quotas for gender and marital status are established prior to the survey,
and once each category is filled, no more responses from people in that category are used in
the analysis. For example, if the quota for single females were 250, then only the first 250
contacted are asked about the candidates. Once all the quotas are filled, then the percentage
of people (in the sample) who said that they will vote for Candidate X on election day is
computed, which is the estimate of the election day results.

The above sampling design is stratified. The strata are all the combinations of demo-
graphic variables, for example, single females, single males, married females, and so forth.
In general, strata are picked because they are important in making the sample representative

SAMPLING 163

of the target population. In addition, the strata must not overlap, that is, a person is not a
member of two strata at once, which is the case above.

The above description ignores many practical considerations. For example, what should
be done about all the people picked from the frame population who are unreachable? In
the question “Who do you prefer: Candidate X or Candidate Y?" does the order of the
candidates matter? However, these issues are not pertinent to text sampling, so we ignore
them. See problem 6.1 for another sampling design applicable to this situation. For a much
more detailed discussion on statistical sampling, see Thompson’s book Sampling [115].
With this example in mind, let us consider text.

6.2.2 Text Sampling

Language comes in two forms: written and spoken. Speech is transcribable, but not with-
out simplifications. For example, intonation, body language, and speed of speaking are
generally not recorded but convey important information. To simplify matters a little, this
book only analyzes written language.

Suppose we want to study a sample of written American English. As in statistical sam-
pling, it should be representative of some form of language, but what is the target population?
There are nonfiction and literary texts. The latter includes short stories and novels, and these
come in a variety of genres including romance, detective, historical, fantasy, mysteries, chil-
dren’s, and science fiction. Moreover, nonfiction texts cover an immense number of topics
and come in many forms including books, magazines, newspapers, journal articles, Web
pages, letters, emails, and pamphlets. Finally, all the texts have to be accessible to the
researchers, which suggests using a library database to construct the frame population.

Although registered voter lists exist, the situation varies for texts. Most books have
International Standard Book Numbers (ISBN), and most periodicals have International
Standard Serial Numbers (ISSN). However, no such lists exist for emails, product catalogs,
graffiti, and so forth. And there are texts between these two extremes, for instance, many
Web pages are cataloged by search engines, but not the deep Web.

Since there is no hope of a complete list of all texts, the specification of the target
population requires some thought. One simplification is to limit texts to those that are
cataloged in some way. This underrepresents certain categories, but the alternative is to
create one’s own list of unusual texts, which requires effort, and the idea of sampling is to
decrease the amount of work.

The key question for a corpus is to decide exactly what it is sampling. Should it focus on
a very narrow type of usage? For example, English is the official language of international
air traffic control, but this type of English is limited to discussions about aviation. Another
example is an English as a Second Language (ESL) program that creates a collection of
student essays in order to study typical mistakes. In fact, this has been done, and for more
information on such a corpus, see the Web page of the Cambridge Learner Corpus [24],
which is part of the Cambridge International Corpus [23].

However, a broader focus is possible. For example, English is spoken in many countries,
and each has its own peculiarities, so it makes sense to speak of American English, British
English, Australian English, and so forth. In addition, it is both written and spoken. How
a person talks depends upon what he or she is doing, for example, speaking to a friend in a
bar is different from discussing work with one’s boss over the phone. These changes in use
due to circumstances are called registers. Already this makes three ways to classify English
(country, written/spoken and register), and a corpus can be made for any combination of

164 CONCORDANCE LINES AND CORPUS LINGUISTICS

these three, for example, American written English as it appears in newspaper business
stories. .

The divisions in the preceding paragraph are strata. That is, a researcher can stratify by
countries, written/spoken language, registers, and so forth. This is a useful way to approach
a corpus that is representative of many types of English. Such a corpus might first divide
texts by country. Then for each country, written and spoken examples are collected, and
each of these can be further broken down. The end result are strata that are narrow enough
in scope so that it is possible to gather a representative collection of texts. If enough are
found, then the result is representative of a wide variety of English.

There exist giant copora that are representative of a large swath of Englishes, for example,
the Cambridge International Corpus of English [23]. This combines other corpora owned by
Cambridge University Press. For a detailed description of the construction of a corpus that
is representative of American English, see the Brown Corpus Manual [46]. This explains
many details, including the strata used, and the sizes of each text sample.

Although survey sampling and text sampling have similarities, there is one important
difference: many texts have copyrights. Researchers must request permission to use copy-
righted texts in their corpus, but permission need not be given. For a discussion of this
issue, see unit A9 of McEnery, Xiao, and Tono’s Corpus-Based Language Studies [78].
Note that the issue of copyright is why this book uses texts that are in the public domain,
which explains the preponderance of pre—World War I literary works.

With the above discussion of both survey and text sampling in mind, we are ready to
consider corpus linguistics. The next section introduces the first of several uses of corpora.

6.3 CORPUS AS BASELINE

A common statistical task is deciding whether or not a measurement is typical. For example,
output 3.4 gives counts of the word lengths for the story “The Tell-Tale Heart." On average,
are these unusually long? unusually short? Without a standard of comparison, it is hard to
say.

If a corpus is representative of some part of the English language, it can be used as a
baseline for comparison. For example, the most ambitious to date are the giant corpora
such as the Cambridge International Corpus [23], which have been built to study English
as a whole. Text that deviate from this kind of corpus are likely to be atypical in some way.

Unfortunately, even smaller, less ambitious corpora are labor intensive, and aithough
many exist, few are in the public domain. For example, the Linguistic Data Consortium
[73] has many available, but most of them cost money to obtain. Note that many older texts
are in the public domain and are available online, so a researcher can create certain types
of corpora without obtaining copyright permissions. For example, to create a corpus of
19th-century novels, many texts are available, so the frame population is clear. However,
care is needed to define the target population as well as choosing texts that are representative
of this.

This section compares three novels to a large, public domain corpus consisting of Enron
emails released to the public by the Federal Energy Regulatory Commission during its
investigation of the company [31]. This is called the EnronSent corpus, and it was prepared
for public distribution by the CALO Project [76], created by SRI International’s Artificial
Intelligence Center. This corpus is distributed as 45 files, each containing from 1.5 to 2.5
megabytes of text (uncompressed). However, the analysis here is based on just one file,
enronsent00, for simplicity.

CORPUS AS BASELINE 165

Although the novels and emails are both in English, clearly these types of texts have
differences. A more appropriate corpus might be made from public domain literary novels of
the 19th century, but as noted above, this requires time and effort. However, this comparison
shows the use of a corpus as a baseline.

We compare three novels with the EnronSent corpus with regards to word frequencies.
Since the latter is composed of email, it is wise to check its contents for odd characters.
Table 6.1 shows the frequencies for enronsent00, which are obtained from program 4.3.
Note that the original output is changed from one column to three to save space.

Table 6.1 Character counts for the EnronSent email corpus.

: 377706 v: 14816): 2310
e: 169596 k: 13619 (: 2244
t: 128570 .0 12423 q: 1858
0: 114242 1: 8808 >: 1805
a: 112451 -: 8459 $: 1575
i: 102610 2: 8428 "1 1345
n: 100985 /: 5613 z: 1129
s: 89229 3: 5609 @: 867
r: 88811 =: 5592 <: 802
1. 61438 5: 4908 1711
h: 59689 *: 4907 +: 614
d: 50958 0 4726 &: 512
c: 45425 j: 4375 ~: 501
u: 43439 X: 4222 % 448
m: 38346 ’: 4162 #: 419
p: 34210 9: 4035 [: 353
y: 31347 4: 3642 1. 353
f: 29674 7: 3269 ;0 218
g: 29336 7. 3250 %95
w: 27443 6: 2807 |: 88

. 24821 tab: 2695 \: 11
b: 21606 8: 2661 2

0: 15875 _ 2600

Not surprisingly, there are some unusual characters, for example, 4907 asterisks and
1805 greater than signs. Using the regex concordance (program 2.7), it is easy to print out
all the lines that match some pattern, which gives insight into how the special symbols are
used.

In section 2.4, it is noted that the dash, hyphen, and apostrophe can cause complications.
For the EnronSent corpus, we remove dashes, but leave all the hyphenated words in place.
To decide what to do with the apostrophes, we examine them using program 2.7. Output 6.1
shows a selection of the 270 matches for the regex (\w?’\W|\W’\w), which finds all the
apostrophes at the beginning or the end of a word. Note the initial output line numbers,
which start at 1.

Output 6.1 clearly shows a variety of uses of the apostrophe. For example, in lines 2 and
41, it is used to form a possessive noun, while in lines 5, 6, and 196, it forms contractions.
In lines 7 and 87, single quotes are used to highlight a phrase, but in line 19 it is used to
indicate length in feet. Notice that lines 75, 129, and 136 have typos, which is common in
emails. In line 109, two apostrophes are used to make double quotes, as is true in line 157

166 CONCORDANCE LINES AND CORPUS LINGUISTICS

Output 6.1 Selected concordance lines matching an apostrophe in the EnronSent corpus.

2 Can you pull Tori K.’s and Martin Cuilla’s resum
5 from shockwave.com, stick ’em in your Shockmachine and
g "TTTTTT Ty mmmm e The ’80s may not have left many

7 nish, simply click on the ’Reply With History’ button
19 e overall dimensions are 55’ X 40’. For a total of 440
41 CA legislators’ suit against FERC.

75 tting out of that-john who ’s getting squeezed on the m
87 ow. Was it ’Blue Men Group’ that you recommended we se
109 ply goofed, setting up a ’’dysfunctional’’ system. It

129 you gotta love heffner...’if we take out the jan 31 1

136 I cant’ seem to make my gambling p
157 look on India to ‘‘negative’’ from ‘‘stable.’’ Fitch sa
196 Buying for nothin’ and your commissions for £

233 ‘; and commercial paper ‘F2’. Pipeline subsidiary ‘A-°

except that the initial double quote is made with back-quotes. Finally, line 233 shows the
back-quote, apostrophe pair to highlight a term.

Since there are many patterns of typos to fix (like cant’ and who ’s), and because
changing nothin’ to nothin is still comprehensible, all apostrophes at both ends of a
word are removed in the word counting program. This creates some ambiguities, such
as changing 55’ to 55, but these are not that common (after all, there are only 270 total
matches.)

To count the words in this corpus, all the nonalphanumeric characters shown in table 6.1
are removed, as are two single quotes in a row and single quotes either at the beginning or
the end of a word. With these in mind, it is straightforward to rewrite program 3.3 and code
sample 3.26 to create code sample 6.1.

The output from code sample 6.1 is quite long, but we focus on the 20 most frequent
words, which are shown in the first column of table 6.2. These word frequencies are used as
a baseline for comparisons, which assumes that similarities or differences from this corpus
are of interest.

We compare the Enronsent corpus with the following literary works: Charles Dickens’s
A Christmas Carol (compare with output 3.21), Jack London’s The Call of the Wild, and
Mary Shelley’s Frankenstein. The results for these three novels have been combined in
table 6.2.

Notice that there are both similarities and differences among the four columns. First, the
same word is at the top of each column, the, which is the case for most texts. Second, the
top five words in the first column are highly ranked in all four columns. These are common
function words.

Third, the first column has is, are, and have, but these do not appear in the other three
columns (although these words are in the three novels, their ranking is below 20). On the
other hand, was, were, and had are in the last three columns but are not in the first. So there
is a difference in verb tense of the auxiliary verbs to be and to have: the novels prefer the
past, the emails prefer the present.

Fourth, character names appear in the second and the third columns. For example,
Scrooge is the protagonist of A Christmas Carol as is Buck for The Call of the Wild. Not
surprisingly, Scrooge does not appear in the corpus or the other two novels. However, buck

CORPUS AS BASELINE 167

Code Sample 6.1 Computes word frequencies for the EnronSent corpus.

open(FILE, "C:/enronsent00") or die;
open(OUT, ">counts.csv") or die;

sub byDescendingValues {
$value = $freq{$b} <=> $freq{$a};
if ($value == 0) {
return $a cmp $b;
} else {
return $value;
}
1

while (<FILE>) {
chomp;
$_ = 1c(81);
s/--+/ /g;
s/’ //g;
s/(\W)’> (\w)/$1$2/g; # Remove apostrophes at start of a word
s/(\w)’ (\W)/$1$2/g; # Remove apostrophes at end of a word
s/, \/=x:7_) G\$"\@<t+&"\#\ [\1; \\}{1//g;
@word = split(/\s+/);
foreach $x (@word) {
++$freq{$x};
}
}

foreach $x (sort byDescendingValues keys %freq) {
print OUT "$x, $freq{$x}\n";
}

is in the corpus (both as a name and as a word) as well as in A Christmas Carol (though not
as a name). Nonetheless, it appears infrequently in these works.

Finally, the rate of use of I varies greatly among the columns. Itis twelfth in A Christmas
Carol, but is 121st in The Call of the Wild. Both of these novels have narrators who are not
characters in the stories they tell, so lower ranks are not surprising. However, Buck is a dog
and does not use this pronoun. Checking with the concordance program, all the uses of 1
in The Call of the Wild appear in direct quotes where humans are speaking.

In contrast, [is third in Frankenstein, which is told in a series of first-person accounts.
For example, Robert Walton writes letters to his sister of his expedition to the North Pole,
during which he sees the monster and then meets Victor Frankenstein. The latter eventually
tells Walton his tale of creating the monster that he is currently pursuing. This tale also
includes other first-person narratives, for example, the monster’s story. All this explains the
high frequencies of first-person pronouns.

Even though the above analysis only requires finding and counting words, these top 20
counts do reveal differences. That is, even though table 6.2 represents a tremendous loss

168 CONCORDANCE LINES AND CORPUS LINGUISTICS

Table 6.2 Twenty most frequent words in the EnronSent email corpus, Dickens’s A
Christmas Carol, London’s The Call of the Wild, and Shelley’s Frankenstein using code
sample 6.1.

the, 14485 the, 1563 the, 2274 the, 4193
to, 9372 and, 1052 and, 1536 and, 2976
and, 5785 a, 696 of, 867 i, 2850

a, 5487 to, 658 he, 814 of, 2641
of, 5423 of, 652 was, 696 to, 2094
you, 4903 in, 518 to, 675 my, 1776
i, 4376 it, 513 a, 662 a, 1391
in, 4184 he, 485 his, 559 in, 1128
is, 3821 was, 427 in, 537 was, 1021
for, 3601 his, 420 it, 370 that, 1017
on, 3150 that, 338 buck, 313 me, 867
that, 2668 i, 335 that, 307 but, 687
this, 2496 scrooge, 314 with, 304 had, 686
be, 2375 with, 265 him, 290 with, 667
have, 2197 you, 233 they, 287 he, 608
we, 2170 as, 228 had, 274 you, 575
are, 2113 said, 221 as, 258 which, 558
will, 2036 had, 205 for, 237 it, 547

it, 2027 him, 198 on, 226 his, 535
with, 1995 for, 197 were, 217 as, 528

of information, enough is left to draw interesting conclusions. Hence reductive techniques
like word counting can be informative.

6.3.1 Function vs. Content Words in Dickens, London, and Shelley

Words can be split into two classes: function and content. The former are often frequent
and provide grammatical information. Examples of this are the, to, and and, which are
the three most frequent words in the EnronSent corpus. The latter provide content. For
instance, the sentence “The prancing blue cat is on a snowboard" is evocative because of
its four content words (cat, snowboard, blue, and prancing) and is grammatical because of
its four function words (the, is, on, and a).

Function words are common in a stoplist, which is a collection of terms to ignore in
an analysis. For example, the is seen to distort the angles between word count vectors
in section 5.6. Since the serves a grammatical role, but has little meaning to contribute,
decreasing its influence is reasonable, and removing it completely is the most extreme way
of achieving this.

However, this distinction between function words and content words is not so clear-cut.
For example, consider table 6.3, which contains eight examples of phrasal verbs using up,
which is a common preposition and is called a particle when used this way. First, note that
adding up changes the meaning of these verbs, for example, to throw up is much different
than to throw. Second, the meaning of up ranges from literal to idiomatic. For example, to
walk up a hill implies that a person has increased his or her elevation, but to screw something
up is an idiomatic phrase. See section 235 of the Cambridge Grammar of English [26] for
an explanation of the grammar of multiword verbs, which include phrasal verbs.

CONCORDANCING 169

Table 6.3 Eight phrasal verbs using the preposition up.

Phrasal Verb Rough Meaning

Screw up Make a mistake

Shape up Exercise

Wake up Awaken

Shut up Be quiet

Speak up Talk louder

Throw up Vomit

Walk up Ambulate upward or toward
Pick up Lift upward

In the last section, the pronouns I and my are informative. The narrative structure of
the novel Frankenstein is reflected by the higher than expected proportion of these two
pronouns. Hence, ignoring these words does lose information. For more on stoplists, see
section 15.1.1 of Foundations of Statistical Natural Language Processing [75]. Also see
section 9.2.2 for one way to obtain stoplists for a variety of natural languages using Perl.

The preceding section shows that examining the most frequent words in a text is informa-
tive, even when these are function words. Code sample 6.1 prints out the word frequencies
from highest to lowest, and as it decreases, the proportion of content words increases.

For example, in The Call of the Wild, the word dogs appears 111 times (ranks 33rd) and
dog appears another 57 times. Since the novel is a narrative about the dog, Buck, this is
not surprising. Furthermore, most of the story takes place in the outdoors of far north of
Canada, and this is reflected in the ranks of sled (58th), camp (71st), and trail (88th). In
addition, the names of the important characters in the story appear frequently. For example,
Buck is in the top 20, Thorton (44th) is the human Buck loves most before he joins the
wolves at the end of the book, and Spitz (58th) dislikes Buck so much that the two of them
fight it out to the death.

Hence, studying word frequency lists does give insight to a novel. However, considering
how a word is used in a text provides additional information, which is easy to do by running
a concordance program. This technique combines the computer’s ability to find text with a
human’s ability to understand it, which is both simple and powerful and is the topic of the
next section.

6.4 CONCORDANCING

Concordancing is also called Key Word In Context (KWIC). The goal is to find all instances
of a regex, and print these out along with the surrounding text for the researcher to inspect.
Section 2.5 discusses how this is done in Perl, which culminates with program 2.7.

We first use the concordance program to check the accuracy of the word frequencies found
in the last section. For example, applying program 2.7 with the regex (\bbuck\b) to The
Cuall of the Wild results in 360 matches, which is 47 more than the 313 noted in table 6.2.
Using (\bhe\b), there are 817 matches compared to 814. Finally, using (\bthe\b), both
the table and the program report 2274 matches. This is a reminder that a programmer must
be careful when using regexes. Try to think of what causes the counts to differ in these
cases before reading the next paragraph.

170 CONCORDANCE LINES AND CORPUS LINGUISTICS

Since the concordance counts are always at least as big as those in table 6.2, code sam-
ple 6.1 can miss instances of words. One possibility is that the programs treat capitalization
differently. However, code sample 6.1 uses 1c, so all letters are converted to lowercase, and
program 2.7 uses the regex /$target/gi, which is case indifferent. Hence, both programs
ignore capitalization, although they use different means to achieve this.

The answer is due to the boundary condition, \b. Putting this before and after the target
only matches nonalphanumeric characters before and after it, and punctuation satisfies this
condition. However, do both programs take into account all punctuation? Not quite: the
apostrophe and hyphen match \b, but they are not removed in code sample 6.1.

It turns out that there are 47 Buck’s and 3 he’s in The Call of the Wild, which cause
the discrepancies noted above. Another potential problem are hyphenated words because
the hyphens match the boundary condition. Now we are ready to consider how to sort
concordance lines, which is the topic of the next section.

6.4.1 Sorting Concordance Lines

The output of program 2.7 shows the matches in the order they appear in the input text.
However, other arrangements can be useful.

We consider three kinds of orders in this section. First, since the text that matches a
regex can, in general, produce a variety of strings, sorting these in alphabetical order can
be interesting. For example, the regex (\bdogs?\b) matches both the singular and plural
forms of dog, and sorting these means that all the concordance lines with dog come first,
and then all the lines with dogs.

Second, one way to create table 6.3 is by looking at concordance lines that match the
word up. Output 6.2 does exactly this, which finds many phrasal verbs, for example, wrap
up, take up, and pent up. This output, however, is easier to use if the word immediately
before up were alphabetically sorted. Moreover, some of the verbs are not adjacent to up,
for example, takin’ 'm up and licked some up. Hence, sorting two or three words before up
is also useful.

Output 6.2 First 10 concordance lines matching the word up in The Call of the Wild.

"You might wrap up the goods before you deli
struggle. "I’m takin’ ’m up for the boss to ’Frisco.
ere they keeping him pent up in this narrow crate? He
ur men entered and picked up the crate. More tormento
o0 long, and Buck crumpled up and went down, knocked ut
riously, then licked some up on his tongue. It bit 1i
the bone for three inches up and down. Forever after B
strils, and there, curled up under the snow in a snug
snarl he bounded straight up into the blinding day, th
e in harness and swinging up the trail toward the Dyea

Third, the prepositions that go with a phrasal verb can be studied. Forexample, output 6.3
shows the first 10 matches of sprang in The Call of the Wild. This reveals several phrasal
verbs: to spring at, to spring for, to spring to, and so forth. Now sorting the lines by the
word right after the match is of interest. With these types of sorts in mind, we implement
them in the next section.

CONCORDANCING 17

Output 6.3 First 10 concordance lines matching the word sprang in The Call of the Wild.

breath. In quick rage he sprang at the man, who met him h
a kidnapped king. The man sprang for his throat, but Buck

times during the night he sprang to his feet when the shed
the first meal. As Buck sprang to punish him, the lash o
ething very like mud. He sprang back with a snort. More

ggled under his feet. He sprang back, bristling and snarl
e beast in him roared. He sprang upon Spitz with a fury wh
ing, and when the two men sprang among them with stout clu
, terrified into bravery, sprang through the savage circle
bristling with fear, then sprang straight for Buck. He had

6.4.1.1 Code for Sorting Concordance Lines We start with sorting concordance
lines by the strings that match the regex. Program 2.7 finds these lines, and only two
additional ideas are needed. First, instead of immediately printing out the lines, store them
in an array, say @lines. Second, once stored, use sort to order them.

Code sample 6.2 prints its output in the order the lines are found, and adding subroutines
to this program enables the types of sorts discussed above. Compared to program 2.7,
program 6.1 has several advantages. First, it allows the programmer to enter the regex and
the radius on the command line. Second, $radius is padded with spaces so that the final
string always has $extract characters both before and after the regex match, which makes
sorting the concordance lines easier. Third, these are stored in the array @lines. Fourth,
sorting is achieved by replacing (@lines) with (sort byOrder @lines) in the final
foreach loop.

One detail to remember is that all characters have an order, which has two consequences.
First, the order of words containing punctuation can be surprising. Forexample, dorn’t comes
before done because the single quote comes before all the letters of the alphabet. This is
solved by removing all the punctuation within the sort function (except that a dash adjacent
to words is replaced by a space), which is done by removePunctuationin code sample 6.3.
Note that the function 1c is required because capital letters come before lowercase letters.
Otherwise Zebra comes before aardvark.

Second, a function to order the concordance lines is required. Recall that the lines have
exactly $radius characters before and after the match. Hence, given a line, the match is
recoverable by removing these characters, which can be done by substr. This is the reason
that program 6.1 adds spaces to each line if they are short due to paragraph boundaries.
What remains is processed by removePunctuation and sorted by cmp. Code sample 6.4
does this.

Finally, changing the foreach loop of code sample 6.2 to the following reorders the
output as discussed above.

foreach $x (sort byMatch Qlines)

Combining code samples 6.2, 6.3, and 6.4 with program 6.1 accomplishes our original
goal of sorting by regex matches. See problem 6.5 for some simple punctuation searches
to try. The next section discusses some applications.

172 CONCORDANCE LINES AND CORPUS LINGUISTICS

EXAMPLE: perl concordance.pl regex radius
open (FILE, "Call of the Wild.txt") or die("File not found");

$/ = """, # Paragraph mode for while loop
$target = "($ARGV[0])";

$radius = $ARGV[1];

$width = 2x$radius;

$count = 0;
while (<FILE>) {
chomp;

s/\n/ /g; # Replace newlines by spaces
s/\b--\b/ -- /g; # Add spaces around dashes adjacent to words

while ($_ =" /$target/gi) {
$match = $1;
$pos = pos;
$start = $pos - $radius - length($match);

Extracts are padded with spaces if needed
if ($start < 0) {

$extract = substr($_, 0, $width+$start+length($match));
$extract = (" " x -$start) . $extract;

} else {
$extract = substr($_, $start, $width+length($match));
$deficit = $width+length($match) - length($extract);
if ($deficit > 0) {

$extract .= (" " x $deficit);

}

}

$lines[$count] = $extract;

++$count ;

Program 6.1 Core concordance code for use with code samples 6.2, 6.3, 6.4, 6.7, 6.8, 6.9,
and 6.10.

6.4.2 Application: Word Usage Differences between London and Shelley

Lexicography is the study of words. Recent dictionaries like the Longman Dictionary
of American English [74] use proprietary corpora representative of written and spoken
English. However, any corpus can be used to study the language it contains. For example,
the EnronSent corpus gives insight into the register of corporate emails.

When studying usage, even though English has relatively few infiected forms, it does
have some. For example, many nouns have singular and plural forms, and verbs have
conjugated forms. Hence, to study a word often requires finding several forms, which are
collectively called a lemma. Fortunately, finding multiple patterns is easy for a regex.

CONCORDANCING 173

Code Sample 6.2 Code to print out the concordance lines found by program 6.1,

$line_number = 0;

foreach $x (@lines) {
++$1line_number;
printf "%54", $line_number;
print " $x\n";

}

Code Sample 6.3 A function to remove punctuation, which is used in code sample 6.4.

sub removePunctuation {
USAGE: $unpunctuated = removePunctuation($string);
my $string = $_[0];

$string = lc($string); # Convert to lowercase

$string =" s/["-a-z]1//g; # Remove non-alphabetic characters
$string ="~ s/--+/ /g; # Replace 2+ hyphens with a space
$string =" s/-//g; # Remove hyphens

$string =~ s/\s+/ /g; # Replace whitespaces with a space
return($string) ;

Code Sample 6.4 A function to sort concordance lines by the sirings that match the regex.
This is used in program 6.1.

sub byMatch {
my $middle_a = substr($a, $radius, length($a) - 2*$radius);
my $middle_b = substr($b, $radius, length($b) - 2*Pradius);
$middle_a = removePunctuation($middle_a);
$middle_b = removePunctuation($middle_b);
$middle_a cmp $middle_b;

For the first example, we consider how the pronoun / is used in The Call of the Wild.
This word ranks 121st most frequent, and it is that low because it is only used by the humans
in the novel, not by Buck, the dog protagonist.

Although I has no inflected forms, it is often used in contractions. Hence the regex
(\bi(’\w+)?\b) is used, where the innermost parentheses match any potential contrac-
tions (as long as only one apostrophe is used). Output 6.4 gives the first 10 occurrences of
I in addition to all its contractions. Note that the first line matched the roman numeral /,
not the pronoun.

Although some of these lines are too short to know for sure, most of them include double
quotes. In fact, the last 42 lines are direct quotations of human characters in the novel.
Also, as promised, the matches are in alphabetical order, that is, all the occurances of / are
first, then all instances of I’ll, I’'m, and I've, in that order.

174 CONCORDANCE LINES AND CORPUS LINGUISTICS

Output 6.4 Representative lines containing I in The Call of the Wild.

1 Chapter I

2 "All I get is fifty for it," he

3 or it," he grumbled; "an’ I wouldn’t do it over for a

4 his lacerated hand. "If I don’t get the hydrophoby-

5 dog-breakin’, that’s wot I say," one of the men on t

6 e learned your place, and I know mine. Be a good dog

7 uck, heem pool lak hell. I tich heem queek as anyt’i

8 led his appearance. "Wot I say?" the dog-driver crie

9 s rejoinder. "All de tam I watch dat Buck I know for

10 1 de tam I watch dat Buck I know for sure. Lissen: 8

31 high. Be a bad dog, and I’11 whale the stuffin’ outa y
32 "The lazy brutes, I’ll show them," he cried, pre
33 ou strike that dog again, I’11 kill you," he at last man
34 "Get out of my way, or I’1l fix you. I’m going to Daw
35 to one!" he proclaimed. "I’ll lay you another thousand
36 the Skookum Bench king. "I’11 give you a thousand for h
37 the sounds of struggle. "I’m takin’ ’m up for the boss
38 d; "and he’s worth it, or I’'m a squarehead."

39 my way, or I’1ll fix you. I’m going to Dawson."
40 "I’m not hankering to be the m
41 "Though it’s little faith I’m having, John, that the be
42 so that all could hear, "I’ve got a thousand dollars th
43 "I’ve got a sled standing outsi

It is easy to confirm that the usage of / in the EnronSent corpus is much different,
which agrees with common sense. A person writing an email commonly uses the first-
person pronoun, but without using quotation marks. Nonetheless, there are examples in
this corpus where the person quoted uses /, for example, some emails include news reports
that include first-person direct quotes. However, these are rare.

Hence, these two texts differ in the grammatical use of the pronoun I. The Call of the
Wild always uses this word in direct quotations of the human characters. However, the
EnronSent corpus rarely uses direct quotations.

This example, however, is somewhat crude. Concordance lines can be used to discover
which meanings a word has in a text. To illustrate this, we compare the word body as it is
used in the novels The Call of the Wild and Frankenstein by searching for matches to the
regex (\bbod(ylies)\b). Both texts use the word about the same number of times, but
not in the same way.

The extracts in tables 6.4 and 6.5 are found by the concordance program, but are edited
to fit on the page. The numbering does not start at 1 because the initial lines match the word
bodies. In the former table, all the lines refer to Buck’s body except 11 (Perrault’s) and 14
(a primitive man’s). Note that all 10 lines refer to living bodies. The Call of the Wild is an
adventure story of the dog, Buck, and the emphasis is on physical action. Although a few
of the characters in the novel die, the focus is on what they did, not their corpses.

In the second novel, however, the story revolves around Victor Frankenstein’s successful
attempt to animate a dead body. Although his experiment succeeds, he abandons his monster,
who through ill treatment grows to hate men, especially the man who created him. This

CONCORDANCING 175

Table 6.4 First 10 lines containing the word body in The Call of the Wild.

5 an opening sufficient for the passage of Buck’s body.

6 he received a shock that checked his body and brought his teeth together
7 With drooping tail and shivering body, very forlorn indeed,

8 In a trice the heat from his body filled the confined space

9 The muscles of his whole body contracted spasmodically

10 blood carried it to the farthest reaches of his body

11 it fell each time across the hole made by his body,

12 his splendid body flashing forward, leap by leap,

13 and every hair on his body and drop of blood in his veins;

14 but on his body there was much hair.

Table 6.5 First 10 lines containing the word body in Frankenstein.

4 T commenced by inuring my body to hardship.

5 His limbs were nearly frozen, and his body dreadfully emaciated by fatigue
6 in a state of body and mind whose restoration

7 No word, no expression could body forth the kind of relation

8 I must also observe the natural decay and corruption of the human body.

9 renew life where death had apparently devoted the body to corruption.

10 for the sole purpose of infusing life into an inanimate body.

11 where the body of the murdered child had been afterwards found.

12 When shown the body, she fell into violent hysterics

13 If she had gone near the spot where his body lay,

leads to the monster systematically killing the friends and family of Victor until both of
them die in the frozen wastelands of the arctic.

Unlike The Call of the Wild, where the word body is consistently used to refer to a living
body doing something, the uses of body in table 6.5 are more diverse. Line 4 is written by
Robert Walton about his preparations to explore the arctic. He refers to his body in a matter
of fact way that is reminiscent of The Call of the Wild.

Lines 5 and 6 refer to Victor Frankenstein, who is discovered by Walton in the arctic.
Line 7, however, uses body as a verb, not as a noun, which is a very different use of this
word. And lines 8, 9, and 10 refer to Frankenstein’s research of animating the dead. In
all three cases, the discussion is about abstract science, not physical deeds, and body is
replaceable by corpse.

Inlines 11, 12, and 13, all three uses of body refer to the corpse of William Frankenstein,
Victor’s brother. The murderer is the monster, but he also planted evidence on Justine
Moritz, who is accused, found guilty, and executed for the crime. Finally, some of the lines
not shown introduce other meanings, for example, “the phenomena of the heavenly bodies
...,. which refers to astronomical bodies.

The differences in the usage of body in the two novels reflects the different genres of
these stories. In Call of the Wild, the emphasis is on Buck’s physical adventures as fate
prepares him to answer the call of the wild. However, in Frankenstein, Victor pays the
price for daring to create life. He sees his friends and family killed one by one until he
himself dies at the end. While this story also has adventures (Walton’s arctic explorations,

176 CONCORDANCE LINES AND CORPUS LINGUISTICS

for instance), the focus is on the life and death of the body, not the physical deeds that it
can perform.

In general, by looking at many examples of word usage in many texts, patterns are
discovered, which are studied by lexicographers to create dictionary definitions. Although
finishing a dictionary requires an immense amount of research, the spirit of this process is
captured in the idea of concordancing.

6.4.3 Application: Word Morphology of Adverbs

The preceding section examines concordance lines to explore word usage, which is a task of
corpus linguistics. This section shows that word forms are also amenable to this approach.

English is famous for irregular spelling. Nonetheless, there are still many patterns that
can be written as a regex. For example, plural nouns often follow the pattern of adding
either an -5 or an -es to the singular form, and which one it is depends on the end of the
word. For example, nouns that end in s usually form a plural by adding -es. However, there
are irregular plurals, for example, it is “one mouse," but “many mice." See problem 2.8 for
more on this,

This section finds adverbs formed from adjectives by adding -Iy. For example, consider
sentences 6.1 and 6.2. The former uses quick to modify the proper noun Scoot, while the
latter uses quickly to modify the verb runs.

Scoot is quick. (6.1)

Scoot runs quickly. (6.2)

The above pattern does not cover all adverbs. In fact, sentence 6.3 uses quick as an
adverb. However, even a rule that is applicable some of the time has value.

Run here, Scoot, and be quick about it. 6.3)

A simplistic idea is to search for all words that end in -ly, which is easy to do. Using
the regex (\b\w+1y\b), and sorting the concordance lines alphabetically by the matches
produces output 6.5.

Output 6.5 First 10 lines in alphabetical order of words that end in -Iy. Text is The Call of
the Wild.

, who had been trembling abjectly, took heart at this open

very forlorn indeed, he aimlessly circled the tent. Sudde

the progress down-stream amazingly rapid. From below came

ved at Skaguay they were apparently on their last legs. The
uck, over whose limp and apparently lifeless body Nig was se
enting a front which was apparently unbroken so swiftly did

ck, his four feet waving appealingly in the air, and refused
. Billee wagged his tail appeasingly, turned to run when he s
avail, and cried (still appeasingly) when Spitz’s sharp teet

Buck watched them apprehensively as they proceeded to tak

W oo N, O WwN -

e
(@]

In this output, all the matches are adverbs. For example, in line 5, apparently modifies
the adjective lifeless. However, looking at the entire output, there are matches that are not

CONCORDANCING 177

adverbs, for example, belly (a noun), Curly (a name of a dog), and silly (an adjective).
Hence there are false positives. One idea is to find words ending in -Iy such that removing
this still results in a word: perhaps these are more likely to be adverbs. However, sometimes
adding -ly changes the final letter, so investigating this possibility first is useful.

Using the Grady Ward CROSSWD . TXT word list, code sample 6.5 finds all the words that
end in -ly such that when this is removed, the result is no longer a word.

Code Sample 6.5 Finding words that end in -Iy that are not words when this ending is
removed.

open(WORDS, "C:/CROSSWD.TXT") or die;

while (<WORDS>) {
chomp;
++$dict{$_};

X

foreach $word (sort keys %dict) {
if ($word =~ /("\w+H)1ly$/) {
if (not exists $dict{$1}) {
print "$word ";
}
}
}

Running this code produces many words, which reveal several patterns. First, adjectives
that end in -y change to -ily, hence happily is an adverb, yet happi is not a word. Second,
there are words like seasonable and incredible where the -ble changes to a -bly. Third,
words like automatic change to automatically. All these patterns can be removed with an
if statement coupled with substr, which is done by code sample 6.6.

Running this produces output 6.6. It turns out that there are still word patterns that
produce false positives, for example, words that end in -/l change to -Ily, or words that end
in -le change to -ly (which includes the -ble words noted above). It also turns out that there
are gaps in the original word list, for example, analogous and deceptive are missing.

Note that the process of trying to find exceptions to a potentially useful rule reveals
morphological patterns for some adverbs, although some unrelated words also appear, for
example, anomaly, apply, and billy.

The next step is to remove the not in the if statement of code sample 6.5. This produces
a long list of words, which must be examined to determine how many of them are adverbs.
This is not done here, but see problem 6.6 for the first few words of output.

The above example shows that language is complex, and that a back-and-forth program-
ming approach is helpful. That is, the researcher programs an idea, which is found to have
exceptions. This program is revised, and then new exceptions might appear. However, in
practice, this process usually ends after several iterations with code that has an acceptably
low error rate. Moreover, this process itself teaches the programmer about the texts under
analysis.

A final lesson is to realize that data sets often have errors. In the above case, two
words that should not have been in output 6.6 did appear: analogously and deceptively.

178 CONCORDANCE LINES AND CORPUS LINGUISTICS

Code Sample 6.6 Variant of code sample 6.5 that removes certain patterns of words.

open(WORDS, "C:/Grady Ward/CRUSSWD.TXT") or die;

while (<WORDS>) {
chomp;
++$dict{$_};

}

foreach $word (sort keys %dict) {
if ($word =~ /("\wH)1ly$/) {

if (substr($word, -3) ne "ily" and
substr($word, -4) ne "ably" and
substr($word, -4) ne "ibly" and

substr($word, -4) ne "ally") {

if (not exists $dict{$1}) {

print "$word ";

}

Output 6.6 Initial 10 lines of output from code sample 6.6.

agly analogously anomaly antimonopoly apetaly aphylly apply
assembly beauteously bialy bihourly billy biweekly biyearly
blackfly blowfly botfly brambly bristly brolly bubbly buirdly
bully burbly butterfly catchfly chilly cicely coly contumely
crinkly cuddly cully dayfly deceptively deerfly dhooly dicycly
dilly dimply dooly doubly doyly drizzly drolly dully duly
duopoly eely emboly epiboly feebly felly firefly fly folly
freckly frilly fully gadfly gallfly giggly gilly gingelly
gingely girly glowfly goggly golly googly gorbelly greenfly
grisly grizzly grumbly hepatomegaly hillbilly hilly holly

Unfortunately, errors are always a possibility. Even the act of finding and correcting these
can introduce new errors. Instead of expecting no errors, it is wise for any data analyst to
assume that errors exist and try to detect them.

For another example of morphology, see section 3.2 of Corpus Linguistics by Biber,
Conrad, and Reppen [11]. That section studies proportions of nominalizations, which are
classes of nouns that are formed by using particular endings. For example, happy is an
adjective, and happiness is a noun formed by adding the suffix -ness (and changing y to i,
which also happens with happily).

This reference also states how the authors approach their task. What computer tools
do they use to study nouns ending in these suffixes? As they note on page 59 of Corpus
Linguistics, although some concordance programs can do what they want, they find it easier

COLLOCATIONS AND CONCORDANCE LINES 179

to write their own computer code. These authors are linguists, not computer scientists, yet
they realize the flexibility of programming is worth the effort.

In the next section we move from sorting the regex matches of concordance lines to
sorting the words near these matches. This can be applied to collocations.

6.5 COLLOCATIONS AND CONCORDANCE LINES

Table 6.3 shows examples of verbs that change their meaning when used with up. For
example, to throw your lunch into the sink means something completely different than fo
throw up your lunch into the sink. However, there are examples where the meaning of a
phrase is solely determined by its constituent words. For example, a green phone is a phone
that is green.

Certain words occur together more often than chance, and these are called collocations.
For example, throw up is a collocation, as is blue moon, but green phone is not. Recall from
section 4.3.1 that the probability of two independent words is the product of the probabilities
of each word. However, the probability of a collocation is higher than this product, as stated
below.

P(green phone) = P(green)P(phone)
P(blue moon) > P(blue)P(moon)
P(throw up) > P(throw)P(up)

Note that the words in a collocation can be separated by other words, for example, he
threw his hands up into the air, where his hands separates threw and up. In addition, there
are some words that avoid each other. For example, people say brag about something but
not brag up something nor brag something up.

For further information on collocations, see chapter 5 of Barnbrook’s Languages and
Computers [9]. In addition, see section A10.2 of Corpus-Based Language Studies by
McEnery et al. [78]. In the latter, on page 81, the authors note that native speaker intuition
about collocations is not that reliable. Hence there is a need for analyzing language data.

Before we analyze collocations, the next section extends the sorting capabilities of the
concordance program used above. It shows how to replace code sample 6.4 with functions
that can sort the concordance lines by the words near the regex match instead of the regex
match itself.

6.5.1 More Ways to Sort Concordance Lines

This section shows how to sort concordance lines by the words neighboring the regex
matches. For example, suppose the regex matches up, then sorting by the words that appear
immediately to the left produces output 6.7. This helps identify potential collocations.

Doing this requires a function that takes a concordance line and returns the word that
is a specified distance away from the regex match. For example, in output 6.7, a function
that returns the word to the left of up is used with sort to order the lines. This requires a
few steps. First, take the characters up to but not including the match. Since $radius has
the number of characters the come before (and after) the match, this is easy to do. Second,
use removePunctuation given in code sample 6.3. Third, split the result into an array of
words. Fourth, pick the last word of this array, which is the closest to up.

180 CONCORDANCE LINES AND CORPUS LINGUISTICS

Output 6.7 Ten concordance lines from The Call of the Wild with the word up. These are
sorted in alphabetical order of the word immediately to the left of up.

1 heem chew dat Spitz all up an’ spit heem out on de

2 across his shoulders and up his neck, till he whimpe
3 at it again. He backed up Spitz with his whip, whi
4 whip, while Buck backed up the remainder of the tea
5 ond day saw them booming up the Yukon well on their

6 was the pride that bore up Spitz and made him thras
7 not like it, but he bore up well to the work, taking
8 ed in to the bank bottom up, while Thornton, flung s
9 boats against the break-up of the ice in the spring
10 eek bed, till he brought up against a high gravel ba

The general case is no more difficult. Let $ordinal be the number of words to go to the
left. For example, setting $ordinal to 1 corresponds to output 6.7. Each of four lines of
Perl code in code sample 6.7 corresponds to the four steps in the last paragraph. Remember
that a negative index counts from the end of the array, for example, $word [-1] is the last

entry.

Code Sample 6.7 A function that returns a word to the left of the regex match in a concor-
dance line.

sub onLeft {
USAGE: $word = onlLeft($string, $radius, $ordinal);
my $left = substr($_[0], 0, $_[1]);
$left = removePunctuation($left);
my @word = split(/\s+/, $left);
return($word[-$_[211);

With the function onLeft, defining an order is easy. Use it to select the word, which is
changed to lowercase, then sort these using cmp. This is done in code sample 6.8.

Code Sample 6.8 An ordering for sort. It uses the function onLeft defined in code
sample 6.7.

sub byLeftWords {
my $left_a = onleft($a, $radius, $ordinal);
my $left_b = onleft($b, $radius, $ordinal);
lc($left_a) cmp lc($left_b);

}

The same logic applies to sorting on words to the right of the match. The function
onRight and the ordering byRightWords are both shown in code sample 6.9.

With program 6.1 and the above code samples, there are only two details left. First, code
sample 6.10 prints out the results. Second, set $ordinal to $ARGV[2].

COLLOCATIONS AND CONCORDANCE LINES 181

Code Sample 6.9 Subroutines to sort concordance lines by a word to the right of the match.

sub onRight {
USAGE: $word = onRight($string, $radius, $ordinal);
my $right = substr($_[0], -$_[11);
$right = removePunctuation($right);
$right =~ s/"\s+//; # Remove initial space
my @word = split(/\s+/, $right);
return($word[$_[2]-1]);

¥

sub byRightWords {
my $right_a = onRight($a, $radius, $ordinal);
my $right_b = onRight($b, $radius, $ordinal);
lc($right_a) cmp lc($right_b);

}

Code Sample 6.10 Commands to print out the sorted concordance lines.

$line_number = 0;

foreach $x (sort byLeftWords @lines) {
++$line_number;
printf "%5d", $line_number;
print " $x\n";

}

$line_number = 0;

foreach $x (sort byRightWords @lines) {
++$1line_number;
printf "¥5d", $line_number;
print " $x\n";

}

By putting code samples 6.7, 6.8, 6.9, and 6.10 together with program 6.1, we have a
concordance program able to sort by words near the regex match. This produces output 6.7.
The next section shows some applications.

6.5.2 Application: Phrasal Verbs in The Call of the Wild

Let us apply the programming of the last section to phrasal verbs. Our first task is to recreate
output 6.7, and all the pieces are in place.

Start with program 6.1 and add removePunctuation defined in code sample 6.3. Sec-
ond, add code sample 6.7, which defines the subroutine onLeft. This is used by the sub-
routine byLeftWords in code sample 6.8, which defines the ordering of the concordance
lines. Finally, the first foreach loop of code sample 6.10 prints out the sorted results.

Combining the above parts into one file and running it produces output 6.7. There are
104 total lines, so it is convenient to summarize these by listing the words that appear

182 CONCORDANCE LINES AND CORPUS LINGUISTICS

immediately to the left of up, along with their frequencies. By using code sample 3.26,
these frequencies are sorted in descending order. Putting code sample 6.11 at the end of
the code described in the preceding paragraph produces output 6.8 (words appearing once
are not shown.)

Code Sample 6.11 Code to print out the sorted frequencies of words to the left of the match.
This uses code sample 3.26.

$line_number = 0;
foreach $x (sort byLeftWords @lines) {
++$line_number;
printf "%5d4", $line_number;
print " $x\n";
++$dict{onLeft ($x, $radius, $ordinal)};
}

print "\n\n";

foreach $x (sort byDescendingValues keys %dict) {
print "$x, $dict{$x}\n";

}

Output 6.8 Frequencies of the words immediately to the left of up in The Call of the Wild.

get, 8

him, 4
harness-, 3
straight, 3
went, 3
backed, 2
bore, 2
curled, 2
it, 2

made, 2
picked, 2
team, 2
took, 2

This output contains more than verbs. Looking at the concordance lines reveals the
reason for this. For example, lines 41, 43, and 44 are all phrasal verbs where him is
between the verb and the preposition. However, in line 42 up is part of the prepositional
phrase up to Buck as shown in the quote of the entire sentence.

At another time Spitz went through, dragging the whole team after him up to Buck, who
strained backward with all his strength, his fore paws on the slippery edge and the ice
quivering and snapping all around.

While sorting on the word immediately to the left of up is certainly helpful in finding
phrasal verbs, intervening words cause problems. Even if words were labeled by their part

COLLOCATIONS AND CONCORDANCE LINES

183

Output 6.9 The four concordance lines with him up, which are counted in output 6.8.

41 ancois’s whip backed him up, Buck found it to be che
42 the whole team after him up to Buck, who strained ba
43 s. Francois followed him up, whereupon he again retr
44 rior weight, and cut him up till he ceased snapping

of speech (see section 9.2.4 for a way to do this), finding the first verb to the left can fail as
shown in the above sentence.
Clearly, creating a fully automated phrasal verb finder is difficult. However, by combin-

ing a concordance program with a human, shorter texts like a novel are analyzable.

Phrasal verbs can be studied by analyzing the words that come after a verb. In fact, there
are dictionaries that do this such as NT'C’s Dictionary of Phrasal Verbs and Other Idiomatic
Verbal Phrases [111]. The subroutines onRight and byRightWords in place of onLeft
and byLeftWords, respectively, perform this task.

As an example, output 6.3 is redone so that the lines are sorted into alphabetical order
by the first word after the verb sprang. The complete results are in output 6.10.

Output 6.10 Concordance lines sorted by the word after sprang in The Call of the Wild.

W o0 ~NOo U WN -

[T S I ST O T T o T o B S e i e e e i R i
DA P WNEFPE O WO NO® O WM~ O

The dogs
ng, and when the two men
r-holes formed, fissures
reath. In quick rage he
a frenzy to destroy. He
the yelp of the pack and
thing very like mud. He
gled under his feet. He

kidnapped king. The man

One night he

ending death. Then Buck
ristling with fear, then
terrified into bravery,

sound heard before. He

imes during the night he
the first meal. As Buck
. And when, released, he
ke an electric shock, He
general insubordination

beast in him roared. He

Spitz’s opportunity. He
at this open mutiny, and
forgotten code, likewise
best lead-dog left. Buck
an animal, John Thornton
uck dashed into camp and

sprang
sprang
sprang
sprang
sprang
sprang
sprang
sprang
sprang
sprang
sprang
sprang
sprang
sprang
sprang
sprang
sprang
sprang
sprang
sprang
sprang
sprang
sprang
sprang
sprang
sprang

against the breast-bands
among them with stout cl
and spread apart, while

at the man, who met him

at the foremost man (it

away into the woods. Th
back with a snort. More
back, bristling and snar
for his throat, but Buck
from sleep with a start,
in and out; but while he
straight for Buck. He ha
through the savage circl
through the sleeping cam
to his feet when the she
to punish him, the lash

to his feet, his mouth 1
to his feet and ran up t
up and increased. Dave a
upon Spitz with a fury w
upon Buck, and twice his
upon his overthrown lead
upon Spitz. But Francoi
upon Sol-leks in a fury,
upon the man who wielded
upon him in a frenzy of

184 CONCORDANCE LINES AND CORPUS LINGUISTICS

By inspection, sprang upon is the most common preposition (lines 21-26) followed by
sprang to (lines 15-18). As noted above, collocations should occur higher than chance. For
example, equation 6.4 should hold for the suspected collocation sprang upon.

P(sprang upon) > P(sprang)P(upon) (6.4)

The output shows sprang occurs 26 times, and it is easy to check with the concordance
program that upon occurs 79 times. The total number of words in the novel is 31,830, so
by equation 4.2, equation 6.5 shows that sprang upon is a collocation because the left-hand
side equals 0.00022, which is much bigger than the right-hand side of 0.00000203.

S 26 y 79
31,830 ~ 31,830 ~ 31,830

P(sprang upon) = P(sprang) P (upon) (6.5)

Although sprung upon is a collocation for the Call of the Wild, this may or may not be
true for other texts. For example, the same analysis for Frankenstein gives equation 6.6.
Here the left hand side is zero, so it is certainly not bigger than the right hand side. So for
this text, sprung upon is not a collocation. In retrospect, that a story about the adventures
of a dog contains many scenes of springing upon objects is not a surprise.

4 126

P = B
(sprang upon) = 752 < 75,065~ 75,069

P(sprang) P(upon) (6.6)

Unfortunately, the zero count of spring upon in Frankenstein is all too common. The
next section comments on this phenomenon.

6.5.3 Grouping Words: Colors in The Call of the Wild

Counts from texts can vary by large amounts. For example, output 4.2 counts letters in
A Christmas Carol, and e occurs 14,869 times while z appears only 84. Zipf’s law (see
section 3.7.1) shows the same phenomenon with words, for example, in The Call of the
Wild, the appears 2274 times, but about half the words appear exactly once.

Unfortunately, analyzing linguistic objects two at a time when many of them are rare
often produces zero counts, which are hard to work with. For example, program 4.4 analyzes
letter bigrams, and finds that roughly a third of the possibilities do not appear at all.

If letter bigrams are rare, then the situation is only worse with more complex combina-
tions. What can aresearcher do? This section considers analyzing groups of words together.
For example, this includes lemmas, which consists of all the inflected forms of a word.

But grouping need not stop here. Instead of considering just one lemma, create a group
of related lemmas. For example, instead of analyzing the use of the adjective red (along
with the comparative forms redder and reddest), analyze color words as a group, which is
done below with The Call of the Wild.

To do this, a list of such words is needed, but a thesaurus has this type of information,
and both the Moby Thesaurus [122] and Roget’s Thesaurus [107] exist online and are in the
public domain.

Looking at sections 430—439 in Roget’s Thesaurus [107], numerous color words are
listed. Selecting the more common ones produces the following list: white, black, gray,
silver, brown, red, pink, green, blue, yellow, purple, violet, and orange. One group of
these words have the form noun-colored, for example, sulfur-colored. Some of the words

APPLICATIONS WITH REFERENCES 185

have multiple meanings and are left out, for example, yolk. To find each word of a group,
alternation works, as shown below.

\b(white|blacklred|...|orange)

Finally, running the concordance program produces output 6.11, which shows the first
12 lines out of a total of 61. The most common color is white with 21 instances, then red
with 14 instances. Hence this strategy worked because 61 lines is at least 3 times as frequent
as any particular color in The Call of the Wild.

Output 6.11 Color words in The Call of the Wild. The first 12 lines out of 61 are shown.

[y

ult and turned over to a black-faced giant called Franc
emonstrative, was a huge black dog, half bloodhound and
ensions were realized. "Black" Burton, a man evil-temp
1 wood moss, or into the black soil where long grasses
stream he killed a large black bear, blinded by the mos
eir backs, rafted across blue mountain lakes, and desc
ious. But for the stray brown on his muzzle and above
re seen with splashes of brown on head and muzzle, and
a middle-aged, lightish-colored man, with weak and water
the dark, and the first gray of dawn found them hitti
ne only he saw,--a sleek gray fellow, flattened agains
low, flattened against a gray dead limb so that he see

O 00 N G > WwN

T e
N = O

However, words are not the only lexical items that are analyzable with this technique.
As noted in section 6.4.3, morphological structures are detectable by regexes, for example,
analyzing adverbs ending in -ly as done earlier in this chapter. But there are many other
grammatical forms, for example, gerunds, which are verb forms ending in -ing that can be
used as nouns or adjectives, such as running is an exercise or there is a running cat.

Furthermore, there is a Perl module that can identify parts of speech, which is discussed
in section 9.2.4. Using this, patterns involving types of words are possible, for example,
finding two adjectives in a row.

The next section gives a number of references, which contain many examples. These
provide many further ideas well suited for programming in Perl.

6.6 APPLICATIONS WITH REFERENCES

Much work has been done in corpus linguistics, and there are many examples in the academic
literature of using concordancing techniques to analyze one or more texts. This section lists
a few of these for the interested reader to pursue.

First, section 2.6 of Douglas Biber, Susan Conrad, and Randi Reppen’s Corpus Linguis-
tics [11], compares words that seem synonymous. This is essential for the lexicographer
who needs to find all the different shades of meaning, and it can be used to investigate
grammar, as well as how grammar interacts with words.

Specifically, section 2.6 analyzes the adjectives big, large, and great. Grammatically,
these seem interchangeable, however, there are a variety of restrictions on how these are
used. This analysis by Biber et al. has similarities with section 106 of Practical English
Usage [114], and perhaps there is a link between these.

186 CONCORDANCE LINES AND CORPUS LINGUISTICS

Section 3.2 of Biber et al. [11] gives another example of how concordancing gives insight
into language. The authors study the distributional properties of nominalizations among
registers. These are a way to form new nouns by adding an ending to existing words. For
example, nominalization is a noun formed from the verb nominalize by adding -tion (plus a
vowel change). As long as there are a reasonable number of well-defined patterns, finding
these can be done by regexes.

In general, Biber et al. [11] is an excellent book for anyone interested in quantitative
analysis of corpora. It has many practical examples and is quite readable. Another great
book is Corpora in Applied Linguistics by Susan Hunston [59]. She gives numerous in-
teresting examples of searching corpora for a variety of word patterns. For example, she
defines a frame as three words in a row where the first and third are fixed, but the second is
arbitrary, She lists several examples on page 49. But converting this pattern to a regex is
straightforward, as shown in the example below (which ignores punctuation).

$wordl \b(\w+)\b $word2

Language teaching is another application of concordancing. At present, many people
across the world want to take English as a Second Language (ESL) classes. This has
increased the need for language references designed for nonnative speakers. In particular,
learner dictionaries specifically for ESL students have been influenced by corpus linguistics.
One key idea is ranking words in the order of frequency, which has been done several times
in this book, for example, see table 6.2 or section 3.7.1.

Giant corpora have been developed to study language. The Cambridge International
Corpus (CIC) is used by the language reference books published by Cambridge University
Press [25]. An example of a dictionary using frequency information from the CIC is the
Cambridge Advanced Learner’s Dictionary (CALD) [121]. This book has three labels to
broadly indicate how common a word is, for example, a word given as essential usually has
a rate of more than 40 per million words.

Unfortunately, the CIC is proprietary, but a frequency analysis is done easily for any text
available in electronic form. For example, if an ESL student wants to read The Call of the
Wild, then table 6.2 is useful.

For more on using corpus linguistics for teaching, see chapters 6, 7 and 8 of Hunston
[59]. These give concrete examples of how to apply this to teaching. The use of two
language corpora is also discussed, for example, the French-English parallel corpus of Le
Petit Prince/The Little Prince (a French novel by Antoine de Saint Exupéry).

An excellent book on language instruction is I. S. P. Nation’s Learning Vocabulary in
Another Language [80]. The focus of this book is how to teach vocabulary, and right away it
addresses quantitative questions involving word frequencies. For example, chapter 1 starts
off discussing how many words a student should know. Implicit in this question is the idea
that a core vocabulary needs to include the highest frequency words. Finally, this book
has many ideas of interest to the corpus linguist, for example, chapter 7 discusses principal
components analysis.

Finally, stylometry is the analysis of one or more texts to determine quantitative measures
indicative of the author’s style. Although literary critics and historians have long done this by
analyzing historical evidence along with close readings of the texts in question, stylometry
is usually associated with computer analyses that look at a large number of variables. These
are split into two types: first, textual features that are probably unconscious habits of the
author; second, features which the author consciously tries to manipulate.

SECOND TRANSITION 187

Some researchers prefer working with the first type. For example, an author probably
does not consciously think about his or her use of function words. So the rate of usage of
up probably reflects a writer’s habitual style.

A famous example in the statistical literature is Frederick Mosteller and David Wallace’s
book Applied Bayesian and Classical Inference: The Case of the Federalist Papers [79).
Here the authors try to determine who wrote 12 disputed (at the time) texts among the
Federalist Papers, which are a series of newspaper articles arguing that New York should
ratify the United States constitution. This makes a great example because it is acknowledged
that either James Madison or Alexander Hamilton wrote these 12 papers, so an analysis only
needs to decide between these two. Moreover, both have many other written documents
that are available for determining the writing style of each.

Mosteller and Wallace’s analysis is detailed and thoughtful, and much attention is given
to checking the assumptions of the statistical models used. The details are best left to their
book, but note that much of their analysis focuses on finding function words that do a good
job of distinguishing between Madison and Hamilton. Since the Federalist Papers are a
joint effort (with John Jay), each author might have consciously tried to write in a common
style. Hence it is important to focus on stylistic markers that were probably unconscious
habits.

However, as a human reader, this type of analysis is not satisfying. For example, a
person, asked why he or she enjoys The Call of the Wild does not mention the usage of the
preposition up but instead discusses the exciting plot, how dogs think, and so forth.

Perhaps to reflect the reader’s perspective, some researchers have measured textual char-
acteristics that an author is certainly aware of and perhaps is trying to manipulate con-
sciously. We consider one example of this.

In 1939 G. Udny Yule published an analysis of sentence lengths in Biometrika [128],
which are analyzed to distinguish a pair of writers. Like Mosteller and Wallace, Yule is a
statistician, so his analysis discusses the statistical issues involved. Finally, he applied his
analysis to two texts with disputed authorships: De Imitatione Christi and Observations
upon the Bills of Mortality. Sentence lengths are clearly something an author does think
about, and it is believable that some writers might prefer different length sentences, on
average.

On the whole, although a number of stylometric analyses have been done, the methods
in print tend not to generalize well to other texts. For a great overview of this topic along
with numerous examples, see Chapter 5 (“Literary Detective Work") of Michael Oakes’
Statistics for Corpus Linguistics [82]. Also see the articles by Binongo and Smith [16] and
Holmes, Gordon, and Wilson [57].

6.7 SECOND TRANSITION

We have reached a second transition in this book. Up to this point, the level of the statistics
and mathematics is quite modest. The next two chapters, however, introduce topics that
require a little more mathematical knowledge, although this is kept to a minimum. The em-
phasis is still on applications and practical problems, and the ideas behind the mathematics
are explained.

In addition, the free statistical package R, which is introduced in section 5.5.1, is used
to do calculations in chapters 7 and 8. The R code is explained, but like Perl, only certain
parts are used in this book. If this taste of R piques your interest, there are free tutorials and
documentation on the Web at http://cran.r-project.org/.

188 CONCORDANCE LINES AND CORPUS LINGUISTICS

PROBLEMS

6.1 Voter registration lists are created by town clerks and registrars of voters, many of
which exist, so much so that the task of obtaining all of them requires effort. This work
load can be reduced by performing two stages of sampling. The first is a simple random
sample of precincts, and the second is a simple random sample of registered voters within
each precinct.

Is this a good idea for text sampling? For example, suppose that a researcher creates a
list of different types of texts. Then picking a random subset of these types is the first stage
of sampling. Then for each type, a random sample of texts is selected (say from a library
catalog). It turns out that this design has been used.

The Brown Corpus Manual [46] describes the details of how the Brown corpus was
created. In section 1, it says that the sampling design does have two phases. While the
first phase (or stage) consists of picking categories of text, it says this is done subjectively
using expert judgment as opposed to random selection. How does this compare to using a
random selection of topics? Is one or the other technique superior? Once you have thought
about this, go online and find this manual (the URL is in the bibliography) and compare
your thoughts to the actual design details used.

6.2 Table 6.2 contains the word counts for Shelley’s Frankenstein and London’s The Call
of the Wild. Using the programs in this chapter, recompute the word frequencies of these
two novels, and compare your results to this table.

Now do the same task with a novel of your own choosing. When you compute your
counts, how might these be checked?

6.3 Shelley’s novel, Frankenstein, is analyzed using a concordance program in the book
Language and Computers by Geoff Barnbrook [9]. For example, he points out that the
monster created by Victor Frankenstein has no name, but he is referred to by a variety of
terms.

For this problem, think about how one might try to find the words that refer to the monster
in Frankenstein. Then check chapters 3 and 4 of Barnbrook’s book to see how he analyzes
this novel. With the concordancing programs developed in this chapter, you can reproduce
his results for yourself. Moreover, his book has many additional text analyses to try.

6.4 Table 6.1 can be created by mimicking either program 4.3 or program 5.1. Using
these as a model, create a program that counts the character frequencies of a file where the
name of the file is put on the command line as follows.

perl character_frequencies.pl text.txt

6.5 Type in the Perl code for program 6.1 with code samples 6.2, 6.3, and 6.4. Once this
runs, do the following problems.
a) Table 6.1 reveals that there are underscores in the EnronSent corpus. Find out all
the ways these are used. Note that many underscores in a row: occur in this text.
b) Table 6.1 reveals that square brackets are used in the EnronSent corpus. Find out
how these are used. Were they all typed by the authors of the emails? Finally,
remember that a square bracket has special meaning in a regex.
c) Table 6.1 reveals that there are parentheses in the EnronSent corpus. How are
these used?
d) Find all the words with the character @ in the EnronSent corpus, and see how
they are used. Since these are emails, one use is easy to guess.

PROBLEMS 189

6.6 Insection 6.4.3, the form of adverbs is explored. For this problem try the suggestion
given at the end of this section of removing the not in the if statement of code sample 6.5.
Examine the resulting output to estimate the proportion of adverbs. Output 6.12 shows the
first few words.

Output 6.12 Ten lines of output from the suggested adverb analysis in problem 6.6.

abasedly abdominally abjectly abnormally aborally
abrasively abruptly absently absentmindedly absolutely
absorbingly abstemiously abstractly abstrusely absurdly
abundantly abusively abysmally accidentally accordingly
accurately achingly acidly acoustically acquiescently
acridly actively actually acutely adamantly addedly
additionally adeptly adequately adjectivally
administratively admiringly admittedly adroitly adultly
advantageously adventitiously aerially aerodynamically
aeronautically affectedly affectingly affectionately

6.7 Incode sample 6.9, why is $word [$_[21-1] returned instead of $word[$._[2]1]7

6.8 Insection 2.2.2, the problem of finding phone numbers is discussed. The EnronSent
corpus includes many of these as well as various other numbers, for example, ZIP codes,
dates, times, prices, and addresses.

a) Write a regex to find U.S. style phone numbers. In this corpus many styles are
used. For example, there are company phone numbers that start with x and just
give the last five digits. There are seven-digit phone numbers, as well as ones with
area codes, and ones that start with the U.S. country code +1. Many numbers use
dashes, but some use spaces or periods.

b) How do you check how accurate your regex is? One idea is to run a promising
regex and save the results. Then run a less restrictive regex that matches many
more patterns, and then check if among the extra matches there are patterns
overlooked by the promising regex.

For example, to test a phone number regex, a pattern like \d{3}\D\d{4} is
useful since it should match most numbers. However, there are false positives, for
example, ZIP+4 codes. Applying this to the EnronSent corpus, what other false
positives are there? Also, does it match all U.S. style numbers? What broader
regex can be used to check this?

6.9 Adjectives have comparative and superlative forms. These are not quite straightfor-
ward because there are irregular forms and differences depending on the number of syllables
in the adjective. See section 236¢ and sections 460 through 464 of the Cambridge Grammar
of English [26] for more details.

For this problem, find a book on grammar and look up the rules for making comparative
forms of adjectives. Write a Perl program that finds some of these. Remember that many
words end in -er and -est that are not adjectives such as reader and pest. Remember that
some adjectives use the words more and most. Finally, making a program that produces no
errors is a monumental task, so part of the challenge of this problem is to decide on how
much error is tolerable. :

This Page Intentionally Left Blank

CHAPTER 7

MULTIVARIATE TECHNIQUES WITH TEXT

7.1 INTRODUCTION

Data is collected by taking measurements. These are often unpredictable, for one of two
reasons. First, there is measurement error, and, second, the objects measured can be ran-
domly selected as discussed in section 6.2. Random variables can model either type of
unpredictability.

Text mining often analyzes multiple texts. For example, there are 68 Edgar Allan Poe
short stories, all of which are of interest to a literary critic. A more extreme example is a
researcher analyzing the EnronSent corpus. This has about a 100 megabytes of text, which
translates into a vast number of emails.

Hence, a text miner often has many variables to analyze simultaneously. There are a
number of techniques for this situation, which are collectively called multivariate statistics.
This chapter introduces one of these, principal components analysis (PCA).

This chapter focuses on applications, and some of the key ideas of PCA are introduced.
The goal is not to explain all the details, but to give some idea about how it works, and how
to apply it to texts. Specifically, 68 Poe short stories are analyzed. These are from a five
volume collected work that is in the public domain and is available online ({96], [97], [98],
[99] and [100]).

These 68 stories are “The Unparalleled Adventures of One Hans Pfaall," “The Gold Bug,"
“Four Beasts in One," “The Murders in the Rue Morgue," “The Mystery of Marie Rogét,”
“The Balloon Hoax," “MS. Found in a Bottle," “The Oval Portrait," “The Purloined Let-
ter," “The Thousand-and-Second Tale of Scheherezade," “A Descent into the Maelstrom,"”

Practical Text Mining with Perl. By Roger Bilisoly 191
Copyright (© 2008 John Wiley & Sons, Inc.

192 MULTIVARIATE TECHNIQUES WITH TEXT

“Von Kempelen and His Discovery," “Mesmeric Revelation,” “The Facts in the Case of
M. Valdemar," “The Black Cat," “The Fall of the House of Usher," “Silence — a Fable,"
“The Masque of the Red Death,” “The Cask of Amontillado,” “The Imp of the Perverse,"
“The Island of the Fay,” “The Assignation,” “The Pit and the Pendulum," “The Premature
Burial,” “The Domain of Arnheim," “Landor’s Cottage," “William Wilson," “The Tell-Tale
Heart," “Berenice,” “Eleonora," “Ligeia,” “Morella,” “A Tale of the Ragged Mountains,"
“The Spectacles," “King Pest," “Three Sundays in a Week," “The Devil in the Belfry," “’Li-
onizing," “X-ing a Paragrab," “Metzengerstein," “The System of Doctor Tarr and Professor
Fether," “How to Write a Blackwood Article,” “A Predicament,”" “Mystification,” “Did-
dling," “The Angel of the Odd," “Mellonia Tauta," “The Duc de I’Omlette," “The Oblong
Box," “Loss of Breath," “The Man That Was Used Up," “The Business Man," “The Land-
scape Garden," “Maelzel’s Chess-Player," “The Power of Words," “The Colloquy of Monas
and Una," “The Conversation of Eiros and Charmion," “Shadow — A Parable," ‘“Philosophy
of Furniture,” “A Tale of Jerusalem," “The Sphinx," “Hop Frog," “The Man of the Crowd,"
“Never Bet the Devil Your Head," “Thou Art the Man," “Why the Little Frenchman Wears
His Hand in a Sling," “Bon-Bon," and “Some Words with a Mummy." Although “The Lit-
erary Life of Thingum Bob, Esq." is listed in the contents of Volume 4, it is not in any of
the five volumes.

These 68 stories are used as is except for the following. First, all the footnotes are
removed except for the story “The Unparalleled Adventures of One Hans Pfaall,” where
Poe discusses other moon tales. Second, the XML tags <TITLE> and </TITLE> are placed
around each story title. Third, each story has a notice marking the end of it, and these are
removed.

The next section starts with some simpler statistical ideas that are needed for PCA.
Fortunately, the amount of mathematics and statistics needed is not as much as one might
fear.

7.2 BASIC STATISTICS

Section 4.4 introduces the mean and variance of a random variable as well as the sample
mean and sample standard deviation of a data set. It is pointed out that these are easiest
to interpret if the data has a bell shape (that is, the population is approximately a normal
distribution). For an example, see figure 4.4.

Since language is generative, any group of texts can be considered a sample from a large
population of potential texts. For example, Poe wrote about 68 short stories in his lifetime,
but if he lived longer (he died at age 40) he would have written more. Undoubtably, he
probably had many other ideas for stories, which he might have written given different
circumstances such as if he were more financially successful during his life. Hence, we
focus on sample statistics.

Suppose a data set has the values z;, 2, ..., x,,, where n represents the sample size. The
sample mean is given in equation 7.1.

X=2) g (7.1

For bell-shaped data, the sample mean is a typical value of this data set. But the shape
of the data set is an important consideration; for example, if the histogram of a data set is
bimodal (has two peaks), the mean can be atypical.

BASIC STATISTICS 193

Equation 7.2 for the sample variance is more complex. Note that the sum is divided by
n — 1, not n, so this is not quite a mean of the squared terms in the sum. However, if n is
large, n — 1 is close to n.

2= >z - X)? (7.2)

n—1

i=1

The sample variance is a measure of the variability of the data. Thinking in terms of
histograms, generally the wider the histogram, the more variable the data, and the least
variable data set has all its values the same. In fact, no variability implies that s2 equals
zero. Conversely, if s2 is zero, then every data value is the same. See problem 7.1 for an
argument why this is true.

Note that s2 measures the variability about X. Equation 7.2 implies this is true because
the only way z; can contribute to s is if it differs from X . Note thatif z; is less than X, this
difference is negative, but squaring it makes a positive contribution. Other functions can be
used to make all these differences nonnegative, for example, the absolute value. However,
squaring has theoretical advantages; for example, it is easy to differentiate, which makes it
easier to optimize sums of squares than, say, sums of absolute values.

For data analysis, the square root of the variance, s, is used, which is called the sample
standard deviation. Note that X and s, have the same units as the data set. For example,
if the data consists of sentence lengths in terms of word counts, then X and s, are word
counts. If the data were sentence lengths in letter counts, then X and s, are letter counts.
Note that variance is in squared units. For example, the variance of a data set of times
measured in seconds (s) is a number with units s2, or seconds squared. The next section
describes an important application of the sample mean and sample standard deviation.

7.2.1 z-Scores Applied to Poe

A z-score is a way to compute how a data value compares to a data set. It converts this
value to a number, which is dimensionless, that is, there are no units of measurement left,
Specifically, it measures the number of standard deviations a value is from the mean of its
data set.

The formula for the z-score of « is given in equation 7.3. Since both the numerator and
denominator have the same units, these cancel out.

z—X
Sz

z= (7.3)

As an example, we compute z-scores for word lengths of the 68 Poe short stories. In
programming, once a task works for one particular example, it is often straightforward to
apply it to numerous examples.

For computing X, only a running count and sum are needed. Equation 7.2 for the sample
standard deviation, however, requires knowing X first, so a program using it needs to go
through the text twice. However, there is an equivalent form of this equation that only
requires a running sum of the squares of the values. This is given in equation 7.4.

2= iz T — (L @)*/n (7.4)

n—1

S

The words are identified by code sample 7.1, which removes the punctuation. Note that
any apostrophes that start or end the word are removed. For instance, Excellencies’pleasure

194 MULTIVARIATE TECHNIQUES WITH TEXT

loses its apostrophe, which is not the case with friend’s equanimity. However, the challenge
of correctly identifying possessive nouns ending in -s is greater than the payoff, so it is not
done. Compare this with program 5.2, which analyzes four Poe stories.

Code Sample 7.1 This code removes punctuation, counts words, and computes word lengths

for each Poe story.

open (IN, "PoebVolumes.txt") or die;

$nstory = -1;
while (<IN>) {

chomp;

if ($_ =" /<TITLE> *(.*) *<\/TITLE>/) {
$name [++$nstory] = $1;
print "$1\n";

} else {
$_ = 1lc; # Convert to lower case
s/{*\d+}//g; # Remove footnote symbols
s/--+/ /g; # Remove multiple hyphens

s/(\W)-(\W)/$182/g; # Remove single hyphen .dashes
s/"-(\W)/$1/g;

s/ (\W)-$/81/g;

s/ +/ /g; # Replace multiple spaces with one space
s/[.,:;7"1_O=*\[\]11//g; # Remove punctuation

s/(\w)\’ (\W)/$1$2/g; # Remove non-internal single quotes
s/ AW\ (\w) /$182/g;

s/"\’//g;

s/\'$//g;

@words = split;

foreach $word (@Qwords) {
++$dict [$nstory]l{$word}; # Word counts for each story
++$combined{$word}; # Overall word counts
++$len[$nstoryl [length($word)]; # Word lengths tallied

}

}
}

Code sample 7.2 uses the array of arrays @len of code sample 7.1 to compute the mean,
variance, and standard deviation of the word lengths for the 68 Poe short stories. Note that
the first for statement loops through all the stories, and the second one loops through all
the words in each story. As claimed above, by using equation 7.4, only one pass through
all the words is needed.

By adding code sample 7.2 to the end of code sample 7.1, the result produces 68 lines
of output. Each has the following form, where the first number is the length of the story in
words, the second is the sample mean, the third is the sample variance, and the fourth is the
sample standard deviation.

THE GOLD-BUG, 13615, 4.305, 6.135, 2.477

BASIC STATISTICS 195

Code Sample 7.2 Code to compute the sample mean, sample variance, and sample standard
deviation for each Poe story. To run, append this to code sample 7.1.

for ($index=0; $index <= $#len; ++$index) {
$n = 0;
$sum = 0;
$sum2 = 0;
for ($value=1; $value <= @{$len[$index]}-1; ++$value) {
$n += $len[$index] [$value];
$sum += $len[$index] [$value] *$value;
$sum2 += $len[$index] [$value]l *$value**2;
}
$mean = $sum/$n; # Compute sample mean
$var = $sum2/($n-1) - $n/($n-1)*$mean**2; # Variance
$sd = sqrt($var); # Compute sample standard deviation
printf "%s, %5.0f, %.3f, %.3f, %.3f\n",
$name [$index], $n, $mean, $var, $sd;

With these means and standard deviations, it is possible to compute z-scores of any word
length for each story. Let us do this for a four-letter word. The z-score of 4 for “The
Gold-Bug" is given in equation 7.5.

_ 4-4.305

= -0.1 .
2.477 0.123 (7.5)

This means that for “The Gold-Bug," a word length of 4 is 0.123 standard deviations
below the mean. This varies from story to story. The extreme z-scores are —0.0100 for
“Why the Little Frenchman Wears His Hand in a Sling" and —0.3225 for “Metzengerstein."
So four-letter words are all slightly below average for all the stories.

Although z-scores are computable for any data set, it is easier to interpret for approxi-
mately bell-shaped data. However, word lengths are not symmetric around the mean: there
are fewer values less than the mean than are greater than it. For example, see output 3.4 for
“The Tale-Tell Heart.” This data shape is called right skewed. Nonetheless, there is only
one peak; that is, it is unimodal. In addition, the longest word has 14 letters, so there are
no extremely long words in this story. For such data, z-scores can still be useful.

Although z-scores are valuable themselves, they are also useful in computing correla-
tions. This is the topic of the next section.

7.2.2 Word Correlations among Poe’s Short Stories

For comparing two variables, units are a problem. For example, how should a physicist
compare masses and times? One solution is to convert both variables to z-scores, and then
compare these.

Another solution is the sample correlation coefficient. Equation 7.6 shows how to com-
pute this, and notice that it is almost the mean of the product of the z-scores of each data
value.

196 MULTIVARIATE TECHNIQUES WITH TEXT

1 i T, — —X_ Yi — ?

- 7.6

’ n—1 Z Sz Sy 7.6)
i=1

Correlations are used in a variety of statistical techniques, including PCA. It can be

proved that the correlation r must satisfy equation 7.7.

-1<r<1 (7.7

Both r = 1 and r = —1 constrain the data to lie on a line when plotted. That is, both
require that one variable is a linear function of the other. When r = 1, this has a positive
slope, and r = —1 implies a negative slope. When r = 0, there is no linear relationship
between the two variables. However, for all values of r, nonlinear relationships are possible.

For the first example, we analyze the frequencies of some common function words in
each of the 68 Poe stories. It is likely that these counts are roughly proportional to the size
of each story. If this is true, then these counts are positively correlated.

One way to detect a trend in the data is to plot two variables at a time in a scatter plot,
which we do in R. Because this requires reading the data into R, it makes sense to have it
compute the correlations, too, instead of programming Perl to do so. Although equation 7.6
is not that complicated, it is still easier to let a statistical software package do the work.

Code sample 7.3 computes a term-document matrix when it is combined with code
sample 7.1. The open statement stores this matrix in the comma-separated file, Poe68. csv,
which is sorted by the word frequencies of all 68 stories combined. Since this is a large file
with 68 columns and over 20,000 rows, we consider just the top five words: the, of, and, a,
and fo. For how this is done in code sample 7.3, see problem 7.2.

Reading Poe68. csv into R is done with read.csv(). Remember that the greater than
character is the command prompt for this package. The first argument is the filename, and
note that a double backslash for the file location is needed. The second argument, header=T
means that the first row contains the variable names.

The values are stored in data, which is called a data frame. The name data refers to
the entire data set, and each variable within it is accessible by appending a dollar sign to
this name, then adding the column name. For example, the counts for the word the are in
data$the.

> data = read.csv("C:\\Poe68.csv", header=T)

The cor () function computes the correlations as shown in output 7.1. These are or-
ganized in a five by five table. Each entry on the main diagonal is 1, which must be true
because any variable equals itself, which is a linear function with positive slope.

This matrix of correlations is symmetric about the main diagonal. For example, the
correlation between of and the is the same as the correlation between the and of. So this
matrix can be summarized by a triangular table of values. However, there are mathematical
reasons to use the full matrix, which are discussed in section 7.3.

Looking at the off-diagonal values, all the correlations are above 0.90, which are large.
Using the function pairs (), the positive trends are easily seen in figure 7.1, even though
each individual plot is small.

> pairs(data, pch=’.’)

In figure 7.2, the counts of of and the are compared in one plot. In addition, the optimal
prediction line is drawn. Output 7.2 gives the R commands to create both the plot and this
line, which is called the regression line.

BASIC STATISTICS 197

Code Sample 7.3 Creating a transposed term-document matrix for the 68 Poe stories and

5 most frequent words. This uses @dict from code sample 7.1.

sub byValues {
$value = $combined{$b} <=> $combined{$a};
if ($value == 0) {
return $b cmp $a;
} else {
return $value;
}
}

open (OUT, ">Poe68.csv") or die;
@sortedWords = sort byValues keys Ycombined;
$|| - :,);

print OUT "@sortedWords([0..4]\n";

for $1 (0 .. $#dict) {
$count = 0;
for $word (@sortedWords) {
if ($count < 4) {
print OUT $dict[$i]{$word}+0, ",";
++$count;
} else {
print OUT $dict[$i]{$word}+0, "\n";
last;
}
}
}

close(QUT);

Output 7.1 Example of computing correlations in R.

> cor(data)

the of and a to
the 1.0000000 0.9708976 0.9036969 0.9043017 0.9467533
of 0.9708976 1.0000000 0.9261978 0.9219928 0.9419159
and 0.9036969 0.9261978 1.0000000 0.9194357 0.9146464
a 0.9043017 0.9219928 0.9194357 1.0000000 0.9467486
to 0.9467533 0.9419159 0.9146464 0.9467486 1.0000000

The function attach () makes the variables in data accessible by just using the column
name. For example, data$the can be replaced with the. Hence plot (of,the) is a plot
of the word counts of of and the for each of the 68 Poe stories.

The function 1m() fits a linear model of the variable before the tilde as a function of all
of them after it. So in output 7.2, the counts of the are modeled as a linear function of the of

198 MULTIVARIATE TECHNIQUES WITH TEXT

0 600 0 300
AEEE RN o
1 N il 3
. 2
e [| || || 1l FS
PRl L& — O
all £ D
(=)
3 of
! i ;'f‘ ' a5
o ‘d Fad o &
- o
and . E8
ol B &ﬁ -
; . o
S]
®] a
- rf}L
=) [l
to 8
T TTTTTT © 1T ©
500 1500 0 300 0 300

Figure 7.1 Plotting pairs of word counts for the 68 Poe short stories.

Output 7.2 Making a plot with the regression line added for the word counts of the versus
of.

> attach(data)

> plot(of,the)

> lmofthe = Im(the ~ of)

> lines(of, fitted(lmofthe))

counts. The result is shown in output 7.3, which implies equation 7.8. Problem 7.3 shows
how to get more information about the results of 1m().

#the = —0.03825 + 1.66715 * (#of) (7.8)

The function fitted () returns the predicted values given by equation 7.8. Output 7.2
uses these to add the regression line using the command lines (), as shown below.

BASIC STATISTICS 199

1500

1000
L

the

500
|

0 200 400 600 800 1000

of

Figure 7.2 Plots of the word counts for the versus of using the 68 Poe short stories.

> lines(of, fitted(lmofthe))

The above discussion introduces the correlation. However, this computation is closely
related to the cosine similarity measure introduced in section 5.4. The connection between
these two techniques is explained in the next section.

7.2.3 Correlations and Cosines

This link between cosines and correlations is easy to show mathematically. Suppose the
two variables X and Y have means equal to zero, that is, X = Y = 0. Then equation 7.9
holds true.

cos(f) = Lz % = 1 Lo Tl =r (7.9)
VEm e VEn Y e A T v

200 MULTIVARIATE TECHNIQUES WITH TEXT

Output 7.3 Fitting a linear function of the counts of the as a function of the counts of of
for each Poe story. Output 7.2 computes lmofthe.

> lmofthe

Call:
Im(formula = the ~ of)

Coefficients:
(Intercept) of
-0.03825 1.66715

Of course, data rarely has mean zero. However, if z; are measurements of any variable,
then it is easy to show that z; — X has mean zero. Note that this expression appears in the
numerator of both the z-score (equation 7.3) and the correlation (equation 7.6).

Section 5.5.1 shows how to compute the cosines for the term-document matrix given in
output 5.3. If this matrix is modified so that each column has mean zero, then the cosines
for the modified matrix is exactly the same as the correlation matrix of the original, which
is demonstrated in output 7.4. This uses the method shown in output 5.12.

Output 7.4 Example of computing cosines using matrix multiplication.

> out=scale (M)
> t(out) %x¥% out/7

[,1] [,2] [,3] [,4]
[1,] 1.0000000 0.8857338 0.6908841 0.8321416
[2,] 0.8857338 1.0000000 0.8157080 0.8667649
[3,] 0.6908841 0.8157080 1.0000000 0.9280992
[4,] 0.8321416 0.8667649 0.9280992 1.0000000

3

Output 7.5 The correlations of the columns of the term-document matrix M.

> cor (M)

[,1] [,21 [,3] [,4]
[1,] 1.0000000 0.8857338 0.6908841 0.8321416
[2,] 0.8857338 1.0000000 0.8157080 0.8667649
[3,] 0.6908841 0.8157080 1.0000000 0.9280992
[4,] 0.8321416 0.8667649 0.9280992 1.0000000

s

]

Hence it is no accident that any correlation is between —1 and 1 because it is equivalent
to a cosine, which must be between —1 and 1. Although the data set in output 5.7 does
not have zero mean, the cosine similarities and the correlations in output 7.5 are similar. In
fact, the ranking of the six pairs of stories from most to least similar is the same for both.

As noted earlier, the correlation matrix is redundant because the upper right corner is a
mirror image of the lower left corner. This means that the ith row and jth column entry is

BASIC STATISTICS 201

equal to the jth row and ith column. Symbolically, we denote the entries by subscripts, so
this means R;; = Rj;. Or written in terms of matrices, equation 7.10 holds.

RT=R (7.10)

Finally, correlations are not the only way to compute how two variables relate. The next
section defines the covariance matrix, which is closely related to the correlation matrix.

7.2.4 Correlations and Covariances

The correlation between two variables is convenient because it is a pure number without
the units of measurement of the data. However, sometimes it is useful to retain the original
units, and there is a statistic corresponding to the correlation that does exactly this. It is
called the covariance.

The formula for the covariance between two variables is given by equation 7.11. There
are two ways to write this. First, Cov(X, Y), and, second, s.,. Note that s, is just the
variance of X because when Y = X, s is the same as sg in equation 7.2.

1 & - -
Sey = — > (i - X)(yi - Y) (7.11)
i=1

Note that the units of s, are just the product of the units of X and Y¥", which can be hard
to interpret. For example, if X is in feet, and Y is in dollars, then s, is in foot-dollars.

There is a close relationship between correlations and covariances, which is shown in
equation 7.12. Comparing this to equations 7.11 and 7.6 shows that the right-hand side is
indeed the correlation. Note that the inverse of n — 1 in front of s,,, s, and s, all cancel
out, like it does in equation 7.9.

s
r=—"% (7.12)
528y
Output 7.5 shows that cor () produces a correlation matrix in R. The function cov()
similarly produces a covariance matrix, as shown in output 7.6 for the same matrix M used
above.

Output 7.6 The covariance matrix of the term-document matrix M.

> cov(M)

{,1] [,2] [,31] [,4]
[1,] 68.98214 137.5714 86.2500 100.7500
[2,] 137.57143 349.7143 229.2857 236.2857
[3,] 86.25000 229.2857 225.9286 203.3571
[4,]1 100.75000 236.2857 203.3571 212.5000

Finally, if the standard deviations of each column of M are computed, then dividing each
row and column by its corresponding standard deviation produces the correlation matrix.
That is, cor (M) is just a rescaled version of cov(M). See problem 7.4 for more details.

Note that the covariance matrix is also symmetric about its main diagonal. Although
both the correlation and the covariance matrices can be summarized with fewer numbers,
the next section shows why the square matrix form is useful, which requires some basic
ideas from linear algebra.

202 MULTIVARIATE TECHNIQUES WITH TEXT

7.3 BASIC LINEAR ALGEBRA

The last section notes that the correlation matrix for a set of variables is both square (the
number of rows equals the number of columns) and symmetric about the main diagonal (the
upper right corner is the mirror reflection of the lower left corner). It turns out that such
matrices have special properties.

The study of matrices is the focus of linear algebra. 1t turns out that a fruitful way to
understand a matrix, M, is to study how a vector x changes when multiplied by M to get
Mx.

Square matrices have at least one nonzero vector that satisfies equation 7.13, where A is
a number. Such vectors are called eigenvectors, and the number A is called the associated
eigenvalue. For these vectors, matrix multiplication is equivalent to multiplication by a
number.

Mx = Xx (7.13)

It can be proved that n by n correlation and covariance matrices have n real, orthogonal
eigenvectors with n real eigenvalues. For example, see theorems 3.8 and 3.10 of Matrix
Analysis for Statistics by Schott [108]. However, instead of theory, the next section discusses
the concrete case of the 2 by 2 correlation matrix, which illustrates the ideas needed later
in this chapter.

7.3.1 2 by 2 Correlation Matrices

For two variables, the correlation matrix is 2 by 2, and its general form is given in equa-
tion 7.14. Note that R is symmetric, that is, RT = R, which is true for any correlation
matrix. Our goal is to find the eigenvectors with their respective eigenvalues.

1 7
R:(r 1) (7.14)

In general, an 1 by n correlation matrix has n eigenvectors, so R has 2. Call these ey
and ez. By definition, there must be two numbers A; and)\, that satisfy equation 7.15.

Re1 =)\161 and Rez =)\292 (7.15)

Define the matrix E such that its first column is e, and its second is ey (E for Eigenvec-
tors). Note that RE produces a matrix where the first column is Re; and its second is Res.
However, these products are known by equation 7.15. Hence, equation 7.17 holds because
postmultiplying by a diagonal matrix rescales the columns of the preceding matrix (see
output 5.6 for another example of this). Let V be this diagonal matrix (V for eigenValues).

RE = (Rel Rez) = ()\161)\282) (716)
_ A 00
= E(0 A) =FEV (7.17)

Using the notation of the preceding paragraph, we can rewrite equation 7.17 as equa-
tion 7.18. Note that E is not unique. If equation 7.15, is multiplied by any constant, then
the result is still true. Hence, e; can be multiplied by any nonzero constant and remains

BASIC LINEAR ALGEBRA 203

an eigenvector. One way to remove this ambiguity is to require all the eigenvectors to have
length 1, which we assume from now on.

RE =EV (7.18)

With eigenvectors of unit length, the cosine of the angle between two eigenvectors is the
dot product. Note that the transpose of a product of matrices satisfies equation 7.19. For
why this is true, see problem 7.5. Since vectors are also matrices, this equation still is true
when [V is a vector. Using these two facts, it is easy to show that for a correlation matrix,
two eigenvectors corresponding to two different nonzero eigenvalues must be orthogonal,
that is, the dot product is 0.

(MN)YT = NTMT (7.19)

To prove this, first note that equation 7.20 requires that RT = R (this is the key property).
Then compare equations 7.20 and 7.21. Because both start with the same expression, we
conclude that equation 7.22 holds. If A; # Ao, then the only way this can happen is when
e1Teg = 0, but this means that the cosine of the angle between these two vectors is zero.

Hence these eigenvectors are orthogonal.

(Re1)Tez = e1TRTey = €1 T(Reg) = e1 T (Moez) = e es (7.20)
(Re1)Tez = (Me1)Tez = AesTey (7.21)
= AerTes = ey ler (7.22)

In addition, since a vector with unit length implies that the dot product with itself equals
1, then equation 7.23 must hold. Let I be the identity matrix, thatis, [;; = L and I;; = 0
for i # j. Then equation 7.23 is equivalent to equation 7.24, which holds since matrix
multiplication consists of taking the dot product of the rows of the first matrix with the
columns of the second matrix. However, the rows of ET are the columns of E, so matrix
multiplication in this instance is just taking the dot products of the columns of E, which
satisfy equation 7.23. Finally, the second equality in equation 7.24 follows from the first,
but proving this requires more mathematics (the concept of inverse matrices), and it is not
done here.

To, 1, i=j
e €j —{ 0, i%j (7.23)
EYE=1 and FET =1 (7.24)

A key property of [is that equation 7.25 holds for all vectors x. That is, multiplying
vectors by I is like multiplying numbers by 1: the result is identical to the initial value.

Ix=x and x] =x (7.25)

With these facts in mind, we can reinterpret equation 7.18 as a way to factor the matrix
R. Multiplying this equation on the right by ET (order counts with matrix multiplication:
see problem 7.6) and using equation 7.24, we get equation 7.26. Hence, R can be factored
into a product of three matrices: the first and last contain its eigenvectors and the middle is
a diagonal matrix containing its eigenvalues.

204 MULTIVARIATE TECHNIQUES WITH TEXT

R=RI=R(EET) = (RE)ET = EVET (7.26)
With the theory above in mind, we consider a concrete example. By using the first two
columns of the matrix M of output 5.3, we compare the use of male and female pronouns in

Poe’s “The Facts in the Case of M. Valdemar" and “The Man of the Crowd." This is done
in output 7.7.

Output 7.7 Factoring the correlation matrix of the eight pronouns for the two Poe stories
“The Facts in the Case of M. Valdemar" and “The Man of the Crowd."

> M2 <- matrix(c(19,9,7,13,22,0,1,2,27,5,10,11,55,0,4,0),8,2)
> cor(M2)
[,1] (,2]
[1,] 1.0000000 0.8857338
[2,] 0.8857338 1.0000000
> out = eigen(cor(M2))
> out
$values
[1] 1.8857338 0.1142662

$vectors

[,1] £,2]
[1,] 0.7071068 0.7071068
[2,] 0.7071068 -0.7071068

> out$vectors %*% diag(out$values) %*% t(out$vectors)
[,11 [.2]

{1,1 1.0000000 0.8857338

[2,] 0.8857338 1.0000000

The function eigen () computes the eigenvalues, which are stored in out$values, and
the eigenvectors are stored in out$vectors. The last matrix product is the factorization of
R = EVET, which matches the output of cor (M2).

Output 7.7 is one particular case of the 2 by 2 correlation matrix, but for this size, the
general case is not hard to give, which is done in equation 7.27 through equation 7.30. This
reproduces output 7.7 when r = 0.8857338. For example, the eigenvalues are 1 + r and
1 — 7, which equal cut$values. Note that the second eigenvector in equation 7.28 differs
from the second column of out$vectors by a factor of —1. However, this factor does not
change the length of this unit vector, so the two answers are interchangeable.

1 r
R = (r 1) (1.27)
1 1 -1
E = ——\/5(1 1 > (7.28)
1+r 0
V = (0 1—r> (7.29)

R = EVET (7.30)

PRINCIPAL COMPONENTS ANALYSIS 205

Also note that the eigenvalues 14 7 and 1 — r are always different except when r is zero.
Hence, the eigenvalues are always orthogonal when r # 0. However, if r = 0, then R = I,
and by equation 7.25, all nonzero vectors are eigenvectors (with A equal to 1). Hence, it
is possible to pick two eigenvectors for A = 1 that are orthogonal, for example, (0,1) and
(1,0). Consequently, for all values —1 < r < 1, there are two orthogonal eigenvectors.

Furthermore, although this section considers the 2 by 2 case, equation 7.24 and the
factorization given in equation 7.26 holds for any size correlation matrix. For example,
cor (M) in output 5.3 can be factored as well, which is shown in output 7.8.

Output 7.8 Factoring the correlation matrix of the eight pronouns for four Poe stories.

> M = matrix(c(19,9,7,13,22,0,1,2,27,5,10,11,55,0,4,0,24,0,28,0,
+ 35,0,3,0,33,0,17,3,32,0,1,0) ,nrow=8,ncol=4)
> cor(M)
[,1] [,2] [,3] [,4]
[1,7 1.0000000 0.8857338 0.6908841 0.8321416
[2,] 0.8857338 1.0000000 0.8157080 0.8667649
[3,] 0.6908841 0.8157080 1.0000000 0.9280992
[4,] 0.8321416 0.8667649 0.9280992 1.0000000
> out = eigen(cor(M))
> out$vectors %*¥% diag(out$values) %x*% t(out$vectors)

[,1] [,2] (,3] [,4]

[1,] 1.0000000 0.8857338 0.6908841 0.8321416
{2,] 0.8857338 1.0000000 0.8157080 0.8667649
[3,] 0.6908841 0.8157080 1.0000000 0.9280992
{4,7 0.8321416 0.8667649 0.9280992 1.0000000

Now we apply the matrix factorization of a correlation matrix R to texts. This is done in
the next section with the multivariate statistical technique of principal components analysis.

7.4 PRINCIPAL COMPONENTS ANALYSIS

The ability to reduce a large number of variables to a smaller set is useful. This is especially
true when dealing with text since there are numerous linguistic entities to count. Doing this,
however, generally loses information. Hence, the goal is to obtain an acceptable trade-off
between variable reduction and the loss of information.

Principal components analysis (PCA) reduces variables in a way that as much variability
as possible is retained. This approach assumes variability is the useful part of the data,
which is plausible in many situations. For example, none of Poe’s 68 short stories has the
word hotdog, so each story has 0 instances. Intuitively, this is not as informative as the
word counts of death, which varies from 0 to 16.

The approach of PCA is simple. Suppose a data set has the variables z;, z2, ..., n.
Then n new variables, call these ¢, cg, ..., Cn, are constructed to satisfy the following four
conditions. First, each component c; is a linear function of the original z; variables, so the
system of equations 7.31 holds. This is written compactly in matrix notation as follows. Let
c be the column vector containing c1, ¢, ..., ¢,; let x be the column vector containing 1,
Z3, ..., Tn; and let E be the matrix with row 7 and column j equaling e;;. Then equation 7.32
holds.

206 MULTIVARIATE TECHNIQUES WITH TEXT

c1 = €1171 +e12T2 + -+ €1y
Co = €911 + €220 + -+ €2,Tp
€3 = €31T1 T €32T2 + '+ €3pTn (7.31)
Cn = €n1x1 +E€paxo+ - - +epnln
c = Ex (7.32)

Second, the vector ¢ has unit length. That is, equation 7.33 holds.

cc=1 (7.33)

Third, each pair of ¢; and ¢; (¢ # j) are uncorrelated. That is, the correlation matrix of
c is the identity matrix, /. Fourth, the variances of ¢;, ¢a, ..., ¢,, are ordered from largest to
smallest. These four conditions uniquely specify the matrix F, which is given in the next
section.

7.4.1 Finding the Principal Components

There are two approaches to PCA. A researcher can work with either the correlation matrix
or the covariance matrix. For the former approach, each variable must be converted to its
z-scores first. If the latter is used, then the original data values are left alone. Below, both
methods are shown, but the focus is on using the correlation matrix, R.

Equation 7.32 puts the PCA coefficients in the matrix E. This might seem like poor
notation since £ 'is also used in section 7.3.1 to denote the eigenvector matrix of R. However,
it turns out that the columns of R are the PCA coefficients for the z-scores of the data. In
addition, the eigenvectors of the covariance matrix are the PCA coefficients for the original
data set. For more details on PCA using either the correlation or covariance matrices, see
chapter 12 of Rencher’s Methods of Multivariate Analysis [104].

Although R has a function called prcomp () that computes the principal components
(PCs), the discussion in the preceding section also allows us to compute these directly using
matrix methods. This link between PCA and eigenvectors is applied to a term-document
matrices in the next section.

7.4.2 PCA Applied to the 68 Poe Short Stories

Code sample 7.3 gives Perl code to compute the word counts of the five most frequent words
in the Poe short stories (namely, the, of, and, a, to). We use this term-document matrix for
our first example.

Output 7.9 first reads in the file Poe68.csv by using read.csv(). Then scale()
computes the z-scores of the word counts and puts these into the matrix, Poe5z, and out
contains both the eigenvectors and eigenvalues of the correlation matrix (note that the
correlation matrix of Poeb is the same as Poe5z since both use z-scores instead of the
original data). Taking the product of Poe5z with the eigenvectors produces the PCs. As
shown in this output, the correlation matrix of these is the identity matrix, up to round-off
error. Finally, out$vectors are both the eigenvectors and the coefficients of the PCs.

This is also achievable with the function prcomp (), and output 7.10 gives the results.
Note that the standard deviations are the square roots of the eigenvalues, and that the PCs

PRINCIPAL COMPONENTS ANALYSIS

207

Output 7.9 Computing the principal components “by hand.”

> Poeb = read.csv("C:\\Poe68.csv", header=T)

> Poebz = scale(Poeb)
> out = eigen(cor(Poeb))
> cor(Poebz %*% out$vectors)
[,11 [,2]

[1,] 1.0000e+00 2.0423e-16
[2,] 2.0423e-16 1.0000e+00
[3,] 4.6955e-17 1.1580e-16
(4,1 -3.4085e-16 -1.5070e-15 -
[6,] 1.7078e-15 5.3763e-17 -
> out$vectors

[,1] [,2]
[1,] 0.4479384 0.59665130
[2,] 0.4512716 0.37147278
{3,] 0.4419035 -0.49708875
[4,1 0.4446688 -0.50827600 -0.
[5,] 0.4502178 0.02394739 -0.
> out$values

O O O

{,3] [,4] [,8]
4.6955e-17 -3.4085e-16 1.7078e-15
1.1580e-16 -1.5070e-15 5.3763e-17
1.0000e+00 -7.2411e-16 -3.1098e-15
7.2411e-16 1.0000e+00 -2.0725e-15
3.1098e-15 -2.0725e-15 1.0000e+00

[,3]

.05283368
.19534916
. 70992974

51029964
44118177

[,4] [,5]
0.007829268 0.66370602
-0.446395013 -0.64879280
0.213534608 0.08959248
-0.492150216 0.20324283
0.716143373 -0.29871015

[1] 4.71891565 0.11922068 0.09281803 0.04531961 0.02372603

are the same as the eigenvectors (up to signs). Setting scale. to true uses the correlation
matrix. If it is false, then the covariance matrix is used instead.

Output 7.10 Computing the principal components with the function prcomp (). Compare

to output 7.9.

> prcomp(Poe5, scale. = T)
Standard deviations:

{11 2.1723065 0.3452835 0.3046605 0.2128840 0.1540326

Rotation:
PC1 PC2

PC3

the -0.4479384 0.59665130 -0.05283368
of -0.4512716 0.37147278 -0.19534916
and -0.4419035 -0.49708875 -0.70992974
a ~0.4446688 -0.50827600 0.51029964
to -0.4502178 0.02394739 0.44118177

PC4 PCS
-0.007829268 0.66370602
0.446395013 -0.64879280
-0.213534608 0.08959248
0.492150216 0.20324283
-0.716143373 -0.29871015

The summary () function shows the importance of each PC in output 7.11. Remember
that the first PC is constructed so it gets as much variability as possible, and the second PC
gets as much of the rest of the variability as possible, and so forth.

So for these five words, the first PC is roughly proportional to the mean of the counts of the
five words since all the weights are approximately equal (and ignoring the negative signs).
This PC explains 94.4% of the variability, so the other four PCs are not very important.

208 MULTIVARIATE TECHNIQUES WITH TEXT

Output 7.11 Using summary () on the output of prcomp ().

> summary (prcomp(Poe5, scale. = T))
Importance of components:

PC1 PC2 PC3 PC4 PC5
Standard deviation 2.172 0.3453 0.3047 0.21288 0.15403
Proportion of Variance 0.944 0.0238 0.0186 0.00906 0.00475
Cumulative Proportion 0.944 0.9676 0.9862 0.99525 1.00000

That is, although there are five variables in the data set, these can be summarized by one
variable with little loss of variability.

These five words are the most common five words used by Poe in his short stories. In
addition, they are all function words, so their counts are positively correlated with the size
of the stories. Hence the first PC, which is nearly an average of these counts, captures this
relationship.

Finally, note that the PC coefficients differ depending on whether the correlation or
covariance matrix is used. This is shown in output 7.12, which computes the PCs using
the covariance matrix. Although the coefficients differ, the first PC still explains the vast
majority of the variability. So in either case, the five variables can be reduced to one.

Output 7.12 Computing the principal components using the covariance matrix. Compare
to output 7.11.

> prcomp(Poe5, scale. = F)
Standard deviations:
[1] 386.70732 49.72679 33.45049 27.73959 19.53010

Rotation:

PC1 PC2 PC3 PC4 PC5
the -0.7941645 0.5389676 -0.19301648 0.1662676 -0.1179679
of -0.4576397 -0.2720821 0.76380101 -0.3537533 0.0894639
and -0.2301611 -0.5544725 0.02003543 0.7930616 0.1011827
a -0.2080904 -0.4939688 -0.36128770 ~0.3075355 -~0.6982738
to -0.2521764 -0.2898971 -0.49841993 -0.3516942 0.6930047
> summary(prcomp(Poe5, scale. = F))
Importance of components:

PC1 PC2 PC3 PC4 PCH

Standard deviation 386.71 49.7268 33.45049 27.73959 19.53010
Proportion of Variance 0.97 0.0160 0.00725 0.00499 0.00247
Cumulative Proportion 0.97 0.9853 0.99254 0.99753 1.00000

In general, since using the correlation matrix is equivalent to using the z-scores of the
data, all the variables have comparable influence in the PCs. Using the covariance matrix,
however, implies that the variables that vary most have the most influence. Either case is
useful, so it depends on the researcher’s goals on which to use.

The next section briefly looks at another set of word counts for Poe’s stories. This time
the variability is more spread out among the PCs.

PRINCIPAL COMPONENTS ANALYSIS 209

7.4.3 Another PCA Example with Poe’s Short Stories

In section 5.2.2, the pronouns ke, she, him, her, his, hers, himself, and herself are analyzed
in four Poe stories. In this section we apply PCA to these using all 68 Poe stories . The
counts can be computed by replacing the end of code sample 7.3 with code sample 7.4. The
idea is to use the pronouns as keys in the array of hashes, @dict.

Code Sample 7.4 Word counts for the eight pronouns are written to the file Poe68.csv.
This requires @dict from code sample 7.1.

open (OUT, ">PoeB8.csv") or die;
@pronouns = (he, she, him, her, his, hers, himself, herself);
$Il P :,);

print OQUT "Q@pronouns\n";

for $i (0 .. $#dict) {
for ($j = 0; $j < $#pronouns; ++$j) {
print OUT $dict{$i]l{$pronouns[$jl}+0, ",";
}
print OUT $dict[$il{$pronouns[-1J}+0, "\n";;
}

Once the file Poe68. csv is created, read it into R using read. csv (). Then output 7.13
computes the PCA for these eight pronouns.

Again the first PC is approximately proportional to the average of the eight counts since
the weights are all roughly the same. Unlike the preceding section, however, the first PC
only explains 48% of the variability. Although the second PC also has weights comparable
in absolute value, four of the signs are positive, and the other four are negative. Note that
the former weights go with the feminine pronouns, and the latter go with the masculine!

Although this PCA uses a bag-of-words language mode! that ignores all syntactic infor-
mation, it distinguishes between male and female pronouns. So using simplified models of
language coupled with a computer can discover interesting language structures.

7.4.4 Rotations

Notice outputs 7.10, 7.12, and 7.13 include the word Rotation just before the PCs. This
section explains why this is the case.

Rotations only change the orientation but not the shape of any object. For example,
spinning a suitcase does not change its shape. Suppose there is a data set with n-variables,
then an n-dimensional plot is possible with one dimension for each variable. As with
objects, rotating these values changes the orientation but not the shape of the data.

Surprisingly, rotations in any number of dimensions are easy to describe mathematically.
Any rotation in n-dimensions is representable by an n-by-n matrix, call it £, that satisfies
the two properties given in equations 7.34 and 7.35.

ETE=1 (7.34)

det(E) =1 (7.35)

210 MULTIVARIATE TECHNIQUES WITH TEXT

Output 7.13 The PCA of eight pronouns in the 68 Poe short stories.

> prcomp (Poe8pn,scale.=T)

Standard deviations:

[1] 1.9120490 1.6130358 0.7344750 0.6298724 0.5934494 0.4763188
[7] 0.3940458 0.2676894

Rotation:
PC1 PC2 PC3 PC4 PC5
he 0.3968662 -0.3427335 0.045274128 -0.11577301 -0.1014911
she 0.3268217 0.4252042 -0.227591982 -0.04400534 -0.4643040
him 0.3529773 -0.3315296 0.220014539 -0.68278920 -0.1961602
her 0.3587514 0.3994852 0.056188780 0.20883497 -0.4117217
his 0.3451026 -0.3829043 -0.002812392 0.34181970 0.1086482
hers 0.2689269 0.3702944 0.767368075 0.05003566 0.4041360
himself 0.4139825 -0.2422977 -0.152091419 0.50035210 0.1225839
herself 0.3458183 0.2996549 -0.531596742 -0.32426921 0.6131645
PC6 PC7 PC8
he -0.002695473 -0.835631212 0.03147343
she 0.125548208 0.055106112 0.65136565
him -0.141524948 0.431439804 -0.07898856
her 0.014680992 0.004098073 -0.70369931
his 0.733970927 0.258364837 0.01302934
hers -0.005662007 -0.031545737 0.18668159

himself -0.649088162 0.210372857 0.12580665
herself 0.062647567 -0.022856816 -0.14984397
> summary (prcomp(Poe8pn,scale.=T))
Importance of components:
PC1 PC2 PC3 PC4 PC5
Standard deviation 1.912 1.613 0.7345 0.6299 0.593
Proportion of Variance 0.457 0.325 0.0674 0.0496 0.044
Cumulative Proportion 0.457 0.782 0.8497 0.8992 0.943
PC6 PC7 PC8
Standard deviation 0.4763 0.3940 0.26769
Proportion of Variance 0.0284 0.0194 0.00896
Cumulative Proportion 0.9716 0.9910 1.00000

However, equation 7.34 is the same as equation 7.24. Equation 7.35 it a technical
condition that rules out rotations coupled with mirror reflections. Note that det () is the
determinant function, which is not discussed in this book, but see section 1.6 of Schott’s
Matrix Analysis for Statistics [108] for a definition.

If all the normalized eigenvectors of a correlation matrix are used as the columns of a
matrix E, this is a rotation in n-dimensional space. So finding principal components is
equivalent to rotating the data to remove all correlations among the variables.

Since rotation does not distort the shape of the data, a PCA preserves all of the informa-
tion. Because of this, it is often used to create new variables for other statistical analyses.
These new variables have the same informational content as the original ones, and they are
uncorrelated.

TEXT APPLICATIONS 211

Information is lost in a PCA only by picking a subset of PCs, but this loss is quantified
by the cumulative proportion of variance. This allows the researcher to make an informed
decision when reducing the number of variables studied.

The above discussion covers the basics of PCA. The next section gives some examples
of text applications in the literature.

7.5 TEXT APPLICATIONS

7.5.1 A Word on Factor Analysis

The idea of taking a set of variables and defining a smaller group of derived variables
is a popular technique. Besides PCA, factor analysis (FA) is often used. Some authors
(including myself) prefer PCA to FA, but the latter is well established. Before noting some
applications in the literature, this section gives a short explanation on why PCA might be
preferred by some over FA.

PCA is based on the fact that it is possible to rotate a data set so that the resulting variables
are uncorrelated. There are no assumptions about this data set, and no information is lost
by this rotation. Finally the rotation is unique, so no input is needed from the researcher to
create the principal components. However, FA is used to reduce the number of variables to
a smaller set called factors. Moreover, it tries to do this so that the resulting variables seem
meaningful to the researcher.

Although FA has similarities to PCA, it does make several assumptions. Suppose this
data set has n variables. Then FA assumes that these are a linear function of k factors
(k < n), which is a new set of variables. In practice, & factors never fully determine n
variables, so assumptions must be made about this discrepancy. FA assumes that these
differences are due to random error. Finally, any solution of an FA is not unique: any
rotation of the factors also produces a solution. This allows the researcher to search for a
rotation that produces factors that are deemed interpretable.

The above discussion reveals two contrasts between these two methods. First, PCA
preserves information, but if FA is mistakenly used, then information is lost since it is
classified as random error. Second, PCA produces a unique solution, but FA allows the
researcher to make choices, which allows the possibility of poor choices.

Since natural languages are immensely complex, the ability of FA to allow researcher bias
might give one pause. However, people are experts at language, so perhaps human insight
is a valuable input for FA. There is much statistical literature on both of these techniques.
For an introduction to PCA and FA, see chapters 12 and 13 of Rencher’s Methods of
Mulrivariate Analysis {104], which includes a comparison of these two methods. For an
example of computing an FA in R, see problem 7.8.

The next section notes some applications of PCA and FA to language data sets in the
literature. After reading this chapter, these references are understandable.

7.6 APPLICATIONS AND REFERENCES

We start with three non-technical articles. Klarreich’s “Bookish Math" [65] gives a non-
technical overview of several statistical tests of authorship, including PCA. In addition,
the Spring 2003 issue of Chance magazine features the statistical analysis of authorship
attribution. In general, this magazine focuses on applications and targets a wide audience,
not just statisticians. Two of the four articles in this issue use PCA. First, “Who Wrote the

212 MULTIVARIATE TECHNIQUES WITH TEXT

15th Book of Oz?" by Binongo [15] gives a detailed example of using PCA to determine
if Frank Baum wrote The Royal Book of Oz. Second, “Stylometry and the Civil War: The
Case of the Pickett Letters" by Holmes [56] also uses PCA along with clustering (the topic
of chapter 8) to determine if a group of letters were likely written by George Pickett. Both
of these articles plot the data using the first two principal components.

Here are two technical articles on applying PCA to text. First, Binongo and Smith’s “The
Application of Principal Component Analysis to Stylometry" [16]. This discusses PCA and
has examples that include plots using principal component axes. Second, “A Widow and
Her Soldier: A Stylometric Analysis of the ‘Pickett Letters’" by Holmes, Gordon, and
Wilson [57] has five figures plotting the texts on principal component axes.

Factor analysis can be used, too. For example, Biber and Finegan’s “Drift and the
Evolution of English Style: A History of Three Genres" [12] analyzes the style of literature
from the 17th through the 20th centuries. The factors are used to show differences over
this time period. Second, Stewart’s “Charles Brockden Brown: Quantitative Analysis and
Literary Interpretation” [112] also performs an FA, and plots texts using factor axes, an idea
that is popular with both FA and PCA.

An extended discussion on FA as it is used in corpus linguistics is contained in Part IT of
the book Corpus Linguistics: Investigating Language Structure and Use by Douglas Biber,
Susan Conrad, and Randi Reppen [11]. This book is readable and has many other examples
of analyzing language via quantitative methods.

PROBLEMS

7.1 [Mathematical] Section 7.2 notes that the standard deviation is zero exactly when all
the data values are zero. For this problem, convince yourself that the following argument
proves this claim.

1 & -
2 L 2
s =—— i§=1(gcz X) (7.36)

Consider equation 7.2, which is reproduced here as equation 7.36. First, if all the data have
the same value, then X equals this value. Then (z; — X) is always zero, so 52 is also zero.

Second, since a real number squared is at least zero, all the terms in the sum are at least
zero. Soif s2 is zero, then each of the terms in the sum is zero, and this happens only when
every (z; — X) is zero. Hence all the z;’s are equal to X.

7.2 This problem shows how to exit a for loop before it terminates. This is used in code
sample 7.3 to stop the inner for loop, which stops the print statement from writing more
output to Poe68.csv.

Perl has the command last, which terminates a loop. For example, code sample 7.5
shows a loop that should repeat 10 times, but due to the if statement, it terminates in the
fifth iteration, which is shown by the output.

Take code sample 7.5 and replace 1ast by next and compare the results. Then replace
last by redo and see what happens. Guess what each of these commands does and then
look them up online.

PROBLEMS 213

Code Sample 7.5 The for loop is halted by the last statement when $i equals 5. For
problem 7.2.

for ($i = 1; $i <= 10; ++3%i) {
print "$i ";
if (81 == 5) { last; }

}

QUTPUT: 1 234 5

7.3 Risobjectoriented (OO), and many statistical operations produce an object, including
1m (). In OO programming, working with objects is done with methods, which are functions.
Here we consider the method summary (). Try the following yourself.

Output 7.14 Regression of counts for the as a function of counts for and in the 68 Poe short
stories. For problem 7.3.

> data = read.csv("C:\\Poe68.csv", header=T)
> attach(data)

> Imtheand = 1lm(the ~ and)

> Imtheand

Call:
Im(formula = the *~ and)

Coefficients:
(Intercept) and
-48.01 2.91

Output 7.14 performs a regression where the counts of the are fitted as a function of the
counts of and in the 68 Poe short stories. Compare these results to output 7.2, which is a
similar analysis. Here 1mtheand is an object, and typing it on the command line gives a
little information about it. However, the function summary () provides even more, as seen
in output 7.15. If you are familiar with regression, the details given here are expected.

If you investigate additional statistical functions in R, you will find out that summary ()
works with many of these. For example, try it with eigen (), though in this case, it provides
little information. For another example, apply it to a vector of data.

7.4 Attheend of section 7.2.4, it is claimed that the correlation matrix is a rescaled version
of the covariance matrix, which can be shown by doing the following. First, divide the first
row and column by the standard deviation of the first column of M, which is 8.305549.
Second, divide the second row and column by the standard deviation of the second column
of M, which is 18.70065. Do the same for the third and fourth rows and columns of M
using 15.03092 and 14.57738, respectively.

This is also possible by using matrix methods. Convince yourself that output 7.16 is
doing the same rescaling described in the preceding paragraph by doing the following steps.

214 MULTIVARIATE TECHNIQUES WITH TEXT

Output 7.15 Example of the function summary() applied to Imtheof from output 7.14
for problem 7.3.

> summary (lmtheand)

Call:
lm(formula = the ~ and)
Residuals:

Min 1Q Median 3Q Max
-248.396 -78.826 -9.244 43.952 b537.456
Coefficients:

Estimate Std. Error t value Pr(>|[tl])

(Intercept) -48.0134 28.3608 -1.693 0.0952 .
and 2.9102 0.1697 17.147 <2e-16 %%
Signif. codes: O ’#xx’ 0.001 ’*x’ 0,01 %’ 0.05 ’.’ 0.1’ 7 1

Residual standard error: 133 on 66 degrees of freedom
Multiple R-Squared: 0.8167, Adjusted R-squared: 0.8139
F-statistic: 294 on 1 and 66 DF, p-value: < 2.2e-16

Output 7.16 Rescaling the covariance matrix by the standard deviations of the columns of
the term-document matrix M for problem 7.4.

>M-= matrix(c(19,9,7,13,22,0,1,2,27,5,10,11,55,0,4,0,24,0,28,0,
+ 35,0,3,0,33,0,17,3,32,0,1,0), nrow=8, ncol=4)
> cor(M)

[,1] [,2] [,3] [,4]

[1,] 1.0000000 0.8857338
[2,] 0.8857338 1.0000000
[3,] 0.6908841 0.8157080
[4,1 0.8321416 0.8667649
> solve(diag(sd(M))) %xY%

[,1] [,2]
.0000000 0.8857338
.8857338 1.0000000
.6908841 0.8157080
.8321416 0.8667649

[1,]
[2,]
£3,1]
(4,]

1
0
0
0

0.6908841 0.8321416

0.8157080 0.8667649

1.0000000 0.9280992

0.9280992 1.0000000

cov(M) %x*} solve(diag(sd(M)))
£,3] [,4]

0.6908841 0.8321416

0.8157080 0.8667649

1.0000000 0.9280992

0.9280992 1.0000000

a) First, enter matrix M into R and compute sd (M) . Applying diag() to this matrix
selects the diagonal entries. Applying solve () to this result replaces the diagonal
entries by their inverses. Confirm this.

b) What happens to cov(M) when the following command is executed? Confirm
your guess using R.

PROBLEMS 215

solve(diag(sd(M))) %*% cov(M)

¢) What happens to cov(M) when the following command is executed? Confirm
your guess using R.

cov(M) %*% solve(diag(sd(M)))

d) Combining the last two parts, convince yourself that the following command
equals cor (M).

solve(diag(sd(M))) %*% cov(M) %*) solve(diag(sd(M)))

7.5 [Mathematical] If matrix M has entries m;;, and N has entries n;;, then matrix
multiplication can be defined by equation 7.37. Here (M N),; means the entry in the ith
row and jth column of the matrix product M N.

(MN), Z Mk (1.37)

Taking a transpose of a matrix means switching the rows and columns. Put mathemati-
cally, AT equals Aj;. Hence the transpose of a matrix product satisfies equation 7.38.

(MN)E = (MN); Z mjkngi = 3 ngmge = (NTMT)j; (7.38)
k

Since equation 7.38 holds for all the values of ¢ and j, we conclude that equation 7.39
is true. If this reasoning is not clear to you, then look this up in a linear algebra text, for
example, Gilbert Strang’s Linear Algebra and Its Applications [113].

(MN)T = NTMT (7.39)

7.6 The order of matrices in matrix multiplication is important. In some cases, different
orders cannot be multiplied. In others, different orders can produce different results. This
is easily shown by trying it with some specific matrices. See output 7.17 for an example
using the matrices defined in equations 7.40 and 7.41.

1 2 3

A= < 5 6 7) (7.40)
4 3

B= 1 0 (741)

216 MULTIVARIATE TECHNIQUES WITH TEXT

Output 7.17 Example of multiplying two matrices in both orders and getting different
answers. For problem 7.6.

> A = matrix(c(1,2,3,5,6,7), c(2,3), byrow=T)
> B = matrix(c(4,3,1,0,-1,-2), <(3,2), byrow=T)
> A Yx% B
(,11 [,2]
[1,] 3 -3
[2,] 19 1
>B %*h A
(,11 [,2]1 [,3]
[1,] 19 26 33
[2,] 1 2 3
[3,] -11 -14 -1i7

In this case, AB is a 2 by 2 matrix, while BA is a 3 by 3 matrix. So these two products
are not even the same size, much less identical matrices.
a) Let M be a four by four matrix with every entry equal to 1, and call the diagonal
matrix in output 5.5, M5. Compute the matrix products M; M, and M5 M;. How
do these differ?

b) Let M3 and M, be defined by equations 7.42 and 7.43. Show that M3M, and
M4 M3 give the same result.

1 0 0

My=|0 -2 0 (7.42)
0 0 3
2.0 0

My=|0 2 0 (7.43)
00 1

¢) Let M5 and Mg be defined by equations 7.44 and 7.45. Show that My Mg and
Mg M5 give the same resulits.

My = (i’ é) (7.44)

Mg = (g (2)) (7.45)

In general, matrices rarely satisfy AB = BA. If they do, they are said to
commute. To learn what conditions are needed for two matrices to commute, see
theorem 4.15 of section 4.7 of James Schott’s Matrix Analysis for Statistics [108).

7.7 [Mathematical] Equation 7.46 is a two by two rotation matrix, which rotates vectors

6 degrees counterclockwise.
cosf® —sinf
(sinf® cosf) (7.46)

a) Verify that equation 7.46 satisfies equations 7.34 and 7.35.

PROBLEMS 217

b) Compute equation 7.46 for § equal to 0°. Does the result make sense, that is, does
it rotate a vector zero degrees?

¢) Ifequation 7.46 is applied to a specific vector, then it is easy to check that it really
is rotated by the angle 8. Do this for 6 equal to 45° applied to the vector (1,1)7.

d) Equations 7.47 and 7.48 shows two rotation matrices. Multiplying M1 M5 pro-
duces a rotation matrix with angle 6; + 6, which is given by equation 7.49.
First, show that Ay M, equals M, M. As interpreted as rotations, does this make
sense? Second, the matrix product M; M, must equal M3, so each entry of the
matrix product equals the respective entry of M3. Compute this and confirm that
the results are the angle addition formulas for sines and cosines.

[cosfy —sinf;
M, = < sinf; cosf; > (7.47)

_{ cosfy —sinfy
M, = < sinf, cosf; > (7.48)

[cos(61+62) —sin(fy +06;)
Ms = < sin (61 +62) cos (61 + 62) (7.49)

7.8 This problem shows how to do a factor analysis (FA) in R using the Poe8pn data set.
This requires specifying the number of factors beforehand. Output 7.18 has two factors,
while output 7.19 has three. Although the factor loadings are a matrix, the default is to not
print the values below 0.1. Also, the default rotation of factanal() is varimax, so it is
used here.

Output 7.18 Example of a factor analysis using the Poe8pn data set used in the PCA of
output 7.13. For problem 7.8.

> out=factanal (Poe8pn, factors=2)
> out$loadings

Loadings:

Factorl Factor2
he 0.939
she 0.930
him 0.817
her 0.960
his 0.853
hers 0.691

himself 0.801 0.222
herself 0.175 0.687

Factorl Factor2
S8 loadings 2.958 2.793
Proportion Var 0.370 0.349
Cumulative Var 0.370 0.719

218 MULTIVARIATE TECHNIQUES WITH TEXT

Output 7.19 Example of a factor analysis with three factors. For problem 7.8.

> out=factanal(Poe8pn, factors=3)
> out$loadings

Loadings:

Factorl Factor2 Factor3
he 0.938
she 0.972 -0.223
him 0.816
her 0.969 0.216
his 0.852
hers 0.657 0.269

himself 0.801 0.220
herself 0.170 0.687 -0.182

Factorl Factor2 Factor3
SS loadings 2.953 2.846 0.214
Proportion Var 0.369 0.3566 0.027
Cumulative Var 0.369 0.725 0.752

Note that the first two factors for both models have nearly identical loadings. Recall that
PCs are interpreted by considering which variables have large coefficients in absolute value,
and the same idea is used for factors. Therefore, factor 1 picks out all the male, third-person
pronouns, while factor 2 picks out all the female pronouns. Because the PCA performed
in output 7.13 shows that PC2 also contrasts pronouns by gender, there are similarities
between this FA and PCA.

For this problem, compute a third model with four factors. Compare the proportion of
variability for the factors compared to the principal components of output 7.13. Finally, are
there any other similarities between the features revealed by the factors and those by the
principal components besides gender differences?

CHAPTER 8

TEXT CLUSTERING

8.1 INTRODUCTION

This chapter discusses how to partition a collection of texts into groups, which is called
clustering. For example, a researcher analyzes a corpus of emails to find subsets having
common themes. These are not known beforehand and are determined as part of the analysis.
A related task called classification also partitions texts into groups, but these are known
prior to the analysis. For example, there are commercial programs that classify incoming
emails as either spam or nonspam.

These two tasks need different types of information. First, if the groups are unknown
prior to the analysis, then a quantitative similarity measure is required that can be applied to
any two documents. This approach is called unsupervised because computing similarities
can be done by the program without human intervention.

Second, if the groups are known beforehand, then the algorithm requires training data
that includes the correct group assignments. For example, developing a spam program
requires training the algorithm with emails that are correctly labeled. A human provides
these, so this approach is called supervised. However, creating or purchasing training data
requires resources.

Because classification needs training data, which typically does not exist in the public
domain, this chapter focuses on clustering. This only requires texts and an algorithm. As
seen earlier in this book, there are plenty of the former available on the Web, and the latter
exists in the statistical package R.

Practical Text Mining with Perl. By Roger Bilisoly 219
Copyright © 2008 John Wiley & Sons, Inc.

220 TEXT CLUSTERING

8.2 CLUSTERING

Similarity measures are introduced in section 5.7. Although cosine similarity or TF-IDF
can be used, this chapter uses the simpler Euclidean distance formula from geometry, but
once this approach is mastered, the others are straightforward to do.

8.2.1 Two-Variable Example of k-Means

We start by considering only two variables, so the data can be plotted. Once two-dimensional
clustering is understood, then it is not hard to imagine similar ideas in higher dimensions.

The k-means clustering algorithm is a simple technique that can be extended to perform
classification, so it is a good algorithm to start with. The letter k stands for the number of
clusters desired. If this number is not known beforehand, analyzing several values finds the
best one.

Let us consider a simple, made-up example that consists of two variables « and y. The
data set is shown in figure 8.1, where it is obvious (to a human) that there are two clusters,
which are in the northeast and southwest corners of the plot. Does k-means agree with our
intuition?

Data Set

—

Figure 8.1 A two variable data set that has two obvious clusters.

Since k must be specified before k-means begins, this plot is useful because it suggests
k = 2. There are 256 ways to partition eight objects data into 2 groups. In general, for k

CLUSTERING 221

groups and n data values, there are k™ partitions: see problem 8.1 for details. Unfortunately,
this function grows quickly. With 100 data values and four groups, 41%° has 61 digits, which
is enormous. Hence, any clustering algorithm cannot perform an exhaustive examination
of all the possibilities.

For k = 2, k-means picks two data values at random, which become the initial “centers"
of two regions, which are the sets of points in the plain closest to its center. For two, this
creates two half-planes, where each point on the dividing line is exactly equidistant from
the centers. Suppose that the points (0,1) and (1,1) are the initial centers.

It is well known from geometry that this dividing line is the perpendicular bisector of the
line segment formed by these two points. This is best understood by looking at figure 8.2.
This line is half-way between the points (0,1) and (1,1), and it is at right angles to this line
segment. As claimed, the points in the left half-plain are closer to the point (0,1), and those
in the right half-plain are closest to the point (1,1).

Perpendicular Bisector of the Line Segment (0,1) to (1,1)

> o - Right Half-Plane

Figure 8.2 The perpendicular bisector of the line segment from (0,1) to (1,1) divides this
plot into two half-planes. The points in each form the two clusters.

This line partitions the eight data points into two groups. The left one consists of (0,0)
and (0,1), and the other six points are in the right one. Once the data is partitioned, then the
old centers are replaced by the centroids of these groups of points. Recall that the centroid
is the center of mass, and its x-coordinate is the average of the x-coordinates of its group,
and its y-coordinate is likewise the average of its group’s y-coordinates. So in figure 8.3,
the two centroids are given by equations 8.1 and 8.2.

222 TEXT CLUSTERING

z=(0+0)/2=0, y=(0+1)/2=05 ®.1)

z=(14+1+54+5+6+6)/6=4, y=0+1+5+6+5+6)/6=3.83 (8.2

These two centroids are denoted by the asterisks in figure 8.3. The line segment between
these centroids is not drawn this time, just the perpendicular bisecting line, which divides
the data into two groups of four points: the two squares in the southwest and northeast
corners of the plot that intuition suggests.

New Partition of Data

> ™ — NE Half-Plane

o

- — 0 o]
* SW Half-Plane

o - o o]
T T T T T T T
0 1 2 3 4 5 6

X

Figure 8.3 The next iteration of k-means after figure 8.2. The line splits the data into
two groups, and the two centroids are given by the asterisks.

Note that the centroids of these two squares are (0.5, 0.5) and (5.5, 5.5). The new
dividing line goes from (0, 6) to (6, 0), which cuts the region of the plot into southwest and
northeast triangles. Hence the two groups have not changed, and so the k-means algorithm
has converged. That is, the next iteration of centers does not change. The final answer is
that the two groups are {(0,0), (1,0), (0,1), (1,1)} and {(5,5), (5,6), (6,5), (6,6)}.

The above example captures the spirit of k-means. In general, the algorithm follows
these steps for k groups, m variables, and n data values. First, k data points are selected
at random and are designated as the k centers. Second, these centers partition all the data
points into k subsets. The data points in any set are exactly those that are closer to its center
than to any other center.

CLUSTERING 223

Third, the data points in each subset are averaged together to form the centroid, which
is done for each of the coordinates. These centroids become the new centers. Fourth, steps
two and three are repeated until the centers do not change anymore. Once this is achieved,
then this partition of the data are the % clusters.

These steps can be implemented into Perl, but R already has the function kmeans().
The above example is repeated using R in the next section. Also, for more on making plots
that partition the plane when there is more than two centers, see problem &.2.

8.2.2 k-Means with R

Using R is much easier than hand computations, of course. The function kmeans () just
needs a data matrix and the number of centers, that is, the value of k. Once the eight data
points in figure 8.1 are put into the matrix data and k is set to 2, then R does the rest, which
is shown in output 8.1.

QOutput 8.1 An example of k-means using the data in figure 8.1 and & set to 2.

> data = matrix(c(0,0,0,1,1,0,1,1,5,5,5,6,6,5,6,6),8,2,byrow=T)
> kmeans(data, centers=2)
K-means clustering with 2 clusters of sizes 4, 4

Cluster means:

(,1] [,2]
1 0.5 0.5
2 5.5 5.5

Clustering vector:
(111112222

Within cluster sum of squares by cluster:
(11 2 2

As found by hand, the final centroids (denoted cluster means in the R output) are (0.5,
0.5) and (5.5, 5.5). The clustering vector labels each data point in the matrix data. That
is, the first four points are in cluster 1, and the last four points are in cluster 2. This again
agrees with the partition found by hand.

The within sum of squares is the sum of the squared distances from each point of a cluster
toits center. For example, for group 1, which consists of the four points {(0, 0), (0, 1), (1,0),
(1,1)}, the distance from each of these to the centroid, (0.5, 0.5) is 1/ /2. This distance
squared is 0.5 for each point, so the sum is four times as big, or 2, which is the value given
in the R output.

By looking at figure 8.1, setting & to 2 is obvious. However, kmeans() produces
clusters for any value of k between 1 and n (these two extreme cases are trivial, so they
are not allowed). Consider & = 4 where intuition suggests that each square splits into two
opposite sides. However, there are two ways to do this for each square. For example, the
southwest square can be split into {(0,0), (0, 1)} and {(1,0),(1,1)}, but {(0,0), (1,0)}
and {(0,1),(1,1)} is also possible. Hence there are four ways all together to cluster this
data set, or so says intuition. Output 8.2 puts this claim to the test.

224 TEXT CLUSTERING

Output 8.2 Second example of k-means using the data in figure 8.1 with 4 centers.

> data = matrix(c(0,0,0,1,1,0,1,1,5,5,5,6,6,5,6,6),8,2,byrow=T)
> out=kmeans(data, centers=4); out$cluster
[1] 24241313

> out=kmeans(data, centers=4); out$cluster
[1] 42421133

> out=kmeans(data, centers=4); out$cluster
(11 22334141

> out=kmeans(data, centers=4); out$cluster
[1J] 11224343

> out=kmeans(data, centers=4); out$cluster
(11 22314444

Note that the semicolon allows multiple statements on the same line (as is true with
Perl). Also, out$cluster contains the cluster labels. The first four cases agree with the
argument made above using intuition. For example, the first result gives2 4 2 4 1 3 1
3. This means that the first and third points, {(0, 0), (1,0)}, compose cluster 2, and the
second and fourth points, {(0,1), (1, 1)}, are cluster 4, and so forth.

However, the fifth result makes cluster 4 the entire northeast square of points, and the
southwest square is split into three clusters. Since this type of division occurred only once,
kmeans () does not find it as often as the intuitive solution. However, this example does
underscore two properties of this algorithm. First, its output is not deterministic due to the
random choice of initial centers. Second, as shown by the fifth result, the quality of the
solutions can vary.

Because the clusters produced by kmeans () can vary, the researcher should try comput-
ing several solutions to see how consistent the results are. For example, when centers=2
is used, the results are consistently the northeast and southwest squares (although which of
these squares is labeled 1 varies). That this is false for centers=4 suggests that these data
values do not naturally split into four clusters.

The next section applies clustering to analyzing pronouns in Poe’s 68 short stories. The
first example considers two pronouns for simplicity. However, several values of % are tried.

8.2.3 He versus Shein Poe’s Short Stories

The data values in figure 8.1 were picked to illustrate the k-means algorithm. This section
returns to text data, and we analyze the use of the pronouns ke and she in the 68 short stories
of Edgar Allan Poe .

Since the counts for these two function words probably depend on the story lengths, we
consider the rate of usage, which is a count divided by the length of its story. Although it is
possible these are still a function of story length (see the discussion of mean word frequency
in section 4.6 for a cautionary example), this should be mitigated.

These rates can be computed in Perl, or we can read the story lengths into R, which then
does the computations. Both approaches are fine, and the latter one is done here.

Code sample 7.4 shows how to create a CSV file that contains the counts for the eight
pronouns. Since Ae and she are included, they are extractable once read into R.

Code sample 7.1 creates a file with the number of words in each story. This results in an
array of hashes called @dict that stores the number of times each word appears in each Poe

CLUSTERING 225

story. Summing up the counts for all the words in a particular story produces the length of
that story, which is done in code sample 8.1.

Code Sample 8.1 Computes the word lengths of the 68 Poe stories. This requires the array

of hashes @dict from code sample 7.1.

open(SIZE, ">size.csv") or die;

for $i (0 .. $#dict) {
$sum = O;
foreach $x (keys %{$dict[$il}) {
$sum += $dict [$i]{$x};
}
print SIZE "$sum\n";
}

Assuming that the files Poe68. csv and size. csv have been created by code sample 7.4
and the combination of code samples 7.1 and 8.1, then these are read into R as done in
output 8.3. Note that the rate is per thousand words so that the resulting numbers are near
1. Values this size are easier for a person to grasp.

Output 8.3 Computation of the rate per thousand words of the pronouns ke and she.

size = read.csv("C:\\size.csv", header=F)

Poe8pn = read.csv("c:\\Poe68_pronouns.csv",header=T)
attach(Poe8pn)

heRate = he/size*1000

sheRate = she/size*1000

summary (heRate)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 2.872 6.576 7.392 9.660 24.450
> summary (sheRate)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.0000 0.2527 1.3390 1.9390 11.5300

VvV V.V V Vv Vv

Since this data is two-dimensional, plotting heRate against sheRate shows the complete
data set. Thisis done with the plot () function, as given below. Figure 8.4 shows the results.

> plot(heRate, sheRate)

Although the data points are not uniformly distributed, the number and location of the
clusters are not intuitively clear. Now kmeans () proves its worth by providing insight on
potential clusters.

The type option for plot() changes the symbol used to indicate points. Setting
type="n" produces a blank plot, but the locations of the data points are remembered by
R. The function text () then prints characters at these data point locations. These are the
cluster labels produced by kmeans (), which is done in output 8.4, and figure 8.5 shows the
resulting plot. Note that the function cbind () combines the vectors heRate and sheRate
as columns into a matrix called heSheRate.

226 TEXT CLUSTERING

o
[= 3
=
© -
oo}
2
S o
5 o °
2 o
2]
o)
q -
o (o] OO
@
= co 4 o °© o
[}
o g o o
o o)
o %4
o -4 o %%m 000 O 8@?5’ oow 00 o o o o
T T T T T T
0 5 10 15 20 25
heRate

Figure 8.4 Scatterplot of heRate against sheRate for Poe’s 68 short stories.

Output 8.4 Computation of two clusters for the heRate and sheRate data.

> heSheRate = cbind(heRate, sheRate)
> plot(heRate, sheRate, type="n")
> text (heRate, sheRate, kmeans(heSheRate,centers=2)$cluster)

Figure 8.5 shows that a group of stories with high rates of ke is identified as a cluster. Since
the computer is doing the work, investigating other values of & is easily done. Output 8.5
shows the code that produces figure 8.6. Note that the command par (mfrow=c(2,2))
creates a two by two grid of plots in this figure.

As the number of clusters goes from two to three, the large cluster on the left in figure 8.5
(its points are labeled with 1’s) is split into two parts. However, the cluster on the right
(labeled with 2’s) remains intact. Remember that the labels of the clusters can easily change,
as shown in output 8.2, so referring to clusters by location makes sense.

Going from three to four clusters, the rightmost one is almost intact (one data value is
relabeled), but a small cluster is formed within the two on the left. Nonetheless, the original
three clusters are relatively stable. For k equals five and six, subdividing continues.

Now that R has done its work, it is up to the researcher to decide whether or not any of
these clusters seem meaningful. We consider cluster 2 for £ = 6. This has stories with high

CLUSTERING 227

1
9_
o -
11
o
I © -
$ 1 . 1
=y
w
]
q_
1 1 11
Ll
o (I ; 2 ,
1
' 111 111))
o d 1 Pmoatrr W 11k 1 2 2 2 2
I I T T T T
0 5 10 15 20 25
heRate

Figure 8.5 Plot of two short story clusters fitted to the heRate and sheRate data.

Output 8.5 Computation of three, four, five, and six clusters for the heRate and sheRate

data.

> par (mfrow=c(2,2))

> plot(heRate, sheRate, type="n")

> text(heRate, sheRate, kmeans(heSheRate,centers=3)$cluster)
> plot(heRate, sheRate, type="n")

> text(heRate, sheRate, kmeans(heSheRate,centers=4)$cluster)
> plot(heRate, sheRate, type="n")

> text(heRate, sheRate, kmeans(heSheRate,centers=5)$cluster)
> plot(heRate, sheRate, type="n")

> text(heRate, sheRate, kmeans(heSheRate,centers=6)$cluster)

usages of she (above 4 per 1000 words), but low usages of ke (below 3 per 1000 words).
The titles printed out by code sample 7.1 are read into R by output 8.6, which prints out the
ones corresponding to the cluster. For more on how this code works, see problem 8.3.

228 TEXT CLUSTERING

3 i
2 ®3 2 @
«s < i
S E 1 T © 1 4 2
= 1 3 < 11
@ < 19 @ < 4.4 2
N 33} 1 2 2 N ﬁf 2 8 3
ﬁi 1!1}3 2 g 1 2 3
(=l | o -
0 5 10 15 20 25 0 5 10 15 20 25
heRate heRate
2 2
2 ® 72 g “ 72
3] 3]
T © 2 4 3 T © 2 6 4
5 <2 5 <2
4.4 3 6.6 4
N 5{ 3 1 4 N - 11§ 4 3 3
?gﬁldé . 3 1 1 5 3
[« [«
0 5 10 15 20 25 0 5 10 15 20 25
heRate heRate

Figure 8.6 Plots of three, four, five, and six short story clusters fitted to the heRate and
sheRate data.

Three of these stories are similar in their literary plots. “Eleonora,” “Ligeia,” and
“Morella" are all told by a male narrator and are about the death of a wife (more pre-
cisely, in “Eleonora” the narrator’s cousin dies before they can wed, and in “Morella,” two
wives in a row die). A human reader also thinks of “Berenice" since in this story the nar-
rator’s cousin also dies before they are to wed. It turns out that this story is not far from
the above cluster (he occurs at 2.80 per 1000, but she only occurs at 2.18 per 1000). “The
Spectacles” is about a man who falls in love and eventually marries, but this story is unlike
the above four stories in that it is humorous in tone. Finally, “The Island of the Fay" is
narrated by a man who sees a female fay (which is a fairy).

The above clustering is rather crude compared to how a human reader groups stories. On
the other hand, the cluster considered did consist entirely of stories with narrators talking
about a woman, though it does not capture all of them. Nonetheless, k-means is detecting
structure among these works.

CLUSTERING 229

Output 8.6 Finding the names of the stories of cluster 2 in figure 8.6 for k = 6.

> poeTitles=read.csv("C:\\Poe 68 Titles.txt",header=F)
> out=kmeans(heSheRate, centers=6)

plot(heRate, sheRate, type="n")

> text(heRate, sheRate, out$cluster)

> as.matrix(poeTitles) [out$cluster==2]

[1] "THE ISLAND OF THE FAY" "ELEONORA" "LIGEIA"
[4] "MORELLA" "THE SPECTACLES"

v

8.2.4 Poe Clusters Using Eight Pronouns

There is nothing special about two variables except for the ease of plotting, and k-means has
no such limitation because it only needs the ability to compute the distance between centers
and data values. The distance formula in n-dimensional space is given by equation 5.9 and
is not hard to compute, so k-means is easily done for more than two variables.

To illustrate this, we use the pronoun data read into Poe8pn in output 8.3. There the
variables heRate and sheRate are created, but by using matrix methods, it is easy to create
rates for all eight variables at once. This is done in output 8.7, which also performs the
k-means analysis with two clusters, and then plots these results for the first two pronouns,
he and she. Note that heRate is the same as PoeSrate[, 1], and that sheRate is the same
as Poe8rate [, 2]. This is easily checked by subtraction, for example, the command below
returns a vector of 68 zeros.

heRate - PoeS8ratel[,1]

Output 8.7 The third-person pronoun rates in Poe’s short stories clustered into two groups,
which are labeled 1 and 2.

> Poe8rate=Poe8pn/size*1000
> out=kmeans (Poe8rate, centers=2); out$cluster
1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22 23
i1 211111 21121212 2121111
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
111111t 1 111122 2 2221112 21
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
1 22 1112111111112 2 2 21 21
> plot(heRate, sheRate, type="n")
> text(heRate, sheRate, out$cluster)

The clusters computed in output 8.7 are plotted in figure 8.7. Note there are similarities
with figure 8.5. For example, cluster 2 for both plots include all the stories with rates of
the word he above 15 words per 1000. However, there are additional points in cluster 2 in
figure 8.7, and these appear to be closer to the other cluster’s center. However, remember
that this only shows two of the eight variables, and so these 2’s are closest to a center in 8
dimensions.

230 TEXT CLUSTERING

1
e_
w——
11
o
T o -
T 1 1 1
£
[2]
.
q_
1 1 12
A
o 11 2 1 2 >
1 ! g 1 2
1 2 2
od 1 Tma111 1183 12% 22 2 2 2 2
T [T T I T
0 5 10 15 20 25
heRate

Figure 8.7 Plots of two short story clusters based on eight variables, but only plotted for
the two variables heRate and sheRate.

The above example reveals one problem when working with 3 or more variables: visu-
alization is hard to do. Since there are 8 variables in this data set, there is a total of 28 plots
of 2 variables at a time. A sample of 4 more projections of the rates is plotted in figure 8.8.

All five plots in figures 8.7 and 8.8 show the same two clusters. They are all just different
views of the eight-dimensional data projected onto planes defined by two axes corresponding
to two pronoun rates. However, there are an infinite number of planes that can be projected
onto, so these five plots are far from exhausting the possibilities. For an example of losing
information by just looking at a few projections, see problem 8.4.

As the number of variables grows, this problem of visualization becomes worse and
worse. And with text, high dimensionality is common. For example, if each word gets
its own dimension, then all of Poe’s short stories are representable in 20,000-dimensional
space.

However, there are ways to reduce dimensionality. In chapter 7, the technique of PCA
is introduced, which is a way to transform the original data set into principal components.
Often a few of these contain most of the variability in the original data set. In the next
section, PCA is applied to the Poe8rate data set.

8.2.5 Clustering Poe Using Principal Components

Output 7.13 shows a PCA of the eight third-person pronouns counts. Since 78.2% of the
variability is contained in the first two principal components, and 84.97% are in the first
three, using only two or three makes sense.

CLUSTERING 231

i &
Do 2 2 A
g 1 g e
o 139 1_@2 2 2 o
T T T T T ©
0 5 10 15 20 25 0 5 10 15 20 25
Poe8rate][, 1] Poe8rate[, 1]
o _| c 2
5 T ©
T 8 2 5 =
s Y1 2 g ©
2 o 4 2, 3 2 °
SR 22 ¢
o i 2
T T T T T o
0 5 10 15 20 25 0 5 10 15 20 25
Poe8rate[, 1] Poe8rate], 1]

Figure 8.8 Four more plots showing projections of the two short story clusters found in
output 8.7 onto two pronoun rate axes.

In this section we do a PCA of the eight pronoun rate variables computed earlier in this
chapter, and then perform clustering using two of the PCs. These results are plotted and
are compared with the clusters in the preceding section. In addition, we compare the PCA
of the rates with the PCA of the counts. Any differences are likely due to the effect of story
size.

Output 8.7 defines the matrix Poe8rate, which is the input to prcomp () in output 8.8.
The cumulative proportions for the PCA model of the pronoun counts (see output 7.13) are
reproduced below.

0.457 0.782 0.8497 0.8992 0.943 0.9716 0.9910 1.0000

Notice that the cumulative proportions of the rate PCs grow even slower, so the variability
is more spread out. The other extreme is output 7.12, where the first PC has 97% of
the variability. In this case, using just one is reasonable because little variability is lost.
However, here the first PC has only 41.6% of it, so considering additional PCs is reasonable.

Output 8.9 gives the weights of the first five PCs of Poe8rate. Note that PC1 compares
the male and female pronouns, and PC2 is close to an average of the pronoun rates. Compare

232 TEXT CLUSTERING

Output 8.8 Principal components analysis of the eight third-person pronoun rates for the
68 Poe short stories.

> out = prcomp(Poe8rate, scale=T)
> summary (out)
Importance of components:
PC1 PC2 PC3 PC4 PC5 PC8
Standard deviation 1.825 1.422 0.867 0.7876 0.7385 0.6165
Proportion of Variance 0.416 0.253 0.094 0.0775 0.0682 0.0475
Cumulative Proportion 0.416 0.669 0.763 0.8404 0.9086 0.9561
PC7 PC8
Standard deviation 0.4968 0.3227
Proportion of Variance 0.0309 0.0130
Cumulative Proportion 0.9870 1.0000

this to output 7.13, where the same interpretations hold except that the order is reversed,
so controlling for story size by using rates increases the importance of gender in pronoun
usage.

Since the later PCs still explain 33.1% of the variability, it is worth checking how
interpretable they are. This is done by noting the largest weights in absolute value, and then
considering their signs. For example, she, her, and hers have the biggest weights in PC3,
where the first two are positive and the last one is negative. So this PC contrasts she and
her with hers. Similarly, PC4 contrasts him with his.

The theory of statistics states that PCs partition variability in a certain way, but practical
importance is a separate issue. Hence, collaboration with a subject domain expert is useful
for interpreting statistical results. Consequently, to decide whether or not these PCs are
interesting is a question to ask a linguist.

Output 8.9 The weights of the first five PCs of Poe8rate from output 8.8.

> out$rotation

PC1 PC2 PC3 PC4 PC5
he 0.3732562 -0.3707989 0.089331837 -0.01265033 -0.3708173
she -0.3965089 -0.3789554 0.375093941 0.05746540 -0.1849496
him 0.3520300 -0.2794273 -0.181195197 0.72612489 -0.2388015
her -0.4004131 -0.3699889 0.250578838 -0.13227136 -0.3614189
his 0.3928507 -0.2949958 0.109616655 -0.53150251 0.1136037
hers -0.2608834 -0.2790116 -0.861791903 -0.24679127 -0.1807408

himself 0.3299412 -0.4193282 0.007583433 -0.15142985 0.3521454
herself -0.2965666 -0.4040092 -0.030729482 0.29232309 0.6863374

Now that the PC weights are computed, these create a new data set of eight uncorrelated
variables. We use all eight PCs for clustering in output 8.10, although only the first two
PCs are plotted in figure 8.9, which represents 66.9% of the variability.

However, clustering using only the first two PCs is also possible, which is done by
replacing the second line of output 8.10 by the command below. Now the square brackets
specify just the first two columns. This is left for the interested reader to try.

CLUSTERING 233

Output 8.10 Computing clusters by using all eight principal components.

pca_poe8rate = scale(Poe8rate) ¥x% out$rotation

out = kmeans(pca_poe8rate, centers=2)
plot(pca_poe8ratel[,1], pca_poe8rate[,2],type="n")
text (pca_poe8rate[,1], pca_poe8rate[,2],out$cluster)

vV V VvV V

> out = kmeans(pca_poe8rate[,1:2], centers=2)

o ")
11
17
1 11 %j%g
— © - 1 1 2
N 1 1 2@ %
7 1] P 2
2 1 2
g - 1 1 2
o ! 2 2a
3
T 1
@
8“1‘-1 22
1 2
N 2
< _|
]
1
I I [| I
-4 -2 0 2 4

pca_poe8rate], 1]

Figure 8.9 Eight principal components split into two short story clusters and projected
onto the first two PCs.

As done in output 8.6, after the models have been run, the last step is to consider what
is in each cluster. In this case, how have the Poe stories been partitioned? And as a human
reader, do these two groups matter? This is also left to the interested reader.

Remember that kmeans () is just one type of grouping. The next section briefly intro-
duces hierarchical clustering. However, there are many more algorithms, which are left to
the references given at the end of this chapter.

234 TEXT CLUSTERING

8.2.6 Hierarchical Clustering of Poe’s Short Stories

Clustering is popular, and there are many algorithms that do it. This section gives an
example of one additional technique, hierarchical clustering.

Any type of clustering requires a similarity measure. The geometric (or Euclidean)
distance between two stories is the distance between the vectors that represent them, which
is used in this chapter. However, other measures are used, for example, the Mahalanobis
distance, which takes into account the correlations between variables. So when reading
about clustering, note how similarity is computed.

The example in this section uses hierarchical clustering and Euclidean distance applied
to the Poe8rate data set . Doing this in R is easy because hclust () computes the former,
and dist () computes the latter.

In hierarchical clustering the groups are summarized in a tree structure, which is called
a dendrogram and resembles a mobile. The code to do this is given in output 8.11, and the
results are given in figure 8.10.

Output 8.11 Computing the hierarchical clustering dendrogram for the 68 Poe stories.

> out = hclust(dist(Poe8rate))
> plot(as.dendrogram(out))

o _
w
(=
=
o -
o -
NN ORI ION QRO = DHOND T ONDTND QAN = ONOD
PN PoT e r S et v A A g N A SRt SV § - A P

Figure 8.10 A portion of the dendrogram computed in output 8.11, which shows
hierarchical clusters for Poe’s 68 short stories.

This figure indicates distances on the y-axis. At the bottom of each branch of the tree there
is a number that labels the story, for example, 1 stands for “The Unparalleled Adventures
of One Hans Pfaall.” The clusters are obtained by cutting a branch of the dendrogram. For
example, stories 40 and 67 form a small cluster (these are second and third from the left in

A NOTE ON CLASSIFICATION 235

figure 8.10). Going a level further up the tree, the following is a cluster: 40, 67, 17, 53, 16,
37. In general, all the stories below any point of the dendrogram constitute a cluster, and it
is up to the researcher to decide which ones are meaningful.

Unfortunately, the numbers at the bottom of figure 8.10 are small and crammed together
due to the size of the tree. However, see problem 8.5 for another example using the transpose
of Poe8rate. This finds the clusters among the eight pronouns.

This ends our discussion of clustering. The next section focuses on classification, and
the chapter ends with references for further reading on this vast subject.

8.3 A NOTE ON CLASSIFICATION

Classification of texts is both practical and profitable. For example, email spam filters are
big business. However, we do not cover this because it requires a training data set. The
other examples in this book use text that is available over the Web and in the public domain.
However, public domain collections of text that are already classified are rare.

In addition, many texts in this book come from famous writers, for example, Charles
Dickens and Edgar Allan Poe, and almost all of their literary output is known. So training
an algorithm on what they have written in order to classify newly discovered works is rarely
needed.

When working with classification algorithms, researchers avoid overfitting because this
usually generalizes poorly. However, literary critics often search for peculiarities of a
specific text, or for the subtle interconnections of a group of texts. So overfitting a com-
plete body of work can be profitable if it uncovers information interesting to a researcher.
However, the results can be trivial, too, as seen in the example in the next section.

8.3.1 Decision Trees and Overfitting

A decision tree algorithm classifies objects by creating if-then statements of the following
form.

If Property P is true, then classify object with Label L.

If a researcher uses words to classify texts without worrying about overfitting, then it is
easy to identify any group of texts. This is a consequence of Zipf’s law (see section 3.7.1)
because it implies there are numerous words that only appear once in any collection of texts.

Here is an example of this using Poe’s short stories. Suppose a rule is desired to select
exactly the following: “The Balloon Hoax," “X-ing a Paragrab,” “The Oblong Box," and
“The Sphinx." These stories are arbitrary, and the idea below works for any group of Poe
stories.

This is one rule that works. A Poe story is one of these four if and only if it has one of the
following words: authentic, doll, leak, or seventy-four. This rule is created by examining a
frequency list of words for all 68 stories put together. By Zipf’s law this contains numerous
words that appear exactly once. Among these, one word for each of these four stories is
picked. There are many such words, so there are many rules like this, but few, if any, provide
any insight into the literary similarities of this group.

In spite of this example, decision rule algorithms can be useful. For more information on
this, look at the appropriate references in the next section. Finally, for some specific advise
on finding the above rule using Perl, see problem 8.6, which reveals one trivial property
that these four stories do share.

236 TEXT CLUSTERING

8.4 REFERENCES

This chapter is just an introduction to clustering. Many more techniques exist in the litera-
ture, and many functions to do clustering exist in R. For another introductory explanation of
this, see chapter 8 of Daniel Larose’s Discovering Knowledge in Data [69]. For clustering
applied to the Web, see chapters 3 and 4 of Zdravko Markov and Daniel Larose’s Data
Mining the Web [77). Both of these books give clear exposition and examples.

For clustering applied to language, start with chapter 14 of Christopher Manning and
Hinrich Schiitze’s Foundations of Statistical Natural Language Processing [75]. Then try
Jakob Kogan’s Introduction to Clustering Large and High-Dimensional Data {66]. This
book focuses on sparse data, which is generally true for text applications.

Clustering belongs to the world of unsupervised methods in data mining. For an in-
troduction that assumes a strong statistical background, see chapter 14 of Trevor Hastie,
Robert Tibshirani, and Jerome Friedman’s The Elements of Statistical Learning [52]. This
book also discusses a number of other data mining techniques. Sholom Weiss, Nitin In-
durkhya, Tong Zhang, and Fred Damerau’s Text Mining [125] also covers both clustering
and classification, and also discusses the links between data mining and text mining.

There are many more books, but the above are informative and provide many further
references in their bibliographies.

8.5 LASTTRANSITION

Chapters 4 through 8 each focus on different disciplines that are related to text mining. For
example, chapter 5 shows how to use the technique of term-document matrices to analyze
text. Moreover, chapters 2 through 8 give extensive programming examples.

Chapter 9, however, introduces three, short topics in text mining. These include brief
programming examples that are less detailed than the rest of this book. These, along with
references to books that deal with text mining directly, provide some parting ideas for the
reader.

PROBLEMS

8.1 Insection8.2.1itisclaimed that for k groups and n data values, there are k™ partitions.
This problem shows why this is the case.

a) Any clustering is representable by a vector with n entries, each with a label of a
number from 1 through k. In fact, this is how kmeans () indicates the clusters it
has found; for example, see output 8.2.

Suppose there are only two data values, hence only two entries in this vector.
The first can have any label from | through k. For each of these, the second entry
also can have any label from 1 through k. This makes k choices for the first, and
for each of these, k choices for the second. So for both labels, there are & times
k, or k2, choices.

Extend this argument for n entries, each having & choices. This justifies the
claim made at the beginning of section 8.2.1.

b) The above argument, unfortunately, is a simplification. For example, the third
and fourth repetitions of kmeans() in output 8.2 represent the same clusters,
but they are labeled with different numbers. Counting up the number of groups
without duplications from changing labels requires a more complicated approach,

PROBLEMS 237

which is not done here. For more information, see chapter 1 of Constantine’s
Combinatorial Theory and Statistical Design [32].

8.2 Asdiscussedin section 8.2.1, for two centers, the plane is divided into two half-planes.
For each, all the points in it are closer to its center than to the other center, and the dividing
line between these is the perpendicular bisector of the line segment between the centers.

For three or more centers, the situation is more complex and requires a more sophisticated
algorithm. The result is called a Voronoi diagram, which is interesting to see. Since there
is an R function to do it, we consider an example here.

Like Perl, R also has packages that are downloadable, which provide new functions for
the user. The most current information on how to do this is at the Comprehensive R Archive
Network (CRAN) [34], so it is not described in this book. For this problem, go to CRAN
and figure out how to perform downloads, and then do this for the package Tripack [105].

Then try running output 8.12, which creates the Voronoi diagram for a set of 50 random
centers where both coordinates are between 0 and 1. That is, these are random points in the
unit square. Your plot will resemble the one in figure 8.11, where the stars are the centers
and each region is a polygon with circles at its corners.

Output 8.12 Creating a Voronoi diagram for a set of 50 random centers for problem 8.2.

> x = runif (50)

> y = runif(50)

> out = voronoi.mosaic(x, y)
> plot.voronoi(out)

8.3 This problem discusses how to select subsets of a vector in R. In output 8.6, story
titles are printed that corresponded to one of the clusters found by kmeans(). This is
accomplished by putting a vector of logical values in the square brackets.

Output 8.13 reproduces output 8.6 and, in addition, shows that the names of the stories
are selected by TRUEs. In this case, these are the titles of the stories in cluster 2.

Output 8.13 Using a logical vector to select a subset of another vector for problem 8.3.

> poeTitles=read.csv("C:\\Poe 68 Titles.txt", header=F)

> out=kmeans (heSheRate,centers=4)

> plot(heRate, sheRate, type="n")

> text(heRate, sheRate, out$cluster)

> out$cluster==

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[11] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
{21] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[31] TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[41] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[51] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

> as.matrix(poeTitles) [out$cluster==2] '

[1] "THE ISLAND OF THE FAY" "ELEONORA" "LIGEIA"

[4] "MORELLA" "THE SPECTACLES"

238 TEXT CLUSTERING

Voronoi mosaic

out

Figure 8.11 The plot of the Voronoi diagram computed in output 8.12.

Try this trick with simpler vectors using output 8.14 as a model. Note that the function
seq() produces a sequence of values. Its first and second arguments are the starting and
stopping values, and the third argument is the increment. Finally, the logical operators in R
are the same as the numerical ones in Perl: == for equals, > for greater than, and so forth.

a) Construct a vector with the values 1 through 100 inclusive and then select all the
multiples of 7. Hint: %% is the modulus operator, which returns the remainder
when dividing an integer by another one.

b) Construct a vector with the values 1 through 100 inclusive. Select a sample such
that every value has a 10% chance of being picked. Hint: try using runif (100) <
0.10. Note that runif (n) returns a vector containing n random values between
Oand 1.

¢) Construct a vector with the values 1 through 100 inclusive. Take a random sample
of size 10 using sample().

d) Perform arandom permutation of the numbers 1 through 100 inclusive. Hint: use
sample (). This also can be done by using order () as shown in code sample 9.7.

8.4 Section 8.2.4 claims that a finite number of projections loses some information from
the original data set. To prove this requires knowledge about calculus and the Radon trans-
form. This problem merely gives an example of information loss when two-dimensional
data is projected onto the x and y-axes.

PROBLEMS 239

Output 8.14 Examples of selecting entries of a vector. For problem 8.3.

> x = seq(1, 10, 1)
> x
[11] 1 2 3 4 5 6 7 8 910
> x[x %% 3 == 0]
[1] 36 9
> x[runif (10) > 0.50]
f11 1 5 6 7 10
> x[{runif (10) > 0.50]
(1 1 2 4 5 6 10
> x[runif (10) > 0.50]
(13127
> sample(x, 3)
[1] 281
> sample(x, 3)
[11 7 2 3
> sample(x,length(x))
[1] 9 4 810 1 6 3 7 5 2
> sample(x,length(x))
[1] 2 4 1 3 510 8 7 6 9

Consider the four two-dimensional plots in figure 8.12. All have points distributed
uniformly in certain regions. All the projections of these four plots onto either the x or
y-axis produces a uniform distribution. In fact, these four plots suggest numerous other
two-dimensional distributions with uniform projections. Hence two projections do not
uniquely determine the two-dimensional distribution of the data.

Unfortunately, this problem only gets worse when higher dimensional data is projected
onto planes. Nonetheless, looking at these projections is better than not using visual aids.

For this problem, generate the top two plots for this figure with R. Then produce his-
tograms of the projections onto the = and y-axes using the following steps.

a) For the upper left plot, the = and y-coordinates are random values from 0 to 12.
These are produced by output 8.15. The projections of these points onto the x-axis
is just the vector x. Hence hist (x) produces one of the two desired histograms.
Do the same for the y-axis.

Output 8.15 Code for problem 8.4.a.

> x = runif (1000)*12
> y = runif (1000)*12
> plot(x, y)

> hist(x)

b) For the upper right plot, the z and y-coordinates are either both from 0 to 6 or
both from 6 to 12. These are produced by output 8.16. Use them to create the
two desired histograms.

240 TEXT CLUSTERING

g 2
2 2
0 2 4 6 8 10
xSquare xSquare2
o
303
o o @©
: g
@ > <
>
(=]
T T 1T T 1
0 2 4 6 8 10 0 2 4 6 8 10

xSquare3

Figure 8.12 All four plots have uniform marginal distributions for both the x and y-axes.
For problem 8.4.

Output 8.16 Code for problem 8.4.b.

> X
>y

c(runif (500)*6, runif(500)*6+6)
c(runif (500)*6, runif(500)*6+6)

8.5 When working with term-document matrices, it is common to focus on word distri-
butions in texts, but there is another point of view. A researcher can also analyze the text
distribution for a word, which emphasizes the rows of the term-document matrix. This
provides insight on how certain words are used in a collection of documents.

After reading the material on hierarchical clustering in section 8.2.6, try to reproduce
output 8.17 and figure 8.13 to answer the questions below. Hint: use output 8.11 replacing
Poe8rate with its transpose.

a) Which two pronouns are farthest apart according to output 8.17? Find these on
the dendrogram.

b) The pronouns he and his form a group as does she and her. Notice that the bar
connecting the latter is lower than the one for the former. Find the distances
between these two words for each pair to determine exactly how high each bar is.

PROBLEMS 241

Output 8.17 Distances between every pair of columns in Poe8rate. For problem 8.5.

> dist (t (Poe8rate))

he she him her his hers himself
she 73.8112
him 57.5437 29.1106
her 73.9414 20.5586 40.1233
his 40.3734 76.7224 61.9131 77.5598

hers 77.5684 21.0204 26.1771 37.5787 79.3582
himself 71.1354 20.3757 20.5020 36.1270 72.6496 8.1322
herself 77.2866 20.2461 25.9152 36.9459 79.1043 1.3400 7.8749

80

40

she
her
him
he
his

0
]
himself \l

hers
herself

Figure 8.13 The dendrogram for the distances between pronouns based on Poe’s 68 short
stories. For problem 8.5.

¢) It pays to think about why a result is true. For example, the main reason that hers
and herself are close as vectors is that they both have many rates equal to zero,
and even the nonzero rates are small. Confirm this with a scatterplot. However,
two vectors with many zero or small entries are close to each other.

8.6 Section 8.3.1 gives an example of a rule that decides if a Poe story is one of four
particular stories. For this problem, find the words that appear exactly once among all of
his stories, and then identify which stories each word appears in.

242 TEXT CLUSTERING

Here are some suggestions. First, use code sample 7.1 to compute word frequencies for
each story by itself and for all of them put together. The former are stored in the array of
hashes @dict, the latter in the hash %combined.

Second, print out each of the words that appear exactly once in %combined, as well as
the story in which it appears. The latter part can be done by a for loop letting $i go from
0 through 67. Then exactly one of these entries $dict [$i]{$word} is 1 for any $word
found to appear exactly once in %combined. Finally, use the array @name to print out the
title of this story.

The list just made allows any set of stories to be identified. For example, authentic
appears only in “The Balloon Hoax," doll in “X-ing a Paragrab," leak in “The Oblong
Box," and seventy-four in “The Sphinx." Hence, the rule given in the text works.

Finally, what do these four stories have in common? They are exactly the ones that
contain the letter x in their titles.

CHAPTER 9

A SAMPLE OF ADDITIONAL TOPICS

9.1 INTRODUCTION

Chapters 2 through 8 all have a theme. For example, regular expressions and data structures
underlie chapters 2 and 3, respectively, and chapter 8 focuses on clustering. This one,
however, covers three topics in less detail. The goal is to give the interested reader a few
parting ideas as well as a few references for text mining.

9.2 PERL MODULES

Not only is Perl free, there are a vast number of free packages already written for Perl.
Because the details of obtaining these depends on the operating system, see The Com-
prehensive Perl Archive Network (CPAN) Web site http://cpan.perl.org/ [54] for
instructions on how to download them.

Perl packages are called Perl modules, which are grouped together by topic. Each name
typically has two or three parts, which are separated by double colons. The first part usually
denotes a general topic, for example, Lingua, String, and Text. The second part is
either a subtopic or a specific module. For instance, Lingua’s subtopics are often specific
languages; for example, Lingua: : EN for English and Lingua: : DE for German (DE stands
for Deutsch). Our first example is from the former.

Practical Text Mining with Perl. By Roger Bilisoly 243
Copyright (© 2008 John Wiley & Sons, Inc.

244 A SAMPLE OF ADDITIONAL TOPICS

9.2.1 Modules for Number Words

Lingua: :EN: :Numbers [21] has a three-part name, where Lingua stands for language,
and EN for English. The third part states what the package does in particular, and in this
case, it involves numbers.

CPAN gives information about each module and tells us there are two functions in
this one: num2en and num2en_ordinal. The former converts a number into English,
for example, num2en (6) returns the string six. Not surprisingly, num2en_ordinal (6)
returns the string sixth. An example of the former is given below.

Once a package has been downloaded to the correct place in the computer, the function
use makes it accessible to the programmer. Code sample 9.1 and output 9.1 show how to
invoke num2en. Note that at the end of the use command, the name of the desired function
(or functions) are listed. Once these are declared, however, they are used like any other
Perl function. Finally, if use attempts to access a module that has not been downloaded,
then an error occurs that prints out a statement like, “Can’t locate Lingua/EN/Numbers.pm
in @INC" Note that the file extension pm stands for Perl Module.

Code Sample 9.1 Loading the module Lingua: :EN: : Numbers and then using the function

num2en.

use Lingua::EN: :Numbers num2en;

print num2en(-6), "\n", num2en(1729), "\n", num2en(1.23);

Output 9.1 Results from code sample 9.1.

negative six
one thousand seven hundred and twenty-nine
one point two three

As an aside, recall program 3.5, which makes an anagram dictionary from a word list.
This is easily changed into an anagram dictionary for numbers. Are there two of these that
are anagrams? The answer is yes, for example, sixty-seven and seventy-six. However, this
just exchanges the words six and seven, that is, the same digits are used in both numbers.
Are there two numbers that are anagrams, but their digits are not?

This task is much harder without this package. In general, when faced with a text mining
challenge, first searching through CPAN for applicable modules is prudent. If there is a
module there, then the programming is much easier. If no such module exists, and if you
create a program yourself, then this is a chance to convert your code into a module and give
back to the Perl community.

Since EN stands for English, perhaps number modules for other languages exist, and this
is true. For example, Lingua: :DE: : Num2Word [60] translates numbers into German. This
is done in code sample 9.2, which produces output 9.2.

There are other languages that have a numbers module, and the reader can search CPAN
for these. The next module we consider provides lists of stop words in a variety of languages.

PERL MODULES 245

Code Sample 9.2 The analog of code sample 9.1 for German.

use Lingua::DE: :Num2Word num2de_cardinal;
for (81 = 1; $i <= 3; ++3%1) {

print num2de_cardinal($i), ", ";

}

print "...\n";

Output 9.2 Results from code sample 9.2.

ein, zwei, drei,

9.2.2 The StopWords Module

Stop words are common function words that often do not add anything to a text analysis
such as the prepositions of and up, which is discussed in section 6.3.1. However, one
researcher’s stop words is another’s research topic. For example, when studying phrasal
verbs, then prepositions are important.

The module Lingua: : StopWords [102] provides an array of stop words for 12 lan-
guages. Code sample 9.3 shows how to obtain these for English and German, and output 9.3
shows the beginning of each list.

Code Sample 9.3 Example of the module Lingua: : StopWords.

use Lingua::StopWords getStopWords;
$n = ? ,) ;

$reference = getStopWords(’en’); # English
@stoplist = keys %{$reference};
print "@stoplist\n";

$reference = getStopWords(’de’);
@stoplist = keys Y{$reference}; # German
print "@stoplist\n";

Note that the function getStopWords produces a hash reference. So @stoplist is
created by dereferencing this, then applying keys to the result, which is then printed out.

Moving on, the module in the next section returns one last time to sentence segmentation.
This is analyzed several times in chapter 2, and here is yet another solution.

9.2.3 The Sentence Segmentation Module

Sentence segmentation is done in sections 2.6 and 2.7.3. Lingua: :EN: : Sentence [127]
also does this task. Code sample 9.4 applies this module to Edgar Allan Poe’s “The Oval
Portrait."

246 A SAMPLE OF ADDITIONAL TOPICS

Output 9.3 The first few words of the English and German stoplists from code sample 9.3.

these,you,both,which,my,didn’t,if,we’1ll,himself,him,own,doesn’t,
he’11,each,yours,vwhat,them,there’s,your,again,but,too,and,why’s,
over,shan’t,of ,here’s,

einiger,habe,kann,deinen,da,anderr ,meiner,dann,einer ,meines,
hat,gewesen,eure,solche,ihre,mich,vom, sehr,also,allem, jener,
warst,alle,solchem,eures,

Code Sample 9.4 Example of the module Lingua: :EN: : Sentence, which does sentence
segmentation.

use Lingua::EN::Sentence get_sentences;

$/ = undef; # Slurp mode

open(IN, "poe_oval_portrait.txt") or die;
$text = <IN>;

close(IN);

$reference = get_sentences($text);
foreach $x (@{$reference}) {

print "$x\n\n";
}

Output 9.4 The first three sentences of Poe’s “The Oval Portrait” found by code sample 9.4.

THE chateau into which my valet had ventured to make forcible
entrance, rather than permit me, in my desperately wounded
condition, to pass a night in the open air, was one of those
piles of commingled gloom and grandeur which have so long
frowned among the Appennines,

not less in fact than in the fancy of Mrs. Radcliffe.

To all
appearance it had been temporarily and very lately abandoned.

We established ourselves in one of the smallest and least
sumptuously furnished apartments.

As in the last section, the function get_sentences returns a reference to an array. This
is dereferenced, and then the result is looped over by the foreach statement. Each entry
is one sentence, of which the first three are shown in output 9.4.

All three modules considered above supply the programmer with new functions. How-
ever, there is another way to provide them, which is through the object-oriented

PERL MODULES 247

programming paradigm. Although learning how to program this way requires effort, it
is easy to use when provided by a module, which is shown in the next section.

9.2.4 An Object-Oriented Module for Tagging

Object-oriented (OO) programming emphasizes modular code, that is, breaking a large
program into distinct pieces. How to program this way is not discussed here, but see
Conway’s Object Oriented Perl [33] for a detailed explanation. This section only gives one
example of using an OO module.

When analyzing a text, knowing the parts of speech can be useful. For example, iden-
tifying verbs and prepositions helps an analysis of phrasal verbs. A program that labels
words by their part of speech is called a tagger. The details of how this is done requires
sophisticated language models. One approach uses hidden Markov models (HMM). For
an example, see section 9.2 of the Foundations of Statistical Natural Language Processing
[75]. However, using a tagger does not require knowing the theoretical details.

The key to using an OO module is the creation of objects. Although OO programming
arose from the needs of software engineering, the core idea is simple. Objects are a way to
group related subroutines together, and the latter are called methods.

The module Lingua: :EN: : Tagger [30] is a tagger, as its name suggests. Code sam-
ple 9.5 shows an example of how it is used. Note that $taggerObject is an instance of an
object that has the method add_tags, which adds tags to text. The symbol -> points to a
method, which is the same syntax used for references (see section 3.8.1). Hence, new is a
method that creates the desired object. Output 9.5 displays the results.

Code Sample 9.5 Example of the object-oriented module Lingua: :EN: : Tagger, which
is a parts-of-speech tagger.

use Lingua::EN::Tagger;
$taggerObject = Lingua::EN::Tagger->new;

$text = "He lives on the coast.";
$tagged_version = $taggerObject->add_tags($text);

print "$tagged_version\n";

Output 9.5 The parts of speech found by code sample 9.5.

<prp>He</prp> <vbz>lives</vbz> <in>on</in> <det>the</det>
<nn>coast</nn> <pp>.</pp>

These tags are similar to the ones in the Penn Treebank, which are widely known. For
example, VBZ stands for the singular, third-person form of a verb, and note that these are
XML style tags. Although code sample 9.5 looks a little different from the programs earlier
in this book, it is straightforward to use.

This module also includes other methods, for example, get_sentences, which (like the
module in the preceding section) segments sentences. Finally, before leaving modules, the
next section mentions a few more of interest, although without examples.

248 A SAMPLE OF ADDITIONAL TOPICS

9.2.5 Miscellaneous Modules

There are a vast number of modules in CPAN, and new modules are added over time. For
the latest information, go to the CPAN Web site {54]. This section just mentions a few more
examples to whet your appetite.

First, some of the modules are recreational. For example, Acme: :Unlautify [101]
takes text and adds umlauts to all the vowels (including e, i, and y). Perhaps this is silly,
but it is all in good fun.

Second, there are many modules that start with Math or Statistics. Forexample, there
are modules to work with matrices, so Perl can be used instead of R in chapter 5. There
are also modules to compute statistical functions like standard deviations and correlations.
For more on this see Baiocchi’s article “Using Perl for Statistics" {8]. However, R can do
many complex statistical tasks like kmeans () and helust (), so it is worth learning, too.
Finally, there is a module called Statistics: :R that interfaces with R, so Perl can access
it within a program and then use its output for its own computations.

Third, some of the modules are quite extensive and add amazing capabilities to a program,
although only one is noted here. LWP [1] enables a Perl program to go online and directly
access text from the Web, which is a text miner’s dream come true. For example, like a
browser, it can request the HTML code of a Web page and then store the results in a Perl
variable, which is then available for use throughout the program. This module is complex
enough that there is a book devoted to it: Perl & LWP by Burke [20].

Finally, just as Perl has modules available from CPAN, R also has downloadable libraries
from the Comprehensive R Archive Network (CRAN) [34]. So before starting a major pro-
gramming task, it is worth checking these two Web sites for what already exists. Remember
that if you desire some capability enough to program it, then someone else probably felt
the same way, and this person might have uploaded their work.

9.3 OTHER LANGUAGES: ANALYZING GOETHE IN GERMAN

All the texts analyzed in the earlier chapters are in English, but this only reflects my status
as a monoglot. English uses the Roman alphabet with few diacritical marks, in fact, using
no marks is common. Many languages also use the Roman alphabet, but with diacritical
marks or extra letters. For example, German has the umlaut (which can be used with the
vowels a, o, and u), and the double s, denoted f§ in the lowercase, and called Eszett in
German. In addition, there are other alphabets (Greek, Cyrillic, Hebrew, and so forth), and
some languages use characters instead (for example, Chinese).

Thanks to the Unicode standard, a vast number of languages can be written in an elec-
tronic format, hence ready for text mining. However, languages are quite different, and an
analysis that is useful in one might be meaningless in another.

As a short example, a frequency analysis of letters and words is done for the first volume
of the German novel Die Leiden des jungen Werthers by Johann Wolfgang von Goethe.
Although German and English are closely related in the Indo-European language tree, they
also have numerous differences, and some of these are immediately apparent by looking at
letter and word frequencies.

First we compute the letter frequencies for this novel. This is done with program 4.3 in
section 4.2.2.1. Applying this to Goethe’s novel produces table 9.1, which builds on out-
put 4.2 by comparing the letter frequencies of Goethe’s novel to those of Charles Dickens’s
A Christmas Carol and Poe’s “The Black Cat."

OTHER LANGUAGES: ANALYZING GOETHE IN GERMAN 249

Table 9.1 Letter frequencies of Dickens’s A Christmas Carol, Poe’s “The Black Cat,"
and Goethe’s Die Leiden des jungen Werthers.

e: 14869 e: 2204 e: 14533
t: 10890 t: 1600 n: 9232
0: 9696 a: 1315 i; 7596
a: 9315 o: 1279 r: 5483
h: 8378 i: 1238 s: 5217
i: 8309 n: 1121 h: 5020
n: 7962 h: 985 t: 4862
s: 7916 r: 972 a: 4483
r: 7038 s: 968 d: 4307
d: 5676 d: 766 u: 3387
1: 4555 1. 684 1. 3161
u: 3335 m: 564 c: 3093
w: 3096 f: 496 m: 2714
c: 3036 c: 488 g: 2541
g: 2980 u: 471 w: 1708
m: 2841 y: 387 o: 1629
f: 2438 w: 358 b: 1538
y: 2299 p: 329 f: 1237
pr 2122 g: 292 z: 997
b: 1943 b: 286 k: 954
k: 1031 v: 152 v: 682
v: 1029 k: 80 i: 568
x: 131 x: 33 a: 494
jr 113 j 16 B: 421
q: 97 q: 13 p: 349
z. 84 . 6 0: 200
j: 136
q: 14
U:12
y: 8
x: 5
A:s
0:2

The third column is clearly longer than the other two, which has three causes. First, the
umlauted vowels are distinct from the nonumlauted vowels. Second, the Perl function 1c
does not apply to capital, umlauted vowels. For example, the letters 4 and A are counted
separately. Finally, German has the f3, as noted above.

Moreover, the order of the letters in the third column s different than the first two columns
(which are quite similar). The letter e is the most common in all three texts, and ¢ is ranked
second in the first two columns, but seventh in the third, and » is ranked second in Goethe,
but seventh and sixth in the English texts. Looking at the infrequent letters, while z ranks
last in English, it is much more common in German.

For a final, basic analysis of this German novel, we compute the word counts. Re-
member that section 2.4 discusses three problematic punctuations: dashes, hyphens, and
apostrophes. Goethe certainly used dashes. However, there is only one case of two words
connected with a hyphen: Entweder-Oder. Although compound words are plentiful in

250 A SAMPLE OF ADDITIONAL TOPICS

German, these are combined without hyphens. Apostrophes are rare in German, but Goethe
does use them for a few contractions, for example, hab’for habe and gibt’s for gibt es. Note
that German has many contractions that do not use an apostrophe, for example, aufs for auf
das.

For finding the words in this novel, dashes are removed, hyphens are no problem, and
there are apostrophes, but these are used for contractions, not quotations. Code sample 9.6
shows how the punctuation is removed. Note there is one problem with this: using 1c
does not change the case of capital umlauted vowels, but according to table 9.1, this only
happens 19 times, so this complication is ignored.

Code Sample 9.6 How punctuation is removed from Goethe’s Die Leiden des jungen
Werthers.

while (<TEXT>) {
chomp;
$_ = 1lc; # Change letters to lower case
s/--/ /g; # Remove dashes
s/[,.";107:_«\[\11//g;
s/\s+/ /g; # Replace multiple spaces with one space
@uords = split(/ /);
foreach $word (@words) {
++$freq{$word};
}
¥

Writing a program to print out the word frequencies has been done: see program 3.3.
Output 9.6 shows the 10 most common words in the novel.

Output 9.6 The 10 most frequent words in Goethe’s Die Leiden des jungen Werthers.

und, 700
ich, 602
die, 454
der, 349
sie, 323
das, 277
zu, 259
in, 216
nicht, 200
mich, 182

The most frequent word is und (and), which is also common in English (for example,
see output 3.21, which shows that and is the second most frequent word in Dickens’s A
Christmas Carol). Second most frequent is ich (I). The first part of the novel is written as
a series of letters from Werther (the protagonist) to his close friend Wilhelm, so it is not
surprising that the first-person, singular pronoun is used quite often.

The most common word in English is the, and this is true in German, too. In fact,
output 9.6 also shows that this is true in spite of the und at the top of the list. This happens

PERMUTATION TESTS 251

because German has several inflected forms of the word the, which depends upon the case,
grammatical gender, and number of the noun. Discussing the relevant German grammar
is too much of a diversion, but table 9.2 gives an example of the different forms of the
used with the word Mensch in Goethe’s novel, which were found by concordancing. The
lines shown are a subset of those produced by code samples 6.7, 6.8, and 6.10 used with
program 6.1. All six lines shown have a form of the in front of Mensch, a masculine noun.

Table 9.2 Inflected forms of the word the in Goethe’s Die Leiden des jungen Werthers.

7 Ibst und alles Gliick, das dem Menschen gegeben ist.

9 merzen wiren minder unter den Menschen, wenn sie nicht — Gott wei
16 b’ ich nicht — o was ist der Mensch, daf er liber sich klagen darf
18 oldenen Worte des Lehrers der Menschen:"wenn ihr nicht werdet wie
27 Freund, was ist das Herz des Menschen! Dich zu verlassen, den ic
34 , was ich Anziigliches fiir die Menschen haben muf}; es mogen mich ih

To get a total number of uses of the in German, the counts in table 9.3 must be summed.
This totals 1450, which is much larger than the number of times und appears (only 700),
S0 the is the most common word in this text. Note, however, German utilizes the in more
ways than is true in English. For example, many forms (but not all) of relative pronouns
match a form of the.

Table 9.3 Counts of the six forms of the German word for the in Goethe’s Die Leiden
des jungen Werthers.

die 454
der 349
das 277
den 164
dem 138
des 68
total 1450

Even the simple analysis above shows that assumptions about English may or may not
hold for German in spite of their close relationship. This suggests that fluency in the
language of a text is important when doing text mining, which is just common sense.

Finally, corpora of other languages have been created, and these have been analyzed for
various purposes. To name one example, A Frequency Dictionary of German [63] gives
a list of just over 4000 words in order of frequency. Such a book is useful for beginning
students of German.

9.4 PERMUTATION TESTS

In section 4.5, the bag-of-words model is discussed. This underlies the term-document
matrix, the topic of section 5.4. Recall that this matrix has a column for every text and
a row for every term. The intersection of each row and column contains the count of the
number of times the term appears in that document. However, the term-document matrix

252 A SAMPLE OF ADDITIONAL TOPICS

of any permutation of a text is the same as the original text. That is, word order makes no
difference.

Obviously, the bag-of-words model is incorrect. For example, much of the grammar in
English restricts word order. On the other hand, the term-document matrix is useful because
it performs well in information retrieval tasks. So the question becomes, when does word
order matter in English?

To answer this assume that word order is irrelevant for a particular function, which is
applied to many random permutations of a text. Then these values are compared to the
value of the original. If the latter seems consistent with the permutation values, then this
function probably does not depend on word order for this text. Hence, using a technique
like the word-document matrix probably poses no problems in this situation. However, if
this is not true, then ignoring word order probably loses information.

Note that looking at all permutations of a text is impossible. There are n! permutations
for n objects, and this means that even a 100-word text has 100! ~ 9.33262 x 1057 different
orders. Hence, analyzing a sample is the best a researcher can do.

Also note that the unit of permutation makes a big difference. For example, a character-
document matrix (that is, counting characters in texts) preserves little information. Perhaps
languages can be distinguished this way, for example, see table 9.1 for such a matrix
comparing a German novel to two English novels. But it is unclear what else is discernible.

At the other extreme, taking a novel and changing the order of the chapters might be
readable. For example, the chapters of William Burroughs’s Naked Lunch were returned
out of order by his publisher, but Burroughs decided to go ahead using this new order (see
page 18 of Burroughs’ Word Virus [221).

The goal in the next two sections is to test this idea of comparing permutations to the
original text. The next section discusses a little of the statistical theory behind it, and the
section after gives two examples.

9.4.1 Runs and Hypothesis Testing

We start with a simple example to illustrate the idea of comparing the original value to the
permutation values. Then this technique is applied to A Christmas Carol and The Call of
the Wild.

Suppose the sequence of zeros and ones in equation 9.1 is given, and a researcher wants
to test the hypothesis that these are generated by a random process where each distinct
permutation is equally likely. Note that permutations do not change the number of 0’s and
1’s, and this is consistent with the bag-of-words model, which fixes the counts, but ignores
the order.

1111111111110000000011111 9.1)

The sequence in equation 9.1 does not seem random, but how is this testable? The metric
used here is based on the number of runs in the data. The first run begins at the start and
continues until the value changes. Where it does change is the start of the second run, which
ends once its value changes again, which is the start of the third run, and so forth. So for
the above sequence, there are three runs: the first twelve 1's, the next eight 0’s, and the last
five 1’s.

Next, compute a large number of random permutations and for each of these, compute
the number of runs. This generates a set of positive numbers, which can be summarized with
a histogram. If three runs is near the left end of the histogram (so that most permutations

PERMUTATION TESTS 253

have more), then this hypothesis of the randomness of the above data is unlikely. If three
is a typical value near the center of the histogram, then this hypothesis is supported by
this data. However, randomness is not proven since other measures might reveal that this
hypothesis is unlikely.

The above procedure is straightforward to do in R. Code sample 9.7 defines a function
that produces n random permutations, and counts the number of runs in each one. These
are obtained by generating uniform random numbers and then using the order () function
to find the permutation that sorts these numbers into order. Since the original values are
random, the resulting permutation is random. This also can be done by using sample ()
(see problem 8.3.d). Finally, runs occur exactly when two adjacent values are not equal,
and this is tested for and counted in the line that assigns a value to nruns, the number of
runs. These results are stored in the vector values.

Code Sample 9.7 An R function that computes the number of runs for n random permuta-

tions of an input vector, x.

> runs_sim
function(x, n) {
Computes n random permutations of x, a vector
Returns the numbers of runs, one for each permutation
values = matrix(0, 1, n)
for (i in 1:n) {
perm = x[order(runif (length(x)))]
nruns = sum(perm[-1] != perm[-length(x)]) + 1
values[i] = nruns
}

return(values)

Output 9.7 shows the code that produces a histogram of the number of runs for each of
100,000 random permutations. Clearly values around 13 are typical in figure 9.1, and since
3 occurs exactly once (applying sum to the logical test of equaling 3 returns 1, and 3 is the
minimum value), the probability of such a low number of runs is approximately 1/100,000
= 0.00001.

Output 9.7 This produces a histogram of the number of runs after permuting the vector
data 100,000 times using the function defined in code sample 9.7.

> data = c(rep(1,12), rep(0,8), rep(1,8))
> data
(1] 111111111 1110000000011111111
> Counts_of_Runs = runs_sim(data,100000)
> hist(Counts_of_Runs)
> min(Counts_of _Runs)
(1] 3
> sum(Counts_of_Runs <= 3)
(1] 1

254 A SAMPLE OF ADDITIONAL TOPICS

(=3
o
Q -
(=]
N
(=4
(=3
o -
9
>
Q
5 o
2 Q
g 87
u_1_
(]
Q
Q
Yol
|
o |
[I T T I T |
4 6 8 10 12 14 16

Counts_of_Runs

Figure 9.1 Histogram of the numbers of runs in 100,000 random permutations of digits
in equation 9.1.

Since this probability estimate is extremely low, we conclude that the original data values
are not consistent with the hypothesis of random generation. This result can be checked
using the R package tseries [118], which has runs.test (). It reports a p-value equal
to 0.0000072, which is quite close to the above estimate. With this example in mind, we
apply this to texts in the next section.

9.4.2 Distribution of Character Names in Dickens and London

We apply the technique of the preceding section to names in a novel. Since the plot structure
determines when characters appear or are discussed, this is not random, so it is an interesting
test to see what an analysis of runs detects.

The first example uses the names Scrooge and Marley in Dickens’s A Christmas Carol.
First, note that a random permutation of all the words in the story induces a random per-
mutation of these two names. Hence, it is enough to list the order these names appear in
the novel, and then randomly permute these to do the analysis.

Concordancing using program 6.1 makes it easy to find and print out just these two
names in the order they appear in the novel. To save space, let O stand for Scrooge and 1

PERMUTATION TESTS 255

for Marley. The Perl code is left for the reader as an exercise. The values are stored in the
vector scroogemarley, and note that Marley is more common at the start, and then fairly
infrequent for the rest of the novel.

Output 9.8 The 398 uses of Scrooge or Marley in A Christmas Carol. 0 stands for Scrooge,
1 for Marley.

> scroogemarley

[1] 1100110000134 01010100100000000
[30] 00000000000000000000000000101
(691 1 000000000000000000000000000°1
881 01101010000001100011000101010

(1177 00 000000000000001000000000000
[146] 00 0010010000001 00000000000000
[178] 00 000000000000000000000000000
(204] 0O0000000000000000000001000100
[233 00000000000000000000000000000
(262 00000000000000000000000000000
[2911 001 000000000000000000000000011
[320 00000000000000000000000000000
[349] 00 000000100010000000000000001
[378] 00 0000000000000000000

Output 9.9 shows that there are 57 runs for the data shown in output 9.8. Then 10,000
permutations are applied, and the runs for each one is computed by runs_sim(). The
results are plotted in the histogram shown in figure 9.2.

Output 9.9 The results of 10,000 permutations of the data in output 9.8.

> sum(scroogemarley[-1] != scroogemarley[-length(scroogemarley)l)
[1] 567

> Counts_of_Runs = runs_sim(scroogemarley, 10000)

> min(Counts_of_Runs)

[1] 51

> max(Counts_of_Runs)

(1] 73

> sum(Counts_of_Runs <= 57)

[1] &8

> hist(Counts_of_Runs, 51:73)

First, it is obvious that tall and short bars alternate, where the former happens with odd
values and the latter with even ones. This is not an accident because an odd number of runs
only occurs when the first and last value in the vector are the same. For scroogemarley,
there are 362 0’s and 36 1’s, hence the chances of the first and last values equaling 0 is quite
high (about 83%).

Second, there are 68 cases where the number of runs are equal to or less than 57, which
is the number of runs in scroogemarley. So the probability of seeing a result as extreme

256 A SAMPLE OF ADDITIONAL TOPICS

(=]
Q
g —
[a]
. _
<o
o
>
g o
¢ £] B
i
(=]
o_.
0 1
}-—ﬂ
o -~
I | T |
55 60 65 70

Counts_of_Runs

Figure 9.2 Histogram of the runs of the 10,000 permutations of the names Scrooge and
Marley as they appear in A Christmas Carol.

or more extreme is about 68/10,000 = 0.0068, which is quite low. Hence we conclude that
the distribution of the names Scrooge and Marley is not random.

A second example comes from The Call of the Wild. In this novel, Buck has a number
of owners that come and go before he obtains his freedom at the end. Early in the story
he is part of a dog-sled team run by Francois and Perrault, who are two French-Canadians.
While they own Buck, they play a prominent role, and their names alternate much more
than is true with Scrooge and Marley. See output 9.10, and note that Francois is represented
by 0, Perrault by 1.

These two names appear 99 times, 60 for Francois and 39 for Perrault, a much more even
division than the previous example. Redoing the above analysis, we see that the conclusion
is different because the number of runs in the original sequence of names is 45, and there are
2831 permutations with this or less runs. A probability of 2831/10,000 = 0.2831, however,
is not small. The histogram of the 10,000 runs is shown in figure 9.3. Note that it does not
have alternating heights since the probability that a random permutation begins and ends
with the same name is close to 50%.

PERMUTATION TESTS 257

Output 9.10 The appearance of the names Francois and Perrault in The Call of the Wild.

Here 0 stands for Francois, 1 for Perrault.

> francoisperrault

(1 11110101000000000011110011001
(30 10111000111010110100101000010
(591 00 001000010100000001010000100
(881 011100011010

> sum(franperr{-1] != franperr[-length(franperr)])

[1] 45

> sum(Counts_of_Ruuns <= 45)

[1] 2831

Hence for Scrooge and Marley, the former is common because it is the protagonist’s
name. Marley’s ghost appears at the start of the novel, but he is mentioned infrequently
after that. However, for Francois and Perrault, these two characters work together as part
of a team. Hence it is not surprising that there is a difference in the pattern of how each pair
of names appears in their respective novels.

8
@ T
T
o
Q- — —
D
>
B -
c —
S o
g S 4
g gl
o
S —
&
o -
T T T I T]
35 40 45 50 55 60 65

Counts_of_Runs

Figure 9.3 Histogram of the runs of the 10,000 permutations of the names Francois and
Perrault as they appear in The Call of the Wild.

258 A SAMPLE OF ADDITIONAL TOPICS

This book draws to an end. The next section gives some text mining references for the
interested reader. Finally, I have enjoyed writing this book and hope that you have enjoyed
reading and working through it.

9.5 REFERENCES

This book is an introduction to some of the important techniques of text mining. Many of
these are from other research areas such as information retrieval and statistics, and references
for these topics are given at the end of the respective chapters. This section lists a few books
that focus on text mining itself.

Text mining grew out of data mining. A good introductory book on applying data
mining to online texts is Data Mining the Web by Zdravko Markov and Daniel Larose [77].
Another introductory book on using Perl to interact with the Web is Spidering Hacks by
Kevin Hemenway and Tara Calishain [53].

For an introduction to text mining, try Text Mining by Sholom Weiss, Nitin Indurkhya,
Tong Zhang, and Fred Damerau [125]. Their emphasis is on creating quantitative summaries
of one or more texts, then applying data mining techniques. Finally, a more advanced book
is The Text Mining Handbook by Ronen Feldman and James Sanger [43].

Appendix A

Overview of Perl for Text Mining

This appendix summarizes the basics of Perl in these areas: basic data structures, operators,
branching and looping, functions, and regular expressions. The focus is on Perl’s text
capabilities, and many references are made to code throughout this book.

The form of these code samples is slightly different than the ones in this book. To save
space, the output is placed at the end of the computer code.

To run Perl, first download it by going to http://www.perl.org/ [45] and following
the instructions there. Second, type the statements into a file with the suffix .pl, for
example, call it program.pl. Third, you need to find out how to use your computer’s
command line interface, which allows the typing of commands for execution. Fourth, type
the statement below on the command line and then press the enter key. The output will
appear below it.

perl program.pl

Remember that Perl is case sensitive. For example, commands have to be in lowercase,
and the three variables $cat, $Cat, and $CAT are all distinct. Finaily, do not forget to use
semicolons to end each statement.

A.1 BASIC DATA STRUCTURES

A programmer must be able to store and modify information, which is kept in scalar, array,
and hash variables. We start with scalars, which store a single value, and their names always

Practical Text Mining with Perl, By Roger Bilisoly 259
Copyright © 2008 John Wiley & Sons, Inc.

260 OVERVIEW OF PERL FOR TEXT MINING

start with a dollar sign. First, consider the examples in code sample A. 1, which demonstrates
Perl’s two types of scalars, strings and numbers. If a string is used as a number, then Perl
tries to convert it. Conversely, a number used as a string is always converted.

Code Sample A.1 Perl converting a string to a number and vice versa.

$X1 = "4";

$y1 = Il5l|;

$z1 = $x1 + $yi; # Addition

$x2 = 4;

$y2 = 5;

$22 = $x2 . $y2; # Concatenation
$X3 = n4n;

$y3 = 5;

$23 = $x3 . $y3;
$z4 = $x3 + $y3;

print "$z1, $22, $z3, $z4\n";

OUTPUT: 9, 45, 45, 9

Code sample A.2 shows that the logical values true and false are represented by either
strings or numbers. The values 0, °0?, "0", *’, "" (), and undef are false, and all other
numbers and strings are true.

Code Sample A.2 Numbers and strings represent true and false.

if (0) { print "True "; } else { print "False "; }
if (’0’) { print "True "; } else { print "False "; }
if ("0") { print "True "; } else { print "False "; }
if (7)) { print "True "; } else { print "False "; }
if (°7°) { print "True "; } else { print "False "; }
if ("7) { print "True "; } else { print "False "; }
if () { print "True "; } else { print "False "; }
if (") { print "True "; } else { print "False "; }
if ¢ O { print "True "; } else { print "False "; }
if (undef) { print "True "; } else { print "False "; }

QUTPUT: False False False True True True False False False False

Code sample A.3 gives examples of references, which are hexadecimal numbers repre-
senting a memory location. These are created by placing a backslash in front of the scalar
(or array or hash). References can be chained together, for example, a reference to another
reference. A dereferencing operator is used to access the value in the memory location.
For a reference to a scalar, this operator is ${}. Finally, references are used extensively in
complex data structures such as arrays of hashes, as discussed in section 3.8.

BASIC DATA STRUCTURES 261

Code Sample A.3 Examples of scalar references.

$x = 1729;

$xref = \$x; # A reference to the value in $x
$xrefref = \$xref; # A reference to a reference
$y = ${3xref}; # Dereferencing a reference

$zref = ${$xrefref};

$z = ${${$xrefref}}; # Two dereferences in a row

print "$x, $xref, $xrefref, $y\n$z, $zref";

QUTPUT: 1729, SCALAR(0x1832960), REF(0x1832984), 1729
1729, SCALAR(0x1832960)

Examples of working with arrays are shown in code sample A.4. While scalars contain
only one value, arrays have many. While scalars always start with a dollar sign, arrays
as a whole always start with an ar sign, for example, @Qarray. An array is a collection
of variables indexed by 0, 1, 2, ..., and these individual values are accessed as follows:
$array (0], $array[1], $array[2], Note that each starts with a dollar sign.

Arrays can be defined by listing the values in parentheses, or created by a variety of
functions, for example, split. They can be built up by functions, too, for example, push.
If a scalar is set to an array, this does not produce a syntax error, in fact, the scalar is set
to the number of entries it has. For example, $scalar in code sample A.4 has the value 5
because @array? has five elements. Finally, an array of indices can be placed in the square
brackets to select a subset.

Code Sample A.4 Making and modifying arrays.

@arrayl = (“Katy", "Sam", 16);
$arrayi (3] = "Taffy";

@array2 = split(//, "Test");
push(Qarray2, "ing");

$scalar = Qarray2;

@indices = (0,0,1,0,2,1);
@array3 = Qarrayl[@indices];

print "$arrayli[0], Qarrayl, Qarray2[0], Qarray2\n";
print "$scalar, Qarray3\n';

QUTPUT: Katy, Katy Sam 16 Taffy, T, T e s t ing
5, Katy Katy Sam Katy 16 Sam

References to arrays are illustrated in code sample A.5. These can be created by listing
values between square brackets or by putting a backslash in front of an array name. To
access the array, dereferencing must be done. Just as scalar names start with a dollar
sign, and scalar dereferencing is done with ${}, arrays start with an at symbol and array
dereferencing is done with @{}.

262 OVERVIEW OF PERL FOR TEXT MINING

Code Sample A.5 Array references and dereferences.

$refl = [1,2,"Cat"];
Qarrayl = Q@{$refil};

$ref2 = \Qarrayil;
Qarray2 = Q{$ref2};

print "$refl, Qarrayl, $ref2, Qarray2";

QUTPUT: ARRAY(0x18330b8), 1 2 Cat, ARRAY(0x1832bed), 1 2 Cat

Code sample A.6 has examples of hashes, which are like arrays except they are indexed
by strings, not nonnegative integers. Hashes can be defined the same way as an array, but
the odd entries are the keys (or indices), and the even entries are the values. A hash can also
be created by setting it equal to an array. The functions keys and values return an array
of keys and values, respectively.

Code Sample A.6 Working with hashes.

%hash = (Cat, 3, Dog, 4, Rabbit, 6); # Quotes are optiomal
Qarray = hash;

Qkeys = keys(%hash);

@values = values(%hash);

print "$hash{Cat}, $hash{Rabbit}, Qarray\n";
print "Qkeys, @values\n";

QUTPUT: 3, 6, Rabbit 6 Dog 4 Cat 3
Rabbit Dog Cat, 6 4 3

References are made to hashes by either listing values between curly brackets or putting
a backslash in front of a hash name as shown in code sample A.7. These are dereferenced
by using %{}, and note that hash names and dereferencing both begin with a percent sign.
Unlike scalars and arrays, hashes are not interpolated inside double quotation marks because
hashes are unordered. Note that the two print statements do not list the hashes in the same
order. However, a hash can be assigned to an array, which can be interpolated.

Finally, scalars, arrays, and hashes can be mixed together using references to form
complex data structures. See section 3.8 for a discussion.

A.1.1 Special Variables and Arrays

Perl defines many variables that it uses for a variety of purposes. Table A.1 contains just a
few of these along with examples of use (if any) in this book. For more information, read
one of the books on Perl programming listed in section 2.8.

OPERATORS 263

Code Sample A.7 Hash referencing and dereferencing.

$refl = {Cat, 3, Dog, 4, Rabbit, 6};
%hashi = (Cat, 3, Dog, 4, Rabbit, 6);
$ref2 = \/hashi;

Y%hash2 = %{$refl};

@arrayl = %hashi;

Qarray2 = %hash2;

print "$refl, Qarrayli\n";
print "$ref2, Qarray2\n";

OUTPUT: HASH(0x18332f8), Rabbit 6 Dog 4 Cat 3
HASH(0x18330e8), Rabbit 6 Cat 3 Dog 4

Table A.1 A few special variables and their use in Perl.

Name Purpose Example

$_ Default variable Program 2.7

$1 Contents of leftmost parentheses Program 3.3

$2 Contents of next parentheses Code sample 2.31
QARGV Command line arguments Code sample 2.17
e Subroutine arguments Code sample A.20
$/ Separator for reading input file Program 2.7
$/="" Paragraph mode Program 2.7
$/="\n"; . Line-by-line mode Default

g Separator for interpolation Code sample 3.21
3¢ Stores string before regex match

$& Stores regex match

$’ Stores string after regex match Code sample 2.25

A.2 OPERATORS

Operators are just functions, but they use special symbols and syntax. For example, addition
is an arithmetic operator in Perl and is denoted by +, which is written in between numbers.
The common mathematical operators in Perl are given in code sample A.8. Note that the
percent sign is the modulus operator, which returns the remainder for an integer division.

Code sample A.9 demonstrates two string operators. The second uses the letter x and
can be used with arrays, too.

In Perl, only the values 0, >0, "0", >, "", (), and undef are false, and all other
numbers or strings are true. So logical operators work with both numbers and strings as
shown in code sample A.10.

However, when Perl computes a logical true or false, ituses 1 and "" as seen in code
sample A.11. To make the output more readable, the symbol printed between array entries is
changed to a comma (by setting $" to this). Per] has two types of comparison operators: one
for numbers, the other for strings. The former uses symbols (for example, == for numerical
equality), while the latter uses letters (for example, eq for string equality). However, a

264 OVERVIEW OF PERL FOR TEXT MINING

Code Sample A.8 Examples of mathematical operators.

$x = 2;
$y = 3;
$z = 8;
$answer[0] = $x + $y; # Addition

$answer[1] = $x * $y; # Multiplication
$answer[2] = $x - $y; # Subtraction
$answer[3] = $x / $y; # Division
$answer[4] = $x ** $y; # Exponentiation
$answer[5] = $z % $y;

I

print "Qanswer";
QUTPUT: 5 6 -1 0.666666666666667 8 2

Code Sample A.9 Examples of two string operators.

$concatil ’abc’ . 71237;
$concat2 = "cat" . 123;
$mult = ’cat’ x 3;
Qarrayl = (1, 2, 3) x 2;
Qarray2 = Qarrayl x 5;

Qarray3 = (Qarrayl) x 2;
Qarray4 = 2 x (1, 2, 3);
Qarray5 = 2 x Qarrayl;

Qarray6 = 2 x (Qarrayl);

print "$concati, $concat2, $mult\n";
print "@arrayl, Qarray2, Qarray3\n";
print "Qarray4, Qarrayb, Qarray6\n";

OUTPUT: abci123, catli23, catcatcat
123123,66666, 123123123123
222, 222222, 222222

comparison like 14 gt 3is possible, but it changes both numbers to strings, and then does
a string comparison, so in this case it is false because the string “14" precedes the string
“3" when using alphabetical order. Finally, <=> and cmp are both comparison operators. If
the first value is greater than the second, then 1 is returned; if the two values are equal, 0 is
returned; and if the second value is greater than the first, —1 is returned.

Code sample A.12 gives a few miscellaneous operators. The regex matching operators
return true and false: see section 2.7.2 for a discussion. The ++ operator increments the
variable it is next to: if it is before the variable, then that variable in incremented before
it is assigned, but if it is after the variable, then it is incremented after it is assigned. For
example, compare the values of $answer [3] and $answer [4].

OPERATORS

265

Code Sample A.10 Logical operator examples.

$answer[0] = 5 and 6;
$answer[1] = 5 && 6;
$answer[2] = 3 or "";
$answer[3] =0 || "";
$answer[4] = 3 xor 5;
$answer[b] = ! 77

$answer[6] = not ’’;

$|| =7,

print "@answer\n";

OuUTPUT: 5,6,3,,3,1,1

Code Sample A.11 Comparison operator examples.

$answer [0] = 14 > 3;
$answer[1] = 14 gt 3;
$answer[2] = "14" > "3";
$answer (3] = "14" gt "3";
$answer (4] = 25 < 7;
$answer (5] = ’cat’ 1t "dog";
$answer [6] = 22.24 < 3.99;
$answer (7] = ’cat’ ge ’dog’;
$answer (8] = ’cat’ eq ’cat’;
$answer[9] = 5 == 6;
$answer[10] = 5 <=> 6;
$answer[11] = 6 <=> 6;
$answer[12] = 7 <=> 6;
$answer[13] = ’cats’ cmp ’dog’;
$answer[14] = ’dog’ cmp ’dog’;

$answer[15]

g" = R

‘rats’ cmp ’dog’;

print "Qanswer\n";

gurpvT: 1,,1,,,1,,,1,,-1,0,1,-1,0,1

Finally, the double period is the range operator, and it produces an array of numbers or
strings. This is shown below where Qarray receives the elements 1 through 10. This also
works with letters, for example, (*a’..’z’) produces the lowercase alphabet.

array = (1..10);

The above operators are not exhaustive, but they are useful in text mining. Next we

review branching and looping in a program.

266 OVERVIEW OF PERL FOR TEXT MINING

Code Sample A.12 . A few miscellaneous operators.

$text = "It’s never too late ...";
$answer[0] = $text =" /never/;
$answer[1] = $text !~ /never/;
$answer[2] = $text =~ /cat/;

$x = 6;

$answer[3] = ++$x;

$x = 6;

$answer[4] = $x++;
$answer (5] = $x;

$x = 6;
$answer[6] = —-$x;
$|| = >’);

print "Qanswer\n";

gureuT: 1,,,7,6,7,5

A.3 BRANCHING AND LOOPING

The ability to make decisions and to repeat portions of code is essential to programming.
The if statement tests logical conditions, and examples are given in code sample A.13.
A logical test is performed within parentheses, the outcome of which determines which
block of code (contained in curly brackets) to execute. Note that the if can come after a
statement. In this code sample, all the regexes are tested against the default variable $_,
which can either be explicitly written or left out. To test another variable against the regex,

it must be explicitly given.

Code Sample A.13 Examples of if statements.

$_ = "This is a test.";

if (/test/) { print "Match, "; }
if (§_ =" /test/) { print "Match, "; 2}
print "Match, " if (/test/);

if ($_ =" /test/) {
print "Match, ";
} else {
print "No Match, ";
}

OUTPUT: Match, Match, Match, Match,

An if-elsif-else statement allows more than one test, and two or more elsifs are

permissible. See code sample A.14 for an example.

BRANCHING AND LOOPING 267

Code Sample A.14 Example of using elsif twice.

$_ = "This is a test.";

if ($_ =~ /cat/) {
print "Matches cat ";
} elsif (/dog/) {
print "Matches dog ";
} elsif (/bat/) {
print "Matches bat ";
} else {
print "No matches here ";

¥

QUTPUT: No matches here

The for statement loops over a block of code, as seen in code sample A.15. The
number of iterations is determined by a counter (the variable $1i in the first example), or
over a sequence of values like 0. .9, or over the elements of an array. Finally, although
a programmer may prefer either for or foreach depending on the situation, these two
statements are interchangeable.

Code Sample A.15 Examples of for loops.

for ($i = 0; $i <10; ++$i) {
print "$i *;
}

print "\n";

for $i (0..9) {
print "$i ";
}

print "\n";

Qarray = (’a’..’j’);
for $i (@array) {

print "$i ";

X

OUTPUT: 0 1 234567829
0123456789
abcdefghi]

It is also possible to use a hash in a for or foreach loop, which is seen in code
sample A.16. However, the order is unpredictable since Perl determines how the hash is
stored, which can differ from how it is constructed. A better approach is to iterate over the
keys of the hash, which can be sorted as desired, for example, put into alphabetical order.

268 OVERVIEW OF PERL FOR TEXT MINING

Code Sample A.16 Using a hash in a for loop.

%hash = (dog, 1, cat, 2, rabbit, 3);
for $i (%hash) { print "$i "; }

print "\n";

for $i (sort keys %hash) {
print "$i $hash{$i} ";

}

OQUTPUT: cat 2 rabbit 3 dog 1
cat 2 dog 1 rabbit 3

The while loop is also enormously useful. For example, text files are usually read in by
a statement of the following form.

while (<FILE>) { # code }
Here the filehandle within the angle brackets reads the file piece by piece (the default is

line by line). The while statement can also iterate over all the matches of a regex, as seen
in code sample A.17.

Code Sample A.17 Looping over the matches of a regex with while.

$_ = "This is a test.";

$vowels = 0;
while (/[aeioul/g) {
++$vowels;

}

print "# of vowels = $vowels";

QUTPUT: # of vowels = 4

Finally, a while loop can test for all types of logical conditions. Code sample A.18
shows an example where the while loop executes like a for loop.

Code Sample A.18 A while loop executing like a for loop.

$i = 0;

wvhile ($i < 10) {
++$i;
print "$i ";

}

OUTPUT: 1 234567 89 10

BRANCHING AND LOOPING 269

Sometimes, modification of the execution of a for or while is needed. There are three
commands to do this; for example, when last is executed, the loop immediately ends,
as seen in code sample A.19. Other statements to modify looping behavior are next and
redo. See problem 7.2 for an example.

Code Sample A.19 Ending a loop with the statement last.

$text = "This is a test.";
Qwords = split(/ /, $text);
foreach $word (@words) {
if ($word eq "a") { last; }
print "$word ";

b

OUTPUT: This is

Another way to execute blocks of code is the subroutine. The analogous idea for a group
of subroutines is called a module, but this topic is more advanced: see section 9.2.

The default in Perl allows subroutines to access and modify any variables in the main
code. This can cause problems, especially if subroutines are reused in other programs. The
solution is easy: make the variables in a subroutine local to that subroutine, which can be
done with the my statement at the beginning for all the variables at once, as shown below.

my $variablel, Qarrayil, ‘hashl;

The my statement can also be used the first time a variable is used, as shown in code
sample A.20. Also see problem 5.5.

Code Sample A.20 Example of a subroutine. Note the use of my, which makes variables

local to the subroutine.

sub letterrank {
my $lcletter = 1c($_[01);
if (’a’ le $lcletter and $lcletter le 'z’) {
return ord($lcletter) - ord(’a’) + 1;
} else {
return ’’;
¥
}

$letter = ’R’;
print "$letter has letter rank ", letterrank($letter), "\n";
print "$letter has letter rank ", &letterrank($letter), "\n";

QUTPUT: R has letter rank 18
R has letter rank 18

In this code sample, the subroutine uses return, which returns a value back to the main
program. Hence this subroutine is a function. Also note that after a subroutine is defined,

270 OVERVIEW OF PERL FOR TEXT MINING

then its name does not require an initial ampersand, although there is no harm in always
using it. Also see problem 5.4.

The array @. contains the subroutine arguments, so $_[0] is the first argument, $_[1]
the second, and so forth. Finally, the function ord returns the ASCII rank of each character,
which assigns 65 to A, 66 to B, ..., 90 to Z, and 97 to q, ..., 122 to z. So by changing each
letter to lowercase and then subtracting the rank of a and adding 1, we get the desired letter
rank (that is, A has rank 1, B has rank 2, and so forth.)

Functions break a complex task into a sequence of simpler tasks. The ability of functions
to use other functions enables a programmer to create a hierarchy of them to do a task.

Finally, many functions are already built into Perl, or can be easily loaded into Perl, so
before writing a subroutine, it is wise to check to see if it already exists by checking online.
The next section discusses just a few of these.

A.4 A FEW PERL FUNCTIONS

Perl has many functions built into it and even more that can be downloaded. The Perl
documentation online [3] or the Comprehensive Perl Archive Network (CPAN) [54] are
great places to check for information. This section, however, only discusses some of these
applicable to text mining.

First, table A.2 lists string functions with an example of where they are used in this book.
Note that the inverse of ord is chr. Finally, note that reverse reverses a string when in
scalar context as shown below. However, it reverses an array if it is in an array context as
shown in table A.3, which has examples of array functions used in this book.

$answer = reverse("testing, testing");
g g

Table A.2 String functions in Per] with examples.

Name Purpose Example

chomp Remove trailing newline Program 2.4
index Find position of substrings Code sample 2.13
join Combine strings Code sample 2.7
lc Convert to lowercase Code sample 3.15
ord ASCII value Code sample 3.38
pos Position in string Code sample 2.15
split Split up strings Code sample 2.2
sprintf Create formatted string Code sample 2.35
substr Find substrings Program 2.7

Second, since an array is easily converted into a hash, the functions in table A.3 are not
unrelated to hashes. Table A .4, however, has functions for hashes only. Note that values
is analogous to keys: the former returns an array of the values of a hash. In addition, there
is the function each, which is shown in code sample A.21.

Third, there are many mathematical functions available in Perl. For example, the natural
logarithm, log, and the square root, sqrt, are used in program 5.5. Perl has limited
trigonometric functions unless the Math: : Trig module is loaded with use, which is done
in code sample 5.5.

INTRODUCTION TO REGULAR EXPRESSIONS 271

Table A.3 Array functions in Perl with examples.

Name Purpose Example

grep Apply regex to entries Code sample 3.12

map Apply a function to an array Code sample 3.38
pop Remove last entry Code sample 3.11
push Add new last entry Code sample 3.11
reverse Reverse an array Code sample 3.16
shift Remove first entry Code sample 3.11
split Output is an array Code sample 2.2

sort Sort an array Code sample 3.14
unshift Add new first entry Code sample 3.11

Table A.4 Hash functions in Perl with examples

Name Purpose Example
exists Test if key exists Program 3.5
keys Create array of keys Code sample 3.22

Code Sample A.21 Example of the function each.

%hash = (cat, 3, dog, 3, rabbit, 6);

while (($key, $value) = each %hash) {
print "$key, $value; ";

}

QUTPUT: cat, 3; rabbit, 6; dog, 3;

Finally, the functions open and close manipulate external files. There are three modes
for the former: input, overwriting, and appending. These are shown in code sample A.22
along with close and die, where the latter halts execution of the program if open fails to
work.

The command line can be used to overwrite or append to a file as shown below. The
character > overwrites, while >> appends. This completes our review of functions, and
regular expressions are the topic of the next section.

perl program.pl > output.txt
perl program.pl >> output.txt

A.5 INTRODUCTIONTO REGULAR EXPRESSIONS

Chapter 2 is devoted to regular expressions (also called regexes), which is central to text
patterns, so reading it is essential. This section, however, just summarizes the regex syntax
and refers the reader to illustrative examples in this book. Finally, table 2.3 summarizes
some of the special symbols used.

272 OVERVIEW OF PERL FOR TEXT MINING

Code Sample A.22 Three different ways to open a file for reading, overwriting, and
appending.

open (INPUT, "test.txt") or die; # Rewrites file
while (<INPUT>) { # commands }
close (INPUT);

open (QUTPUT, ">test.txt") or die; # Rewrites file
print OUTPUT "Your Text";
close (QUTPUT);

open(OUTPUT, ">>test.txt") or die; # Appends to file
print OQUTPUT "Your Text";
close (QUTPUT) ;

First, the syntax for matching a regex is as follows.

$text =" m/3regex/;

There is also an operator for not matching.

$text !” m/$regex/;

Note that the m is not required. Substitution has a similar syntax, but the s is required.
$text =" s/$regex/string/;

Both matching and substitution have modifiers, which are placed after the last forward
slash. Two useful ones are g for global, and i for case insensitive. See code sample 6.1 for
an example of the former and code sample 3.35 for an example of the latter.

As shown above, variables are interpolated inside matching or substitution. An example
of this is program 3.6. The qr// construct allows storing a regex in a variable; for example,
see code sample 3.12.

Table A.5 lists the common special characters in regexes along with an example of a
program that uses each one, if any. Note that the ~ also stands for character negation when
it is the first character inside a pair of square brackets.

Table A.6 summarizes the syntax for how many times a pattern can appear in a regex.
Note that all the examples in the table are greedy, but by adding a final question mark,
these become nongreedy: 77, *?, +?, {m,n}?. See code sample 2.21 and program 5.2 for
examples of *7,

Square brackets specify a collection of characters. Examples are seen in programs 3.3,
4.4, and 6.1. Parentheses form groups, for example, (abc) + means one or more repetitions
of the string “abc." The part of the regex within a set of parentheses is stored in the variables,
$1, $2, 83, For two examples of this, see programs 3.7 or 5.1. To refer to matches within
a regex, the backreferences \ 1, \2, \3, ..., are used. See code sample 3.12 for an example.

Finally, the idea of lookaround is discussed in section 2.7.3. These match conditions at
a position as opposed to characters. This is a generalization of \b, which matches a word
boundary, which is the condition that a letter is on one side of the position, but not on the
other.

INTRODUCTION TO REGULAR EXPRESSIONS

273

Table A.5 Some special characters used in regexes as implemented in Perl.

Name Purpose Example

\b Word boundary Program 6.1
\B Negation of \b

\d Digit Program 2.1
\D Negation of \d

\s Whitespace Program 4.4
\S Negation of \s

\w Word character Code sample 3.12
\W Negation of \w Program 3.3

. Any character Program 3.7

- Start of line Program 5.1

$ End of line Section 3.7.2.1

Table A.6 Repetition syntax in regexes as implemented in Perl.

Name Number of matches Example

? Zero or one Program 2.1
* Zero or more Program 2.6
+ One or more Program 2.9
{m,n} At least m, at most n Program 2.9
{m} m Program 2.1
{m,} m Or more

For an in depth examination of regexes, start with Watt’s Beginning Regular Expressions

[124], and then you will be ready for Friedl’s Mastering Regular Expressions [47].

This Page Intentionally Left Blank

Appendix B

Summary of R used in this Book

R is a statistical package that is open source and is distributed under the GNU General
Public License (GPL). Like Perl, R is available free from the Web. To download it along
with documentation and tutorials, see the instructions at The Comprehensive R Archive
Network (CRAN) [34].

This appendix covers two topics. First, it reviews the basics of R. Second, for the
functions used in this book, outputs and page numbers are given, so the interested reader
can look up examples.

If your interest about R has been piqued, here are three good introductory books. First,
Peter Dalgaard’s Introductory Statistics with R [37]. Second, Michael Crawley’s Statistics:
An Introduction Using R [35], and, third, Brian Everitt and Torsten Hothorn’s A Handbook
of Statistical Analyses Using R [42].

B.1 BASICSOFR

This section describes bare basics of R. In this book, an R session consists of doing a task
one step at a time using the command line. However, it has powerful statistical functions,
and more can be written by the user, so one step can accomplish much.

Practical Text Mining with Perl. By Roger Bilisoly 275
Copyright © 2008 John Wiley & Sons, Inc.

276 SUMMARY OF R USED IN THIS BOOK

B.1.1 Data Entry

The first task is entering the data. If there are only a few values, then these can be manually
typed in as shown in output B.1. Note that the greater than sign is the command prompt,
and after typing any command, pressing the enter key runs it.

Output B.1 Entering a scalar, vector, and matrices into R by typing.

>x =4
> x
[1]
>y
>y
[11 10031

> z1 = matrix{(c(1,2,3,4,5,6,7,8,9,10),2,5)
> z1

>

c(1,0,0,3,1)

(,11 [,2] [,3] [,4] [,s5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
> z2 = matrix(c(4,2,3,4,5,6,7,8,9,10),2,5, byrow=T)
> z2
(,11 [,2] [,31 [,4] [,5]
[1,] 1 2 3 4 5
[2,] 6 7 8 9 10

In this output, x is a scalar, y is a vector, and both z1 and z2 are two by five matrices.
The default is to treat a matrix as a collection of columns. Hence, the first column of z1
has 1 and 2, the second column 3 and 4, and so forth. However, byrow=T causes R to work
with rows instead. For example, the first row of z2 has the numbers 1 through 3, and the
second has 6 through 10.

Most data sets, however, are too large to enter by hand, so reading in data files is essential
for any practical task. Assume that a file called test . csv has the data shown in table B.1.
(CSV stands for comma-separated variables, and most software packages have an option
to store data this way.)

Table B.1 Data in the file test.csv.

1,2,3,4,5
6,7,8,9,10

The function read. csv () reads this file as shown in output B.2. The option header=F
means that the variable names are not contained in the file. When data is printed out, notice
that names for each column are created so that the first column is V1, the second V2, and so
forth.

There is a subtle distinction made in R between data frames and matrices. In output B.2,
datais adataframe, not a matrix. The former has column variables, which have names. The
latter acts like a matrix. For example, matrix multiplication works with it. See output B.3
for an example of how these two concepts differ.

BASICS OF R 277

Output B.2 Reading in a CSV file into a data frame.

> data = read.csv("c:\\test.csv", header=F)
> data
Vi V2 V3 V4 V5
11 2 3 4 5
2 6 7 8 910

Output B.3 The function read.csv () creates a data frame, and data.matrix () changes
a data frame to a matrix.

> data = read.csv("c:\\test.csv", header=F)

> data$vi

[1] 1 6

> datal,1]

(11 1 6

> data %*% t(data)

Error in data %% t(data) : requires numeric matrix/vector arguments

> data = data.matrix(data)

> data$vi

NULL

> datal, 1]

12

16

> data %x*% t(data)
1 2

55 130

130 330

N o=

The columns of data can be accessed by using their names; for example, data$V1 refers
to the first column, which has the name V1. Matrices do not have column names, and entries,
rows, and columns are accessed by using square brackets. Note that matrix multiplication
does not work for a data frame.

A data frame can be converted to a matrix by the function as.matrix(). Moving on,
the next section gives a short overview of the basic operators in R.

B.1.2 Basic Operators

Arithmetic operators in R are the same as Perl’s except that exponentiation uses a caret.
Also, vectors of the same size are combinable by the arithmetic operators, which is done
by component-wise arithmetic. See output B.4 for examples. Note that dividing by zero
produces Inf, which stands for infinity. Finally, matrices can be combined component-wise
with arithmetic operators (not shown here).

The logic operators of R are the same as the numeric ones in Perl. See output B.5 for
some examples using vectors. Note that the results are in terms of the logical values TRUE
and FALSE.

278 SUMMARY OF R USED IN THIS BOOK

Output B.4 Examples of arithmetic operators with scalars and vectors.

>x = ¢(1,2,3)
>y = ¢(2,0,-2)
>x - 4

[1] -3 -2 -1

> x/38

[1] 0.3333333 0.6666667 1.0000000
> x72

[1] 1 49

>xX +ty

(1] 321

>x - y

[1] -1 2 5

> X *y

[1] 2 0 -6
>x /y

(11 0.5 1Inf -1.5

Output B.5 Examples of logic operators.

> x = ¢(1,2,3)

>y = c(2,0,-2)

> x ==

[1] FALSE TRUE FALSE
>x =y

[1] TRUE TRUE TRUE
>x >y

[1] FALSE TRUE TRUE
>x <=y

[1]1 TRUE FALSE FALSE

B.1.3 Matrix Manipulation

This book uses basic matrix manipulations, which are summarized in this section. Matrices
use square brackets for subscripts, which can be used to select submatrices, as shown in
output B.6. Also see problem 8.3. Note that the colon operator generates a list of values, for
example, 2: 5 produces the values 2, 3, 4, 5. Also note that the function diag() returns the
diagonal entries of any matrix (these are the entries [1,1], [2,2], [3,3], and so forth).

Pieces of vectors can be selected by using logical operators, as shown in output B.7.
Finally, using logical operators for selecting pieces of a matrix also works, but the results
are returned as a vector. For example, m1 [m1>2] returns the values 4, 5, 3, 6 (notice the
order of the results.)

Finally, the function t () returns the transpose of a matrix (this switches the rows and
columns), and the operator %*% performs matrix multiplication: see section5.5.1. Examples
are shown in output B.8.

The next section summarizes the R functions used in this book and indicates where these
are used.

THIS BOOK'S R CODE 279

Output B.6 Selecting submatrices of a matrix.

> mi = matrix(c(4,2,3,4,5,6),2,3, byrow=T)
> ml

[,11 [,21 [,3]
{1,] 1 2 3
(2,1 4 5 6
>mil,1]
(11 1 4
> mi[2,]
(1] 456
> diag(mi)
[1] 1 5
> mi(,2:3]

[,11 [,2]
[1,] 2 3
[2,] 5 6

Output B.7 Selecting pieces of a vector.

>v = ¢c(10:1)

> v

[t 10 9 8 7 6 5 4 3 2 1
> v[3]

{11 8

> v[v>5]

[11 10 9 8 7 6

> v[v<=3]

[1] 32 1

B.2 THIS BOOK’S R CODE

This section has tables that group R functions by purpose and indicate where each function
is used in this text. Table B.2 shows R functions for matrices. Several of these create
matrices: as.matrix(), cbind(), diag(), matrix(). In addition, read.csv() creates
a data frame from a file, which can be converted into a matrix by as.matrix(). The
operator %% does matrix multiplication; solve() inverts matrices; and t () transposes
them.

Table B.3 shows functions that perform statistical computations. Correlations and co-
variance matrices are computed by cor () and cov (), respectively. Clustering is done with
kmeans () and helust (). Fitting linear models, for example, aregression line, is done with
1m(). Finally, prcomp{() does principal components analyses (PCA), and factanal()
does factor analyses.

Functions that produce graphical output are shown in table B.4. The function plot ()
creates a plot using Cartesian coordinates (the usual x-y plot). Text is added to a plot by
using text (), and overlaying a line onto the plot is done with 1ines(). The function
par () adjusts the plotting parameters; for example, it allows the creation of multiple plots

280 SUMMARY OF R USED IN THIS BOOK

Output B.8 Examples of transpose and matrix multiplication.

> ml = matrix(c(1,2,3,4,5,6),2,3, byrow=T)

> ml %*% c(1:3)

{,1]
1,] 14
[2,] 32
> t(m1)

[,1] [,2]
[1,] 1 4
(2,1 2 5
[3,] 3 6
> ml %*% t(ml)

[,11 (,2]
[1,] 14 32
(2,1 32 77

Table B.2 R functions used with matrices.

R Function Purpose Examples
yAY Matrix multiplication Output 5.4
AN Matrix multiplication Output 5.7
AN Matrix multiplication Output 7.17
as.matrix() Convert to matrix Output 8.6
cbind () Combine columns Output 8.4
diag() Diagonal entries Output 5.5
eigen() Eigensystem Output 7.7
eigen() Eigensystem Output 7.8
eigen() Eigensystem Output 7.9
matrix() Create matrix Output 5.3
matrix() Create matrix Output 5.8
matrix(byrow=T) Create matrix Output 5.11
read.csv() Read in data file Output 7.14
read.csv() Read in data file Output 7.9
read.csv() Read in data file Output 8.3
solve() Invert a matrix Output 7.16
tO Transpose Output 5.4
t0O Transpose Output 5.7

in one graphic. Finally, plot.voronoi () plots a Voronoi diagram, but to use it, the package
Tripack must be downloaded from the Web from CRAN [34].

Finally, table B.5 has miscellaneous R functions. First, as.dendrogram() takes the
output from heclust () and makes it into a dendrogram when printed out. The R package
Tripack has both voronoi.mosaic () and plot.voronoi (), which are used together to
make plots of Voronoi diagrams. Data frames have named variables, and these are directly
accessible by using attach() so that frame$var can be replaced by var. Note that
summary () produces summaries of a variety of statistical outputs; that is, it recognizes the
type of output, and then prints out the pertinent information.

THIS BOOK'S R CODE

281

Table B.3 R functions for statistical analyses.

R Function Purpose Examples
cor() Correlation matrix Output 7.5
cov() Covariance matrix Output 7.1
factanal() Factor analysis Output 7.18
factanal () Factor analysis Output 7.19
helust () Hierarchical clustering Output 8.11
kmeans () Clustering Qutput 8.1
kmeans () Clustering Output 8.2
kmeans () Clustering Output 8.6
kmeans () Clustering Output 8.7
kmeans () Clustering Output 8.10
kmeans () Clustering Output 8.13
1In (O Fit a linear model Output 7.2
mQ) Fit a linear model Output 7.14
prcomp () Principal components Output 7.10
prcomp() Principal components Output 7.11
prcomp() Principal components Output 7.12
prcomp() Principal components Output 7.13
prcomp () Principal components Output 8.8
Table B.4 R functions for graphics.
R Function Purpose Examples
lines() Add aline Output 7.2
par() Plot parameters Output 8.5
plot() Cartesian plot Output 7.2
plot () Cartesian plot Output 8.4
plot () Cartesian plot Output 8.5
plot O Cartesian plot Output 8.6
plot.voronoi() Plot Voronoi diagram Output 8.12
text () Add text to plot Output 8.4
text) Add text to plot Output 8.5
text () Add text to plot Output 8.6

282 SUMMARY OF R USED IN THIS BOOK

Table B.5 Miscellaneous R functions.

R Function Purpose Examples
as.dendrogram() Creates dendrogram Output 8.11
attach() Directly access frame variables Output 7.2
attach() Directly access frame variables Output 7.14
dist() Compute distances Qutput 8.11
dist O Compute distances Output 8.17
scale() Compute z-score Output 5.12
scale() Compute z-score Output 7.4
seq() Produce a sequence Output 8.14
sprintf () Formatted print Output 5.8
sqrt () Square root Output 5.5
summary () Summarizes outputs Output 7.11
summary () Summarizes outputs Output 7.15
summary () Summarizes outputs Output 8.3
voronoi.mosaic() Create a Voronoi diagram Output 8.12

Finally, remember that this appendix is just the beginning of what is possible with R.
See the references at the beginning of this appendix for more information, or, even better,
download R and its documentation from CRAN [34] and try it for yourself.

References

1. Gisle Aas and Martijn Koster. LWP, Version 5.808, 1995. URL.:
http://search.cpan.org/~ gaas/libwww-perl-5.808/lib/LWP.pm, November 15, 2007.

2. AlanAgresti. Categorical Data Analysis. Wiley Interscience, New York, New York, 2nd edition,
2002.

3. Jon Allen. Perl 5.8.8 Documentation, 2007. Supported by The Perl Foundation. URL:
http://perldoc.perl.org/, September 16, 2007.

4. Tony Augarde. The Oxford A to Z of Word Games. Oxford University Press, New York, New
York, 1994.

5. Tony Augarde. The Oxford Guide to Word Games. Oxford University Press, New York, New
York, 2003.

6. R.Harald Baayen. Word Frequency Distributions. Springer Verlag, New York, New York, 2001.

7. Lee Bain and Max Engelhardt. Introduction to Probability and Mathematical Statistics. PWS-
Kent Publishing Company, Boston, Massachusetts, 1989.

8. Giovanni Baiocchi. Using perl for statistics: Data processing and statistical computing. Journal
of Statistical Software, 11:1-75, 2004.

9. Geoff Barnbrook. Language and Computers: A Practical Introduction to the Computer Analysis
of Language. Edinburgh University Press, Edinburgh, United Kingdom, 1996.

10. Michael W. Berry and Murray Browne. Understanding Search Engines: Mathematical Model-
ing and Text Retrieval. Society for Industrial and Applied Mathematics, Philadelphia, Pennsyl-
vania, 2nd edition, 2005.

11. Douglas Biber, Susan Conrad, and Randi Reppen. Corpus Linguistics. Investigating Language
Structure and Use. Cambridge University Press, New York, New York, 1998.

12. Douglas Biber and Edward Finegan. Drift and the evolution of english style: A history of three
genres. Language, 65:487-517, 1989.

Practical Text Mining with Perl. By Roger Bilisoly 283
Copyright © 2008 John Wiley & Sons, Inc.

284

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

35.

36.

REFERENCES

Roger Bilisoly. Concatenating letter ranks. Word Ways, 40:297-9, 2007.

Roger Bilisoly. Anasquares: Square anagrams of squares. The Mathematical Gazette, 92:58-63,
2008.

José Nilo G. Binongo. Who wrote the 15th book of 0z? an application of multivariate analysis
to authorship attribution. Chance, 16:9-17, 2003.

José Nilo G. Binongo and M. W. A. Smith. The application of principal component analysis to
stylometry. Literary and Linguistic Computing, 14:445-466, 1999.

Rens Bod, Jennifer Hay, and Stefanie Jannedy, editors. Probabilistic Linguistics. MIT Press,
Cambridge, Massachusetts, 2003.

Dmitri A. Borgmann. Beyond Language: Adventures in Word and Thought. Charles Scribner’s
Sons, New York, New York, 1967.

Gary Buckles, 2007. Personal Communication, September 25, 2007.
Sean M. Burke. Perl & LWP. O’Reilly & Associates, Sebastopol, California, 2002.

Sean M. Burke. Lingua::EN::Numbers, Version 1.01, 2005. URL:
http://search.cpan.org/~sburke/Lingua-EN-Numbers-1.01/lib/Lingua/EN/Numbers.pm,
November 15, 2007.

William S. Burroughs. Word Virus: The William S. Burroughs Reader. Grove Press, New York,
New York, 2000. Edited by James Grauerholz and Ira Silverberg.

Cambridge International Corpus, 2007. By the Cambridge University Press. URL:
http://www.cambridge.org/elt/corpus/default.htm, November 14, 2007.

Cambridge Learner Corpus, 2007. By the Cambridge University Press. URL:
http://www.cambridge.org/elt/corpus/learner_corpus.htm, November 14, 2007.

English language teaching: Cambridge dictionaries, 2007. By Cambridge University Press.
URL.: http://www.cambridge.org/elt/dictionaries/index.htm.

Ronald Carter and Michael McCarthy. Cambridge Grammar of English. Cambridge University
Press, New York, New York, 2006.

The Chicago Manual of Style. The University of Chicago Press, Chicago, Illinois, 14th edition,
1993. Created by the Chicago Editorial Staff.

Tom Christiansen and Nathan Torkington. Per! Cookbook. O’Reilly Media, Sebastopol, Cali-
fornia, 2nd edition, 2003.

CiteSeer: Scientific Literature Digital Library, 2007. Hosted by Penn State’s College of Infor-
mation Sciences and Technology, URL: http://citeseer.ist.psu.edu/cs, November 16, 2007.

Aaron Coburn, Maciej Ceglowski, and Eric Nichols. Lingua::EN::Tagger, Version 0.13,
2007. URL: http://search.cpan.org/~acoburn/Lingua-EN-Tagger-0.13/Tagger.pm, November
15, 2007.

William W. Cohen. Enron Email Dataset, 2007. URL: http://www.cs.cmu.edu/ enron/, Novem-
ber 21, 2007.

Gregory M. Constantine. Combinatorial Theory and Statistical Design. John Wiley & Sons,
New York, New York, 1987.

Damian Conway. Object Oriented Perl. Manning Publications, Greenwich, Connecticut, 1999.

The Comprehensive R Archive Network, 2007. URL: http://cran.r-project.org/index.html,
November 14, 2007.

Michael J. Crawley. Statistics: An Introduction Using R. John Wiley and Sons, New York, New
York, 2005.

David Cross. Data Munging with Perl. Manning Publications, Greenwich, Connecticut, 2001.

37.
38.

39.

40.

41.

42,

43,

44.

45.

46.

47.

48.

49.

50.

S

52.

53.

54.

55.

56.

57.

58.

REFERENCES 285

Peter Dalgaard. Introductory Statistics with R. Springer Verlag, New York, New York, 2002.

Alligator Descartes and Tim Bunce. Programming the Perl DBI. O’Reilly & Associates,
Sebastopol, California, 2nd edition, 2000.

Charles Dickens. A Christmas Carol. Number 46 in Project Gutenberg Releases. Project
Gutenberg, 2006.

Albert Ross Eckler. Word Recreations: Games and Diversions from Word Ways. Dover Publi-
cations, New York, New York, 1979.

Ross Eckler. Making the Alphabet Dance: Recreational Wordplay. St. Martin’s Press, New
York, New York, 1996.

Brian S. Everitt and Torsten Hothorn. A Handbook of Statistical Analyses Using R. Chapman
and Hall/CRC, New York, New York, 2006.

Ronen Feldman and James Sanger. The Text Mining Handbook: Advanced Approaches in
Analyzing Unstructured Data. Cambridge University Press, New York, New York, 2006.

William Feller. An Introduction to Probability Theory and Its Applications, Volume I. John
Wiley and Sons, New York, New York, 3rd edition, 1968.

The Perl Foundation. The Perl Directory, 2007. URL: http://www.perl.org/, September 16,
2007.

W. N. Francis and H. Kucera. Brown Corpus Manual. Brown University, Prov-
idence, Rhode Island, revised and amplified edition, 1979. Available online at
http://icame.uib.no/brown/bem.html, December 31, 2007.

Jeffrey Friedl. Mastering Regular Expressions. O’Reilly Media, Sebastopol, California, 3rd
edition, 2006.

David A. Grossman and Ophir Frieder. Information Retrieval: Algorithms and Heuristics.
Springer Verlag, New York, New York, second edition, 2004.

Gerald J. Hahn and William Q. Meeker. Statistical Intervals: A Guide for Practitioners. Wiley-
Interscience, New York, New York, 1991.

John Haigh. Taking Chances: Winning with Probability. Oxford University Press, New York,
New York, 2003.

Michael Hammond. Programming for Linguists: Perl for Language Researchers. Blackwell
Publishing, Malden, Massachusetts, 2003.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer Verlag, New York, New York, 2001.

Kevin Hemenway and Tara Calishain. Spidering Hacks: 100 Industrial-Strength Tips and Tools.
O’Reilly Media, Sebastopol, California, 2003.

Jarkko Hietaniemi. The Comprehensive Perl Archive Network (CPAN), 2007. Supported by
The Perl Foundation. URL: http://cpan.perl.org/, September 16, 2007.

Douglas R. Hofstadter. Gddel, Escher, Bach: An Eternal Golden Braid. Basic Books, New
York, New York, 1979.

David I. Holmes. Stylometry and the civil war: The case of the pickett letters. Chance, 16:18-25,
2003.

David L. Holmes, Lesley J. Gordon, and Christine Wilson. A widow and her soldier: A stylo-
metric analysis of the "pickett letters’. History and Computing, 11:159-179, 1999.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata The-
ory, Languages and Computation. Addison-Wesley Publishing, Reading, Massachusetts, 2nd
edition, 2000.

286

59.

60.

6l1.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

REFERENCES

Susan Hunston. Corpora in Applied Linguistics. Cambridge University Press, New York, New
York, 2002.

Richard Jelinek and Roman Vasicek. Lingua::DE::Num2Word, Version 0.03, 2002. URL:
hitp://search.cpan.org/“rvasicek/Lingua-DE-Num2Word-0.03/Num2Word.pm, November 15,
2007.

Samuel Johnson. Samuel Johnson’s Dictionary. Levenger Press, Delray Beach, Florida, 2004.
Introduction and edited by Jack Lynch.

Samuel Johnson. A Dictionary of the English Language (Facsimile of 1755 First Edition on
DVD-ROM). London, London, United Kingdom, 2005. Introduction by Eric Korn and essay
by Ian Jackson.

Randall L. Jones and Erwin Tschirner. A Frequency Dictionary of German: Core vocabulary
for learners. Routledge, New York, New York, 2006.

Daniel Jurafsky and James H. Martin. Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics and Speech Recognition. Prentice-
Hall, Upper Saddle River, New Jersey, 2nd edition, 2008.

Erica Klarreich. Bookish math, Science News, 164:392—4, 2003.

Jacob Kogan. Introduction to Clustering Large and High-Dimensional Data. Cambridge Uni-
versity Press, New York, New York, 2007.

Brigitte Krenn and Christer Samuelsson. The linguist’s guide to statistics - don’t panic, 1997.
URL: http://citeseer.ist.psu.edu/krenn97linguists.html.

Amy N. Langville and Carl D. Meyer. Google’s PageRank and Beyond: The Science of Search
Engine Rankings. Princeton University Press, Princeton, New Jersey, 2006.

Daniel T. Larose. Discovering Knowledge in Data: Arn Introduction of Data Mining. Wiley-
Interscience, Hoboken, New Jersey, 2005.

Mark D. LeBlanc and Betsey Dexter Dyer. Perl for Exploring DNA. Oxford University Press,
New York, New York, 2007.

Laura Lemay. Sams Teach Yourself Perl in 21 Days. Sams, Indianapolis, Indiana, 2nd edition,
2002.

Stephen O. Lidie and Nancy Walsh. Mastering Perl/Tk. O’Reilly & Associates, Sebastopol,
California, 2002.

University of Pennsylvania Linguistic Data Consortium. Linguistic Data Consortium (LDC),
2007. URL: http://www.ldc.upenn.edu/, November 21, 2007.

Longman. Longman Dictionary of American English. Addison Wesley Longman Limited, New
York, New York, 2nd edition, 2002.

Christopher D. Manning and Hinrich Schiitze. Foundations of Statistical Natural Language
Processing. MIT Press, Cambridge, Massachusetts, 1999.

Bill Mark and Raymond C. Perrault. Cognitive Assistant that Learns and Organizes (CALO),
2007. URL: http://www.ai.sri.com/project/CALO, November 21, 2007.

Zdravko Markov and Daniel T. Larose. Data Mining the Web: Uncovering Patterns in Web
Content, Structure and Usage. Wiley-Interscience, Hoboken, New Jersey, 2007.

Tony McEnery, Richard Xiao, and Yukio Tono. Corpus-Based Language Studies: An Advanced
Resource Book. Routledge, New York, New York, 2006.

Frederick Mosteller and David L. Wallace. Applied Bayesian and Classical Inference: The
Case of The Federalist Papers. Springer Verlag, New York, New York, 1984.

I. S. P. Nation. Learning Vocabulary in Another Language. Cambridge University Press, New
York, New York, 2001.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

REFERENCES 287

National Center for Biotechnology Information (NCBI), 2007. Supported by the National
Library of Medicine and National Institutes of Health. URL: http://www.ncbi.nim.nih.gov/,
September 16, 2007.

Michael P. Oakes. Statistics for Corpus Linguistics. Edinburgh University Press, Edinburgh,
United Kingdom, 1998.

Jon Orwant. Perl 5 Interactive Course: Certified Edition. Waite Group Press, Corte Madera,
California, 1997.

Jon Orwant, Jarkko Hietaniemi, and John Macdonald. Mastering Algorithms with Perl. O’Reilly
& Associates, Sebastopol, California, 1999.

David D. Palmer. SATZ — an adaptive sentence segmentation system. Technical report, Computer
Science Division, University of California at Berkeley, 1994. Report No. UCB/CSD-94-846,
URL: http://citeseer.ist.psu.edu/132630.html, January 27, 2008.

Georges Perec. History of the lipogram. In Oulipo: A Primer of Potential Literature. Dalkey
Archive Press, Normal, Illinois, 1998.

Georges Perec and Gilbert Adair. A Void. David R Godine, Publisher, Boston, Massachusetts,
200s.

Edgar Allan Poe. The Black Cat. In The Works of Edgar Allan Poe, Volume 2, number 2148 in
Project Gutenberg Releases. Project Gutenberg, 2000.

Edgar Allan Poe. The Facts in the Case of M. Valdemar. In The Works of Edgar Allan Poe,
Volume 2, number 2148 in Project Gutenberg Releases. Project Gutenberg, 2000.

Edgar Allan Poe. Hop Frog. In The Works of Edgar Allan Poe, Volume 5, number 2151 in Project
Gutenberg Releases. Project Gutenberg, 2000.

Edgar Allan Poe. Maelzel’s Chess-Player. In The Works of Edgar Allan Poe, Volume 4, number
2150 in Project Gutenberg Releases. Project Gutenberg, 2000.

Edgar Allan Poe. The Man of the Crowd. In The Works of Edgar Allan Poe, Volume 5, number
2151 in Project Gutenberg Releases. Project Gutenberg, 2000.

Edgar Allan Poe. A Predicament. In The Works of Edgar Allan Poe, Volume 4, number 2150 in
Project Gutenberg Releases. Project Gutenberg, 2000.

Edgar Allan Poe. The Tell-Tale Heart. In The Works of Edgar Allan Poe, Volume 2, number
2148 in Project Gutenberg Releases. Project Gutenberg, 2000.

Edgar Allan Poe. The Unparalleled Adventures of One Hans Pfaall. In The Works of Edgar
Allan Poe, Volume 1, number 2147 in Project Gutenberg Releases. Project Gutenberg, 2000.

Edgar Allan Poe. The Works of Edgar Allan Poe, Volume 1. Number 2147 in Project Gutenberg
Releases. Project Gutenberg, 2000.

Edgar Allan Poe. The Works of Edgar Allan Poe, Volume 2. Number 2148 in Project Gutenberg
Releases. Project Gutenberg, 2000.

Edgar Allan Poe. The Works of Edgar Allan Poe, Volume 3. Number 2149 in Project Gutenberg
Releases. Project Gutenberg, 2000.

Edgar Allan Poe. The Works of Edgar Allan Poe, Volume 4. Number 2150 in Project Gutenberg
Releases. Project Gutenberg, 2000.

Edgar Allan Poe. The Works of Edgar Allan Poe, Volume 5. Number 2151 in Project Gutenberg
Releases. Project Gutenberg, 2000.

Phillip Pollard. Acme::Umlautify, Version 1.01, 2004. URL:
http://search.cpan.org/~bennie/Acme-Umlautify-1.01/lib/Acme/Umlautify.pm, November
15, 2007.

288

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.
115.
116.

117.

118.

119.

120.

121.

122.

123,

124,
125.

REFERENCES

Fabien Potencier and Marvin Humphrey. Lingua::StopWords, Version 0.08, 2004. URL:
http://search.cpan.org/~ creamyg/Lingua-StopWords-0.08/lib/Lingua/StopWords.pm, Novem-
ber 15, 2007.

S. James Press. Applied Multivariate Analysis. Dover Publications, New York, New York, 2005.

Alvin C. Rencher. Methods of Multivariate Analysis. Wiley-Interscience, New York, New York,
2nd edition, 2002.

R. J. Renka, Albrecht Gebhardt, Stephen Eglen, Sergei Zuyev, and Denis White. The Tripack
Package, 2007. R package available from CRAN at http://cran.r-project.org/index.html.

John A. Rice. Mathematical Statistics and Data Analysis. Wadsworth and Brooks, Pacific
Grove, California, 1988.

Peter Mark Roget. Roget’s Thesaurus. Number 22 in Project Gutenberg Releases. Project
Gutenberg, 1991.

James R. Schott. Matrix Analysis for Statistics. Wiley-Interscience, New York, New York, 2nd
edition, 2005.

Randal L. Schwartz, Tom Phoenix, and brian d foy. Learning Perl. O’Reilly & Associates,
Sebastopol, California, 4th edition, 2005.

Abraham Sinkov. Elementary Cryptanalysis: A Mathematical Approach. Mathematical Asso-
ciation of America, Washington, D.C., 1998.

Richard A. Spears. NTC's Dictionary of Phrasal Verbs and Other Idiomatic Verbal Phrases.
National Textbook Company, Chicago, Illinois, 1993. Division of NTC Publishing Group.

Larry L. Stewart. Charles brockden brown: Quantitative analysis and literary interpretation.
Literary and Linguistic Computing, 18:129-138, 2003.

Gilbert Strang. Linear Algebra and Its Applications. Brooks Cole, Pacific Grove, California,
4th edition, 2005.

Michael Swan. Practical English Usage. Oxford University Press, New York, New York, 2005.
Steven K. Thompson. Sampling. Wiley-Interscience, New York, New York, 2nd edition, 2002.

James Tisdall. Beginning Perl for Bioinformatics. O’Reilly Media, Sebastopol, California,
2001.

James Tisdall. Mastering Perl for Bioinformatics. O’Reilly Media, Sebastopol, California,
2003.

Adrian Trapletti. The tseries Package, 2007. R package available from CRAN at http://cran.r-
project.org/index.html.

Peter Wainwright, Aldo Calpini, Arthur Corliss, Simon Cozens, Juan Julian Merelo-Guervos,
Aalhad Saraf, and Chris Nandor. Professional Perl Programming. Wrox Press Ltd., Birmingham,
United Kingdom, 2001.

Larry Wall, Tom Christiansen, and Jon Orwant. Programming Perl. O’Reilly & Associates,
Sebastopol, California, 2000.

Elizabeth Walter and Kate Woodford, editors. Cambridge Advanced Learner’s Dictionary.
Cambridge University Press, New York, New York, second edition, 2005.

Grady Ward. Moby Thesaurus. Number 3202 in Project Gutenberg Releases. Project Gutenberg,
2002.

Grady Ward. Moby Word Lists. Number 3201 in Project Gutenberg Releases. Project Gutenberg,
2002.

Andrew Watt. Beginning Regular Expressions. Wrox-Wiley, Hoboken, New Jersey, 2005.

Sholom M. Weiss, Nitin Indurkhya, Tong Zhang, and Fred J. Damerau. Text Mining: Predictive
Methods for Analyzing Unstructured Information. Springer Verlag, New York, New York, 2005.

126.
127.

128,

REFERENCES 289

Dominic Widdows. Geometry and Meaning. CSLI Publications, Stanford, California, 2004.

Shlomo Yona. Lingua::EN::Sentence, Version 0.25, 2001. URL: http://search.cpan.org/~
shlomoy/Lingua-EN-Sentence-0.25/lib/Lingua/EN/Sentence.pm, November 15, 2007.

G. Udny Yule. On sentence-length as a statistical characteristic of style in prose: With application
to two cases of disputed authorship. Biometrika, 30:363-390, 1939.

This Page Intentionally Left Blank

Index

A

A Christmas Carol, 115
abbreviations, 38
adverbs, 185
anagrams, 101, 105
dictionary, 87
anasquares, 106
apostrophes, 23, 28, 81, 100, 141, 174, 204, 264
arguments, 14

backquote, 45

bag-of-words model, 127, 266
Bayesian inference, 196
Bayesian model, 134

bias, 113

bigrams, 117

bioinformatics, 100

block of code, 14

c

Caesar cipher, 57
caret, 12

centroids, 234
classification, 247
cluster means, 235
clustering, 232
clustering vector, 235
coin tossing, 134

collocations, 188, 193
commas, 76
concordances, 29, 80, 182, 268
A Christmas Carol, 38
Die Leiden des jungen Werthers, 265
Enronsent, 174
The Call of the Wild, 185, 188, 190, 194
context, 62
array, 63
scalar, 64, 129, 284
string, 62
corcordances
The Call of the Wild, 178
corpora, 7, 169
corpus, 7, 169
corpus linguistics, 169, 184, 194
corpus linguistics and sampling, 132
corpus
EnronSent, 173
correlation matrix, 217, 224
correlations, 206
correlations and cosines, 210
correlations and covariances, 212
counting, 110
covariance, 211
CPAN, 54, 257
CRAN, 249, 262, 289
crossword puzzles, 58, 86
crwth, 101
cryptanalysis, 57

291

292 INDEX

D

dashes, 24, 81, 141, 264
dendrogram, 246
Dickens
A Christmas Carol, 38, 81, 175, 268
dimension, 145
dimensionless, 203
DNA, 58,99, 106
dot product, 145
doublets, 104

E

eigenvalues, 212
eigenvectors, 212

end punctuation, 38, 45, 53
Eszett, 262

ETAOIN SHRDLU, 140, 164
events, 110

exclamation points, 37, 40, 46

F

factor analysis, 222
false positives, 9
filehandle, 97
files
comma-separated variables, 83, 206, 237, 290
flat file, 11
frequencies
bigram, 117
letter, 112, 114, 134, 164, 173, 263
letters, 140
word, 77, 81, 85, 97, 105, 119, 127, 129, 150, 157,
161, 173, 175, 178, 190, 206, 248, 254, 264
word lengths, 66
words, 83, 141, 144, 150, 174

G

Goethe
Die Leiden des jungen Werthers, 263

H

hangman, 58

hapax legomena, 84
histogram, 123, 126, 267
histograms, 203
hyphens, 25, 81, 264

independence, 122, 135, 188
inner product, 145
interpolation, 19, 62
array, 63
inverse document frequency (IDF), 160
isograms, 102

K

k-means clustering, 232
key word in context (KWIC), 8, 178

L

lemma, 182
linear algebra, 212
lipograms, 100, 116
logarithms, 160
London
The Call of the Wild, 175, 182, 188, 190, 193, 269

M

Mahalanobis distance, 245
main diagonal, 153
main program, 148
matrices, 150, 212
commuting, 227
matrix factorization, 214
matrix multiplication, 154
matrix
diagonal, 155
mean word frequency, 130
methods, 223, 261
modules, 151

N

Nell, 31
normalized, 155
numerology, 103

o

object oriented, 223
objects, 261
octothorp, 14

or, 10, 56
orthogonal, 213
outcomes, 110

P

p-value, 267
period for concatenation, 62
periods, 38, 198
periods in regular expressions, 39
Perl
- 67
-=, 44
->, 261
@._, 283
@ARGV, 35, 67
$&, 45
++, 67,279
=> operator, 76
anonymous arrays, 91
array, 18
array of arrays, 93
array of hashes, 95, 97, 161

arrays, 62
dereferencing, 91
largest index, 67
chomp, 22, 83, 119
chr, 284
close, 284
cmp, 181
comments, 14
comparison operators, 278
concatenation, 45, 62, 87, 103
DBI, 1060
default variable, 20, 22
dereferencing, 90, 93
die, 22, 56, 284
each, 284
else, 280
elsif, 280
exists, 78
filehandle, 14, 23, 35, 38, 83, 281
files
appending, 285
overwriting, 285
for, 111, 204, 280
foreach, 20, 23, 83, 182, 260, 280
functions
cmp, 72
graphics, 100
grep, 71
hashes, 75, 83, 87
hashes of hashes, 94
hashes
anonymous, 91
cannot interpolate, 76
dereferencing, 91
keys, 75
lack of interpolation, 276
how to download, 273
if-else, 20
if, 14, 186, 280
index, 29
join, 21, 117
keys, 77, 129, 259, 276
last, 223, 281
le, 72, 117, 178, 264
length, 66
list, 62
log, 284
LWP, 100
match variables, 21
modules, 53, 100, 257
Acme::Umlautify, 262
Lingua, 257
Lingua::EN::Numbers, 258
Lingua::EN::Sentence, 260
Lingua::EN::Tagger, 261
Lingua::StopWords, 259
LWP, 262
Math, 262
Math::Trig, 152, 284
Statistics, 262
Statistics::R, 262

INDEX

String, 257

Text, 257
my, 165, 282
new, 261
next, 223, 281
not, 15, 55, 198
object oriented, 100
open, 14, 23, 35, 56, 83, 115, 284
or, 22
ord, 283
pointers, 91
pop, 70
pos, 31, 44
print, 14
printf, 62, 151
push, 69
qw, 74
rand, 110
range operator .., 280
range operator

redo, 223, 281
references, 90
representing true and false, 50, 274, 278
return, 148, 283
reverse, 74, 284
running Perl, 13
scalar, 129
shift, 70
slurp mode, 32
sort, 71, 83, 180, 188
spaceship operator <=>, 73
split, 18, 114, 117, 129
sprintf, 56
sqrt, 284
subroutines, 147, 181
substr, 29, 31, 181, 186
tr///, 51, 57-58
uc, 72
uashift, 69
use, 152, 258, 284
user variables, 18
values, 77, 276
variables $’, 45
variables

@_, 148

$", 63,278

$/,32

$. 14

default, 47

match, 49

user, 62
variables$°, 45
while, 14, 66, 83, 281

permutations, 127, 160, 251

text, 266

236, 246

Poe

A Predicament, 140, 145, 150, 161
Hop Frog, 140, 150, 161

293

Poe’s 68 short stories, 123, 201, 203, 206, 217, 219,

294 INDEX

Mesmeric Revelation, 96

The Black Cat, 105, 114, 128

The Facts in the Case of M. Valdemar, 96, 140,
150, 161

The Man of the Crowd, 140, 150, 161

The Tell-Tale Heart, 22, 66

The Unparalleled Adventures of One Hans Pfaall,

129
population, 170
population parameters, 125, 170
population
frame, 170
target, 170
possessive determiners, 143
precedence, 17
prepositions, 177, 191, 259
probability, 110, 114, 134, 188, 267
conditional, 119
references, 133
pronouns, 142, 150, 182, 219, 236, 264
possessive, 143
pseudorandom numbers, 110

Q

qaid, 120
qoph, 120
question mark in regular expressions, 15, 43, 286
question mark
literal, 17
question marks, 37, 40, 46
quotation marks, 28, 46
quote
direct, 37

Inf, 291
infinity, 291
kmeans(), 235, 250, 293
centers, 236
lines(), 294
Im(), 208, 293
matrices, 290
matrix(), 155, 293
order(), 251, 267
package
tseries, 267
pairs(), 208
par(), 294
plot(), 208, 294
plot.voronoi(), 294
prcomp(), 217-218, 244, 293
range operator :, 292

read.csv(), 206, 217, 290, 293

runif(), 251
sample(), 251, 267
scalars, 290
scale(), 217

sd(), 224

selecting subsets of a matrix, 292

seq(), 251

solve(), 156, 224, 293
summary(), 218, 223, 295
t(), 156, 292-293

text(), 294

Tripack, 250

TRUE and FALSE, 291
vectors, 290
voronoi.mosaic(), 294

quotes, 61, 140, 174 random variables, 123
command line, 67 raw counts, 157
double, 19, 21, 25, 41, 63, 81, 182 regex, 8
single, 19, 35, 181 registers, 172

regression line, 208
regular expressions, 8,

R regular expressions, 17, 28, 43
%, 155,292 1,9
%%, 251 7,11,17,43
as.dendrogram(), 294 $,12
as.matrix(), 291, 293 ", 12,286
attach(), 208, 295 {m
byrow=T, 155, 166, 290 311
(), 155 n}, 11,43
cbind(), 293 {m}, 11
cor(), 206, 293 +,17,26,43
cov(), 212,293 alternation, 10
data frame, 206 anchors, 12

det(), 220

diag(), 156, 224, 292-293
dist(), 246

eigen(), 214

factanal(), 228, 293
fitted(), 209

helust(), 246, 293
header=F, 290

header=T, 206

hist(), 252

backreferences, 287
backslash b, 9
backslash d, 11
backslash s, 19
escaped character, 17
g, 24,31, 286
greediness, 43
hyphen, 17

hyphen in square brackets, 17
i, 9, 32,286

lookahead, 53
lookaround, 52
lookbehind, 52
m//, 51, 286
match variables, 21, 287
nongreedy, 43, 164, 286
parentheses for grouping, 287
qr//, 51, 87,286
range of characters, 11, 17
s/if, 24, 286
string substitutions, 24
right skewed, 205
rotations, 220
cyclic, 70
runs, 267

S

sample, 170
sample mean, 124
sample standard deviation, 124
sampling
text, 171
segmentation, 16
sentence, 37-38
word, 22
Shelley
Frankenstein, 175, 182
simple random sample, 125, 170
social titles, 38
stoplist, 158, 177
stratified random sample, 171
strings, 9, 12
concatenation, 65
empty, 19, 51, 66, 76-77, 87
interpolation, 63
numeric, 62
single vs. double quotes, 61
stylometry, 196
sufficient statistics, 135
sum of squares, 235
supervised, 231

T

tagger, 261
term-document matrix, 150, 155, 206, 217, 252, 266

INDEX 295

term frequency-inverse document frequency (TE-IDF),
161

text mining, 249, 271

The Man of the Crowd, 145

thesaurus, 194

tokenization, 36

tokens, 36, 61, 129

transaddition, 104

transdeletion, 104

translations, 51, 58

transpose, 144

types, 61, 129

U

umlaut, 262
unimodal, 205
unit vector, 155
unsupervised, 231

v

variables
demographic, 170
local, 148
scalar, 18
vector space model, 139
vectors, 144
Voronoi diagrams, 249

w

word lists, 58, 85, 119, 185
words within a word, 88
words

content, 177

function, 158, 177

X

xml, 96, 135, 140, 262
XML tags, 202

Z

z-scores, 203, 217

zero-width assertion, 52

zero counts, 113, 117, 128, 193
Zipf’s law, 84, 128, 160, 193, 248

This Page Intentionally Left Blank

	cover.pdf
	page_c2.pdf
	page_r01.pdf
	page_r02.pdf
	page_r03.pdf
	page_r04.pdf
	page_r05.pdf
	page_r06.pdf
	page_r07.pdf
	page_r08.pdf
	page_r09.pdf
	page_r10.pdf
	page_r11.pdf
	page_r12.pdf
	page_r13.pdf
	page_r14.pdf
	page_r15.pdf
	page_r16.pdf
	page_r17.pdf
	page_r18.pdf
	page_r19.pdf
	page_r20.pdf
	page_r21.pdf
	page_r22.pdf
	page_r23.pdf
	page_r24.pdf
	page_z0001.pdf
	page_z0002.pdf
	page_z0003.pdf
	page_z0004.pdf
	page_z0005.pdf
	page_z0006.pdf
	page_z0007.pdf
	page_z0008.pdf
	page_z0009.pdf
	page_z0010.pdf
	page_z0011.pdf
	page_z0012.pdf
	page_z0013.pdf
	page_z0014.pdf
	page_z0015.pdf
	page_z0016.pdf
	page_z0017.pdf
	page_z0018.pdf
	page_z0019.pdf
	page_z0020.pdf
	page_z0021.pdf
	page_z0022.pdf
	page_z0023.pdf
	page_z0024.pdf
	page_z0025.pdf
	page_z0026.pdf
	page_z0027.pdf
	page_z0028.pdf
	page_z0029.pdf
	page_z0030.pdf
	page_z0031.pdf
	page_z0032.pdf
	page_z0033.pdf
	page_z0034.pdf
	page_z0035.pdf
	page_z0036.pdf
	page_z0037.pdf
	page_z0038.pdf
	page_z0039.pdf
	page_z0040.pdf
	page_z0041.pdf
	page_z0042.pdf
	page_z0043.pdf
	page_z0044.pdf
	page_z0045.pdf
	page_z0046.pdf
	page_z0047.pdf
	page_z0048.pdf
	page_z0049.pdf
	page_z0050.pdf
	page_z0051.pdf
	page_z0052.pdf
	page_z0053.pdf
	page_z0054.pdf
	page_z0055.pdf
	page_z0056.pdf
	page_z0057.pdf
	page_z0058.pdf
	page_z0059.pdf
	page_z0060.pdf
	page_z0061.pdf
	page_z0062.pdf
	page_z0063.pdf
	page_z0064.pdf
	page_z0065.pdf
	page_z0066.pdf
	page_z0067.pdf
	page_z0068.pdf
	page_z0069.pdf
	page_z0070.pdf
	page_z0071.pdf
	page_z0072.pdf
	page_z0073.pdf
	page_z0074.pdf
	page_z0075.pdf
	page_z0076.pdf
	page_z0077.pdf
	page_z0078.pdf
	page_z0079.pdf
	page_z0080.pdf
	page_z0081.pdf
	page_z0082.pdf
	page_z0083.pdf
	page_z0084.pdf
	page_z0085.pdf
	page_z0086.pdf
	page_z0087.pdf
	page_z0088.pdf
	page_z0089.pdf
	page_z0090.pdf
	page_z0091.pdf
	page_z0092.pdf
	page_z0093.pdf
	page_z0094.pdf
	page_z0095.pdf
	page_z0096.pdf
	page_z0097.pdf
	page_z0098.pdf
	page_z0099.pdf
	page_z0100.pdf
	page_z0101.pdf
	page_z0102.pdf
	page_z0103.pdf
	page_z0104.pdf
	page_z0105.pdf
	page_z0106.pdf
	page_z0107.pdf
	page_z0108.pdf
	page_z0109.pdf
	page_z0110.pdf
	page_z0111.pdf
	page_z0112.pdf
	page_z0113.pdf
	page_z0114.pdf
	page_z0115.pdf
	page_z0116.pdf
	page_z0117.pdf
	page_z0118.pdf
	page_z0119.pdf
	page_z0120.pdf
	page_z0121.pdf
	page_z0122.pdf
	page_z0123.pdf
	page_z0124.pdf
	page_z0125.pdf
	page_z0126.pdf
	page_z0127.pdf
	page_z0128.pdf
	page_z0129.pdf
	page_z0130.pdf
	page_z0131.pdf
	page_z0132.pdf
	page_z0133.pdf
	page_z0134.pdf
	page_z0135.pdf
	page_z0136.pdf
	page_z0137.pdf
	page_z0138.pdf
	page_z0139.pdf
	page_z0140.pdf
	page_z0141.pdf
	page_z0142.pdf
	page_z0143.pdf
	page_z0144.pdf
	page_z0145.pdf
	page_z0146.pdf
	page_z0147.pdf
	page_z0148.pdf
	page_z0149.pdf
	page_z0150.pdf
	page_z0151.pdf
	page_z0152.pdf
	page_z0153.pdf
	page_z0154.pdf
	page_z0155.pdf
	page_z0156.pdf
	page_z0157.pdf
	page_z0158.pdf
	page_z0159.pdf
	page_z0160.pdf
	page_z0161.pdf
	page_z0162.pdf
	page_z0163.pdf
	page_z0164.pdf
	page_z0165.pdf
	page_z0166.pdf
	page_z0167.pdf
	page_z0168.pdf
	page_z0169.pdf
	page_z0170.pdf
	page_z0171.pdf
	page_z0172.pdf
	page_z0173.pdf
	page_z0174.pdf
	page_z0175.pdf
	page_z0176.pdf
	page_z0177.pdf
	page_z0178.pdf
	page_z0179.pdf
	page_z0180.pdf
	page_z0181.pdf
	page_z0182.pdf
	page_z0183.pdf
	page_z0184.pdf
	page_z0185.pdf
	page_z0186.pdf
	page_z0187.pdf
	page_z0188.pdf
	page_z0189.pdf
	page_z0190.pdf
	page_z0191.pdf
	page_z0192.pdf
	page_z0193.pdf
	page_z0194.pdf
	page_z0195.pdf
	page_z0196.pdf
	page_z0197.pdf
	page_z0198.pdf
	page_z0199.pdf
	page_z0200.pdf
	page_z0201.pdf
	page_z0202.pdf
	page_z0203.pdf
	page_z0204.pdf
	page_z0205.pdf
	page_z0206.pdf
	page_z0207.pdf
	page_z0208.pdf
	page_z0209.pdf
	page_z0210.pdf
	page_z0211.pdf
	page_z0212.pdf
	page_z0213.pdf
	page_z0214.pdf
	page_z0215.pdf
	page_z0216.pdf
	page_z0217.pdf
	page_z0218.pdf
	page_z0219.pdf
	page_z0220.pdf
	page_z0221.pdf
	page_z0222.pdf
	page_z0223.pdf
	page_z0224.pdf
	page_z0225.pdf
	page_z0226.pdf
	page_z0227.pdf
	page_z0228.pdf
	page_z0229.pdf
	page_z0230.pdf
	page_z0231.pdf
	page_z0232.pdf
	page_z0233.pdf
	page_z0234.pdf
	page_z0235.pdf
	page_z0236.pdf
	page_z0237.pdf
	page_z0238.pdf
	page_z0239.pdf
	page_z0240.pdf
	page_z0241.pdf
	page_z0242.pdf
	page_z0243.pdf
	page_z0244.pdf
	page_z0245.pdf
	page_z0246.pdf
	page_z0247.pdf
	page_z0248.pdf
	page_z0249.pdf
	page_z0250.pdf
	page_z0251.pdf
	page_z0252.pdf
	page_z0253.pdf
	page_z0254.pdf
	page_z0255.pdf
	page_z0256.pdf
	page_z0257.pdf
	page_z0258.pdf
	page_z0259.pdf
	page_z0260.pdf
	page_z0261.pdf
	page_z0262.pdf
	page_z0263.pdf
	page_z0264.pdf
	page_z0265.pdf
	page_z0266.pdf
	page_z0267.pdf
	page_z0268.pdf
	page_z0269.pdf
	page_z0270.pdf
	page_z0271.pdf
	page_z0272.pdf
	page_z0273.pdf
	page_z0274.pdf
	page_z0275.pdf
	page_z0276.pdf
	page_z0277.pdf
	page_z0278.pdf
	page_z0279.pdf
	page_z0280.pdf
	page_z0281.pdf
	page_z0282.pdf
	page_z0283.pdf
	page_z0284.pdf
	page_z0285.pdf
	page_z0286.pdf
	page_z0287.pdf
	page_z0288.pdf
	page_z0289.pdf
	page_z0290.pdf
	page_z0291.pdf
	page_z0292.pdf
	page_z0293.pdf
	page_z0294.pdf
	page_z0295.pdf
	page_z0296.pdf

