

Mastering Docker
Third Edition

Unlock new opportunities using Docker's most
advanced features

Russ McKendrick
Scott Gallagher

BIRMINGHAM - MUMBAI

Mastering Docker
Third Edition
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Shrilekha Inani
Content Development Editor: Sharon Raj
Technical Editor: Mohit Hassija
Copy Editor: Safis Editing
Project Coordinator: Drashti Panchal
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Graphics: Tom Scaria
Production Coordinator: Shantanu Zagade

First published: December 2015
Second edition: July 2017
Third edition: October 2018

Production reference: 2061118

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78961-660-6

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the authors
Russ McKendrick is an experienced system administrator who has been working in IT and
related industries for over 25 years. During his career, he has had varied responsibilities,
from looking after an entire IT infrastructure to providing first-line, second-line, and senior
support in both client-facing and internal teams for large organizations.

Russ supports open source systems and tools on public and private clouds at Node4
Limited, where he is the Practice Manager (SRE and DevOps).

I would like to thank my family and friends for their support and for being so
understanding about all of the time I have spent writing in front of the computer. I would
also like to thank my colleagues at Node4 and our customers for their kind words of
support and encouragement throughout the writing process.

Scott Gallagher has been fascinated with technology since he played Oregon Trail in
elementary school. His love for it continued through middle school as he worked on more
Apple IIe computers. In high school, he learned how to build computers and program in
BASIC. His college years were all about server technologies such as Novell, Microsoft, and
Red Hat. After college, he continued to work on Novell, all the while maintaining an
interest in all technologies. He then moved on to manage Microsoft environments and,
eventually, what he was most passionate about Linux environments. Now, his focus is on
Docker and cloud environments.

About the reviewer
Paul Adamson has worked as an Ops engineer, a developer, a DevOps engineer, and all
variations and mixes of all of these. When not reviewing this book, Paul keeps busy helping
companies embrace the AWS infrastructure. His language of choice is PHP for all the good
reasons and even some of the bad, but mainly because of habit. While reviewing this book,
Paul has been working for Healthy Performance Ltd, helping to apply cutting-edge
technology to a cutting-edge approach to well-being.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Docker Overview 6
Technical requirements 6
Understanding Docker 7

Developers 7
The problem 7
The Docker solution 8

Operators 8
The problem 8
The Docker solution 9

Enterprise 10
The problem 10
The Docker solution 10

The differences between dedicated hosts, virtual machines, and
Docker 11
Docker installation 13

Installing Docker on Linux (Ubuntu 18.04) 14
Installing Docker on macOS 15
Installing Docker on Windows 10 Professional 18
Older operating systems 20

The Docker command-line client 22
Docker and the container ecosystem 26

Open source projects 27
Docker CE and Docker EE 27
Docker, Inc. 29

Summary 29
Questions 30
Further reading 30

Chapter 2: Building Container Images 32
Technical requirements 32
Introducing the Dockerfile 33

Reviewing the Dockerfile in depth 34
FROM 34
LABEL 35
RUN 35
COPY and ADD 36
EXPOSE 38
ENTRYPOINT and CMD 38
Other Dockerfile instructions 39

Table of Contents

[ii]

USER 39
WORKDIR 39
ONBUILD 40
ENV 40

Dockerfiles – best practices 40
Building container images 41

Using a Dockerfile to build a container image 42
Using an existing container 46
Building a container image from scratch 49
Using environmental variables 52
Using multi-stage builds 59

Summary 63
Questions 63
Further reading 64

Chapter 3: Storing and Distributing Images 65
Technical requirements 65
Docker Hub 66

Dashboard 66
Explore 68
Organizations 69
Create 70
Profile and settings 70
Other menu options 72
Creating an automated build 72

Setting up your code 73
Setting up Docker Hub 74

Pushing your own image 82
Docker Store 85
Docker Registry 87

An overview of Docker Registry 87
Deploying your own registry 88

Docker Trusted Registry 90
Third-party registries 90
Microbadger 91
Summary 94
Questions 94
Further reading 95

Chapter 4: Managing Containers 96
Technical requirements 97
Docker container commands 97

The basics 97
Interacting with your containers 102

attach 102
exec 103

Table of Contents

[iii]

Logs and process information 105
logs 105
top 107
stats 108

Resource limits 108
Container states and miscellaneous commands 110

Pause and unpause 112
Stop, start, restart, and kill 113
Removing containers 114
Miscellaneous commands 115

Docker networking and volumes 117
Docker networking 117
Docker volumes 125

Summary 132
Questions 132
Further reading 133

Chapter 5: Docker Compose 134
Technical requirements 134
Introducing Docker Compose 135
Our first Docker Compose application 136
Docker Compose YAML file 138

Moby counter application 139
Example voting application 140

Docker Compose commands 150
Up and PS 150
Config 151
Pull, build, and create 152
Start, stop, restart, pause, and unpause 153
Top, logs, and events 153
Scale 156
Kill, rm, and down 157

Docker App 159
Summary 165
Questions 166
Further reading 166

Chapter 6: Windows Containers 167
Technical requirements 167
An introduction to Windows containers 168
Setting up your Docker host for Windows containers 171

Windows 10 Professional 171
macOS and Linux 173

Running Windows containers 174
A Windows container Dockerfile 177

Table of Contents

[iv]

Windows containers and Docker Compose 179
Summary 181
Questions 182
Further reading 182

Chapter 7: Docker Machine 183
Technical requirements 183
An introduction to Docker Machine 184
Deploying local Docker hosts with Docker Machine 184
Launching Docker hosts in the cloud 191
Using other base operating systems 195
Summary 197
Questions 198
Further reading 198

Chapter 8: Docker Swarm 199
Technical requirements 199
Introducing Docker Swarm 200
Roles within a Docker Swarm cluster 201

Swarm manager 201
Swarm worker 202

Creating and managing a Swarm 202
Creating a cluster 203
Adding a Swarm manager to the cluster 205
Joining Swarm workers to the cluster 206
Listing nodes 207

Managing a cluster 207
Finding information on the cluster 208
Promoting a worker node 211
Demoting a manager node 211
Draining a node 212

Docker Swarm services and stacks 214
Services 215
Stacks 220

Deleting a Swarm cluster 222
Load balancing, overlays, and scheduling 222

Ingress load balancing 222
Network overlays 223
Scheduling 225

Summary 225
Questions 225
Further reading 226

Chapter 9: Docker and Kubernetes 227
Technical requirements 227

Table of Contents

[v]

An introduction to Kubernetes 227
A brief history of containers at Google 228
An overview of Kubernetes 229
Kubernetes and Docker 231

Enabling Kubernetes 232
Using Kubernetes 236
Kubernetes and other Docker tools 243
Summary 251
Questions 251
Further reading 252

Chapter 10: Running Docker in Public Clouds 253
Technical requirements 253
Docker Cloud 254
Docker on-cloud 254

Docker Community Edition for AWS 255
Docker Community Edition for Azure 262
Docker for Cloud summary 268

Amazon ECS and AWS Fargate 268
Microsoft Azure App Services 273
Kubernetes in Microsoft Azure, Google Cloud, and Amazon Web
Services 276

Azure Kubernetes Service 276
Google Kubernetes Engine 281
Amazon Elastic Container Service for Kubernetes 283
Kubernetes summary 286

Summary 288
Questions 288
Further reading 288

Chapter 11: Portainer - A GUI for Docker 290
Technical requirements 290
The road to Portainer 291
Getting Portainer up and running 291
Using Portainer 293

The Dashboard 294
Application templates 295
Containers 298

Stats 301
Logs 302
Console 303

Images 304
Networks and volumes 306

Networks 306
Volumes 306

Table of Contents

[vi]

Events 306
Engine 307

Portainer and Docker Swarm 307
Creating the Swarm 308
The Portainer service 308
Swarm differences 310

Endpoints 310
Dashboard and Swarm 311
Stacks 312
Services 313
Adding endpoints 316

Summary 318
Questions 318
Further reading 318

Chapter 12: Docker Security 319
Technical requirements 319
Container considerations 319

The advantages 320
Your Docker host 321
Image trust 321

Docker commands 322
run command 322
diff command 323

Best practices 324
Docker best practices 325
The Center for Internet Security benchmark 325

Host configuration 326
Docker daemon configuration 326
Docker daemon configuration files 326
Container images/runtime and build files 327
Container runtime 327
Docker security operations 327

The Docker Bench Security application 327
Running the tool on Docker for macOS and Docker for Windows 328
Running on Ubuntu Linux 330
Understanding the output 331

Host configuration 332
Docker daemon configuration 332
Docker daemon configuration files 334
Container images and build files 334
Container runtime 335
Docker security operations 338
Docker Swarm configuration 338

Summing up Docker Bench 339
Third-party security services 339

Quay 339

Table of Contents

[vii]

Clair 340
Anchore 341

Summary 345
Questions 346
Further reading 346

Chapter 13: Docker Workflows 347
Technical requirements 347
Docker for development 348
Monitoring 361
Extending to external platforms 371

Heroku 371
What does production look like? 372

Docker hosts 372
Mixing of processes 373
Multiple isolated Docker hosts 373
Routing to your containers 373

Clustering 374
Compatibility 374
Reference architectures 374
Cluster communication 375

Image registries 375
Summary 375
Questions 376
Further reading 376

Chapter 14: Next Steps with Docker 378
The Moby Project 378
Contributing to Docker 379

Contributing to the code 380
Offering Docker support 381
Other contributions 382

The Cloud Native Computing Foundation 382
Graduated projects 383
Incubating projects 384
The CNCF landscape 386

Summary 386

Assessments 387

Other Books You May Enjoy 392

Index 395

Preface
Docker has been a game-changer when it comes to how modern applications are deployed
and architectured. It has now grown into a key driver of innovation beyond system
administration, and it has an impact on the world of web development and more. But how
can you make sure you're keeping up with the innovations it's driving? How can you be
sure you're using it to its full potential?

This book shows you how; it not only demonstrates how to use Docker more effectively, it
also helps you rethink and re-imagine what's possible with Docker.

You will also cover basic topics, such as building, managing, and storing images, along
with best practices to make you confident before delving into Docker security. You'll find
everything related to extending and integrating Docker in new and innovative ways.
Docker Compose, Docker Swarm, and Kubernetes will help you take control of your
containers in an efficient way.

By the end of the book, you will have a broad and detailed sense of exactly what's possible
with Docker and how seamlessly it fits into your local workflow, as well as to highly
available public cloud platforms and other tools.

Who this book is for
If you are an IT professional and recognize Docker's importance in innovation in
everything from system administration to web development, but aren't sure how to use it
to its full potential, this book is for you.

What this book covers
Chapter 1, Docker Overview, discusses where Docker came from, and what it means to
developers, operators, and enterprises.

Chapter 2, Building Container Images, looks at the various ways in which you can build your
own container images.

Chapter 3, Storing and Distributing Images, looks at how we can share and distribute
images, now that we know how to build them.

Preface

[2]

Chapter 4, Managing Containers, takes a deep dive into learning how to manage containers.

Chapter 5, Docker Compose, looks at Docker Compose—a tool that allows us to share
applications comprising multiple containers.

Chapter 6, Windows Containers, explains that, traditionally, containers have been a Linux-
based tool. Working with Docker, Microsoft has now introduced Windows containers. In
this chapter, we will look at the differences between the two types of containers.

Chapter 7, Docker Machine, looks at Docker Machine, a tool that allows you to launch and
manage Docker hosts on various platforms.

Chapter 8, Docker Swarm, discusses that we have been targeting single Docker hosts until
this point. Docker Swarm is a clustering technology by Docker that allows you to run your
containers across multiple hosts.

Chapter 9, Docker and Kubernetes, takes a look at Kubernetes. Like Docker Swarm, you can
use Kubernetes to create and manage clusters that run your container-based applications.

Chapter 10, Running Docker in Public Clouds, looks at using the tools provided by Docker to
launch a Docker Swarm cluster in Amazon Web Services, and also Microsoft Azure. We
will then look at the container solutions offered by Amazon Web Services, Microsoft Azure,
and Google Cloud.

Chapter 11, Portainer - A GUI for Docker, explains that most of our interaction with Docker
has been on the command line. Here, we will take a look at Portainer, a tool that allows you
to manage Docker resources from a web interface.

Chapter 12, Docker Security, takes a look at Docker security. We will cover everything from
the Docker host, to how you launch your images, to where you get them from, and also the
contents of your images.

Chapter 13, Docker Workflows, starts to put all the pieces together so that you can start using
Docker in your production environments and feel comfortable doing so.

Chapter 14, Next Steps with Docker, looks not only at how you can contribute to Docker but
also at the larger ecosystem that has sprung up to support container-based applications and
deployments.

Preface

[3]

To get the most out of this book
To get the most out of this book you will need a machine capable of running Docker. This
machine should have at least 8 GB RAM and 30 GB HDD free with an Intel i3 or above,
running one of the following OSes:

macOS High Sierra or above
Windows 10 Professional
Ubuntu 18.04

Also, you will need access to one or all of the following public cloud providers:
DigitalOcean, Amazon Web Services, Microsoft Azure, and Google Cloud.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Mastering- ​Docker- ​Third- ​Edition. In case there's an update to the code,
it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[4]

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http:/ ​/​www. ​packtpub. ​com/​sites/ ​default/ ​files/
downloads/​9781789616606_ ​ColorImages. ​pdf.

Code in Action
Visit the following link to check out videos of the code being run:
http:/​/​bit.​ly/​2PUB9ww

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The first file is nginx.conf, which contains a basic nginx configuration file."

A block of code is set as follows:

user nginx;
worker_processes 1;

error_log /var/log/nginx/error.log warn;
pid /var/run/nginx.pid;

events {
 worker_connections 1024;
}

Any command-line input or output is written as follows:

$ docker image inspect <IMAGE_ID>

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Upon clicking on Create, you will be taken to a screen similar to the next screenshot."

http://www.packtpub.com/sites/default/files/downloads/9781789616606_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789616606_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789616606_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789616606_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789616606_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789616606_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789616606_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789616606_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789616606_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789616606_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789616606_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789616606_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789616606_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789616606_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789616606_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789616606_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789616606_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789616606_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789616606_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789616606_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789616606_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789616606_ColorImages.pdf
http://bit.ly/2PUB9ww
http://bit.ly/2PUB9ww
http://bit.ly/2PUB9ww
http://bit.ly/2PUB9ww
http://bit.ly/2PUB9ww
http://bit.ly/2PUB9ww
http://bit.ly/2PUB9ww
http://bit.ly/2PUB9ww
http://bit.ly/2PUB9ww

Preface

[5]

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
Docker Overview

Welcome to Mastering Docker, Third Edition! This first chapter will cover the Docker basics
that you should already have a pretty good handle on. But if you don't already have the
required knowledge at this point, this chapter will help you with the basics, so that
subsequent chapters don't feel as heavy. By the end of the book, you should be a Docker
master, and will be able to implement Docker in your environments, building and
supporting applications on top of them.

In this chapter, we're going to review the following high-level topics:

Understanding Docker
The differences between dedicated hosts, virtual machines, and Docker
Docker installers/installation
The Docker command
The Docker and container ecosystem

Technical requirements
In this chapter, we are going to discuss how to install Docker locally. To do this, you will
need a host running one of the three following operating systems:

macOS High Sierra and above
Windows 10 Professional
Ubuntu 18.04

Docker Overview Chapter 1

[7]

Check out the following video to see the Code in Action:

http:/​/​bit.​ly/​2NXf3rd

Understanding Docker
Before we look at installing Docker, let's begin by getting an understanding of the problems
that the Docker technology aims to solve.

Developers
The company behind Docker has always described the program as fixing the "it works on my
machine" problem. This problem is best summed up by an image, based on the Disaster Girl
meme, which simply had the tagline Worked fine in dev, ops problem now, that started
popping up in presentations, forums, and Slack channels a few years ago. While it is funny,
it is unfortunately an all-too-real problem and one I have personally been on the receiving
end of - let's take a look at an example of what is meant by this.

The problem
Even in a world where DevOps best practices are followed, it is still all too easy for a
developer's working environment to not match the final production environment.

For example, a developer using the macOS version of, say, PHP will probably not be
running the same version as the Linux server that hosts the production code. Even if the
versions match, you then have to deal with differences in the configuration and overall
environment on which the version of PHP is running, such as differences in the way file
permissions are handled between different operating system versions, to name just one
potential problem.

All of this comes to a head when it is time for a developer to deploy their code to the host
and it doesn't work. So, should the production environment be configured to match the
developer's machine, or should developers only do their work in environments that match
those used in production?

http://bit.ly/2NXf3rd
http://bit.ly/2NXf3rd
http://bit.ly/2NXf3rd
http://bit.ly/2NXf3rd
http://bit.ly/2NXf3rd
http://bit.ly/2NXf3rd
http://bit.ly/2NXf3rd
http://bit.ly/2NXf3rd
http://bit.ly/2NXf3rd

Docker Overview Chapter 1

[8]

In an ideal world, everything should be consistent, from the developer's laptop all the way
through to your production servers; however, this utopia has traditionally been difficult to
achieve. Everyone has their way of working and their own personal preferences—enforcing
consistency across multiple platforms is difficult enough when there is a single engineer
working on the systems, let alone a team of engineers working with a team of potentially
hundreds of developers.

The Docker solution
Using Docker for Mac or Docker for Windows, a developer can easily wrap their code in a
container that they have either defined themselves, or created as a Dockerfile
while working alongside a sys-admin or operations team. We will be covering this in
Chapter 2, Building Container Images, as well as Docker Compose files, which we will go
into more detail about in Chapter 5, Docker Compose.

They can continue to use their chosen IDE and maintain their workflows when working
with the code. As we will see in the upcoming sections of this chapter, installing and using
Docker is not difficult; in fact, considering how much of a chore it was to maintain
consistent environments in the past, even with automation, Docker feels a little too
easy—almost like cheating.

Operators
I have been working in operations for more years than I would like to admit, and the
following problem has cropped regularly.

The problem
Let's say you are looking after five servers: three load-balanced web servers, and two
database servers that are in a master or slave configuration dedicated to running
Application 1. You are using a tool, such as Puppet or Chef, to automatically manage the
software stack and configuration across your five servers.

Everything is going great, until you are told, We need to deploy Application 2 on the same
servers that are running Application 1. On the face of it, this is no problem—you can tweak
your Puppet or Chef configuration to add new users, vhosts, pull the new code down, and
so on. However, you notice that Application 2 requires a higher version of the software that
you are running for Application 1.

Docker Overview Chapter 1

[9]

To make matters worse, you already know that Application 1 flat out refuses to work with
the new software stack, and that Application 2 is not backwards compatible.

Traditionally, this leaves you with a few choices, all of which just add to the problem in one
way or another:

Ask for more servers? While this traditionally is probably the safest technical1.
solution, it does not automatically mean that there will be the budget for
additional resources.
Re-architect the solution? Taking one of the web and database servers out of the2.
load balancer or replication, and redeploying them with the software stack for
Application 2, may seem like the next easiest option from a technical point of
view. However, you are introducing single points of failure for Application 2,
and also reducing the redundancy for Application 1: there was probably a reason
why you were running three web and two database servers in the first place.
Attempt to install the new software stack side-by-side on your servers? Well, this3.
certainly is possible and may seem like a good short-term plan to get the project
out of the door, but it could leave you with a house of cards that could come
tumbling down when the first critical security patch is needed for either software
stack.

The Docker solution
This is where Docker starts to come into its own. If you have Application 1 running across
your three web servers in containers, you may actually be running more than three
containers; in fact, you could already be running six, doubling up on the containers,
allowing you to run rolling deployments of your application without reducing the
availability of Application 1.

Deploying Application 2 in this environment is as easy as simply launching more
containers across your three hosts and then routing to the newly deployed application
using your load balancer. As you are just deploying containers, you do not need to worry
about the logistics of deploying, configuring, and managing two versions of the same
software stack on the same server.

We will work through an example of this exact scenario in Chapter 5, Docker Compose.

Docker Overview Chapter 1

[10]

Enterprise
Enterprises suffer from the same problems described previously, as they have both
developers and operators; however, they have both of these entities on a much larger scale,
and there is also a lot more risk involved.

The problem
Because of the aforementioned risk, along with the fact that any downtime could cost sales
or impact reputation, enterprises need to test every deployment before it is released. This
means that new features and fixes are stuck in a holding pattern while the following takes
place:

Test environments are spun up and configured
Applications are deployed across the newly launched environments
Test plans are executed and the application and configuration are tweaked until
the tests pass
Requests for change are written, submitted, and discussed to get the updated
application deployed to production

This process can take anywhere from a few days to a few weeks, or even months,
depending on the complexity of the application and the risk the change introduces. While
the process is required to ensure continuity and availability for the enterprise at a
technological level, it does potentially introduce risk at the business level. What if you have
a new feature stuck in this holding pattern and a competitor releases a similar—or worse
still—the same feature, ahead of you?

This scenario could be just as damaging to sales and reputation as the downtime that the
process was put in place to protect you against in the first place.

The Docker solution
Let me start by saying that Docker does not remove the need for a process, such as the one
just described, to exist or be followed. However, as we have already touched upon, it does
make things a lot easier as you are already working consistently. It means that your
developers have been working with the same container configuration that is running in
production. This means that it is not much of a step for the methodology to be applied to
your testing.

Docker Overview Chapter 1

[11]

For example, when a developer checks their code that they know works on their local
development environment (as that is where they have been doing all of their work), your
testing tool can launch the same containers to run your automated tests against. Once the
containers have been used, they can be removed to free up resources for the next lot of
tests. This means that, all of a sudden, your testing process and procedures are a lot more
flexible, and you can continue to reuse the same environment, rather than redeploying or
reimaging servers for the next set of testing.

This streamlining of the process can be taken as far as having your new application
containers push all the way through to production.

The quicker this process can be completed, the quicker you can confidently launch new
features or fixes and keep ahead of the curve.

The differences between dedicated hosts,
virtual machines, and Docker
So, we know what problems Docker was developed to solve. We now need to discuss what
exactly Docker is and what it does.

Docker is a container management system that helps us easily manage Linux Containers
(LXC) in an easier and universal fashion. This lets you create images in virtual
environments on your laptop and run commands against them. The actions you perform to
the containers, running in these environments locally on your machine, will be the same
commands or operations that you run against them when they are running in your
production environment.

This helps us in that you don't have to do things differently when you go from a
development environment, such as the one on your local machine, to a production
environment on your server. Now, let's take a look at the differences between Docker
containers and typical virtual machine environments.

Docker Overview Chapter 1

[12]

The following diagram demonstrates the difference between a dedicated, bare-metal server
and a server running virtual machines:

As you can see, for a dedicated machine we have three applications, all sharing the same
orange software stack. Running virtual machines allow us to run three applications,
running two completely different software stacks. The following diagram shows the same
orange and green applications running in containers using Docker:

Docker Overview Chapter 1

[13]

This diagram gives us a lot of insight into the biggest key benefit of Docker, that is, there is
no need for a complete operating system every time we need to bring up a new container,
which cuts down on the overall size of containers. Since almost all the versions of Linux use
the standard kernel models, Docker relies on using the host operating system's Linux
kernel for the operating system it was built upon, such as Red Hat, CentOS, and Ubuntu.

For this reason, you can have almost any Linux operating system as your host operating
system and be able to layer other Linux-based operating systems on top of the host. Well,
that is, your applications are led to believe that a full operating system is actually
installed—but in reality, we only install the binaries, such as a package manager and, for
example, Apache/PHP and the libraries required to get just enough of an operating system
for your applications to run.

For example, in the earlier diagram, we could have Red Hat running for the orange
application, and Debian running for the green application, but there would never be a need
to actually install Red Hat or Debian on the host. Thus, another benefit of Docker is the size
of images when they are created. They are built without the largest piece: the kernel or the
operating system. This makes them incredibly small, compact, and easy to ship.

Docker installation
Installers are one of the first pieces you need to get up and running with Docker on both
your local machine and your server environments. Let's first take a look at which
environments you can install Docker in:

Linux (various Linux flavors)
macOS
Windows 10 Professional

In addition, you can run them on public clouds, such as Amazon Web Services, Microsoft
Azure, and DigitalOcean, to name a few. With each of the various types of installers listed
previously, Docker actually operates in different ways on the operating system. For
example, Docker runs natively on Linux, so if you are using Linux, then how Docker runs
on your system is pretty straightforward. However, if you are using macOS or Windows
10, then it operates a little differently, since it relies on using Linux.

Let's look at quickly installing Docker on a Linux desktop running Ubuntu 18.04, and then
on macOS and Windows 10.

Docker Overview Chapter 1

[14]

Installing Docker on Linux (Ubuntu 18.04)
As already mentioned, this is the most straightforward installation out of the three systems
we will be looking at. To install Docker, simply run the following command from a
Terminal session:

$ curl -sSL https://get.docker.com/ | sh
$ sudo systemctl start docker

You will also be asked to add your current user to the Docker group. To do this, run the
following command, making sure you replace the username with your own:

$ sudo usermod -aG docker username

These commands will download, install, and configure the latest version of Docker from
Docker themselves. At the time of writing, the Linux operating system version installed by
the official install script is 18.06.

Running the following command should confirm that Docker is installed and running:

$ docker version

You should see something similar to the following output:

Docker Overview Chapter 1

[15]

There are two supporting tools that we are going to use in future chapters, which are
installed as part of the Docker for macOS or Windows 10 installers.

To ensure that we are ready to use these tools in later chapters, we should install them now.
The first tool is Docker Machine. To install this, we first need to get the latest version
number. You can find this by visiting the releases section of the project's GitHub page at
https:/​/​github.​com/ ​docker/ ​machine/ ​releases/ ​. At the time of writing, the version was
0.15.0—update the version number in the commands in the following code block with
whatever the latest version is when you install it:

$ MACHINEVERSION=0.15.0
$ curl -L
https://github.com/docker/machine/releases/download/v$MACHINEVERSION/docker
-machine-$(uname -s)-$(uname -m) >/tmp/docker-machine
$ chmod +x /tmp/docker-machine
$ sudo mv /tmp/docker-machine /usr/local/bin/docker-machine

To download and install the next and final tool, Docker Compose, run the following
commands, again checking that you are running the latest version by visiting the releases
page at https:/​/ ​github. ​com/ ​docker/ ​compose/ ​releases/ ​:

$ COMPOSEVERSION=1.22.0
$ curl -L
https://github.com/docker/compose/releases/download/$COMPOSEVERSION/docker-
compose-`uname -s`-`uname -m` >/tmp/docker-compose
$ chmod +x /tmp/docker-compose
$ sudo mv /tmp/docker-compose /usr/local/bin/docker-compose

Once it's installed, you should be able to run the following two commands confirm the
versions of the software is correctly:

$ docker-machine version
$ docker-compose version

Installing Docker on macOS
Unlike the command-line Linux installation, Docker for Mac has a graphical installer.

Before downloading, you should make sure that you are running Apple
macOS Yosemite 10.10.3 or above. If you are running an older version, all
is not lost; you can still run Docker. Refer to the other older operating
systems section of this chapter.

https://github.com/docker/machine/releases/
https://github.com/docker/machine/releases/
https://github.com/docker/machine/releases/
https://github.com/docker/machine/releases/
https://github.com/docker/machine/releases/
https://github.com/docker/machine/releases/
https://github.com/docker/machine/releases/
https://github.com/docker/machine/releases/
https://github.com/docker/machine/releases/
https://github.com/docker/machine/releases/
https://github.com/docker/machine/releases/
https://github.com/docker/machine/releases/
https://github.com/docker/machine/releases/
https://github.com/docker/machine/releases/
https://github.com/docker/compose/releases/
https://github.com/docker/compose/releases/
https://github.com/docker/compose/releases/
https://github.com/docker/compose/releases/
https://github.com/docker/compose/releases/
https://github.com/docker/compose/releases/
https://github.com/docker/compose/releases/
https://github.com/docker/compose/releases/
https://github.com/docker/compose/releases/
https://github.com/docker/compose/releases/
https://github.com/docker/compose/releases/
https://github.com/docker/compose/releases/
https://github.com/docker/compose/releases/
https://github.com/docker/compose/releases/

Docker Overview Chapter 1

[16]

You can download the installer from the Docker store, at https:/ ​/​store. ​docker. ​com/
editions/​community/ ​docker- ​ce- ​desktop- ​mac. Just click on the Get Docker link. Once it's
downloaded, you should have a DMG file. Double-clicking on it will mount the image, and
opening the image mounted on your desktop should present you with something like this:

Once you have dragged the Docker icon to your Applications folder, double-click on it and
you will be asked whether you want to open the application you have downloaded.
Clicking Yes will open the Docker installer, showing the following:

https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac

Docker Overview Chapter 1

[17]

Click on Next and follow the onscreen instructions. Once it is installed and started, you
should see a Docker icon in the top-left icon bar on your screen. Clicking on the icon and
selecting About Docker should show you something similar to the following:

You can also open a Terminal window. Run the following command, just as we did in the
Linux installation:

$ docker version

Docker Overview Chapter 1

[18]

You should see something similar to the following Terminal output:

You can also run the following commands to check the versions of Docker Compose and
Docker Machine that were installed alongside Docker Engine:

$ docker-compose version
$ docker-machine version

Installing Docker on Windows 10 Professional
Like Docker for Mac, Docker for Windows uses a graphical installer.

Before downloading, you should make sure that you are running
Microsoft Windows 10 Professional or Enterprise 64-bit. If you are
running an older version or an unsupported edition of Windows 10, you
can still run Docker; refer to the other older operating systems section of
this chapter for more information.

Docker for Windows has this requirement due to its reliance on Hyper-V.
Hyper-V is Windows' native hypervisor and allows you to run x86-64
guests on your Windows machine, be it Windows 10 Professional or
Windows Server. It even forms part of the Xbox One operating system.

Docker Overview Chapter 1

[19]

You can download the Docker for Windows installer from the Docker store at https:/ ​/
store.​docker.​com/ ​editions/ ​community/ ​docker- ​ce-​desktop- ​windows/ ​. Just click on the
Get Docker button to download the installer. Once it's downloaded, run the MSI package
and you will be greeted with the following:

Click on Yes, and then follow the onscreen prompts, which will go through not
only installing Docker, but also enabling Hyper-V, if you do not already have it enabled.

Once it's installed, you should see a Docker icon in the icon tray in the bottom right of your
screen. Clicking on it and selecting About Docker from the menu will show the following:

https://store.docker.com/editions/community/docker-ce-desktop-windows/
https://store.docker.com/editions/community/docker-ce-desktop-windows/
https://store.docker.com/editions/community/docker-ce-desktop-windows/
https://store.docker.com/editions/community/docker-ce-desktop-windows/
https://store.docker.com/editions/community/docker-ce-desktop-windows/
https://store.docker.com/editions/community/docker-ce-desktop-windows/
https://store.docker.com/editions/community/docker-ce-desktop-windows/
https://store.docker.com/editions/community/docker-ce-desktop-windows/
https://store.docker.com/editions/community/docker-ce-desktop-windows/
https://store.docker.com/editions/community/docker-ce-desktop-windows/
https://store.docker.com/editions/community/docker-ce-desktop-windows/
https://store.docker.com/editions/community/docker-ce-desktop-windows/
https://store.docker.com/editions/community/docker-ce-desktop-windows/
https://store.docker.com/editions/community/docker-ce-desktop-windows/
https://store.docker.com/editions/community/docker-ce-desktop-windows/
https://store.docker.com/editions/community/docker-ce-desktop-windows/
https://store.docker.com/editions/community/docker-ce-desktop-windows/
https://store.docker.com/editions/community/docker-ce-desktop-windows/
https://store.docker.com/editions/community/docker-ce-desktop-windows/
https://store.docker.com/editions/community/docker-ce-desktop-windows/
https://store.docker.com/editions/community/docker-ce-desktop-windows/

Docker Overview Chapter 1

[20]

Open a PowerShell window and type the following command:

$ docker version

This should also show you similar output to the Mac and Linux versions:

Again, you can also run the following commands to check the versions of Docker Compose
and Docker Machine that were installed alongside Docker Engine:

$ docker-compose version
$ docker-machine version

Again, you should see a similar output to the macOS and Linux versions. As you may have
started to gather, once the packages are installed, their usage is going to be pretty similar.
This will be covered in greater detail later in this chapter.

Older operating systems
If you are not running a sufficiently new operating system on Mac or Windows, then you
will need to use Docker Toolbox. Consider the output printed from running the following
command:

$ docker version

Docker Overview Chapter 1

[21]

On all three of the installations we have performed so far, it shows two different versions, a
client and server. Predictably, the Linux version shows that the architecture for the client
and server are both Linux; however, you may notice that the Mac version shows the client
is running on Darwin, which is Apple's Unix-like kernel, and the Windows version shows
Windows. Yet both of the servers show the architecture as being Linux, so what gives?

That is because both the Mac and Windows versions of Docker download and run a virtual
machine in the background, and this virtual machine runs running a small, lightweight
operating system based on Alpine Linux. The virtual machine runs using Docker's own
libraries, which connect to the built-in hypervisor for your chosen environment.

For macOS, this is the built-in Hypervisor.framework, and for Windows, Hyper-V.

To ensure that no one misses out on the Docker experience, a version of Docker that does
not use these built-in hypervisors is available for older versions of macOS and unsupported
Windows versions. These versions utilize VirtualBox as the hypervisor to run the Linux
server for your local client to connect to.

VirtualBox is an open source x86 and AMD64/Intel64 virtualization
product developed by Oracle. It runs on Windows, Linux, Macintosh, and
Solaris hosts, with support for many Linux, Unix, and Windows guest
operating systems. For more information on VirtualBox, see https:/ ​/​www.
virtualbox. ​org/ ​.

For more information on Docker Toolbox, see the project's website at https:/ ​/​www.
docker.​com/​products/ ​docker- ​toolbox/ ​, where you can also download the macOS and
Windows installers.

This book assumes that you have installed the latest Docker version on
Linux, or have used Docker for Mac or Docker for Windows. While
Docker installations using Docker Toolbox should be able to support the
commands in this book, you may run into issues around file permissions
and ownership when mounting data from your local machine to your
containers.

https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.docker.%20com/products/docker-toolbox/
https://www.docker.%20com/products/docker-toolbox/
https://www.docker.%20com/products/docker-toolbox/
https://www.docker.%20com/products/docker-toolbox/
https://www.docker.%20com/products/docker-toolbox/
https://www.docker.%20com/products/docker-toolbox/
https://www.docker.%20com/products/docker-toolbox/
https://www.docker.%20com/products/docker-toolbox/
https://www.docker.%20com/products/docker-toolbox/
https://www.docker.%20com/products/docker-toolbox/
https://www.docker.%20com/products/docker-toolbox/
https://www.docker.%20com/products/docker-toolbox/
https://www.docker.%20com/products/docker-toolbox/
https://www.docker.%20com/products/docker-toolbox/
https://www.docker.%20com/products/docker-toolbox/

Docker Overview Chapter 1

[22]

The Docker command-line client
Now that we have Docker installed, let's look at some Docker commands that you should
be familiar with already. We will start with some common commands and then take a peek
at the commands that are used for the Docker images. We will then take a dive into the
commands that are used for the containers.

Docker has restructured their command-line client into more logical
groupings of commands, as the number of features provided by the client
grows quickly and commands start to cross over each other. Throughout
this book, we will be using the new structure.

The first command we will be taking a look at is one of the most useful commands, not only
in Docker, but in any command-line utility you use—the help command. It is run simply
like this:

$ docker help

This command will give you a full list of all of the Docker commands at your disposal,
along with a brief description of what each command does. For further help with a
particular command, you can run the following:

$ docker <COMMAND> --help

Next, let's run the hello-world container. To do this, simply run the following command:

$ docker container run hello-world

It doesn't matter what host you are running Docker on, the same thing will happen on
Linux, macOS, and Windows. Docker will download the hello-world container image
and then execute it, and once it's executed, the container will be stopped.

Docker Overview Chapter 1

[23]

Your Terminal session should look like the following:

Let's try something a little more adventurous—let's download and run a nginx container by
running the following two commands:

$ docker image pull nginx
$ docker container run -d --name nginx-test -p 8080:80 nginx

Docker Overview Chapter 1

[24]

The first of the two commands downloads the nginx container image, and the second
command launches a container in the background, called nginx-test, using the nginx
image we pulled. It also maps port 8080 on our host machine to port 80 on the container,
making it accessible to our local browser at http://localhost:8080/.

As you can see from the following screenshots, the command and results are exactly the
same on all three OS types. Here we have Linux:

Docker Overview Chapter 1

[25]

This is the result on macOS:

And this is how it looks on Windows:

Docker Overview Chapter 1

[26]

In the following three chapters, we will look at using the Docker command-line client in
more detail. For now, let's stop and remove our nginx-test container by running the
following:

$ docker container stop nginx-test
$ docker container rm nginx-test

As you can see, the experience of running a simple nginx container on all three of the hosts
on which we have installed Docker is exactly the same. As am I sure you can imagine,
trying to achieve this without something like Docker across all three platforms is a
challenge, and also a very different experience on each platform. Traditionally, this has
been one of the reasons for the difference in local development environments.

Docker and the container ecosystem
If you have been following the rise of Docker and containers, you will have noticed that,
over the period of the last few years, the messaging on the Docker website has been slowly
changing, from headlines about what containers are to more of a focus on the services
provided by Docker as a company.

One of the core drivers for this is that everything has traditionally been lumped into being
known just as "Docker," which can get confusing. Now that people do not need educating
as much on what a container is or the problems they can solve with Docker, the company
needed to try and start to differentiate themselves from other companies that sprung up to
support all sorts of container technologies.

So, let's try and unpick everything that is Docker, which involves the following:

Open source projects: There are several open source projects started by Docker,
which are now maintained by a large community of developers.
Docker CE and Docker EE: This is the core collection of free-to-use and
commercially supported Docker tools built on top of the open source
components.
Docker, Inc.: This is the company founded to support and develop the core
Docker tools.

We will also be looking at some third-party services in later chapters. In the meantime, let's
go into more detail on each of these, starting with the open source projects.

Docker Overview Chapter 1

[27]

Open source projects
Docker, Inc. has spent the last two years open sourcing and donating a lot of its core
projects to various open source foundations and communities. These projects include the
following:

Moby Project is the upstream project upon which the Docker Engine is based. It
provides all of the components needed to assemble a fully functional container
system.
Runc is a command-line interface for creating and configuring containers, and
has been built to the OCI specification.
Containerd is an easily embeddable container runtime. It is also a core
component of the Moby Project.
LibNetwork is a Go library that provides networking for containers.
Notary is a client and server that aims to provide a trust system for signed
container images.
HyperKit is a toolkit that allows you to embed hypervisor capabilities into your
own applications, presently it only supports the macOS and
the Hypervisor.framework.
VPNKit provides VPN functionality to HyperKit.
DataKit allows you to orchestrate application data using a Git-like workflow.
SwarmKit is a toolkit that allows you to build distributed systems using the
same raft consensus algorithm as Docker Swarm.
LinuxKit is a framework that allows you to build and compile a small portable
Linux operating system for running containers.
InfraKit is a collection of tools that you can use to define infrastructure to run
your LinuxKit generated distributions on.

On their own, you will probably never use the individual components; however, each of
the projects mentioned is a component of the tools which are maintained by Docker, Inc.
We will go a little more into these projects in our final chapter.

Docker CE and Docker EE
There are a lot of tools supplied and supported by Docker, Inc. Some we have already
mentioned, and others we will cover in later chapters. Before we finish this, our first
chapter, we should get an idea of the tools we are going to be using. The most of important
of them is the core Docker Engine.

Docker Overview Chapter 1

[28]

This is the core of Docker, and all of the other tools that we will be covering use it. We have
already been using it as we installed it in the Docker installation and Docker commands
sections of this chapter. There are currently two versions of Docker Engine; there is the
Docker Enterprise Edition (EE) and the Docker Community Edition (CE). We will be using
Docker CE throughout this book.

From September 2018, the release cycle for the stable version of Docker CE will be biannual,
which means that it will have a seven-month maintenance cycle. This means that you have
plenty of time to review and plan any upgrades. At the time of writing, the current
timetable for Docker CE releases is:

Docker 18.06 CE: This is the last of the quarterly Docker CE releases, released
July 18th 2018.
Docker 18.09 CE: This release, due late September/early October 2018, is the first
release of the biannual release cycle of Docker CE.
Docker 19.03 CE: The first supported Docker CE of 2019 is scheduled to be
released March/April 2019.
Docker 19.09 CE: The second supported release of 2019 is scheduled to be
released September/October 2019.

As well as the stable version of Docker CE, Docker will be providing nightly builds of the
Docker Engine via a nightly repository (formally Docker CE Edge), and also monthly builds
of Docker for Mac and Docker for Windows via the Edge channel.

Docker also provides the following tools and services:

Docker Compose: A tool that allows you to define and share multi-container
definitions; it is detailed in Chapter 5, Docker Compose.
Docker Machine: A tool to launch Docker hosts on multiple platforms; we will
cover this in Chapter 7, Docker Machine.
Docker Hub: A repository for your Docker images, covered in the next three
chapters.
Docker Store: A storefront for official Docker images and plugins as well as
licensed products. Again, we will cover this in the next three chapters.
Docker Swarm: A multi-host-aware orchestration tool, covered in detail in
Chapter 8, Docker Swarm.
Docker for Mac: We have covered Docker for Mac in this chapter.

Docker Overview Chapter 1

[29]

Docker for Windows: We have covered Docker for Windows in this chapter.
Docker for Amazon Web Services: A best-practice Docker Swarm installation
that targets AWS, covered in Chapter 10, Running Docker in Public Clouds.
Docker for Azure: A best-practice Docker Swarm installation that targets Azure,
covered in Chapter 10, Running Docker in Public Clouds.

Docker, Inc.
Docker, Inc. is the company formed to develop Docker CE and Docker EE. It also provides
SLA-based support services for Docker EE. Finally, they are offer consultative services to
companies who wish take their existing applications and containerize them as part of
Docker's Modernize Traditional Apps (MTA) program.

Summary
In this chapter, we covered some basic information that you should already know (or now
know) for the chapters ahead. We went over the basics of what Docker is, and how it fares
compared to other host types. We went over the installers, how they operate on different
operating systems, and how to control them through the command line. Be sure to
remember to look at the requirements for the installers to ensure you use the correct one for
your operating system.

Then, we took a small dive into using Docker and issued a few basic commands to get you
started. We will be looking at all of the management commands in future chapters, to get a
more in-depth understanding of what they are, as well as how and when to use them.
Finally, we discussed the Docker ecosystem and the responsibilities of each of the different
tools.

In the next chapters, we will be taking a look at how to build base containers, and we will
also look in depth at Dockerfiles and places to store your images, as well as using
environmental variables and Docker volumes.

Docker Overview Chapter 1

[30]

Questions
Where can you download Docker for Mac and Docker for Windows from?1.
What command did we use to download the NGINX image? 2.
Which open source project is upstream for the core Docker Engine? 3.
How many months are in the support lifecycle for a stable Docker CE release?4.
Which command would you run to find out more information on the Docker5.
container subset of commands?

Further reading
In this chapter we have mentioned the following hypervisors:

macOS Hypervisor framework: https:/ ​/ ​developer. ​apple. ​com/ ​reference/
hypervisor/ ​

Hyper-V: https:/ ​/​www. ​microsoft. ​com/ ​en- ​gb/​cloud- ​platform/ ​server-
virtualization

We referenced the following blog posts from Docker:

Docker CLI restructure blog post: https:/ ​/​blog. ​docker. ​com/ ​2017/ ​01/​whats-
new-​in- ​docker- ​1- ​13/ ​

Docker Extended Support Announcement: https:/ ​/ ​blog. ​docker. ​com/ ​2018/ ​07/
extending- ​support- ​cycle- ​docker- ​community- ​edition/ ​

Next up, we discussed the following open source projects:

Moby Project: https:/ ​/​mobyproject. ​org/ ​

Runc: https:/ ​/ ​github. ​com/ ​opencontainers/ ​runc

Containerd: https:/ ​/ ​containerd. ​io/ ​

LibNetwork; https:/ ​/ ​github. ​com/ ​docker/ ​libnetwork

Notary: https:/ ​/​github. ​com/ ​theupdateframework/ ​notary

HyperKit: https:/ ​/​github. ​com/​moby/ ​hyperkit

VPNKit: https:/ ​/ ​github. ​com/ ​moby/ ​vpnkit

DataKit: https:/ ​/ ​github. ​com/ ​moby/ ​datakit

https://developer.apple.com/reference/hypervisor/
https://developer.apple.com/reference/hypervisor/
https://developer.apple.com/reference/hypervisor/
https://developer.apple.com/reference/hypervisor/
https://developer.apple.com/reference/hypervisor/
https://developer.apple.com/reference/hypervisor/
https://developer.apple.com/reference/hypervisor/
https://developer.apple.com/reference/hypervisor/
https://developer.apple.com/reference/hypervisor/
https://developer.apple.com/reference/hypervisor/
https://developer.apple.com/reference/hypervisor/
https://developer.apple.com/reference/hypervisor/
https://developer.apple.com/reference/hypervisor/
https://www.microsoft.com/en-gb/cloud-platform/server-virtualization
https://www.microsoft.com/en-gb/cloud-platform/server-virtualization
https://www.microsoft.com/en-gb/cloud-platform/server-virtualization
https://www.microsoft.com/en-gb/cloud-platform/server-virtualization
https://www.microsoft.com/en-gb/cloud-platform/server-virtualization
https://www.microsoft.com/en-gb/cloud-platform/server-virtualization
https://www.microsoft.com/en-gb/cloud-platform/server-virtualization
https://www.microsoft.com/en-gb/cloud-platform/server-virtualization
https://www.microsoft.com/en-gb/cloud-platform/server-virtualization
https://www.microsoft.com/en-gb/cloud-platform/server-virtualization
https://www.microsoft.com/en-gb/cloud-platform/server-virtualization
https://www.microsoft.com/en-gb/cloud-platform/server-virtualization
https://www.microsoft.com/en-gb/cloud-platform/server-virtualization
https://www.microsoft.com/en-gb/cloud-platform/server-virtualization
https://www.microsoft.com/en-gb/cloud-platform/server-virtualization
https://www.microsoft.com/en-gb/cloud-platform/server-virtualization
https://www.microsoft.com/en-gb/cloud-platform/server-virtualization
https://www.microsoft.com/en-gb/cloud-platform/server-virtualization
https://www.microsoft.com/en-gb/cloud-platform/server-virtualization
https://www.microsoft.com/en-gb/cloud-platform/server-virtualization
https://blog.docker.com/2017/01/whats-new-in-docker-1-13/
https://blog.docker.com/2017/01/whats-new-in-docker-1-13/
https://blog.docker.com/2017/01/whats-new-in-docker-1-13/
https://blog.docker.com/2017/01/whats-new-in-docker-1-13/
https://blog.docker.com/2017/01/whats-new-in-docker-1-13/
https://blog.docker.com/2017/01/whats-new-in-docker-1-13/
https://blog.docker.com/2017/01/whats-new-in-docker-1-13/
https://blog.docker.com/2017/01/whats-new-in-docker-1-13/
https://blog.docker.com/2017/01/whats-new-in-docker-1-13/
https://blog.docker.com/2017/01/whats-new-in-docker-1-13/
https://blog.docker.com/2017/01/whats-new-in-docker-1-13/
https://blog.docker.com/2017/01/whats-new-in-docker-1-13/
https://blog.docker.com/2017/01/whats-new-in-docker-1-13/
https://blog.docker.com/2017/01/whats-new-in-docker-1-13/
https://blog.docker.com/2017/01/whats-new-in-docker-1-13/
https://blog.docker.com/2017/01/whats-new-in-docker-1-13/
https://blog.docker.com/2017/01/whats-new-in-docker-1-13/
https://blog.docker.com/2017/01/whats-new-in-docker-1-13/
https://blog.docker.com/2017/01/whats-new-in-docker-1-13/
https://blog.docker.com/2017/01/whats-new-in-docker-1-13/
https://blog.docker.com/2017/01/whats-new-in-docker-1-13/
https://blog.docker.com/2017/01/whats-new-in-docker-1-13/
https://blog.docker.com/2017/01/whats-new-in-docker-1-13/
https://blog.docker.com/2017/01/whats-new-in-docker-1-13/
https://blog.docker.com/2017/01/whats-new-in-docker-1-13/
https://blog.docker.com/2018/07/extending-support-cycle-docker-community-edition/
https://blog.docker.com/2018/07/extending-support-cycle-docker-community-edition/
https://blog.docker.com/2018/07/extending-support-cycle-docker-community-edition/
https://blog.docker.com/2018/07/extending-support-cycle-docker-community-edition/
https://blog.docker.com/2018/07/extending-support-cycle-docker-community-edition/
https://blog.docker.com/2018/07/extending-support-cycle-docker-community-edition/
https://blog.docker.com/2018/07/extending-support-cycle-docker-community-edition/
https://blog.docker.com/2018/07/extending-support-cycle-docker-community-edition/
https://blog.docker.com/2018/07/extending-support-cycle-docker-community-edition/
https://blog.docker.com/2018/07/extending-support-cycle-docker-community-edition/
https://blog.docker.com/2018/07/extending-support-cycle-docker-community-edition/
https://blog.docker.com/2018/07/extending-support-cycle-docker-community-edition/
https://blog.docker.com/2018/07/extending-support-cycle-docker-community-edition/
https://blog.docker.com/2018/07/extending-support-cycle-docker-community-edition/
https://blog.docker.com/2018/07/extending-support-cycle-docker-community-edition/
https://blog.docker.com/2018/07/extending-support-cycle-docker-community-edition/
https://blog.docker.com/2018/07/extending-support-cycle-docker-community-edition/
https://blog.docker.com/2018/07/extending-support-cycle-docker-community-edition/
https://blog.docker.com/2018/07/extending-support-cycle-docker-community-edition/
https://blog.docker.com/2018/07/extending-support-cycle-docker-community-edition/
https://blog.docker.com/2018/07/extending-support-cycle-docker-community-edition/
https://blog.docker.com/2018/07/extending-support-cycle-docker-community-edition/
https://blog.docker.com/2018/07/extending-support-cycle-docker-community-edition/
https://blog.docker.com/2018/07/extending-support-cycle-docker-community-edition/
https://blog.docker.com/2018/07/extending-support-cycle-docker-community-edition/
https://mobyproject.org/
https://mobyproject.org/
https://mobyproject.org/
https://mobyproject.org/
https://mobyproject.org/
https://mobyproject.org/
https://mobyproject.org/
https://mobyproject.org/
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://containerd.io/
https://containerd.io/
https://containerd.io/
https://containerd.io/
https://containerd.io/
https://containerd.io/
https://containerd.io/
https://containerd.io/
https://github.com/docker/libnetwork
https://github.com/docker/libnetwork
https://github.com/docker/libnetwork
https://github.com/docker/libnetwork
https://github.com/docker/libnetwork
https://github.com/docker/libnetwork
https://github.com/docker/libnetwork
https://github.com/docker/libnetwork
https://github.com/docker/libnetwork
https://github.com/docker/libnetwork
https://github.com/docker/libnetwork
https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/vpnkit
https://github.com/moby/vpnkit
https://github.com/moby/vpnkit
https://github.com/moby/vpnkit
https://github.com/moby/vpnkit
https://github.com/moby/vpnkit
https://github.com/moby/vpnkit
https://github.com/moby/vpnkit
https://github.com/moby/vpnkit
https://github.com/moby/vpnkit
https://github.com/moby/vpnkit
https://github.com/moby/datakit
https://github.com/moby/datakit
https://github.com/moby/datakit
https://github.com/moby/datakit
https://github.com/moby/datakit
https://github.com/moby/datakit
https://github.com/moby/datakit
https://github.com/moby/datakit
https://github.com/moby/datakit
https://github.com/moby/datakit
https://github.com/moby/datakit

Docker Overview Chapter 1

[31]

SwarmKit: https:/ ​/​github. ​com/ ​docker/ ​swarmkit

LinuxKit: https:/ ​/ ​github. ​com/ ​linuxkit/ ​linuxkit

InfraKit: https:/ ​/​github. ​com/ ​docker/ ​infrakit

The OCI specification: https:/ ​/​github. ​com/ ​opencontainers/ ​runtime- ​spec/ ​

Finally, the meme mentioned at the start of the chapter can be found here:

Worked fine in Dev, Ops problem now - http:/ ​/​www. ​developermemes. ​com/ ​2013/ ​12/
13/​worked- ​fine- ​dev- ​ops- ​problem- ​now/ ​

https://github.com/docker/swarmkit
https://github.com/docker/swarmkit
https://github.com/docker/swarmkit
https://github.com/docker/swarmkit
https://github.com/docker/swarmkit
https://github.com/docker/swarmkit
https://github.com/docker/swarmkit
https://github.com/docker/swarmkit
https://github.com/docker/swarmkit
https://github.com/docker/swarmkit
https://github.com/docker/swarmkit
https://github.com/linuxkit/linuxkit
https://github.com/linuxkit/linuxkit
https://github.com/linuxkit/linuxkit
https://github.com/linuxkit/linuxkit
https://github.com/linuxkit/linuxkit
https://github.com/linuxkit/linuxkit
https://github.com/linuxkit/linuxkit
https://github.com/linuxkit/linuxkit
https://github.com/linuxkit/linuxkit
https://github.com/linuxkit/linuxkit
https://github.com/linuxkit/linuxkit
https://github.com/docker/infrakit
https://github.com/docker/infrakit
https://github.com/docker/infrakit
https://github.com/docker/infrakit
https://github.com/docker/infrakit
https://github.com/docker/infrakit
https://github.com/docker/infrakit
https://github.com/docker/infrakit
https://github.com/docker/infrakit
https://github.com/docker/infrakit
https://github.com/docker/infrakit
https://github.com/opencontainers/runtime-spec/
https://github.com/opencontainers/runtime-spec/
https://github.com/opencontainers/runtime-spec/
https://github.com/opencontainers/runtime-spec/
https://github.com/opencontainers/runtime-spec/
https://github.com/opencontainers/runtime-spec/
https://github.com/opencontainers/runtime-spec/
https://github.com/opencontainers/runtime-spec/
https://github.com/opencontainers/runtime-spec/
https://github.com/opencontainers/runtime-spec/
https://github.com/opencontainers/runtime-spec/
https://github.com/opencontainers/runtime-spec/
https://github.com/opencontainers/runtime-spec/
https://github.com/opencontainers/runtime-spec/
http://www.developermemes.com/2013/12/13/worked-fine-dev-ops-problem-now/
http://www.developermemes.com/2013/12/13/worked-fine-dev-ops-problem-now/
http://www.developermemes.com/2013/12/13/worked-fine-dev-ops-problem-now/
http://www.developermemes.com/2013/12/13/worked-fine-dev-ops-problem-now/
http://www.developermemes.com/2013/12/13/worked-fine-dev-ops-problem-now/
http://www.developermemes.com/2013/12/13/worked-fine-dev-ops-problem-now/
http://www.developermemes.com/2013/12/13/worked-fine-dev-ops-problem-now/
http://www.developermemes.com/2013/12/13/worked-fine-dev-ops-problem-now/
http://www.developermemes.com/2013/12/13/worked-fine-dev-ops-problem-now/
http://www.developermemes.com/2013/12/13/worked-fine-dev-ops-problem-now/
http://www.developermemes.com/2013/12/13/worked-fine-dev-ops-problem-now/
http://www.developermemes.com/2013/12/13/worked-fine-dev-ops-problem-now/
http://www.developermemes.com/2013/12/13/worked-fine-dev-ops-problem-now/
http://www.developermemes.com/2013/12/13/worked-fine-dev-ops-problem-now/
http://www.developermemes.com/2013/12/13/worked-fine-dev-ops-problem-now/
http://www.developermemes.com/2013/12/13/worked-fine-dev-ops-problem-now/
http://www.developermemes.com/2013/12/13/worked-fine-dev-ops-problem-now/
http://www.developermemes.com/2013/12/13/worked-fine-dev-ops-problem-now/
http://www.developermemes.com/2013/12/13/worked-fine-dev-ops-problem-now/
http://www.developermemes.com/2013/12/13/worked-fine-dev-ops-problem-now/
http://www.developermemes.com/2013/12/13/worked-fine-dev-ops-problem-now/
http://www.developermemes.com/2013/12/13/worked-fine-dev-ops-problem-now/
http://www.developermemes.com/2013/12/13/worked-fine-dev-ops-problem-now/
http://www.developermemes.com/2013/12/13/worked-fine-dev-ops-problem-now/
http://www.developermemes.com/2013/12/13/worked-fine-dev-ops-problem-now/
http://www.developermemes.com/2013/12/13/worked-fine-dev-ops-problem-now/
http://www.developermemes.com/2013/12/13/worked-fine-dev-ops-problem-now/

2
Building Container Images

In this chapter, we are going to get you started building container images. We will look at
several different ways with which you can define and build your images using the tools
built into Docker. We will cover the following topics:

Introducing the Dockerfile
Building container images using a Dockerfile
Building container images using an existing container
Building container images from scratch
Building container images using environmental variables
Building container images using multi-stage builds

Technical requirements
In the previous chapter, we installed Docker on the following target operating systems:

macOS High Sierra and above
Windows 10 Professional
Ubuntu 18.04

In this chapter, we will be using our Docker installation to build images. While the
screenshots in this chapter will be from my preferred operating system, which is macOS,
the Docker commands we will be running will work on all three of the operating systems
on which we have installed Docker so far. However, some of the supporting commands,
which will be few and far between, may only be applicable to macOS and Linux-based
operating systems.

A full copy of the code used in this chapter can be found at: https:/ ​/​github. ​com/
PacktPublishing/​Mastering- ​Docker- ​Third- ​Edition/ ​tree/ ​master/ ​chapter02

https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter02
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter02
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter02
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter02
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter02
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter02
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter02
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter02
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter02
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter02
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter02
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter02
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter02
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter02
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter02
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter02
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter02
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter02
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter02
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter02
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter02
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter02

Building Container Images Chapter 2

[33]

Check out the following video to see the Code in Action:

http:/​/​bit.​ly/​2D0JA6v

Introducing the Dockerfile
In this section, we will cover Dockerfiles in depth, along with the best practices to use. So
what is a Dockerfile?

A Dockerfile is simply a plain text file that contains a set of user-defined instructions.
When the Dockerfile is called by the docker image build command, which we will look
at next, it is used to assemble a container image. A Dockerfile looks like the following:

FROM alpine:latest
LABEL maintainer="Russ McKendrick <russ@mckendrick.io>"
LABEL description="This example Dockerfile installs NGINX."
RUN apk add --update nginx && \
 rm -rf /var/cache/apk/* && \
 mkdir -p /tmp/nginx/

COPY files/nginx.conf /etc/nginx/nginx.conf
COPY files/default.conf /etc/nginx/conf.d/default.conf
ADD files/html.tar.gz /usr/share/nginx/

EXPOSE 80/tcp

ENTRYPOINT ["nginx"]
CMD ["-g", "daemon off;"]

As you can see, even with no explanation, it is quite easy to get an idea of what each step of
the Dockerfile instructs the build command to do.

Before we move on to working our way through the previous file, we should quickly touch
upon Alpine Linux.

Alpine Linux is a small, independently developed, non-commercial Linux
distribution designed for security, efficiency, and ease of use. While small
(see the following section), it offers a solid foundation for container
images due to its extensive repository of packages, and also thanks to
the unofficial port of grsecurity/PaX, which is patched into its kernel it
offers proactive protection dozens of potential zero-day and
other vulnerabilities.

http://bit.ly/2D0JA6v
http://bit.ly/2D0JA6v
http://bit.ly/2D0JA6v
http://bit.ly/2D0JA6v
http://bit.ly/2D0JA6v
http://bit.ly/2D0JA6v
http://bit.ly/2D0JA6v
http://bit.ly/2D0JA6v
http://bit.ly/2D0JA6v

Building Container Images Chapter 2

[34]

Alpine Linux, due both to its size, and how powerful it is, has become the default image
base for the official container images supplied by Docker. Because of this, we will be using
it throughout this book. To give you an idea of just how small the official image for Alpine
Linux is, let's compare it to some of the other distributions available at the time of writing:

As you can see from the Terminal output, Alpine Linux weighs in at only 4.41 MB, as
opposed to the biggest image, which is Fedora, at 253 MB. A bare-metal installation of
Alpine Linux comes in at around 130 MB, which is still almost half the size of the Fedora
container image.

Reviewing the Dockerfile in depth
Let's take a look at the instructions used in the Dockerfile example. We will look at them in
the order in which they appear:

FROM

LABEL

RUN

COPY and ADD
EXPOSE

ENTRYPOINT and CMD
Other Dockerfile instructions

FROM
The FROM instruction tells Docker which base you would like to use for your image; as
already mentioned, we are using Alpine Linux, so we simply have to put the name of the
image and the release tag we wish to use. In our case, to use the latest official Alpine Linux
image, we simply need to add alpine:latest.

Building Container Images Chapter 2

[35]

LABEL
The LABEL instruction can be used to add extra information to the image. This information
can be anything from a version number to a description. It's also recommended that you
limit the number of labels you use. A good label structure will help others who have to use
our image later on.

However, using too many labels can cause the image to become inefficient as well, so I
would recommend using the label schema detailed at http:/ ​/​label- ​schema. ​org/ ​. You can
view the containers' labels with the following Docker inspect command:

$ docker image inspect <IMAGE_ID>

Alternatively, you can use the following to filter just the labels:

$ docker image inspect -f {{.Config.Labels}} <IMAGE_ID>

In our example Dockerfile, we add two labels:

maintainer="Russ McKendrick <russ@mckendrick.io>" adds a label1.
which helps identify, to the end user of the image, who is maintaining it
description="This example Dockerfile installs NGINX." adds a brief2.
description of what the image is.

Generally, it is better to define your labels when you create a container from your image,
rather than at build time, so it is best to keep labels down to just metadata about the image
and nothing else.

RUN
The RUN instruction is where we interact with our image to install software and run scripts,
commands, and other tasks. As you can see from our RUN instruction, we are actually
running three commands:

RUN apk add --update nginx && \
 rm -rf /var/cache/apk/* && \
 mkdir -p /tmp/nginx/

The first of our three commands is the equivalent of running the following command if we
had a shell on an Alpine Linux host:

$ apk add --update nginx

http://label-s%20chema.org/
http://label-s%20chema.org/
http://label-s%20chema.org/
http://label-s%20chema.org/
http://label-s%20chema.org/
http://label-s%20chema.org/
http://label-s%20chema.org/
http://label-s%20chema.org/
http://label-s%20chema.org/
http://label-s%20chema.org/

Building Container Images Chapter 2

[36]

This command installs nginx using Alpine Linux's package manager.

We are using the && operator to move on to the next command if the
previous command was successful. To make it more obvious which
commands we are running, we are also using \ so that we can split the
command over multiple lines, making it easy to read.

The next command in our chain removes any temporary files and so on to keep the size of
our image to a minimum:

$ rm -rf /var/cache/apk/*

The final command in our chain creates a folder with a path of /tmp/nginx/, so that nginx
will start correctly when we run the container:

$ mkdir -p /tmp/nginx/

We could have also used the following in our Dockerfile to achieve the same results:

RUN apk add --update nginx
RUN rm -rf /var/cache/apk/*
RUN mkdir -p /tmp/nginx/

However, much like adding multiple labels, this is considered to be considered inefficient
as it can add to the overall size of the image, which for the most part we should try to
avoid. There are some valid use cases for this, which we will look at later in the chapter. For
the most part, this approach to running commands should be avoided when your image is
being built.

COPY and ADD
At first glance, COPY and ADD look like they are doing the same task; however, there are
some important differences. The COPY instruction is the more straightforward of the two:

COPY files/nginx.conf /etc/nginx/nginx.conf
COPY files/default.conf /etc/nginx/conf.d/default.conf

As you have probably guessed, we are copying two files from the files folder on the host we
are building our image on. The first file is nginx.conf, which contains a basic nginx
configuration file:

user nginx;
worker_processes 1;

error_log /var/log/nginx/error.log warn;

Building Container Images Chapter 2

[37]

pid /var/run/nginx.pid;

events {
 worker_connections 1024;
}

http {
 include /etc/nginx/mime.types;
 default_type application/octet-stream;
 log_format main '$remote_addr - $remote_user [$time_local] "$request" '
 '$status $body_bytes_sent "$http_referer" '
 '"$http_user_agent" "$http_x_forwarded_for"';
 access_log /var/log/nginx/access.log main;
 sendfile off;
 keepalive_timeout 65;
 include /etc/nginx/conf.d/*.conf;
}

This will overwrite the NGINX configuration that was installed as part of the APK
installation in the RUN instruction. The next file, default.conf, is the most simple virtual
host that we can configure, and has the following content:

server {
 location / {
 root /usr/share/nginx/html;
 }
}

Again, this will overwrite any existing files. So far, so good, so why might we use the ADD
instruction? In our case, it looks like the following:

ADD files/html.tar.gz /usr/share/nginx/

As you can see, we are adding a file called html.tar.gz, but we are not actually doing
anything with the archive to uncompress it in our Dockerfile. This is because ADD
automatically uploads, uncompresses, and puts the resulting folders and files at the path
we tell it to, which in our case is /usr/share/nginx/. This gives us our web root of
/usr/share/nginx/html/, as we defined in the virtual host block in the default.conf
file that we copied to the image.

The ADD instruction can also be used to add content from remote sources. For example,
consider the following:

ADD http://www.myremotesource.com/files/html.tar.gz /usr/share/nginx/

Building Container Images Chapter 2

[38]

The preceding command line would download html.tar.gz from
http://www.myremotesource.com/files/ and place the file in
the /usr/share/nginx/ folder on the image. Archive files from a remote source are
treated as files and are not uncompressed, which you will have to take into account when
using them, meaning that the file would have to be added before the RUN instruction, so
that we could manually unarchive the folder and also remove the html.tar.gz file.

EXPOSE
The EXPOSE instruction lets Docker know that when the image is executed, the port and
protocol defined will be exposed at runtime. This instruction does not map the port to the
host machine, but instead, opens the port to allow access to the service on the container
network.

For example, in our Dockerfile, we are telling Docker to open port 80 every time the image
runs:

EXPOSE 80/tcp

ENTRYPOINT and CMD
The benefit of using ENTRYPOINT over CMD, which we will look at next, is that you can use
them in conjunction with each other. ENTRYPOINT can be used by itself, but remember that
you would want to use ENTRYPOINT by itself only if you wanted to have your container be
executable.

For reference, if you think of some of the CLI commands you might use, you have to
specify more than just the CLI command. You might have to add extra parameters that you
want the command to interpret. This would be the use case for using ENTRYPOINT only.

For example, if you want to have a default command that you want to execute inside a
container, you could do something similar to the following example, but be sure to use a
command that keeps the container alive. In our case, we are using the following:

ENTRYPOINT ["nginx"]
CMD ["-g", "daemon off;"]

Building Container Images Chapter 2

[39]

What this means is that whenever we launch a container from our image, the nginx binary
is executed, as we have defined that as our ENTRYPOINT, and then whatever we have as the
CMD is executed, giving us the equivalent of running the following command:

$ nginx -g daemon off;

Another example of how ENTRYPOINT can be used is the following:

$ docker container run --name nginx-version dockerfile-example -v

This would be the equivalent of running the following command on our host:

$ nginx -v

Notice that we didn't have to tell Docker to use nginx. As we have the nginx binary as our
entry point, any command we pass overrides the CMD that had been defined in the
Dockerfile.

This would display the version of nginx we have installed, and our container would stop,
as the nginx binary would only be executed to display the version information and then the
process would stop. We will look at this example later in this chapter, once we have built
our image.

Other Dockerfile instructions
There are some instructions that we have not included in our example Dockerfile. Let's take
a look at them here.

USER
The USER instruction lets you specify the username to be used when a command is run. The
USER instruction can be used on the RUN instruction, the CMD instruction, or the
ENTRYPOINT instruction in the Dockerfile. Also, the user defined in the USER instruction
has to exist, or your image will fail to build. Using the USER instruction can also introduce
permission issues, not only on the container itself, but also if you mount volumes.

WORKDIR
The WORKDIR instruction sets the working directory for the same set of instructions that the
USER instruction can use (RUN, CMD, and ENTRYPOINT). It will allow you to use the CMD and
ADD instructions as well.

Building Container Images Chapter 2

[40]

ONBUILD
The ONBUILD instruction lets you stash a set of commands to be used when the image is
used in future, as a base image for another container image.

For example, if you want to give an image to developers and they all have a different code
base that they want to test, you can use the ONBUILD instruction to lay the groundwork
ahead of the fact of needing the actual code. Then, the developers will simply add their
code to the directory you tell them, and when they run a new Docker build command, it
will add their code to the running image.

The ONBUILD instruction can be used in conjunction with the ADD and RUN instructions,
such as in the following example:

ONBUILD RUN apk update && apk upgrade && rm -rf /var/cache/apk/*

This would run an update and package upgrade every time our image is used as a base for
another container image.

ENV
The ENV instruction sets environment variables within the image both when it is built and
when it is executed. These variables can be overridden when you launch your image.

Dockerfiles – best practices
Now that we have covered Dockerfile instructions, let's take a look at the best practices of
writing our own Dockerfiles:

You should try to get into the habit of using a .dockerignore file. We will cover
the .dockerignore file in the next section; it will seem very familiar if you are
used to using a .gitignore file. It will essentially ignore the items you have
specified in the file during the build process.
Remember to only have one Dockerfile per folder to help you organize your
containers.

Building Container Images Chapter 2

[41]

Use a version control system, such as Git, for your Dockerfile; just like any other
text-based document, version control will help you move not only forward, but
also backward, as necessary.
Minimize the number of packages you install per image. One of the biggest goals
you want to achieve while building your images is to keep them as small
as possible. Not installing unnecessary packages will greatly help in achieving
this goal.
Make sure there is only one application process per container. Every time you
need a new application process, it is best practice to use a new container to run
that application in.
Keep things simple; over-complicating your Dockerfile will add bloat and also
potentially cause you issues further down the line.
Learn by example! Docker themselves have quite a detailed style guide for
publishing the official images they host on Docker Hub. You can find a link to
this in the further reading section at the end of this chapter.

Building container images
In this section, we will cover the docker image build command. This is where the
rubber meets the road, as they say. It's time for us to build the base upon which we will
start building our future images. We will be looking at different ways to accomplish this
goal. Consider this as a template that you may have created earlier with virtual machines.
This will help save time by completing the hard work; you will just have to create the
application that needs to be added to the new images.

There are a lot of switches that you could use while using the docker build command.
So, let's use the always handy --help switch on the docker image build command to
view all that we can do:

$ docker image build --help

There are then a lot of different flags listed that you can pass when building your image.
Now, it may seem like a lot to digest, but out of all of these options, we only need to use --
tag, or its shorthand -t, to name our image.

Building Container Images Chapter 2

[42]

You can use the other options to limit how much CPU and memory the build process will
use. In some cases, you may not want the build command to take as much CPU or
memory as it can have. The process may run a little slower, but if you are running it on
your local machine or a production server and it's a long build process, you may want to set
a limit. There are also options that affect the networking configuration of the container
launched to build our image.

Typically, you don't use the --file or -f switch, as you run the docker build command
from the same folder that the Dockerfile is in. Keeping the Dockerfile in separate folders
helps sort the files and keeps the naming convention of the files the same.

It also worth mentioning that, while you are able to pass additional environment variables
as arguments at build time, they are used at build time and your container image does not
inherit them. This is useful for passing information such as proxy settings, which may only
be applicable to your initial build/test environment.

The .dockerignore file, as we discussed earlier, is used to exclude those files or folders
we don't want to be included in the docker build as, by default, all files in the same
folder as the Dockerfile will be uploaded. We also discussed placing the Dockerfile in a
separate folder, and the same applies to .dockerignore. It should go in the folder where
the Dockerfile was placed.

Keeping all the items you want to use in an image in the same folder will help you keep the
number of items, if any, in the .dockerignore file to a minimum.

Using a Dockerfile to build a container image
The first method that we are going to look at for use in building your base container images
is by creating a Dockerfile. In fact, we will be using the Dockerfile from the previous section
and then executing a docker image build command against it to get ourselves an nginx
image. So, let's start off by looking at the Dockerfile once more:

FROM alpine:latest
LABEL maintainer="Russ McKendrick <russ@mckendrick.io>"
LABEL description="This example Dockerfile installs NGINX."
RUN apk add --update nginx && \
 rm -rf /var/cache/apk/* && \
 mkdir -p /tmp/nginx/

COPY files/nginx.conf /etc/nginx/nginx.conf
COPY files/default.conf /etc/nginx/conf.d/default.conf
ADD files/html.tar.gz /usr/share/nginx/

Building Container Images Chapter 2

[43]

EXPOSE 80/tcp

ENTRYPOINT ["nginx"]
CMD ["-g", "daemon off;"]

Don't forget that you will also need the
default.conf, html.tar.gz,and nginx.conf files in the files folder.
You can find these in the accompanying GitHub repository.

So, there are two ways we can go about building this image. The first way would be by
specifying the -f switch when we use the docker image build command. We will also
utilize the -t switch to give the new image a unique name:

$ docker image build --file <path_to_Dockerfile> --tag <REPOSITORY>:<TAG> .

Now, <REPOSITORY> is typically the username you signed up for on Docker Hub. We will
look at this in more detail in Chapter 3, Storing and Distributing Images; for now, we will be
using local, and <TAG> is the unique container value you want to provide. Typically, this
will be a version number or other descriptor:

$ docker image build --file /path/to/your/dockerfile --tag
local:dockerfile-example .

Typically, the --file switch isn't used, and it can be a little tricky when you have other
files that need to be included with the new image. An easier way to do the build is to place
the Dockerfile in a separate folder by itself, along with any other file that you will be
injecting into your image using the ADD or COPY instructions:

$ docker image build --tag local:dockerfile-example .

The most important thing to remember is the dot (or period) at the very end. This is to tell
the docker image build command to build in the current folder. When you build your
image, you should see something similar to the following Terminal output:

Building Container Images Chapter 2

[44]

Once it's built, you should be able to run the following command to check whether the
image is available, and also the size of your image:

$ docker image ls

Building Container Images Chapter 2

[45]

As you can see from the following Terminal output, my image size is 5.98 MB:

You can launch a container with your newly built image by running this command:

$ docker container run -d --name dockerfile-example -p 8080:80
local:dockerfile-example

This will launch a container called dockerfile-example, you can check it is running
using the following command:

$ docker container ls

Opening your browser and going to http://localhost:8080/ should show you an
extremely simple webpage that looks like the following:

Next up, we can quickly run a few of the commands mentioned in the previous section of
the chapter, starting with the following:

$ docker container run --name nginx-version local:dockerfile-example -v

As you can see from the following Terminal output, we are currently running nginx version
1.14.0:

Building Container Images Chapter 2

[46]

The next command we can look at running, now that we have our first image built,
displays the labels that we embedded at build time. To view this information run the
following:

$ docker image inspect -f {{.Config.Labels}} local:dockerfile-example

As you can see from the following output, this displays the information we entered:

Before we move on, you can stop and remove the containers we launched with the
following commands:

$ docker container stop dockerfile-example
$ docker container rm dockerfile-example nginx-version

We will go into more detail about Docker container commands in Chapter 4, Managing
Containers.

Using an existing container
The easiest way to build a base image is to start off by using one of the official images from
the Docker Hub. Docker also keeps the Dockerfile for these official builds in their GitHub
repositories. So there are at least two choices you have for using existing images that others
have already created. By using the Dockerfile, you can see exactly what is included in the
build and add what you need. You can then version control that Dockerfile if you want to
change or share it later.

There is another way to achieve this; however, it is not recommended or considered to be
good practice, and I would strongly discourage you from using it.

I would only use this method during a prototyping phase to check that the
commands I am running work as expected in an interactive shell before
putting them in a Dockerfile. You should always use a Dockerfile.

Building Container Images Chapter 2

[47]

First, we should download the image we want to use as our base; as before, we will be
using Alpine Linux:

$ docker image pull alpine:latest

Next, we need to run a container in the foreground so that we can interact with it:

$ docker container run -it --name alpine-test alpine /bin/sh

Once the container runs, you can add the packages as necessary using the apk command in
this case, or whatever the package management commands are for your Linux flavour.

For example, the following commands would install nginx:

$ apk update
$ apk upgrade
$ apk add --update nginx
$ rm -rf /var/cache/apk/*
$ mkdir -p /tmp/nginx/
$ exit

After you have installed the packages you require, you need to save the container. The
exit command at the end of the preceding set of commands will stop the running
container, since the shell process we are detaching ourselves from just happens to be the
process keeping the container running in the foreground. You can see this in the Terminal
output as follows:

Building Container Images Chapter 2

[48]

It is at this point that you should really stop; I do not recommend you use
the preceding commands to create and distribute images, apart from the
one use case we will cover in the next part of this section.

So, to save our stopped container as an image, you need to do something similar to the
following:

$ docker container commit <container_name> <REPOSITORY>:<TAG>

For example, I ran the following command to save a copy of the container we launched and
customized:

$ docker container commit alpine-test local:broken-container

Notice how I called my image broken-container? As one of the use cases for taking this
approach is that if, for some reason, you have a problem with a container, then it is
extremely useful to save the failed container as an image, or even export it as a TAR file to
share with others if you need some assistance in getting to the root of the problem.

To save the image file, simply run the following command:

$ docker image save -o <name_of_file.tar> <REPOSITORY>:<TAG>

So, for our example, I ran the following command:

$ docker image save -o broken-container.tar local:broken-container

This gave me a 6.6 MB file called broken-container.tar. While we have this file, you
can uncompress it and have a look around, as you can see from the following structure:

Building Container Images Chapter 2

[49]

The image is made up of a collection of JSON files, folders, and other TAR files. All images
follow this structure, so you may be thinking to yourself, Why is this method so bad?

The biggest reason is trust—as already mentioned, your end user will not be able to easily
see what is in the image they are running. Would you randomly download a prepackaged
image from an unknown source to run your workload, without checking how the image
was built? Who knows how it was configured and what packages have been installed?
With a Dockerfile, you can see exactly what was executed to create the image, but with the
method described here, you have zero visibility of this.

Another reason is that it is difficult for you to build in a good set of defaults; for example, if
you were to build your image this way, then you would not really be able to take
advantage of features such as ENTRYPOINT and CMD, or even the most basic instructions,
such as EXPOSE. Instead, the user would have to define everything required during their
docker container run command.

In the early days of Docker, distributing images that had been prepared in this way was
common practice. In fact, I was guilty of it myself, as coming from an operations
background, it made perfect sense to launch a "machine," bootstrap it, and then create a
gold master. Luckily, over the last few years, Docker has extended the build functionality to
the point where this option is not even a consideration anymore.

Building a container image from scratch
So far, we have been using prepared images from the Docker Hub as our base image. It is
possible to avoid this altogether (sort of) and roll out your own image from scratch.

Now, when you usually hear the phrase from scratch, it literally means that you start from
nothing. That's what we have here—you get absolutely nothing and have to build upon it.
Now, this can be a benefit, because it will keep the image size very small, but it can also be
detrimental if you are fairly new to Docker, as it can get complicated.

Docker has done some of the hard work for us already, and created an empty TAR file on
the Docker Hub named scratch; you can use it in the FROM section of your Dockerfile. You
can base your entire Docker build on this, and then add parts as needed.

Again, let's look at using Alpine Linux as our base operating system for the image. The
reasons for doing this include not only the fact that it is distributed as an ISO, Docker
image, and various virtual machine images, but also that the entire operating system is
available as a compressed TAR file. You can find the download in the repository, or on the
Alpine Linux download page.

Building Container Images Chapter 2

[50]

To download a copy, just select the appropriate download from the downloads page, which
can be found at https:/ ​/​www. ​alpinelinux. ​org/ ​downloads/ ​. The one I used was x86_64
from the MINI ROOT FILESYSTEM section.

Once it's downloaded, you need to create a Dockerfile that uses scratch and then add the
tar.gz file, making sure to use the correct file, as in the following example:

FROM scratch
ADD files/alpine-minirootfs-3.8.0-x86_64.tar.gz /
CMD ["/bin/sh"]

Now that you have your Dockerfile and operating system in a TAR file, you can build your
image as you would any other Docker image by running the following command:

$ docker image build --tag local:fromscratch .

You can compare the image size to the other container images we have built by running the
following command:

$ docker image ls

As you can see in the following screenshot, the image I built is exactly the same size as the
Alpine Linux image we have been using from Docker Hug:

Now that our own image has been built, we can test it by running this command:

$ docker container run -it --name alpine-test local:fromscratch /bin/sh

If you get an error, then you may already have a container called alpine-
test created or running . Remove it by running docker container
stop alpine-test, followed by docker container rm alpine-
test.

https://www.alpinelinux.org/downloads/
https://www.alpinelinux.org/downloads/
https://www.alpinelinux.org/downloads/
https://www.alpinelinux.org/downloads/
https://www.alpinelinux.org/downloads/
https://www.alpinelinux.org/downloads/
https://www.alpinelinux.org/downloads/
https://www.alpinelinux.org/downloads/
https://www.alpinelinux.org/downloads/
https://www.alpinelinux.org/downloads/
https://www.alpinelinux.org/downloads/
https://www.alpinelinux.org/downloads/

Building Container Images Chapter 2

[51]

This should launch into a shell on the Alpine Linux image. You can check this by running
the following command:

$ cat /etc/*release

This will display information on the release the container is running. To get an idea of what
this entire process looks like, see the following Terminal output:

While everything appears straightforward, this is only thanks to the way Alpine Linux
packages their operating system. It can start to get more complicated when you choose to
use other distributions who package their operating systems in a who package their
operating systems in a different way.

There are several tools that can be used to generate a bundle of an operating system. We are
not going to go into any detail on how to use any of these tools here because, if you have to
consider this approach, you probably have some pretty specific requirements. There is a list
of tools in the further reading section at the end of this chapter.

Building Container Images Chapter 2

[52]

So what could those requirements be? For most people, it will be legacy applications; for
example, what happens if you have an application that requires an operating system that is
no longer supported or available from Docker Hub, but you need a more modern platform
to support the application? Well, you should be able to spin your image and install the
application there, allowing you to host your old legacy application on a modern,
supportable operating system/architecture.

Using environmental variables
In this section, we will cover the very powerful environmental variables (ENVs), as you
will be seeing a lot of them. You can use ENVs for a lot of things in your Dockerfile. If you
are familiar with coding, these will probably be familiar to you.

For others like myself, at first they seemed intimidating, but don't get discouraged. They
will become a great resource once you get the hang of them. They can be used to set
information when running the container, which means that you don't have to go and
update lots of the commands in your Dockerfile or in scripts that you run on the server.

To use ENVs in your Dockerfile, you can use the ENV instruction. The structure of the ENV
instruction is as follows:

ENV <key> <value>
ENV username admin

Alternatively, you can always use an equals sign between the two:

ENV <key>=<value>
ENV username=admin

Now, the question is, why are there two ways that you can define them, and what are the
differences? With the first example, you can only set one ENV per line; however, it is easy to
read and follow. With the second ENV example, you can set multiple environmental
variables on the same line, as shown here:

ENV username=admin database=wordpress tableprefix=wp

You can view which ENVs are set on an image using the Docker inspect command:

$ docker image inspect <IMAGE_ID>

Building Container Images Chapter 2

[53]

Now that we know how they need to be set in our Dockerfile, let's take a look at them in
action. So far we have been using a Dockerfile to build a simple image with just nginx
installed. Let's look at building something a little more dynamic. Using Alpine Linux, we
will do the following:

Set an ENV to define which version of PHP we would like to install.
Install Apache2 and our chosen PHP version.
Set up the image so Apache2 starts without issue.
Remove the default index.html and add an index.php file that displays the
results of the phpinfo command.
Expose port 80 on the container.
Set Apache so it is the default process.

Our Dockerfile looks like the following:

FROM alpine:latest
LABEL maintainer="Russ McKendrick <russ@mckendrick.io>"
LABEL description="This example Dockerfile installs Apache & PHP."
ENV PHPVERSION=7

RUN apk add --update apache2 php${PHPVERSION}-apache2 php${PHPVERSION} && \
 rm -rf /var/cache/apk/* && \
 mkdir /run/apache2/ && \
 rm -rf /var/www/localhost/htdocs/index.html && \
 echo "<?php phpinfo(); ?>" > /var/www/localhost/htdocs/index.php &&
\
 chmod 755 /var/www/localhost/htdocs/index.php

EXPOSE 80/tcp

ENTRYPOINT ["httpd"]
CMD ["-D", "FOREGROUND"]

As you can see, we have chosen to install PHP7; we can build the image by running the
following command:

$ docker build --tag local/apache-php:7 .

Notice how we have changed the command slightly. This time, we are calling the image
local/apache-php and tagging the version as 7. The full output obtained by running the
preceding command can be found here:

Sending build context to Docker daemon 2.56kB
Step 1/8 : FROM alpine:latest
 ---> 11cd0b38bc3c

Building Container Images Chapter 2

[54]

Step 2/8 : LABEL maintainer="Russ McKendrick <russ@mckendrick.io>"
 ---> Using cache
 ---> 175e9ebf182b
Step 3/8 : LABEL description="This example Dockerfile installs Apache &
PHP."
 ---> Running in 095e42841956
Removing intermediate container 095e42841956
 ---> d504837e80a4
Step 4/8 : ENV PHPVERSION=7
 ---> Running in 0df665a9b23e
Removing intermediate container 0df665a9b23e
 ---> 7f2c212a70fc
Step 5/8 : RUN apk add --update apache2 php${PHPVERSION}-apache2
php${PHPVERSION} && rm -rf /var/cache/apk/* && mkdir /run/apache2/ && rm -
rf /var/www/localhost/htdocs/index.html && echo "<?php phpinfo(); ?>" >
/var/www/localhost/htdocs/index.php && chmod 755
/var/www/localhost/htdocs/index.php
 ---> Running in ea77c54e08bf
fetch http://dl-cdn.alpinelinux.org/alpine/v3.8/main/x86_64/APKINDEX.tar.gz
fetch
http://dl-cdn.alpinelinux.org/alpine/v3.8/community/x86_64/APKINDEX.tar.gz
(1/14) Installing libuuid (2.32-r0)
(2/14) Installing apr (1.6.3-r1)
(3/14) Installing expat (2.2.5-r0)
(4/14) Installing apr-util (1.6.1-r2)
(5/14) Installing pcre (8.42-r0)
(6/14) Installing apache2 (2.4.33-r1)
Executing apache2-2.4.33-r1.pre-install
(7/14) Installing php7-common (7.2.8-r1)
(8/14) Installing ncurses-terminfo-base (6.1-r0)
(9/14) Installing ncurses-terminfo (6.1-r0)
(10/14) Installing ncurses-libs (6.1-r0)
(11/14) Installing libedit (20170329.3.1-r3)
(12/14) Installing libxml2 (2.9.8-r0)
(13/14) Installing php7 (7.2.8-r1)
(14/14) Installing php7-apache2 (7.2.8-r1)
Executing busybox-1.28.4-r0.trigger
OK: 26 MiB in 27 packages
Removing intermediate container ea77c54e08bf
 ---> 49b49581f8e2
Step 6/8 : EXPOSE 80/tcp
 ---> Running in e1cbc518ef07
Removing intermediate container e1cbc518ef07
 ---> a061e88eb39f
Step 7/8 : ENTRYPOINT ["httpd"]
 ---> Running in 93ac42d6ce55
Removing intermediate container 93ac42d6ce55
 ---> 9e09239021c2

Building Container Images Chapter 2

[55]

Step 8/8 : CMD ["-D", "FOREGROUND"]
 ---> Running in 733229cc945a
Removing intermediate container 733229cc945a
 ---> 649b432e8d47
Successfully built 649b432e8d47
Successfully tagged local/apache-php:7

We can check whether everything ran as expected by running the following command to
launch a container using the image:

$ docker container run -d -p 8080:80 --name apache-php7 local/apache-php:7

Once it's launched, open a browser and go to http://localhost:8080/ and you should
see a page showing that PHP7 is being used:

Don't be confused by the next part; there is no PHP6. For an explanation
of why not, go to https:/ ​/​wiki.​php. ​net/ ​rfc/ ​php6.

Now, in your Dockerfile, change PHPVERSION from 7 to 5 and then run the following
command to build a new image:

$ docker image build --tag local/apache-php:5 .

As you can see from the following Terminal output, the majority of the output is the same,
apart from the packages that are being installed:

Sending build context to Docker daemon 2.56kB
Step 1/8 : FROM alpine:latest
 ---> 11cd0b38bc3c
Step 2/8 : LABEL maintainer="Russ McKendrick <russ@mckendrick.io>"
 ---> Using cache

https://wiki.php.net/rfc/php6
https://wiki.php.net/rfc/php6
https://wiki.php.net/rfc/php6
https://wiki.php.net/rfc/php6
https://wiki.php.net/rfc/php6
https://wiki.php.net/rfc/php6
https://wiki.php.net/rfc/php6
https://wiki.php.net/rfc/php6
https://wiki.php.net/rfc/php6
https://wiki.php.net/rfc/php6
https://wiki.php.net/rfc/php6
https://wiki.php.net/rfc/php6
https://wiki.php.net/rfc/php6

Building Container Images Chapter 2

[56]

 ---> 175e9ebf182b
Step 3/8 : LABEL description="This example Dockerfile installs Apache &
PHP."
 ---> Using cache
 ---> d504837e80a4
Step 4/8 : ENV PHPVERSION=5
 ---> Running in 0646b5e876f6
Removing intermediate container 0646b5e876f6
 ---> 3e17f6c10a50
Step 5/8 : RUN apk add --update apache2 php${PHPVERSION}-apache2
php${PHPVERSION} && rm -rf /var/cache/apk/* && mkdir /run/apache2/ && rm -
rf /var/www/localhost/htdocs/index.html && echo "<?php phpinfo(); ?>" >
/var/www/localhost/htdocs/index.php && chmod 755
/var/www/localhost/htdocs/index.php
 ---> Running in d55a7726e9a7
fetch http://dl-cdn.alpinelinux.org/alpine/v3.8/main/x86_64/APKINDEX.tar.gz
fetch
http://dl-cdn.alpinelinux.org/alpine/v3.8/community/x86_64/APKINDEX.tar.gz
(1/10) Installing libuuid (2.32-r0)
(2/10) Installing apr (1.6.3-r1)
(3/10) Installing expat (2.2.5-r0)
(4/10) Installing apr-util (1.6.1-r2)
(5/10) Installing pcre (8.42-r0)
(6/10) Installing apache2 (2.4.33-r1)
Executing apache2-2.4.33-r1.pre-install
(7/10) Installing php5 (5.6.37-r0)
(8/10) Installing php5-common (5.6.37-r0)
(9/10) Installing libxml2 (2.9.8-r0)
(10/10) Installing php5-apache2 (5.6.37-r0)
Executing busybox-1.28.4-r0.trigger
OK: 32 MiB in 23 packages
Removing intermediate container d55a7726e9a7
 ---> 634ab90b168f
Step 6/8 : EXPOSE 80/tcp
 ---> Running in a59f40d3d5df
Removing intermediate container a59f40d3d5df
 ---> d1aadf757f59
Step 7/8 : ENTRYPOINT ["httpd"]
 ---> Running in c7a1ab69356d
Removing intermediate container c7a1ab69356d
 ---> 22a9eb0e6719
Step 8/8 : CMD ["-D", "FOREGROUND"]
 ---> Running in 8ea92151ce22
Removing intermediate container 8ea92151ce22
 ---> da34eaff9541
Successfully built da34eaff9541
Successfully tagged local/apache-php:5

Building Container Images Chapter 2

[57]

We can launch a container, this time on port 9090, by running the following command:

$ docker container run -d -p 9090:80 --name apache-php5 local/apache-php:5

Opening your browser again, but this time going to http://localhost:9090/, should
show that we are running PHP5:

Finally, you can compare the size of the images by running this command:

$ docker image ls

You should see the following Terminal output:

This shows that the PHP7 image is a lot smaller than the PHP5 one. Let's discuss what
actually happened when we built the two different container images.

So what happened? Well, when Docker launched the Alpine Linux image to create our
image, the first thing it did was set the ENVs we defined, making them available to all of
the shells within the container.

Building Container Images Chapter 2

[58]

Luckily for us, the naming scheme for PHP in Alpine Linux simply substitutes the version
number and maintains the same name for the packages we need to install, meaning that we
run the following command:

RUN apk add --update apache2 php${PHPVERSION}-apache2 php${PHPVERSION}

But it is actually interpreted as follows:

RUN apk add --update apache2 php7-apache2 php7

Or, for PHP5, it is interpreted as the following instead:

RUN apk add --update apache2 php5-apache2 php5

This means that we do not have to go through the whole Dockerfile, manually substituting
version numbers. This approach is especially useful when installing packages from remote
URLs, such as software release pages.

What follows is a more advanced example—a Dockerfile that installs and configures
Consul by HashiCorp. In this Dockerfile, we are using environment variables to define the
version numbers and the SHA256 hash of the file we downloaded:

FROM alpine:latest
LABEL maintainer="Russ McKendrick <russ@mckendrick.io>"
LABEL description="An image with the latest version on Consul."

ENV CONSUL_VERSION=1.2.2
CONSUL_SHA256=7fa3b287b22b58283b8bd5479291161af2badbc945709eb5412840d91b912
060

RUN apk add --update ca-certificates wget && \
 wget -O consul.zip
https://releases.hashicorp.com/consul/${CONSUL_VERSION}/consul_${CONSUL_VER
SION}_linux_amd64.zip && \
 echo "$CONSUL_SHA256 *consul.zip" | sha256sum -c - && \
 unzip consul.zip && \
 mv consul /bin/ && \
 rm -rf consul.zip && \
 rm -rf /tmp/* /var/cache/apk/*

EXPOSE 8300 8301 8301/udp 8302 8302/udp 8400 8500 8600 8600/udp

VOLUME ["/data"]

ENTRYPOINT ["/bin/consul"]
CMD ["agent", "-data-dir", "/data", "-server", "-bootstrap-expect", "1",
"-client=0.0.0.0"]

Building Container Images Chapter 2

[59]

As you can see, Dockerfiles can get quite complex, and use of ENVs can help with the
maintenance. Whenever a new version of Consul is released, I simply need to update
the ENV line and commit it to GitHub, which will trigger the building of a new
image—well, it would do if we had configured it to do so; we will be looking at this in the
next chapter.

You might have also noticed we are using an instruction within the Dockerfile we have not
covered. Don't worry, we will look at the VOLUME instruction in Chapter 4, Managing
Containers.

Using multi-stage builds
In this, the final part of our journey into using Dockerfiles and building container images,
we will look at using a relatively new method for building an image. In the previous
sections of this part of the chapter, we looked at adding binaries directly to our images
either via a package manager, such as Alpine Linux's APK, or, in the last example, by
downloading a precompiled binary from the software vendor.

What if we wanted to compile our own software as part of the build? Historically, we
would have had to use a container image containing a full build environment, which can be
very big. This means that we probably would have had to cobble together a script that ran
through something like the following process:

Downloading the build environment container image and starting a "build"1.
container
Copying the source code to the "build" container2.
Compiling the source code on the "build" container3.
Copying the compiled binary outside of the "build" container4.
Removing the "build" container5.
Using a pre-written Dockerfile to build an image and copy the binary to it6.

That is a lot of logic—in an ideal world, it should be part of Docker. Luckily, the Docker
community thought so, and the functionality to achieve this, called a multi-stage build, was
introduced in Docker 17.05.

Building Container Images Chapter 2

[60]

The Dockerfile contains two different build stages. The first, named builder, uses the
official Go container image from the Docker Hub. Here, we are installing a prerequisite,
downloading the source code directly from GitHub, and then compiling it into a static
binary:

FROM golang:latest as builder
WORKDIR /go-http-hello-world/
RUN go get -d -v golang.org/x/net/html
ADD
https://raw.githubusercontent.com/geetarista/go-http-hello-world/master/hel
lo_world/hello_world.go ./hello_world.go
RUN CGO_ENABLED=0 GOOS=linux go build -a -installsuffix cgo -o app .

FROM scratch
COPY --from=builder /go-http-hello-world/app .
CMD ["./app"]

As our static binary has a built-in web server, we do not really need anything else to be
present from an operating system point of view. Because of this, we are able to use
scratch as the base image, meaning that all our image will contain is the static binary that
we have copied from the builder image, and won't contain any of the
builder environment at all.

To build the image, we just need to run the following command:

$ docker image build --tag local:go-hello-world .

The output of the command can be found in the following code block—the interesting bits
happen between steps 5 and 6:

Sending build context to Docker daemon 9.216kB
Step 1/8 : FROM golang:latest as builder
latest: Pulling from library/golang
55cbf04beb70: Pull complete
1607093a898c: Pull complete
9a8ea045c926: Pull complete
d4eee24d4dac: Pull complete
9c35c9787a2f: Pull complete
6a66653f6388: Pull complete
102f6b19f797: Pull complete
Digest:
sha256:957f390aceead48668eb103ef162452c6dae25042ba9c41762f5210c5ad3aeea
Status: Downloaded newer image for golang:latest
 ---> d0e7a411e3da
Step 2/8 : WORKDIR /go-http-hello-world/
 ---> Running in e1d56745f358
Removing intermediate container e1d56745f358

Building Container Images Chapter 2

[61]

 ---> f18dfc0166a0
Step 3/8 : RUN go get -d -v golang.org/x/net/html
 ---> Running in 5e97d81db53c
Fetching https://golang.org/x/net/html?go-get=1
Parsing meta tags from https://golang.org/x/net/html?go-get=1 (status code
200)
get "golang.org/x/net/html": found meta tag
get.metaImport{Prefix:"golang.org/x/net", VCS:"git",
RepoRoot:"https://go.googlesource.com/net"} at
https://golang.org/x/net/html?go-get=1
get "golang.org/x/net/html": verifying non-authoritative meta tag
Fetching https://golang.org/x/net?go-get=1
Parsing meta tags from https://golang.org/x/net?go-get=1 (status code 200)
golang.org/x/net (download)
Removing intermediate container 5e97d81db53c
 ---> f94822756a52
Step 4/8 : ADD
https://raw.githubusercontent.com/geetarista/go-http-hello-world/master/hel
lo_world/hello_world.go ./hello_world.go
Downloading 393B
 ---> ecf3944740e1
Step 5/8 : RUN CGO_ENABLED=0 GOOS=linux go build -a -installsuffix cgo -o
app .
 ---> Running in 6e2d39c4d8ba
Removing intermediate container 6e2d39c4d8ba
 ---> 247fcbfb7a4d
Step 6/8 : FROM scratch
 --->
Step 7/8 : COPY --from=builder /go-http-hello-world/app .
 ---> a69cf59ab1d3
Step 8/8 : CMD ["./app"]
 ---> Running in c99076fad7fb
Removing intermediate container c99076fad7fb
 ---> 67296001bdc0
Successfully built 67296001bdc0
Successfully tagged local:go-hello-world

As you can see, between steps 5 and 6, our binary has been compiled and the container that
contains the builder environment is removed, leaving us with an image storing our
binary. Step 7 copies the binary to a fresh container which has been launched using scratch,
leaving us with just the content we need.

If you were to run the following command, you would get an idea of why it is a good idea
not to ship an application with its build environment intact:

$ docker image ls

Building Container Images Chapter 2

[62]

The following screenshot of our output shows that the golang image is 794MB; with our
source code and prerequisites added, the size increases to 832MB:

However, the final image is just 6.56MB. I am sure you will agree that this is quite a
dramatic saving of space. It also adheres to the best practices, discussed earlier in the
chapter, by only having content relevant to our application shipped within the image, as
well as being really, really small.

You can test the application by launching a container with the following command:

$ docker container run -d -p 8000:80 --name go-hello-world local:go-hello-
world

The application is accessible over a browser and simply increments a counter each time the
page is loaded. To test it on macOS and Linux, you can use the curl command, as follows:

$ curl http://localhost:8000/

This should give you something like the following:

Building Container Images Chapter 2

[63]

Windows users can simply visit http://localhost:8000/ in a browser. To stop and
remove the running container, use the following commands:

$ docker container stop go-hello-world
$ docker container rm go-hello-world

As you can see, using a multi-stage build is a relatively simple process and is in keeping
with the instructions that should already be starting to feel familiar.

Summary
In this chapter, we looked at an in-depth view of Dockerfiles, the best practices for writing
them, the docker image build command, and the various ways we can build containers. We
also learned about the environmental variables that you can use to pass from your
Dockerfile to the various items inside your containers.

In the next chapter, now that we know how to build images using Dockerfiles, we will be
taking a look at the Docker Hub and all of the advantages that using a registry service
brings. We will also look at the Docker registry, which is open source, so you can roll your
own place to store images without the fees of Docker Enterprise, as well as third-party
registry services.

Questions
True or false: The LABEL instruction tags your image once it has been built?1.
What's the difference between the ENTRYPOINT and CMD instructions?2.
True or false: when using the ADD instruction, you can’t download and3.
automatically uncompress an externally hosted archive?
What is a valid use for using an existing container as the base of your image?4.
What does the EXPOSE instruction expose?5.

Building Container Images Chapter 2

[64]

Further reading
You can find the guidelines for the official Docker container images at:

https:/​/ ​github. ​com/ ​docker- ​library/ ​official- ​images/ ​

Some of the tools to help you create containers from existing installations are the following:

Debootstrap: https:/ ​/ ​wiki. ​debian. ​org/ ​Debootstrap/ ​

Yumbootstrap: https:/ ​/​github. ​com/ ​dozzie/ ​yumbootstrap/ ​

Rinse: https:/ ​/​salsa. ​debian. ​org/ ​debian/ ​rinse/ ​

Docker contrib scripts: https:/ ​/ ​github. ​com/ ​moby/ ​moby/ ​tree/ ​master/ ​contrib/ ​

Finally, the full GitHub repository for the Go HTTP Hello World application can be found
at:

https:/​/ ​github. ​com/ ​geetarista/ ​go- ​http- ​hello- ​world/ ​

https://github.com/docker-library/official-images/
https://github.com/docker-library/official-images/
https://github.com/docker-library/official-images/
https://github.com/docker-library/official-images/
https://github.com/docker-library/official-images/
https://github.com/docker-library/official-images/
https://github.com/docker-library/official-images/
https://github.com/docker-library/official-images/
https://github.com/docker-library/official-images/
https://github.com/docker-library/official-images/
https://github.com/docker-library/official-images/
https://github.com/docker-library/official-images/
https://github.com/docker-library/official-images/
https://github.com/docker-library/official-images/
https://github.com/docker-library/official-images/
https://github.com/docker-library/official-images/
https://wiki.debian.org/Debootstrap/
https://wiki.debian.org/Debootstrap/
https://wiki.debian.org/Debootstrap/
https://wiki.debian.org/Debootstrap/
https://wiki.debian.org/Debootstrap/
https://wiki.debian.org/Debootstrap/
https://wiki.debian.org/Debootstrap/
https://wiki.debian.org/Debootstrap/
https://wiki.debian.org/Debootstrap/
https://wiki.debian.org/Debootstrap/
https://wiki.debian.org/Debootstrap/
https://wiki.debian.org/Debootstrap/
https://github.com/dozzie/yumbootstrap/
https://github.com/dozzie/yumbootstrap/
https://github.com/dozzie/yumbootstrap/
https://github.com/dozzie/yumbootstrap/
https://github.com/dozzie/yumbootstrap/
https://github.com/dozzie/yumbootstrap/
https://github.com/dozzie/yumbootstrap/
https://github.com/dozzie/yumbootstrap/
https://github.com/dozzie/yumbootstrap/
https://github.com/dozzie/yumbootstrap/
https://github.com/dozzie/yumbootstrap/
https://github.com/dozzie/yumbootstrap/
https://salsa.debian.org/debian/rinse/
https://salsa.debian.org/debian/rinse/
https://salsa.debian.org/debian/rinse/
https://salsa.debian.org/debian/rinse/
https://salsa.debian.org/debian/rinse/
https://salsa.debian.org/debian/rinse/
https://salsa.debian.org/debian/rinse/
https://salsa.debian.org/debian/rinse/
https://salsa.debian.org/debian/rinse/
https://salsa.debian.org/debian/rinse/
https://salsa.debian.org/debian/rinse/
https://salsa.debian.org/debian/rinse/
https://salsa.debian.org/debian/rinse/
https://salsa.debian.org/debian/rinse/
https://github.com/moby/moby/tree/master/contrib/
https://github.com/moby/moby/tree/master/contrib/
https://github.com/moby/moby/tree/master/contrib/
https://github.com/moby/moby/tree/master/contrib/
https://github.com/moby/moby/tree/master/contrib/
https://github.com/moby/moby/tree/master/contrib/
https://github.com/moby/moby/tree/master/contrib/
https://github.com/moby/moby/tree/master/contrib/
https://github.com/moby/moby/tree/master/contrib/
https://github.com/moby/moby/tree/master/contrib/
https://github.com/moby/moby/tree/master/contrib/
https://github.com/moby/moby/tree/master/contrib/
https://github.com/moby/moby/tree/master/contrib/
https://github.com/moby/moby/tree/master/contrib/
https://github.com/moby/moby/tree/master/contrib/
https://github.com/moby/moby/tree/master/contrib/
https://github.com/moby/moby/tree/master/contrib/
https://github.com/moby/moby/tree/master/contrib/
https://github.com/geetarista/go-http-hello-world/
https://github.com/geetarista/go-http-hello-world/
https://github.com/geetarista/go-http-hello-world/
https://github.com/geetarista/go-http-hello-world/
https://github.com/geetarista/go-http-hello-world/
https://github.com/geetarista/go-http-hello-world/
https://github.com/geetarista/go-http-hello-world/
https://github.com/geetarista/go-http-hello-world/
https://github.com/geetarista/go-http-hello-world/
https://github.com/geetarista/go-http-hello-world/
https://github.com/geetarista/go-http-hello-world/
https://github.com/geetarista/go-http-hello-world/
https://github.com/geetarista/go-http-hello-world/
https://github.com/geetarista/go-http-hello-world/
https://github.com/geetarista/go-http-hello-world/
https://github.com/geetarista/go-http-hello-world/
https://github.com/geetarista/go-http-hello-world/
https://github.com/geetarista/go-http-hello-world/

3
Storing and Distributing Images

In this chapter, we will cover several services, such as Docker Hub, which allow you to
store your images, and also Docker Registry, which you can use to run your local storage
for Docker containers. We will review the differences between the services and when and
how to use each of them.

This chapter will also cover how to set up automated builds using Webhooks, as well as all
the pieces that are required to set them up. Let's take a quick look at the topics we will be
covering in this chapter:

Docker Hub
Docker Store
Docker Registry
Third-party registries
Microbadger

Technical requirements
In this chapter, we will be using our Docker installation to build images. As before,
although the screenshots in this chapter will be from my preferred operating system,
macOS, the commands we will be running will work on all three of the operating systems
covered in the previous chapter. A full copy of the code used in this chapter can be found
at: https:/​/​github. ​com/ ​PacktPublishing/ ​Mastering- ​Docker- ​Third- ​Edition/ ​tree/
master/​chapter03.

https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter03
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter03
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter03
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter03
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter03
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter03
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter03
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter03
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter03
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter03
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter03
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter03
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter03
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter03
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter03
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter03
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter03
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter03
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter03
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter03
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter03
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter03

Storing and Distributing Images Chapter 3

[66]

Check out the following video to see the Code in Action:

http:/​/​bit.​ly/​2EBVJjJ

Docker Hub
While we were introduced to Docker Hub in the previous two chapters, we haven't
interacted with it much other than when using the docker image pull command to
download remote images.

In this section, we will focus on Docker Hub, which has both a freely available option,
where you can only host publicly accessible images, and also a subscription option, which
allows you to host your own private images. We will focus on the web aspect of Docker
Hub and the management you can do there.

The home page, which can be found at https:/ ​/​hub. ​docker. ​com/ ​, contains a Sign-Up form
and, in the top-right, an option to Sign in. The odds are that if you have been dabbling with
Docker, then you already have a Docker ID. If you don't, use the Sign-Up form on the
home page to create one. If you already have a Docker ID, then simply click Sign in.

Docker Hub is free to use, and if you do not need to upload or manage
your own images, you do not need an account to search for pull images.

Dashboard
After logging in to Docker Hub, you will be taken to the following landing page. This page
is known as the Dashboard of Docker Hub:

http://bit.ly/2EBVJjJ
http://bit.ly/2EBVJjJ
http://bit.ly/2EBVJjJ
http://bit.ly/2EBVJjJ
http://bit.ly/2EBVJjJ
http://bit.ly/2EBVJjJ
http://bit.ly/2EBVJjJ
http://bit.ly/2EBVJjJ
http://bit.ly/2EBVJjJ
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/

Storing and Distributing Images Chapter 3

[67]

From here, you can get to all the other sub-pages of Docker Hub. However, before we look
at those sections, we should talk a little about the dashboard. From here, you can view all of
your images, both public and private. They are ordered first by the number of stars and
then by the number of pulls; this order cannot be changed.

In the upcoming sections, we will go through everything you see on the dashboard,
 starting with the dark blue menu at the top of the page.

Storing and Distributing Images Chapter 3

[68]

Explore
The Explore option takes you to a list of the official Docker images; like your Dashboard,
they are ordered by stars and then pulls. As you can see from the following screen, each of
the official images has had over 10 million pulls:

This isn't the preferred Docker Store method of downloading official images. Docker would
prefer you used the Docker Store now, but as we will be looking at this in more detail later
in the chapter, we won't go into any more detail here.

Storing and Distributing Images Chapter 3

[69]

Organizations
Organizations are those which you have either created or have been added to.
Organizations allow you to layer on control for, say, a project that multiple people are
collaborating on. The organization gets its own settings, such as whether to store
repositories as public or private by default, or changing plans that will allow different
numbers of private repositories and separate repositories altogether from the ones you or
others have.

You can also access or switch between accounts or organizations from the Dashboard just
below the Docker logo, where you will typically see your username when you log in:

Storing and Distributing Images Chapter 3

[70]

Create
We will go into more detail about creating a repository and an automated build in a later
section, so I will not go into any detail here, other than to say that the Create menu gives
you three options:

Create Repository
Create Automated Build
Create Organization

These options can be seen in the following screenshot:

Profile and settings
The final option in the top menu is about managing My Profile and Settings:

Storing and Distributing Images Chapter 3

[71]

The settings page allows you to set up your public profile, which includes the following
options:

Changing your password
Seeing what organization you belong to
Seeing what subscriptions for email updates you have
Setting specific notifications you would like to receive
Setting which authorized services have access to your information
Seeing linked accounts (such as your GitHub or Bitbucket accounts)
Viewing your enterprise licenses, billing, and global settings

The only global setting as of now is the choice between having your repositories default to
public or private upon creation. The default is to create them as public repositories:

The My Profile menu item takes you to your public profile page; mine can be found at
https:/​/​hub.​docker. ​com/ ​u/​russmckendrick/ ​.

https://hub.docker.com/u/russmckendrick/
https://hub.docker.com/u/russmckendrick/
https://hub.docker.com/u/russmckendrick/
https://hub.docker.com/u/russmckendrick/
https://hub.docker.com/u/russmckendrick/
https://hub.docker.com/u/russmckendrick/
https://hub.docker.com/u/russmckendrick/
https://hub.docker.com/u/russmckendrick/
https://hub.docker.com/u/russmckendrick/
https://hub.docker.com/u/russmckendrick/
https://hub.docker.com/u/russmckendrick/
https://hub.docker.com/u/russmckendrick/
https://hub.docker.com/u/russmckendrick/
https://hub.docker.com/u/russmckendrick/

Storing and Distributing Images Chapter 3

[72]

Other menu options
Below the dark blue bar at the top of the Dashboard page are two more areas that we
haven't yet covered. The first, the Stars page, allows you to see which repositories you
yourself have starred:

This is very useful if you come across some repositories that you prefer to use, and want to
access them to see whether they have been updated recently, or whether any other changes
have occurred on these repositories.

The second is a new setting, Contributed. Clicking this will reveal a section in which there
will be a list of repositories you have made contributions to outside of the ones within your
own Repositories list.

Creating an automated build
In this section, we will look at automated builds. Automated builds are those that you can
link to your GitHub or Bitbucket account(s), and as you update the code in your code
repository, you can have the image automatically built on Docker Hub. We will look at all
the pieces required to do so, and by the end, you'll be able to automate all your builds.

Storing and Distributing Images Chapter 3

[73]

Setting up your code
The first step to creating an automated build is to set up your GitHub or Bitbucket
repository. These are the two options you have while selecting where to store your code.
For our example, I will be using GitHub, but the setup will be the same for GitHub and
Bitbucket.

In fact, I will be using the repository that accompanies this book. As the repository is
publicly available, you could fork it and follow along using your own GitHub account, as I
have done in the following screenshot:

In Chapter 2, Building Container Images, we worked through a few different Dockerfiles. We
will be using these for our automated builds. If you remember, we installed nginx and
added a simple page with the message Hello world! This is being served from Docker,
and we also had a multi-stage build.

Storing and Distributing Images Chapter 3

[74]

Setting up Docker Hub
In Docker Hub, we are going to use the Create drop-down menu and select Create
Automated Build. After selecting it, we will be taken to a screen that will show you the
accounts you have linked to either GitHub or Bitbucket:

As you can see from the preceding screenshot, I already have my GitHub account linked to
my Docker Hub account. The process of linking the two tools was simple, and all that I had
to do was to allow Docker Hub permission to access my GitHub account by following the
on-screen instructions.

When connecting Docker Hub to GitHub there are two options:

Public and Private: This is the recommended option. Docker Hub will have
access to all of your public and private repositories, as well as organizations.
Docker Hub will also be able to configure the Webhooks needed when setting up
automated builds.
Limited Access: This limits Docker Hubs access to publicly available repositories
and organizations. If you link your accounts using this option Docker Hub won't
be able to configure the Webhooks needed for automated builds. You then need
to search and select the repository from either of the locations you want to create
the automated build from. This will essentially create a Webhook that instructs
that when a commit is done on a selected code repository, a new build will be
created on Docker Hub.

Storing and Distributing Images Chapter 3

[75]

In the preceding screenshot, I selected Mastering-Docker-Third-Edition and visited
the settings page for the automated build. From here, we can choose which Docker Hub
profile the image is attached to, name the image, change it from a public to a privately
available image, describe the build, and customize it by clicking on Click here to
customize. We can let Docker Hub know the location of our Dockerfile as follows:

Storing and Distributing Images Chapter 3

[76]

If you are following along, I entered the following information:

Repository Namespace & Name: dockerfile-example
Visibility: public
Short Description: Testing an automated build
Push Type: Branch
Name: master
Dockerfile Location: /chapter02/dockerfile-example/
Docker Tag: latest

Upon clicking on Create, you will be taken to a screen similar to the next screenshot:

Now that we have our build defined, we can add some additional configurations by
clicking on Build Settings. As we are using the official Alpine Linux image, we can link
that to our own build. To do that, enter Alpine in the Repository Links section and then
click on Add Repository Link. This will kick off an unattended build each time a new
version of the official Alpine Linux image is published.

Storing and Distributing Images Chapter 3

[77]

So now our image will automatically be rebuilt and published whenever we update the
GitHub repository, or when a new official image is published. As neither of these is likely
to happen immediately, click on the Trigger button to manually kick off a build. You will
notice that the button turns green for a short time, which confirms that a build has been
scheduled in the background.

Storing and Distributing Images Chapter 3

[78]

Once have triggered your build, clicking on Build Details will bring up a list of all of the
builds for the image, both successful and failed ones. You should see a build underway;
clicking on it will bring up the logs for the build:

Once built, you should then able to move to your local Docker installation by running the
following commands, making sure to pull your own image if you have been following
along:

$ docker image pull masteringdockerthirdedition/dockerfiles-example
$ docker image ls

Storing and Distributing Images Chapter 3

[79]

The commands are shown in the following screenshot:

You can also run the image created by Docker Hub using the following command, again
making sure to use your own image if you have one:

$ docker container run -d -p8080:80 --name example
masteringdockerthirdedition/dockerfiles-example

I also add the multi-stage build in exactly the same way. Docker Hub had no problem with
the build, as you can see from the following logs, which start off with a little bit of
information about Docker's build environment:

Building in Docker Cloud's infrastructure...
Cloning into '.'...

KernelVersion: 4.4.0-1060-aws
Components: [{u'Version': u'18.03.1-ee-1-tp5', u'Name': u'Engine',
u'Details': {u'KernelVersion': u'4.4.0-1060-aws', u'Os': u'linux',
u'BuildTime': u'2018-06-23T07:58:56.000000000+00:00', u'ApiVersion':
u'1.37', u'MinAPIVersion': u'1.12', u'GitCommit': u'1b30665', u'Arch':
u'amd64', u'Experimental': u'false', u'GoVersion': u'go1.10.2'}}]
Arch: amd64
BuildTime: 2018-06-23T07:58:56.000000000+00:00
ApiVersion: 1.37
Platform: {u'Name': u''}
Version: 18.03.1-ee-1-tp5
MinAPIVersion: 1.12
GitCommit: 1b30665
Os: linux
GoVersion: go1.10.2

Storing and Distributing Images Chapter 3

[80]

The build then starts by compiling our code as follows:

Starting build of index.docker.io/masteringdockerthirdedition/multi-
stage:latest...
Step 1/8 : FROM golang:latest as builder
 ---> d0e7a411e3da
Step 2/8 : WORKDIR /go-http-hello-world/
Removing intermediate container ea4bd2a1e92a
 ---> 0735d98776ef
Step 3/8 : RUN go get -d -v golang.org/x/net/html
 ---> Running in 5b180ef58abf
Fetching https://golang.org/x/net/html?go-get=1
Parsing meta tags from https://golang.org/x/net/html?go-get=1 (status code
200)
get "golang.org/x/net/html": found meta tag
get.metaImport{Prefix:"golang.org/x/net", VCS:"git",
RepoRoot:"https://go.googlesource.com/net"} at
https://golang.org/x/net/html?go-get=1
get "golang.org/x/net/html": verifying non-authoritative meta tag
Fetching https://golang.org/x/net?go-get=1
Parsing meta tags from https://golang.org/x/net?go-get=1 (status code 200)
golang.org/x/net (download)
Removing intermediate container 5b180ef58abf
 ---> e2d566167ecd
Step 4/8 : ADD
https://raw.githubusercontent.com/geetarista/go-http-hello-world/master/hel
lo_world/hello_world.go ./hello_world.go
 ---> c5489fee49e0
Step 5/8 : RUN CGO_ENABLED=0 GOOS=linux go build -a -installsuffix cgo -o
app .
 ---> Running in 0c5892f9db02
Removing intermediate container 0c5892f9db02
 ---> 94087063b79a

Now our code has been compiled, it moves on to copying the application binary to what
will be the final image:

Step 6/8 : FROM scratch
 --->
Step 7/8 : COPY --from=builder /go-http-hello-world/app .
 ---> e16f25bc4201
Step 8/8 : CMD ["./app"]
 ---> Running in c93cfe262c15
Removing intermediate container c93cfe262c15
 ---> bf3498b1f51e

Successfully built bf3498b1f51e
Successfully tagged masteringdockerthirdedition/multi-stage:latest

Storing and Distributing Images Chapter 3

[81]

Pushing index.docker.io/masteringdockerthirdedition/multi-stage:latest...
Done!
Build finished

You can pull and launch a container using the image with the following commands:

$ docker image pull masteringdockerthirdedition/multi-stage
$ docker image ls
$ docker container run -d -p 8000:80 --name go-hello-world
masteringdockerthirdedition/multi-stage
$ curl http://localhost:8000/

As you can see from the following screenshot, the image acts in the exact same way as it did
when we created it locally:

You can remove the containers if you launched them by using the following commands:

$ docker container stop example
$ docker container rm example
$ docker container stop go-hello-world
$ docker container rm go-hello-world

Now that we have looked at automated builds, we can discuss how else we can push
images to Docker Hub.

Storing and Distributing Images Chapter 3

[82]

Pushing your own image
In Chapter 2, Building Container Images, we discussed creating an image without using a
Dockerfile. While it is still not a good idea and should only be used when you really need
to, you can push your own images to Docker Hub.

When pushing images to Docker Hub in this way, ensure that you do not
include any code, files, or environment variables you would not want to
be publicly accessible.

To do this, we first need to link our local Docker client to Docker Hub by running the
following command:

$ docker login

You will then be prompted for your Docker ID and password:

Also, if you are using Docker for Mac or Docker for Windows, you will now be logged in
via the app and should be able to access Docker Hub from the menu:

Storing and Distributing Images Chapter 3

[83]

Now that our client is authorized to interact with Docker Hub, we need an image to build.
Let's look at pushing the scratch image we built in Chapter 2, Building Container Images.
First, we need to build the image. To do this, I am using the following command:

$ docker build --tag masteringdockerthirdedition/scratch-example:latest .

If you are following along, then you should replace masteringdockerthirdedition with
your own username or organization:

Once the image has been built, we can push it to Docker Hub by running the following
command:

$ docker image push masteringdockerthirdedition/scratch-example:latest

The following screenshot shows the output:

Storing and Distributing Images Chapter 3

[84]

As you can see, because we defined masteringdockerthirdedition/scratch-
example:latest when we built the image, Docker automatically uploaded the image to
that location, which in turn added a new image to the Mastering Docker Third
Edition organization:

You will notice that there is not much you can do with the build in Docker Hub. This is
because the image was not built by Docker Hub, and therefore, it does not really have any
idea what has gone into building the image.

Storing and Distributing Images Chapter 3

[85]

Docker Store
You may remember that in Chapter 1, Docker Overview, we downloaded Docker for macOS
and Docker for Windows from the Docker Store. As well as acting as a single location for
downloading both Docker CE and Docker EE for various platforms, it is now also the
preferred location for finding both Docker Images and Docker Plugins.

Storing and Distributing Images Chapter 3

[86]

While you will only find official and certified images in the Docker Store, there is an option
to use the Docker Store interface to search through Docker Hub. Also, you can download
images that are not available from Docker Hub, such as the Citrix NetScaler CPX Express
image:

If you notice, the image has a price attached to it (the Express version is $0.00), meaning
that you can buy commercial software through the Docker Store, as it has payments and
licensing built in. If you are a software publisher, you are able to sign and distribute your
own software through the Docker Store.

We will be looking at the Docker Store in a little more detail in later chapters, when we
cover Docker plugins.

Storing and Distributing Images Chapter 3

[87]

Docker Registry
In this section, we will be looking at Docker Registry. Docker Registry is an open source
application that you can run anywhere you please and store your Docker image in. We will
look at the comparison between Docker Registry and Docker Hub, and how to choose
between the two. By the end of the section, you will learn how to run your own Docker
Registry and see whether it's a proper fit for you.

An overview of Docker Registry
Docker Registry, as stated earlier, is an open source application that you can utilize to store
your Docker images on a platform of your choice. This allows you to keep them 100%
private if you wish, or share them as needed.

Docker Registry makes a lot of sense if you want to deploy your own registry without
having to pay for all the private features of Docker Hub. Next, let's take a look at some
comparisons between Docker Hub and Docker Registry to help you can make an educated
decision as to which platform to choose to store your images.

Docker Registry has the following features:

Host and manage your own registry from which you can serve all the
repositories as private, public, or a mix between the two
Scale the registry as needed, based on how many images you host or how many
pull requests you are serving out
Everything is command-line based

With Docker Hub, you will:

Get a GUI-based interface that you can use to manage your images
Have a location already set up in the cloud that is ready to handle public and/or
private images
Have the peace of mind of not having to manage a server that is hosting all your
images

Storing and Distributing Images Chapter 3

[88]

Deploying your own registry
As you may have already guessed, Docker Registry is distributed as an image from Docker
Hub, which makes deploying it as easy as running the following commands:

$ docker image pull registry:2
$ docker container run -d -p 5000:5000 --name registry registry:2

These commands will give you the most basic installation of Docker Registry. Let's take a
quick look at how we can push and pull an image to it. To start off with, we need an image,
so let's grab the Alpine image (again):

$ docker image pull alpine

Now that we have a copy of the Alpine Linux image, we need to push it to our local Docker
Registry, which is available at localhost:5000. To do this, we need to tag the Alpine
Linux image with the URL of our local Docker Registry, along with a different image name:

$ docker image tag alpine localhost:5000/localalpine

Now that we have our image tagged, we can push it to our locally hosted Docker Registry
by running the following command:

$ docker image push localhost:5000/localalpine

The following screenshot shows the output of the preceding commands:

Try running the following command:

$ docker image ls

Storing and Distributing Images Chapter 3

[89]

The output should show you that you have two images with the same IMAGE ID:

Before we pull the image back down from our local Docker Registry, we should remove the
two local copies of the image. We need to use the REPOSITORY name to do this, rather than
the IMAGE ID, as we have two images from two locations with the same ID, and Docker
will throw an error:

$ docker image rm alpine localhost:5000/localalpine

Now that the original and tagged images have been removed, we can pull the image from
our local Docker Registry by running the following command:

$ docker image pull localhost:5000/localalpine
$ docker image ls

As you can see, we now have a copy of our image that has been pulled from the Docker
Registry running at localhost:5000:

You can stop and remove the Docker Registry by running the following commands:

$ docker container stop registry
$ docker container rm -v registry

Now, there are a lot of options and considerations when it comes to launching a Docker
Registry. As you can imagine, the most important is around storage.

Storing and Distributing Images Chapter 3

[90]

Given that a registry's sole purpose is storing and distributing images, it is important that
you use some level of persistent OS storage. Docker Registry currently supports the
following storage options:

Filesystem: This is exactly what it says; all images are stored on the filesystem at
the path you define. The default is /var/lib/registry.
Azure: This uses Microsoft Azure Blob Storage.
GCS: This uses Google Cloud storage.
S3: This uses Amazon Simple Storage Service (Amazon S3).
Swift: This uses OpenStack Swift.

As you can see, other than the filesystem, all of the storage engines supported are all highly
available, distributed object-level storage. We will look at these cloud services in a later
chapter.

Docker Trusted Registry
One of the components that ships with the commercial Docker Enterprise Edition (Docker
EE) is Docker Trusted Registry (DTR). Think of it as a version of Docker Hub that you can
host in your own infrastructure. DTR adds the following features on top of the ones
provided by the free Docker Hub and Docker Registry:

Integration into your authentication services, such as Active Directory or LDAP
Deployment on your own infrastructure (or cloud) behind your firewall
Image signing to ensure your images are trusted
Built-in security scanning
Access to prioritized support directly from Docker

Third-party registries
It is not only Docker that offers image registry services; companies such as Red Hat offer
their own registry, where you can find the Red Hat Container Catalog, which hosts
containerized versions of all of Red Hat's product offerings, along with containers to
support its OpenShift offering.

Storing and Distributing Images Chapter 3

[91]

Services such as Artifactory by JFrog offer a private Docker registry as part of their build
services. There are also other Registry-as-a-Service offerings, such as Quay by CoreOS, who
are now owned by Red Hat, and also services from Amazon Web Services and Microsoft
Azure. We will take a look at these services when we move on to looking at Docker in the
cloud.

Microbadger
Microbadger is a great tool when you are looking at shipping your containers or images
around. It will take into account everything that is going on in every single layer of a
particular Docker image and give you the output of how much weight it has in terms of
actual size or the amount of disk space it will take up.

This page is what you will be presented with when navigating to the Microbadger
website, https:/​/​microbadger. ​com/ ​:

You can search for images that are on Docker Hub to have Microbadger provide
information about that image back to you, or you can load up a sample image set if you are
looking to provide some sample sets, or to see some more complex setups.

https://microbadger.com/
https://microbadger.com/
https://microbadger.com/
https://microbadger.com/
https://microbadger.com/
https://microbadger.com/
https://microbadger.com/
https://microbadger.com/

Storing and Distributing Images Chapter 3

[92]

In this example, we are going to search for the
masteringdockerthirdedition/dockerfiles-example image that we pushed earlier
in the chapter, and select the latest tag. As you can see from the following screenshot,
Docker Hub is automatically searched with results returned in real time as you type.

By default, it will always load the latest tag, but you also have the option of changing the
tag you are viewing by selecting your desired tag from the Versions drop-down menu.
This could be useful if you have, for example, a staging tag, and are thinking of pushing
this new image to your latest tag, but want to see what impact it will have on the size of the
image.

As you can see from the following screenshot, Microbadger presents information on how
many layers your image contains:

Storing and Distributing Images Chapter 3

[93]

By showing the size of each layer and the Dockerfile command executed during the image
build, you can see at which stage of the image build the bloat was added, which is
extremely useful when it comes to reducing the size of your images.

Another great feature is that Microbadger gives you the option of embedding basic
statistics about your images in your Git repository or Docker Hub; for example, the
following screen shows the Docker Hub page for one of my own images:

As you can see, Microbadger is displaying the overall size of the image, which in this
example is 5.9MB, as well as the total number of layers the image is made up of, which is
7. The Microbadger service is still in beta and new functions are being added all the time. I
recommend that you keep an eye on it.

Storing and Distributing Images Chapter 3

[94]

Summary
In this chapter, we looked at several ways in which you can both manually and
automatically build container images using Docker Hub. We discussed the various
registries you can use besides Docker Hub, such as the Docker Store and Red Hat's
container catalog.

We also looked at deploying our own local Docker Registry, and touched upon the
considerations we need to make around storage when deploying one. Finally, we looked at
Microbadger, a service that allows you to display information about your remotely hosted
container images.

In the next chapter, we are going to look at how we can manage our containers from the
command line.

Questions
True or false: Docker Hub is the only source from which you can download1.
official Docker images.
Describe why you would want to link an automated build to an official Docker2.
Hub image.
Are multi-stage builds supported on Docker Hub? 3.
True or false: Logging into Docker on the command also logs you into the4.
desktop application?
How would you delete two images that share the same IMAGE ID? 5.
Which port does the Docker Registry run on by default?6.

Storing and Distributing Images Chapter 3

[95]

Further reading
More information on Docker Store, Trusted Registry, and Registry can be found at:

Docker Store Publisher Sign-up: https:/ ​/​store. ​docker. ​com/ ​publisher/ ​signup/ ​

Docker Trusted Registry (DTR): https:/ ​/​docs. ​docker. ​com/ ​ee/​dtr/ ​

Docker Registry Documentation: https:/ ​/​docs. ​docker. ​com/ ​registry/ ​

You can find more details on the different types of cloud-based storage you can use for
Docker Registry at the following:

Azure Blob Storage: https:/ ​/ ​azure. ​microsoft. ​com/ ​en-​gb/ ​services/ ​storage/
blobs/​

Google Cloud storage: https:/ ​/​cloud. ​google. ​com/ ​storage/ ​

Amazon Simple Storage Service (Amazon S3): https:/ ​/​aws. ​amazon. ​com/ ​s3/​

Swift: This uses OpenStack Swift: https:/ ​/​wiki. ​openstack. ​org/ ​wiki/ ​Swift

Some of the third-party registry services can be found here:

Red Hat Container Catalog: https:/ ​/​access. ​redhat. ​com/ ​containers/ ​

OpenShift: https:/ ​/ ​www. ​openshift. ​com/​

Artifactory by JFrog: https:/ ​/​www. ​jfrog. ​com/ ​artifactory/ ​

Quay: https:/ ​/ ​quay. ​io/ ​

Finally, you can find links to the Docker Hub and Microbadger for my Apache Bench image
here:

Apache Bench Image (Docker Hub): https:/ ​/​hub. ​docker. ​com/ ​r/
russmckendrick/ ​ab/ ​

Apache Bench Image (Microbadger): https:/ ​/​microbadger. ​com/ ​images/
russmckendrick/ ​ab

https://store.docker.com/publisher/signup/
https://store.docker.com/publisher/signup/
https://store.docker.com/publisher/signup/
https://store.docker.com/publisher/signup/
https://store.docker.com/publisher/signup/
https://store.docker.com/publisher/signup/
https://store.docker.com/publisher/signup/
https://store.docker.com/publisher/signup/
https://store.docker.com/publisher/signup/
https://store.docker.com/publisher/signup/
https://store.docker.com/publisher/signup/
https://store.docker.com/publisher/signup/
https://store.docker.com/publisher/signup/
https://store.docker.com/publisher/signup/
https://docs.docker.com/ee/dtr/
https://docs.docker.com/ee/dtr/
https://docs.docker.com/ee/dtr/
https://docs.docker.com/ee/dtr/
https://docs.docker.com/ee/dtr/
https://docs.docker.com/ee/dtr/
https://docs.docker.com/ee/dtr/
https://docs.docker.com/ee/dtr/
https://docs.docker.com/ee/dtr/
https://docs.docker.com/ee/dtr/
https://docs.docker.com/ee/dtr/
https://docs.docker.com/ee/dtr/
https://docs.docker.com/ee/dtr/
https://docs.docker.com/ee/dtr/
https://docs.docker.com/registry/
https://docs.docker.com/registry/
https://docs.docker.com/registry/
https://docs.docker.com/registry/
https://docs.docker.com/registry/
https://docs.docker.com/registry/
https://docs.docker.com/registry/
https://docs.docker.com/registry/
https://docs.docker.com/registry/
https://docs.docker.com/registry/
https://docs.docker.com/registry/
https://docs.docker.com/registry/
https://azure.microsoft.com/en-gb/services/storage/blobs/
https://azure.microsoft.com/en-gb/services/storage/blobs/
https://azure.microsoft.com/en-gb/services/storage/blobs/
https://azure.microsoft.com/en-gb/services/storage/blobs/
https://azure.microsoft.com/en-gb/services/storage/blobs/
https://azure.microsoft.com/en-gb/services/storage/blobs/
https://azure.microsoft.com/en-gb/services/storage/blobs/
https://azure.microsoft.com/en-gb/services/storage/blobs/
https://azure.microsoft.com/en-gb/services/storage/blobs/
https://azure.microsoft.com/en-gb/services/storage/blobs/
https://azure.microsoft.com/en-gb/services/storage/blobs/
https://azure.microsoft.com/en-gb/services/storage/blobs/
https://azure.microsoft.com/en-gb/services/storage/blobs/
https://azure.microsoft.com/en-gb/services/storage/blobs/
https://azure.microsoft.com/en-gb/services/storage/blobs/
https://azure.microsoft.com/en-gb/services/storage/blobs/
https://azure.microsoft.com/en-gb/services/storage/blobs/
https://azure.microsoft.com/en-gb/services/storage/blobs/
https://azure.microsoft.com/en-gb/services/storage/blobs/
https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://wiki.openstack.org/wiki/Swift
https://wiki.openstack.org/wiki/Swift
https://wiki.openstack.org/wiki/Swift
https://wiki.openstack.org/wiki/Swift
https://wiki.openstack.org/wiki/Swift
https://wiki.openstack.org/wiki/Swift
https://wiki.openstack.org/wiki/Swift
https://wiki.openstack.org/wiki/Swift
https://wiki.openstack.org/wiki/Swift
https://wiki.openstack.org/wiki/Swift
https://wiki.openstack.org/wiki/Swift
https://wiki.openstack.org/wiki/Swift
https://wiki.openstack.org/wiki/Swift
https://access.redhat.com/containers/
https://access.redhat.com/containers/
https://access.redhat.com/containers/
https://access.redhat.com/containers/
https://access.redhat.com/containers/
https://access.redhat.com/containers/
https://access.redhat.com/containers/
https://access.redhat.com/containers/
https://access.redhat.com/containers/
https://access.redhat.com/containers/
https://access.redhat.com/containers/
https://access.redhat.com/containers/
https://www.openshift.com/
https://www.openshift.com/
https://www.openshift.com/
https://www.openshift.com/
https://www.openshift.com/
https://www.openshift.com/
https://www.openshift.com/
https://www.openshift.com/
https://www.openshift.com/
https://www.openshift.com/
https://www.jfrog.com/artifactory/
https://www.jfrog.com/artifactory/
https://www.jfrog.com/artifactory/
https://www.jfrog.com/artifactory/
https://www.jfrog.com/artifactory/
https://www.jfrog.com/artifactory/
https://www.jfrog.com/artifactory/
https://www.jfrog.com/artifactory/
https://www.jfrog.com/artifactory/
https://www.jfrog.com/artifactory/
https://www.jfrog.com/artifactory/
https://www.jfrog.com/artifactory/
https://quay.io/
https://quay.io/
https://quay.io/
https://quay.io/
https://quay.io/
https://quay.io/
https://quay.io/
https://quay.io/
https://hub.docker.com/r/russmckendrick/ab/
https://hub.docker.com/r/russmckendrick/ab/
https://hub.docker.com/r/russmckendrick/ab/
https://hub.docker.com/r/russmckendrick/ab/
https://hub.docker.com/r/russmckendrick/ab/
https://hub.docker.com/r/russmckendrick/ab/
https://hub.docker.com/r/russmckendrick/ab/
https://hub.docker.com/r/russmckendrick/ab/
https://hub.docker.com/r/russmckendrick/ab/
https://hub.docker.com/r/russmckendrick/ab/
https://hub.docker.com/r/russmckendrick/ab/
https://hub.docker.com/r/russmckendrick/ab/
https://hub.docker.com/r/russmckendrick/ab/
https://hub.docker.com/r/russmckendrick/ab/
https://hub.docker.com/r/russmckendrick/ab/
https://microbadger.com/images/russmckendrick/ab
https://microbadger.com/images/russmckendrick/ab
https://microbadger.com/images/russmckendrick/ab
https://microbadger.com/images/russmckendrick/ab
https://microbadger.com/images/russmckendrick/ab
https://microbadger.com/images/russmckendrick/ab
https://microbadger.com/images/russmckendrick/ab
https://microbadger.com/images/russmckendrick/ab
https://microbadger.com/images/russmckendrick/ab
https://microbadger.com/images/russmckendrick/ab
https://microbadger.com/images/russmckendrick/ab
https://microbadger.com/images/russmckendrick/ab

4
Managing Containers

So far, we have been concentrating on how to build, store, and distribute our Docker
images. Now we are going to look at how we can launch containers, and also how we can
use the Docker command-line client to manage and interact with them.

We will be revisiting the commands we used in the first chapter by going into a lot more
detail, before delving deeper into the commands that are available. Once we are familiar
with the container commands, we will look at Docker networks and Docker volumes.

We will cover the following topics:

Docker container commands:
The basics
Interacting with your containers
Logs and process information
Resource limits
Container states and miscellaneous commands
Removing containers

Docker networking and volumes

Managing Containers Chapter 4

[97]

Technical requirements
In this chapter, we will continue to use our local Docker installation. As before, the
screenshots in this chapter will be from my preferred operating system,
macOS, but the Docker commands we will be running will work on all three of the
operating systems on which we have installed Docker so far; however, some of the
supporting commands, which will be few and far between, may be applicable only to
macOS and Linux-based operating systems.

Check out the following video to see the Code in Action:

http:/​/​bit.​ly/​2yupP3n

Docker container commands
Before we dive into the more complex Docker commands, let's review and go into a little
more detail on the commands we have used in previous chapters.

The basics
In Chapter 1, Docker Overview, we launched the most basic container of all, the hello-
world container, using the following command:

$ docker container run hello-world

As you may recall, this command pulls a 1.84 KB image from the Docker Hub. You can find
the Docker Store page for the image at https:/ ​/ ​store. ​docker. ​com/ ​images/ ​hello- ​world/ ​,
and as per the following Dockerfile, it runs an executable called hello:

FROM scratch
COPY hello /
CMD ["/hello"]

The hello executable prints the Hello from Docker! text to the Terminal, and then the
process exits. As you can see from the full message text in the following Terminal output,
the hello binary also lets you know exactly what steps have just occurred:

http://bit.ly/2yupP3n
http://bit.ly/2yupP3n
http://bit.ly/2yupP3n
http://bit.ly/2yupP3n
http://bit.ly/2yupP3n
http://bit.ly/2yupP3n
http://bit.ly/2yupP3n
http://bit.ly/2yupP3n
http://bit.ly/2yupP3n
https://store.docker.com/images/hello-world/
https://store.docker.com/images/hello-world/
https://store.docker.com/images/hello-world/
https://store.docker.com/images/hello-world/
https://store.docker.com/images/hello-world/
https://store.docker.com/images/hello-world/
https://store.docker.com/images/hello-world/
https://store.docker.com/images/hello-world/
https://store.docker.com/images/hello-world/
https://store.docker.com/images/hello-world/
https://store.docker.com/images/hello-world/
https://store.docker.com/images/hello-world/
https://store.docker.com/images/hello-world/
https://store.docker.com/images/hello-world/
https://store.docker.com/images/hello-world/
https://store.docker.com/images/hello-world/

Managing Containers Chapter 4

[98]

As the process exits, our container also stops; this can be seen by running the following
command:

$ docker container ls -a

The output of the command is given here:

You may notice in the Terminal output that I first ran docker container ls with and
without the -a flag—this is shorthand for --all, as running it without the flag does not
show any exited containers.

We didn't have to name our container as it wasn't around long enough for us to care what it
was called. Docker automatically assigns names for containers, though, and in my case, you
can see that it was called pensive_hermann.

Managing Containers Chapter 4

[99]

You will notice, throughout your use of Docker, that it comes up with some really
interesting names for your containers if you choose to let it generate them for you.
Although this is slightly off-topic, the code to generate the names can be found in names-
generator.go. Right at the end of the source code, it has the following if statement:

if name == "boring_wozniak" /* Steve Wozniak is not boring */ {
 goto begin
}

This means there will never be a container called boring_wozniak (and quite rightly, too).

Steve Wozniak is an inventor, electronics engineer, programmer, and
entrepreneur who co-founded Apple Inc. with Steve Jobs. He is known as
a pioneer of the personal computer revolution of the 70s and 80s, and is
definitely not boring!

We can remove the container with a status of exited by running the following command,
making sure that you replace the name of the container with your own container name:

$ docker container rm pensive_hermann

Also, at the end of Chapter 1, Docker Overview, we launched a container using the official
nginx image, using the following command:

$ docker container run -d --name nginx-test -p 8080:80 nginx

As you may remember, this downloads the image and runs it, mapping port 8080 on our
host machine to port 80 on the container, and calls it nginx-test:

Managing Containers Chapter 4

[100]

As you can see, running docker image ls shows us that we now have two images
downloaded and also running. The following command shows us that we have a running
container:

$ docker container ls

The following Terminal output shows that mine had been up for 5 minutes when I ran the
command:

As you can see from our docker container run command, we introduced three flags.
One of them was -d, which is shorthand for --detach. If we hadn't added this flag, then
our container would have executed in the foreground, which means that our Terminal
would have been frozen until we passed the process an escape command by pressing Ctrl +
C.

We can see this in action by running the following command to launch a second nginx
container to run alongside the container we have already launched:

$ docker container run --name nginx-foreground -p 9090:80 nginx

Once launched, open a browser and go to http://localhost:9090/. As you load the
page, you will notice that your page visit is printed to the screen; hitting refresh in your
browser will display more hits, until you press Ctrl + C back in the Terminal.

Managing Containers Chapter 4

[101]

Running docker container ls -a shows that you have two containers, one of which
has exited:

So what happened? When we removed the detach flag, Docker connected us to the nginx
process directly within the container, meaning that we had visibility of stdin, stdout, and
stderr for that process. When we used Ctrl + C, we actually sent an instruction to the
nginx process to terminate it. As that was the process that was keeping our container
running, the container exited immediately once there was no longer a running process.

Standard input (stdin) is the handle that our process reads to get
information from the end user. Standard output (stdout) is where the
process writes normal information to. Standard error (stderr) is where
the process writes error messages to.

Another thing you may have noticed when we launched the nginx-foreground container
is that we gave it a different name using the --name flag.

This is because you cannot have two containers with the same name, since Docker gives
you the option of interacting with your containers using both the CONTAINER ID or
NAME values. This is the reason the name generator function exists: to assign a random
name to containers you do not wish to name yourself—and also to ensure that we never
call Steve Wozniak boring.

The final thing to mention is that when we launched nginx-foreground, we asked Docker
to map port 9090 to port 80 on the container. This was because we cannot assign more than
one process to a port on a host machine, so if we attempted to launch our second container
with the same port as the first, we would have received an error message:

docker: Error response from daemon: driver failed programming external
connectivity on endpoint nginx-foreground
(3f5b355607f24e03f09a60ee688645f223bafe4492f807459e4a2b83571f23f4): Bind
for 0.0.0.0:8080 failed: port is already allocated.

Managing Containers Chapter 4

[102]

Also, since we are running the container in the foreground, you may receive an error from
the nginx process, as it failed to start:

ERRO[0003] error getting events from daemon: net/http: request cancelled

However, you may also notice that we are mapping to port 80 on the container—why no
error there?

Well, as explained in Chapter 1, Docker Overview, the containers themselves are isolated
resources, which means that we can launch as many containers as we like with port 80
remapped, and they will never clash with other containers; we only run into problems
when we want to route to the exposed container port from our Docker host.

Let's keep our nginx container running for the next section.

Interacting with your containers
So far, our containers have been running a single process. Docker provides you with a few
tools that enable you to both fork additional processes and interact with them.

attach
The first way of interacting with your running container is to attach to the running
process. We still have our nginx-test container running, so let's connect to that by
running this command:

$ docker container attach nginx-test

Opening your browser and going to http://localhost:8080/ will print the nginx access
logs to screen, just as when we launched the nginx-foreground container. Pressing Ctrl +
C will terminate the process and return your Terminal to normal; however, as before, we
would have terminated the process that was keeping the container running:

Managing Containers Chapter 4

[103]

We can start our container back up by running the following command:

$ docker container start nginx-test

This will start the container back up in the detached state, meaning that it is running in the
background again, as this was the state that the container was originally launched in. Going
to http://localhost:8080/ will show you the nginx welcome page again.

Let's reattach to our process, but this time with an additional option:

$ docker container attach --sig-proxy=false nginx-test

Hitting the container's URL a few times and then pressing Ctrl + C will detach us from the
nginx process, but this time, rather than terminating the nginx process, it will just return us
to our Terminal, leaving the container in a detached state that can be seen by running
docker container ls:

exec
The attach command is useful if you need to connect to the process your container is
running, but what if you need something a little more interactive?

You can use the exec command; this spawns a second process within the container that
you can interact with. For example, to see the contents of the
/etc/debian_version file, we can run the following command:

$ docker container exec nginx-test cat /etc/debian_version

Managing Containers Chapter 4

[104]

This will spawn a second process, the cat command in this case, which prints the contents
of /etc/debian_version to stdout. The second process will then terminate, leaving our
container as it was before the exec command was executed:

We can take this one step further by running the following command:

$ docker container exec -i -t nginx-test /bin/bash

This time, we are forking a bash process and using the -i and -t flags to keep open console
access to our container. The -i flag is shorthand for --interactive, which instructs
Docker to keep stdin open so that we can send commands to the process. The -t flag is
short for --tty and allocates a pseudo-TTY to the session.

Early user terminals connected to computers were called teletypewriters.
While these devices are no longer used today, the acronym TTY has
continued to be used to described text-only consoles in modern
computing.

What this means is that you will be able to interact with the container as if you had a
remote Terminal session, like SSH:

Managing Containers Chapter 4

[105]

While this is extremely useful, as you can interact with the container as if it were a virtual
machine, I do not recommend making any changes to your containers as they are running
using the pseudo-TTY. It is more than likely that those changes will not persist and will be
lost when your container is removed. We will go into the thinking behind this in more
detail in Chapter 12, Docker Workflows.

Logs and process information
So far, we have been attaching to either the process in our container, or the container itself,
to view information. Docker provides a few commands to allow you to view information
about your containers without having to use either the attach or exec commands.

logs
The logs command is pretty self-explanatory; it allows you to interact with the stdout
stream of your containers, which Docker is keeping track of in the background. For
example, to view the last entries written to stdout for our nginx-test container, you just
need to use the following command:

$ docker container logs --tail 5 nginx-test

The output of the command is shown here:

To view the logs in real time, I simply need to run the following:

$ docker container logs -f nginx-test

The -f flag is shorthand for --follow. I can also, say, view everything that has been
logged since a certain time by running the following:

$ docker container logs --since 2018-08-25T18:00 nginx-test

Managing Containers Chapter 4

[106]

The output of the command is shown here:

You might notice that, in the preceding output, the timestamp in the access log is 17:12,
which is before 18:00. Why is that?

The logs command shows the timestamps of stdout as recorded by Docker, and not the
time within the container. You can see this when I run the following commands:

$ date
$ docker container exec nginx-test date

The output is shown here:

There is an hour's time difference between my host machine and the container due to
British Summer Time (BST) being in effect on my host.

Luckily, to save confusion—or add to it, depending on how you look at it—you can add -t
to your logs commands:

$ docker container logs --since 2018-08-25T18:00 -t nginx-test

Managing Containers Chapter 4

[107]

The -t flag is short for --timestamp; this option prepends the time the output was
captured by Docker:

top
The top command is quite a simple one; it lists the processes running within the container
you specify, and is used as follows:

$ docker container top nginx-test

The output of the command is shown here:

As you can see from the following Terminal output, we have two processes running, both
of which are nginx, which is to be expected.

Managing Containers Chapter 4

[108]

stats
The stats command provides real-time information on either the specified container or, if
you don't pass a NAME or ID container, on all running containers:

$ docker container stats nginx-test

As you can see from the following Terminal output, we are given information on the CPU,
RAM, NETWORK, DISK IO, and PIDS for the specified container:

We can also pass the -a flag; this is short for --all and displays all containers, running or
not. For example, try running the following command:

$ docker container stats -a

You should receive something like the following output:

However, as you can see from the preceding output, if the container isn't running, there
aren't any resources being utilized, so it doesn't really add any value, other than giving you
a visual representation of how many containers you have running and where the resources
are being used.

It is also worth pointing out that the information displayed by the stats command is real
time only; Docker does not record the resource utilization and make it available in the same
way that the logs command does. We will be looking at more long-term storage for
resource utilization in later chapters.

Resource limits
The last command we ran showed us the resource utilization of our containers; by default,
when launched, a container will be allowed to consume all the available resources on the
host machine if it requires it. We can put caps on the resources our containers can consume;
let's start by updating the resource allowances of our nginx-test container.

Managing Containers Chapter 4

[109]

Typically, we would have set the limits when we launched our container using the run
command; for example, to halve the CPU priority and set a memory limit of 128M, we
would have used the following command:

$ docker container run -d --name nginx-test --cpu-shares 512 --memory 128M
-p 8080:80 nginx

However, we didn't launch our nginx-test container with any resource limits, meaning
that we need to update our already running container; to do this, we can use the update
command. Now, you may have thought that this should just entail running the following
command:

$ docker container update --cpu-shares 512 --memory 128M nginx-test

But actually, running the preceding command will produce an error:

Error response from daemon: Cannot update container
3f2ce315a006373c075ba7feb35c1368362356cb5fe6837acf80b77da9ed053b: Memory
limit should be smaller than already set memoryswap limit, update the
memoryswap at the same time

So what is the memoryswap limit currently set to? To find this out, we can use the inspect
command to display all of the configuration data for our running container; just run the
following:

$ docker container inspect nginx-test

As you can see by running the preceding command, there is a lot of configuration data.
When I ran the command, a 199-line JSON array was returned. Let's use the grep
command to filter out just the lines that contain the word memory:

$ docker container inspect nginx-test | grep -i memory

This returns the following configuration data:

 "Memory": 0,
 "KernelMemory": 0,
 "MemoryReservation": 0,
 "MemorySwap": 0,
 "MemorySwappiness": null,

Everything is set to 0, so how can 128M be smaller than 0?

Managing Containers Chapter 4

[110]

In the context of the configuration of the resources, 0 is actually the default value and
means that there are no limits—notice the lack of M after each numerical value. This means
that our update command should actually read the following:

$ docker container update --cpu-shares 512 --memory 128M --memory-swap 256M
nginx-test

Paging is a memory management scheme in which the kernel stores and
retrieves, or swaps, data from secondary storage for use in the main
memory. This allows processes to exceed the size of physical memory
available.

By default, when you set --memory as part of the run command, Docker will set the --
memory-swap size to be twice that of --memory. If you run docker container stats
nginx-test now, you should see our limits in place:

Also, re-running docker container inspect nginx-test | grep -i memory will
show the changes as follows:

 "Memory": 134217728,
 "KernelMemory": 0,
 "MemoryReservation": 0,
 "MemorySwap": 268435456,
 "MemorySwappiness": null,

The values when running docker container inspect are all shown in
bytes rather megabytes (MB).

Container states and miscellaneous commands
For the final part of this section, we are going to look at the various states your containers
could be in, along with the few remaining commands we have yet to cover as part of the
docker container command.

Managing Containers Chapter 4

[111]

Running docker container ls -a should show something similar to the following
Terminal output:

As you can see, we have two containers; one has the status of Up and the other has Exited.
Before we continue, let's launch five more containers. To do this quickly, run the following
command:

$ for i in {1..5}; do docker container run -d --name nginx$(printf "$i")
nginx; done

When running docker container ls -a, you should see your five new containers,
named nginx1 through to nginx5:

Managing Containers Chapter 4

[112]

Pause and unpause
Let's look at pausing nginx1. To do this, simply run the following:

$ docker container pause nginx1

Running docker container ls will show that the container has a status of Up, but it also
says Paused:

Note that we didn't have to use the -a flag to see information about the container as the
process has not been terminated; instead, it has been suspended using the cgroups freezer.
With the cgroups freezer, the process is unaware it has been suspended, meaning that it
can be resumed.

As you will have probably already guessed, you can resume a paused container using the
unpause command, as follows:

$ docker container unpause nginx1

This command is useful if you need to freeze the state of a container; for example, maybe
one of your containers is going haywire and you need to do some investigation later, but
don't want it to have a negative impact on your other running containers.

Managing Containers Chapter 4

[113]

Stop, start, restart, and kill
Next up, we have the stop, start, restart, and kill commands. We have already used
the start command to resume a container with a status of Exited. The stop command
works in exactly the same way as when we used Ctrl + C to detach from your container
running in the foreground. Run the following command:

$ docker container stop nginx2

With this, a request is sent to the process for it to terminate, called a SIGTERM. If the process
has not terminated itself within a grace period, then a kill signal, called a SIGKILL, is sent.
This will immediately terminate the process, not giving it any time to finish whatever is
causing the delay; for example, committing the results of a database query to disk.

Because this could be bad, Docker gives you the option of overriding the default grace
period, which is 10 seconds, by using the -t flag; this is short for --time. For example,
running the following command will wait up to 60 seconds before sending a SIGKILL, in
the event that it needs to be sent to kill the process:

$ docker container stop -t 60 nginx3

The start command, as we have already seen, will start the process back up; however,
unlike the pause and unpause commands, the process, in this case, starts from scratch
using the flags that originally launched it, rather than starting from where it left off:

$ docker container start nginx2 nginx3

The restart command is a combination of the following two commands; it stops and then
starts the ID or NAME container you pass it. Also, as with stop, you can pass the -t flag:

$ docker container restart -t 60 nginx4

Finally, you also have the option of sending a SIGKILL command immediately to the
container by running the kill command:

$ docker container kill nginx5

Managing Containers Chapter 4

[114]

Removing containers
Let's check the containers we have running using the docker container ls -a
command. When I run the command, I can see that I have two containers with an Exited
status and all of the others are running:

To remove the two exited containers, I can simply run the prune command:

$ docker container prune

When doing so, a warning pops up asking you to confirm whether you are really sure, as
seen in the following screenshot:

Managing Containers Chapter 4

[115]

You can choose which container you want to remove using the rm command, an example of
which is shown here:

$ docker container rm nginx4

Another alternative would be to string the stop and rm commands together:

$ docker container stop nginx3 && docker container rm nginx3

However, given that you can use the prune command now, this is probably way too much
effort, especially as you are trying to remove the containers and probably don't care too
much how gracefully the process is terminated.

Feel free to remove the remainder of your containers using whichever method you like.

Miscellaneous commands
For the final part of this section, we are going to look at a few commands that you probably
won't use too much during your day-to-day use of Docker. The first of these is create.

The create command is pretty similar to the run command, except that it does not start
the container, but instead prepares and configures one:

$ docker container create --name nginx-test -p 8080:80 nginx

You can check the status of your created container by running docker container ls -a,
and then starting the container with docker container start nginx-test, before
checking the status again:

Managing Containers Chapter 4

[116]

The next command we are going to quickly look at is the port command; this displays the
port along with any port mappings for the container:

$ docker container port nginx-test

It should return the following:

80/tcp -> 0.0.0.0:8080

We already know this, as it is what we configured. Also, the ports are listed in the docker
container ls output.

The final command we are going to look at quickly is the diff command. This command
prints a list of all of the files that have been added (A) or changed (C) since the container
was started—so basically, a list of the differences on the filesystem between the original
image we used to launch the container and what files are present now.

Before we run the command, let's create a blank file within the nginx-test container
using the exec command:

$ docker container exec nginx-test touch /tmp/testing

Now that we have a file called testing in /tmp, we can view the differences between the
original image and the running container using the following:

$ docker container diff nginx-test

This will return a list of files; as you can see from the following list, our testing file is there,
along with the files that were created when nginx started:

C /run
A /run/nginx.pid
C /tmp
A /tmp/testing
C /var/cache/nginx
A /var/cache/nginx/client_temp A /var/cache/nginx/fastcgi_temp A
/var/cache/nginx/proxy_temp
A /var/cache/nginx/scgi_temp
A /var/cache/nginx/uwsgi_temp

Managing Containers Chapter 4

[117]

It is worth pointing out that once we stop and remove the container, these files will be lost.
In the next section of this chapter, we will look at Docker volumes and learn how we can
persist data.

Again, if you are following along, you should remove any running containers launched
during this section using the command of your choice.

Docker networking and volumes
Before we finish off this chapter, we are going to take a look at the basics of Docker
networking and Docker volumes using the default drivers. Let's take a look at networking
first.

Docker networking
So far, we have been launching our containers on a single flat shared network. Although we
have not talked about it yet, this means the containers we have been launching would have
been able to communicate with each other without having to use any of the host
networking.

Rather than going into detail now, let's work through an example. We are going to be
running a two-container application; the first container will be running Redis, and the
second, our application, which uses the Redis container to store a system state.

Redis is an in-memory data structure store that can be used as a database,
cache, or message broker. It supports different levels of on-disk
persistence.

Before we launch our application, let's download the container images we will be using,
and also create the network:

$ docker image pull redis:alpine
$ docker image pull russmckendrick/moby-counter
$ docker network create moby-counter

Managing Containers Chapter 4

[118]

You should see something similar to the following Terminal output:

Now that we have our images pulled and our network created, we can launch our
containers, starting with the Redis one:

$ docker container run -d --name redis --network moby-counter redis:alpine

As you can see, we used the --network flag to define the network that our container was
launched in. Now that the Redis container is launched, we can launch the application
container by running the following:

$ docker container run -d --name moby-counter --network moby-counter -p
8080:80 russmckendrick/moby-counter

Managing Containers Chapter 4

[119]

Again, we launched the container into the moby-counter network; this time, we mapped
port 8080 to port 80 on the container. Note that we did not need to worry about exposing
any ports of the Redis container. That is because the Redis image comes with some defaults
that expose the default port, which is 6379 for us. This can be seen by running docker
container ls:

All that remains now is to access the application; to do this, open your browser and go to
http://localhost:8080/. You should be greeted by a mostly blank page, with the
message Click to add logos:

Clicking anywhere on the page will add Docker logos, so click away:

Managing Containers Chapter 4

[120]

So what is happening? The application that is being served from the moby-counter
container is making a connection to the redis container, and using the service to store the
on-screen coordinates of each of the logos that you place on the screen by clicking.

How is the moby-counter application connecting to the redis container? Well, in the
server.js file, the following default values are being set:

var port = opts.redis_port || process.env.USE_REDIS_PORT || 6379
var host = opts.redis_host || process.env.USE_REDIS_HOST || 'redis'

This means that the moby-counter application is looking to connect to a host called redis
on port 6379. Let's try using the exec command to ping the redis container from the
moby-counter application and see what we get:

$ docker container exec moby-counter ping -c 3 redis

You should see something similar to the following output:

As you can see, the moby-counter container resolves redis to the IP address of the redis
container, which is 172.18.0.2. You may be thinking that the application's host file
contains an entry for the redis container; let's take a look using the following command:

$ docker container exec moby-counter cat /etc/hosts

This returns the contents of /etc/hosts, which, in my case, looks like the following:

127.0.0.1 localhost
::1 localhost ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
172.18.0.3 4e7931312ed2

Managing Containers Chapter 4

[121]

Other than the entry at the end, which is actually the IP address resolving to the hostname
of the local container, 4e7931312ed2 is the ID of the container; there is no sign of an entry
for redis. Next, let's check /etc/resolv.conf by running the following:

$ docker container exec moby-counter cat /etc/resolv.conf

This returns what we are looking for; as you can see, we are using a local nameserver:

nameserver 127.0.0.11
options ndots:0

Let's perform a DNS lookup on redis against 127.0.0.11 using the following command:

$ docker container exec moby-counter nslookup redis 127.0.0.11

This returns the IP address of the redis container:

Server: 127.0.0.11
Address 1: 127.0.0.11

Name: redis
Address 1: 172.18.0.2 redis.moby-counter

Let's create a second network and launch another application container:

$ docker network create moby-counter2
$ docker run -itd --name moby-counter2 --network moby-counter2 -p 9090:80
russmckendrick/moby-counter

Now that we have the second application container up and running, let's try pinging the
redis container from it:

$ docker container exec moby-counter2 ping -c 3 redis

In my case, I get the following error:

Let's check the resolv.conf file to see if the same nameserver is being used already, as
follows:

$ docker container exec moby-counter2 cat /etc/resolv.conf

Managing Containers Chapter 4

[122]

As you can see from the following output, the nameserver is indeed in use already:

nameserver 127.0.0.11
options ndots:0

As we have launched the moby-counter2 container in a different network to that where
the container named redis is running, we cannot resolve the hostname of the container, so
it returns a bad address error:

$ docker container exec moby-counter2 nslookup redis 127.0.0.11
Server: 127.0.0.11
Address 1: 127.0.0.11

nslookup: can't resolve 'redis': Name does not resolve

Let's look at launching a second Redis server in our second network; as we have already
discussed, we cannot have two containers with the same name, so let's creatively name it
redis2.

As our application is configured to connect to a container that resolves to redis, does this
mean we will have to make changes to our application container? No, but Docker has you
covered.

While you cannot have two containers with the same names, as we have already
discovered, our second network is running completely isolated from our first network,
meaning that we can still use the DNS name of redis. To do this, we need to add the --
network-alias flag as follows:

$ docker container run -d --name redis2 --network moby-counter2 --network-
alias redis redis:alpine

As you can see, we have named the container redis2, but set the --network-alias to be
redis; this means that when we perform the lookup, we see the correct IP address
returned:

$ docker container exec moby-counter2 nslookup redis 127.0.0.1
Server: 127.0.0.1
Address 1: 127.0.0.1 localhost

Name: redis
Address 1: 172.19.0.3 redis2.moby-counter2

As you can see, redis is actually an alias for redis2.moby-counter2, which then
resolves to 172.19.0.3.

Managing Containers Chapter 4

[123]

Now we should have two applications running side by side in their own isolated networks
on your local Docker host, accessible at http://localhost:8080/ and
http://localhost:9090/. Running docker network ls will display all of the
networks configured on your Docker host, including the default networks:

You can find out more information about the configuration of the networks by running the
following inspect command:

$ docker network inspect moby-counter

Running the preceding command returns the following JSON array:

[
 {
 "Name": "moby-counter",
 "Id":
"c8b38a10efbefd701c83203489459d9d5a1c78a79fa055c1c81c18dea3f1883c",
 "Created": "2018-08-26T11:51:09.7958001Z",
 "Scope": "local",
 "Driver": "bridge",
 "EnableIPv6": false,
 "IPAM": {
 "Driver": "default",
 "Options": {},
 "Config": [
 {
 "Subnet": "172.18.0.0/16",
 "Gateway": "172.18.0.1"
 }
]
 },
 "Internal": false,
 "Attachable": false,
 "Ingress": false,
 "ConfigFrom": {
 "Network": ""

Managing Containers Chapter 4

[124]

 },
 "ConfigOnly": false,
 "Containers": {
"4e7931312ed299ed9132f3553e0518db79b4c36c43d36e88306aed7f6f9749d8": {
 "Name": "moby-counter",
 "EndpointID":
"dc83770ae0939c98416ee69d939b30a1da391b11d14012c8188be287baa9c325",
 "MacAddress": "02:42:ac:12:00:03",
 "IPv4Address": "172.18.0.3/16",
 "IPv6Address": ""
 },
"d760bc59c3ac5f9ba8b7aa8e9f61fd21ce0b8982f3a85db888a5bcf103bedf6e": {
 "Name": "redis",
 "EndpointID":
"5af2bfd1ce486e38a9c5cddf9e16878fdb91389cc122cfef62d5e575a91b89b9",
 "MacAddress": "02:42:ac:12:00:02",
 "IPv4Address": "172.18.0.2/16",
 "IPv6Address": ""
 }
 },
 "Options": {},
 "Labels": {}
 }
]

As you can see, it contains information on the network addressing being used in the IPAM
section, along with details on each of the two containers running in the network.

IP address management (IPAM) is a means of planning, tracking, and
managing IP addresses within the network. IPAM has both DNS and
DHCP services, so each service is notified of changes in the other. For
example, DHCP assigns an address to container2. The DNS service is
then updated to return the IP address assigned by DHCP whenever a
lookup is made against container2.

Before we progress to the next section, we should remove one of the applications and
associated networks. To do this, run the following commands:

$ docker container stop moby-counter2 redis2
$ docker container prune
$ docker network prune

Managing Containers Chapter 4

[125]

This will remove the containers and network, as shown in the following screenshot:

As mentioned at the start of this section, this is only the default network driver, meaning
that we are restricted to our networks being available only on a single Docker host. In later
chapters, we will look at how we can expand our Docker network across multiple hosts and
even providers.

Docker volumes
If you have been following along with the network example from the previous section, you
should have two containers running, as shown in the following screenshot:

Managing Containers Chapter 4

[126]

When you go to the application in a browser (at http://localhost:8080/), you will
probably see that there already are Docker logos on screen. Let's stop and then remove the
Redis container and see what happens. To do this, run the following commands:

$ docker container stop redis
$ docker container rm redis

If you have your browser open, you may notice that the Docker icons have faded into the
background and there is an animated loader in the center of the screen. This is basically to
show that the application is waiting for the connection to the Redis container to be re-
established:

Relaunch the Redis container using the following command:

$ docker container run -d --name redis --network moby-counter redis:alpine

This restores connectivity; however, when you start to interact with the application, your
previous icons disappear and you are left with a clean slate. Quickly add some more logos
to the screen, this time placed in a different pattern, as I have done here:

Managing Containers Chapter 4

[127]

Once you have a pattern, let's remove the Redis container again, by running the following
commands:

$ docker container stop redis
$ docker container rm redis

As we discussed earlier in the chapter, losing the data in the container is to be expected.
However, as we used the official Redis image, we haven't in fact lost any of our data.

The Dockerfile for the official Redis image that we used looks like the following:

FROM alpine:3.8

RUN addgroup -S redis && adduser -S -G redis redis
RUN apk add --no-cache 'su-exec>=0.2'

ENV REDIS_VERSION 4.0.11
ENV REDIS_DOWNLOAD_URL
http://download.redis.io/releases/redis-4.0.11.tar.gz
ENV REDIS_DOWNLOAD_SHA
fc53e73ae7586bcdacb4b63875d1ff04f68c5474c1ddeda78f00e5ae2eed1bbb

RUN set -ex; \
 \
 apk add --no-cache --virtual .build-deps \
 coreutils \
 gcc \
 jemalloc-dev \
 linux-headers \
 make \
 musl-dev \
 ; \
 \
 wget -O redis.tar.gz "$REDIS_DOWNLOAD_URL"; \
 echo "$REDIS_DOWNLOAD_SHA *redis.tar.gz" | sha256sum -c -; \
 mkdir -p /usr/src/redis; \
 tar -xzf redis.tar.gz -C /usr/src/redis --strip-components=1; \
 rm redis.tar.gz; \
 \
 grep -q '^#define CONFIG_DEFAULT_PROTECTED_MODE 1$'
/usr/src/redis/src/server.h; \
 sed -ri 's!^(#define CONFIG_DEFAULT_PROTECTED_MODE) 1$!\1 0!'
/usr/src/redis/src/server.h; \
 grep -q '^#define CONFIG_DEFAULT_PROTECTED_MODE 0$'
/usr/src/redis/src/server.h; \
 \
 make -C /usr/src/redis -j "$(nproc)"; \
 make -C /usr/src/redis install; \

Managing Containers Chapter 4

[128]

 \
 rm -r /usr/src/redis; \
 \
 runDeps="$(\
 scanelf --needed --nobanner --format '%n#p' --recursive /usr/local \
 | tr ',' '\n' \
 | sort -u \
 | awk 'system("[-e /usr/local/lib/" $1 "]") == 0 { next } { print
"so:" $1 }' \
)"; \
 apk add --virtual .redis-rundeps $runDeps; \
 apk del .build-deps; \
 \
 redis-server --version

RUN mkdir /data && chown redis:redis /data
VOLUME /data
WORKDIR /data

COPY docker-entrypoint.sh /usr/local/bin/
ENTRYPOINT ["docker-entrypoint.sh"]

EXPOSE 6379
CMD ["redis-server"]

If you notice, toward the end of the file, there are the VOLUME and WORKDIR directives
declared; this means that when our container was launched, Docker actually created a
volume and then ran redis-server from within the volume.

We can see this by running the following command:

$ docker volume ls

This should show at least two volumes, as seen in the following screenshot:

As you can see, the volume name is not very friendly at all; in fact, it is the unique ID of the
volume. So how can we use the volume when we launch our Redis container?

Managing Containers Chapter 4

[129]

We know from the Dockerfile that the volume was mounted at /data within the container,
so all we have to do is tell Docker which volume to use and where it should be mounted at
runtime.

To do this, run the following command, making sure you replace the volume ID with that
of your own:

$ docker container run -d --name redis -v
c2e417eab8fa20944582e2de525ab87b749099043b8c487194b7b6415b537e6a:/data --
network moby-counter redis:alpine

If your application page looks like it is still trying to reconnect to the Redis container once
you have launched your Redis container, then you may need to refresh your browser;
failing that, restarting the application container by running docker container restart
moby-counter and then refreshing your browser again should work.

You can view the contents of the volume by running the following command to attach the
container and list the files in /data:

$ docker container exec redis ls -lhat /data

This will return something that looks like the following:

total 12
drwxr-xr-x 1 root root 4.0K Aug 26 13:30 ..
drwxr-xr-x 2 redis redis 4.0K Aug 26 12:44 .
-rw-r--r-- 1 redis redis 392 Aug 26 12:44 dump.rdb

You can also remove your running container and relaunch it, but this time using the ID of
the second volume. As you can see from the application in your browser, the two different
patterns you originally created are intact.

Finally, you can override the volume with your own. To create a volume, we need to use
the volume command:

$ docker volume create redis_data

Once created, we will be able to use the redis_data volume to store our Redis by running
the following command after removing the Redis container, which is probably already
running:

$ docker container run -d --name redis -v redis_data:/data --network moby-
counter redis:alpine

Managing Containers Chapter 4

[130]

We can then reuse the volume as needed, the screen below shows the volume being
created, attached to a container which is then removed and finally reattached to a new
container:

Like the network command, we can view more information on the volume using the
inspect command, as follows:

$ docker volume inspect redis_data

The preceding code will produce something like the following output:

[
 {
 "CreatedAt": "2018-08-26T13:39:33Z",
 "Driver": "local",
 "Labels": {},
 "Mountpoint": "/var/lib/docker/volumes/redis_data/_data",
 "Name": "redis_data",
 "Options": {},
 "Scope": "local"
 }
]

You can see that there is not much to a volume when using the local driver; one interesting
thing to note is that the path to where the data is stored on the Docker host machine is
/var/lib/docker/volumes/redis_data/_data. If you are using Docker for Mac or
Docker for Windows, then this path will be your Docker host virtual machine, and not your
local machine, meaning that you do not have direct access to the data inside the volume.

Managing Containers Chapter 4

[131]

Don't worry though; we will be looking at Docker volumes and how you can interact with
data in later chapters. For now, we should tidy up. First of all, remove the two containers
and network:

$ docker container stop redis moby-counter
$ docker container prune
$ docker network prune

Then we can remove the volumes by running the following command:

$ docker volume prune

You should see something similar to the following Terminal output:

We are now back to having a clean slate, so we can progress to the next chapter.

Managing Containers Chapter 4

[132]

Summary
In this chapter, we looked at how you can use the Docker command-line client to both
manage individual containers and launch multi-container applications in their own isolated
Docker networks. We also discussed how we can persist data on the filesystem using
Docker volumes. So far, in this and previous chapters, we have covered in detail the
majority of the available commands that we will use in the following sections:

$ docker container [command]
$ docker network [command]
$ docker volume [command]
$ docker image [command]

Now that we have covered the four main areas of using Docker locally, we can start to look
at how to create more complex applications using Docker Compose.

In the next chapter, we will take a look at another core Docker tool, called Docker Compose.

Questions
Which flag do you have to append to docker container ls to view all the1.
containers, both running and stopped?
True or false: the -p 8080:80 flag will map port 80 on the container to port 80802.
on the host.
Explain the difference between what happens when you use Ctrl + C to exit a3.
container you have attached, compared to using the attach command with --
sig-proxy=false.
True or false: The exec command attaches you to the running process.4.
Which flag would you use to add an alias to a container so that it responds to5.
DNS requests, when you already have a container running with the same DNS
name in another network?
Which command would you use to find out details on a Docker volume?6.

Managing Containers Chapter 4

[133]

Further reading
You can find out more about some of the topics we have discussed in this chapter at the
following links:

The Names Generator Code: https:/ ​/​github. ​com/ ​moby/ ​moby/ ​blob/ ​master/ ​pkg/
namesgenerator/ ​names- ​generator. ​go

The cgroups freezer function: https:/ ​/​www. ​kernel. ​org/​doc/ ​Documentation/
cgroup-​v1/ ​freezer- ​subsystem. ​txt

Redis: https:/ ​/​redis. ​io/ ​

https://github.com/moby/moby/blob/master/pkg/namesgenerator/names-generator.go
https://github.com/moby/moby/blob/master/pkg/namesgenerator/names-generator.go
https://github.com/moby/moby/blob/master/pkg/namesgenerator/names-generator.go
https://github.com/moby/moby/blob/master/pkg/namesgenerator/names-generator.go
https://github.com/moby/moby/blob/master/pkg/namesgenerator/names-generator.go
https://github.com/moby/moby/blob/master/pkg/namesgenerator/names-generator.go
https://github.com/moby/moby/blob/master/pkg/namesgenerator/names-generator.go
https://github.com/moby/moby/blob/master/pkg/namesgenerator/names-generator.go
https://github.com/moby/moby/blob/master/pkg/namesgenerator/names-generator.go
https://github.com/moby/moby/blob/master/pkg/namesgenerator/names-generator.go
https://github.com/moby/moby/blob/master/pkg/namesgenerator/names-generator.go
https://github.com/moby/moby/blob/master/pkg/namesgenerator/names-generator.go
https://github.com/moby/moby/blob/master/pkg/namesgenerator/names-generator.go
https://github.com/moby/moby/blob/master/pkg/namesgenerator/names-generator.go
https://github.com/moby/moby/blob/master/pkg/namesgenerator/names-generator.go
https://github.com/moby/moby/blob/master/pkg/namesgenerator/names-generator.go
https://github.com/moby/moby/blob/master/pkg/namesgenerator/names-generator.go
https://github.com/moby/moby/blob/master/pkg/namesgenerator/names-generator.go
https://github.com/moby/moby/blob/master/pkg/namesgenerator/names-generator.go
https://github.com/moby/moby/blob/master/pkg/namesgenerator/names-generator.go
https://github.com/moby/moby/blob/master/pkg/namesgenerator/names-generator.go
https://github.com/moby/moby/blob/master/pkg/namesgenerator/names-generator.go
https://github.com/moby/moby/blob/master/pkg/namesgenerator/names-generator.go
https://github.com/moby/moby/blob/master/pkg/namesgenerator/names-generator.go
https://www.kernel.org/doc/Documentation/cgroup-v1/freezer-subsystem.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/freezer-subsystem.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/freezer-subsystem.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/freezer-subsystem.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/freezer-subsystem.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/freezer-subsystem.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/freezer-subsystem.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/freezer-subsystem.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/freezer-subsystem.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/freezer-subsystem.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/freezer-subsystem.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/freezer-subsystem.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/freezer-subsystem.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/freezer-subsystem.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/freezer-subsystem.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/freezer-subsystem.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/freezer-subsystem.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/freezer-subsystem.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/freezer-subsystem.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/freezer-subsystem.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/freezer-subsystem.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/freezer-subsystem.txt
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/

5
Docker Compose

In this chapter, we will be taking a look at another core Docker tool called Docker
Compose, and also the currently in-development Docker App. We will break the chapter
down into the following sections:

Docker Compose introduction
Our first Docker Compose application
Docker Compose YAML files
Docker Compose commands
Docker App

Technical requirements
As in previous chapters, we will continue to use our local Docker installations. Again, the
screenshots in this chapter will be from my preferred operating system, macOS.

As before, the Docker commands we will be running will work on all three of the operating
systems on which we have installed Docker so far. However, some of the supporting
commands, which will be few and far between, may only apply to macOS and Linux-based
operating systems.

A full copy of the code used in this chapter can be found at: https:/ ​/​github. ​com/
PacktPublishing/​Mastering- ​Docker- ​Third- ​Edition/ ​tree/ ​master/ ​chapter05.

Check out the following video to see the Code in Action:

http:/​/​bit.​ly/​2q7MJZU

https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter05
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter05
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter05
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter05
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter05
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter05
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter05
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter05
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter05
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter05
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter05
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter05
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter05
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter05
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter05
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter05
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter05
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter05
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter05
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter05
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter05
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter05
http://bit.ly/2q7MJZU
http://bit.ly/2q7MJZU
http://bit.ly/2q7MJZU
http://bit.ly/2q7MJZU
http://bit.ly/2q7MJZU
http://bit.ly/2q7MJZU
http://bit.ly/2q7MJZU
http://bit.ly/2q7MJZU
http://bit.ly/2q7MJZU

Docker Compose Chapter 5

[135]

Introducing Docker Compose
In Chapter 1, Docker Overview, we discussed a few of the problems that Docker has been
designed to solve. We explained how it addresses challenges such as running two
applications side by side by isolating processes into a single container, meaning that you
can run two entirely different versions of the same software stack, say PHP 5.6 and PHP 7,
on the same host, as we did in Chapter 2, Building Container Images.

Towards the end of Chapter 4, Managing Containers, we launched an application that was
made up of multiple containers rather than running the required software stack in a single
container. The example application we started, Moby Counter, is written in Node.js and
uses Redis as a backend to store key values, which, in our case, were the location of the
Docker logos on screen.

This meant that we had to launch two containers, one for the application and one for
Redis. While it was quite simple to do this as the application itself was quite basic, there are
a number of disadvantages to manually launching single containers.

For example, if I wanted a colleague to deploy the same application, I would have to pass
them the following commands:

$ docker image pull redis:alpine
$ docker image pull russmckendrick/moby-counter
$ docker network create moby-counter
$ docker container run -d --name redis --network moby-counter redis:alpine
$ docker container run -d --name moby-counter --network moby-counter -p
8080:80 russmckendrick/moby-counter

Okay, I could get away with losing the first two commands as the image will be pulled
during the run if they haven't already pulled it, but as the application starts to get more
complex, I will have to start passing on an ever-growing set of commands and instructions.

I would also have to make it clear that they would have to take into account the order in
which the commands need to be executed. Furthermore, my notes would have to include
details of any potential issues to support them through any problems—which could mean
we find ourselves in a worked is DevOps problem now scenario, which we want to avoid at all
costs.

While Docker's responsibility should end at creating the images and launching containers
using these images, they saw this as a scenario that the technology is meant to stop us from
finding ourselves in. Thanks to Docker, people no longer have to worry about
inconsistencies in the environment they are launching their applications in as they can now
be shipped in images.

Docker Compose Chapter 5

[136]

For this reason, back in July 2014, Docker purchased a small British start-up who offered
two container-based products called Orchard Laboratories.

The first of the two products was a Docker-based hosting platform: think of it as a hybrid of
Docker Machine, which we will be looking at in a later chapter, and Docker itself. From a
single command, orchard, you could launch a host machine and then proxy your Docker
commands through to the newly launched host; for example, you would use the following
commands:

$ orchard hosts create
$ orchard docker run -p 6379:6379 -d orchardup/redis

These would have launched a Docker host on Orchard's platform and then a Redis
container.

The second product was an open source project called Fig. Fig lets you use a YAML file to
define how you would like your multi-container application to be structured. It would then
take the YAML file and automate the launch of the containers as defined. The advantage of
this was that because it was a YAML file, it was straightforward for developers to start
shipping fig.yml files alongside their Dockerfiles within their code bases.

Of these two products, Docker purchased Orchard Laboratories for Fig. After a short while,
the Orchard service was discontinued, and, in February 2015, Fig became Docker Compose.

As part of our installation of Docker for Mac, Docker for Windows, and Docker on Linux in
Chapter 1, Docker Overview, we installed Docker Compose, so rather than discussing what
it does any further, let's try and bring up the two-container application we launched
manually at the end of the last chapter using just Docker Compose.

Our first Docker Compose application
As already mentioned, Docker Compose uses a YAML file, typically named
dockercompose.yml, to define what your multi-container application should look like.
The Docker Compose representation of the two-container application we launched in
Chapter 4, Managing Containers, is as follows:

version: "3"

services:
 redis:
 image: redis:alpine
 volumes:
 - redis_data:/data

Docker Compose Chapter 5

[137]

 restart: always
 mobycounter:
 depends_on:
 - redis
 image: russmckendrick/moby-counter
 ports:
 - "8080:80"
 restart: always

volumes:
 redis_data:

Even without working through each of the lines in the file, it should be quite
straightforward to follow along with what is going on. To launch our application, we
simply change to the folder that contains your docker-compose.yml file and run the
following:

$ docker-compose up

As you can see from the following Terminal output, a lot happened when it launched:

Docker Compose Chapter 5

[138]

As you can see, from the first few lines, Docker Compose did the following:

It created a volume called mobycounter_redis_data, using the default driver
as we defined at the end of the docker-compose.yml file.
It created a network called mobycounter_default using the default network
driver – at no point did we ask Docker Compose to do this. More on this in a
minute.
It launched two containers, one called mobycounter_redis_1 , and the second
called mobycounter_mobycounter_1.

You may have also spotted the Docker Compose namespace in our multi-container
application has prefixed everything with mobycounter. It took this name from the folder
our Docker Compose file was being stored in.

Once launched, Docker Compose attached to mobycounter_redis_1 and
mobycounter_mobycounter_1 and streamed the output to our Terminal session. On the
Terminal screen, you can see both redis_1 and mobycounter_1 starting to interact with
each other.

When running Docker Compose using docker-compose up, it will run in the foreground.
Pressing Ctrl + C will stop the containers and return access to your Terminal session.

Docker Compose YAML file
Before we look at using Docker Compose more, we should have a deeper dive into
docker-compose.yml files as these are the heart of Docker Compose.

YAML is a recursive acronym that stands for YAML Ain't Markup
Language. It is used by a lot of different applications for both
configuration and also for defining data in a human-readable structured
data format. The indentation you see in the examples is very important as
it helps to define the structure of the data.

Docker Compose Chapter 5

[139]

Moby counter application
The docker-compose.yml file we used to launch our multi-container application is split
into three separate sections.

The first section simply specifies which version of the Docker Compose definition language
we are using; in our case, as we are running a recent version of Docker and Docker
Compose, we are using version 3:

version: "3"

The next section is where our containers are defined; this section is the services section. It
takes the following format:

services:
--> container name:
----> container options
--> container name:
----> container options

In our example, we defined two containers. I have separated them out to make it easy to
read:

services:
 redis:
 image: redis:alpine
 volumes:
 - redis_data:/data
 restart: always
 mobycounter:
 depends_on:
 - redis
 image: russmckendrick/moby-counter
 ports:
 - "8080:80"
 restart: always

The syntax for defining the service is close to how you would launch a container using the
docker container run command. I say close because although it makes perfect sense
when you read the definition, it is only on closer inspection that you realize there is actually
a lot of difference between the Docker Compose syntax and the docker container run
command.

Docker Compose Chapter 5

[140]

For example, there are no flags for the following when running the docker container
run command:

image: This tells Docker Compose which image to download and use. This does
not exist as an option when running docker container run on the command
line as you can only run a single container; as we have seen in previous chapters,
the image is always defined toward the end of the command without the need
for a flag being passed.
volume: This is the equivalent of the --volume flag, but it can accept multiple
volumes. It only uses the volumes that are declared in the Docker Compose
YAML file; more on that in a moment.
depends_on: This would never work as a docker container run invocation
because the command is only targeting a single container. When it comes to
Docker Compose, depends_on is used to help build some logic into the order
your containers are launched in. For example, only launch container B when
container A has successfully started.
ports: This is basically the --publish flag, which accepts a list of ports.

The only part of the command we used that has an equivalent flag when running docker
container run is this:

restart: This is the same as using the --restart flag and accepts the same
input.

The final section of our Docker Compose YAML file is where we declare our volumes:

volume:
 redis_data:

Example voting application
As mentioned already, the Docker Compose file for the Moby counter application is quite a
simple example. Let's take a look at a more complex Docker Compose file and see how we
can introduce building containers and multiple networks.

In the repository for this book, you will find a folder in the chapter05 directory called
example-voting-app. This is a fork of the voting application from the official Docker
sample repository.

Docker Compose Chapter 5

[141]

As you can see, if you were to open up the docker-compose.yml file, the application is
made up of five containers, two networks, and a single volume. Ignore the other files, for
now; we will look at some of these in future chapters. Let's walk through the docker-
compose.yml file as there is a lot going on:

version: "3"

services:

As you can see, it starts simply enough by defining the version and then it starts to list the
services. Our first container is called vote; it is a Python application that allows users to
submit their vote. As you can see from the following definition, rather than downloading
an image, we are actually building an image from scratch by using build instead of the
image command:

 vote:
 build: ./vote
 command: python app.py
 volumes:
 - ./vote:/app
 ports:
 - "5000:80"
 networks:
 - front-tier
 - back-tier

The build instruction here tells Docker Compose to build a container using the Dockerfile,
which can be found in the ./vote folder. The Dockerfile itself is quite straightforward for a
Python application.

Once the container launches, we are then mounting the ./vote folder from our host
machine into the container, which is achieved by passing the path of the folder we want to
mount and where within the container we would like it mounted.

We are telling the container to run the python app.py when it launches. We are mapping
port 5000 on our host machine to port 80 on the container, and finally, we are further
attaching two networks to the container, one called front-tier and the second called
back-tier.

The front-tier network will have the containers that have to have ports mapped to the
host machine; the back-tier network is reserved for containers that do not need their
ports to be exposed and acts as a private, isolated network.

Docker Compose Chapter 5

[142]

Next up, we have another container that is connected to the front-tier network. This
container displays the results of the vote. The result container contains a Node.js
application that connects to the PostgreSQL database, which we will get to in a moment,
and displays the results in real time as votes are cast in the vote container. Like the vote
container, the image is built locally using a Dockerfile that can be found in the ./result
folder:

 result:
 build: ./result
 command: nodemon server.js
 volumes:
 - ./result:/app
 ports:
 - "5001:80"
 - "5858:5858"
 networks:
 - front-tier
 - back-tier

We are exposing port 5001, which is where we can connect to see the results. The next, and
final, application container is called worker:

 worker:
 build:
 context: ./worker
 depends_on:
 - "redis"
 networks:
 - back-tier

The worker container runs a .NET application whose only job is to connect to Redis and
register each vote by transferring it into a PostgreSQL database running on a container
called db. The container is again built using a Dockerfile, but this time, rather than
passing the path to the folder where the Dockerfile and application are stored, we are
using context. This sets the working directory for the docker build and also allows you to
define additional options such as labels and changing the name of the Dockerfile.

As this container is doing nothing other than connecting to redis and the db container, it
does not need any ports exposed as it has nothing connecting directly to it; it also does not
need to communicate with either of the containers running on the front-tier network,
meaning we just have to add the back-tier network.

Docker Compose Chapter 5

[143]

So, we now have the vote application, which registers the votes from the end users and
sends them to the redis container, where the vote is then processed by the worker
container. The service definition for the redis container looks like the following:

 redis:
 image: redis:alpine
 container_name: redis
 ports: ["6379"]
 networks:
 - back-tier

This container uses the official Redis image and is not built from a Dockerfile; we are
making sure that port 6379 is available, but only on the back-tier network. We are also
specifying the name of the container, setting it to redis by using container_name. This is
to avoid us having to make any considerations on the default names generated by Docker
Compose within our code since, if you remember, Docker Compose uses the folder name to
launch the containers in their own application namespace.

The next and final container is the PostgreSQL one which we have already
mentioned called db:

 db:
 image: postgres:9.4
 container_name: db
 volumes:
 - "db-data:/var/lib/postgresql/data"
 networks:
 - back-tier

As you can see, it looks quite similar to the redis container in that we are using the official
image; however, you may notice that we are not exposing a port as this is a default option
in the official image. We are also specifying the name of the container.

As this is where our votes will be stored, we are creating and mounting a volume to act as
persistent storage for our PostgreSQL database:

volumes:
 db-data:

Then, finally, here are the two networks we have been speaking about:

networks:
 front-tier:
 back-tier:

Docker Compose Chapter 5

[144]

Running docker-compose up gives a lot of feedback on what is happening during the
launch; it takes about 5 minutes to launch the application for the first time. If you are not
following along and launching the application yourself, what follows is an abridged
version of the launch.

You may get an error that states npm ERR! request to
https://registry.npmjs.org/nodemon failed, reason:

Hostname/IP doesn't match certificate's altnames. If you do,
then run the following command echo "104.16.16.35
registry.npmjs.org" >> /etc/hosts as a user with privileges to
write to /etc/hosts.

We start by creating the networks and getting the volume ready for our containers to use:

Creating network "example-voting-app_front-tier" with the default driver
Creating network "example-voting-app_back-tier" with the default driver
Creating volume "example-voting-app_db-data" with default driver

We then build the vote container image:

Building vote
Step 1/7 : FROM python:2.7-alpine
2.7-alpine: Pulling from library/python
8e3ba11ec2a2: Pull complete
ea489525e565: Pull complete
f0d8a8560df7: Pull complete
8971431029b9: Pull complete
Digest:
sha256:c9f17d63ea49a186d899cb9856a5cc1c601783f2c9fa9b776b4582a49ceac548
Status: Downloaded newer image for python:2.7-alpine
 ---> 5082b69714da
Step 2/7 : WORKDIR /app
 ---> Running in 663db929990a
Removing intermediate container 663db929990a
 ---> 45fe48ea8e4c
Step 3/7 : ADD requirements.txt /app/requirements.txt
 ---> 2df3b3211688
Step 4/7 : RUN pip install -r requirements.txt
 ---> Running in 23ad90b81e6b
[lots of python build output here]
Step 5/7 : ADD . /app
 ---> cebab4f80850
Step 6/7 : EXPOSE 80
 ---> Running in b28d426e3516
Removing intermediate container b28d426e3516
 ---> bb951ea7dffc

Docker Compose Chapter 5

[145]

Step 7/7 : CMD ["gunicorn", "app:app", "-b", "0.0.0.0:80", "--log-file", "-
", "--access-logfile", "-", "--workers", "4", "--keep-alive", "0"]
 ---> Running in 2e97ca847f8a
Removing intermediate container 2e97ca847f8a
 ---> 638c74fab05e
Successfully built 638c74fab05e
Successfully tagged example-voting-app_vote:latest
WARNING: Image for service vote was built because it did not already exist.
To rebuild this image you must use `docker-compose build` or `docker-
compose up --build`.

Once this vote image has been built, the worker image is constructed:

Building worker
Step 1/5 : FROM microsoft/dotnet:2.0.0-sdk
2.0.0-sdk: Pulling from microsoft/dotnet
3e17c6eae66c: Pull complete
74d44b20f851: Pull complete
a156217f3fa4: Pull complete
4a1ed13b6faa: Pull complete
18842ff6b0bf: Pull complete
e857bd06f538: Pull complete
b800e4c6f9e9: Pull complete
Digest:
sha256:f4ea9cdf980bb9512523a3fb88e30f2b83cce4b0cddd2972bc36685461081e2f
Status: Downloaded newer image for microsoft/dotnet:2.0.0-sdk
 ---> fde8197d13f4
Step 2/5 : WORKDIR /code
 ---> Running in 1ca2374cff99
Removing intermediate container 1ca2374cff99
 ---> 37f9b05325f9
Step 3/5 : ADD src/Worker /code/src/Worker
 ---> 9d393c6bd48c
Step 4/5 : RUN dotnet restore -v minimal src/Worker && dotnet publish -c
Release -o "./" "src/Worker/"
 ---> Running in ab9fe7820062
 Restoring packages for /code/src/Worker/Worker.csproj...
 [lots of .net build output here]
 Restore completed in 8.86 sec for /code/src/Worker/Worker.csproj.
Microsoft (R) Build Engine version 15.3.409.57025 for .NET Core
Copyright (C) Microsoft Corporation. All rights reserved.
 Worker -> /code/src/Worker/bin/Release/netcoreapp2.0/Worker.dll
 Worker -> /code/src/Worker/
Removing intermediate container ab9fe7820062
 ---> cf369fbb11dd
Step 5/5 : CMD dotnet src/Worker/Worker.dll
 ---> Running in 232416405e3a
Removing intermediate container 232416405e3a

Docker Compose Chapter 5

[146]

 ---> d355a73a45c9
Successfully built d355a73a45c9
Successfully tagged example-voting-app_worker:latest
WARNING: Image for service worker was built because it did not already
exist. To rebuild this image you must use `docker-compose build` or
`docker-compose up --build`.

Then the redis image is pulled:

Pulling redis (redis:alpine)...
alpine: Pulling from library/redis
8e3ba11ec2a2: Already exists
1f20bd2a5c23: Pull complete
782ff7702b5c: Pull complete
82d1d664c6a7: Pull complete
69f8979cc310: Pull complete
3ff30b3bc148: Pull complete
Digest:
sha256:43e4d14fcffa05a5967c353dd7061564f130d6021725dd219f0c6fcbcc6b5076
Status: Downloaded newer image for redis:alpine

This is followed by the PostgreSQL image for the db container:

Pulling db (postgres:9.4)...
9.4: Pulling from library/postgres
be8881be8156: Pull complete
01d7a10e8228: Pull complete
f8968e0fd5ca: Pull complete
69add08e7e51: Pull complete
954fe1f9e4e8: Pull complete
9ace39987bb3: Pull complete
9020931bcc5d: Pull complete
71f421dd7dcd: Pull complete
a909f41228ab: Pull complete
cb62befcd007: Pull complete
4fea257fde1a: Pull complete
f00651fb0fbf: Pull complete
0ace3ceac779: Pull complete
b64ee32577de: Pull complete
Digest:
sha256:7430585790921d82a56c4cbe62fdf50f03e00b89d39cbf881afa1ef82eefd61c
Status: Downloaded newer image for postgres:9.4

Docker Compose Chapter 5

[147]

Now it is time for the big one; the building of the result image. Node.js is quite verbose,
so you will get quite a bit of output being printed to the screen as the npm sections of the
Dockerfile are executed; in fact, there are over 250 lines of output:

Building result
Step 1/11 : FROM node:8.9-alpine
8.9-alpine: Pulling from library/node
605ce1bd3f31: Pull complete
79b85b1676b5: Pull complete
20865485d0c2: Pull complete
Digest:
sha256:6bb963d58da845cf66a22bc5a48bb8c686f91d30240f0798feb0d61a2832fc46
Status: Downloaded newer image for node:8.9-alpine
 ---> 406f227b21f5
Step 2/11 : RUN mkdir -p /app
 ---> Running in 4af9c85c67ee
Removing intermediate container 4af9c85c67ee
 ---> f722dde47fcf
Step 3/11 : WORKDIR /app
 ---> Running in 8ad29a42f32f
Removing intermediate container 8ad29a42f32f
 ---> 32a05580f2ec
Step 4/11 : RUN npm install -g nodemon
[lots and lots of nodejs output]
Step 8/11 : COPY . /app
 ---> 725966c2314f
Step 9/11 : ENV PORT 80
 ---> Running in 6f402a073bf4
Removing intermediate container 6f402a073bf4
 ---> e3c426b5a6c8
Step 10/11 : EXPOSE 80
 ---> Running in 13db57b3c5ca
Removing intermediate container 13db57b3c5ca
 ---> 1305ea7102cf
Step 11/11 : CMD ["node", "server.js"]
 ---> Running in a27700087403
Removing intermediate container a27700087403
 ---> 679c16721a7f
Successfully built 679c16721a7f
Successfully tagged example-voting-app_result:latest
WARNING: Image for service result was built because it did not already
exist. To rebuild this image you must use `docker-compose build` or
`docker-compose up --build`.

Docker Compose Chapter 5

[148]

The result part of the application can be accessed at http://localhost:5001. By
default, there are no votes and it is split 50/50:

The vote part of the application can be found at http://localhost:5000:

Docker Compose Chapter 5

[149]

Clicking on either CATS or DOGS will register a vote; you should be able to see this
logged in the Docker Compose output in your Terminal:

There are a few errors, as the Redis table structure is only created when the vote application
registers the first vote; once a vote has been cast, the Redis table structure will be created
and the worker container will take that vote and process it by writing to the db container.
Once the vote has been cast, the result container will update in real time:

Docker Compose Chapter 5

[150]

We will be looking at the Docker Compose YAML files again in the upcoming chapters
when we look at launching both Docker Swarm stacks and Kubenetes clusters. For now,
let's get back to Docker Compose and look at some of the commands we can run.

Docker Compose commands
We are over halfway through the chapter and the only Docker Compose command we have
run is docker-compose up. If you have been following along and you run docker
container ls -a, you will see something similar to the following Terminal screen:

As you can see, we have a lot of containers with the status of EXITED. This is because when
we used Ctrl + C to return to our Terminal, the Docker Compose containers were stopped.

Choose one of the Docker Compose applications and change to the folder that contains the
docker-compose.yml file, and we will work through some more Docker Compose
commands. I will be using the Example Vote application.

Up and PS
The first one is docker-compose up, but this time, we will be adding a flag. In your
chosen application folder, run the following:

$ docker-compose up -d

Docker Compose Chapter 5

[151]

This will start your application back up, this time in detached mode:

Once control of your Terminal is returned, you should be able to check that the containers
are running using the following command:

$ docker-compose ps

As you can see from the following Terminal output, all of the containers have the state of
Up:

When running these commands, Docker Compose will only be aware of the containers
defined in the service section of your docker-compose.yml file; all other containers will
be ignored as they don't belong to our service stack.

Config
Running the following command will validate our docker-compose.yml file:

$ docker-compose config

Docker Compose Chapter 5

[152]

If there are no issues, it will print a rendered copy of your Docker Compose YAML file to
screen; this is how Docker Compose will interpret your file. If you don't want to see this
output and just want to check for errors, then you can run the following command:

$ docker-compose config -q

This is shorthand for --quiet. If there are any errors, which the examples we have worked
through so far shouldn't have, they will be displayed as follows:

ERROR: yaml.parser.ParserError: while parsing a block mapping in "./docker-
compose.yml", line 1, column 1 expected <block end>, but found '<block
mapping start>' in "./docker-compose.yml", line 27, column 3

Pull, build, and create
The next two commands will help you prepare to launch your Docker Compose
application. The following command will read your Docker Compose YAML file and pull
any of the images it finds:

$ docker-compose pull

The following command will execute any build instructions it finds in your file:

$ docker-compose build

These commands are useful when you are first defining your Docker Compose-powered
application and want to test without launching your application. The docker-compose
build command can also be used to trigger a build if there are updates to any of the
Dockerfiles used to originally build your images.

The pull and build command only generate/pull the images needed for our application;
they do not configure the containers themselves. For this, we need to use the following
command:

$ docker-compose create

Docker Compose Chapter 5

[153]

This will create but not launch the containers. In the same way that the docker container
create command does, they will have an exited state until you start them. The create
command has a few useful flags you can pass:

--force-recreate: This recreates the container even if there is no need to as
nothing within the configuration has changed
--no-recreate: This doesn't recreate a container if it already exists; this flag
cannot be used with the preceding flag
--no-build: This doesn't build the images, even if an image that needs to be
built is missing
--build: This builds the images before creating the containers

Start, stop, restart, pause, and unpause
The following commands work exactly in the same way as their docker container
counterparts, the only difference being that they effect change on all of the containers:

$ docker-compose start
$ docker-compose stop
$ docker-compose restart
$ docker-compose pause
$ docker-compose unpause

It is possible to target a single service by passing its name; for example, to pause and
unpause the db service, we would run the following:

$ docker-compose pause db
$ docker-compose unpause db

Top, logs, and events
The next three commands all give us feedback on what is happening within our running
containers and Docker Compose.

The following command, like its docker container counterpart, displays information on the
processes running within each of our Docker Compose-launched containers:

$ docker-compose top

Docker Compose Chapter 5

[154]

As you can see from the following Terminal output, each container is split into its own
section:

If you would like to see just one of the services, you simply have to pass its name when
running the command:

$ docker-compose top db

The next command streams the logs from each of the running containers to screen:

$ docker-compose logs

Docker Compose Chapter 5

[155]

Like the docker container command, you can pass flags such as -f or --follow to keep
the stream flowing until you press Ctrl + C. Also, you can stream the logs for a single
service by appending its name to the end of your command:

The events command again works like the docker container version; it streams events,
such as the ones triggered by the other commands we have been discussing, in real time.
For example, run this command:

$ docker-compose events

Running docker-compose pause in a second terminal window gives the following
output:

These two commands run similar to their docker container equivalents. Run the following:

$ docker-compose exec worker ping -c 3 db

Docker Compose Chapter 5

[156]

This will launch a new process in the already running worker container and ping the db
container three times, as seen here:

The run command is useful if you need to run a containerized command as a one-off
within your application. For example, if you use a package manager such as composer to
update the dependencies of your project that is stored on a volume, you could run
something like this:

$ docker-compose run --volume data_volume:/app composer install

This would run the composer container with the install command and mount the
data_volume to /app within the container.

Scale
The scale command will take the service you pass to the command and scale it to the
number you define; for example, to add more worker containers, I just need to run the
following:

$ docker-compose scale worker=3

However, this actually gives the following warning:

WARNING: The scale command is deprecated. Use the up command with the -
scale flag instead.

What we should now be using is the following command:

$ docker-compose up -d --scale worker=3

While the scale command is in the current version of Docker Compose, it will be removed
from future versions of the software.

Docker Compose Chapter 5

[157]

You will notice that I chose to scale the number of worker containers. There is a good
reason for this as you will see for yourself if you try running the following command:

$ docker-compose up -d --scale vote=3

You will notice that while Docker Compose creates the additional two containers, they fail
to start with the following error:

That is because we cannot have three individual containers all trying to map to the same
port. There is a workaround for this and we will look at that in more detail in a later
chapter.

Kill, rm, and down
The three Docker Compose commands we are finally going to look at are the ones that
remove/terminate our Docker Compose application. The first command stops our running
containers by immediately stopping running container processes. This is the kill
command:

$ docker-compose kill

Be careful when running this as it does not wait for containers to gracefully stop, such as
when running docker-compose stop, meaning that using the docker-compose kill
command may result in data loss.

Docker Compose Chapter 5

[158]

Next up is the rm command; this removes any containers with the state of exited:

$ docker-compose rm

Finally, we have the down command. This, as you might have already guessed, has the
opposite effect of running docker-compose up:

$ docker-compose down

That will remove the containers and the networks created when running docker-compose
up. If you want to remove everything, you can do so by running the following:

$ docker-compose down --rmi all --volumes

This will remove all of the containers, networks, volumes, and images (both pulled and
built) when you ran the docker-compose up command; this includes images that may be
in use outside of your Docker Compose application. There will, however, be an error if the
images are in use, and they will not be removed:

As you can see from the preceding output, there is a container using the redis image, the
Moby counter application, so it was not removed. However, all other images used by the
Example Vote application are removed, both the ones built as part of the initial docker-
compose up , and the ones downloaded from Docker Hub.

Docker Compose Chapter 5

[159]

Docker App
Before we start this section, I should issue the following warning:

The feature we are going to discuss is very much an experimental one. It is in its very early stages of
development and should not be considered any more than a preview of an upcoming feature.

Because of this, I am only going to cover the installation of the macOS version. However,
before we install it, lets discuss what exactly is meant by a Docker App.

While Docker Compose files are really useful when it comes to sharing your environment
with others, you may have noticed that there is one quite crucial element we have been
missing so far in this chapter, and that is the ability to actually distribute your Docker
Compose files in a similar way to how you can distribute your Docker images.

Docker has acknowledged this and is currently working on a new feature called Docker
App, which it hopes will fill this gap.

Docker App is a self-contained binary that helps you to create an application bundle that
can be shared via Docker Hub or a Docker Enterprise Registry.

I would recommend checking the GitHub projects Releases page (you can
find the link in the Further reading section) to make sure you are a using
the latest version. If the version is later than 0.4.1, you will need to replace
the version number in the following command.

To install Docker App on macOS, you can run the following commands, starting with
setting the version to download:

$ VERSION=v0.4.1

Now that you have the correct version, you can download it and put it in place using the
following:

$ curl -SL
https://github.com/docker/app/releases/download/$VERSION/docker-app-darwin.
tar.gz | tar xJ -C /usr/local/bin/
$ mv /usr/local/bin/docker-app-darwin /usr/local/bin/docker-app
$ chmod +x /usr/local/bin/docker-app

Once in place, you should be able to run the following command that will print some basic
information about binary on screen:

$ docker-app version

Docker Compose Chapter 5

[160]

The full output of the preceding commands can be seen here for those not following along:

There is a slight change to the docker-compose.yml file we will be using. The version
needs to be updated to 3.6 rather than just 3. Not doing this will result in the following
error:

Error: unsupported Compose file version: 3

The command we need to run, and which also generates the preceding error, is as follows:

$ docker-app init --single-file mobycounter

This command takes our docker-compose.yml file and embeds it in a .dockerapp file.
Initially, there will be quite a few comments in the file that detail what changes you need to
make before moving on to the next steps. I have left an unaltered version of the file in the
repository, in the chapter5/mobycounter-app folder
called mobycounter.dockerapp.original.

An edited version of the mobycounter.dockerapp file can be found here:

version: latest
name: mobycounter
description: An example Docker App file which packages up the Moby Counter
application
namespace: masteringdockerthirdedition
maintainers:
 - name: Russ McKendrick
 email: russ@mckendrick.io

Docker Compose Chapter 5

[161]

version: "3.6"

services:
 redis:
 image: redis:alpine
 volumes:
 - redis_data:/data
 restart: always
 mobycounter:
 depends_on:
 - redis
 image: russmckendrick/moby-counter
 ports:
 - "${port}:80"
 restart: always

volumes:
 redis_data:

{ "port":"8080" }

As you can see, it split into three sections; the first contains metadata about the application,
as follows:

Version: This the version of the app that will be published on Docker Hub
Name: The name of the application as it will appear on Docker Hub
Description: A short description of the application
Namespace: This is typically your Docker Hub username or an organisation you
have access to
Maintainers: A list of maintainers for the application

The second section contains our Docker Compose file. You may notice that a few of the
options have been replaced with variables. In our example, I have replaced port 8080
with ${port} . The default value for the port variable is defined in the final section.

Once the .dockerapp file is complete, you can run the following command to save the
Docker App as an image:

$ docker-app save

Docker Compose Chapter 5

[162]

You can view just the Docker Apps you have active on your host by running this:

$ docker-app ls

As the Docker App is mostly just a bunch of metadata wrapped in a standard Docker
image, you can also see it by running the following:

$ docker image ls

If you are not following along with this part, you can see the results in the terminal output
here:

Running the following command gives an overview of the Docker App, in much the same
way you can use docker image inspect to find out details on how the image was built:

$ docker-app inspect
masteringdockerthirdedition/mobycounter.dockerapp:latest

As you can see from the following terminal output, running the command using docker-
app inspect rather than docker image inspect gives a much more friendly output:

Docker Compose Chapter 5

[163]

Now that we have our finished application, we need to push it to Docker Hub. To do this,
simply run the following command:

$ docker-app push

This means that our application is now published on Docker Hub:

So how do you get the Docker App? First of all, we need to remove the local image. To do
this, run the following command:

$ docker image rm masteringdockerthirdedition/mobycounter.dockerapp:latest

Once gone, move to a different directory:

$ cd ~/

Docker Compose Chapter 5

[164]

Now, let's download the Docker App, make a change to the port, and start it up:

$ docker-app render masteringdockerthirdedition/mobycounter:latest --set
port="9090" | docker-compose -f - up

Again, for those not following along, the terminal output of the preceding command can be
found here:

Docker Compose Chapter 5

[165]

As you can see, without having to even manually download the Docker App image, we
have our application up and running. Going to http://localhost:9090/ should present
you with the screen that invites you to click to add logos.

As per a normal foregrounded Docker Compose app, press Ctrl + C to return to your
terminal.

You can run the following commands to interact and terminate your app:

$ docker-app render masteringdockerthirdedition/mobycounter:latest --set
port="9090" | docker-compose -f - ps
$ docker-app render masteringdockerthirdedition/mobycounter:latest --set
port="9090" | docker-compose -f - down --rmi all --volumes

There is more functionality within Docker App. However, we are not quite ready to go into
further details. We will return to Docker App in Chapter 8, Docker Swarm, and Chapter 9,
Docker and Kubernetes.

As mentioned at the top of this section, this feature is in its early stages of development and
it is possible that the commands and functionality we have discussed so far may change in
the future. But, even at this early stage, I hope you can see the advantages of Docker App
and how it is building on the solid foundations laid by Docker Compose.

Summary
I hope you have enjoyed this chapter on Docker Compose, and I hope that like I did, you
can see that it has evolved from being an incredibly useful third-party tool to an extremely
important part of the core Docker experience.

Docker Compose introduces some key concepts in how you should approach running and
managing your containers. We will be taking these concepts one step further in Chapter 8,
Docker Swarm, and Chapter 9, Docker and Kubernetes.

In the next chapter, we are going to move away from Linux-based containers and take a
whistle-stop tour of Windows containers.

https://cdp.packtpub.com/mastering_docker___thirdedition/wp-admin/post.php?post=28&action=edit#post_31
https://cdp.packtpub.com/mastering_docker___thirdedition/wp-admin/post.php?post=28&action=edit#post_32

Docker Compose Chapter 5

[166]

Questions
Docker Compose files use which open source format? 1.
In our initial Moby counter Docker Compose file, which was the only flag that2.
works exactly the same as its Docker CLI counterpart?
True or false: You can only use images from the Docker Hub with your Docker3.
Compose files?
By default, how does Docker Compose decide on the namespace to use?4.
Which flag do you add to docker-compose up to start the containers in the5.
background?
What is the best way to run a syntax check on your Docker Compose files?6.
Explain the basic principle about how Docker App works. 7.

Further reading
For details on Orchard Laboratories, see the following:

Orchard Laboratories website: https:/ ​/​www. ​orchardup. ​com/ ​

Orchard Laboratories joins Docker: https:/ ​/​blog. ​docker. ​com/ ​2014/ ​07/
welcoming- ​the- ​orchard- ​and- ​fig-​team

For more information on the Docker App project, see the following:

GitHub Repository: http:/ ​/ ​github. ​com/ ​docker/ ​app/ ​

Releases page – https:/ ​/​github. ​com/​docker/ ​app/ ​releases

Finally, here are some further links to a number of other topics that we have covered:

YAML Project home page: http:/ ​/ ​www.​yaml. ​org/ ​

Docker Sample Repository: https:/ ​/​github. ​com/ ​dockersamples/ ​

https://www.orchardup.com/
https://www.orchardup.com/
https://www.orchardup.com/
https://www.orchardup.com/
https://www.orchardup.com/
https://www.orchardup.com/
https://www.orchardup.com/
https://www.orchardup.com/
https://www.orchardup.com/
https://www.orchardup.com/
https://blog.docker.com/2014/07/welcoming-the-orchard-and-fig-team
https://blog.docker.com/2014/07/welcoming-the-orchard-and-fig-team
https://blog.docker.com/2014/07/welcoming-the-orchard-and-fig-team
https://blog.docker.com/2014/07/welcoming-the-orchard-and-fig-team
https://blog.docker.com/2014/07/welcoming-the-orchard-and-fig-team
https://blog.docker.com/2014/07/welcoming-the-orchard-and-fig-team
https://blog.docker.com/2014/07/welcoming-the-orchard-and-fig-team
https://blog.docker.com/2014/07/welcoming-the-orchard-and-fig-team
https://blog.docker.com/2014/07/welcoming-the-orchard-and-fig-team
https://blog.docker.com/2014/07/welcoming-the-orchard-and-fig-team
https://blog.docker.com/2014/07/welcoming-the-orchard-and-fig-team
https://blog.docker.com/2014/07/welcoming-the-orchard-and-fig-team
https://blog.docker.com/2014/07/welcoming-the-orchard-and-fig-team
https://blog.docker.com/2014/07/welcoming-the-orchard-and-fig-team
https://blog.docker.com/2014/07/welcoming-the-orchard-and-fig-team
https://blog.docker.com/2014/07/welcoming-the-orchard-and-fig-team
https://blog.docker.com/2014/07/welcoming-the-orchard-and-fig-team
https://blog.docker.com/2014/07/welcoming-the-orchard-and-fig-team
https://blog.docker.com/2014/07/welcoming-the-orchard-and-fig-team
https://blog.docker.com/2014/07/welcoming-the-orchard-and-fig-team
https://blog.docker.com/2014/07/welcoming-the-orchard-and-fig-team
https://blog.docker.com/2014/07/welcoming-the-orchard-and-fig-team
https://blog.docker.com/2014/07/welcoming-the-orchard-and-fig-team
https://blog.docker.com/2014/07/welcoming-the-orchard-and-fig-team
http://github.com/docker/app/
http://github.com/docker/app/
http://github.com/docker/app/
http://github.com/docker/app/
http://github.com/docker/app/
http://github.com/docker/app/
http://github.com/docker/app/
http://github.com/docker/app/
http://github.com/docker/app/
http://github.com/docker/app/
http://github.com/docker/app/
http://github.com/docker/app/
https://github.com/docker/app/releases
https://github.com/docker/app/releases
https://github.com/docker/app/releases
https://github.com/docker/app/releases
https://github.com/docker/app/releases
https://github.com/docker/app/releases
https://github.com/docker/app/releases
https://github.com/docker/app/releases
https://github.com/docker/app/releases
https://github.com/docker/app/releases
https://github.com/docker/app/releases
https://github.com/docker/app/releases
https://github.com/docker/app/releases
http://www.yaml.org/
http://www.yaml.org/
http://www.yaml.org/
http://www.yaml.org/
http://www.yaml.org/
http://www.yaml.org/
http://www.yaml.org/
http://www.yaml.org/
http://www.yaml.org/
http://www.yaml.org/
https://github.com/dockersamples/
https://github.com/dockersamples/
https://github.com/dockersamples/
https://github.com/dockersamples/
https://github.com/dockersamples/
https://github.com/dockersamples/
https://github.com/dockersamples/
https://github.com/dockersamples/
https://github.com/dockersamples/
https://github.com/dockersamples/

6
Windows Containers

In this chapter, we will discuss and take a look at Windows containers. Microsoft has
embraced containers as a way of deploying older applications on new hardware. Unlike
Linux containers, Windows containers are only available on Windows-based Docker hosts.

In this chapter, we will cover the following topics:

An introduction to Windows containers
Setting up your Docker host for Windows containers
Running Windows containers
A Windows container Dockerfile
Windows containers and Docker Compose

Technical requirements
As per previous chapters, we will continue to use our local Docker installations. Again, the
screenshots in this chapter will be from my preferred operating system, macOS—yes, even
though we are going to be running Windows containers, you can still use your macOS
client. More on that later.

The Docker commands we will be running will work on all three of the operating systems
on which we have installed Docker so far. However, in this chapter, the containers we will
be launching will only work on a Windows Docker host. We will be using VirtualBox and
Vagrant on macOS and Linux-based machines to assist in getting a Windows Docker host
up and running.

A full copy of the code used in this chapter can be found at https:/ ​/​github. ​com/
PacktPublishing/​Mastering- ​Docker- ​Third- ​Edition/ ​tree/ ​master/ ​chapter06/ ​.

https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter06/
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter06/
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter06/
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter06/
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter06/
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter06/
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter06/
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter06/
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter06/
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter06/
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter06/
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter06/
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter06/
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter06/
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter06/
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter06/
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter06/
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter06/
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter06/
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter06/
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter06/
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter06/
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter06/

Windows Containers Chapter 6

[168]

Check out the following video to see the Code in Action:

http:/​/​bit.​ly/​2PfjuSR

An introduction to Windows containers
As someone who has been using mostly macOS and Linux computers and laptops
alongside Linux servers pretty much daily for the past 20 years, coupled with the fact that
my only experience of running Microsoft Windows was the Windows XP and Windows 10
gaming PCs I have had, along with the odd Windows server I was unable to avoid at
work, the advent of Windows Containers was an interesting development.

Now, I would never have classed myself as a Linux/UNIX fanboy. However, Microsoft's
actions over the last few years have surprised even me. Back in 2014, at one of its Azure
events, Microsoft declared that "Microsoft Linux", and it hasn't looked back since:

Linux is a first-class citizen in Microsoft Azure
.NET Core is cross-platform, meaning that you can run your .NET applications
on Linux and Windows
SQL Server is now available on Linux
You can run Linux shells, such as Ubuntu, on Windows 10 Professional machines
PowerShell has been ported to Linux
It has developed cross-platform tools, such as Visual Studio Code, and open
sourced them
It is acquiring GitHub for $7.5 billion!!

It is clear that the Microsoft of old, where former CEO Steve Ballmer famously roasted both
the open source and Linux communities by calling them something that would not be
appropriate to repeat here, has gone.

Hence, the announcement, which was made in October 2014 months after Microsoft
publicly declared its love of Linux, that Docker and Microsoft were forming a partnership
to drive the adoption of containers on Windows-based operating systems such as Windows
10 Professional and Windows Server 2016 came as no surprise to anyone.

http://bit.ly/2PfjuSR
http://bit.ly/2PfjuSR
http://bit.ly/2PfjuSR
http://bit.ly/2PfjuSR
http://bit.ly/2PfjuSR
http://bit.ly/2PfjuSR
http://bit.ly/2PfjuSR
http://bit.ly/2PfjuSR
http://bit.ly/2PfjuSR

Windows Containers Chapter 6

[169]

So what are Windows containers?

Well, on the face of it, they are no different to Linux containers. The work by Microsoft on
the Windows kernel has introduced the same process isolation as found on Linux. Also, like
Linux containers, this isolation extends to a sandboxed filesystem and even a Windows
registry.

As each container is effectively a fresh Windows Core or Windows Nano, which, in turn,
are cut down Windows server images (think Alpine Linux but for Windows), installation
administrators can run multiple Dockerized applications on the same host without having
to worry about any custom registry changes or requirements clashing and causing
problems.

Couple this with the same ease of use supplied by the Docker command-line client and
administrators have a way to migrate their legacy applications to more modern hardware
and also host operating systems without the worries and overhead of having to manage
multiple virtual machines running older unsupported versions of Windows.

There is also another layer of isolation provided by Windows Containers. Hyper-V isolation
runs the container processes within a minimal hypervisor when the container is started.
This further isolates the container processes from the host machine. However, there is a cost
of a small amount of additional resources needed for each container running with Hyper-V
isolation, while these containers will also have an increased start time as the hypervisor
needs to be launched before the container can be started.

While Hyper-V isolation does use Microsoft's hypervisor, which can be found in both
Windows server and desktop editions as well as the Xbox One system software, you can't
manage Hyper-V isolated containers using the standard Hyper-V management tools. You
have to use Docker.

After all the work and effort Microsoft had to put into enabling containers in the Windows
kernel, why did they choose Docker over just creating their management tool?

Docker had already established itself as the go-to tool for managing containers with a set of
proven APIs and a large community. Also, it was open source, which meant that Microsoft
could not only adapt it for use on Windows, but also contribute to its development.

Windows Containers Chapter 6

[170]

The following diagram gives an overview of how Docker on Windows works:

Notice that I said Docker on Windows, not Docker for Windows; they are very different
products. Docker on Windows is the native version of the Docker Engine and client that
interacts with the Windows kernel to provide Windows containers. Docker for Windows is
a native as possible experience for developers to run both Linux and Windows containers
on their desktops.

Windows Containers Chapter 6

[171]

Setting up your Docker host for Windows
containers
As you may have guessed, you are going to need access to a Windows host running
Docker. Don't worry too much if you are not running a Windows 10 Professional
machine—there are ways in which you can achieve this on macOS and Linux. Before we
talk about those, let's look at how you can run Windows containers on Windows 10
Professional with your Docker for Windows installation.

Windows 10 Professional
Windows 10 Professional supports Windows containers out of the box. By default,
however, it is configured to run Linux containers. To switch from running Linux containers
to Windows containers, right-click on the Docker icon in your system tray and select
Switch to Windows containers ... from the menu:

Windows Containers Chapter 6

[172]

This will bring up the following prompt:

Hit the Switch button and, after a few seconds, you will now be managing Windows
containers. You can see this by opening up a prompt and running the following command:

$ docker version

This can be seen from the following output:

Windows Containers Chapter 6

[173]

The Docker Engine has an OS/Arch of windows/amd64, rather than the linux/amd64 we
have been used to seeing up until now. So that covers Windows 10 Professional. But what
about people like me who prefer macOS and Linux?

macOS and Linux
To get access to Windows containers on macOS and Linux machines, we will be using the
excellent resources put together by Stefan Scherer. In the chapter06 folder of the
repository that accompanies this book, there is a forked version of Stefan's Windows
–docker-machine repo , which contains all of the files you need to get up and running
with Windows containers on macOS.

Before we start, you will need the following tools – Vagrant by Hashicorp, and Virtualbox
by Oracle. You can download these from:

https:/​/ ​www. ​vagrantup. ​com/ ​downloads. ​html

https:/​/ ​www. ​virtualbox. ​org/ ​wiki/ ​Downloads

Once downloaded and installed, open a Terminal, go to the chapter06/docker-machine
repository folder, and run the following command:

$ vagrant up --provider virtualbox 2016-box

This will download a VirtualBox Windows Server 2016 core eval image that contains
everything needed to get you up and running with Windows containers. The download is
just over 10 GB, so please make sure that you have the bandwidth and disk space needed to
run the image.

Vagrant will launch the image, configure Docker on the VM, and copy the certificate files
needed for your local Docker client to interact with the host to your machine. To switch
over to using the newly launched Docker Windows host, just run the following command:

$ eval $(docker-machine env 2016-box)

We will be going into more detail on Docker Machine in the next chapter. However, what
the preceding command has done is reconfigure your local Docker client to speak to the
Docker Windows host. You can see this by running the following command:

$ docker version

https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads

Windows Containers Chapter 6

[174]

If you are not following along you can see the expected output below:

As you can see, we are now connected to a Docker Engine running on windows/amd64. To
switch back, you can either restart your terminal session or run the following command:

$ eval $(docker-machine env -unset)

Once you are finished with the Docker Windows host, you can run the following command
to stop it:

$ vagrant halt

Alternatively, to remove it altogether, run the following command:

$ vagrant destroy

The preceding commands must be run from within the chapter06/docker-
machine repository folder.

Running Windows containers
As already hinted at by the first part of this chapter, launching and interacting with
Windows containers using the Docker command-line client is no different to what we have
been running so far. Let's test this by running the hello-world container:

$ docker container run hello-world

Windows Containers Chapter 6

[175]

Just as before, this will download the hello-world container and return a message:

The only difference on this occasion is that rather than the Linux image, Docker pulled the
windows-amd64 version of the image that is based on the nanoserver-sac2016 image.

Now, let's look at running a container in the foreground, this time running PowerShell:

$ docker container run -it microsoft/windowsservercore powershell

Once your shell is active, running the following command will give you the computer
name, which is the container ID:

$ Get-CimInstance -ClassName Win32_Desktop -ComputerName .

Windows Containers Chapter 6

[176]

You can see the full output of the commands above in the terminal output below:

Once you have exited PowerShell by running exit, you can see the container ID by
running the following command:

$ docker container ls -a

You can see the expected output in the screen below:

Now, let's take a look at building an image that does something.

Windows Containers Chapter 6

[177]

A Windows container Dockerfile
Windows container images use the same format Dockerfile commands as Linux containers.
The following Dockerfile will download, install, and enable the IIS web server on the
container:

escape=`
FROM microsoft/nanoserver:sac2016

RUN powershell -NoProfile -Command `
 New-Item -Type Directory C:\install; `
 Invoke-WebRequest
https://az880830.vo.msecnd.net/nanoserver-ga-2016/Microsoft-NanoServer-IIS-
Package_base_10-0-14393-0.cab -OutFile C:\install\Microsoft-NanoServer-IIS-
Package_base_10-0-14393-0.cab; `
 Invoke-WebRequest
https://az880830.vo.msecnd.net/nanoserver-ga-2016/Microsoft-NanoServer-IIS-
Package_English_10-0-14393-0.cab -OutFile C:\install\Microsoft-NanoServer-
IIS-Package_English_10-0-14393-0.cab; `
 dism.exe /online /add-package /packagepath:c:\install\Microsoft-
NanoServer-IIS-Package_base_10-0-14393-0.cab & `
 dism.exe /online /add-package /packagepath:c:\install\Microsoft-
NanoServer-IIS-Package_English_10-0-14393-0.cab & `
 dism.exe /online /add-package /packagepath:c:\install\Microsoft-
NanoServer-IIS-Package_base_10-0-14393-0.cab & ;`
 powershell -NoProfile -Command `
 Remove-Item -Recurse C:\install\ ; `
 Invoke-WebRequest
https://dotnetbinaries.blob.core.windows.net/servicemonitor/2.0.1.3/Service
Monitor.exe -OutFile C:\ServiceMonitor.exe; `
 Start-Service Was; `
 While ((Get-ItemProperty
HKLM:\SYSTEM\CurrentControlSet\Services\WAS\Parameters\ -Name NanoSetup -
ErrorAction Ignore) -ne $null) {Start-Sleep 1}

EXPOSE 80

ENTRYPOINT ["C:\\ServiceMonitor.exe", "w3svc"]

You can build the image using the following command:

$ docker image build --tag local:dockerfile-iis .

Windows Containers Chapter 6

[178]

Once built, running docker image ls should show you the following:

The one immediate thing you will notice about Windows container images is that they are
big. This is something that is being worked on with the release of Server 2019.

Running the container with the following command will start the IIS image:

$ docker container run -d --name dockerfile-iis -p 8080:80
local:dockerfile-iis

You can see your newly launched container in action by opening your browser. However,
instead of going to http://localhost:8080/, you will need to access it via the NAT IP of
the container. If you are using Windows 10 Professional, you can find the NAT IP by
running the following command:

$ docker inspect --format="{{.NetworkSettings.Networks.nat.IPAddress}}"
dockerfile-iis

This will give you an IP address, simply augmented with 8080/ at the end; for example,
http://172.31.20.180:8080/.

macOS users can run the following command to open their browsers using the IP address
of the Vagrant VM we launched:

$ open http://$(docker-machine ip 2016-box):8080/

Whichever operating system you have launched your IIS container on, you should see the
following default holding page:

Windows Containers Chapter 6

[179]

To stop and remove the containers we have launched so far, run the following commands:

$ docker container stop dockerfile-iis
$ docker container prune

So far, I am sure you will agree that the experience is no different to using Docker with
Linux-based containers.

Windows containers and Docker Compose
In the final section of this chapter, we are going to look at using Docker Compose with our
Windows Docker host. As you will have already guessed, there isn't much change from the
commands we ran in the previous chapter. In the chapter06 folder in the repository, there
is a fork of the dotnet-album-viewer application from the Docker Examples repository
as this ships with a docker-compose.yml file.

The Docker Compose file looks like the following:

version: '2.1'

services:
 db:
 image: microsoft/mssql-server-windows-express
 environment:

Windows Containers Chapter 6

[180]

 sa_password: "DockerCon!!!"
 ACCEPT_EULA: "Y"
 healthcheck:
 test: ["CMD", "sqlcmd", "-U", "sa", "-P", "DockerCon!!!", "-Q",
"select 1"]
 interval: 2s
 retries: 10

 app:
 image: dockersamples/dotnet-album-viewer
 build:
 context: .
 dockerfile: docker/app/Dockerfile
 environment:
 - "Data:useSqLite=false"
 - "Data:SqlServerConnectionString=Server=db;Database=AlbumViewer;User
Id=sa;Password=DockerCon!!!;MultipleActiveResultSets=true;App=AlbumViewer"
 depends_on:
 db:
 condition: service_healthy
 ports:
 - "80:80"

networks:
 default:
 external:
 name: nat

As you can see, it is using the same structure, flags, and commands as the previous Docker
Compose files we have looked at, the only difference being that we are using images from
the Docker Hub that are designed for Windows containers.

To build the required images, simply run the following command:

$ docker-compose build

Then, once built, launch using the following command:

$ docker-compose up -d

As before, you can then use this command to find out the IP address on Windows:

$ docker inspect -f "{{ .NetworkSettings.Networks.nat.IPAddress }}"
musicstore_web_1

Windows Containers Chapter 6

[181]

To open the application you just need to put the IP address of your Docker host in your
browser. If you are running using macOS, run the following command:

$ open http://$(docker-machine ip 2016-box)/

You should see the following page:

Once you have finished with the application, you can run the following command to
remove it:

$ docker-compose down --rmi all --volumes

Summary
In this chapter, we have briefly looked at Windows containers. As you have seen, thanks to
Microsoft's adoption of Docker as a management tool for Windows containers, the
experience is familiar to anyone who has used Docker to manage Linux containers.

In the next chapter, we are going to take a more detailed look at Docker Machine.

Windows Containers Chapter 6

[182]

Questions
Docker on Windows introduces what additional layer of isolation?1.
Which command would you use to find out the NAT IP address of your2.
Windows container?
True or false: Docker on Windows introduces an additional set of commands you3.
need to use in order to manage your Windows containers?

Further reading
You can find more information on the topics mentioned in this chapter as follows:

Docker and Microsoft Partnership Announcement: https:/ ​/​blog. ​docker. ​com/
2014/​10/ ​docker- ​microsoft- ​partner- ​distributed- ​applications/ ​

Windows Server and Docker – The Internals Behind Bringing Docker and
Containers to Windows: https:/ ​/​www. ​youtube. ​com/ ​watch? ​v=​85nCF5S8Qok

Stefan Scherer on GitHub: https:/ ​/​github. ​com/ ​stefanScherer/ ​

The dotnet-album-viewer
repository: https://github.com/dockersamples/dotnet-album-viewer

https://blog.docker.com/2014/10/docker-microsoft-partner-distributed-applications/
https://blog.docker.com/2014/10/docker-microsoft-partner-distributed-applications/
https://blog.docker.com/2014/10/docker-microsoft-partner-distributed-applications/
https://blog.docker.com/2014/10/docker-microsoft-partner-distributed-applications/
https://blog.docker.com/2014/10/docker-microsoft-partner-distributed-applications/
https://blog.docker.com/2014/10/docker-microsoft-partner-distributed-applications/
https://blog.docker.com/2014/10/docker-microsoft-partner-distributed-applications/
https://blog.docker.com/2014/10/docker-microsoft-partner-distributed-applications/
https://blog.docker.com/2014/10/docker-microsoft-partner-distributed-applications/
https://blog.docker.com/2014/10/docker-microsoft-partner-distributed-applications/
https://blog.docker.com/2014/10/docker-microsoft-partner-distributed-applications/
https://blog.docker.com/2014/10/docker-microsoft-partner-distributed-applications/
https://blog.docker.com/2014/10/docker-microsoft-partner-distributed-applications/
https://blog.docker.com/2014/10/docker-microsoft-partner-distributed-applications/
https://blog.docker.com/2014/10/docker-microsoft-partner-distributed-applications/
https://blog.docker.com/2014/10/docker-microsoft-partner-distributed-applications/
https://blog.docker.com/2014/10/docker-microsoft-partner-distributed-applications/
https://blog.docker.com/2014/10/docker-microsoft-partner-distributed-applications/
https://blog.docker.com/2014/10/docker-microsoft-partner-distributed-applications/
https://blog.docker.com/2014/10/docker-microsoft-partner-distributed-applications/
https://blog.docker.com/2014/10/docker-microsoft-partner-distributed-applications/
https://blog.docker.com/2014/10/docker-microsoft-partner-distributed-applications/
https://blog.docker.com/2014/10/docker-microsoft-partner-distributed-applications/
https://www.youtube.com/watch?v=85nCF5S8Qok
https://www.youtube.com/watch?v=85nCF5S8Qok
https://www.youtube.com/watch?v=85nCF5S8Qok
https://www.youtube.com/watch?v=85nCF5S8Qok
https://www.youtube.com/watch?v=85nCF5S8Qok
https://www.youtube.com/watch?v=85nCF5S8Qok
https://www.youtube.com/watch?v=85nCF5S8Qok
https://www.youtube.com/watch?v=85nCF5S8Qok
https://www.youtube.com/watch?v=85nCF5S8Qok
https://www.youtube.com/watch?v=85nCF5S8Qok
https://www.youtube.com/watch?v=85nCF5S8Qok
https://www.youtube.com/watch?v=85nCF5S8Qok
https://www.youtube.com/watch?v=85nCF5S8Qok
https://www.youtube.com/watch?v=85nCF5S8Qok
https://www.youtube.com/watch?v=85nCF5S8Qok
https://github.com/stefanScherer/
https://github.com/stefanScherer/
https://github.com/stefanScherer/
https://github.com/stefanScherer/
https://github.com/stefanScherer/
https://github.com/stefanScherer/
https://github.com/stefanScherer/
https://github.com/stefanScherer/
https://github.com/stefanScherer/
https://github.com/stefanScherer/
https://github.com/dockersamples/dotnet-album-viewer

7
Docker Machine

In this chapter, we will take a deeper look at Docker Machine, which we touched upon in
the previous chapter. It can be used to easily launch and bootstrap Docker hosts targeting
various platforms, including locally or in a cloud environment. You can control your
Docker hosts with it as well. Let's take a look at what we will be covering in this chapter:

An introduction to Docker Machine
Using Docker Machine to set up local Docker hosts
Launching Docker hosts in the cloud
Using other base operating systems

Technical requirements
As in previous chapters, we will continue to use our local Docker installations. Again, the
screenshots in this chapter will be from my preferred operating system, macOS.

We will be looking at how we can use Docker Machine to launch Docker-based virtual
machines locally using VirtualBox as well as in public clouds, so you will need an account
with Digital Ocean if you would like to follow along with the example in this chapter.

As before, the Docker commands we will be running will work on all three of the operating
systems on which we have installed Docker so far. However, some of the supporting
commands, which will be few and far between, may only apply to macOS, and Linux-based
operating systems.

Check out the following video to see the Code in Action:

http:/​/​bit.​ly/​2Ansb5v

http://bit.ly/2Ansb5v
http://bit.ly/2Ansb5v
http://bit.ly/2Ansb5v
http://bit.ly/2Ansb5v
http://bit.ly/2Ansb5v
http://bit.ly/2Ansb5v
http://bit.ly/2Ansb5v
http://bit.ly/2Ansb5v
http://bit.ly/2Ansb5v

Docker Machine Chapter 7

[184]

An introduction to Docker Machine
Before we roll our sleeves up and get stuck in with Docker Machine, we should take a
moment to discuss what place it occupies in the overall Docker ecosystem.

Docker Machine's biggest strength is that it provides a consistent interface to several public
cloud providers, such as Amazon Web Services, DigitalOcean, Microsoft Azure, and
Google Cloud, as well as self-hosted virtual machine/cloud platforms, including
OpenStack, and VMware vSphere. Finally, the following locally-hosted hypervisors are
supported, such as Oracle VirtualBox and VMware Workstation or Fusion.

Being able to target all of these technologies using a single command with minimal user
interaction is a very big time saver if you need to quickly access a Docker host in Amazon
Web Services one day and then DigitialOcean the next—you know you are going to get a
consistent experience.

As it is a command-line tool, it is also very easy to pass instructions to colleagues or even
script the launch and tear down on Docker hosts: imagine starting work with your
environment built fresh for you each morning and then, to save costs, it is torn down each
evening.

Deploying local Docker hosts with Docker
Machine
Before we journey out into the cloud, we are going to look at the basics of Docker Machine
locally by launching it, using Oracle VirtualBox to provide the virtual machine.

VirtualBox is a free virtualization product from Oracle. It allows you to
install virtual machines across many different platforms and CPU types.
Download and install VirtualBox from https:/ ​/ ​www.​virtualbox. ​org/
wiki/ ​Downloads/ ​.

To launch the machine, all you need to do is run the following command:

$ docker-machine create --driver virtualbox docker-local

https://www.virtualbox.org/wiki/Downloads/
https://www.virtualbox.org/wiki/Downloads/
https://www.virtualbox.org/wiki/Downloads/
https://www.virtualbox.org/wiki/Downloads/
https://www.virtualbox.org/wiki/Downloads/
https://www.virtualbox.org/wiki/Downloads/
https://www.virtualbox.org/wiki/Downloads/
https://www.virtualbox.org/wiki/Downloads/
https://www.virtualbox.org/wiki/Downloads/
https://www.virtualbox.org/wiki/Downloads/
https://www.virtualbox.org/wiki/Downloads/
https://www.virtualbox.org/wiki/Downloads/
https://www.virtualbox.org/wiki/Downloads/

Docker Machine Chapter 7

[185]

This will start the deployment, during which you will get a list of tasks that Docker
Machine is running. To launch your Docker host, each host launched with Docker Machine
goes through the same steps.

First of all, Docker Machine runs a few basic checks, such as confirming that VirtualBox is
installed, and creating certificates and a directory structure in which to store all of its files
and virtual machines:

Creating CA: /Users/russ/.docker/machine/certs/ca.pem
Creating client certificate: /Users/russ/.docker/machine/certs/cert.pem
Running pre-create checks...
(docker-local) Image cache directory does not exist, creating it at
/Users/russ/.docker/machine/cache...

It then checks for the presence of the image it will use for the virtual machine. If it is not
there, the image will be downloaded:

(docker-local) No default Boot2Docker ISO found locally, downloading the
latest release...
(docker-local) Latest release for github.com/boot2docker/boot2docker is
v18.06.1-ce
(docker-local) Downloading
/Users/russ/.docker/machine/cache/boot2docker.iso from
https://github.com/boot2docker/boot2docker/releases/download/v18.06.1-ce/bo
ot2docker.iso...
(docker-local)
0%....10%....20%....30%....40%....50%....60%....70%....80%....90%....100%

Once the checks have passed, it creates the virtual machine using the selected driver:

Creating machine...
(docker-local) Copying /Users/russ/.docker/machine/cache/boot2docker.iso to
/Users/russ/.docker/machine/machines/docker-local/boot2docker.iso...
(docker-local) Creating VirtualBox VM...
(docker-local) Creating SSH key...
(docker-local) Starting the VM...
(docker-local) Check network to re-create if needed...
(docker-local) Found a new host-only adapter: "vboxnet0"
(docker-local) Waiting for an IP...
Waiting for machine to be running, this may take a few minutes...

Docker Machine Chapter 7

[186]

As you can see, Docker Machine creates a unique SSH key for the virtual machine. This
means that you will be able to access the virtual machine over SSH, but more on that later.
Once the virtual machine has booted, Docker Machine then makes a connection to the
virtual machine:

Detecting operating system of created instance...
Waiting for SSH to be available...
Detecting the provisioner...
Provisioning with boot2docker...
Copying certs to the local machine directory...
Copying certs to the remote machine...
Setting Docker configuration on the remote daemon...
Checking connection to Docker...

As you can see, Docker Machine detects the operating system being used and chooses the
appropriate bootstrap script to deploy Docker. Once Docker is installed, Docker Machine
generates and shares certificates between your local host and the Docker host. It then
configures the remote Docker installation for certificate authentication, meaning that your
local client can connect to and interact with the remote Docker server:

Once Docker is installed, Docker Machine generates and shares certificates between your
local host and the Docker host. It then configures the remote Docker installation for
certificate authentication, meaning that your local client can connect to and interact with
the remote Docker server:

Docker is up and running!
To see how to connect your Docker Client to the Docker Engine running on
this virtual machine, run: docker-machine env docker-local

Finally, it checks whether your local Docker client can make the remote connection and
completes the task by giving you instructions on how to configure your local client to the
newly launched Docker host.

If you open VirtualBox, you should be able to see your new virtual machine:

Docker Machine Chapter 7

[187]

Next, we need to configure our local Docker client to connect to the newly launched Docker
host; as already mentioned in the output of launching the host, running the following
command will show you how to make the connection:

$ docker-machine env docker-local

This command returns the following:

export DOCKER_TLS_VERIFY="1"
export DOCKER_HOST="tcp://192.168.99.100:2376"
export DOCKER_CERT_PATH="/Users/russ/.docker/machine/machines/docker-local"
export DOCKER_MACHINE_NAME="docker-local"
Run this command to configure your shell:
eval $(docker-machine env docker-local)

Docker Machine Chapter 7

[188]

This overrides the local Docker installation by giving the IP address and port number of the
newly launched Docker host as well as the path to the certificates used for authentication.
At the end of the output, it gives you a command to run and to configure your terminal
session in order to make the connection.

Before we run the command, let's run docker version to get information on the current
setup:

This is basically the Docker for Mac installation I am running. Running the following
command and then docker version again should show some changes to the server:

$ eval $(docker-machine env docker-local)

The output of the command is given here:

Docker Machine Chapter 7

[189]

As you can see, the server launched by Docker Machine is pretty much in line with what
we have installed locally; in fact, the only difference is the build time. As you can see, the
Docker Engine binary on my Docker for Mac installation was built one minute after the
Docker Machine version.

From here, we can interact with the Docker host in the same way as if it were a local Docker
installation. Before we move on to launching Docker hosts in the cloud, there are a few
other basic Docker Machine commands to cover.

The first lists the currently configured Docker hosts:

$ docker-machine ls

The output of the command is given here:

Docker Machine Chapter 7

[190]

As you can see, it lists the details on the machine name, the driver used and the Docker
endpoint URL, as well as the version of Docker the hosts are running.

You will also notice that there is an * in the ACTIVE column; this indicates which Docker
host your local client is currently configured to interact with. You can also find out the
active machine by running docker-machine active.

The next command connects you to the Docker host using SSH:

$ docker-machine ssh docker-local

The output of the command is given here:

This is useful if you need to install additional software or configuration outside of Docker
Machine. It is also useful if you need to look at logs and so on, as you can exit the remote
shell by running exit. You can find out the IP address of your Docker host by running the
following command once back on your local machine:

$ docker-machine ip docker-local

We will be using this a lot later in the chapter. There are also commands for establishing
more details about your Docker host:

$ docker-machine inspect docker-local
$ docker-machine config docker-local
$ docker-machine status docker-local
$ docker-machine url docker-local

Docker Machine Chapter 7

[191]

Finally, there are also commands to stop, start, restart, and remove your Docker host.
Use the final command to remove your locally launched host:

$ docker-machine stop docker-local
$ docker-machine start docker-local
$ docker-machine restart docker-local
$ docker-machine rm docker-local

Running the docker-machine rm command will prompt you to determine whether you
really want to remove the instance:

About to remove docker-local
WARNING: This action will delete both local reference and remote instance.
Are you sure? (y/n): y
Successfully removed docker-local

Now that we have had a very quick rundown of the basics, let's try something more
adventurous.

Launching Docker hosts in the cloud
In this section, we are going to take a look at just one of the public cloud drivers supported
by Docker Machine. As already mentioned, there are plenty available, but part of the
appeal of Docker Machine is that it offers consistent experiences, so there are not too many
differences between the drivers.

We are going to be launching a Docker host in DigitalOcean using Docker Machine. The
only thing we need to do this is an API access token. Rather than explaining how to
generate one here, you can follow the instructions at https:/ ​/​www. ​digitalocean. ​com/
help/​api/​.

Launching a Docker host using the API token will incur a cost; ensure you
keep track of the Docker hosts you launch. Details on DigitalOcean's
pricing can be found at https:/ ​/ ​www.​digitalocean. ​com/ ​pricing/ ​. Also,
keep your API token secret as it could be used to gain unauthorized access
to your account. All of the tokens used in this chapter have been revoked.

The first we are going to do is set our token as an environment variable so we don't have to
keep using it. To do this, run the following command, making sure you replace the API
token with your own:

$ DOTOKEN=0cb54091fecfe743920d0e6d28a29fe325b9fc3f2f6fccba80ef4b26d41c7224

https://www.digitalocean.com/help/api/
https://www.digitalocean.com/help/api/
https://www.digitalocean.com/help/api/
https://www.digitalocean.com/help/api/
https://www.digitalocean.com/help/api/
https://www.digitalocean.com/help/api/
https://www.digitalocean.com/help/api/
https://www.digitalocean.com/help/api/
https://www.digitalocean.com/help/api/
https://www.digitalocean.com/help/api/
https://www.digitalocean.com/help/api/
https://www.digitalocean.com/help/api/
https://www.digitalocean.com/help/api/
https://www.digitalocean.com/pricing/
https://www.digitalocean.com/pricing/
https://www.digitalocean.com/pricing/
https://www.digitalocean.com/pricing/
https://www.digitalocean.com/pricing/
https://www.digitalocean.com/pricing/
https://www.digitalocean.com/pricing/
https://www.digitalocean.com/pricing/
https://www.digitalocean.com/pricing/
https://www.digitalocean.com/pricing/
https://www.digitalocean.com/pricing/
https://www.digitalocean.com/pricing/

Docker Machine Chapter 7

[192]

Due to the additional flags that we need to pass to the Docker Machine
command, I will be using \ to split the command across multiple lines to
make it more readable.

To launch a Docker host called docker-digtialocean, we need to run the following
command:

$ docker-machine create \
 --driver digitalocean \
 --digitalocean-access-token $DOTOKEN \
 docker-digitalocean

As the Docker host is a remote machine, it will take a little while to launch, configure, and
be accessible. As you can see from the following output, there are also a few changes to
how Docker Machine bootstraps the Docker host:

Running pre-create checks...
Creating machine...
(docker-digitalocean) Creating SSH key...
(docker-digitalocean) Creating Digital Ocean droplet...
(docker-digitalocean) Waiting for IP address to be assigned to the
Droplet...
Waiting for machine to be running, this may take a few minutes...
Detecting operating system of created instance...
Waiting for SSH to be available...
Detecting the provisioner...
Provisioning with ubuntu(systemd)...
Installing Docker...
Copying certs to the local machine directory...
Copying certs to the remote machine...
Setting Docker configuration on the remote daemon...
Checking connection to Docker...
Docker is up and running!
To see how to connect your Docker Client to the Docker Engine running on
this virtual machine, run: docker-machine env docker-digitalocean

Once launched, you should be able to see the Docker host in your DigitalOcean control
panel:

Docker Machine Chapter 7

[193]

Reconfigure your local client to connect to the remote host by running the following
command:

$ eval $(docker-machine env docker-digitalocean)

Also, you can run docker version and docker-machine inspect docker-
digitalocean to find out more information about the Docker host.

Finally, running docker-machine ssh docker-digitalocean will SSH you into the
host. As you can see from the following output, and also from the output when you first
launched the Docker host, there is a difference in the operating system used:

Docker Machine Chapter 7

[194]

You can exit the remote shell by running exit. As you can see, we didn't have to tell
Docker Machine which operating system to use, the size of the Docker host, or even where
to launch it. That is because each driver has some pretty sound defaults. Adding these
defaults to our command makes it look like the following:

$ docker-machine create \
 --driver digitalocean \
 --digitalocean-access-token $DOTOKEN \
 --digitalocean-image ubuntu-16-04-x64 \
 --digitalocean-region nyc3 \
 --digitalocean-size 512mb \
 --digitalocean-ipv6 false \
 --digitalocean-private-networking false \
 --digitalocean-backups false \
 --digitalocean-ssh-user root \
 --digitalocean-ssh-port 22 \
 docker-digitalocean

As you can see, there is scope for you to customize the size, region, and operating system,
and even the network your Docker host is launched with. Let's say we wanted to change
the operating system and the size of the droplet. In this instance, we can run the following:

$ docker-machine create \
 --driver digitalocean \
 --digitalocean-access-token $DOTOKEN \
 --digitalocean-image ubuntu-18-04-x64 \
 --digitalocean-size 1gb \
 docker-digitalocean

As you can see in the DigitalOcean control panel, this launches a machine that looks like the
following:

Docker Machine Chapter 7

[195]

You can remove the DigitalOcean Docker host by running the following command:

$ docker-machine rm docker-digitalocean

Using other base operating systems
You don't have to use the default operating systems with Docker Machine; it does come
with provisioners for other base operating systems, including ones that are geared toward
running containers. Before we finish the chapter, we are going to take a look at launching
one of these, CoreOS.

The distribution we are going to look at has just enough of an operating system to run a
kernel, networking stack, and containers, just like Docker's own MobyOS, which is used as
the base for Docker for Mac and Docker for Windows.

While CoreOS supports its own container runtime, called RKT (pronounced Rocket), it also
ships with Docker. However, as we will see, the version of Docker currently shipping with
the stable version of CoreOS is a little out of date.

To launch the DigitalOcean-managed coreos-stable version, run the following
command:

$ docker-machine create \
 --driver digitalocean \
 --digitalocean-access-token $DOTOKEN \
 --digitalocean-image coreos-stable \
 --digitalocean-size 1GB \
 --digitalocean-ssh-user core \
 docker-coreos

As with launching our other Docker hosts on public clouds, the output is pretty much the
same. You will notice that Docker Machine uses the CoreOS provisioner:

Running pre-create checks...
Creating machine...
(docker-coreos) Creating SSH key...
(docker-coreos) Creating Digital Ocean droplet...
(docker-coreos) Waiting for IP address to be assigned to the Droplet...
Waiting for machine to be running, this may take a few minutes...
Detecting operating system of created instance...
Waiting for SSH to be available...
Detecting the provisioner...
Provisioning with coreOS...
Copying certs to the local machine directory...
Copying certs to the remote machine...

Docker Machine Chapter 7

[196]

Setting Docker configuration on the remote daemon...
Checking connection to Docker...
Docker is up and running!
To see how to connect your Docker Client to the Docker Engine running on
this virtual machine, run: docker-machine env docker-coreos

Once launched, you can run the following:

$ docker-machine ssh docker-coreos cat /etc/*release

This will return the content of the release file:

DISTRIB_ID="Container Linux by CoreOS"
DISTRIB_RELEASE=1800.7.0
DISTRIB_CODENAME="Rhyolite"
DISTRIB_DESCRIPTION="Container Linux by CoreOS 1800.7.0 (Rhyolite)"
NAME="Container Linux by CoreOS"
ID=coreos
VERSION=1800.7.0
VERSION_ID=1800.7.0
BUILD_ID=2018-08-15-2254
PRETTY_NAME="Container Linux by CoreOS 1800.7.0 (Rhyolite)"
ANSI_COLOR="38;5;75"
HOME_URL="https://coreos.com/"
BUG_REPORT_URL="https://issues.coreos.com"
COREOS_BOARD="amd64-usr"

Running the following will show you more information on the version of Docker that is
running on the CoreOS host:

$ docker $(docker-machine config docker-coreos) version

You can see this from the following output; also, as already mentioned, it is behind the
current release:

Docker Machine Chapter 7

[197]

This means that not all of the commands we are using in this book may work. To remove
the CoreOS host, run the following command:

$ docker-machine rm docker-coreos

Summary
In this chapter, we looked at how to use Docker Machine to create the Docker hosts locally
on VirtualBox and reviewed the commands you can use to both interact with and manage
your Docker Machine-launched Docker hosts.

We then looked at how to use Docker Machine to deploy Docker hosts to your cloud
environments, namely DigitalOcean. Finally, we took a very quick look at how to launch a
different container-optimized Linux operating system, which was CoreOS.

I am sure you will agree that using Docker Machine made running these tasks, which
typically have very different approaches, a very consistent experience, and which, in the
long run, will save a lot of time as well as explaining.

In the next chapter, we are going to move away from interacting with single Docker hosts
to launching and running a Docker Swarm cluster.

Docker Machine Chapter 7

[198]

Questions
Which flag, when running docker-machine create, lets you define which1.
service or provider Docker Machine uses to launch your Docker host?
True or false: Running docker-machine env my-host will reconfigure you2.
local Docker client to interact with my-host?
Explain the basic principle behind Docker Machine.3.

Further reading
For information on the various platforms supported by Docker Machine, refer to the
following:

Amazon Web Services: https:/ ​/​aws.​amazon. ​com/ ​

Microsoft Azure: https:/ ​/​azure. ​microsoft. ​com/ ​

DigitalOcean: https:/ ​/ ​www. ​digitalocean. ​com/ ​

Exoscale: https:/ ​/ ​www. ​exoscale. ​ch/ ​

Google Compute Engine: https:/ ​/​cloud. ​google. ​com/ ​

Rackspace: https:/ ​/​www. ​rackspace. ​com/ ​

IBM SoftLayer: https:/ ​/​www. ​softlayer. ​com/ ​

Microsoft Hyper-V: https:/ ​/ ​www.​microsoft. ​com/ ​en-​gb/ ​cloud- ​platform/
server-​virtualization/ ​

OpenStack: https:/ ​/​www. ​openstack. ​org/ ​

VMware vSphere: https:/ ​/​www. ​vmware. ​com/ ​uk/ ​products/ ​vsphere. ​html

Oracle VirtualBox: https:/ ​/ ​www.​virtualbox. ​org/ ​

VMware Fusion: https:/ ​/​www. ​vmware. ​com/ ​uk/ ​products/ ​fusion. ​html

VMware Workstation: https:/ ​/ ​www.​vmware. ​com/​uk/ ​products/ ​workstation.
html

CoreOS: https:/ ​/​coreos. ​com/ ​

https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://azure.microsoft.com/
https://azure.microsoft.com/
https://azure.microsoft.com/
https://azure.microsoft.com/
https://azure.microsoft.com/
https://azure.microsoft.com/
https://azure.microsoft.com/
https://azure.microsoft.com/
https://azure.microsoft.com/
https://azure.microsoft.com/
https://www.digitalocean.com/
https://www.digitalocean.com/
https://www.digitalocean.com/
https://www.digitalocean.com/
https://www.digitalocean.com/
https://www.digitalocean.com/
https://www.digitalocean.com/
https://www.digitalocean.com/
https://www.digitalocean.com/
https://www.digitalocean.com/
https://www.exoscale.ch/
https://www.exoscale.ch/
https://www.exoscale.ch/
https://www.exoscale.ch/
https://www.exoscale.ch/
https://www.exoscale.ch/
https://www.exoscale.ch/
https://www.exoscale.ch/
https://www.exoscale.ch/
https://www.exoscale.ch/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://www.rackspace.com/
https://www.rackspace.com/
https://www.rackspace.com/
https://www.rackspace.com/
https://www.rackspace.com/
https://www.rackspace.com/
https://www.rackspace.com/
https://www.rackspace.com/
https://www.rackspace.com/
https://www.rackspace.com/
https://www.softlayer.com/
https://www.softlayer.com/
https://www.softlayer.com/
https://www.softlayer.com/
https://www.softlayer.com/
https://www.softlayer.com/
https://www.softlayer.com/
https://www.softlayer.com/
https://www.softlayer.com/
https://www.softlayer.com/
https://www.microsoft.com/en-gb/cloud-platform/server-virtualization/
https://www.microsoft.com/en-gb/cloud-platform/server-virtualization/
https://www.microsoft.com/en-gb/cloud-platform/server-virtualization/
https://www.microsoft.com/en-gb/cloud-platform/server-virtualization/
https://www.microsoft.com/en-gb/cloud-platform/server-virtualization/
https://www.microsoft.com/en-gb/cloud-platform/server-virtualization/
https://www.microsoft.com/en-gb/cloud-platform/server-virtualization/
https://www.microsoft.com/en-gb/cloud-platform/server-virtualization/
https://www.microsoft.com/en-gb/cloud-platform/server-virtualization/
https://www.microsoft.com/en-gb/cloud-platform/server-virtualization/
https://www.microsoft.com/en-gb/cloud-platform/server-virtualization/
https://www.microsoft.com/en-gb/cloud-platform/server-virtualization/
https://www.microsoft.com/en-gb/cloud-platform/server-virtualization/
https://www.microsoft.com/en-gb/cloud-platform/server-virtualization/
https://www.microsoft.com/en-gb/cloud-platform/server-virtualization/
https://www.microsoft.com/en-gb/cloud-platform/server-virtualization/
https://www.microsoft.com/en-gb/cloud-platform/server-virtualization/
https://www.microsoft.com/en-gb/cloud-platform/server-virtualization/
https://www.microsoft.com/en-gb/cloud-platform/server-virtualization/
https://www.microsoft.com/en-gb/cloud-platform/server-virtualization/
https://www.microsoft.com/en-gb/cloud-platform/server-virtualization/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.vmware.com/uk/products/vsphere.html
https://www.vmware.com/uk/products/vsphere.html
https://www.vmware.com/uk/products/vsphere.html
https://www.vmware.com/uk/products/vsphere.html
https://www.vmware.com/uk/products/vsphere.html
https://www.vmware.com/uk/products/vsphere.html
https://www.vmware.com/uk/products/vsphere.html
https://www.vmware.com/uk/products/vsphere.html
https://www.vmware.com/uk/products/vsphere.html
https://www.vmware.com/uk/products/vsphere.html
https://www.vmware.com/uk/products/vsphere.html
https://www.vmware.com/uk/products/vsphere.html
https://www.vmware.com/uk/products/vsphere.html
https://www.vmware.com/uk/products/vsphere.html
https://www.vmware.com/uk/products/vsphere.html
https://www.vmware.com/uk/products/vsphere.html
https://www.vmware.com/uk/products/vsphere.html
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.vmware.com/uk/products/fusion.html
https://www.vmware.com/uk/products/fusion.html
https://www.vmware.com/uk/products/fusion.html
https://www.vmware.com/uk/products/fusion.html
https://www.vmware.com/uk/products/fusion.html
https://www.vmware.com/uk/products/fusion.html
https://www.vmware.com/uk/products/fusion.html
https://www.vmware.com/uk/products/fusion.html
https://www.vmware.com/uk/products/fusion.html
https://www.vmware.com/uk/products/fusion.html
https://www.vmware.com/uk/products/fusion.html
https://www.vmware.com/uk/products/fusion.html
https://www.vmware.com/uk/products/fusion.html
https://www.vmware.com/uk/products/fusion.html
https://www.vmware.com/uk/products/fusion.html
https://www.vmware.com/uk/products/fusion.html
https://www.vmware.com/uk/products/fusion.html
https://www.vmware.com/uk/products/workstation.html
https://www.vmware.com/uk/products/workstation.html
https://www.vmware.com/uk/products/workstation.html
https://www.vmware.com/uk/products/workstation.html
https://www.vmware.com/uk/products/workstation.html
https://www.vmware.com/uk/products/workstation.html
https://www.vmware.com/uk/products/workstation.html
https://www.vmware.com/uk/products/workstation.html
https://www.vmware.com/uk/products/workstation.html
https://www.vmware.com/uk/products/workstation.html
https://www.vmware.com/uk/products/workstation.html
https://www.vmware.com/uk/products/workstation.html
https://www.vmware.com/uk/products/workstation.html
https://www.vmware.com/uk/products/workstation.html
https://www.vmware.com/uk/products/workstation.html
https://www.vmware.com/uk/products/workstation.html
https://coreos.com/
https://coreos.com/
https://coreos.com/
https://coreos.com/
https://coreos.com/
https://coreos.com/
https://coreos.com/
https://coreos.com/

8
Docker Swarm

In this chapter, we will be taking a look at Docker Swarm. With Docker Swarm, you can
create and manage Docker clusters. Swarm can be used to distribute containers across
multiple hosts and also has the ability to scale containers. We will cover the following
topics:

Introducing Docker Swarm
Roles within a Docker Swarm cluster
Creating and managing a Swarm
Docker Swarm services and stacks
Docker Swarm load balancing and scheduling

Technical requirements
As in previous chapters, we will continue to use our local Docker installations. Again, the
screenshots in this chapter will be from my preferred operating system, macOS.

As before, the Docker commands we will be running will work on all three of the operating
systems on which we have installed Docker so far. However, some of the supporting
commands, which will be few and far between, may only apply to macOS and Linux-based
operating systems.

Check out the following video to see the Code in Action:

http:/​/​bit.​ly/​2yWA4gl

http://bit.ly/2yWA4gl
http://bit.ly/2yWA4gl
http://bit.ly/2yWA4gl
http://bit.ly/2yWA4gl
http://bit.ly/2yWA4gl
http://bit.ly/2yWA4gl
http://bit.ly/2yWA4gl
http://bit.ly/2yWA4gl
http://bit.ly/2yWA4gl

Docker Swarm Chapter 8

[200]

Introducing Docker Swarm
Before we go any further, I should mention that there are two very different versions of
Docker Swarm. There was a standalone version of Docker Swarm; this was supported up
until Docker 1.12 and is no longer being actively developed; however, you may find some
old documentation mentions it. Installation of the standalone Docker Swarm is not
recommended as Docker ended support for version 1.11.x in the first quarter of 2017.

Docker version 1.12 introduced Docker Swarm mode. This introduced all of the
functionality that was available in the standalone Docker Swarm into the core Docker
engine, along with a significant number of additional features. As we are covering Docker
18.06 and higher in this book, we will be using Docker Swarm mode, which, for the
remainder of the chapter, we will refer to as Docker Swarm.

As you are already running a version of Docker with in-built support for Docker Swarm,
there isn't anything you need to do in order to install Docker Swarm; you can verify that
Docker Swarm is available on your installation by running the following command:

$ docker swarm --help

You should see something that looks like the following Terminal output when running the
command:

Docker Swarm Chapter 8

[201]

If you get an error, ensure that you are running Docker 18.06 or higher, the installation of
which we covered in Chapter 1, Docker Overview. Now that we know that our Docker client
supports Docker Swarm, what do we mean by a Swarm?

A Swarm is a collection of hosts, all running Docker, which have been set up to interact
with each other in a clustered configuration. Once configured you will be able to use all of
the commands we have been running so far when targeting a single host and let Docker
Swarm decided the placement of your containers by using a deployment strategy to decide
the most appropriate host on which to launch your container.

Docker Swarms are made up of two types of host. Let's take a look at these now.

Roles within a Docker Swarm cluster
Which roles are involved with Docker Swarm? Let's take a look at the two roles a host can
assume when running within a Docker Swarm cluster.

Swarm manager
The Swarm manager is a host that is the central management point for all Swarm hosts.
Swarm manager is where you issue all your commands to control those nodes. You can
switch between the nodes, join nodes, remove nodes, and manipulate those hosts.

Each cluster can run several Swarm managers. For production, it is recommended that you
run a minimum of five Swarm managers: this would mean that our cluster can take a
maximum of two Swarm manager node failures before you start to encounter any errors.
Swarm managers use the Raft Consensus Algorithm (see the Further reading section for
more details) to maintain a consistent state across all of the manager nodes.

Docker Swarm Chapter 8

[202]

Swarm worker
The Swarm workers, which we have seen referred to earlier as Docker hosts, are those that
run the Docker containers. Swarm workers are managed from the Swarm manager:

This is an illustration of all the Docker Swarm components. We see that the Docker Swarm
manager talks to each Swarm host that has the role of Docker Swarm workers. The workers
do have some level of connectivity, which we will look at shortly.

Creating and managing a Swarm
Let's now take a look at using Swarm and how we can perform the following tasks:

Creating a cluster
Joining workers
Listing nodes
Managing a cluster

Docker Swarm Chapter 8

[203]

Creating a cluster
Let's start by creating a cluster, which starts with a Swarm manager. Since we are going to
be creating a multi-node cluster on our local machine, we should use Docker Machine to
launch a host by running this command:

$ docker-machine create \
 -d virtualbox \
 swarm-manager

An abridged version of the output you get is shown here:

(swarm-manager) Creating VirtualBox VM...
(swarm-manager) Starting the VM...
(swarm-manager) Check network to re-create if needed...
(swarm-manager) Waiting for an IP...
Waiting for machine to be running, this may take a few minutes...
Checking connection to Docker...
Docker is up and running!
To see how to connect your Docker Client to the Docker Engine running on
this virtual machine, run: docker-machine env swarm-manager

The Swarm manager node is now up and running using VirtualBox. We can confirm this by
running the following command:

$ docker-machine ls

You should see something similar to the following output:

Now, let's point Docker Machine at the new Swarm manager. From the preceding output
when we created the Swarm manager, we can see it is telling us how to point to the node:

$ docker-machine env swarm-manager

Docker Swarm Chapter 8

[204]

This will show you the commands needed to configure your local Docker client to talk to
our newly launched Docker host. The following block of code shows the configuration
returned when I ran the command:

export DOCKER_TLS_VERIFY="1"
export DOCKER_HOST="tcp://192.168.99.100:2376"
export DOCKER_CERT_PATH="/Users/russ/.docker/machine/machines/swarm-
manager"
export DOCKER_MACHINE_NAME="swarm-manager"
Run this command to configure your shell:
eval $(docker-machine env swarm-manager)

Upon running the previous command, we are told to run the following command to point
to the Swarm manager:

$ eval $(docker-machine env swarm-manager)

Now, if we look at which machines are on our host, we can see that we have the Swarm
master host, as well as it now being set to ACTIVE, which means we can now run
commands on it:

$ docker-machine ls

It should show you something like the following:

Now that we have the first host up and running, we should add the two worker nodes. To
do this, simply run the following command to launch two more Docker hosts:

$ docker-machine create \
 -d virtualbox \
 swarm-worker01
$ docker-machine create \
 -d virtualbox \
 swarm-worker02

Docker Swarm Chapter 8

[205]

Once you have launched the two additional hosts, you can get the list of hosts using this
command:

$ docker-machine ls

It should show you something like the following:

It is worth pointing out that, so far, we have not done anything to create our Swarm cluster;
we have only launched the hosts it will be running on.

You may have noticed that one of the columns when running the
docker-machine ls command is SWARM. This only contains information
if you have launched your Docker hosts using the standalone Docker
Swarm command, which is built into Docker Machine.

Adding a Swarm manager to the cluster
Let's bootstrap our Swarm manager. To do this, we will pass the results of a few Docker
Machine commands to our host. The command to run in order to create our manager is as
follows:

$ docker $(docker-machine config swarm-manager) swarm init \
 --advertise-addr $(docker-machine ip swarm-manager):2377 \
 --listen-addr $(docker-machine ip swarm-manager):2377

Docker Swarm Chapter 8

[206]

You should receive a message similar to this one:

Swarm initialized: current node (uxgvqhw6npr9glhp0zpabn4ha) is now a
manager.

To add a worker to this swarm, run the following command:

 docker swarm join --token
SWMTKN-1-1uulmpx4j4hub2qmd8q2ozxmonzcehxcomt7cw92xarg3yrkx2-
dfiqnfisl75bwwh8yk9pv3msh 192.168.99.100:2377

To add a manager to this swarm, run 'docker swarm join-token manager' and
follow the instructions.

As you can see from the output, once your manager is initialized, you are given a unique
token. In the preceding example, the full token is
SWMTKN-1-1uulmpx4j4hub2qmd8q2ozxmonzcehxcomt7cw92xarg3yrkx2-

dfiqnfisl75bwwh8yk9pv3msh. This token will be needed for the worker nodes to
authenticate themselves and join our cluster.

Joining Swarm workers to the cluster
To add our two workers to the cluster, run the following commands. First, let's set an
environment variable to hold our token, making sure you replace the token with the one
you received when initializing your own manager:

$ SWARM_TOKEN=SWMTKN-1-1uulmpx4j4hub2qmd8q2ozxmonzcehxcomt7cw92xarg3yrkx2-
dfiqnfisl75bwwh8yk9pv3msh

Now we can run the following command to add swarm-worker01 to the cluster:

$ docker $(docker-machine config swarm-worker01) swarm join \
 --token $SWARM_TOKEN \
 $(docker-machine ip swarm-manager):2377

For swarm-worker02, you need to run the following command:

$ docker $(docker-machine config swarm-worker02) swarm join \
 --token $SWARM_TOKEN \
 $(docker-machine ip swarm-manager):2377

Both times, you should get confirmation that your node has joined the cluster:

This node joined a swarm as a worker.

Docker Swarm Chapter 8

[207]

Listing nodes
You can check the Swarm by running the following command:

$ docker-machine ls

Check that your local Docker client is still configured to connect to the Swarm manager
node, and if it isn't, rerun the following command:

$ eval $(docker-machine env swarm-manager)

Now that we are connecting to the Swarm manager node, you can run the following
command:

$ docker node ls

This will connect to the Swarm master and query all of the nodes that form our cluster. You
should see that all three of our nodes are listed:

Managing a cluster
Let's see how we can perform some management of all of these cluster nodes that we are
creating.

There are only two ways in which you can go about managing these Swarm hosts and the
containers on each host that you are creating, but first, you need to know some information
about them.

Docker Swarm Chapter 8

[208]

Finding information on the cluster
As we have already seen, we can list the nodes within the cluster using our local Docker
client, as it is already configured to connect to the Swarm manager host. We can simply
type this:

$ docker info

This will give us lots of information about the host, as you can see from the following
output, which I have truncated:

Containers: 0
 Running: 0
 Paused: 0
 Stopped: 0
Images: 0
Plugins:
 Volume: local
 Network: bridge host macvlan null overlay
 Log: awslogs fluentd gcplogs gelf journald json-file logentries splunk
syslog
Swarm: active
 NodeID: uxgvqhw6npr9glhp0zpabn4ha
 Is Manager: true
 ClusterID: pavj3f2ym8u1u1ul5epr3c73f
 Managers: 1
 Nodes: 3
 Orchestration:
 Task History Retention Limit: 5
 Raft:
 Snapshot Interval: 10000
 Number of Old Snapshots to Retain: 0
 Heartbeat Tick: 1
 Election Tick: 10
 Dispatcher:
 Heartbeat Period: 5 seconds
 CA Configuration:
 Expiry Duration: 3 months
 Force Rotate: 0
 Autolock Managers: false
 Root Rotation In Progress: false
 Node Address: 192.168.99.100
 Manager Addresses:
 192.168.99.100:2377
Runtimes: runc
Default Runtime: runc
Init Binary: docker-init

Docker Swarm Chapter 8

[209]

containerd version: 468a545b9edcd5932818eb9de8e72413e616e86e
runc version: 69663f0bd4b60df09991c08812a60108003fa340
init version: fec3683
Kernel Version: 4.9.93-boot2docker
Operating System: Boot2Docker 18.06.1-ce (TCL 8.2.1); HEAD : c7e5c3e - Wed
Aug 22 16:27:42 UTC 2018
OSType: linux
Architecture: x86_64
CPUs: 1
Total Memory: 995.6MiB
Name: swarm-manager
ID: NRV7:WAFE:FWDS:63PT:UMZY:G3KU:OU2A:RWRN:RC7D:5ESI:NWRN:NZRU

As you can see, there is information about the cluster in the Swarm section; however, we
are only able to run the docker info command against the host with which our client is
currently configured to communicate. Luckily, the docker node command is cluster
aware, so we can use that to get information on each node within our cluster, such as the
following, for example:

$ docker node inspect swarm-manager --pretty

 Assessing the --pretty flag with the docker node inspect command
will render the output in the easy-to-read format you see as follows. If --
pretty is left out, Docker will return the raw JSON object containing the
results of the query the inspect command runs against the cluster.

This should provide the following information on our Swarm manager:

ID: uxgvqhw6npr9glhp0zpabn4ha
Hostname: swarm-manager
Joined at: 2018-09-15 12:14:59.663920111 +0000 utc
Status:
 State: Ready
 Availability: Active
 Address: 192.168.99.100
Manager Status:
 Address: 192.168.99.100:2377
 Raft Status: Reachable
 Leader: Yes
Platform:
 Operating System: linux
 Architecture: x86_64
Resources:
 CPUs: 1
 Memory: 995.6MiB
Plugins:
 Log: awslogs, fluentd, gcplogs, gelf, journald, json-file, logentries,

Docker Swarm Chapter 8

[210]

splunk, syslog
 Network: bridge, host, macvlan, null, overlay
 Volume: local
Engine Version: 18.06.1-ce
Engine Labels:
 - provider=virtualbox

Run the same command, but this time targeting one of the worker nodes:

$ docker node inspect swarm-worker01 --pretty

This gives us similar information:

ID: yhqj03rkfzurb4aqzk7duidf4
Hostname: swarm-worker01
Joined at: 2018-09-15 12:24:09.02346782 +0000 utc
Status:
 State: Ready
 Availability: Active
 Address: 192.168.99.101
Platform:
 Operating System: linux
 Architecture: x86_64
Resources:
 CPUs: 1
 Memory: 995.6MiB
Plugins:
 Log: awslogs, fluentd, gcplogs, gelf, journald, json-file, logentries,
splunk, syslog
 Network: bridge, host, macvlan, null, overlay
 Volume: local
Engine Version: 18.06.1-ce
Engine Labels:
 - provider=virtualbox

But as you can see, it is missing the information about the state of the manager
functionality. This is because the worker nodes do not need to know about the status of the
manager nodes; they just need to know that they are allowed to receive instructions from
the managers.

In this way, we can see the information about this host, such as the number of containers,
the numbers of images on the host, and information about the CPU and memory, along
with other interesting information.

Docker Swarm Chapter 8

[211]

Promoting a worker node
Say you wanted to perform some maintenance on your single manager node, but you
wanted to maintain the availability of your cluster. No problem; you can promote a worker
node to a manager node.

While we have our local three-node cluster up and running, let's promote swarm-
worker01 to be a new manager. To do this, run the following command:

$ docker node promote swarm-worker01

You should receive a message confirming that your node has been promoted immediately
after executing the command:

Node swarm-worker01 promoted to a manager in the swarm.

List the nodes by running this:

$ docker node ls

This should show you that you now have two nodes that display something in the MANAGER
STATUS column:

Our swarm-manager node is still the primary manager node though. Let's look at doing
something about that.

Demoting a manager node
You may have already put two and two together, but to demote a manager node to a
worker, you simply need to run this command:

$ docker node demote swarm-manager

Docker Swarm Chapter 8

[212]

Again, you will receive immediate feedback stating the following:

Manager swarm-manager demoted in the swarm.

Now that we have demoted our node, you can check the status of the nodes within the
cluster by running this command:

$ docker node ls

As your local Docker client is still pointing toward the newly demoted node, you will
receive a message stating the following:

Error response from daemon: This node is not a swarm manager. Worker nodes
can't be used to view or modify cluster state. Please run this command on a
manager node or promote the current node to a manager.

As we have already learned, it is easy to update our local client configuration to
communicate with other nodes using Docker Machine. To point your local client to the new
manager node, run the following command:

$ eval $(docker-machine env swarm-worker01)

Now that out client is talking to a manager node again, rerun this:

$ docker node ls

It should list the nodes, as expected:

Draining a node
To temporarily remove a node from our cluster so that we can perform maintenance, we
need to set the status of the node to Drain. Let's look at draining our former manager node.
To do this, we need to run the following command:

$ docker node update --availability drain swarm-manager

Docker Swarm Chapter 8

[213]

This will stop any new tasks, such as new containers launching or being executed against
the node we are draining. Once new tasks have been blocked, all running tasks will be
migrated from the node we are draining to nodes with an ACTIVE status.

As you can see from the following Terminal output, listing the nodes now shows that
swarm-manager node is listed as Drain in the AVAILABILITY column:

Now that our node is no longer accepting new tasks and all running tasks have been
migrated to our two remaining nodes, we can safely perform our maintenance, such as
rebooting the host. To reboot Swarm manager, run the following two commands, ensuring
that you are connected to the Docker host (you should see the boot2docker banner, like in
the screenshot following the commands):

$ docker-machine ssh swarm-manager
$ sudo reboot

Docker Swarm Chapter 8

[214]

Once the host has been rebooted, run this command:

$ docker node ls

It should show that the node has an AVAILABILITY of Drain. To add the node back into
the cluster, simply change the AVAILABILITY to active by running this:

$ docker node update --availability active swarm-manager

As you can see from the following Terminal output, our node is now active, meaning new
tasks can be executed against it:

Now that we have looked at how to create and manage a Docker Swarm cluster, we should
look at how to run a task such as creating and scaling a service.

Docker Swarm services and stacks
So far, we have looked at the following commands:

$ docker swarm <command>
$ docker node <command>

Docker Swarm Chapter 8

[215]

These two commands allow us to bootstrap and manage our Docker Swarm cluster from a
collection of existing Docker hosts. The next two commands we are going to look at are as
follows:

$ docker service <command>
$ docker stack <command>

The service and stack commands allow us to execute tasks that, in turn, launch, scale,
and manage containers within our Swarm cluster.

Services
The service command is a way of launching containers that take advantage of the Swarm
cluster. Let's look at launching a really basic single-container service on our Swarm cluster.
To do this, run the following command:

$ docker service create \
 --name cluster \
 --constraint "node.role == worker" \
 -p:80:80/tcp \
 russmckendrick/cluster

This will create a service called cluster that consists of a single container with port 80
mapped from the container to the host machine, and it will only be running on nodes that
have the role of worker.

Before we look at doing more with the service, we can check whether it worked on our
browser. To do this, we will need the IP address of our two worker nodes. First of all, we
need to double check which are the worker nodes by running this command:

$ docker node ls

Once we know which node has which role, you can find the IP addresses of your nodes by
running this command:

$ docker-machine ls

Docker Swarm Chapter 8

[216]

Look at the following Terminal output:

My worker nodes are swarm-manager and swarm-worker02, whose IP addresses are
192.168.99.100 and 192.168.99.102 respectively.

Going to either of the IP addresses of your worker nodes, such as http://192.168.99.100/
or http://192.168.99.102/, in a browser will show the output of the
russmckendrick/cluster application, which is the Docker Swarm graphic and the
hostname of the container the page is being served from:

http://192.168.99.100/
http://192.168.99.102/

Docker Swarm Chapter 8

[217]

Now that we have our service running on our cluster, we can start to find out more
information about it. First of all, we can list the services again by running this command:

$ docker service ls

In our case, this should return the single service we launched, called cluster:

As you can see, it is a replicated service and 1/1 containers are active. Next, you can
drill down to find out more information about the service by running the inspect
command:

$ docker service inspect cluster --pretty

This will return detailed information about the service:

Docker Swarm Chapter 8

[218]

You may have noticed that so far, we haven't had to care about which of our two worker
nodes the service is currently running on. This is quite an important feature of Docker
Swarm, as it completely removes the need for you to worry about the placement of
individual containers.

Before we look at scaling our service, we can take a quick look at which host our single
container is running on by running these commands:

$ docker node ps
$ docker node ps swarm-manager
$ docker node ps swarm-worker02

This will list the containers running on each of our hosts. By default, it will list the host the
command is being targeted against, which in my case is swarm-worker01:

Let's look at scaling our service to six instances of our application container. Run the
following commands to scale and check our service:

$ docker service scale cluster=6
$ docker service ls
$ docker node ps swarm-manager
$ docker node ps swarm-worker02

Docker Swarm Chapter 8

[219]

We are only checking two of the nodes since we originally told our service to launch on
worker nodes. As you can see from the following Terminal output, we now have three
containers running on each of our worker nodes:

Before we move on to look at stacks, let's remove our service. To do this, run the following
command:

$ docker service rm cluster

This will remove all of the containers while leaving the downloaded image on the hosts.

Docker Swarm Chapter 8

[220]

Stacks
It is more than possible to create quite complex, highly available multi-container
applications using Swarm and services. In a non-Swarm cluster, manually launching each
set of containers for a part of the application can start to become a little laborious and also
difficult to share. To this end, Docker has created functionality that allows you to define
your services in Docker Compose files.

The following Docker Compose file, which should be named docker-compose.yml, will
create the same service we launched in the previous section:

version: "3"
services:
 cluster:
 image: russmckendrick/cluster
 ports:
 - "80:80"
 deploy:
 replicas: 6
 restart_policy:
 condition: on-failure
 placement:
 constraints:
 - node.role == worker

As you can see, the stack can be made up of multiple services, each defined under the
services section of the Docker Compose file.

In addition to the normal Docker Compose commands, you can add a deploy section; this
is where you define everything relating to the Swarm element of your stack.

In the previous example, we said we would like six replicas, which should be distributed
across our two worker nodes. Also, we updated the default restart policy, which you saw
when we inspected the service from the previous section and it showed up as paused, so
that, if a container becomes unresponsive, it is always restarted.

To launch our stack, copy the previous content into a file called docker-compose.yml,
and then run the following command:

$ docker stack deploy --compose-file=docker-compose.yml cluster

Docker will, as when launching containers with Docker Compose, create a new network
and then launch your services on it.

Docker Swarm Chapter 8

[221]

You can check the status of your stack by running this command:

$ docker stack ls

This will show that a single service has been created. You can get details of the service
created by the stack by running this command:

$ docker stack services cluster

Finally, running the following command will show where the containers within the stack
are running:

$ docker stack ps cluster

Take a look at the Terminal output:

Docker Swarm Chapter 8

[222]

Again, you will be able to access the stack using the IP addresses of your nodes, and you
will be routed to one of the running containers. To remove a stack, simply run this
command:

$ docker stack rm cluster

This will remove all services and networks created by the stack when it is launched.

Deleting a Swarm cluster
Before moving on, as we no longer require it for the next section, you can delete your
Swarm cluster by running the following command:

$ docker-machine rm swarm-manager swarm-worker01 swarm-worker02

Should you need to relaunch the Swarm cluster for any reason, simply follow the
instructions from the start of the chapter to recreate a cluster.

Load balancing, overlays, and scheduling
In the last few sections, we looked at launching services and stacks. To access the
applications we launched, we were able to use any of the host IP addresses in our cluster;
how was this possible?

Ingress load balancing
Docker Swarm has an ingress load balancer built in, making it easy to distribute traffic to
our public facing containers.

This means that you can expose applications within your Swarm cluster to services, for
example, an external load balancer such as Amazon Elastic Load Balancer, knowing that
your request will be routed to the correct container(s) no matter which host happens to be
currently hosting it, as demonstrated by the following diagram:

Docker Swarm Chapter 8

[223]

This means that our application can be scaled up or down, fail, or be updated, all without
the need to have the external load balancer reconfigured.

Network overlays
In our example, we launched a simple service running a single application. Say we wanted
to add a database layer in our application, which is typically a fixed point within the
network; how could we do this?

Docker Swarm Chapter 8

[224]

Docker Swarm's network overlay layer extends the network you launch your containers in
across multiple hosts, meaning that each service or stack can be launched in its own
isolated network. This means that our database container, running MongoDB, will be
accessible to all other containers running on the same overlay network on port 27017, no
matter which of the hosts the containers are running on.

You may be thinking to yourself Hang on a minute. Does this mean I have to hardcode an IP
address into my application's configuration? Well, that wouldn't fit well with the problems
Docker Swarm is trying to resolve, so no, you don't.

Each overlay network has its own inbuilt DNS service, which means that every container
launched within the network is able to resolve the hostname of another container within the
same network to its currently assigned IP address. This means that when we configure our
application to connect to our database instance, we simply need to tell it to connect to, say,
mongodb:27017, and it will connect to our MongoDB container.

This will make our diagram appear as follows:

Docker Swarm Chapter 8

[225]

There are some other considerations you will need to take into account when adopting this
pattern, but we will cover those in Chapter 14, Docker Workflows.

Scheduling
At the time of writing, there is only a single scheduling strategy available within Docker
Swarm, called Spread. What this strategy does is to schedule tasks to be run against the
least loaded node that meets any of the constraints you defined when launching the service
or stack. For the most part, you should not need to add too many constraints to your
services.

One feature that is not currently supported by Docker Swarm is affinity and anti-affinity
rules. While it is easy to get around this using constraints, I urge you not to over complicate
things, as it is very easy to end up overloading hosts or creating single points of failure if
you put too many constraints in place when defining your services.

Summary
In this chapter, we explored Docker Swarm. We took a look at how to install Docker Swarm
and the Docker Swarm components that make up Docker Swarm. We took a look at how to
use Docker Swarm: joining, listing, and managing Swarm manager and worker nodes. We
reviewed the service and stack commands and how to use them and spoke about the
Swarm inbuilt ingress load balancer, overlay networks, and scheduler.

In the next chapter, we are going to look at an alternative to Docker Swarm
called Kubernetes. This is also supported by Docker as well as other providers.

Questions
True or false: You should be running your Docker Swarm using the standalone1.
Docker Swarm rather than the in-built Docker Swarm mode?
What two things do you need after initiating your Docker Swarm manager to2.
add your workers to your Docker Swarm cluster?
Which command would you use to find out the status of each of the nodes within3.
your Docker Swarm cluster?

Docker Swarm Chapter 8

[226]

Which flag would you add to docker node inspect Swarm manager to make it4.
more readable?
How do you promote a node to be a manager?5.
What command can you use to scale your service?6.

Further reading
For a detailed explanation of the Raft consensus algorithms, I recommend working through
the excellent presentation entitled The Secret Lives of Data, which can be found at http:/ ​/
thesecretlivesofdata. ​com/ ​raft. It explains all the processes taking place in the
background on the manager nodes via an easy-to-follow animation.

http://thesecretlivesofdata.com/raft
http://thesecretlivesofdata.com/raft
http://thesecretlivesofdata.com/raft
http://thesecretlivesofdata.com/raft
http://thesecretlivesofdata.com/raft
http://thesecretlivesofdata.com/raft
http://thesecretlivesofdata.com/raft
http://thesecretlivesofdata.com/raft

9
Docker and Kubernetes

In this chapter, we will be taking a look at Kubernetes. Like Docker Swarm, you can use
Kubernetes to create and manage clusters that run your container-based applications.

The following topics will be covered in the chapter:

An introduction to Kubernetes
Enabling Kubernetes
Using Kubernetes
Kubernetes and other Docker tools

Technical requirements
Kubernetes within Docker is only supported by Docker for Mac and Docker for Windows
desktop clients. Like previous chapters, I will be using my preferred operating system,
which is macOS. As before, some of the supporting commands, which will be few and far
between, may only apply to macOS.

Check out the following video to see the Code in Action:
http:/​/​bit.​ly/​2q6xpwl

An introduction to Kubernetes
If you have been thinking about looking at containers, then you would have come
across Kubernetes at some point on your travels, so before we enable it within our Docker
desktop installation, let's take a moment to look at where Kubernetes came from.

http://bit.ly/2q6xpwl
http://bit.ly/2q6xpwl
http://bit.ly/2q6xpwl
http://bit.ly/2q6xpwl
http://bit.ly/2q6xpwl
http://bit.ly/2q6xpwl
http://bit.ly/2q6xpwl
http://bit.ly/2q6xpwl
http://bit.ly/2q6xpwl

Docker and Kubernetes Chapter 9

[228]

Kubernetes (which is pronounced koo-ber-net-eez) originates from the Greek name given
to a helmsman or captain of a ship. Kubernetes (which is also known as K8s), an open
source project, that originated at Google, allows you to automate the deployment,
management and scaling of your containerized applications.

A brief history of containers at Google
Google has been working on Linux container-based solutions for quite a long time. It took
its first steps in 2006 by working on the Linux kernel feature called Control Groups
(cgroups). This feature was merged into the Linux kernel in 2008 within release 2.6.24. The
feature allows you to isolate resources, such as CPU, RAM, networking, and disc I/O, or
one or more processes. Control Groups remains a core requirement for Linux containers
and is not only used by Docker but also other container tools.

Google next dipped their toe into container waters with a container stack called lmctfy,
which stands for Let Me Contain That For You. This was an alternative to the LXC
collection of tools and libraries. It was an open sourced version of their own internal tools,
which they used to manage containers in their own applications.

The next time Google hit the news about their container usage was following a talk given
by Joe Beda at Gluecon in May 2014. During the talk, Beda revealed that pretty much
everything within Google was container based and that they were launching around 2
billion containers a week. It was stated that this number did not include any long-running
containers, meaning that the containers were only active for a short amount of time.
However, after some quick math, this meant that on average Google was launching around
3,000 containers per second!

Later in the talk, Beda mentioned that Google was using a scheduler so they didn't have to
manually manage 2 billion containers a week or even worry about where they were
launched and, to a lesser extent, each container's availability.

Google also published a paper called Large-scale cluster management at Google with Borg. This
paper not only let people outside of Google know the name of the scheduler they were
using, Borg, but it also went into great detail about the design decisions they made when
designing the scheduler.

The paper mentioned that as well as their internal tools, Google was running its customer-
facing applications, such as Google Docs, Google Mail, and Google Search in containers
running clusters, which are managed by Borg.

Docker and Kubernetes Chapter 9

[229]

Borg was named after the alien race, the Borg, from the Star Trek: The Next Generation TV
show. In the TV show, the Borg are a race of cybernetic beings who's civilization is based on
a hive mind known as the collective. This gives them not only the ability to share the same
thoughts but also, through a sub-space network, ensure that each member of the collective
is given guidance and supervision from the collective consciousness. I am sure you will
agree, the characteristics of the Borg race matches that closely of how you would want your
cluster of containers to run.

Borg was running within Google for several years and it was eventually replaced by a more
modern scheduler called Omega. It was around this time that Google announced it that it
would be taking some of the core functionality of Borg and reproducing it as a new open
source project. This project, known internally as Seven, was worked on by several of the
core contributors to Borg. Its aim was to create a friendlier version of Borg which wasn't
closely tied into Google's own internal procedures and ways of working.

Seven, which was named after the Star Trek: Voyager character, Seven of Nine, who was a
Borg that broke away from the collective, would eventually be named Kubernetes by the
time of its first public commit.

An overview of Kubernetes
So, now we now know how Kubernetes came to be, we can dig a little deeper into
what Kubernetes is. The bulk of the project, 88.5% to be precise, is written in Go, which
should come as no surprise as Go is a programming language that was developed
internally at Google before it was open sourced in 2011. The rest of the project files are
made up of Python and Shell helper scripts and HTML documentation.

A typical Kubernetes cluster is made up of servers that take on either a master or node role.
You can also run a standalone installation that takes on both roles.

The master role is where the magic happens and it is the brains of the cluster. It is
responsible for making decisions on where pods are launched and for monitoring the
health of both the cluster itself and also the pods running within the cluster. We will
discuss pods once we have finished looking at the two roles.

Docker and Kubernetes Chapter 9

[230]

Typically, the core components that are deployed to a host that has been given the role of a
master are:

kube-apiserver: This component exposes the main Kubernetes API. It is
designed to horizontally scale, which means that you can keep adding more
instances of it to make your cluster highly available.
etcd: This is a highly available consistent key-value store. It is used to store the
state of the cluster.
kube-scheduler: This component is responsible for making the decisions on
where pods are launched.
kube-controller-manager: This component runs controllers. These
controllers have several functions within Kubernetes, such as monitoring the
nodes, keeping an eye on the replication, managing the endpoints, and
generating service accounts and tokens.
cloud-controller-manager: This component takes on the management of the
various controllers, which interact with third-party clouds to launch and
configure supporting services.

Now that we have our management components covered, we need to discuss what they are
managing. A node is made up of the following components:

kubelet: This agent runs on each node within the cluster and it is the means by
which the managers interact with the nodes. It is also responsible for managing
the pods.
kube-proxy: This component manages all of the routing of requests and traffic
for both the node and also the pods.
container runtime: This could be Docker RKT or any other OCI-compliant
runtime.

You may have noticed that I have not mentioned containers much so far. This is because
Kubernetes doesn't actually directly interact with your containers; instead, it communicates
with a pod. Think of a pod as a complete application; a little like when we looked at
launching an application made up of multiple containers using Docker Compose.

Docker and Kubernetes Chapter 9

[231]

Kubernetes and Docker
Kubernetes was originally seen as a competitive technology to Docker Swarm,
Docker's own clustering technology. However, over the last few years, Kubernetes has
emerged as pretty much the de facto standard for container orchestration.

All of the major cloud providers provide Kubernetes-as-a-Service. We have the following:

Google Cloud: Google Kubernetes Engine (GKE)
Microsoft Azure: Azure Kubernetes Service (AKS)
Amazon Web Services: Amazon Elastic Container Service for Kubernetes (EKS)
IBM: IBM Cloud Kubernetes Service
Oracle Cloud: Oracle Container Engine for Kubernetes
DigitalOcean: Kubernetes on DigitalOcean

On the face of it, all of the major players supporting Kubernetes may not seem like that big
a deal. However, consider that we now know a consistent way of deploying our
containerized applications across multiple platforms. Traditionally, these platforms have
been walled gardens and have very different ways of interacting with them.

While Docker's announcement in October 2017 at DockerCon Europe initially came as a
surprise, once the dust settled the announcement made perfect sense. Providing developers
with an environment where they could work on their applications locally using Docker for
Mac and Docker for Windows, and then using Docker Enterprise Edition to deploy and
manage their own Kubernetes clusters, or even use one of the cloud services mentioned
previously, fits in with the trying to solve the "works on my machine" problem we
discussed in Chapter 1, Docker Overview.

Let's now take a look at how you can enable support in the Docker software and get stuck
in with using it.

Docker and Kubernetes Chapter 9

[232]

Enabling Kubernetes
Docker has made the installation process extremely simple. All you need to do to
enable Kubernetes support is open Preferences and click on the Kubernetes tab:

As you can see, there are two main options. Tick the Enable Kubernetes box and then
select Kubernetes as the default orchestrator. Leave Show systems containers unticked for
now; we look at this in a little more detail once we have enabled the service.
Clicking Apply will pop up the following message:

Docker and Kubernetes Chapter 9

[233]

Hitting the Install button will download the required containers needed to
enable Kubernetes support on your Docker installation:

As mentioned in the first dialogue box, it will take a short while for Docker to download,
configure, and launch the cluster. Once complete, you should see a green dot next
to Kubernetes is running:

Open a Terminal and run the following command:

$ docker container ls -a

Docker and Kubernetes Chapter 9

[234]

This should show you that there is nothing out of the ordinary running. Run the following
command:

$ docker image ls

This should show you a list of Kubernetes-related images:

docker/kube-compose-controller

docker/kube-compose-api-server

k8s.gcr.io/kube-proxy-amd64

k8s.gcr.io/kube-scheduler-amd64

k8s.gcr.io/kube-apiserver-amd64

k8s.gcr.io/kube-controller-manager-amd64

k8s.gcr.io/etcd-amd64

k8s.gcr.io/k8s-dns-dnsmasq-nanny-amd64

k8s.gcr.io/k8s-dns-sidecar-amd64

k8s.gcr.io/k8s-dns-kube-dns-amd64

k8s.gcr.io/pause-amd64

The images are sourced from both Docker and also the official Kubernetes images that are
available from the Google Container Registry (k8s.gcr.io).

As you may have already guessed, ticking the Show system containers (advanced) box and
then running the following command will show you a list of all of the containers running
that enable the Kubernetes service on your local Docker installation:

$ docker container ls -a

As there is a lot of output when running the preceding command, the following screenshot
shows just the names of the containers. To do this, I ran the following :

$ docker container ls --format {{.Names}}

Running the command gave me the following:

Docker and Kubernetes Chapter 9

[235]

There are 18 running containers, which is why you have the option of hiding them. As you
can see, nearly all of the components we discussed in the previous section are covered as
well as a few additional components, which provide the integration with Docker. I would
recommend unticking the Show system containers box, as we do not need to see a list of 18
containers running each time we look at the running containers.

The other thing to note at this point is that the Kubernetes menu item now has content in it.
This menu can be used for switching between Kubernetes clusters. As we only have one
cluster active at the moment, there is only one listed:

Docker and Kubernetes Chapter 9

[236]

Now that we have our local Kubernetes cluster up and running, we can start to use it.

Using Kubernetes
Now that we have our Kubernetes cluster up and running on our Docker desktop
installation, we can start to interact with it. To start with, we are going to look at the
command line that was installed alongside the Docker desktop component, kubectl.

As mentioned, kubectl was installed alongside. The following command will show some
information about the client and also the cluster it is connected to:

$ kubectl version

Next, we can run the following to see if kubectl can see our node:

$ kubectl get nodes

Now that we have our client interacting with our node, we can view the namespaces that
are configured by default within Kubernetes by running the following command:

$ kubectl get namespaces

Then we can view the pods within a namespace with the following command:

$ kubectl get --namespace kube-system pods

Docker and Kubernetes Chapter 9

[237]

Namespaces within Kubernetes are a great way of isolating resources within your cluster.
As you can see from the Terminal output, there are four namespaces within our cluster.
There is the default namespace, which is typically empty. There are two namespaces for
the main Kubernetes services: docker and kube-system. These contain the pods that
make up our cluster and the final namespace, kube-public, like the default namespace, is
empty.

Before we launch our own pod, let's take a quick look at how we can interact with the pods
we have running, starting with how we can find more information about our pod:

$ kubectl describe --namespace kube-system pods kube-scheduler-docker-for-
desktop

The preceding command will print out details of the kube-scheduler-docker-for-
desktop pod. You might notice that we had to pass the namespace using the --namespace
flag. If we didn't, then kubectl would default to the default namespace where there isn't a
pod called kube-scheduler-docker-for-desktop running.

The full output of the command is shown here:

Name: kube-scheduler-docker-for-desktop
Namespace: kube-system
Node: docker-for-desktop/192.168.65.3
Start Time: Sat, 22 Sep 2018 14:10:14 +0100
Labels: component=kube-scheduler
 tier=control-plane
Annotations: kubernetes.io/config.hash=6d5c9cb98205e46b85b941c8a44fc236
 kubernetes.io/config.mirror=6d5c9cb98205e46b85b941c8a44fc236

Docker and Kubernetes Chapter 9

[238]

 kubernetes.io/config.seen=2018-09-22T11:07:47.025395325Z
 kubernetes.io/config.source=file
 scheduler.alpha.kubernetes.io/critical-pod=
Status: Running
IP: 192.168.65.3
Containers:
 kube-scheduler:
 Container ID:
docker://7616b003b3c94ca6e7fd1bc3ec63f41fcb4b7ce845ef7a1fb8af1a2447e45859
 Image: k8s.gcr.io/kube-scheduler-amd64:v1.10.3
 Image ID: docker-pullable://k8s.gcr.io/kube-scheduler-
amd64@sha256:4770e1f1eef2229138e45a2b813c927e971da9c40256a7e2321ccf825af569
16
 Port: <none>
 Host Port: <none>
 Command:
 kube-scheduler
 --kubeconfig=/etc/kubernetes/scheduler.conf
 --address=127.0.0.1
 --leader-elect=true
 State: Running
 Started: Sat, 22 Sep 2018 14:10:16 +0100
 Ready: True
 Restart Count: 0
 Requests:
 cpu: 100m
 Liveness: http-get http://127.0.0.1:10251/healthz delay=15s timeout=15s
period=10s #success=1 #failure=8
 Environment: <none>
 Mounts:
 /etc/kubernetes/scheduler.conf from kubeconfig (ro)
Conditions:
 Type Status
 Initialized True
 Ready True
 PodScheduled True
Volumes:
 kubeconfig:
 Type: HostPath (bare host directory volume)
 Path: /etc/kubernetes/scheduler.conf
 HostPathType: FileOrCreate
QoS Class: Burstable
Node-Selectors: <none>
Tolerations: :NoExecute
Events: <none>

Docker and Kubernetes Chapter 9

[239]

As you can see, there is a lot of information about the pod, including a list of containers; we
only have one called kube-scheduler. We can see the container ID, the image used, the
flags the container was launched with, and also the data used by the Kubernetes scheduler
to launch and maintain the pod.

Now that we know a container name, we can start to interact with it. For example, running
the following command will print the logs for our one container:

$ kubectl logs --namespace kube-system kube-scheduler-docker-for-desktop -c
kube-scheduler

Running the following command would fetch the logs for each container in the pod:

$ kubectl logs --namespace kube-system kube-scheduler-docker-for-desktop

Like Docker, you can also execute commands on your pods and containers. For example,
the following commands will run the uname -a command:

Please ensure you add the space after the -- in the following two
commands. Failing to do so will result in errors.

$ kubectl exec --namespace kube-system kube-scheduler-docker-for-desktop -c
kube-scheduler -- uname -a
$ kubectl exec --namespace kube-system kube-scheduler-docker-for-desktop --
uname -a

Docker and Kubernetes Chapter 9

[240]

Again, we have the option of running the command on a named container or across all
containers within the pod:

Let's find out a little more about our Kubernetes cluster by installing and logging into the
web-based dashboard. While this does not ship with Docker by default, installing it using
the definition file provided by the Kubernetes project is simple. We just need to run the
following command:

$ kubectl create -f
https://raw.githubusercontent.com/kubernetes/dashboard/master/src/deploy/re
commended/kubernetes-dashboard.yaml

Once the services and deployments have been created, it will take a few minutes to launch.
You can check on the status by running the following commands:

$ kubectl get deployments --namespace kube-system
$ kubectl get services --namespace kube-system

Docker and Kubernetes Chapter 9

[241]

Once your output looks like the following, your dashboard should be installed and ready:

Now that we have our dashboard running, we will find a way to access it. We can do this
using the inbuilt proxy service in kubectl. Just run the following command to start it up:

$ kubectl proxy

This will start the proxy and opening your browser and going to
http://127.0.0.1:8001/version/ will show you some information on your cluster:

Docker and Kubernetes Chapter 9

[242]

However, it's the dashboard we want to see. This can be accessed
at http://localhost:8001/api/v1/namespaces/kube-system/services/https:ku
bernetes-dashboard:/proxy/.

You will be greeted with a login screen when you first open the URL in your browser. As
we are accessing the dashboard through the proxy, we can just press the SKIP button:

Docker and Kubernetes Chapter 9

[243]

Once logged in, you will be able to see quite a bit of information on your cluster:

Now that we have our cluster up and running, we can now look at launching a few sample
applications.

Kubernetes and other Docker tools
When we enabled Kubernetes, we selected Kubernetes as the default orchestrator for
Docker stack commands. In the previous chapter, the Docker stack command would
launch our Docker Compose files in Docker Swarm. The Docker Compose we used looked
like the following:

version: "3"
services:
 cluster:
 image: russmckendrick/cluster

Docker and Kubernetes Chapter 9

[244]

 ports:
 - "80:80"
 deploy:
 replicas: 6
 restart_policy:
 condition: on-failure
 placement:
 constraints:
 - node.role == worker

Before we launch the application on Kubernetes, we need to make a slight adjustment and
remove the placement, which leaves our file looking like the following:

version: "3"
services:
 cluster:
 image: russmckendrick/cluster
 ports:
 - "80:80"
 deploy:
 replicas: 6
 restart_policy:
 condition: on-failure

Once the file has been edited, running the following command will launch the stack:

$ docker stack deploy --compose-file=docker-compose.yml cluster

As you can see, Docker waits until the stack is available before returning you to your
prompt. We can also run the same commands we used to view some information about our
stack as we did when we launched our stack on Docker Swarm:

$ docker stack ls
$ docker stack services cluster
$ docker stack ps cluster

Docker and Kubernetes Chapter 9

[245]

We can also see details using kubectl:

$ kubectl get deployments
$ kubectl get services

You may have noticed that this time we did not need to provide a namespace. This is
because our stack was launched in the default namespace. Also, when the services were
listed, a ClusterIP and LoadBalancer are listed for the cluster stack. Looking at the
LoadBalancer, you can see that the external IP is localhost and that the port is 80.

Docker and Kubernetes Chapter 9

[246]

Opening http:/​/ ​localhost/ ​ in our browser shows the application:

If you still have the dashboard open, you can explore your stack and even open a Terminal
to one of the containers:

Docker and Kubernetes Chapter 9

[247]

You can remove the stack by running the following command:

$ docker stack rm cluster

One last thing—you may be thinking to yourself, great, I can run my Docker Compose files
anywhere on a Kubernetes cluster. Well, that is not strictly true. As mentioned, when we
first enabled Kubernetes, there are some Docker only components launched. These are
there to make sure that Docker is integrated as tightly as possible. However, as these
components won't exist in non-Docker managed clusters, then you won't be back to use the
docker stack commands.

All is not lost though. There is a tool called Kompose provided as part of the Kubernetes
project, which can take a Docker Compose file and convert it on the fly to Kubernetes
definition files.

To install Kompose on macOS, run the following commands:

$ curl -L
https://github.com/kubernetes/kompose/releases/download/v1.16.0/kompose-dar
win-amd64 -o /usr/local/bin/kompose
$ chmod +x /usr/local/bin/kompose

Windows 10 users can use Chocolatey to install the binary:

Chocolatey is a command-line based package manager that can be used to
install various software packages on your Windows-based machine,
similar to how you can use yum or apt-get on Linux machines or brew
on macOS.

$ choco install kubernetes-kompose

Finally, Linux users can run the following commands:

$ curl -L
https://github.com/kubernetes/kompose/releases/download/v1.16.0/kompose-lin
ux-amd64 -o /usr/local/bin/kompose
$ chmod +x /usr/local/bin/kompose

Once installed, you can launch your Docker Compose file by running the following
command:

$ kompose up

Docker and Kubernetes Chapter 9

[248]

You will get something like the following output:

As suggested by the output, running the following command will give you details on the
service and pod we just launched:

$ kubectl get deployment,svc,pods,pvc

You can remove the services and pods by running the following command:

$ kompose down

While you can use kompose up and kompose down, I would recommend generating
the Kubernetes definition files and tweaking them as needed. To do this simply run the
following command:

$ kompose convert

Docker and Kubernetes Chapter 9

[249]

This will generate the pod and service files:

You will be able to see quite a difference between the Docker Compose file and the two files
generated. The cluster-pod.yaml file looks like the following:

apiVersion: v1
kind: Pod
metadata:
 creationTimestamp: null
 labels:
 io.kompose.service: cluster
 name: cluster
spec:
 containers:
 - image: russmckendrick/cluster
 name: cluster
 ports:
 - containerPort: 80
 resources: {}
 restartPolicy: OnFailure
status: {}

The cluster-service.yaml file looks like the following:

apiVersion: v1
kind: Service
metadata:
 annotations:
 kompose.cmd: kompose convert
 kompose.version: 1.16.0 (0c01309)
 creationTimestamp: null
 labels:
 io.kompose.service: cluster
 name: cluster
spec:
 ports:
 - name: "80"
 port: 80
 targetPort: 80
 selector:

Docker and Kubernetes Chapter 9

[250]

 io.kompose.service: cluster
status:
 loadBalancer: {}

You can then launch these files by running the following command:

$ kubectl create -f cluster-pod.yaml
$ kubectl create -f cluster-service.yaml
$ kubectl get deployment,svc,pods,pvc

To remove the cluster pod and service, we just need to run the following command:

$ kubectl delete service/cluster pod/cluster

While Kubernetes will be popping up in upcoming chapters, you may want to disable
the Kubernetes integration within your Docker desktop installation as it does add a slight
overhead when it is idle. To do this, just untick Enable Kubernetes. When you click Apply,
Docker will stop all the containers it needed for running Kubernetes; it won't, however,
remove the images so that when you re-enable it, it doesn't take as long.

Docker and Kubernetes Chapter 9

[251]

Summary
In this chapter, we looked at Kubernetes from the point of view of Docker desktop
software. There is a lot more to Kubernetes than we have covered in this chapter, so please
don't think this is all there is. After discussing the origins of Kubernetes, we looked at how
you can enable it on your local machine using Docker for Mac or Docker for Windows.

We then discussed some basic usage of kubectl before looking at running how we can
use docker stack commands to launch our applications as we did for Docker Swarm.

At the end of the chapter, we discussed Kompose, which is a tool under the Kubernetes
project. It helps you convert your Docker Compose files for use with Kubernetes, allowing
you to get a head start on moving your applications to pure Kubernetes.

In the next chapter, we are going to take a look at Docker on public clouds, such as Amazon
Web Services, along with briefly revisiting Kubernetes.

Questions
True or false: When Show system containers (advanced) is unticked, you cannot
see the images used to launch Kubernetes.
Which of the four namespaces hosts the containers used to run Kubernetes and
enable support within Docker?
Which command would you run to find out details about a container running in
a pod?
Which command would you use to launch a Kubernetes definition YAML file?
Typically, which port does the command kubectl proxy open on your local
machine?
What was the original name of Google container orchestration platform?

Docker and Kubernetes Chapter 9

[252]

Further reading
Some of the Google tools, presentations, and white papers mentioned at the start of the
chapter can be found at:

cgroups: http:/ ​/​man7. ​org/ ​linux/ ​man-​pages/ ​man7/ ​cgroups. ​7. ​html

lmctfy: https://github.com/google/lmctfy/
Containers at Scale, Joe Beda's slides from GluCon: https:/ ​/​pdfs.
semanticscholar. ​org/ ​presentation/ ​4df0/
b2bcd39b7757867b1ead3009a628e07d8b57. ​pdf

Large-scale cluster management at Google with Borg: https:/ ​/​ai. ​google/
research/ ​pubs/ ​pub43438

LXC - https:/ ​/ ​linuxcontainers. ​org/​

You can find details on the cloud services mentioned in the chapter at:

Google Kubernetes Engine (GKE): https:/ ​/​cloud. ​google. ​com/ ​kubernetes-
engine/​
Azure Kubernetes Service (AKS): https:/ ​/​azure. ​microsoft. ​com/ ​en- ​gb/
services/ ​kubernetes- ​service/ ​

Amazon Elastic Container Service for Kubernetes (Amazon EKS): https:/ ​/​aws.
amazon.​com/ ​eks/ ​

IBM Cloud Kubernetes Service: https:/ ​/​www. ​ibm. ​com/​cloud/ ​container-
service

Oracle Container Engine for Kubernetes: https:/ ​/​cloud. ​oracle. ​com/
containers/ ​kubernetes- ​engine

Kubernetes on DigitalOcean: https:/ ​/​www. ​digitalocean. ​com/ ​products/
kubernetes/ ​

You can find Docker's announcements about Kubernetes support at:

Kubernetes for Docker Enterprise announcement: https:/ ​/​blog. ​docker. ​com/
2017/​10/ ​docker- ​enterprise- ​edition- ​kubernetes/ ​

Kubernetes makes the stable
release: https://blog.docker.com/2018/07/kubernetes-is-now-available-in
-docker-desktop-stable-channel/

Finally, the home page for Kompose can be found at:

Kompose - http:/ ​/​kompose. ​io/ ​

http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
https://github.com/google/lmctfy/
https://pdfs.semanticscholar.org/presentation/4df0/b2bcd39b7757867b1ead3009a628e07d8b57.pdf
https://pdfs.semanticscholar.org/presentation/4df0/b2bcd39b7757867b1ead3009a628e07d8b57.pdf
https://pdfs.semanticscholar.org/presentation/4df0/b2bcd39b7757867b1ead3009a628e07d8b57.pdf
https://pdfs.semanticscholar.org/presentation/4df0/b2bcd39b7757867b1ead3009a628e07d8b57.pdf
https://pdfs.semanticscholar.org/presentation/4df0/b2bcd39b7757867b1ead3009a628e07d8b57.pdf
https://pdfs.semanticscholar.org/presentation/4df0/b2bcd39b7757867b1ead3009a628e07d8b57.pdf
https://pdfs.semanticscholar.org/presentation/4df0/b2bcd39b7757867b1ead3009a628e07d8b57.pdf
https://pdfs.semanticscholar.org/presentation/4df0/b2bcd39b7757867b1ead3009a628e07d8b57.pdf
https://pdfs.semanticscholar.org/presentation/4df0/b2bcd39b7757867b1ead3009a628e07d8b57.pdf
https://pdfs.semanticscholar.org/presentation/4df0/b2bcd39b7757867b1ead3009a628e07d8b57.pdf
https://pdfs.semanticscholar.org/presentation/4df0/b2bcd39b7757867b1ead3009a628e07d8b57.pdf
https://pdfs.semanticscholar.org/presentation/4df0/b2bcd39b7757867b1ead3009a628e07d8b57.pdf
https://pdfs.semanticscholar.org/presentation/4df0/b2bcd39b7757867b1ead3009a628e07d8b57.pdf
https://pdfs.semanticscholar.org/presentation/4df0/b2bcd39b7757867b1ead3009a628e07d8b57.pdf
https://pdfs.semanticscholar.org/presentation/4df0/b2bcd39b7757867b1ead3009a628e07d8b57.pdf
https://ai.google/research/pubs/pub43438
https://ai.google/research/pubs/pub43438
https://ai.google/research/pubs/pub43438
https://ai.google/research/pubs/pub43438
https://ai.google/research/pubs/pub43438
https://ai.google/research/pubs/pub43438
https://ai.google/research/pubs/pub43438
https://ai.google/research/pubs/pub43438
https://ai.google/research/pubs/pub43438
https://ai.google/research/pubs/pub43438
https://ai.google/research/pubs/pub43438
https://ai.google/research/pubs/pub43438
https://linuxcontainers.org/
https://linuxcontainers.org/
https://linuxcontainers.org/
https://linuxcontainers.org/
https://linuxcontainers.org/
https://linuxcontainers.org/
https://linuxcontainers.org/
https://linuxcontainers.org/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://www.ibm.com/cloud/container-service
https://www.ibm.com/cloud/container-service
https://www.ibm.com/cloud/container-service
https://www.ibm.com/cloud/container-service
https://www.ibm.com/cloud/container-service
https://www.ibm.com/cloud/container-service
https://www.ibm.com/cloud/container-service
https://www.ibm.com/cloud/container-service
https://www.ibm.com/cloud/container-service
https://www.ibm.com/cloud/container-service
https://www.ibm.com/cloud/container-service
https://www.ibm.com/cloud/container-service
https://www.ibm.com/cloud/container-service
https://www.ibm.com/cloud/container-service
https://cloud.oracle.com/containers/kubernetes-engine
https://cloud.oracle.com/containers/kubernetes-engine
https://cloud.oracle.com/containers/kubernetes-engine
https://cloud.oracle.com/containers/kubernetes-engine
https://cloud.oracle.com/containers/kubernetes-engine
https://cloud.oracle.com/containers/kubernetes-engine
https://cloud.oracle.com/containers/kubernetes-engine
https://cloud.oracle.com/containers/kubernetes-engine
https://cloud.oracle.com/containers/kubernetes-engine
https://cloud.oracle.com/containers/kubernetes-engine
https://cloud.oracle.com/containers/kubernetes-engine
https://cloud.oracle.com/containers/kubernetes-engine
https://cloud.oracle.com/containers/kubernetes-engine
https://cloud.oracle.com/containers/kubernetes-engine
https://www.digitalocean.com/products/kubernetes/
https://www.digitalocean.com/products/kubernetes/
https://www.digitalocean.com/products/kubernetes/
https://www.digitalocean.com/products/kubernetes/
https://www.digitalocean.com/products/kubernetes/
https://www.digitalocean.com/products/kubernetes/
https://www.digitalocean.com/products/kubernetes/
https://www.digitalocean.com/products/kubernetes/
https://www.digitalocean.com/products/kubernetes/
https://www.digitalocean.com/products/kubernetes/
https://www.digitalocean.com/products/kubernetes/
https://www.digitalocean.com/products/kubernetes/
https://www.digitalocean.com/products/kubernetes/
https://blog.docker.com/2017/10/docker-enterprise-edition-kubernetes/
https://blog.docker.com/2017/10/docker-enterprise-edition-kubernetes/
https://blog.docker.com/2017/10/docker-enterprise-edition-kubernetes/
https://blog.docker.com/2017/10/docker-enterprise-edition-kubernetes/
https://blog.docker.com/2017/10/docker-enterprise-edition-kubernetes/
https://blog.docker.com/2017/10/docker-enterprise-edition-kubernetes/
https://blog.docker.com/2017/10/docker-enterprise-edition-kubernetes/
https://blog.docker.com/2017/10/docker-enterprise-edition-kubernetes/
https://blog.docker.com/2017/10/docker-enterprise-edition-kubernetes/
https://blog.docker.com/2017/10/docker-enterprise-edition-kubernetes/
https://blog.docker.com/2017/10/docker-enterprise-edition-kubernetes/
https://blog.docker.com/2017/10/docker-enterprise-edition-kubernetes/
https://blog.docker.com/2017/10/docker-enterprise-edition-kubernetes/
https://blog.docker.com/2017/10/docker-enterprise-edition-kubernetes/
https://blog.docker.com/2017/10/docker-enterprise-edition-kubernetes/
https://blog.docker.com/2017/10/docker-enterprise-edition-kubernetes/
https://blog.docker.com/2017/10/docker-enterprise-edition-kubernetes/
https://blog.docker.com/2017/10/docker-enterprise-edition-kubernetes/
https://blog.docker.com/2017/10/docker-enterprise-edition-kubernetes/
https://blog.docker.com/2017/10/docker-enterprise-edition-kubernetes/
https://blog.docker.com/2017/10/docker-enterprise-edition-kubernetes/
https://blog.docker.com/2018/07/kubernetes-is-now-available-in-docker-desktop-stable-channel/
https://blog.docker.com/2018/07/kubernetes-is-now-available-in-docker-desktop-stable-channel/
http://kompose.io/
http://kompose.io/
http://kompose.io/
http://kompose.io/
http://kompose.io/
http://kompose.io/
http://kompose.io/
http://kompose.io/

10
Running Docker in Public

Clouds
So far, we have been using Digital Ocean to launch containers on a cloud-based
infrastructure. In this chapter, we will look at using the tools provided by Docker to launch
a Docker Swarm cluster in Amazon Web Services and also Microsoft Azure. We will then
look at the container solutions offered by Amazon Web Services, Microsoft Azure, and
Google Cloud.

The following topics will be covered in this chapter:

Docker Cloud
Amazon ECS and AWS Fargate
Microsoft Azure App Services
Kubernetes in Microsoft Azure, Google Cloud, and Amazon Web Services

Technical requirements
In this chapter, we will be using various cloud providers, so if you are following along, you
will need active accounts with each. Again, the screenshots in this chapter will be from my
preferred operating system, macOS. As before, the commands we will be running should
work on all three of the operating systems we have targeted so far, unless otherwise stated.

We will also be looking at some of the command-line tools provided by the cloud providers
to help manage their services – this chapter does not serve as a detailed how-to guide for
these tools, though, and links to documentation will be provided in the Further reading
section in this chapter for more detailed usage guides.

Running Docker in Public Clouds Chapter 10

[254]

Check out the following video to see the Code in Action:
http:/​/​bit.​ly/​2Se544n

Docker Cloud
Before we start looking at other services, I thought it would be good to quickly discuss
Docker Cloud as there are still a lot of references to the cloud management services that
were once provided by Docker.

Docker Cloud was made up of several Docker services. These included SaaS offerings for
building and hosting images, which was another one of the services offered application,
node, and Docker Swarm cluster management. On May 21, 2018, all services that offered
the management of remote nodes where closed down.

Docker recommended that Docker Cloud users who managed their nodes using this service
should migrate those workloads to either Docker Community Edition (CE) or Docker
Enterprise Edition (EE) and into the cloud of their own hardware. Docker also
recommended the Azure Container Service and Google Kubernetes Engine.

So, for this reason, we will not be discussing any Docker hosted services in this chapter like
we did in previous editions of Mastering Docker.

However, considering what we have discussed, the next section may seem a little
confusing. While Docker has stopped all hosted cloud management services, it still
provides tools to help you manage your Docker Swarm clusters in two of the major public
cloud providers.

Docker on-cloud
In this section, we are going to look at the two templated cloud offerings from Docker.
These both launch Docker Swarm clusters that have deep levels of integration with their
target platforms, and have also been built with Docker best practices in mind. Let's look at
the Amazon Web Services template first.

http://bit.ly/2Se544n
http://bit.ly/2Se544n
http://bit.ly/2Se544n
http://bit.ly/2Se544n
http://bit.ly/2Se544n
http://bit.ly/2Se544n
http://bit.ly/2Se544n
http://bit.ly/2Se544n
http://bit.ly/2Se544n

Running Docker in Public Clouds Chapter 10

[255]

Docker Community Edition for AWS
Docker Community Edition for AWS (which we will call Docker for AWS from now on) is
an Amazon CloudFormation template created by Docker that is designed to easily launch a
Docker Swarm mode cluster in AWS with Docker best practices and recommendations
applied.

CloudFormation is a service that's offered by Amazon that allows you to
define how you would like your infrastructure to look in a template file
that can then be shared or brought under version control.

The first thing we need to do – and it's also the only thing we need to configure ahead of
launching Docker for AWS—is to ensure that we have an SSH key assigned to our account
in the region we will be launching our cluster. To do this, log in to the AWS Console at
https:/​/​console. ​aws. ​amazon. ​com/ ​, or your organization's custom sign-in page if you use
one. Once logged in, go to the Service menu, which can be found in the top-left of the page,
and find the EC2 service.

To make sure that you are in your desired region, you can use the region switcher in the
top right between your username and the support menu. Once you are in the right region,
click on Key Pairs, which can be found under Network & Security in the left-hand menu.
Once on the Key Pairs page, you should see a list of your current key pairs. If you have
none listed or don't have access to them, you can either click on Create Key Pair or Import
Key Pair and follow the onscreen prompts.

Docker for AWS can be found in the Docker Store at https:/ ​/​store. ​docker. ​com/
editions/​community/ ​docker- ​ce- ​aws. You have two choices of Docker for AWS: Stable and
Edge version.

The Edge version contains experimental features from upcoming versions of Docker;
because of that, we are going to look at launching Docker for AWS (stable). To do that, just
click on the button and you will be taken straight to CloudFormation in your AWS Console
with the Docker template already loaded.

https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://store.docker.com/editions/community/docker-ce-aws
https://store.docker.com/editions/community/docker-ce-aws
https://store.docker.com/editions/community/docker-ce-aws
https://store.docker.com/editions/community/docker-ce-aws
https://store.docker.com/editions/community/docker-ce-aws
https://store.docker.com/editions/community/docker-ce-aws
https://store.docker.com/editions/community/docker-ce-aws
https://store.docker.com/editions/community/docker-ce-aws
https://store.docker.com/editions/community/docker-ce-aws
https://store.docker.com/editions/community/docker-ce-aws
https://store.docker.com/editions/community/docker-ce-aws
https://store.docker.com/editions/community/docker-ce-aws
https://store.docker.com/editions/community/docker-ce-aws
https://store.docker.com/editions/community/docker-ce-aws
https://store.docker.com/editions/community/docker-ce-aws
https://store.docker.com/editions/community/docker-ce-aws
https://store.docker.com/editions/community/docker-ce-aws
https://store.docker.com/editions/community/docker-ce-aws

Running Docker in Public Clouds Chapter 10

[256]

You can view the raw template, which is currently made up of 3,100 lines of code, by going
to https:/​/​editions- ​us- ​east- ​1. ​s3. ​amazonaws. ​com/ ​aws/ ​stable/ ​Docker. ​tmpl, or you can
visualize the template in the CloudFormation designer. As you can see from the following
visualization, there is a lot going on to launch the cluster:

https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl

Running Docker in Public Clouds Chapter 10

[257]

The beauty of this approach is that you don't have to worry about any of these
complications. Docker has you covered and has taken on all of the work of worrying about
how to launch the aforementioned infrastructure and services away from you.

The first step in launching the cluster has already been sorted for you. All you have to do is
click on Next on the Select Template page:

Next up, we have to specify some details about our cluster. Other than the SSH key, we are
going to be leaving everything at their default values:

Stack name: Docker
Number of Swarm managers: 3
Number of Swarm worker nodes: 5
Which SSH key to use: (Select your key from the list)
Enable daily resource cleanup: No
Use CloudWatch for container logging: Yes
Create EFS prerequisites for CloudStore: No
Swarm manager instance type: t2.micro

Running Docker in Public Clouds Chapter 10

[258]

Manager ephemeral storage volume size: 20
Manager ephemeral storage volume type: Standard
Agent worker instance type: t2.micro
Worker ephemeral storage volume size: 20
Worker ephemeral storage volume type: Standard
Enable EBS I/O optimization? No
Encrypt EFS objects? False

Once you have checked that everything is OK, click on the Next button. In the next step, we
can leave everything as it is and click on the Next button to be taken to a review page. On
the review page, you should find a link that gives you the estimated cost:

As you can see, the monthly estimate for my cluster is $113.46.

I have had varying success with the Estimate cost link—it may not appear
each time you launch the template—if it doesn't and you have answered
the questions as per the preceding list, then your costs will be similar to
that of mine.

The final thing you need to do before launching the cluster is to tick the box that says I
acknowledge that AWS CloudFormation might create IAM resources and click on the
Create button. As you can imagine, it takes a while to launch the cluster; you can check on
the status of the launch by selecting your CloudFormation stack in the AWS Console and
selecting the Events tab:

Running Docker in Public Clouds Chapter 10

[259]

After about 15 minutes, you should see the status change from CREATE_IN_PROGRESS
to CREATE_COMPLETE. When you see this, click on the Outputs tab and you should see
a list of URLs and links:

Running Docker in Public Clouds Chapter 10

[260]

To log in to our Swarm cluster, click on the link next to Managers to be taken to a list of
EC2 instances, which are our manager nodes. Select one of the instances and then make a
note of its public DNS address. In a terminal, SSH to the node, using docker as the
username. For example, I ran the following commands to log in and get a list of all nodes:

$ ssh docker@ec2-34-245-167-38.eu-west-1.compute.amazonaws.com
$ docker node ls

If you downloaded your SSH key from the AWS Console when you
added a key, you should update the preceding command to include the
path to your download key, for example, ssh -i
/path/to/private.key docker@ec2-34-245-167-38.eu-

west-1.compute.amazonaws.com.

The preceding commands to log in and get a list of all nodes are shown in the following
screenshot:

From here, you can treat it like any other Docker Swarm cluster. For example, we can
launch and scale the cluster service by running these commands:

$ docker service create --name cluster --constraint "node.role == worker" -
p 80:80/tcp russmckendrick/cluster
$ docker service scale cluster=6

Running Docker in Public Clouds Chapter 10

[261]

$ docker service ls
$ docker service inspect --pretty cluster

Now that your service has been launched, you can view your application at the URL given
as the DefaultDNSTarget in the Outputs tab of the CloudFormation page. This is an
Amazon Elastic load balancer that has all of our nodes sat behind it.

For example, my DefaultDNSTarget was Docker-ExternalLoa-
PCIAX1UI53AS-1796222965.eu-west-1.elb.amazonaws.com. Putting this into my
browser showed the clustered application:

Once you have finished with your cluster, return to the CloudFormation page within the
AWS Console, select your stack, and then select Delete Stack from the Actions drop-down
menu. This will remove all traces of your Docker from the Amazon Web Services cluster
and stop you from getting any unexpected charges.

Running Docker in Public Clouds Chapter 10

[262]

Please make sure that you check that there have not been any problems
with the deletion of the stack—if this process encounters any problems,
any resources that have been left behind will be charged for.

Docker Community Edition for Azure
Next up, we have the Docker Community Edition for Azure, which I will refer to as Docker
for Azure. This uses Azure Resource Manager (ARM) templates to define our Docker
Swarm cluster. Using the ARMViz tool, we can visualize what the cluster will look like:

Running Docker in Public Clouds Chapter 10

[263]

As you can see, it will launch VMs, load balancers with public IP addresses attached, and
storage. Before we launch our cluster, we need to find a few bits of information about our
Azure account:

AD Service principle ID
AD Service principle key

To generate the required information, we are going to use a helper script that runs inside of
a container. To run the script, you will need admin access to a valid Azure subscription. To
run the script, simply run the following command:

$ docker run -ti docker4x/create-sp-azure sp-name

This will give you a URL, https:/ ​/​microsoft. ​com/ ​devicelogin, and also a code to enter.
Go to the URL and enter the code:

https://microsoft.com/devicelogin
https://microsoft.com/devicelogin
https://microsoft.com/devicelogin
https://microsoft.com/devicelogin
https://microsoft.com/devicelogin
https://microsoft.com/devicelogin
https://microsoft.com/devicelogin
https://microsoft.com/devicelogin
https://microsoft.com/devicelogin

Running Docker in Public Clouds Chapter 10

[264]

This will log you in to your account on the command-line and ask you which of your
subscriptions you would like to use. The full output of the helper script can be found in the
following screenshot:

Running Docker in Public Clouds Chapter 10

[265]

At the very end of the output is the information you need, so please make a note of it.

At the time of writing this book, there is a known issue of
using the Docker for Azure (Stable) button on the Docker Community
Edition for Azure page in the Docker Store. For now, we need to use an
older version of the template. You can do this by using the following
link: https:/ ​/​portal. ​azure. ​com/ ​#create/ ​Microsoft. ​Template/ ​uri/
https%3A%2F%2Fdownload. ​docker. ​com%2Fazure%2Fstable%2F18. ​03.
0%2FDocker. ​tmpl.

This will open up the Azure portal and present you with a screen where you need to enter
several bits of information:

Subscription: Select the subscription you would like to use from the drop-down
list
Resource group: Select the resource group you would like to use or create a new
one
Location: Select where you would like to launch you Docker Swarm cluster
Ad Service Principle App ID: This was generated by the helper script we just
ran
Ad Service Principle App Secret: This was generated by the helper script we just
ran
Enable Ext Logs: Yes
Enable System Prune: No
Linux SSH Public Key: Enter the public portion of your local SSH key here
Linux Worker Count: 2
Linux Worker VM Size: Standard_D2_v2
Manager Count: 1
Manager VM Size: Standard_D2_v2
Swarm Name: dockerswarm

https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fdownload.docker.com%2Fazure%2Fstable%2F18.03.0%2FDocker.tmpl
https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fdownload.docker.com%2Fazure%2Fstable%2F18.03.0%2FDocker.tmpl
https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fdownload.docker.com%2Fazure%2Fstable%2F18.03.0%2FDocker.tmpl
https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fdownload.docker.com%2Fazure%2Fstable%2F18.03.0%2FDocker.tmpl
https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fdownload.docker.com%2Fazure%2Fstable%2F18.03.0%2FDocker.tmpl
https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fdownload.docker.com%2Fazure%2Fstable%2F18.03.0%2FDocker.tmpl
https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fdownload.docker.com%2Fazure%2Fstable%2F18.03.0%2FDocker.tmpl
https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fdownload.docker.com%2Fazure%2Fstable%2F18.03.0%2FDocker.tmpl
https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fdownload.docker.com%2Fazure%2Fstable%2F18.03.0%2FDocker.tmpl
https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fdownload.docker.com%2Fazure%2Fstable%2F18.03.0%2FDocker.tmpl
https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fdownload.docker.com%2Fazure%2Fstable%2F18.03.0%2FDocker.tmpl
https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fdownload.docker.com%2Fazure%2Fstable%2F18.03.0%2FDocker.tmpl
https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fdownload.docker.com%2Fazure%2Fstable%2F18.03.0%2FDocker.tmpl
https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fdownload.docker.com%2Fazure%2Fstable%2F18.03.0%2FDocker.tmpl
https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fdownload.docker.com%2Fazure%2Fstable%2F18.03.0%2FDocker.tmpl
https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fdownload.docker.com%2Fazure%2Fstable%2F18.03.0%2FDocker.tmpl
https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fdownload.docker.com%2Fazure%2Fstable%2F18.03.0%2FDocker.tmpl
https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fdownload.docker.com%2Fazure%2Fstable%2F18.03.0%2FDocker.tmpl
https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fdownload.docker.com%2Fazure%2Fstable%2F18.03.0%2FDocker.tmpl
https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fdownload.docker.com%2Fazure%2Fstable%2F18.03.0%2FDocker.tmpl
https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fdownload.docker.com%2Fazure%2Fstable%2F18.03.0%2FDocker.tmpl
https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fdownload.docker.com%2Fazure%2Fstable%2F18.03.0%2FDocker.tmpl
https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fdownload.docker.com%2Fazure%2Fstable%2F18.03.0%2FDocker.tmpl
https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fdownload.docker.com%2Fazure%2Fstable%2F18.03.0%2FDocker.tmpl
https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fdownload.docker.com%2Fazure%2Fstable%2F18.03.0%2FDocker.tmpl
https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fdownload.docker.com%2Fazure%2Fstable%2F18.03.0%2FDocker.tmpl
https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fdownload.docker.com%2Fazure%2Fstable%2F18.03.0%2FDocker.tmpl

Running Docker in Public Clouds Chapter 10

[266]

Agree to the terms and conditions and then click on the Purchase button at the bottom of
the page. Once you view the progress of the launch by clicking on the Deployment in
Progress link in the notification area on the top of the menu, you should see something like
this:

Once completed, you will see several services listed under the resource group that you
chose or created. One of these will be dockerswarm-externalSSHLoadBalancer-
public-ip. Drill-down into the resource and you will be given the IP address that you can
use to SSH into your Swarm Manager. To do this, run the following command:

$ ssh docker@52.232.99.223 -p 50000
$ docker node ls

Note that we are using port 5000 rather than the standard port 22. You should see
something like the following:

Running Docker in Public Clouds Chapter 10

[267]

Once you are logged in to the manager node, we can then use the following commands to
launch an application:

$ docker service create --name cluster --constraint "node.role == worker" -
p 80:80/tcp russmckendrick/cluster
$ docker service scale cluster=6
$ docker service ls
$ docker service inspect --pretty cluster

Once launched, going to dockerswarm-externalLoadBalancer-public-ip—this will
show the application. Once you have finished with your cluster, I would recommend
removing the resource group rather than trying to remove the individual resources:

Running Docker in Public Clouds Chapter 10

[268]

Remember, you will be charged for the resources while they are active,
even if you are not using them.

Like with the Amazon Web Services cluster, please make sure that the resources are
removed fully, otherwise you may end up with an unexpected bill.

Docker for Cloud summary
As you can see, it has been mostly straightforward to launch a Swarm cluster in both Azure
as well as Amazon Web Services by using the templates provided by Docker. While these
templates are great, if you are starting out, they get very little in the way of support from
Docker. I would recommend that if you are looking at an easy way to launch containers
that are running production workloads in public clouds, you can take a look at the some of
the solutions that we are going to be discussing next.

Amazon ECS and AWS Fargate
Amazon Web Services offers a few different container solutions. The one we are going to
look at in this section is part of the Amazon Elastic Container Service (ECS) and is called
AWS Fargate.

Traditionally, Amazon ECS launches EC2 instances. Once launched, an Amazon ECS agent
is deployed alongside a container runtime that allows you to then manage your containers
using the AWS Console and command-line tools. AWS Fargate removes the need to launch
EC2 instances, allowing you to simply launch containers without having to worry about
managing a cluster or having the expense of EC2 instances.

We are going to cheat slightly and work through the Amazon ECS first run process. You
can access this by going to the following URL: https:/ ​/ ​console. ​aws. ​amazon. ​com/ ​ecs/
home#/​firstRun.​ This will take us through the four steps we need to take to launch a
container within a Fargate cluster.

https://console.aws.amazon.com/ecs/home#/firstRun
https://console.aws.amazon.com/ecs/home#/firstRun
https://console.aws.amazon.com/ecs/home#/firstRun
https://console.aws.amazon.com/ecs/home#/firstRun
https://console.aws.amazon.com/ecs/home#/firstRun
https://console.aws.amazon.com/ecs/home#/firstRun
https://console.aws.amazon.com/ecs/home#/firstRun
https://console.aws.amazon.com/ecs/home#/firstRun
https://console.aws.amazon.com/ecs/home#/firstRun
https://console.aws.amazon.com/ecs/home#/firstRun
https://console.aws.amazon.com/ecs/home#/firstRun
https://console.aws.amazon.com/ecs/home#/firstRun
https://console.aws.amazon.com/ecs/home#/firstRun
https://console.aws.amazon.com/ecs/home#/firstRun
https://console.aws.amazon.com/ecs/home#/firstRun
https://console.aws.amazon.com/ecs/home#/firstRun
https://console.aws.amazon.com/ecs/home#/firstRun

Running Docker in Public Clouds Chapter 10

[269]

Amazon ECS uses the following components:

Container definition
Task definition
Service
Cluster

The first step in launching our AWS Fargate hosted container is to actually configure the
first two components, that is, the container and task definitions.

The container definition is where the base configuration for the container is defined. Think
of this as adding the flags you would use to launch a container using the Docker client on
the command line—for example, you name the container, define the image to use, set the
network, and so on.

For our example, there are three predefined options and a custom option. Click on the
Configure button in the custom options and enter the following information:

Container name: cluster-container
Image: russmckendrick/cluster:latest
Memory Limits (MiB): Leave at the default
Port mappings: Enter 80 and leave tcp selected

Then, click on the Update button. For the task definition, click on the Edit button and enter
the following:

Task definition name: cluster-task
Network mode: Should be awsvpc; you can't change this option
Task execution role: Leave as ecsTaskExecutionRole
Compatibilities: This should default to FARGATE and you should not be able to
edit it
Task memory and Task CPU: Leave both at their default options

Running Docker in Public Clouds Chapter 10

[270]

Once updated, click on the Save button. Now, you can click on the Next button at the
bottom of the page. This will take us to the second step which is where the service is
defined.

A service runs tasks which in turn has a container associated with them. The default
services are fine, so click on the Next button to proceed to the third step of the launch
process. The first step is where the cluster is created. Again, the default values are fine, so
click on the Next button to be taken to the review page.

This is your last chance to double check the task, service, and cluster definitions before any
services are launched. If you are happy with everything, then click on the Create button.
From here, you will be taken to a page where you can view the status of the various AWS
services that make our AWS Fargate cluster:

Running Docker in Public Clouds Chapter 10

[271]

Once everything has changed from pending to complete, you will be able to click on the
View service button to be taken to the Service overview page:

Running Docker in Public Clouds Chapter 10

[272]

Now, we just need to know the public IP address of our container. To find this, click on the
Task tab, and then select the unique ID of the running task. In the Network section of the
page, you should be able to find both the Private and Public IP addresses of the tasks.
Entering the Public IP in your browser should bring up the now familiar cluster
application:

You will notice that the container name that's displayed is the hostname of the container,
and includes the internal IP address. You can also view the logs from the container by click
on the Logs tab:

Running Docker in Public Clouds Chapter 10

[273]

So, how much is this costing? To be able to run the container for an entire month would
cost around $14, which works out at about $0.019 per hour.

This costing means that if you are going to be running a number of tasks 24/7, then Fargate
may not be the most cost-effective way of running your containers. Instead, you may want
to take the Amazon ECS EC2 option, where you can pack more containers onto your
resource, or the Amazon EKS service, which we will look at later in this chapter. However,
for quickly bringing up a container and then terminating it, Fargate is great—there is a low
barrier to launching the containers and the number of supporting resources in small.

Once you have finished with your Fargate container, you should delete the cluster. This
will remove all of the services associated with the cluster. Once the cluster has been
removed, go into the Task Definitions page and deregister them if needed.

Next, we are going to take a look at Azure App Services.

Microsoft Azure App Services
Microsoft Azure App Services is a fully managed platform that allows you to deploy your
application and let Azure worry about managing the platform they are running on. There
are several options available when launching an App Service. You can run applications
written in .NET, .NET Core, Ruby, Node.js, PHP, Python, and Ruby, or you can launch an
image directly from a container image registry.

Running Docker in Public Clouds Chapter 10

[274]

In this quick walkthrough, we are going to be launching the cluster image from the Docker
Hub. To do this, login to the Azure portal at https:/ ​/​portal. ​azure. ​com/ ​ and select App
Services from the left-hand side menu.

On the page that loads, click on the +Add button. You have several options to choose from
here:

We are going to launching a Web App, so click on the tile for that. Once the tile has
expanded, click on the Create button.

On the page that opens, there are several options. Fill them in as follows:

App Name: Choose a unique name for the application.
Subscription: Choose a valid subscription.
Resource Group: Leave the create new option selected.
OS: Leave as Linux.
Publish: Select Docker Image.
App Service plan/location: By default, the most expensive plan is selected, so
clicking here will take you a page where you can create a new plan. To do this,
click on Create new, name your plan and select a location, and then finally
choose a Pricing tier. For our needs, the Dev/Test plan will be fine. Once selected,
click on Apply.

https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/

Running Docker in Public Clouds Chapter 10

[275]

Configure container: Clicking here will take you to the container options. Here,
you have a few options: Single Container, Docker Compose, or Kubernetes. For
now, we are going to launching a single container. Click on the Docker Hub
option and enter russmckendrick/cluster:latest. Once entered, you will be
able to click on the Apply button.

Once all of the information has been filled in, you will be able to then click on Create to
launch the Web App Service. Once launched, you should be able to access the service via
the URL provided by Azure, for example, mine
was https://masteringdocker.azurewebsites.net/. Opening this a browser will
display the cluster application:

Running Docker in Public Clouds Chapter 10

[276]

As you can see, this time, we have the container ID rather than a full hostname like we got
when launching the container on AWS Fargate. The container at this spec will cost us
around $0.05 per hour, or $36.50 per month. To remove the container, simply remove the
resource group.

Kubernetes in Microsoft Azure, Google
Cloud, and Amazon Web Services
The last thing we are going to take a look at is how easy is it to launch a Kubernetes cluster
in the three main public clouds. In the previous chapter, we launched a Kubernetes cluster
locally using the built-in functionality of the Docker Desktop applications. To start with, we
are going to look at the quickest way to get started with Kubernetes on public clouds,
starting with Microsoft Azure.

Azure Kubernetes Service
The Azure Kubernetes Service (AKS), is an extremely simple service to launch and
configure. I will be using the Azure command-line tools on my local machine; you will also
be able to use the command-line tools by using the Azure Cloud Shell which is built into
the Azure Portal.

The first thing we will need to do is create a resource group to launch our AKS cluster into.
To create one called MasteringDockerAKS, run the following command:

$ az group create --name MasteringDockerAKS --location eastus

Now that we have the resource group, we can launch a two node Kubernetes cluster by
running the following command:

$ az aks create --resource-group MasteringDockerAKS \
 --name MasteringDockerAKSCluster \
 --node-count 2 \
 --enable-addons monitoring \
 --generate-ssh-keys

Running Docker in Public Clouds Chapter 10

[277]

It will take several minutes to launch the cluster. Once launched, we will need to copy the
configuration so that we can interact with the cluster by using our local copy of kubectl.
To do this, run the following command:

$ az aks get-credentials \
 --resource-group MasteringDockerAKS \
 --name MasteringDockerAKSCluster

This will configure your local copy of kubectl to talk to the AKS cluster you have just
launched. You should now see the cluster listed in the Docker menu under Kubernetes:

Running the following commands will show you the version of the server that your
kubectl client is talking to as well as details regarding the nodes:

$ kubectl version
$ kubectl get nodes

Running Docker in Public Clouds Chapter 10

[278]

You can see the output of the preceding commands in the following screenshot:

Now that we have our cluster up and running, we need to launch something. Luckily, there
is an excellent open source microservices demo from Weave which launches a demo shop
that sell socks. To launch the demo, we simply need to run the following commands:

$ kubectl create namespace sock-shop
$ kubectl apply -n sock-shop -f
"https://github.com/microservices-demo/microservices-demo/blob/master/deplo
y/kubernetes/complete-demo.yaml?raw=true"

It will take about five minutes for the demo to launch. You can check the status of the pods
by running the following command:

$ kubectl -n sock-shop get pods

Once everything is up and running, you should see something like the following output:

Running Docker in Public Clouds Chapter 10

[279]

Now that our application has launched, we need a way to access it. Check the services by
running the following command:

$ kubectl -n sock-shop get services

This shows us that there is a service called front-end. We are going to create a Load
Balancer and attach it to this service. To do this, run the following command:

$ kubectl -n sock-shop expose deployment front-end --type=LoadBalancer --
name=front-end-lb

You can check the status of the Load Balancer by running the following commands:

$ kubectl -n sock-shop get services front-end-lb
$ kubectl -n sock-shop describe services front-end-lb

Once launched, you should see something like the following:

Running Docker in Public Clouds Chapter 10

[280]

As you can see from the preceding output, for my store, the IP address
was 104.211.63.146 and the port was 8079. Opening http://104.211.63.146:8079/
in a browser presented me with the following page:

Once you have finished clicking around the store, you can remove it by running the
following command:

$ kubectl delete namespace sock-shop

To remove the AKS cluster and resource group, run the following commands:

$ az group delete --name MasteringDockerAKS --yes --no-wait

Remember to check that everything has been removed from the Azure portal as expected to
avoid any unexpected charges. Finally, you can remove the configuration from your local
kubectl configuration by running the following:

$ kubectl config delete-cluster MasteringDockerAKSCluster
$ kubectl config delete-context MasteringDockerAKSCluster

Next up, we are going to look at launching a similar cluster in Google Cloud.

Running Docker in Public Clouds Chapter 10

[281]

Google Kubernetes Engine
The Google Kubernetes Engine, as you may have already guessed, is very tightly
integrated into Google's Cloud platform. Rather than going into more detail, let's dive
straight in and launch a cluster. I am assuming that you already have a Google Cloud
account, a project with billing enabled, and finally the Google Cloud SDK installed and
configured to interact with your project.

To launch the cluster, simply run the following command:

$ gcloud container clusters create masteringdockergke --num-nodes=2

Once the cluster has been launched, your kubectl config will be automatically updated
and the context will be set for the newly launched cluster. You can view information on the
nodes by running the following:

$ kubectl version
$ kubectl get nodes

Now that we have our cluster up and running, let's launch the demo shop by repeating the
commands we used last time:

$ kubectl create namespace sock-shop
$ kubectl apply -n sock-shop -f
"https://github.com/microservices-demo/microservices-demo/blob/master/deplo
y/kubernetes/complete-demo.yaml?raw=true"
$ kubectl -n sock-shop get pods
$ kubectl -n sock-shop get services
$ kubectl -n sock-shop expose deployment front-end --type=LoadBalancer --
name=front-end-lb
$ kubectl -n sock-shop get services front-end-lb

Running Docker in Public Clouds Chapter 10

[282]

Again, once the front-end-lb service has been created, you should be able to find the
external IP address port to use:

Entering these into a browser will open the store:

To remove the cluster, simply run the following:

$ kubectl delete namespace sock-shop
$ gcloud container clusters delete masteringdockergke

This will also remove the context and cluster from kubectl.

Running Docker in Public Clouds Chapter 10

[283]

Amazon Elastic Container Service for Kubernetes
The final Kubernetes service we are going to take a look at is the Amazon Elastic Container
Service for Kubernetes, or Amazon EKS, for short. This is the most recently launched
service of the three services we are covering. In fact, you could say that Amazon was very
late to the Kubernetes party.

Unfortunately, the command-line tools for Amazon are not as friendly as the ones we used
for Microsoft Azure and Google Cloud. Because of this, I am going to be using a tool
called eksctl, which was written by Weave, the same people who created the demo store
we have been using. You can find details on eksctl and also the Amazon command-line
tools in the Further reading section at the end of this chapter.

To launch our Amazon EKS cluster, we need to run the following command:

$ eksctl create cluster

It will take several minutes to launch the cluster, but you will receive feedback on the
command line throughout the process. Also, as eksctl is using CloudFormation, you can
also check its progress in the AWS Console. Once complete, you should see something like
the following output:

Running Docker in Public Clouds Chapter 10

[284]

As part of the launch, eksctl will have configured your local kubectl context, meaning
that you can run the following:

$ kubectl version
$ kubectl get nodes

Now that we have the cluster up and running, we can launch the demo store, just like we
did previously:

$ kubectl create namespace sock-shop
$ kubectl apply -n sock-shop -f
"https://github.com/microservices-demo/microservices-demo/blob/master/deplo
y/kubernetes/complete-demo.yaml?raw=true"
$ kubectl -n sock-shop get pods
$ kubectl -n sock-shop get services
$ kubectl -n sock-shop expose deployment front-end --type=LoadBalancer --
name=front-end-lb
$ kubectl -n sock-shop get services front-end-lb

You may notice that the external IP that's listed when running that last command looks a
little strange:

Running Docker in Public Clouds Chapter 10

[285]

That is because it is a DNS name rather than an IP address. To find the full URL, you can
run the following command:

$ kubectl -n sock-shop describe services front-end-lb

Entering the URL and porting into a browser will, as you might have guessed, show the
demo store:

Running Docker in Public Clouds Chapter 10

[286]

To remove the cluster, run the following commands:

$ kubectl delete namespace sock-shop
$ eksctl get cluster

This will return the names of the clusters that are running. Once you have the name, run
the following command, making sure to reference your own cluster:

$ eksctl delete cluster --name=beautiful-hideout-1539511992

Your terminal output should look as follows:

Kubernetes summary
This concludes our brief look at Kubernetes in Microsoft Azure, Google Cloud, and
Amazon Web Services. We covered a few interesting points here. The first is that we
managed to launch and manage our clusters using the command line with a few simple
steps, although we did have to use a third-party tool for Amazon EKS.

The second and most important point is that once we had access to the cluster using
kubectl, the experience was exactly the same across all three platforms. At no point did
we have to access the cloud provider's web-based control panel to tweak or review a
setting. Everything was done using the same commands; deploying the same code and
services was done with no thought or consideration on our part regarding any of the
individual services offered by the cloud providers.

Running Docker in Public Clouds Chapter 10

[287]

We can even run the demo store locally using Docker, with exactly the same commands.
Just start your Kubernetes cluster up, make sure that you have the local Docker context
selected, and then run the following commands:

$ kubectl create namespace sock-shop
$ kubectl apply -n sock-shop -f
"https://github.com/microservices-demo/microservices-demo/blob/master/deplo
y/kubernetes/complete-demo.yaml?raw=true"
$ kubectl -n sock-shop get pods
$ kubectl -n sock-shop get services
$ kubectl -n sock-shop expose deployment front-end --type=LoadBalancer --
name=front-end-lb
$ kubectl -n sock-shop get services front-end-lb

As you can see from the following output, the load balanced IP, in this case, is localhost.
Opening your browser and entering http://localhost:8079 will take you to the store:

You can remove the store by running the following command:

$ kubectl delete namespace sock-shop

This level of consistency across multiple providers and even local machines hasn't really
been achievable before without a lot of work and configuration or via a closed source
subscription-based service.

Running Docker in Public Clouds Chapter 10

[288]

Summary
In this chapter, we have taken a look at how we can deploy Docker Swarm clusters into a
cloud provider using the tools provided by Docker themselves. We have also taken a look
at two of the services offered by public clouds to run containers away from the core Docker
toolset.

Finally, we looked at launching Kubernetes clusters in various clouds and running the
same demo application in all of them. While it was clear from any of the commands we ran,
all three of the public clouds were using various versions of Docker as the container engine.
Though this could be subject to change by the time you read this, as in theory, they could
switch to another engine with little impact.

In the next chapter, we are going to move back to working Docker and take a look
at Portainer, a web-based interface for managing your Docker installation.

Questions
True or false: Docker for AWS and Docker for Azure launches Kubernetes1.
clusters for you to launch your containers on.
What Amazon service don't you have to directly manage if you're using Amazon2.
Fargate?
What type of application do we need to launch in Azure? 3.
Once launched, what is the command we need to run to create the namespace for4.
the Sock Shop store?
How do you find out full details about the Load Balancer?5.

Further reading
You can find details of the Docker Cloud service closing down at the following links:

Docker Cloud Migration Notification and FAQs: https:/ ​/​success. ​docker. ​com/
article/ ​cloud- ​migration

Stuck! Docker Cloud Shutdown!: https:/ ​/​blog. ​cloud66. ​com/ ​stuck- ​docker-
cloud-​shutdown/ ​

https://success.docker.com/article/cloud-migration
https://success.docker.com/article/cloud-migration
https://success.docker.com/article/cloud-migration
https://success.docker.com/article/cloud-migration
https://success.docker.com/article/cloud-migration
https://success.docker.com/article/cloud-migration
https://success.docker.com/article/cloud-migration
https://success.docker.com/article/cloud-migration
https://success.docker.com/article/cloud-migration
https://success.docker.com/article/cloud-migration
https://success.docker.com/article/cloud-migration
https://success.docker.com/article/cloud-migration
https://success.docker.com/article/cloud-migration
https://success.docker.com/article/cloud-migration
https://blog.cloud66.com/stuck-docker-cloud-shutdown/
https://blog.cloud66.com/stuck-docker-cloud-shutdown/
https://blog.cloud66.com/stuck-docker-cloud-shutdown/
https://blog.cloud66.com/stuck-docker-cloud-shutdown/
https://blog.cloud66.com/stuck-docker-cloud-shutdown/
https://blog.cloud66.com/stuck-docker-cloud-shutdown/
https://blog.cloud66.com/stuck-docker-cloud-shutdown/
https://blog.cloud66.com/stuck-docker-cloud-shutdown/
https://blog.cloud66.com/stuck-docker-cloud-shutdown/
https://blog.cloud66.com/stuck-docker-cloud-shutdown/
https://blog.cloud66.com/stuck-docker-cloud-shutdown/
https://blog.cloud66.com/stuck-docker-cloud-shutdown/
https://blog.cloud66.com/stuck-docker-cloud-shutdown/
https://blog.cloud66.com/stuck-docker-cloud-shutdown/
https://blog.cloud66.com/stuck-docker-cloud-shutdown/
https://blog.cloud66.com/stuck-docker-cloud-shutdown/
https://blog.cloud66.com/stuck-docker-cloud-shutdown/

Running Docker in Public Clouds Chapter 10

[289]

More details on the templating services using by Docker for AWS and Docker for Azure
can be found at the following links:

AWS CloudFormation: https:/ ​/​aws. ​amazon. ​com/ ​cloudformation/ ​

Azure ARM templates: https:/ ​/​azure. ​microsoft. ​com/ ​en- ​gb/​resources/
templates/ ​

ARM template Visualizer: http:/ ​/​armviz. ​io/ ​

The cloud services we used to launch containers can be found at the following links:

Amazon ECS: https:/ ​/ ​aws. ​amazon. ​com/​ecs/ ​

AWS Fargate: https:/ ​/ ​aws. ​amazon. ​com/ ​fargate/ ​

Azure Web Apps: https:/ ​/​azure. ​microsoft. ​com/ ​en-​gb/ ​services/ ​app-
service/ ​web/ ​

The three Kubernetes services can be found at the following links:

Azure Kubernetes Service: https:/ ​/​azure. ​microsoft. ​com/ ​en- ​gb/​services/
kubernetes- ​service/ ​

Google Kubernetes Engine: https:/ ​/​cloud. ​google. ​com/ ​kubernetes- ​engine/ ​

Amazon Elastic Container Service for Kubernetes: https:/ ​/​aws. ​amazon. ​com/
eks/​

Quick-starts for the various command-line tools used in the chapter can be found at the
following links:

Azure CLI: https:/ ​/​docs. ​microsoft. ​com/ ​en- ​us/​cli/ ​azure/ ​?​view= ​azure- ​cli-
latest

Google Cloud SDK: https:/ ​/​cloud. ​google. ​com/ ​sdk/ ​

AWS Command-Line Interface: https:/ ​/​aws. ​amazon. ​com/ ​cli/ ​

eksctl – a CLI for Amazon EKS: https:/ ​/​eksctl. ​io/​

Finally, for more details on the demo store, go to the following link:

Sock Shop: https:/ ​/​microservices- ​demo. ​github. ​io

https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://docs.microsoft.com/en-gb/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-gb/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-gb/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-gb/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-gb/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-gb/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-gb/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-gb/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-gb/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-gb/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-gb/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-gb/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-gb/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-gb/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-gb/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-gb/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-gb/azure/azure-resource-manager/resource-group-overview
http://armviz.io/
http://armviz.io/
http://armviz.io/
http://armviz.io/
http://armviz.io/
http://armviz.io/
http://armviz.io/
http://armviz.io/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/fargate/
https://aws.amazon.com/fargate/
https://aws.amazon.com/fargate/
https://aws.amazon.com/fargate/
https://aws.amazon.com/fargate/
https://aws.amazon.com/fargate/
https://aws.amazon.com/fargate/
https://aws.amazon.com/fargate/
https://aws.amazon.com/fargate/
https://aws.amazon.com/fargate/
https://aws.amazon.com/fargate/
https://aws.amazon.com/fargate/
https://azure.microsoft.com/en-gb/services/app-service/web/
https://azure.microsoft.com/en-gb/services/app-service/web/
https://azure.microsoft.com/en-gb/services/app-service/web/
https://azure.microsoft.com/en-gb/services/app-service/web/
https://azure.microsoft.com/en-gb/services/app-service/web/
https://azure.microsoft.com/en-gb/services/app-service/web/
https://azure.microsoft.com/en-gb/services/app-service/web/
https://azure.microsoft.com/en-gb/services/app-service/web/
https://azure.microsoft.com/en-gb/services/app-service/web/
https://azure.microsoft.com/en-gb/services/app-service/web/
https://azure.microsoft.com/en-gb/services/app-service/web/
https://azure.microsoft.com/en-gb/services/app-service/web/
https://azure.microsoft.com/en-gb/services/app-service/web/
https://azure.microsoft.com/en-gb/services/app-service/web/
https://azure.microsoft.com/en-gb/services/app-service/web/
https://azure.microsoft.com/en-gb/services/app-service/web/
https://azure.microsoft.com/en-gb/services/app-service/web/
https://azure.microsoft.com/en-gb/services/app-service/web/
https://azure.microsoft.com/en-gb/services/app-service/web/
https://azure.microsoft.com/en-gb/services/app-service/web/
https://azure.microsoft.com/en-gb/services/app-service/web/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest
https://cloud.google.com/sdk/
https://cloud.google.com/sdk/
https://cloud.google.com/sdk/
https://cloud.google.com/sdk/
https://cloud.google.com/sdk/
https://cloud.google.com/sdk/
https://cloud.google.com/sdk/
https://cloud.google.com/sdk/
https://cloud.google.com/sdk/
https://cloud.google.com/sdk/
https://cloud.google.com/sdk/
https://cloud.google.com/sdk/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://eksctl.io/
https://eksctl.io/
https://eksctl.io/
https://eksctl.io/
https://eksctl.io/
https://eksctl.io/
https://eksctl.io/
https://eksctl.io/
https://microservices-demo.github.io
https://microservices-demo.github.io
https://microservices-demo.github.io
https://microservices-demo.github.io
https://microservices-demo.github.io
https://microservices-demo.github.io
https://microservices-demo.github.io
https://microservices-demo.github.io
https://microservices-demo.github.io
https://microservices-demo.github.io
https://microservices-demo.github.io

11
Portainer - A GUI for Docker

In this chapter, we will take a look at Portainer. Portainer is a tool that allows you to
manage Docker resources from a web interface. The topics that will be covered are as
follows:

The road to Portainer
Getting Portainer up and running
Using Portainer and Docker Swarm

Technical requirements
As in previous chapters, we will continue to use our local Docker installations. Also, the
screenshots in this chapter will be from my preferred operating system, macOS. Towards
the end of the chapter, we will use Docker Machine and VirtualBox to launch a local Docker
Swarm cluster.

As before, the Docker commands we will be running will work on all three of the operating
systems have installed Docker on so far—however some of the supporting commands,
which will be few and far between, may only apply to macOS and Linux based operating
system.

Check out the following video to see the Code in Action:
http:/​/​bit.​ly/​2yWAdQV

http://bit.ly/2yWAdQV
http://bit.ly/2yWAdQV
http://bit.ly/2yWAdQV
http://bit.ly/2yWAdQV
http://bit.ly/2yWAdQV
http://bit.ly/2yWAdQV
http://bit.ly/2yWAdQV
http://bit.ly/2yWAdQV
http://bit.ly/2yWAdQV

Portainer - A GUI for Docker Chapter 11

[291]

The road to Portainer
Before we roll up our sleeves and dive into installing and using Portainer, we should
discuss the background of the project. The first edition of this book covered Docker UI.
Docker UI was written by Michael Crosby, who handed the project over to Kevan Ahlquist
after about a year of development. It was at this stage, due to trademark concerns, that the
project was renamed UI for Docker.

Development of UI for Docker continued up until the point Docker started to accelerate the
introduction of features such as Swarm mode into the core Docker Engine. It was around
this time that the UI for Docker project was forked into the project that would become
Portainer, which had its first major release in June 2016.

Since their first public release, the team behind Portainer estimate the majority of the code
has already been updated or rewritten, and by mid-2017, new features were added, such as
role-based controls and Docker Compose support.

In December 2016, a notice was committed to the UI for Docker GitHub repository stating
that the project is now deprecated and that Portainer should be used.

Getting Portainer up and running
We are first going to be looking at using Portainer to manage a single Docker instance
running locally. I am running Docker for Mac so I will be using that, but these instructions
should also work with other Docker installations:

First of all, to grab the container image from the Docker Hub we just need to run1.
the following commands:

$ docker image pull portainer/portainer
$ docker image ls

As you can see when we ran the docker image ls command, the Portainer2.
image is only 58.7MB. To launch Portainer, we simply have to run the following
command if you are running macOS or Linux:

$ docker container run -d \
 -p 9000:9000 \
 -v /var/run/docker.sock:/var/run/docker.sock \
 portainer/portainer

Portainer - A GUI for Docker Chapter 11

[292]

Windows users will have to run the following:3.

$ docker container run -d -p 9000:9000 -v
\\.\pipe\docker_engine:\\.\pipe\docker_engine portainer/portainer

As you can see from the command we have just run, we are mounting the
socket file for the Docker Engine on our Docker Host machine. Doing this
will allow Portainer full unrestricted access to the Docker Engine on our
host machine. It needs this so it can manage Docker on the host; however,
it does mean that your Portainer container has full access to your host
machine, so be careful in how you give access to it and also when publicly
exposing Portainer on remote hosts.

The screenshot below shows this being executed on macOS:

For the most basic type of installation, that is all we need to run. There are a few4.
more steps to complete the installation; they are all performed in the browser. To
complete them, go to http:/ ​/​localhost:9000/ ​.

The first screen you will be greeted by asks you to set a password for the
admin user.

Portainer - A GUI for Docker Chapter 11

[293]

Once you have set the password, you will be taken to a login page: enter the5.
username admin and the password you just configured. Once logged in, you will
be asked about the Docker instance you wish to manage. There are two options:

Manage the Docker instance where Portainer is running
Manage a remote Docker instance

For the moment, we want to manage the instance where Portainer is running, which is the
Local option, rather than the default Remote one:

As we have already taken mounting the Docker socket file into account when launching
our Portainer container, we can click on Connect to complete our installation. This will take
us straight into Portainer itself, showing us the dashboard.

Using Portainer
Now that we have Portainer running and configured to communicate with our Docker
installation, we can start to work through the features listed in the left-hand side menu,
starting at the top with the Dashboard, which is also the default landing page of your
Portainer installation.

Portainer - A GUI for Docker Chapter 11

[294]

The Dashboard
As you can see from the following screenshot, the Dashboard gives us an overview of the
current state of the Docker instance that Portainer is configured to communicate with:

In my case, this shows how many Containers I have running, which at the moment is just
the already running Portainer container, as well as the number of images I have
downloaded. We can also see the number of Volumes and Networks available on the
Docker instance, also it will show the number of running Stacks.

It also shows basic information on the Docker instance itself; as you can see, the Docker
instance is running Moby Linux, has two CPUs and 2 GB of RAM. This is the default
configuration for Docker for Mac.

The Dashboard will adapt to the environment you have Portainer running in, so we will
revisit it when we look at attaching Portainer to a Docker Swarm cluster.

Portainer - A GUI for Docker Chapter 11

[295]

Application templates
Next up, we have App Templates. This section is probably the only feature not to be a
direct feature available in the core Docker Engine; it is instead a way of launching common
applications using containers downloaded from the Docker Hub:

Portainer - A GUI for Docker Chapter 11

[296]

There are around 25 templates that ship with Portainer by default. The templates are
defined in JSON format. For example, the nginx template looks like the following:

 {
 "type": "container",
 "title": "Nginx",
 "description": "High performance web server",
 "categories": ["webserver"],
 "platform": "linux",
 "logo": "https://portainer.io/images/logos/nginx.png",
 "image": "nginx:latest",
 "ports": [
 "80/tcp",
 "443/tcp"
],
 "volumes": ["/etc/nginx", "/usr/share/nginx/html"]
 }

There are more options you can add, for example the MariaDB template:

 {
 "type": "container",
 "title": "MariaDB",
 "description": "Performance beyond MySQL",
 "categories": ["database"],
 "platform": "linux",
 "logo": "https://portainer.io/images/logos/mariadb.png",
 "image": "mariadb:latest",
 "env": [
 {
 "name": "MYSQL_ROOT_PASSWORD",
 "label": "Root password"
 }
],
 "ports": [
 "3306/tcp"
],
 "volumes": ["/var/lib/mysql"]
 }

As you can see, the templates look similar to a Docker Compose file; however, this format is
only used by Portainer. For the most part, the options are pretty self-explanatory, but we
should touch upon the Name and Label options.

Portainer - A GUI for Docker Chapter 11

[297]

For containers that typically require options defined by passing custom values via
environment variables, the Name and Label options allow you present the user with
custom form fields that need to be completed before the container is launched, as
demonstrated by the following screenshot:

As you can see, we have a field where we can enter the root password we would like to use
for our MariaDB container. Filling this in will take that value and pass it as an environment
variable, building the following command to launch the container:

$ docker container run --name [Name of Container] -p 3306 -e
MYSQL_ROOT_PASSWORD=[Root password] -d mariadb:latest

For more information on app templates, I recommend reviewing the documentation, a link
to this can be found in the further reading section of this chapter.

Portainer - A GUI for Docker Chapter 11

[298]

Containers
The next thing we are going to look at in the left-hand menu is Containers. This is where
you launch and interact with the containers running on your Docker instance. Clicking on
the Containers menu entry will bring up a list of all of the containers, both running and
stopped, on your Docker instance.

As you can see, I currently have only a single container running, and that just happens to be
the Portainer one. Rather than interacting with that, let's press the + Add container button
to launch a container running the cluster application we used in previous chapters.

There are several options on the Create container page; these should be filled in as follows:

Name: cluster
Image: russmckendrick/cluster
Always pull the image: On
Publish all exposed ports: On

Portainer - A GUI for Docker Chapter 11

[299]

Finally, add a port mapping from port 8080 on the host to port 80 on the container by
clicking on + map additional port. Your completed form should look something like the
following screenshot:

Once that's done, click on Deploy the container, and after a few seconds, you will be
returned the list of running containers, where you should see your newly launched
container:

Portainer - A GUI for Docker Chapter 11

[300]

Using the tick box on the left of each container in the list will enable the buttons at the top,
where you can control the status of your containers - make sure not to Kill or Remove the
Portainer container. Clicking on the name of the container, in our case cluster, will bring up
more information on the container itself:

Portainer - A GUI for Docker Chapter 11

[301]

As you can see, the information about the container is the same information you would get
if you were to run this command:

$ docker container inspect cluster

You can see the full output of this command by click on Inspect. You will also notice that
there are buttons for Stats, Logs, and Console.

Stats
The Stats page shows the CPU, memory, and network utilization, as well as a list of the
processes for the container you are inspecting:

Portainer - A GUI for Docker Chapter 11

[302]

The graphs will automatically refresh if you leave the page open, and refreshing the page
will zero the graphs and start afresh. This is because Portainer is receiving this information
from the Docker API using the following command:

$ docker container stats cluster

Each time the page is refreshed, the command is started from scratch as Portainer currently
does not poll Docker in the background to keep a record of statistics for each of the running
containers.

Logs
Next up, we have the Logs page. This shows you the results of running the following
command:

$ docker container logs cluster

It displays both the STDOUT and STDERR logs:

You also have the option of adding timestamps to the output; this is the equivalent of
running the following:

$ docker container logs --timestamps cluster

Portainer - A GUI for Docker Chapter 11

[303]

Console
Finally, we have Console. This will open an HTML5 terminal and allow you to log in to
your running container. Before you connect to your container, you need to choose a shell.
You have the option of three shells to use: /bin/bash , /bin/sh or /bin/ash and also
which user to connect as, root is the default. While the cluster image has both shells
installed, I choose to use /bin/bash:

This is the equivalent of running the following command to gain access to your container:

$ docker container exec -it cluster /bin/sh

As you can see from the screenshot, the bash process has a PID of 15. This process was
created by the docker container exec command, and that will be the only process
which is terminated once you disconnect from your shell session.

Portainer - A GUI for Docker Chapter 11

[304]

Images
Next up in the left-hand menu is Images. From here, you can manage, download, and
upload images:

At the top of the page, you have the option of pulling an image. For example, simply
entering amazonlinux into the box and then clicking on Pull will download a copy of the
Amazon Linux container image from Docker Hub. The command executed by Portainer
would be this:

$ docker image pull amazonlinux

You can find more information about each image by clicking on the image ID; this will take
you to a page that nicely renders the output of running this command:

$ docker image inspect russmckendrick/cluster

Portainer - A GUI for Docker Chapter 11

[305]

Look at the following screenshot:

Not only do you get all of the information about the image, but you also get options to push
a copy of the image to your chosen registry or, by default, the Docker Hub.

You also get a complete break down of each of the layers contained within the image,
showing the command which was executed during the build and size of each layer.

Portainer - A GUI for Docker Chapter 11

[306]

Networks and volumes
The next two items in the menu allow you to manage networks and volumes; I am not
going to go into too much detail here as there is not much to them.

Networks
Here, you can quickly add a network using the default bridge driver. Clicking on
Advanced settings will take you to a page with more options. These include using other
drivers, defining the subnets, adding labels, and restricting external access to the network.
As with other sections, you can also remove networks and inspect existing networks.

Volumes
There are not many options here other than adding or removing a volume. When adding a
volume, you get a choice of drivers as well as being able to fill in options to pass to the
driver, which allows the use of third-party driver plugins. Other than that, there is not
much to see here, not even an inspect option.

Events
The events page shows you all of the events from the last 24 hours; you also have an option
of filtering the results, meaning you can quickly find the information you are after:

Portainer - A GUI for Docker Chapter 11

[307]

This is the equivalent of running the following command:

$ docker events --since '2018-09-27T16:30:00' --until '2018-09-28T16:30:00'

Engine
The final entry simply shows you the output of the following:

$ docker info

The following shows the output of the command:

This can be useful if you are targeting multiple Docker instance endpoints and need
information on the environment the endpoint is running on.

At this point we are move onto looking at Portainer running on Docker Swarm so now
would be a good time to remove the running containers and also the volume which was
created when we first launched Portainer, you can remove the volume using:

$ docker volume prune

Portainer and Docker Swarm
In the previous section, we looked at how to use Portainer on a standalone Docker instance.
Portainer also supports Docker Swarm clusters, and the options in the interface adapt to the
clustered environment. We should look at spinning up a Swarm and then launching
Portainer as a service and see what changes.

Portainer - A GUI for Docker Chapter 11

[308]

Creating the Swarm
As in the Docker Swarm chapter, we are going to be creating the Swarm locally using
Docker Machine; to do this, run the following commands:

$ docker-machine create -d virtualbox swarm-manager
$ docker-machine create -d virtualbox swarm-worker01
$ docker-machine create -d virtualbox swarm-worker02

Once the three instances have launched, run the following command to initialize the
Swarm:

$ docker $(docker-machine config swarm-manager) swarm init \
 --advertise-addr $(docker-machine ip swarm-manager):2377 \
 --listen-addr $(docker-machine ip swarm-manager):2377

Then run the following commands, inserting your own token, to add the worker nodes:

$
SWARM_TOKEN=SWMTKN-1-45acey6bqteiro42ipt3gy6san3kec0f8dh6fb35pnv1xz291v-4l8
9ei7v6az2b85kb5jnf7nku
$ docker $(docker-machine config swarm-worker01) swarm join \
 --token $SWARM_TOKEN \
 $(docker-machine ip swarm-manager):2377
$ docker $(docker-machine config swarm-worker02) swarm join \
 --token $SWARM_TOKEN \
 $(docker-machine ip swarm-manager):2377

Now that we have our cluster formed, run the following to point your local Docker client to
the manager node:

$ eval $(docker-machine env swarm-manager)

Finally, check the status of the Swarm using the following command:

$ docker node ls

The Portainer service
Now what we have a Docker Swarm cluster and our local client is configured to
communicate with the manager node, we can launch the Portainer service by simply
running:

$ docker service create \
 --name portainer \
 --publish 9000:9000 \

Portainer - A GUI for Docker Chapter 11

[309]

 --constraint 'node.role == manager' \
 --mount type=bind,src=/var/run/docker.sock,dst=/var/run/docker.sock \
 portainer/portainer \
 -H unix:///var/run/docker.sock

As you can see, this will launch Portainer as a service on the manager node and make the
service mount the manager nodes socket file so that it has visibility of the rest of the Swarm.
You can check that the service has launched without any errors using the following
commands:

$ docker service ls
$ docker service inspect portainer --pretty

The following shows the output:

Portainer - A GUI for Docker Chapter 11

[310]

Now that the service has launched, you can access Portainer on port 9000 on any of the IP
addresses of the nodes in your cluster, or run the following command:

$ open http://$(docker-machine ip swarm-manager):9000

When the page opens, you will be once again be asked to set a password for the admin
user; once set, you will be greeted with a login prompt. Once you have been logged in, you
will be taken straight to the Dashboard. The reason for this is that when we launched
Portainer this time, we passed it the argument -H unix:///var/run/docker.sock,
which told Portainer to select the option we manually chose when we launched Portainer
on our single host.

Swarm differences
As already mentioned, there are a few changes to the Portainer interface when it is
connected to a Docker Swarm cluster. In this section, we will cover them. If a part of the
interface is not mentioned, then there is no difference between running Portainer in single-
host mode.

Endpoints
The first thing you will have to do when you log in is select an endpoints, as you can see
from the following screen, there is a single one called primary:

Clicking on the endpoint will take you the Dashboard, we will look at Endpoints again at
the end of the section.

Portainer - A GUI for Docker Chapter 11

[311]

Dashboard and Swarm
One of the first changes you will notice is that the Dashboard now displays information on
the Swarm cluster, for example:

Notice how the CPU says 3 and the total RAM is 3.1 GB, each node within the cluster has 1
GB of RAM and 1 CPU, so these values are the cluster totals.

Clicking on Go to cluster vizualizer will take you to the Swam page, this gives you a visual
overview of the cluster, where the only running service is currently Portainer:

Portainer - A GUI for Docker Chapter 11

[312]

Stacks
The one item we didn't cover in the left-hand menu is Stacks, from here you can launch
stacks as we did when we looked at Docker Swarm. In-fact, let's take the Docker Compose
file we used, which looks like the following:

version: "3"

services:
 redis:
 image: redis:alpine
 volumes:
 - redis_data:/data
 restart: always
 mobycounter:
 depends_on:
 - redis
 image: russmckendrick/moby-counter
 ports:
 - "8080:80"
 restart: always

volumes:
 redis_data:

Click on the + Add stack button and then paste the contents above into the web-editor,
enter a name of MobyCounter, do not add any spaces or special characters to the name as
this is used by Docker for and then click on Deploy the stack.

Portainer - A GUI for Docker Chapter 11

[313]

Once deployed you will be able to click on MobyCounter and manage the stack:

Stacks are a collection of services, so let's take a look at them next.

Services
This page is where you can create and manage services; it should already be showing
several services including Portainer. So that we don't cause any problems with the running
Portainer container, we are going to create a new service. To do this, click on the + Add
Service button. On the page that loads, enter the following:

Name: cluster
Image: russmckendrick/cluster
Scheduling mode: Replicated
Replicas : 1

Portainer - A GUI for Docker Chapter 11

[314]

This time we need to add a port mapping for port 8000 on the host to map to port 80 to the
container, this is because the stack we launched in the last section is already using port
8080 on the host:

Once you have entered the information, click on the Create the service button. You will be
taken back to the list of services, which should now contain the cluster service we just
added. You may have noticed that in the scheduling mode column, there is an option to
scale. Click on it and increase the number of replicas to 6 for our cluster service.

Portainer - A GUI for Docker Chapter 11

[315]

Clicking on cluster in the Name column takes us to an overview of the service. As you can
see, there is a lot of information on the service:

You can make a lot of changes to the Service on the fly, including placement constraints,
the restart policy, adding service labels, and more. Right at the bottom of the page is a list of
the tasks associated with the service:

Portainer - A GUI for Docker Chapter 11

[316]

As you can see, we have six running tasks, two on each of our three nodes. Clicking on
Containers in the left-hand menu may show something different than you expect:

There are only three containers listed, and one of them is for the Portainer service. Why is
that?

Well, if you remember in the Docker Swarm chapter, we learned that docker container
commands only really apply to the node you are running them against, and as Portainer is
only talking to our manager node, that is the only node which the Docker container
commands are executed against. Remember that Portainer is only a web interface for the
Docker API, so it mirrors the same results as you get running docker container ls on
the command line.

Adding endpoints
However, we can add our two remaining cluster nodes to Portainer. To do this, click on the
Endpoint entry in the left-hand menu.

To add the endpoint, we will need to know the endpoint URL and have access to the
certificates so that Portainer can authenticate itself against the Docker daemon running on
the node. Luckily, as we launched the hosts using Docker Machine, this is a simple task. To
get the endpoint URLs, run the following command:

$ docker-machine ls

Portainer - A GUI for Docker Chapter 11

[317]

For me, the two endpoint URLs were 192.168.99.101:2376 and
192.168.99.102:2376; yours may be different. The certificates we need to upload can be
found in the ~/.docker/machine/certs/ folder on your machine. I recommend running
the following commands to open the folder in your finder:

$ cd ~/.docker/machine/certs/
$ open .

Once you have added the node, you will be able to change to it using the + Add Endpoint
button in the Settings / Endpoints page.

From here enter the following information:

Name: swarm-worker01
Endpoint URL: 192.168.99.101:2376
Public IP: 192.168.99.101
TLS: On
TLS with server and client verification: Ticked
Upload the certs from ~/.docker/machine/certs/

Then click on the + Add endpoint button, clicking on Home will take you to the Endpoint
overview screen we first saw at the start of this section of the chapter. As you can see from
the following screenshot, we can see that the workers are running three containers each and
that they are marked as standalone rather than Swarm:

Portainer - A GUI for Docker Chapter 11

[318]

You will also notice that other than the Swarm being mention in the Endpoint, there's no
mention of Swarm services. Again, this is because Portainer only knows as much as your
Docker nodes, and Swarm mode only allows nodes with the role of manager to launch
services and tasks and interact with the other nodes in your cluster.

Don't forget to remove your local Docker Swarm cluster by running:

$ docker-machine rm swarm-manager swarm-worker01 swarm-worker02

Summary
That concludes our deep dive with Portainer. As you can see, Portainer is very powerful,
yet simple to use, and will only continue to grow and integrate more of the Docker
ecosystem as features are released. With Portainer, you can do a lot of manipulation with
not only your hosts but also the containers and services running on single or cluster hosts.

In the next chapter we are going to take a look at how to secure your Docker host as well as
how to run scans against your container images.

Questions
On a macOS or Linux machine, what is the path to mount the Docker socket file?1.
What is the default port Portainer runs on?2.
True or false: You can use Docker Compose files as application templates? 3.
True or false: The stats shown in Portainer are only real time, you can’t view4.
historical data?

Further reading
You can find more information on Portainer at here:

Main website: https:/ ​/​portainer. ​io/​

Portainter on GitHub: https:/ ​/​github. ​com/ ​portainer/ ​

Latest documentation: https:/ ​/​portainer. ​readthedocs. ​io/ ​en/ ​latest/ ​index.
html
Template documentation: http:/ ​/​portainer. ​readthedocs. ​io/​en/ ​latest/
templates. ​html

https://portainer.io/
https://portainer.io/
https://portainer.io/
https://portainer.io/
https://portainer.io/
https://portainer.io/
https://portainer.io/
https://portainer.io/
https://github.com/portainer/
https://github.com/portainer/
https://github.com/portainer/
https://github.com/portainer/
https://github.com/portainer/
https://github.com/portainer/
https://github.com/portainer/
https://github.com/portainer/
https://github.com/portainer/
https://github.com/portainer/
https://portainer.readthedocs.io/en/latest/index.html
https://portainer.readthedocs.io/en/latest/index.html
https://portainer.readthedocs.io/en/latest/index.html
https://portainer.readthedocs.io/en/latest/index.html
https://portainer.readthedocs.io/en/latest/index.html
https://portainer.readthedocs.io/en/latest/index.html
https://portainer.readthedocs.io/en/latest/index.html
https://portainer.readthedocs.io/en/latest/index.html
https://portainer.readthedocs.io/en/latest/index.html
https://portainer.readthedocs.io/en/latest/index.html
https://portainer.readthedocs.io/en/latest/index.html
https://portainer.readthedocs.io/en/latest/index.html
https://portainer.readthedocs.io/en/latest/index.html
https://portainer.readthedocs.io/en/latest/index.html
https://portainer.readthedocs.io/en/latest/index.html
https://portainer.readthedocs.io/en/latest/index.html
https://portainer.readthedocs.io/en/latest/templates.html
https://portainer.readthedocs.io/en/latest/templates.html
https://portainer.readthedocs.io/en/latest/templates.html
https://portainer.readthedocs.io/en/latest/templates.html
https://portainer.readthedocs.io/en/latest/templates.html
https://portainer.readthedocs.io/en/latest/templates.html
https://portainer.readthedocs.io/en/latest/templates.html
https://portainer.readthedocs.io/en/latest/templates.html
https://portainer.readthedocs.io/en/latest/templates.html
https://portainer.readthedocs.io/en/latest/templates.html
https://portainer.readthedocs.io/en/latest/templates.html
https://portainer.readthedocs.io/en/latest/templates.html
https://portainer.readthedocs.io/en/latest/templates.html
https://portainer.readthedocs.io/en/latest/templates.html
https://portainer.readthedocs.io/en/latest/templates.html
https://portainer.readthedocs.io/en/latest/templates.html

12
Docker Security

In this chapter, we will take a look at Docker security, a topic at the forefront of everyone's
mind these days. We will split the chapter up into the following five sections:

Container considerations
Docker commands
Best practices
The Docker Bench Security application
Third-party security services

Technical requirements
In this chapter, we will be using Docker on the desktop, and we will be using Docker
Machine to launch a Docker host in the cloud. Like in the previous chapters, I will be using
my preferred operating system, which is macOS. As previously, the Docker commands that
we will run will work on all three of the operating systems that we have installed Docker
on so far. However, some of the supporting commands, which will be few and far between,
may only apply to macOS and Linux based operating systems.

Check out the following video to see the Code in Action:
http:/​/​bit.​ly/​2AnEv5G

Container considerations
When Docker was first released, there was a lot of talk about Docker versus virtual
machines. I remember reading articles in magazines, commenting on threads on Reddit,
and reading endless blog posts. In the early days of the Docker alpha and beta versions,
people used to approach Docker containers like virtual machines, because there weren't
really any other points of reference, and we viewed them as tiny VMs.

http://bit.ly/2AnEv5G
http://bit.ly/2AnEv5G
http://bit.ly/2AnEv5G
http://bit.ly/2AnEv5G
http://bit.ly/2AnEv5G
http://bit.ly/2AnEv5G
http://bit.ly/2AnEv5G
http://bit.ly/2AnEv5G
http://bit.ly/2AnEv5G

Docker Security Chapter 12

[320]

In the past, I would enable SSH, run multiple processes in containers, and even create my
container images by launching a container and running the commands to install my
software stack. This is something that we discussed in Chapter 2, Building Container Images;
you should never do it, as it is considered a bad practice.

So, rather than discussing containers versus virtual machines, let's look at some of the
considerations that you need to make when running containers, rather than virtual
machines.

The advantages
When you start a Docker container, the Docker Engine does a lot of work behind the scenes.
One of the tasks that the Docker Engine performs when launching your containers is setting
up namespaces and control groups. What does that mean? By setting up namespaces,
Docker keeps the processes isolated in each container - not only from other containers, but
also from the host system. The control groups ensure that each container gets its own share
of items, such as CPU, memory, and disk I/O. More importantly, they ensure that one
container doesn't exhaust all of the resources on a given Docker host.

As you saw in previous chapters, being able to launch your containers into a Docker
controlled network means that you can isolate your containers at the application level; all of
the containers for Application A will not have any access, at the network layer, to the
containers for Application B.

Additionally, this network isolation can run on a single Docker host by using the default
network driver, or it can span multiple Docker hosts by using Docker Swarm's built-in,
multi-host networking driver, or the Weave Net driver from Weave.

Lastly, what I consider one of the biggest advantages of Docker over a typical virtual
machine is that you shouldn't have to log in to the container. Docker is trying its hardest to
keep you from needing to log in to a container to manage the process that it is running.
With commands such as docker container exec, docker container top, docker
container logs, and docker container stats, you can do everything that you need
to do, without exposing any more services than you have to.

Docker Security Chapter 12

[321]

Your Docker host
When you are dealing with virtual machines, you can control who has access to which
virtual machine. Let's suppose that you only want User 1, who is a developer, to have
access to the development VMs. However, User 2 is an operator who is responsible for both
the development and production environments, so he needs access to all of the VMs. Most
virtual machine management tools allow you to grant role-based access to your VMs.

With Docker, you have a little disadvantage, because whoever has access to the Docker
Engine on your Docker host, either through being granted sudo access or by having their
user added to the Docker Linux group, has access to every Docker container that you are
running. They can run new containers, they can stop existing containers, and they can
delete images, as well. Be careful with who you grant permission to access the Docker
Engine on your hosts. They essentially hold the keys to the kingdom, with respect to all of
your containers. Knowing this, it is recommended to use Docker hosts only for Docker;
keep other services separate from your Docker hosts.

Image trust
If you are running virtual machines, you will most likely be setting them up yourself, from
scratch. It's likely that, due to the size of the download (and also the effort in launching it),
you will not download a prebuilt machine image that some random person on the internet
created. Typically, if you were to do this, it would be a prebuilt virtual appliance from a
trusted software vendor.

So, you will be aware of what is inside of the virtual machine and what isn't, as you were
responsible for building and maintaining it.

Part of the appeal of Docker is its ease of use; however, this ease of use can make it really
easy to ignore a quite crucial security consideration: Do you know what it is running inside
of your container?

We have already touched upon image trust in earlier chapters. For example, we spoke
about not publishing or downloading images that haven't been defined using Dockerfiles,
and not embedding custom code or secrets (and so on) directly into an image that you will
be pushing to the Docker Hub.

While containers have the protection of namespaces, control groups, and network isolation,
we discussed how a poorly judged image download can introduce security concerns and
risk into your environment. For example, a perfectly legitimate container running an
unpatched piece of software can introduce risk to the availability of your application and
data.

Docker Security Chapter 12

[322]

Docker commands
Let's take a look at the Docker commands that can be used to help tighten up security, as
well as view information about the images that you might be using.

There are two commands that we will focus on. The first will be the docker container
run command, so that you can see some of the items that you can use to your advantage
with this command. Secondly, we will take a look at the docker container diff
command, which you can use to view what has been done with the image that you are
planning to use.

run command
With respect to the docker run command, we will mainly focus on the option that allows
you to set everything inside the container as read-only, instead of a specified directory or
volume. This helps to limit the amount of damage that can be caused by malicious
applications that could also hijack a vulnerable application by updating its binaries.

Let's take a look at how to launch a read-only container, and then break down what it does,
as follows:

$ docker container run -d --name mysql --read-only -v /var/lib/mysql -v
/tmp -v /var/run/mysqld -e MYSQL_ROOT_PASSWORD=password mysql

Here, we are running a MySQL container and setting the entire container as read-only,
except for the following folders:

/var/lib/mysql

/var/run/mysqld

/tmp

These will be created as three separate volumes, and then mounted as read/write. If you do
not add these volumes, then MySQL will not be able to start, as it needs read/write access to
be able to create the socket file in /var/run/mysqld, some temporary files in /tmp, and,
finally, the databases themselves, in /var/lib/mysql.

Docker Security Chapter 12

[323]

Any other location inside of the container won't allow you to write anything in it. If you
tried to run the following, it would fail:

$ docker container exec mysql touch /trying_to_write_a_file

The preceding command would give you the following message:

touch: cannot touch '/trying_to_write_a_file': Read-only file system

This can be extremely helpful if you want to control where the containers can write to (or
not write to). Be sure to use this wisely. Test thoroughly, as there can be consequences
when the applications can't write to certain locations.

Similar to the previous command, docker container run, where we set everything to
read-only (except for a specified volume), we can do the opposite and set just a single
volume (or more, if you use more -v switches) to read-only. The thing to remember about
volumes is that when you use a volume and mount it into a container, it will mount as an
empty volume over the top of the directory inside of the container, unless you use the --
volumes-from switch or add data to the container in some other way after it has been
launched:

$ docker container run -d -v /local/path/to/html/:/var/www/html/:ro nginx

This will mount /local/path/to/html/ from the Docker host to /var/www/html/, and
will set it to read-only. This can be useful if you don't want a running container to write to a
volume, to keep the data or configuration files intact.

diff command
Let's take another look at the docker diff command; since it relates to the security
aspects of the containers, you may want to use the images that are hosted on Docker Hub
or other related repositories.

Remember that whoever has access to your Docker host and the Docker daemon has access
to all of your running Docker containers. That being said, if you don't have monitoring in
place, someone could be executing commands against your containers and doing malicious
things.

Let's take a look at the MySQL container that we launched in the previous section:

$ docker container diff mysql

Docker Security Chapter 12

[324]

You will notice that no files are returned. Why is that?

Well, the diff command tells you the changes that have been made to the image since the
container was launched. In the previous section, we launched the MySQL container with
the image read-only, and then mounted volumes to where we knew MySQL would need to
be able to read and write - meaning that there are no file differences between the image that
we downloaded and the container that we are running.

Stop and remove the MySQL container, then prune the volumes by running the following:

$ docker container stop mysql
$ docker container rm mysql
$ docker volume prune

Then, launch the same container again, minus the read-only flag and volumes; this gives us
a different story, as follows:

$ docker container run -d --name mysql -e MYSQL_ROOT_PASSWORD=password
mysql
$ docker container exec mysql touch /trying_to_write_a_file
$ docker container diff mysql

As you can see, there were two folders created and several files added:

A /trying_to_write_a_file
C /run
C /run/mysqld
A /run/mysqld/mysqld.pid
A /run/mysqld/mysqld.sock
A /run/mysqld/mysqld.sock.lock
A /run/mysqld/mysqlx.sock
A /run/mysqld/mysqlx.sock.lock

This is a great way to spot anything untoward or unexpected that may be going on within
your container.

Best practices
In this section, we will look at the best practices when it comes to Docker, as well as the
Center for Internet Security guide, to properly secure all aspects of your Docker environment.

Docker Security Chapter 12

[325]

Docker best practices
Before we dive into the Center for Internet Security guide, let's go over some of the best
practices for using Docker, as follows:

One application per container: Spread out your applications to one per
container. Docker was built for this, and it makes everything easier, at the end of
the day. The isolation that we discussed earlier is where this is key.
Only install what you need: As we already covered in previous chapters, only
install what you need in your container images. If you have to install more to
support the one process your container should be running, I would recommend
that you review the reasons why. This not only keeps your images small and
portable, but it also reduces the potential attack surface.
Review who has access to your Docker hosts: Remember that whoever has root
or sudo access to your Docker hosts has access to manipulate all of the images
and containers on the host.
Use the latest version: Always use the latest version of Docker. This will ensure
that all security holes have been patched, and that you have the latest features, as
well. While fixing security issues, keeping up to date using the community
version may introduce problems caused by changes in functionality or new
features. If this is a concern for you, then you might want to look at the LTS
Enterprise versions available from Docker, and also Red Hat.
Use the resources: Use the resources available if you need help. The community
within Docker is huge and immensely helpful. Use their website, documentation,
and the Slack chat rooms to your advantage when planning your Docker
environment and assessing platforms. For more information on how to access
Slack and other parts of the community, see Chapter 14, Next Steps with Docker.

The Center for Internet Security benchmark
The Center for Internet Security (CIS) is an independent, non-profit organization, whose
goal is to provide a secure online experience. They publish benchmarks and controls, which
are considered best practices for all aspects of IT.

Docker Security Chapter 12

[326]

The CIS benchmark for Docker is available for download, for free. You should note that it is
currently a 230-page PDF, released under the Creative Commons license, and it covers
Docker CE 17.06 and later.

You will be referring to this guide when you actually run the scan (in the next section of
this chapter) and get results back as to what needs to (or should be) fixed. The guide is
broken down into the following sections:

The host configuration
The Docker daemon configuration
The Docker daemon configuration files
Container images/runtime
Docker security operations

Host configuration
This part of the guide is about the configuration of your Docker hosts. This is the part of the
Docker environment where all your containers run. Thus, keeping it secure is of the utmost
importance. This is the first line of defense against attackers.

Docker daemon configuration
This part of the guide has the recommendations that secure the running Docker daemon.
Everything that you do to the Docker daemon configuration affects each and every
container. These are the switches that you can attach to the Docker daemon that we saw
previously, and to the items, you will see in the next section when we run through the tool.

Docker daemon configuration files
This part of the guide deals with the files and directories that the Docker daemon uses. This
ranges from permissions to ownership. Sometimes, these areas may contain information
that you don't want others to know about, which could be in a plain-text format.

Docker Security Chapter 12

[327]

Container images/runtime and build files
This part of the guide contains both the information for securing the container images and
the build files.

The first part contains images, cover base images, and the build files that were used. As we
covered previously, you need to be sure about the images that you are using, not only for
your base images, but for any aspect of your Docker experience. This section of the guide
covers the items that you should follow while creating your own base images.

Container runtime
This section was previously a part of a later section, but it has been moved into its own
section in the CIS guide. The container runtime covers a lot of security-related items.

Be careful with the runtime variables that you are using. In some cases, attackers can use
them to their advantage, when you think you are using them to your own advantage.
Exposing too much in your containers, such as exposing application secrets and database
connections as environment variables, can compromise the security of not only your
container, but the Docker host and the other containers running on that host.

Docker security operations
This part of the guide covers the security areas that involve deployment; the items are more
closely tied to Docker best practices. Because of this, it is best to follow these
recommendations.

The Docker Bench Security application
In this section, we will cover the Docker Benchmark Security application that you can
install and run. The tool will inspect the following:

The host configuration
The Docker daemon configuration
The Docker daemon configuration files
Container images and build files
Container runtime
The Docker security operations
Docker Swarm configuration

Docker Security Chapter 12

[328]

Look familiar? It should, as these are the same items that we reviewed in the previous
section, only built into an application that will do a lot of the heavy lifting for you. It will
show you what warnings arise within your configurations, and will provide information on
other configuration items, and even the items that have passed the test.

Now, we will look at how to run the tool, a live example, and what the output of the
process means.

Running the tool on Docker for macOS and
Docker for Windows
Running the tool is simple. It's already been packaged for us, inside of a Docker container.
While you can get the source code and customize the output or manipulate it in some way
(say, emailing the output), the default may be all that you need.

The tool's GitHub project can be found at https:/ ​/​github. ​com/ ​docker/ ​docker- ​bench-
security/​, and to run the tool on a macOS or Windows machine, you simply have to copy
and paste the following into your Terminal. The following command is missing the line
needed to check the systemd, as Moby Linux, which is the underlying operating system for
Docker for macOS and Docker for Windows, does not run systemd. We will look at a
systemd based system shortly:

$ docker run -it --net host --pid host --cap-add audit_control \
 -e DOCKER_CONTENT_TRUST=$DOCKER_CONTENT_TRUST \
 -v /var/lib:/var/lib \
 -v /var/run/docker.sock:/var/run/docker.sock \
 -v /etc:/etc --label docker_bench_security \
 docker/docker-bench-security

Once the image has been downloaded, it will launch and immediately start to audit your
Docker host, printing the results as it goes, as shown in the following screenshot:

https://github.com/docker/docker-bench-security/
https://github.com/docker/docker-bench-security/
https://github.com/docker/docker-bench-security/
https://github.com/docker/docker-bench-security/
https://github.com/docker/docker-bench-security/
https://github.com/docker/docker-bench-security/
https://github.com/docker/docker-bench-security/
https://github.com/docker/docker-bench-security/
https://github.com/docker/docker-bench-security/
https://github.com/docker/docker-bench-security/
https://github.com/docker/docker-bench-security/
https://github.com/docker/docker-bench-security/
https://github.com/docker/docker-bench-security/
https://github.com/docker/docker-bench-security/
https://github.com/docker/docker-bench-security/

Docker Security Chapter 12

[329]

As you can see, there are a few warnings ([WARN]), as well as notes ([NOTE]) and
information ([INFO]); however, as this host is managed by Docker, as you would expect,
there is not too much to worry about.

Docker Security Chapter 12

[330]

Running on Ubuntu Linux
Before we look into the output of the audit in a little more detail, I am going to launch a
vanilla Ubuntu 16.04.5 LTS server in DigitalOcean, and perform a clean installation of
Docker using Docker Machine, as follows:

$ DOTOKEN=0cb54091fecfe743920d0e6d28a29fe325b9fc3f2f6fccba80ef4b26d41c7224
$ docker-machine create \
 --driver digitalocean \
 --digitalocean-access-token $DOTOKEN \
 docker-digitalocean

Once installed, I will launch a few containers, all of which don't have very sensible settings.
I will launch the following two containers from the Docker Hub:

$ docker container run -d --name root-nginx -v /:/mnt nginx
$ docker container run -d --name priv-nginx --privileged=true nginx

Then, I will build a custom image, based on Ubuntu 16.04, that runs SSH using the
following Dockerfile:

FROM ubuntu:16.04

RUN apt-get update && apt-get install -y openssh-server
RUN mkdir /var/run/sshd
RUN echo 'root:screencast' | chpasswd
RUN sed -i 's/PermitRootLogin prohibit-password/PermitRootLogin yes/'
/etc/ssh/sshd_config
RUN sed 's@session\s*required\s*pam_loginuid.so@session optional
pam_loginuid.so@g' -i /etc/pam.d/sshd
ENV NOTVISIBLE "in users profile"
RUN echo "export VISIBLE=now" >> /etc/profile
EXPOSE 22
CMD ["/usr/sbin/sshd", "-D"]

I will build and launch this using the following code:

$ docker image build --tag sshd .
$ docker container run -d -P --name sshd sshd

As you can see, in one image, we are mounting the root filesystem of our host with full
read/write access in the root-nginx container. We are also running with extended
privileges in priv-nginx, and finally, running SSH in sshd.

Docker Security Chapter 12

[331]

To start the audit on our Ubuntu Docker host, I ran the following:

$ docker run -it --net host --pid host --cap-add audit_control \
 -e DOCKER_CONTENT_TRUST=$DOCKER_CONTENT_TRUST \
 -v /var/lib:/var/lib \
 -v /var/run/docker.sock:/var/run/docker.sock \
 -v /usr/lib/systemd:/usr/lib/systemd \
 -v /etc:/etc --label docker_bench_security \
 docker/docker-bench-security

As we are running on an operating system that supports systemd, we are mounting
/usr/lib/systemd, so that we can audit it.

There is a lot of output and a lot to digest, but what does it all mean? Let's take a look and
break down each section.

Understanding the output
There are three types of output that we will see, as follows:

[PASS]: These items are solid and good to go. They don't need any attention, but
are good to read, to make you feel warm inside. The more of these, the better!
[WARN]: These are that items that need to be fixed. These are the items that we
don't want to see.
[INFO]: These are items that you should review and fix, if you feel they are
pertinent to your setup and security needs.
[NOTE]: These give best-practice advice.

As mentioned, there are seven main sections that are covered in the audit, as follows:

Host configuration
Docker daemon configuration
Docker daemon configuration files
Container images and build files
Container runtime
Docker security operations
Docker Swarm configuration

Docker Security Chapter 12

[332]

Let's take a look at what we are seeing in each section of the scan. These scan results are
from a default Ubuntu Docker host, with no tweaks made to the system at this point. We
want to focus on the [WARN] items in each section. Other warnings may come up when you
run yours, but these will be the ones that come up for most people (if not for everyone), at
first.

Host configuration
I had five items with a [WARN] status for my host configuration, as follows:

[WARN] 1.1 - Ensure a separate partition for containers has been created

By default, Docker uses /var/lib/docker on the host machine to store all of its files,
including all images, containers, and volumes created by the default driver. This means
that this folder may grow quickly. As my host machine is running a single partition (and
depending on what your containers are doing), this could potentially fill the entire drive,
which would render my host machine unusable:

[WARN] 1.5 - Ensure auditing is configured for the Docker daemon
[WARN] 1.6 - Ensure auditing is configured for Docker files and directories
- /var/lib/docker
[WARN] 1.7 - Ensure auditing is configured for Docker files and directories
- /etc/docker
[WARN] 1.10 - Ensure auditing is configured for Docker files and
directories - /etc/default/docker

These warnings are being flagged because auditd is not installed, and there are no audit
rules for the Docker daemon and associated files; for more information on auditd, see the
blog post at https:/ ​/ ​www. ​linux. ​com/ ​learn/ ​customized- ​file- ​monitoring- ​auditd/ ​.

Docker daemon configuration
My Docker daemon configuration flagged up eight [WARN] statuses, as follows:

[WARN] 2.1 - Ensure network traffic is restricted between containers on the
default bridge

By default, Docker allows traffic to pass between containers unrestricted, on the same host.
It is possible to change this behavior; for more information on Docker networking, see
https:/​/​docs.​docker. ​com/ ​engine/ ​userguide/ ​networking/ ​.

[WARN] 2.5 - Ensure aufs storage driver is not used

https://www.linux.com/learn/customized-file-monitoring-auditd/
https://www.linux.com/learn/customized-file-monitoring-auditd/
https://www.linux.com/learn/customized-file-monitoring-auditd/
https://www.linux.com/learn/customized-file-monitoring-auditd/
https://www.linux.com/learn/customized-file-monitoring-auditd/
https://www.linux.com/learn/customized-file-monitoring-auditd/
https://www.linux.com/learn/customized-file-monitoring-auditd/
https://www.linux.com/learn/customized-file-monitoring-auditd/
https://www.linux.com/learn/customized-file-monitoring-auditd/
https://www.linux.com/learn/customized-file-monitoring-auditd/
https://www.linux.com/learn/customized-file-monitoring-auditd/
https://www.linux.com/learn/customized-file-monitoring-auditd/
https://www.linux.com/learn/customized-file-monitoring-auditd/
https://www.linux.com/learn/customized-file-monitoring-auditd/
https://www.linux.com/learn/customized-file-monitoring-auditd/
https://www.linux.com/learn/customized-file-monitoring-auditd/
https://www.linux.com/learn/customized-file-monitoring-auditd/
https://www.linux.com/learn/customized-file-monitoring-auditd/
https://www.linux.com/learn/customized-file-monitoring-auditd/
https://www.linux.com/learn/customized-file-monitoring-auditd/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/

Docker Security Chapter 12

[333]

AUFS was used quite a lot in Docker's early days; however, it is no longer considered a best
practice, as it could be responsible for issues in the host machine's Kernel:

[WARN] 2.8 - Enable user namespace support

By default, the user namespace is not remapped. Mapping them, while possible, can
currently cause issues with several Docker features;
see https://docs.docker.com/engine/reference/commandline/dockerd/ for more details
on known restrictions:

[WARN] 2.11 - Ensure that authorization for Docker client commands is
enabled

A default installation of Docker allows unrestricted access to the Docker daemon; you can
limit access to authenticated users by enabling an authorization plugin. For more details,
see https:/​/​docs. ​docker. ​com/ ​engine/ ​extend/ ​plugins_ ​authorization/ ​:

[WARN] 2.12 - Ensure centralized and remote logging is configured

As I am only running a single host, I am not using a service, such as rsyslog, to ship my
Docker host's logs to a central server, nor have I configured a log driver on my Docker
daemon; see https:/ ​/ ​docs. ​docker. ​com/ ​engine/ ​admin/ ​logging/ ​overview/ ​ for more
details:

[WARN] 2.14 - Ensure live restore is Enabled

The --live-restore flag enables full support of daemon-less containers in Docker; this
means that, rather than stopping containers when the daemon shuts down, they continue to
run, and it properly reconnects to the containers when restarted. It is not enabled by
default, due to backward compatibility issues; for more details, see https:/ ​/​docs. ​docker.
com/​engine/​admin/ ​live- ​restore/ ​:

[WARN] 2.15 - Ensure Userland Proxy is Disabled

There are two ways that your containers can route to the outside world: either by using a
hairpin NAT, or a userland proxy. For most installations, the hairpin NAT mode is the
preferred mode, as it takes advantage of iptables and has better performance. Where this is
not available, Docker uses the userland proxy. Most Docker installations on modern
operating systems will support hairpin NAT; for details on how to disable the userland
proxy, see https:/ ​/​docs. ​docker. ​com/ ​engine/ ​userguide/ ​networking/ ​default_ ​network/
binding/​:

[WARN] 2.18 - Ensure containers are restricted from acquiring new
privileges

https://docs.docker.com/engine/reference/commandline/dockerd/
https://docs.docker.com/engine/extend/plugins_authorization/
https://docs.docker.com/engine/extend/plugins_authorization/
https://docs.docker.com/engine/extend/plugins_authorization/
https://docs.docker.com/engine/extend/plugins_authorization/
https://docs.docker.com/engine/extend/plugins_authorization/
https://docs.docker.com/engine/extend/plugins_authorization/
https://docs.docker.com/engine/extend/plugins_authorization/
https://docs.docker.com/engine/extend/plugins_authorization/
https://docs.docker.com/engine/extend/plugins_authorization/
https://docs.docker.com/engine/extend/plugins_authorization/
https://docs.docker.com/engine/extend/plugins_authorization/
https://docs.docker.com/engine/extend/plugins_authorization/
https://docs.docker.com/engine/extend/plugins_authorization/
https://docs.docker.com/engine/extend/plugins_authorization/
https://docs.docker.com/engine/extend/plugins_authorization/
https://docs.docker.com/engine/extend/plugins_authorization/
https://docs.docker.com/engine/extend/plugins_authorization/
https://docs.docker.com/engine/extend/plugins_authorization/
https://docs.docker.com/engine/admin/logging/overview/
https://docs.docker.com/engine/admin/logging/overview/
https://docs.docker.com/engine/admin/logging/overview/
https://docs.docker.com/engine/admin/logging/overview/
https://docs.docker.com/engine/admin/logging/overview/
https://docs.docker.com/engine/admin/logging/overview/
https://docs.docker.com/engine/admin/logging/overview/
https://docs.docker.com/engine/admin/logging/overview/
https://docs.docker.com/engine/admin/logging/overview/
https://docs.docker.com/engine/admin/logging/overview/
https://docs.docker.com/engine/admin/logging/overview/
https://docs.docker.com/engine/admin/logging/overview/
https://docs.docker.com/engine/admin/logging/overview/
https://docs.docker.com/engine/admin/logging/overview/
https://docs.docker.com/engine/admin/logging/overview/
https://docs.docker.com/engine/admin/logging/overview/
https://docs.docker.com/engine/admin/logging/overview/
https://docs.docker.com/engine/admin/logging/overview/
https://docs.docker.com/engine/admin/live-restore/
https://docs.docker.com/engine/admin/live-restore/
https://docs.docker.com/engine/admin/live-restore/
https://docs.docker.com/engine/admin/live-restore/
https://docs.docker.com/engine/admin/live-restore/
https://docs.docker.com/engine/admin/live-restore/
https://docs.docker.com/engine/admin/live-restore/
https://docs.docker.com/engine/admin/live-restore/
https://docs.docker.com/engine/admin/live-restore/
https://docs.docker.com/engine/admin/live-restore/
https://docs.docker.com/engine/admin/live-restore/
https://docs.docker.com/engine/admin/live-restore/
https://docs.docker.com/engine/admin/live-restore/
https://docs.docker.com/engine/admin/live-restore/
https://docs.docker.com/engine/admin/live-restore/
https://docs.docker.com/engine/admin/live-restore/
https://docs.docker.com/engine/admin/live-restore/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/

Docker Security Chapter 12

[334]

This stops the processes within the containers potentially can't gain any
additional privileges by setting suid or sgid bits; this could limit the impact of
any dangerous operations trying to access privileged binaries.

Docker daemon configuration files
I had no [WARN] statuses in this section, which is to be expected, as Docker was deployed
using Docker Machine.

Container images and build files
I had three [WARN] statuses for container images and build files; you may notice that multi-
line warnings are prefixed with * after the status:

[WARN] 4.1 - Ensure a user for the container has been created
[WARN] * Running as root: sshd
[WARN] * Running as root: priv-nginx
[WARN] * Running as root: root-nginx

The processes in the containers that I am running are all running as the root user; this is the
default action of most containers. For more information, see https:/ ​/​docs. ​docker. ​com/
engine/​security/ ​security/ ​:

[WARN] 4.5 - Ensure Content trust for Docker is Enabled

Enabling content trust for Docker ensures the provenance of the container images that you
are pulling, as they are digitally signed when you push them; this means that you are
always running the images that you intended to run. For more information on content trust,
see https:/​/​docs. ​docker. ​com/ ​engine/ ​security/ ​trust/ ​content_ ​trust/ ​:

[WARN] 4.6 - Ensure HEALTHCHECK instructions have been added to the
container image
[WARN] * No Healthcheck found: [sshd:latest]
[WARN] * No Healthcheck found: [nginx:latest]
[WARN] * No Healthcheck found: [ubuntu:16.04]

When building your image, it is possible to build in a HEALTHCHECK; this ensures that when
a container launches from your image, Docker will periodically check the status of your
container, and, if needed, it will restart or relaunch it. More details can be found at https:/
/​docs.​docker.​com/ ​engine/ ​reference/ ​builder/ ​#healthcheck.

https://docs.docker.com/engine/security/security/
https://docs.docker.com/engine/security/security/
https://docs.docker.com/engine/security/security/
https://docs.docker.com/engine/security/security/
https://docs.docker.com/engine/security/security/
https://docs.docker.com/engine/security/security/
https://docs.docker.com/engine/security/security/
https://docs.docker.com/engine/security/security/
https://docs.docker.com/engine/security/security/
https://docs.docker.com/engine/security/security/
https://docs.docker.com/engine/security/security/
https://docs.docker.com/engine/security/security/
https://docs.docker.com/engine/security/security/
https://docs.docker.com/engine/security/security/
https://docs.docker.com/engine/security/security/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/reference/builder/#healthcheck
https://docs.docker.com/engine/reference/builder/#healthcheck
https://docs.docker.com/engine/reference/builder/#healthcheck
https://docs.docker.com/engine/reference/builder/#healthcheck
https://docs.docker.com/engine/reference/builder/#healthcheck
https://docs.docker.com/engine/reference/builder/#healthcheck
https://docs.docker.com/engine/reference/builder/#healthcheck
https://docs.docker.com/engine/reference/builder/#healthcheck
https://docs.docker.com/engine/reference/builder/#healthcheck
https://docs.docker.com/engine/reference/builder/#healthcheck
https://docs.docker.com/engine/reference/builder/#healthcheck
https://docs.docker.com/engine/reference/builder/#healthcheck
https://docs.docker.com/engine/reference/builder/#healthcheck
https://docs.docker.com/engine/reference/builder/#healthcheck
https://docs.docker.com/engine/reference/builder/#healthcheck
https://docs.docker.com/engine/reference/builder/#healthcheck

Docker Security Chapter 12

[335]

Container runtime
As we were a little silly when launching our containers on the Docker Host that we
audited, we know that there will be a lot of vulnerabilities here, and there are 11 of them
altogether:

[WARN] 5.2 - Ensure SELinux security options are set, if applicable
[WARN] * No SecurityOptions Found: sshd
[WARN] * No SecurityOptions Found: root-nginx

The preceding vulnerability is a false positive; we are not running SELinux, as it is an
Ubuntu machine, and SELinux is only applicable to Red Hat based machines; instead, 5.1
shows us the result, which is a [PASS], which we want:

[PASS] 5.1 - Ensure AppArmor Profile is Enabled

The next two [WARN] statuses are of our own making, as follows:

[WARN] 5.4 - Ensure privileged containers are not used
[WARN] * Container running in Privileged mode: priv-nginx

The following is also of our own making:

[WARN] 5.6 - Ensure ssh is not run within containers
[WARN] * Container running sshd: sshd

These can be safely ignored; it should be very rare that you have to launch a container
running in Privileged mode. It is only if your container needs to interact with the Docker
Engine running on your Docker host; for example, when you are running a GUI (such as
Portainer), which we covered in Chapter 11, Portainer - A GUI for Docker.

We have also discussed that you should not be running SSH in your containers; there are a
few use cases, such as running a jump host within a certain network; however, these should
be the exception.

Docker Security Chapter 12

[336]

The next two [WARN] statuses are flagged because, by default on Docker, all running
containers on your Docker hosts share the resources equally; setting limits on memory and
the CPU priority for your containers will ensure that the containers that you want to have a
higher priority are not starved of resources by lower priority containers:

[WARN] 5.10 - Ensure memory usage for container is limited
[WARN] * Container running without memory restrictions: sshd
[WARN] * Container running without memory restrictions: priv-nginx
[WARN] * Container running without memory restrictions: root-nginx
[WARN] 5.11 - Ensure CPU priority is set appropriately on the container
[WARN] * Container running without CPU restrictions: sshd
[WARN] * Container running without CPU restrictions: priv-nginx
[WARN] * Container running without CPU restrictions: root-nginx

As we already discussed earlier in the chapter, if possible, you should be launching your
containers read-only, and mounting volumes for where you know your process needs to
write data to:

[WARN] 5.12 - Ensure the container's root filesystem is mounted as read
only
[WARN] * Container running with root FS mounted R/W: sshd
[WARN] * Container running with root FS mounted R/W: priv-nginx
[WARN] * Container running with root FS mounted R/W: root-nginx

The reason the following flags are raised is that we are not telling Docker to bind our
exposed port to a specific IP address on the Docker host:

[WARN] 5.13 - Ensure incoming container traffic is binded to a specific
host interface
[WARN] * Port being bound to wildcard IP: 0.0.0.0 in sshd

As my test Docker host only has a single NIC, this isn't too much of a problem; however, if
my Docker host had multiple interfaces, then this container would be exposed to all of the
networks, which could be a problem if I had, for example, an external and internal network.
See https:/​/​docs. ​docker. ​com/ ​engine/ ​userguide/ ​networking/ ​ for more details:

[WARN] 5.14 - Ensure 'on-failure' container restart policy is set to '5'
[WARN] * MaximumRetryCount is not set to 5: sshd
[WARN] * MaximumRetryCount is not set to 5: priv-nginx
[WARN] * MaximumRetryCount is not set to 5: root-nginx

https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/

Docker Security Chapter 12

[337]

Although I haven't launched my containers using the --restart flag, there is no default
value for the MaximumRetryCount. This means that if a container failed over and over, it
would quite happily sit there attempting to restart. This could have a negative effect on the
Docker host; adding a MaximumRetryCount of 5 will mean that the container will attempt
to restart five times, before giving up:

[WARN] 5.25 - Ensure the container is restricted from acquiring additional
privileges
[WARN] * Privileges not restricted: sshd
[WARN] * Privileges not restricted: priv-nginx
[WARN] * Privileges not restricted: root-nginx

By default, Docker does not put a restriction on a process or its child processes gaining new
privileges via suid or sgid bits. To find out details on how you can stop this behavior, see
http:/​/​www.​projectatomic. ​io/ ​blog/ ​2016/ ​03/​no- ​new- ​privs- ​docker/ ​:

[WARN] 5.26 - Ensure container health is checked at runtime
[WARN] * Health check not set: sshd
[WARN] * Health check not set: priv-nginx
[WARN] * Health check not set: root-nginx

Again, we are not using any health checks, meaning that Docker will not periodically check
the status of your containers. To see the GitHub issue for the pull request that introduced
this feature, browse to https:/ ​/ ​github. ​com/​moby/ ​moby/ ​pull/ ​22719/ ​:

[WARN] 5.28 - Ensure PIDs cgroup limit is used
[WARN] * PIDs limit not set: sshd
[WARN] * PIDs limit not set: priv-nginx
[WARN] * PIDs limit not set: root-nginx

Potentially, an attacker could trigger a fork bomb with a single command inside of your
container. This has the potential to crash you Docker host, and the only way to recover
would be to reboot the host. You can protect against this by using the --pids-limit flag.
For more information, see the pull request at https:/ ​/​github. ​com/ ​moby/ ​moby/ ​pull/ ​18697/
.

http://www.projectatomic.io/blog/2016/03/no-new-privs-docker/
http://www.projectatomic.io/blog/2016/03/no-new-privs-docker/
http://www.projectatomic.io/blog/2016/03/no-new-privs-docker/
http://www.projectatomic.io/blog/2016/03/no-new-privs-docker/
http://www.projectatomic.io/blog/2016/03/no-new-privs-docker/
http://www.projectatomic.io/blog/2016/03/no-new-privs-docker/
http://www.projectatomic.io/blog/2016/03/no-new-privs-docker/
http://www.projectatomic.io/blog/2016/03/no-new-privs-docker/
http://www.projectatomic.io/blog/2016/03/no-new-privs-docker/
http://www.projectatomic.io/blog/2016/03/no-new-privs-docker/
http://www.projectatomic.io/blog/2016/03/no-new-privs-docker/
http://www.projectatomic.io/blog/2016/03/no-new-privs-docker/
http://www.projectatomic.io/blog/2016/03/no-new-privs-docker/
http://www.projectatomic.io/blog/2016/03/no-new-privs-docker/
http://www.projectatomic.io/blog/2016/03/no-new-privs-docker/
http://www.projectatomic.io/blog/2016/03/no-new-privs-docker/
http://www.projectatomic.io/blog/2016/03/no-new-privs-docker/
http://www.projectatomic.io/blog/2016/03/no-new-privs-docker/
http://www.projectatomic.io/blog/2016/03/no-new-privs-docker/
http://www.projectatomic.io/blog/2016/03/no-new-privs-docker/
http://www.projectatomic.io/blog/2016/03/no-new-privs-docker/
http://www.projectatomic.io/blog/2016/03/no-new-privs-docker/
http://www.projectatomic.io/blog/2016/03/no-new-privs-docker/
http://www.projectatomic.io/blog/2016/03/no-new-privs-docker/
https://github.com/moby/moby/pull/22719/
https://github.com/moby/moby/pull/22719/
https://github.com/moby/moby/pull/22719/
https://github.com/moby/moby/pull/22719/
https://github.com/moby/moby/pull/22719/
https://github.com/moby/moby/pull/22719/
https://github.com/moby/moby/pull/22719/
https://github.com/moby/moby/pull/22719/
https://github.com/moby/moby/pull/22719/
https://github.com/moby/moby/pull/22719/
https://github.com/moby/moby/pull/22719/
https://github.com/moby/moby/pull/22719/
https://github.com/moby/moby/pull/22719/
https://github.com/moby/moby/pull/22719/
https://github.com/moby/moby/pull/22719/
https://github.com/moby/moby/pull/22719/
https://github.com/moby/moby/pull/18697/
https://github.com/moby/moby/pull/18697/
https://github.com/moby/moby/pull/18697/
https://github.com/moby/moby/pull/18697/
https://github.com/moby/moby/pull/18697/
https://github.com/moby/moby/pull/18697/
https://github.com/moby/moby/pull/18697/
https://github.com/moby/moby/pull/18697/
https://github.com/moby/moby/pull/18697/
https://github.com/moby/moby/pull/18697/
https://github.com/moby/moby/pull/18697/
https://github.com/moby/moby/pull/18697/
https://github.com/moby/moby/pull/18697/
https://github.com/moby/moby/pull/18697/
https://github.com/moby/moby/pull/18697/

Docker Security Chapter 12

[338]

Docker security operations
This section includes [INFO] about best practices, as follows:

[INFO] 6.1 - Perform regular security audits of your host system and
containers
[INFO] 6.2 - Monitor Docker containers usage, performance and metering
[INFO] 6.3 - Backup container data
[INFO] 6.4 - Avoid image sprawl
[INFO] * There are currently: 4 images
[INFO] 6.5 - Avoid container sprawl
[INFO] * There are currently a total of 8 containers, with 4 of them
currently running

Docker Swarm configuration
This section includes [PASS] information, as we don't have Docker Swarm enabled on the
host:

[PASS] 7.1 - Ensure swarm mode is not Enabled, if not needed
[PASS] 7.2 - Ensure the minimum number of manager nodes have been created
in a swarm (Swarm mode not enabled)
[PASS] 7.3 - Ensure swarm services are binded to a specific host interface
(Swarm mode not enabled)
[PASS] 7.5 - Ensure Docker's secret management commands are used for
managing secrets in a Swarm cluster (Swarm mode not enabled)
[PASS] 7.6 - Ensure swarm manager is run in auto-lock mode (Swarm mode not
enabled)
[PASS] 7.7 - Ensure swarm manager auto-lock key is rotated periodically
(Swarm mode not enabled)
[PASS] 7.8 - Ensure node certificates are rotated as appropriate (Swarm
mode not enabled)
[PASS] 7.9 - Ensure CA certificates are rotated as appropriate (Swarm mode
not enabled)
[PASS] 7.10 - Ensure management plane traffic has been separated from data
plane traffic (Swarm mode not enabled)

Docker Security Chapter 12

[339]

Summing up Docker Bench
As you have seen, running Docker Bench against your Docker host is a much better way to
get an understanding of how your Docker host stacks up against the CIS Docker
Benchmark; it is certainly a lot more manageable than manually working through every
single test in the 230-page document.

Third-party security services
Before we finish this chapter, we are going to take a look at some of the third-party services
available, to help you with the vulnerability assessment of your images.

Quay
Quay, an image registry service by CoreOS, which was purchased by Red Hat, is similar to
the Docker Hub/Registry; one difference is that Quay actually performs a security scan of
each image after it is pushed/built.

You can see the results of the scan by viewing the Repository Tags for your chosen image;
here, you will see a column for Security Scan. As you can see in the following screenshot,
in the example image that we created, there are no problems:

Docker Security Chapter 12

[340]

Clicking on Passed will take you to a more detailed breakdown of any vulnerabilities that
have been detected within the image. As there are no vulnerabilities at the moment (which
is a good thing), this screen does not tell us much. However, clicking on the Packages icon
in the left-hand menu will present us with a list of the packages that the scan has
discovered. For our test image, it has found 29 packages with no vulnerabilities, all of
which are displayed here, along with confirmation of the version of the package, and how
they were introduced to the image:

As you can also see, Quay is scanning our publicly available image, which is being hosted
on the free-of-charge open source plan that Quay offers. Security scanning comes as
standard with all plans on Quay.

Docker Security Chapter 12

[341]

Clair
Clair is an open source project from CoreOS. In essence, it is a service that provides the
static analysis functionality for both the hosted version of Quay and the commercially
supported, enterprise version.

It works by creating a local mirror of the following vulnerability databases:

Debian Security Bug Tracker: https:/ ​/ ​security- ​tracker. ​debian. ​org/ ​tracker/ ​

Ubuntu CVE Tracker: https:/ ​/​launchpad. ​net/ ​ubuntu- ​cve- ​tracker/ ​

Red Hat Security Data: https:/ ​/​www. ​redhat. ​com/ ​security/ ​data/ ​metrics/ ​

Oracle Linux Security Data: https:/ ​/​linux. ​oracle. ​com/ ​security/ ​

Alpine SecDB: https:/ ​/​git. ​alpinelinux. ​org/ ​cgit/ ​alpine- ​secdb/ ​

NIST NVD: https:/ ​/​nvd. ​nist. ​gov/ ​

Once it has mirrored the data sources, it mounts the image's filesystem, and then performs
a scan of the installed packages, comparing them to the signatures in the preceding data
sources.

Clair is not a straightforward service; it only has an API-driven interface, and there are no
fancy web-based or command-line tools that ship with Clair by default. The documentation
for the API can be found at https:/ ​/​coreos. ​com/ ​clair/ ​docs/ ​latest/ ​api_ ​v1. ​html.

The installation instructions can be found at the project's GitHub page, at https:/ ​/​github.
com/​coreos/​clair/ ​.

Also, you can find a list of tools that support Clair on its integration page, at https:/ ​/
coreos.​com/​clair/ ​docs/ ​latest/ ​integrations. ​html.

Anchore
The final tool that we are going to cover is Anchore. This comes in several versions; there
are cloud-based offerings and an on-premise enterprise version, both of which come with a
full, web-based graphical interface. There is a version that hooks into Jenkins, and also the
open source command-line scanner, which is what we are going to take a look at now.

https://security-tracker.debian.org/tracker/
https://security-tracker.debian.org/tracker/
https://security-tracker.debian.org/tracker/
https://security-tracker.debian.org/tracker/
https://security-tracker.debian.org/tracker/
https://security-tracker.debian.org/tracker/
https://security-tracker.debian.org/tracker/
https://security-tracker.debian.org/tracker/
https://security-tracker.debian.org/tracker/
https://security-tracker.debian.org/tracker/
https://security-tracker.debian.org/tracker/
https://security-tracker.debian.org/tracker/
https://security-tracker.debian.org/tracker/
https://security-tracker.debian.org/tracker/
https://launchpad.net/ubuntu-cve-tracker/
https://launchpad.net/ubuntu-cve-tracker/
https://launchpad.net/ubuntu-cve-tracker/
https://launchpad.net/ubuntu-cve-tracker/
https://launchpad.net/ubuntu-cve-tracker/
https://launchpad.net/ubuntu-cve-tracker/
https://launchpad.net/ubuntu-cve-tracker/
https://launchpad.net/ubuntu-cve-tracker/
https://launchpad.net/ubuntu-cve-tracker/
https://launchpad.net/ubuntu-cve-tracker/
https://launchpad.net/ubuntu-cve-tracker/
https://launchpad.net/ubuntu-cve-tracker/
https://launchpad.net/ubuntu-cve-tracker/
https://launchpad.net/ubuntu-cve-tracker/
https://www.redhat.com/security/data/metrics/
https://www.redhat.com/security/data/metrics/
https://www.redhat.com/security/data/metrics/
https://www.redhat.com/security/data/metrics/
https://www.redhat.com/security/data/metrics/
https://www.redhat.com/security/data/metrics/
https://www.redhat.com/security/data/metrics/
https://www.redhat.com/security/data/metrics/
https://www.redhat.com/security/data/metrics/
https://www.redhat.com/security/data/metrics/
https://www.redhat.com/security/data/metrics/
https://www.redhat.com/security/data/metrics/
https://www.redhat.com/security/data/metrics/
https://www.redhat.com/security/data/metrics/
https://www.redhat.com/security/data/metrics/
https://www.redhat.com/security/data/metrics/
https://linux.oracle.com/security/
https://linux.oracle.com/security/
https://linux.oracle.com/security/
https://linux.oracle.com/security/
https://linux.oracle.com/security/
https://linux.oracle.com/security/
https://linux.oracle.com/security/
https://linux.oracle.com/security/
https://linux.oracle.com/security/
https://linux.oracle.com/security/
https://linux.oracle.com/security/
https://linux.oracle.com/security/
https://git.alpinelinux.org/cgit/alpine-secdb/
https://git.alpinelinux.org/cgit/alpine-secdb/
https://git.alpinelinux.org/cgit/alpine-secdb/
https://git.alpinelinux.org/cgit/alpine-secdb/
https://git.alpinelinux.org/cgit/alpine-secdb/
https://git.alpinelinux.org/cgit/alpine-secdb/
https://git.alpinelinux.org/cgit/alpine-secdb/
https://git.alpinelinux.org/cgit/alpine-secdb/
https://git.alpinelinux.org/cgit/alpine-secdb/
https://git.alpinelinux.org/cgit/alpine-secdb/
https://git.alpinelinux.org/cgit/alpine-secdb/
https://git.alpinelinux.org/cgit/alpine-secdb/
https://git.alpinelinux.org/cgit/alpine-secdb/
https://git.alpinelinux.org/cgit/alpine-secdb/
https://git.alpinelinux.org/cgit/alpine-secdb/
https://git.alpinelinux.org/cgit/alpine-secdb/
https://nvd.nist.gov/
https://nvd.nist.gov/
https://nvd.nist.gov/
https://nvd.nist.gov/
https://nvd.nist.gov/
https://nvd.nist.gov/
https://nvd.nist.gov/
https://nvd.nist.gov/
https://nvd.nist.gov/
https://nvd.nist.gov/
https://coreos.com/clair/docs/latest/api_v1.html
https://coreos.com/clair/docs/latest/api_v1.html
https://coreos.com/clair/docs/latest/api_v1.html
https://coreos.com/clair/docs/latest/api_v1.html
https://coreos.com/clair/docs/latest/api_v1.html
https://coreos.com/clair/docs/latest/api_v1.html
https://coreos.com/clair/docs/latest/api_v1.html
https://coreos.com/clair/docs/latest/api_v1.html
https://coreos.com/clair/docs/latest/api_v1.html
https://coreos.com/clair/docs/latest/api_v1.html
https://coreos.com/clair/docs/latest/api_v1.html
https://coreos.com/clair/docs/latest/api_v1.html
https://coreos.com/clair/docs/latest/api_v1.html
https://coreos.com/clair/docs/latest/api_v1.html
https://coreos.com/clair/docs/latest/api_v1.html
https://coreos.com/clair/docs/latest/api_v1.html
https://coreos.com/clair/docs/latest/api_v1.html
https://coreos.com/clair/docs/latest/api_v1.html
https://coreos.com/clair/docs/latest/api_v1.html
https://github.com/coreos/clair/
https://github.com/coreos/clair/
https://github.com/coreos/clair/
https://github.com/coreos/clair/
https://github.com/coreos/clair/
https://github.com/coreos/clair/
https://github.com/coreos/clair/
https://github.com/coreos/clair/
https://github.com/coreos/clair/
https://github.com/coreos/clair/
https://github.com/coreos/clair/
https://coreos.com/clair/docs/latest/integrations.html
https://coreos.com/clair/docs/latest/integrations.html
https://coreos.com/clair/docs/latest/integrations.html
https://coreos.com/clair/docs/latest/integrations.html
https://coreos.com/clair/docs/latest/integrations.html
https://coreos.com/clair/docs/latest/integrations.html
https://coreos.com/clair/docs/latest/integrations.html
https://coreos.com/clair/docs/latest/integrations.html
https://coreos.com/clair/docs/latest/integrations.html
https://coreos.com/clair/docs/latest/integrations.html
https://coreos.com/clair/docs/latest/integrations.html
https://coreos.com/clair/docs/latest/integrations.html
https://coreos.com/clair/docs/latest/integrations.html
https://coreos.com/clair/docs/latest/integrations.html
https://coreos.com/clair/docs/latest/integrations.html
https://coreos.com/clair/docs/latest/integrations.html

Docker Security Chapter 12

[342]

This version is distributed as a Docker Compose file, so we shall start by creating the
folders that we need, and we will also download the Docker Compose and basic
configuration file from the project GitHub repository:

$ mkdir anchore anchore/config
$ cd anchore
$ curl
https://raw.githubusercontent.com/anchore/anchore-engine/master/scripts/doc
ker-compose/docker-compose.yaml -o docker-compose.yaml
$ curl
https://raw.githubusercontent.com/anchore/anchore-engine/master/scripts/doc
ker-compose/config.yaml -o config/config.yaml

Now that we have the basics in place, you can pull the images and start the containers, as
follows:

$ docker-compose pull
$ docker-compose up -d

Before we can interact with our Anchore deployment, we need to install the command-line
client. If you are running macOS, then you have to run the following commands, ignoring
the first if you already have pip installed:

$ sudo easy_install pip
$ pip install --user anchorecli
$ export PATH=${PATH}:${HOME}/Library/Python/2.7/bin

For Ubuntu users, you should run the following commands, this time ignoring the first two
commands if you already have pip:

$ sudo apt-get update
$ sudo apt-get install python-pip
$ sudo pip install anchorecli

Once it has installed, you can run the following commands to check the status of your
installation:

$ anchore-cli --u admin --p foobar system status

This will show you the overall status of your installation; it might take a minute or two
from when you first launched for everything to show as up:

Docker Security Chapter 12

[343]

The next command shows you where Anchore is in the database sync:

$ anchore-cli --u admin --p foobar system feeds list

As you can see in the following screenshot, my installation is currently syncing the CentOS
6 database. This process can take up to a few hours; however, for our example, we are
going to be scanning an Alpine Linux based image as shown:

Next up, we have to grab an image to scan; let's grab an older image, as follows:

$ anchore-cli --u admin --p foobar image add docker.io/russmckendrick/moby-
counter:old

It will a minute or two to run its initial scan; you can check the status by running the
following:

$ anchore-cli --u admin --p foobar image list

Docker Security Chapter 12

[344]

After a while, the status should change from analyzing to analyzed:

$ anchore-cli --u admin --p foobar image get docker.io/russmckendrick/moby-
counter:old

This will show you an overview of the image, as follows:

You can then view a list of problems (if there are any), by running the following:

$ anchore-cli --u admin --p foobar image vuln
docker.io/russmckendrick/moby-counter:old os

Docker Security Chapter 12

[345]

As you can see, each package that is listed has the current version, a link to the CVE issue,
and also, a confirmation of the version number that fixes the reported issue.

You can use the following commands to remove the Anchore containers:

$ docker-compose stop
$ docker-compose rm

Summary
In this chapter, we covered some aspects of Docker security. First, we took a look at some of
the things that you must consider when running containers (versus typical virtual
machines), with regards to security. We looked at the advantages and your Docker host,
and then we discussed image trust. We then took a look at the Docker commands that we
can use for security purposes.

We launched a read-only container, so that we can minimize any potential damage an
intruder can do within our running containers. As not all applications lend themselves to
running in read-only containers, we then looked at how we can track changes that have
been made to the image since it was launched. It is always useful to be able to easily
discover any changes that were made on the filesystem at runtime, when trying to look into
any problems.

Next, we discussed the Center for Internet Security guidelines for Docker. This guide will
assist you in setting up multiple aspects of your Docker environment. Lastly, we took a
look at Docker Bench Security. We looked at how to get it up and running, and we ran
through an example of what the output would look like. We then analyzed the output, to
see what it meant. Remember the seven items that the application covered: the host
configuration, the Docker daemon configuration, the Docker daemon configuration files,
the container images and build files, the container runtime, the Docker security operations,
and the Docker Swarm configuration.

In the next chapter, we will look at how Docker can fit into your existing workflows, as well
as some new ways to approach working with containers.

Docker Security Chapter 12

[346]

Questions
When launching a container, how can we make all of it, or parts of it, read-only?1.
How many processes should you be running per container?2.
What is the best way to check your Docker installation against the CIS Docker3.
benchmark?
When running the Docker Bench Security application, what should be mounted?4.
True or false: Quay only supports image scanning for private images.5.

Further reading
For more information, visit the website at https:/ ​/​www. ​cisecurity. ​org/ ​; the Docker
Benchmark can be found at https:/ ​/ ​www. ​cisecurity. ​org/ ​benchmark/ ​docker/ ​.

https://www.cisecurity.org/
https://www.cisecurity.org/
https://www.cisecurity.org/
https://www.cisecurity.org/
https://www.cisecurity.org/
https://www.cisecurity.org/
https://www.cisecurity.org/
https://www.cisecurity.org/
https://www.cisecurity.org/
https://www.cisecurity.org/
https://www.cisecurity.org/benchmark/docker/
https://www.cisecurity.org/benchmark/docker/
https://www.cisecurity.org/benchmark/docker/
https://www.cisecurity.org/benchmark/docker/
https://www.cisecurity.org/benchmark/docker/
https://www.cisecurity.org/benchmark/docker/
https://www.cisecurity.org/benchmark/docker/
https://www.cisecurity.org/benchmark/docker/
https://www.cisecurity.org/benchmark/docker/
https://www.cisecurity.org/benchmark/docker/
https://www.cisecurity.org/benchmark/docker/
https://www.cisecurity.org/benchmark/docker/
https://www.cisecurity.org/benchmark/docker/
https://www.cisecurity.org/benchmark/docker/

13
Docker Workflows

In this chapter, we will be looking at Docker and various workflows for Docker. We'll put
all the pieces together so you can start using Docker in your production environments and
feel comfortable doing so. Let's take a peek at what we will be covering in this chapter:

Docker for development
Monitoring Docker
Extending to external platforms
What does production look like?

Technical requirements
In this chapter, we will be using Docker on the desktop. Like previous chapters, I will be
using my preferred operating system, which is macOS. The Docker commands we will be
running will work on all three of the operating systems we have installed Docker on so far.
However, some of the supporting commands, which will be few and far between, may only
apply to macOS and Linux- based operating system.

A full copy of the code used in this chapter can be found in the GitHub repository
at https:/​/​github. ​com/ ​PacktPublishing/ ​Mastering- ​Docker- ​Third- ​Edition/ ​tree/
master/​chapter14.

Check out the following video to see the Code in Action:
http:/​/​bit.​ly/​2SaG0uP

https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter14
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter14
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter14
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter14
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter14
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter14
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter14
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter14
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter14
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter14
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter14
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter14
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter14
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter14
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter14
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter14
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter14
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter14
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter14
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter14
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter14
https://github.com/PacktPublishing/Mastering-Docker-Third-Edition/tree/master/chapter14
http://bit.ly/2SaG0uP
http://bit.ly/2SaG0uP
http://bit.ly/2SaG0uP
http://bit.ly/2SaG0uP
http://bit.ly/2SaG0uP
http://bit.ly/2SaG0uP
http://bit.ly/2SaG0uP
http://bit.ly/2SaG0uP
http://bit.ly/2SaG0uP

Docker Workflows Chapter 13

[348]

Docker for development
We are going to start our look at the workflows by discussing how Docker can be used to
aid developers. Right back at the start of Chapter 1, Docker Overview, one of the first things
we discussed in the Understanding Docker section was developers and the Works on my
machine problem. So far, we have not really fully addressed this, so let's do that now.

For this section, we are going to look at how a developer could develop their WordPress
project on their local machine using Docker for macOS or Docker for Windows along with
Docker Compose.

The aim of this is for us to launch a WordPress installation, which is what you will do with
the following steps:

Download and install WordPress.1.
Allow access to the WordPress files from desktop editors, such as Atom, Visual2.
Studio Code, or Sublime Text, on your local machine.
Configure and manage WordPress using the WordPress command-line tool (WP-3.
CLI). This allows you to stop, start, and even remove containers without losing
your work.

Before we launch our WordPress installation, let's take a look at the Docker Compose file
and what services we have running:

version: "3"

services:
 web:
 image: nginx:alpine
 ports:
 - "8080:80"
 volumes:
 - "./wordpress/web:/var/www/html"
 - "./wordpress/nginx.conf:/etc/nginx/conf.d/default.conf"
 depends_on:
 - wordpress
 wordpress:
 image: wordpress:php7.2-fpm-alpine
 volumes:
 - "./wordpress/web:/var/www/html"
 depends_on:
 - mysql
 mysql:
 image: mysql:5
 environment:

Docker Workflows Chapter 13

[349]

 MYSQL_ROOT_PASSWORD: "wordpress"
 MYSQL_USER: "wordpress"
 MYSQL_PASSWORD: "wordpress"
 MYSQL_DATABASE: "wordpress"
 volumes:
 - "./wordpress/mysql:/var/lib/mysql"
 wp:
 image: wordpress:cli-2-php7.2
 volumes:
 - "./wordpress/web:/var/www/html"
 - "./wordpress/export:/export"

We can visualize the Docker Compose file using the docker-compose-viz tool from
PMSIpilot. To do this, run the following command in the same folder as the docker-
compose.yml file:

$ docker container run --rm -it --name dcv -v $(pwd):/input
pmsipilot/docker-compose-viz render -m image docker-compose.yml

This will output a file called docker-compose.png, and you should get something that
looks like this:

You can use docker-compose-viz to give yourself a visual representation of any Docker
Compose file. As you can see from ours, we have four services defined.

Docker Workflows Chapter 13

[350]

The first is called web. This service is the only one of the four that is exposed to the host
network, and it acts as a frontend to our WordPress installation. It runs the official
nginx image from https:/ ​/​store. ​docker. ​com/ ​images/ ​nginx/ ​, and it performs two
roles. Before we look at these, take a look at the following nginx configuration:

server {
 server_name _;
 listen 80 default_server;

 root /var/www/html;
 index index.php index.html;

 access_log /dev/stdout;
 error_log /dev/stdout info;

 location / {
 try_files $uri $uri/ /index.php?$args;
 }

 location ~ .php$ {
 include fastcgi_params;
 fastcgi_pass wordpress:9000;
 fastcgi_index index.php;
 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
 fastcgi_buffers 16 16k;
 fastcgi_buffer_size 32k;
 }
}

You can see that we are serving all content, apart from PHP, using nginx from
/var/www/html/, which we are mounting from our host machine using nginx, and all
requests for PHP files are being proxied to our second service, which is called wordpress,
on port 9000. The nginx configuration itself is being mounted from our host machine to
/etc/nginx/conf.d/default.conf.

This means our nginx container is acting as a web server for the static content, the first role,
and also as a proxy through to the WordPress container for the dynamic content, which is
the second role the container takes on.

The second service is wordpress; this is the official WordPress image from https:/ ​/
store.​docker.​com/ ​images/ ​wordpress, and I am using the php7.2-fpm-alpine tag. This
gives us a WordPress installation running on PHP 7.2 using PHP-FPM built on top of an
Alpine Linux base.

https://store.docker.com/images/nginx/
https://store.docker.com/images/nginx/
https://store.docker.com/images/nginx/
https://store.docker.com/images/nginx/
https://store.docker.com/images/nginx/
https://store.docker.com/images/nginx/
https://store.docker.com/images/nginx/
https://store.docker.com/images/nginx/
https://store.docker.com/images/nginx/
https://store.docker.com/images/nginx/
https://store.docker.com/images/nginx/
https://store.docker.com/images/nginx/
https://store.docker.com/images/nginx/
https://store.docker.com/images/nginx/
https://store.docker.com/images/wordpress
https://store.docker.com/images/wordpress
https://store.docker.com/images/wordpress
https://store.docker.com/images/wordpress
https://store.docker.com/images/wordpress
https://store.docker.com/images/wordpress
https://store.docker.com/images/wordpress
https://store.docker.com/images/wordpress
https://store.docker.com/images/wordpress
https://store.docker.com/images/wordpress
https://store.docker.com/images/wordpress
https://store.docker.com/images/wordpress

Docker Workflows Chapter 13

[351]

FastCGI Process Manager (PHP-FPM) is a PHP FastCGI implementation
with some great features. For us, it allows PHP to run as a service that we
can bind to a port and pass requests to; this fits in with the Docker
approach of running a single service on each container.

We are mounting the same web root as we are doing for the web service, which on the host
machine is wordpress/web and on the service is /var/www/html/. To start off with, the
folder on our host machine will be empty; however, once the WordPress service starts, it
will detect that there isn't any core WordPress installation and copy one to that location,
effectively bootstrapping our WordPress installation and copying it to our host machine,
ready for us to start work on.

The next service is MySQL, which uses the official MySQL image (https:/ ​/​store. ​docker.
com/​images/​mysql/ ​) and is the only image out of the four we are using that doesn't use
Alpine Linux (come on MySQL, pull your finger out and publish an Alpine Linux-based
image!). Instead, it uses debian:stretch-slim. We are passing a few environment
variables so that a database, username, and password are all created when the container
first runs; the password is something you should change if you ever use this as a base for
one of your projects.

Like the web and wordpress containers, we are mounting a folder from our host machine.
In this case, it is wordpress/mysql, and we are mounting it to /var/lib/mysql/, which
is the default folder where MySQL stores its databases and associated files.

You will notice that when the container starts, wordpress/mysql is populated with a few
files. I do not recommend editing them using your local IDE.

The final service is simply called wp. It differs from the other three services: this service will
immediately exit when executed because there is no long-running process within the
container. Instead of a long-running process, it provides access to the WordPress
command-line tool in an environment that exactly matches our main wordpress container.

You will notice that we are mounting the web root as we have done on web and WordPress
as well as a second mount called /export; we will look at this in more detail once we have
WordPress configured.

To start WordPress, we just need to run the following command to pull the images:

$ docker-compose pull

https://store.docker.com/images/mysql/
https://store.docker.com/images/mysql/
https://store.docker.com/images/mysql/
https://store.docker.com/images/mysql/
https://store.docker.com/images/mysql/
https://store.docker.com/images/mysql/
https://store.docker.com/images/mysql/
https://store.docker.com/images/mysql/
https://store.docker.com/images/mysql/
https://store.docker.com/images/mysql/
https://store.docker.com/images/mysql/
https://store.docker.com/images/mysql/
https://store.docker.com/images/mysql/

Docker Workflows Chapter 13

[352]

This will pull the images and start the web, wordpress, and mysql services as well as
readying the wp service. Before the services start, our wordpress folder looks like this:

As you can see, we only have nginx.conf in there, which is part of the Git repository.
Then we can use the following commands to start the containers and check their status:

$ docker-compose up -d
$ docker-compose ps

You should see that three folders have been created in the wordpress folder: export,
mysql, and web. Also, remember that we are expecting dockerwordpress_wp_1 to have
an exit state, so that's fine:

Docker Workflows Chapter 13

[353]

Opening a browser and going to http://localhost:8080/ should show you the
standard WordPress pre-installation welcome page, where you can select the language you
wish to use for your installation:

Docker Workflows Chapter 13

[354]

Do not click on Continue, as it will take you to the next screen of the GUI-based
installation. Instead, return to your Terminal.

Rather than using the GUI to complete the installation, we are going to use WP-CLI. There
are two steps to this. The first step is to create a wp-config.php file. To do this, run the
following command:

$ docker-compose run wp core config \
 --dbname=wordpress \
 --dbuser=wordpress \
 --dbpass=wordpress \
 --dbhost=mysql \
 --dbprefix=wp_

As you will see in the following Terminal output, before I ran the command, I just had the
wp-config-sample.php file, which ships with core WordPress. Then, after running the
command, I had my own wp-config.php file:

You will notice that in the command, we are passing the database details we defined in the
Docker Compose file and telling WordPress that it can connect to the database service at
the address of mysql.

Now that we have configured database connection details, we need to configure our
WordPress site as well a create an admin user and set a password. To do this, run the
following command:

$ docker-compose run wp core install \
 --title="Blog Title" \
 --url="http://localhost:8080" \
 --admin_user="admin" \
 --admin_password="password" \
 --admin_email="email@domain.com"

Docker Workflows Chapter 13

[355]

Running this command will produce an error about the email service; do not worry about
that message, as this is only a local development environment. We are not too worried
about emails leaving our WordPress installation:

We have used WP-CLI to configure the following in WordPress:

Our URL is http://localhost:8080
Our site title should be Blog Title
Our admin username is admin and password is password, and the user has an
email of email@domain.com

Going back to your browser and entering http:/ ​/​localhost:8080/ ​ should present you
with a vanilla WordPress site:

Docker Workflows Chapter 13

[356]

Before we do anything further, let's customize our installation a little, first by installing and
enabling the JetPack plugin:

$ docker-compose run wp plugin install jetpack --activate

The output of the command is given here:

Then, install and enable the sydney theme:

$ docker-compose run wp theme install sydney --activate

The output of the command is given here:

Refreshing our WordPress page at http:/ ​/​localhost:8080/ ​ should show something like
the following:

Docker Workflows Chapter 13

[357]

Before we open our IDE, let's destroy the containers running our WordPress installation
using the following command:

$ docker-compose down

The output of the command is given here:

Docker Workflows Chapter 13

[358]

As our entire WordPress installation, including all of the files and database, is stored on our
local machine, we should be able to run the following command to return to our WordPress
site where we left it:

$ docker-compose up -d

Once you have confirmed it is up and running as expected by going to http:/ ​/
localhost:8080/​, open the docker-wordpress folder in your desktop editor. I used
Sublime Text. In your editor, open the wordpress/web/wp-blog-header.php file and
add the following line to the opening PHP statement and save it:

echo "Testing editing in the IDE";

The file should look something like the following:

Docker Workflows Chapter 13

[359]

Once saved, refresh your browser and you should see the message Testing editing in the
IDE at the very bottom of the page (the following screen is zoomed; it may be more difficult
to spot if you are following along, as the text is is quite small):

The final thing we are going to look at is why we had the wordpress/export folder
mounted on the wp container.

As already mentioned earlier in the chapter, you shouldn't be really touching the contents
of the wordpress/mysql folder; this also includes sharing it. While it would probably
work if you were to zip up your project folder and pass it to a colleague, it is not considered
as best practice. Because of this, we have mounted the export folder to allow us to use WP-
CLI to make a database dump and import it.

To do this, run the following command:

$ docker-compose run wp db export --add-drop-table /export/wordpress.sql

Docker Workflows Chapter 13

[360]

The following Terminal output shows the export and also the contents of
wordpress/export before and after, and finally, the top few lines of the MySQL dump:

If I needed to, because, say, I had made a mistake during development, I could roll back to
that version of the database by running the following command:

$ docker-compose run wp db import /export/wordpress.sql

The output of the command is given here:

Docker Workflows Chapter 13

[361]

As you have seen, we have installed WordPress, interacted with it both using WP-CLI and
the browser, edited the code, and also backed up and restored the database, all without
having to install or configure nginx, PHP, MySQL, or WP-CLI. Nor did we have to log in to
a container. By mounting volumes from our host machine, our content was safe when we
tore our WordPress containers down and we didn't lose any work.

Also, if needed, we could have easily passed a copy of our project folder to a colleague who
has Docker installed, and with a single command, they could be working on our code,
knowing it is running in the exact environment as our own installation.

Finally, as we're using official images from the Docker Store, we know we can safely ask to
have them deployed into production as they have been built with Docker's best practices in
mind.

Don't forget to stop and remove your WordPress containers by running
docker-compose down.

Monitoring
Next, we are going to take a look at monitoring our containers and also Docker hosts. In
Chapter 4, Managing Containers, we discussed the docker container top and docker
container stats commands. You may recall that both of these commands show real-
time information only; there is no historical data kept.

While this is great if you are trying to debug a problem as it is running or want to quickly
get an idea of what is going on inside your containers, it is not too helpful if you need to
look back at a problem: maybe you have configured your containers to restart if they have
become unresponsive. While that will help with the availability of your application, it isn't
much of a help if you need to look at why your container became unresponsive.

Docker Workflows Chapter 13

[362]

In the GitHub repository in the /chapter14 folder, there is a folder called prometheus in
which there is a Docker Compose file that launches three different containers on two
networks. Rather than looking at the Docker Compose file, itself let's take a look at the
visualization:

As you can see, there is a lot going on. The three services we are running are:

Cadvisor
Prometheus
Grafana

Before we launch and configure our Docker Compose services, we should talk about why
each one is needed, starting with cadvisor.

The cadvisor is a project released by Google. As you can see from Docker Hub username
in the image we are using, the service section in the Docker Compose file looks like the
following:

 cadvisor:
 image: google/cadvisor:latest
 container_name: cadvisor
 volumes:
 - /:/rootfs:ro
 - /var/run:/var/run:rw
 - /sys:/sys:ro
 - /var/lib/docker/:/var/lib/docker:ro
 restart: unless-stopped

Docker Workflows Chapter 13

[363]

 expose:
 - 8080
 networks:
 - back

We are mounting the various parts of our host's filesystem to allow cadvisor access to our
Docker installation in much the same way as we did in Chapter 11, Portainer – A GUI for
Docker. The reason for this is that in our case, we are going to be using cadvisor to
collect statistics on our containers. While it can be used as a standalone container-
monitoring service, we do not want to publicly expose the cadvisor container. Instead, we
are just making it available to other containers within our Docker Compose stack on the
back network.

cadvisor is a self-contained web frontend to the Docker container stat command,
displaying graphs and allowing you to drill down from your Docker host into your
containers from an easy-to-use interface. However, it doesn't keep more than 5 minutes'
worth of metrics.

As we are attempting to record metrics that can be available hours or even days later,
having no more than 5 minutes of metrics means that we are going to have to use
additional tools to record the metrics it processes. cadvisor exposes the information we
want to record our containers as structured data at the following endpoint:
http://cadvisor:8080/metrics/.

We will look at why this is important in a moment. The cadvisor endpoint is being
scraped automatically by our next service, prometheus. This is where most of the heavy
lifting happens. The prometheus is a monitoring tool written and open sourced by
SoundCloud:

 prometheus:
 image: prom/prometheus
 container_name: prometheus
 volumes:
 - ./prometheus/prometheus.yml:/etc/prometheus/prometheus.yml
 - prometheus_data:/prometheus
 restart: unless-stopped
 expose:
 - 9090
 depends_on:
 - cadvisor
 networks:
 - back

Docker Workflows Chapter 13

[364]

As you can see from the preceding service definition, we are mounting a configuration file
called ./prometheus/prometheus.yml and also a volume called prometheus_data. The
configuration file contains information about the sources we want to scrape, as you can see
from the following configuration:

global:
 scrape_interval: 15s
 evaluation_interval: 15s
 external_labels:
 monitor: 'monitoring'

rule_files:

scrape_configs:

 - job_name: 'prometheus'
 static_configs:
 - targets: ['localhost:9090']

 - job_name: 'cadvisor'
 static_configs:
 - targets: ['cadvisor:8080']

We are instructing Prometheus to scrape data from our endpoints every 15 seconds. The
endpoints are defined in the scrape_configs section, and as you can see, we have
cadvisor in there as well as Prometheus itself defined. The reason we are creating and
mounting the prometheus_data volume is that Prometheus is going to be storing all of
our metrics, so we need to keep it safe.

At its core, Prometheus is a time-series database. It takes the data it has scraped, processes
it to find the metric name and value, and then stores it along with a timestamp.

Prometheus also comes with a powerful query engine and API, making it the perfect
database for this kind of data. While it does come with basic graphing capabilities, it is
recommended that you use Grafana, which is our final service and also the only one to be
exposed publicly.

Grafana is an open source tool for displaying monitoring graphs and metric analytics,
which allows you to create dashboards using time-series databases, such as Graphite,
InfluxDB, and also Prometheus. There are also further backend database options that are
available as plugins.

Docker Workflows Chapter 13

[365]

The Docker Compose definition for Grafana follows a similar pattern to our other services:

 grafana:
 image: grafana/grafana
 container_name: grafana
 volumes:
 - grafana_data:/var/lib/grafana
 - ./grafana/provisioning/:/etc/grafana/provisioning/
 env_file:
 - ./grafana/grafana.config
 restart: unless-stopped
 ports:
 - 3000:3000
 depends_on:
 - prometheus
 networks:
 - front
 - back

We are using the grafana_data volume to store Grafana's own internal configuration
database, and rather than storing the environment variables in the Docker Compose file, we
are loading them from an external file called ./grafana/grafana.config.

The variables are as follows:

GF_SECURITY_ADMIN_USER=admin
GF_SECURITY_ADMIN_PASSWORD=password
GF_USERS_ALLOW_SIGN_UP=false

As you can see, we are setting the username and password here, so having them in an
external file means that you can change these values without editing the core Docker
Compose file.

Now that we know the role that each of the four services fulfills, let's launch them. To do
this, simply run the following commands from the prometheus folder:

$ docker-compose pull
$ docker-compose up -d

Docker Workflows Chapter 13

[366]

This will create a network and the volumes and pull the images from the Docker Hub. It
will then go about launching the four services:

You may be tempted to go immediately to your Grafana dashboard. If you did so, you
would not see anything, as Grafana takes a few minutes to initialize itself. You can follow
its progress by following the logs:

$ docker-compose logs -f grafana

The output of the command is given here:

Docker Workflows Chapter 13

[367]

Once you see the HTTP Server Listen message, Grafana will be available. With Grafana
5 you can now import data sources and dashboards, which is why we are
mounting ./grafana/provisioning/ to /etc/grafana/provisioning/. This folder
contains the configuration which automatically configures Grafana to talk to our
Prometheus service and also imports the dashboard, which will display the data that
Prometheus is scraping from cadvisor.

Open your browser and enter http://localhost:3000/, and you should be greeted with
a login screen:

Docker Workflows Chapter 13

[368]

Enter the User as admin and the Password as password. Once logged in, if you have
configured the data source, you should see the following page:

As you can see, the initial steps of Install Grafana | Create your first data source | Create
your first dashboard have all been executed, leaving just the remaining two. For now, we
will ignore these. Clicking on the Home button in the top left will bring up a menu that lists
the available dashboards:

Docker Workflows Chapter 13

[369]

As you can see, we have one called Docker Monitoring. Clicking on it will take you to the
following page:

Docker Workflows Chapter 13

[370]

As you can see from the timing information on the top right of the screen, by default it
displays the last five minutes worth of data. Clicking on it will allow you to change the time
frame displays. For example, the following screen shows the last 15 minutes, which
obviously is more than the five minutes that cadvisor is recording:

I have already mentioned that this is a complex solution; eventually, Docker will expand
the recently released built-in endpoint, which presently only exposes information about the
Docker Engine and not the containers themselves. For more information on the built-in
endpoint, check out the official Docker documentation, which can be found at https:/ ​/
docs.​docker.​com/ ​config/ ​thirdparty/ ​prometheus/ ​.

There are other monitoring solutions out there; most of them take the form of third-party
Software as a service (SaaS). As you can see from the list of services in the Further reading
section, there are a few well-established monitoring solutions listed. In fact, you may
already be using them, so it would be easy for you when expanding your configuration to
take into account when monitoring your containers.

https://docs.docker.com/config/thirdparty/prometheus/
https://docs.docker.com/config/thirdparty/prometheus/
https://docs.docker.com/config/thirdparty/prometheus/
https://docs.docker.com/config/thirdparty/prometheus/
https://docs.docker.com/config/thirdparty/prometheus/
https://docs.docker.com/config/thirdparty/prometheus/
https://docs.docker.com/config/thirdparty/prometheus/
https://docs.docker.com/config/thirdparty/prometheus/
https://docs.docker.com/config/thirdparty/prometheus/
https://docs.docker.com/config/thirdparty/prometheus/
https://docs.docker.com/config/thirdparty/prometheus/
https://docs.docker.com/config/thirdparty/prometheus/
https://docs.docker.com/config/thirdparty/prometheus/
https://docs.docker.com/config/thirdparty/prometheus/
https://docs.docker.com/config/thirdparty/prometheus/

Docker Workflows Chapter 13

[371]

Once you have finished exploring your Prometheus installation, don't forget to remove it
by running the following command:

$ docker-compose down --volumes --rmi all

This removes all of the containers, volumes, images, and network.

Extending to external platforms
We have already looked at how we can extend to some other external platforms using tools
such as Docker Machine, Docker Swarm, Docker for Amazon Web Services, and Rancher to
launch clusters and also clusters and container services from public cloud services, such as
Amazon Web Services, Microsoft Azure, and DigitalOcean.

Heroku
Heroku is a little different than the other cloud services, as it is a considered a Platform as a
service (PaaS). Instead of deploying containers on it, you link your containers to that
Heroku platform, from which it will be running a service, such as PHP, Java, Node.js, or
Python. So, you can run your Rails application on Heroku and then attach your Docker
container to that platform.

We will not be covering installing Heroku here as it is a little off topic.
Please see the Further reading section of the chapter for more details
on Heroku.

The way you can use Docker and Heroku together is to create your application on the
Heroku platform, and then in your code, you will have something similar to the following:

{
 "name": “Application Name",
 "description": “Application to run code in a Docker container",
 "image": “<docker_image>:<tag>”,
 "addons": ["heroku-postgresql"]
}

To take a step back, we first need to install the plugin to be able to get this functionality
working. Simply run the following command:

$ heroku plugins:install heroku-docker

Docker Workflows Chapter 13

[372]

Now, if you are wondering what image you can or should be using from the Docker Hub,
Heroku maintains a lot of images you can use in the preceding code:

heroku/nodejs

heroku/ruby

heroku/jruby

heroku/python

heroku/scala

heroku/clojure

heroku/gradle

heroku/java

heroku/go

heroku/go-gb

What does production look like?
For the final section of this chapter, we are going to discuss what production should look
like. This section isn't going to be as long as you think it will be. This is due to the sheer
number of options that are available, so it would be impossible to cover them all. Also, you
should already have a good idea based on the previous sections and chapters on what
would work best for you.

Instead, we are going to be looking at some questions you should be asking yourself when
planning your environments.

Docker hosts
Docker hosts are the key component of your environment. Without these, you won't have
anywhere to run your containers. As we have already seen in previous chapters, there are a
few considerations when it comes to running your Docker hosts. The first thing you need to
take into account is that, if your hosts are running Docker, they should not run any other
services.

Docker Workflows Chapter 13

[373]

Mixing of processes
You should resist the temptation of quickly installing Docker on an existing host and
launching a container. This might not only have a security implication with you having a
mixture of isolated and non-isolated processes on a single host, but it can also cause
performance issues as you are not able to add resource limits to your non-containerized
applications, meaning that, potentially, they can also have a negative impact on your
running containers.

Multiple isolated Docker hosts
If you have more than a few Docker hosts, how are you going to manage them? Running a
tool such as Portainer is great, but it can get troublesome when attempting to manage more
than a few hosts. Also, if you are running multiple isolated Docker hosts, you do not have
the option of moving containers between hosts.

Sure, you can use tools such as Weave Net to span the container network across multiple
individual Docker hosts. Depending on your hosting environment, you may also have the
option of creating volumes on external storage and presenting them to Docker hosts as
needed, but you are very much creating a manual process to manage the migration of
containers between hosts.

Routing to your containers
You need to consider how are you going to route requests among your containers if you
have multiple hosts.

For example, if you have an external load balancer, such as an ELB in AWS, or a dedicated
device in front of an on-premise cluster, do you have the ability to dynamically add routes
for traffic hitting port x on your Load Balancer to port y on your Docker hosts, at which
point the traffic is then routed through to your container?

If you have multiple containers that all need to be accessible on the same external port, how
are you going handle that?

Do you need to install a proxy such as Traefik, HAProxy, or nginx to accept and then route
your requests based on virtual hosts based on domains or subdomains, rather than just
using port-based routing?

Docker Workflows Chapter 13

[374]

For example, you could use just ports for a website, everything on ports 80 and 443 to the
container that is configured by Docker, to accept traffic on those ports. Using virtual host
routing means that you can route domain-a.com to container a and then domainb.com
to container b. Both domain-a.com and domain-b.com can point toward the same IP
address and port.

Clustering
A lot of what we have discussed in the previous section can be solved by introducing
clustering tools, such as Docker Swarm and Kubernetes

Compatibility
Even though an application works fine on a developer's local Docker installation, you need
to be able to guarantee that if you take the application and deploy it to, for example, a
Kubernetes cluster, it works in the same way.

Nine out of ten times, you will not have a problem, but you do need to consider how the
application is communicating internally with other containers within the same application
set.

Reference architectures
Are there reference architectures available for your chosen clustering technology? It is
always best to check when deploying a cluster. There are best practice guides that are close
to or match your proposed environment. After all, no one wants to create one big single
point of failure.

Also, what are the recommended resources? There is no point in deploying a cluster with
five management nodes and a single Docker host, just like there is little point in deploying
five Docker hosts and single management server, as you have quite a large single point of
failure.

What supporting technologies does your cluster technology support (for example, remote
storage, load balancers, and firewalls)?

https://www.domain-b.com/

Docker Workflows Chapter 13

[375]

Cluster communication
What are the requirements when it comes to the cluster communicating with either
management or Docker hosts? Do you need an internal or separate network to isolate the
cluster traffic?

Can you easily lock a cluster member down to only your cluster? Is the cluster
communication encrypted? What information about your cluster could be exposed? Does
this make it a target for hackers?

What external access does the cluster need to APIs, such as your public cloud providers?
How securely are any API/access credentials stored?

Image registries
How is your application packaged? Have you baked the code into the image? If so, do you
need to host a private local image registry, or are you okay with using an external service
such as Docker Hub, Docker Trusted Registry (DTR), or Quay?

If you need to host your own private registry, where in your environment should it sit?
Who has or needs access? Can it hook into your directory provider, such as an Active
Directory installation?

Summary
In this chapter, we looked at a few different workflows for Docker along with how to get
some monitoring for your containers and Docker hosts up and running.

The best thing you can do when it comes to your own environment is building a proof of
concept and trying as hard as you can to cover every disaster scenario you can think of.
You can get a head start by using the container services provided by your cloud provider or
by looking for a good reference architecture, which should all limit your trial and error.

In the next chapter, we are going to take a look at what your next step in the world of
containers could be.

Docker Workflows Chapter 13

[376]

Questions
Which container serves our WordPress website?1.
Why doesn't the wp container remain running? 2.
In minutes, how long does cadvisor keep metrics for?3.
What Docker Compose command can be used to remove everything to do with4.
the application?

Further reading
You can find details on the software we have used in this chapter at the following sites:

WordPress: http:/ ​/ ​wordpress. ​org/ ​

WP-CLI: https:/ ​/ ​wp- ​cli. ​org/ ​

PHP-FPM: https:/ ​/​php- ​fpm. ​org/​

cAdvisor: https:/ ​/ ​github. ​com/ ​google/ ​cadvisor/ ​

Prometheus: https:/ ​/​prometheus. ​io/ ​

Grafana: https:/ ​/​grafana. ​com/ ​

Prometheus data model: https:/ ​/​prometheus. ​io/ ​docs/ ​concepts/ ​data_ ​model/ ​

Traefik: https:/ ​/​traefik. ​io/ ​

HAProxy: https:/ ​/​www. ​haproxy. ​org/ ​

NGINX: https:/ ​/ ​nginx. ​org/ ​

Heroku: https:/ ​/​www. ​heroku. ​com

Other externally hosted Docker monitoring platforms include the following:

Sysdig Cloud: https:/ ​/​sysdig. ​com/ ​

Datadog: http:/ ​/ ​docs. ​datadoghq. ​com/ ​integrations/ ​docker/ ​

CoScale: http:/ ​/​www. ​coscale. ​com/​docker- ​monitoring

Dynatrace: https:/ ​/ ​www. ​dynatrace. ​com/ ​capabilities/ ​microservices- ​and-
container- ​monitoring/ ​

SignalFx: https:/ ​/​signalfx. ​com/​docker- ​monitoring/ ​

New Relic: https:/ ​/​newrelic. ​com/​partner/ ​docker

Sematext: https:/ ​/​sematext. ​com/ ​docker/ ​

http://wordpress.org/
http://wordpress.org/
http://wordpress.org/
http://wordpress.org/
http://wordpress.org/
http://wordpress.org/
http://wordpress.org/
http://wordpress.org/
https://wp-cli.org/
https://wp-cli.org/
https://wp-cli.org/
https://wp-cli.org/
https://wp-cli.org/
https://wp-cli.org/
https://wp-cli.org/
https://wp-cli.org/
https://wp-cli.org/
https://wp-cli.org/
https://php-fpm.org/
https://php-fpm.org/
https://php-fpm.org/
https://php-fpm.org/
https://php-fpm.org/
https://php-fpm.org/
https://php-fpm.org/
https://php-fpm.org/
https://php-fpm.org/
https://php-fpm.org/
https://github.com/google/cadvisor/
https://github.com/google/cadvisor/
https://github.com/google/cadvisor/
https://github.com/google/cadvisor/
https://github.com/google/cadvisor/
https://github.com/google/cadvisor/
https://github.com/google/cadvisor/
https://github.com/google/cadvisor/
https://github.com/google/cadvisor/
https://github.com/google/cadvisor/
https://github.com/google/cadvisor/
https://github.com/google/cadvisor/
https://prometheus.io/
https://prometheus.io/
https://prometheus.io/
https://prometheus.io/
https://prometheus.io/
https://prometheus.io/
https://prometheus.io/
https://prometheus.io/
https://grafana.com/
https://grafana.com/
https://grafana.com/
https://grafana.com/
https://grafana.com/
https://grafana.com/
https://grafana.com/
https://grafana.com/
https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/concepts/data_model/
https://traefik.io/
https://traefik.io/
https://traefik.io/
https://traefik.io/
https://traefik.io/
https://traefik.io/
https://traefik.io/
https://traefik.io/
https://www.haproxy.org/
https://www.haproxy.org/
https://www.haproxy.org/
https://www.haproxy.org/
https://www.haproxy.org/
https://www.haproxy.org/
https://www.haproxy.org/
https://www.haproxy.org/
https://www.haproxy.org/
https://www.haproxy.org/
https://nginx.org/
https://nginx.org/
https://nginx.org/
https://nginx.org/
https://nginx.org/
https://nginx.org/
https://nginx.org/
https://nginx.org/
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://sysdig.com/
https://sysdig.com/
https://sysdig.com/
https://sysdig.com/
https://sysdig.com/
https://sysdig.com/
https://sysdig.com/
https://sysdig.com/
http://docs.datadoghq.com/integrations/docker/
http://docs.datadoghq.com/integrations/docker/
http://docs.datadoghq.com/integrations/docker/
http://docs.datadoghq.com/integrations/docker/
http://docs.datadoghq.com/integrations/docker/
http://docs.datadoghq.com/integrations/docker/
http://docs.datadoghq.com/integrations/docker/
http://docs.datadoghq.com/integrations/docker/
http://docs.datadoghq.com/integrations/docker/
http://docs.datadoghq.com/integrations/docker/
http://docs.datadoghq.com/integrations/docker/
http://docs.datadoghq.com/integrations/docker/
http://docs.datadoghq.com/integrations/docker/
http://docs.datadoghq.com/integrations/docker/
http://www.coscale.com/docker-monitoring
http://www.coscale.com/docker-monitoring
http://www.coscale.com/docker-monitoring
http://www.coscale.com/docker-monitoring
http://www.coscale.com/docker-monitoring
http://www.coscale.com/docker-monitoring
http://www.coscale.com/docker-monitoring
http://www.coscale.com/docker-monitoring
http://www.coscale.com/docker-monitoring
http://www.coscale.com/docker-monitoring
http://www.coscale.com/docker-monitoring
http://www.coscale.com/docker-monitoring
http://www.coscale.com/docker-monitoring
https://www.dynatrace.com/capabilities/microservices-and-container-monitoring/
https://www.dynatrace.com/capabilities/microservices-and-container-monitoring/
https://www.dynatrace.com/capabilities/microservices-and-container-monitoring/
https://www.dynatrace.com/capabilities/microservices-and-container-monitoring/
https://www.dynatrace.com/capabilities/microservices-and-container-monitoring/
https://www.dynatrace.com/capabilities/microservices-and-container-monitoring/
https://www.dynatrace.com/capabilities/microservices-and-container-monitoring/
https://www.dynatrace.com/capabilities/microservices-and-container-monitoring/
https://www.dynatrace.com/capabilities/microservices-and-container-monitoring/
https://www.dynatrace.com/capabilities/microservices-and-container-monitoring/
https://www.dynatrace.com/capabilities/microservices-and-container-monitoring/
https://www.dynatrace.com/capabilities/microservices-and-container-monitoring/
https://www.dynatrace.com/capabilities/microservices-and-container-monitoring/
https://www.dynatrace.com/capabilities/microservices-and-container-monitoring/
https://www.dynatrace.com/capabilities/microservices-and-container-monitoring/
https://www.dynatrace.com/capabilities/microservices-and-container-monitoring/
https://www.dynatrace.com/capabilities/microservices-and-container-monitoring/
https://www.dynatrace.com/capabilities/microservices-and-container-monitoring/
https://www.dynatrace.com/capabilities/microservices-and-container-monitoring/
https://signalfx.com/docker-monitoring/
https://signalfx.com/docker-monitoring/
https://signalfx.com/docker-monitoring/
https://signalfx.com/docker-monitoring/
https://signalfx.com/docker-monitoring/
https://signalfx.com/docker-monitoring/
https://signalfx.com/docker-monitoring/
https://signalfx.com/docker-monitoring/
https://signalfx.com/docker-monitoring/
https://signalfx.com/docker-monitoring/
https://signalfx.com/docker-monitoring/
https://signalfx.com/docker-monitoring/
https://newrelic.com/partner/docker
https://newrelic.com/partner/docker
https://newrelic.com/partner/docker
https://newrelic.com/partner/docker
https://newrelic.com/partner/docker
https://newrelic.com/partner/docker
https://newrelic.com/partner/docker
https://newrelic.com/partner/docker
https://newrelic.com/partner/docker
https://newrelic.com/partner/docker
https://newrelic.com/partner/docker
https://sematext.com/docker/
https://sematext.com/docker/
https://sematext.com/docker/
https://sematext.com/docker/
https://sematext.com/docker/
https://sematext.com/docker/
https://sematext.com/docker/
https://sematext.com/docker/
https://sematext.com/docker/
https://sematext.com/docker/

Docker Workflows Chapter 13

[377]

There are also other self-hosted options, such as the following:

Elastic Beats: https:/ ​/​www. ​elastic. ​co/ ​products/ ​beats

Sysdig: https:/ ​/​www. ​sysdig. ​org

Zabbix: https:/ ​/ ​github. ​com/ ​monitoringartist/ ​zabbix- ​docker- ​monitoring

https://www.elastic.co/products/beats
https://www.elastic.co/products/beats
https://www.elastic.co/products/beats
https://www.elastic.co/products/beats
https://www.elastic.co/products/beats
https://www.elastic.co/products/beats
https://www.elastic.co/products/beats
https://www.elastic.co/products/beats
https://www.elastic.co/products/beats
https://www.elastic.co/products/beats
https://www.elastic.co/products/beats
https://www.elastic.co/products/beats
https://www.elastic.co/products/beats
https://www.sysdig.org
https://www.sysdig.org
https://www.sysdig.org
https://www.sysdig.org
https://www.sysdig.org
https://www.sysdig.org
https://www.sysdig.org
https://www.sysdig.org
https://www.sysdig.org
https://github.com/monitoringartist/zabbix-docker-monitoring
https://github.com/monitoringartist/zabbix-docker-monitoring
https://github.com/monitoringartist/zabbix-docker-monitoring
https://github.com/monitoringartist/zabbix-docker-monitoring
https://github.com/monitoringartist/zabbix-docker-monitoring
https://github.com/monitoringartist/zabbix-docker-monitoring
https://github.com/monitoringartist/zabbix-docker-monitoring
https://github.com/monitoringartist/zabbix-docker-monitoring
https://github.com/monitoringartist/zabbix-docker-monitoring
https://github.com/monitoringartist/zabbix-docker-monitoring
https://github.com/monitoringartist/zabbix-docker-monitoring
https://github.com/monitoringartist/zabbix-docker-monitoring
https://github.com/monitoringartist/zabbix-docker-monitoring
https://github.com/monitoringartist/zabbix-docker-monitoring
https://github.com/monitoringartist/zabbix-docker-monitoring

14
Next Steps with Docker

You've made it to the last chapter of this book, and you've stuck with it until the end! In this
chapter, we will look at the Moby project and how you can contribute to Docker, as well as
to the community. We will then finish this chapter with a quick overview of the Cloud
Native Computing Foundation. Let's start by discussing the Moby Project.

The Moby Project
One of the announcements made at DockerCon 2017 was the Moby Project. When this
project was announced, I had a few questions about what the project was from work
colleagues, because on the face of it, Docker had appeared to have released another
container system.

So, how did I answer? After a few days of getting puzzled looks, I settled on the following
answer:

Moby Project is the collective name for an open source project that collects several libraries used to
build container-based systems. The project comes with its own framework for combining these
libraries into a usable system and also a reference system called Moby Origin; think of this as a
"Hello World" that allows you to build and even customize your own Docker.

One of two things happened after I gave this answer; typically, the response was but what
does that actually mean?. I responded by saying:

Moby Project is the open source playground for Docker (the company) and anyone else who wishes
to contribute to the project to develop new and extend existing features to the libraries and
frameworks that go to make up container-based systems in a public forum. One output of this is the
bleeding-edge container system called Moby Origin and the other is Docker (the product), which is
delivered as the open source community edition or the commercially supported enterprise edition.

Next Steps with Docker Chapter 14

[379]

For anyone who asks for an example of a similar project that combines a bleeding-edge
version, a stable open source release, and an enterprise supported version, I explain what
Red Hat do with Red Hat Enterprise Linux:

Think of it like the approach Red Hat have taken with Red Hat Enterprise Linux. You have Fedora,
which is the bleeding edge version development playground for Red Hat's operating system
developers to introduce new packages, features, and also to remove old, outdated components.
Typically, Fedora is a year or two ahead of the features found in Red Hat Enterprise Linux, which is
the commercially supported long-term release based on the work done in the Fedora project; as well
as this release, you also have the community support version in the form of CentOS.

You may be thinking to yourself, why has this only been mentioned right at the very end of this
book? Well, at the time of writing this book, the project is still very much in its infancy. In
fact, work is still ongoing to transition all of the components required for the Moby Project
from the main Docker projects.

The only real, usable component of the project as I write this is LinuxKit, which is the
framework that pulls together all of the libraries and outputs a bootable system that is
capable of running containers.

Due the extremely fast pace of this project, I am not going to give any examples on how to
use LinuxKit or go into any more detail about Moby Project as it is likely to change by the
time you read this; instead, I would recommend bookmarking the following pages to keep
up-to-date with this exciting development:

The project's main website, at: https:/ ​/ ​mobyproject. ​org/ ​

Moby Project GitHub pages, at: https:/ ​/​github. ​com/ ​moby/ ​

The Moby Project Twitter account, a good source of news and links to how-to's,
at: https:/ ​/​twitter. ​com/ ​moby/ ​

The home of LinuxKit, which contains examples and instructions on how to get
started, at: https:/ ​/​github. ​com/​linuxkit/ ​

Contributing to Docker
So, you want to help contribute to Docker? Do you have a great idea that you would like to
see in Docker or one of its components? Let's get you the information and tools that you
need to do that. If you aren't a programmer-type person, there are other ways you can help
contribute as well. Docker has a massive audience, and another way you can help
contribute is to help with supporting other users with their services. Let's learn how you
can do that as well.

https://mobyproject.org/
https://mobyproject.org/
https://mobyproject.org/
https://mobyproject.org/
https://mobyproject.org/
https://mobyproject.org/
https://mobyproject.org/
https://mobyproject.org/
https://github.com/moby/
https://github.com/moby/
https://github.com/moby/
https://github.com/moby/
https://github.com/moby/
https://github.com/moby/
https://github.com/moby/
https://github.com/moby/
https://github.com/moby/
https://github.com/moby/
https://twitter.com/moby/
https://twitter.com/moby/
https://twitter.com/moby/
https://twitter.com/moby/
https://twitter.com/moby/
https://twitter.com/moby/
https://twitter.com/moby/
https://twitter.com/moby/
https://twitter.com/moby/
https://twitter.com/moby/
https://github.com/linuxkit/
https://github.com/linuxkit/
https://github.com/linuxkit/
https://github.com/linuxkit/
https://github.com/linuxkit/
https://github.com/linuxkit/
https://github.com/linuxkit/
https://github.com/linuxkit/
https://github.com/linuxkit/
https://github.com/linuxkit/

Next Steps with Docker Chapter 14

[380]

Contributing to the code
One of the biggest ways you can contribute to Docker is helping with the Docker code.
Since Docker is all open source, you can download the code to your local machine and
work on new features and present them as pull requests back to Docker. They will then get
reviewed on a regular basis, and if they feel what you have contributed should be in the
service, they will approve the pull request. This can be very humbling when it comes to
knowing that something you have written has been accepted.

You first need to know how you can get set up to contribute: this is pretty much everything
for Docker (https:/ ​/​github. ​com/ ​docker/ ​) and Moby Project (https:/ ​/​github. ​com/​moby/ ​),
which we spoke about in the previous section. But how do we go about getting set up to
help contribute? The best place to start is by following the guide that can be found on the
official Docker documentation at https:/ ​/​docs. ​docker. ​com/ ​project/ ​who- ​written- ​for/ ​.

As you may have already guessed, you do not need much to get a development
environment up-and-running as a lot of development is done within containers. For
example, other than having a GitHub account, Docker lists the following three pieces of
software as the bare minimum:

Git: https:/ ​/​git- ​scm. ​com/ ​

Make: https:/ ​/​www. ​gnu. ​org/ ​software/ ​make/ ​

Docker: If you made it this far, you shouldn't need a link

You can find more details on how to prepare your own Docker development for Mac and
Linux at: https:/​/ ​docs. ​docker. ​com/ ​opensource/ ​project/ ​software- ​required/ ​ and for
Windows users at: https:/ ​/​docs. ​docker. ​com/ ​opensource/ ​project/ ​software- ​req- ​win/ ​.

To be a successful open source project, there have to be some community guidelines. I
recommend reading through the excellent quick start guide that can be found at: https:/ ​/
docs.​docker.​com/ ​opensource/ ​code/ ​ as well as the more detailed contribution workflow
documentation at: https:/ ​/ ​docs. ​docker. ​com/ ​opensource/ ​workflow/ ​make- ​a-
contribution/​.

https://github.com/docker/
https://github.com/docker/
https://github.com/docker/
https://github.com/docker/
https://github.com/docker/
https://github.com/docker/
https://github.com/docker/
https://github.com/docker/
https://github.com/docker/
https://github.com/docker/
https://github.com/moby/
https://github.com/moby/
https://github.com/moby/
https://github.com/moby/
https://github.com/moby/
https://github.com/moby/
https://github.com/moby/
https://github.com/moby/
https://github.com/moby/
https://github.com/moby/
https://docs.docker.com/project/who-written-for/
https://docs.docker.com/project/who-written-for/
https://docs.docker.com/project/who-written-for/
https://docs.docker.com/project/who-written-for/
https://docs.docker.com/project/who-written-for/
https://docs.docker.com/project/who-written-for/
https://docs.docker.com/project/who-written-for/
https://docs.docker.com/project/who-written-for/
https://docs.docker.com/project/who-written-for/
https://docs.docker.com/project/who-written-for/
https://docs.docker.com/project/who-written-for/
https://docs.docker.com/project/who-written-for/
https://docs.docker.com/project/who-written-for/
https://docs.docker.com/project/who-written-for/
https://docs.docker.com/project/who-written-for/
https://docs.docker.com/project/who-written-for/
https://docs.docker.com/project/who-written-for/
https://docs.docker.com/project/who-written-for/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://www.gnu.org/software/make/
https://www.gnu.org/software/make/
https://www.gnu.org/software/make/
https://www.gnu.org/software/make/
https://www.gnu.org/software/make/
https://www.gnu.org/software/make/
https://www.gnu.org/software/make/
https://www.gnu.org/software/make/
https://www.gnu.org/software/make/
https://www.gnu.org/software/make/
https://www.gnu.org/software/make/
https://www.gnu.org/software/make/
https://www.gnu.org/software/make/
https://www.gnu.org/software/make/
https://docs.docker.com/opensource/project/software-required/
https://docs.docker.com/opensource/project/software-required/
https://docs.docker.com/opensource/project/software-required/
https://docs.docker.com/opensource/project/software-required/
https://docs.docker.com/opensource/project/software-required/
https://docs.docker.com/opensource/project/software-required/
https://docs.docker.com/opensource/project/software-required/
https://docs.docker.com/opensource/project/software-required/
https://docs.docker.com/opensource/project/software-required/
https://docs.docker.com/opensource/project/software-required/
https://docs.docker.com/opensource/project/software-required/
https://docs.docker.com/opensource/project/software-required/
https://docs.docker.com/opensource/project/software-required/
https://docs.docker.com/opensource/project/software-required/
https://docs.docker.com/opensource/project/software-required/
https://docs.docker.com/opensource/project/software-required/
https://docs.docker.com/opensource/project/software-required/
https://docs.docker.com/opensource/project/software-required/
https://docs.docker.com/opensource/project/software-req-win/
https://docs.docker.com/opensource/project/software-req-win/
https://docs.docker.com/opensource/project/software-req-win/
https://docs.docker.com/opensource/project/software-req-win/
https://docs.docker.com/opensource/project/software-req-win/
https://docs.docker.com/opensource/project/software-req-win/
https://docs.docker.com/opensource/project/software-req-win/
https://docs.docker.com/opensource/project/software-req-win/
https://docs.docker.com/opensource/project/software-req-win/
https://docs.docker.com/opensource/project/software-req-win/
https://docs.docker.com/opensource/project/software-req-win/
https://docs.docker.com/opensource/project/software-req-win/
https://docs.docker.com/opensource/project/software-req-win/
https://docs.docker.com/opensource/project/software-req-win/
https://docs.docker.com/opensource/project/software-req-win/
https://docs.docker.com/opensource/project/software-req-win/
https://docs.docker.com/opensource/project/software-req-win/
https://docs.docker.com/opensource/project/software-req-win/
https://docs.docker.com/opensource/project/software-req-win/
https://docs.docker.com/opensource/project/software-req-win/
https://docs.docker.com/opensource/code/
https://docs.docker.com/opensource/code/
https://docs.docker.com/opensource/code/
https://docs.docker.com/opensource/code/
https://docs.docker.com/opensource/code/
https://docs.docker.com/opensource/code/
https://docs.docker.com/opensource/code/
https://docs.docker.com/opensource/code/
https://docs.docker.com/opensource/code/
https://docs.docker.com/opensource/code/
https://docs.docker.com/opensource/code/
https://docs.docker.com/opensource/code/
https://docs.docker.com/opensource/code/
https://docs.docker.com/opensource/workflow/make-a-contribution/
https://docs.docker.com/opensource/workflow/make-a-contribution/
https://docs.docker.com/opensource/workflow/make-a-contribution/
https://docs.docker.com/opensource/workflow/make-a-contribution/
https://docs.docker.com/opensource/workflow/make-a-contribution/
https://docs.docker.com/opensource/workflow/make-a-contribution/
https://docs.docker.com/opensource/workflow/make-a-contribution/
https://docs.docker.com/opensource/workflow/make-a-contribution/
https://docs.docker.com/opensource/workflow/make-a-contribution/
https://docs.docker.com/opensource/workflow/make-a-contribution/
https://docs.docker.com/opensource/workflow/make-a-contribution/
https://docs.docker.com/opensource/workflow/make-a-contribution/
https://docs.docker.com/opensource/workflow/make-a-contribution/
https://docs.docker.com/opensource/workflow/make-a-contribution/
https://docs.docker.com/opensource/workflow/make-a-contribution/
https://docs.docker.com/opensource/workflow/make-a-contribution/
https://docs.docker.com/opensource/workflow/make-a-contribution/
https://docs.docker.com/opensource/workflow/make-a-contribution/
https://docs.docker.com/opensource/workflow/make-a-contribution/

Next Steps with Docker Chapter 14

[381]

Docker has a code of conduct that covers both how their staff and community as a whole
should act. It is open source and licensed under the Creative Commons Attribution 3.0, and
states the following:

The full code of conduct can be found at: https:/ ​/​github. ​com/ ​docker/ ​code- ​of- ​conduct/ ​.

Offering Docker support
You can also contribute to Docker by other means beyond contributing to the Docker code
or feature sets. You can help by using the knowledge you have obtained to help others in
their support channels. The community is very open and someone is always willing to help.
I find it of great help when I run into something and I am found scratching my head. It's
also nice to get help but to also contribute back to others; this is a nice give and take. It also
is a great place to harvest ideas for you to use. You can see what questions others are asking
based on their setups and it could spur ideas that you may want to think about using in
your environment.

You can also follow the GitHub issues that are brought up regarding the services. These
could be feature requests and how Docker may implement them, or they could be issues
that have cropped up through the use of services. You can help test out the issues that
others are experiencing to see whether you can replicate the issue or whether you find a
possible solution to their issue.

https://github.com/docker/code-of-conduct/
https://github.com/docker/code-of-conduct/
https://github.com/docker/code-of-conduct/
https://github.com/docker/code-of-conduct/
https://github.com/docker/code-of-conduct/
https://github.com/docker/code-of-conduct/
https://github.com/docker/code-of-conduct/
https://github.com/docker/code-of-conduct/
https://github.com/docker/code-of-conduct/
https://github.com/docker/code-of-conduct/
https://github.com/docker/code-of-conduct/
https://github.com/docker/code-of-conduct/
https://github.com/docker/code-of-conduct/
https://github.com/docker/code-of-conduct/
https://github.com/docker/code-of-conduct/
https://github.com/docker/code-of-conduct/

Next Steps with Docker Chapter 14

[382]

Docker has a very active community that can be found at: https:/ ​/ ​community. ​docker. ​com/
; here, you will not only be able to see the latest community news and events, but you will
also be able to chat with Docker users and developers in their Slack channels. At the time of
writing this book, there are over 80 channels covering all sorts of topics such as Docker for
Mac, Docker for Windows, Alpine Linux, Swarm, Storage, and Network to name but a few,
with hundreds of active users at any one time.

Finally, there are also the Docker forums, which can be found at: https:/ ​/​forums. ​docker.
com/​. These are a good source if you want to search for topics/problems or keywords.

Other contributions
There are other ways to contribute to Docker as well. You can do things such as promoting
the service and gathering interest at your institution. You can start this communication
through your own organization's means of communications, whether that be email
distribution lists, group discussions, IT roundtables, or regularly scheduled meetings.

You can also schedule meetups within your organization to get people talking. These
meetups are designed to not only include your organization, but the city or town members
that your organization is in, in order to get more widespread communication and
promotion of the services.

You can search whether there are already meetups in your area by visiting: https:/ ​/​www.
docker.​com/​community/ ​meetup- ​groups/ ​.

The Cloud Native Computing Foundation
We discussed The Cloud Native Computing Foundation briefly in Chapter 9, Docker and
Kubernetes. The Cloud Native Computing Foundation, or CNCF, for short, was founded to
provide a vendor-neutral home for projects that allow you to manage your containers and
microservices architectures.

Its membership includes Docker, Amazon Web Services, Google Cloud, Microsoft
Azure, Red Hat, Oracle, VMWare, and Digital Ocean to name a few. In June 2018, the Linux
Foundation reported that CNCF had 238 members. These members not only contribute
projects but also engineering time, code, and resources.

https://community.docker.com/
https://community.docker.com/
https://community.docker.com/
https://community.docker.com/
https://community.docker.com/
https://community.docker.com/
https://community.docker.com/
https://community.docker.com/
https://community.docker.com/
https://forums.docker.com/
https://forums.docker.com/
https://forums.docker.com/
https://forums.docker.com/
https://forums.docker.com/
https://forums.docker.com/
https://forums.docker.com/
https://forums.docker.com/
https://forums.docker.com/
https://www.docker.com/community/meetup-groups/
https://www.docker.com/community/meetup-groups/
https://www.docker.com/community/meetup-groups/
https://www.docker.com/community/meetup-groups/
https://www.docker.com/community/meetup-groups/
https://www.docker.com/community/meetup-groups/
https://www.docker.com/community/meetup-groups/
https://www.docker.com/community/meetup-groups/
https://www.docker.com/community/meetup-groups/
https://www.docker.com/community/meetup-groups/
https://www.docker.com/community/meetup-groups/
https://www.docker.com/community/meetup-groups/
https://www.docker.com/community/meetup-groups/
https://www.docker.com/community/meetup-groups/
https://www.docker.com/community/meetup-groups/

Next Steps with Docker Chapter 14

[383]

Graduated projects
At the time of writing this book, there are two graduated projects, both of which we have
discussed in previous chapters. These are arguably also the two most well-known out of the
projects that are maintained by the foundation, and they are as follows:

Kubernetes (https:/ ​/ ​kubernetes. ​io): This was the first project to be donated to
the Foundation. As we have already mentioned, it was originally developed by
Google and now counts more than 2,300 contributors across members of the
foundation as well as the open source community.
Prometheus (https:/ ​/​prometheus. ​io): This project was donated to the
foundation by SoundCloud. As we saw in Chapter 13, Docker Workflows, it is a
real-time monitoring and alerting system that's backed by a powerful time-series
database engine.

To graduate, a project must have done the following:

Adopted the CNCF code of conduct, which is similar to the one published by
Docker. The full code of conduct can be found at https:/ ​/​github. ​com/​cncf/
foundation/ ​blob/ ​master/ ​code- ​of-​conduct. ​md.
Obtained a Linux Foundation (LF) Core Infrastructure Initiative (CII) Best
Practices badge, which demonstrates that the project is being developed using an
established set of best practices – the full criteria of which can be found
at: https:/ ​/​github. ​com/ ​coreinfrastructure/ ​best- ​practices- ​badge/ ​blob/
master/​doc/ ​criteria. ​md.
Acquired at least two organizations with committers to the project.
Defined the committer process and project governance publically via the
GOVERNANCE.md and OWNERS.md files.
Publically listed the projects adopters in an ADOPTERS.md file or by logos on the
project's website.
Received a super majority vote from the Technical Oversight Committee (TOC).
You can find out more about the committee at https:/ ​/​github. ​com/ ​cncf/ ​toc.

There is also another project status, which is where the majority of projects currently are.

https://kubernetes.io
https://kubernetes.io
https://kubernetes.io
https://kubernetes.io
https://kubernetes.io
https://kubernetes.io
https://kubernetes.io
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://github.com/cncf/foundation/blob/master/code-of-conduct.md
https://github.com/cncf/foundation/blob/master/code-of-conduct.md
https://github.com/cncf/foundation/blob/master/code-of-conduct.md
https://github.com/cncf/foundation/blob/master/code-of-conduct.md
https://github.com/cncf/foundation/blob/master/code-of-conduct.md
https://github.com/cncf/foundation/blob/master/code-of-conduct.md
https://github.com/cncf/foundation/blob/master/code-of-conduct.md
https://github.com/cncf/foundation/blob/master/code-of-conduct.md
https://github.com/cncf/foundation/blob/master/code-of-conduct.md
https://github.com/cncf/foundation/blob/master/code-of-conduct.md
https://github.com/cncf/foundation/blob/master/code-of-conduct.md
https://github.com/cncf/foundation/blob/master/code-of-conduct.md
https://github.com/cncf/foundation/blob/master/code-of-conduct.md
https://github.com/cncf/foundation/blob/master/code-of-conduct.md
https://github.com/cncf/foundation/blob/master/code-of-conduct.md
https://github.com/cncf/foundation/blob/master/code-of-conduct.md
https://github.com/cncf/foundation/blob/master/code-of-conduct.md
https://github.com/cncf/foundation/blob/master/code-of-conduct.md
https://github.com/cncf/foundation/blob/master/code-of-conduct.md
https://github.com/cncf/foundation/blob/master/code-of-conduct.md
https://github.com/cncf/foundation/blob/master/code-of-conduct.md
https://github.com/cncf/foundation/blob/master/code-of-conduct.md
https://github.com/coreinfrastructure/best-practices-badge/blob/master/doc/criteria.md
https://github.com/coreinfrastructure/best-practices-badge/blob/master/doc/criteria.md
https://github.com/coreinfrastructure/best-practices-badge/blob/master/doc/criteria.md
https://github.com/coreinfrastructure/best-practices-badge/blob/master/doc/criteria.md
https://github.com/coreinfrastructure/best-practices-badge/blob/master/doc/criteria.md
https://github.com/coreinfrastructure/best-practices-badge/blob/master/doc/criteria.md
https://github.com/coreinfrastructure/best-practices-badge/blob/master/doc/criteria.md
https://github.com/coreinfrastructure/best-practices-badge/blob/master/doc/criteria.md
https://github.com/coreinfrastructure/best-practices-badge/blob/master/doc/criteria.md
https://github.com/coreinfrastructure/best-practices-badge/blob/master/doc/criteria.md
https://github.com/coreinfrastructure/best-practices-badge/blob/master/doc/criteria.md
https://github.com/coreinfrastructure/best-practices-badge/blob/master/doc/criteria.md
https://github.com/coreinfrastructure/best-practices-badge/blob/master/doc/criteria.md
https://github.com/coreinfrastructure/best-practices-badge/blob/master/doc/criteria.md
https://github.com/coreinfrastructure/best-practices-badge/blob/master/doc/criteria.md
https://github.com/coreinfrastructure/best-practices-badge/blob/master/doc/criteria.md
https://github.com/coreinfrastructure/best-practices-badge/blob/master/doc/criteria.md
https://github.com/coreinfrastructure/best-practices-badge/blob/master/doc/criteria.md
https://github.com/coreinfrastructure/best-practices-badge/blob/master/doc/criteria.md
https://github.com/coreinfrastructure/best-practices-badge/blob/master/doc/criteria.md
https://github.com/coreinfrastructure/best-practices-badge/blob/master/doc/criteria.md
https://github.com/coreinfrastructure/best-practices-badge/blob/master/doc/criteria.md
https://github.com/coreinfrastructure/best-practices-badge/blob/master/doc/criteria.md
https://github.com/coreinfrastructure/best-practices-badge/blob/master/doc/criteria.md
https://github.com/cncf/toc
https://github.com/cncf/toc
https://github.com/cncf/toc
https://github.com/cncf/toc
https://github.com/cncf/toc
https://github.com/cncf/toc
https://github.com/cncf/toc
https://github.com/cncf/toc
https://github.com/cncf/toc
https://github.com/cncf/toc
https://github.com/cncf/toc

Next Steps with Docker Chapter 14

[384]

Incubating projects
Projects at the incubating stage should eventually have a graduated status. The following
projects have all done the following:

Demonstrated that the project is in use by a minimum of three independent end
users (not the originator of the project)
Gained a healthy number of contributors, both internally and externally
Demonstrated growth and a good level of maturity

The TOC is heavily involved in working with projects to ensure that the levels of activity
are enough to meet the preceding criteria since the metrics can vary from project to project.

The current list of projects is as follows:

OpenTracing (https:/ ​/​opentracing. ​io/ ​): This is the first of two tracing projects
which now come under the CNCF umbrella. Rather than being an application,
you download and use it is a set of libraries and APIs which let you build
in behavioral tracking and monitoring into your microservices-based
applications.
Fluentd (https:/ ​/ ​www. ​fluentd. ​org): This tool allows you to collect log data
from a large number of sources and then route the logging data to a number of
log management, database, archiving, and alerting systems such as Elastic
Search, AWS S3, MySQL, SQL Server, Hadoop, Zabbix, and DataDog, to name a
few.
gRPC (https:/ ​/ ​grpc. ​io): Like Kubernetes, gRPC was donated to the CNCF by
Google. It is an open source, extendable, and performance optimized RPC
framework, and is already in production at companies such as Netflix, Cisco, and
Juniper Networks.
Containerd (https:/ ​/ ​containerd. ​io): We briefly mentioned Containerd in
Chapter 1, Docker Overview, as being one of the open source projects which
Docker has been working on. It is a standard container runtime which allows
developers to embed a runtime that can manage both Docker and also OCI
compliant images in their platforms or applications.
Rkt (https:/ ​/ ​github. ​com/ ​rkt/ ​rkt): Rkt is an alternative to Docker's container
engine. Rather than using a daemon to manage containers on the host system,
Rkt uses the command line to launch and manage containers. It was donated to
the CNCF by CoreOS, who is now owned by Red Hat.

https://opentracing.io/
https://opentracing.io/
https://opentracing.io/
https://opentracing.io/
https://opentracing.io/
https://opentracing.io/
https://opentracing.io/
https://opentracing.io/
https://www.fluentd.org
https://www.fluentd.org
https://www.fluentd.org
https://www.fluentd.org
https://www.fluentd.org
https://www.fluentd.org
https://www.fluentd.org
https://www.fluentd.org
https://www.fluentd.org
https://grpc.io
https://grpc.io
https://grpc.io
https://grpc.io
https://grpc.io
https://grpc.io
https://grpc.io
https://containerd.io
https://containerd.io
https://containerd.io
https://containerd.io
https://containerd.io
https://containerd.io
https://containerd.io
https://github.com/rkt/rkt
https://github.com/rkt/rkt
https://github.com/rkt/rkt
https://github.com/rkt/rkt
https://github.com/rkt/rkt
https://github.com/rkt/rkt
https://github.com/rkt/rkt
https://github.com/rkt/rkt
https://github.com/rkt/rkt
https://github.com/rkt/rkt
https://github.com/rkt/rkt

Next Steps with Docker Chapter 14

[385]

CNI (https:/ ​/​github. ​com/ ​containernetworking): CNI, which is short
for Container Networking Interface, is again not something you download and
use. Instead, it is a standard for network interfaces that's designed to be
embedded into container runtimes, such as Kubernetes, Rkt, and Mesos. Having
a common interface and set of APIs allows more consistent support of advanced
network functionality in these runtimes via third-party plugins and extensions.
Envoy (https:/ ​/ ​www. ​envoyproxy. ​io): Originally created inside Lyft and in use
by companies such as Apple, Netflix, and Google, Envoy is a highly optimized
service mesh that provides load balancing, tracing, and observability of the
database and network activity across your environment.
Jaeger (https:/ ​/​jaegertracing. ​io): This is the second tracing system in the list.
Unlike OpenTracing, it is a fully distributed tracing system that was originally
developed by Uber to monitor it extensive microservices environment. Now in
use by companies such as Red Hat, it features a modern UI and native support
for OpenTracing and various backend storage engines. It has been designed to
integrate with other CNCF projects such as Kubernetes and Prometheus.
Notary (https:/ ​/ ​github. ​com/ ​theupdateframework/ ​notary): This project was
originally written by Docker and is an implementation of TUF, which we will
cover next. It has been designed to allow developers to sign their container
images by giving them a cryptographic tool which provides a mechanism to
verify the provenance of their container images and content.
TUF (https:/ ​/ ​theupdateframework. ​github. ​io): The Update Framework (TUF)
is a standard that allows software products, via the use of cryptographic keys, to
protect themselves during installation and updates. It was developed by the
NYU School of Engineering.
Vitess (https:/ ​/​vitess. ​io): Vitess has been a core component of the MySQL
database infrastructure of YouTube since 2011. It is a clustering system
that horizontally scales MySQL via sharding.
CoreDNS (https:/ ​/​coredns. ​io): This is a small, flexible, extendablem and
highly optimized DNS server that's written in Go and designed from the ground
up to run in an infrastructure that can be running thousands of containers.
NATS (https:/ ​/​nats. ​io): Here, we have a messaging system that has been
designed for environments running microservices or architectures supporting
IoT devices.
Linkerd (https:/ ​/ ​linkerd. ​io): Built by Twitter, Linkerd is a service mesh that
has been designed to scale and cope with tens of thousands of secure requests
per second.

https://github.com/containernetworking
https://github.com/containernetworking
https://github.com/containernetworking
https://github.com/containernetworking
https://github.com/containernetworking
https://github.com/containernetworking
https://github.com/containernetworking
https://github.com/containernetworking
https://github.com/containernetworking
https://www.envoyproxy.io
https://www.envoyproxy.io
https://www.envoyproxy.io
https://www.envoyproxy.io
https://www.envoyproxy.io
https://www.envoyproxy.io
https://www.envoyproxy.io
https://www.envoyproxy.io
https://www.envoyproxy.io
https://jaegertracing.io
https://jaegertracing.io
https://jaegertracing.io
https://jaegertracing.io
https://jaegertracing.io
https://jaegertracing.io
https://jaegertracing.io
https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://theupdateframework.github.io
https://theupdateframework.github.io
https://theupdateframework.github.io
https://theupdateframework.github.io
https://theupdateframework.github.io
https://theupdateframework.github.io
https://theupdateframework.github.io
https://theupdateframework.github.io
https://theupdateframework.github.io
https://vitess.io
https://vitess.io
https://vitess.io
https://vitess.io
https://vitess.io
https://vitess.io
https://vitess.io
https://coredns.io
https://coredns.io
https://coredns.io
https://coredns.io
https://coredns.io
https://coredns.io
https://coredns.io
https://nats.io
https://nats.io
https://nats.io
https://nats.io
https://nats.io
https://nats.io
https://nats.io
https://linkerd.io
https://linkerd.io
https://linkerd.io
https://linkerd.io
https://linkerd.io
https://linkerd.io
https://linkerd.io

Next Steps with Docker Chapter 14

[386]

Helm (https:/ ​/​www. ​helm. ​sh): Built for Kubernetes, Helm is a package manager
that allows users to package their Kubernetes applications in an easily
distributable format, and has quickly become a standard.
Rook (https:/ ​/​rook. ​io): Currently, Rook is in its early stages of development,
focusing on providing an orchestration layer for managing Ceph, Red Hat's
distributed storage system, on Kubernetes. Eventually, it will expand as to
support other distributed blocks and object storage systems.

We have used a few of these projects in various chapters of this book, and I am sure that
other projects will be of interest to you as you look to solving problems such as routing to
your containers and monitoring your application within your environment.

The CNCF landscape
CNCF provides an interactive map of all of the projects managed by them and their
members, and can be found at https:/ ​/​landscape. ​cncf. ​io/ ​. One of the key takeaways is
as follows:

You are viewing 590 cards with a total of 1,227,036 stars, a market cap of $6.52T, and funding of
$16.3B.

While I am sure you will agree that these are some very impressive figures, what is the
point of this? Thanks to the work of the CNCF, we have projects, such as Kubernetes, which
are providing a standardized set of tools, APIs and approaches for working across multiple
cloud infrastructure providers and also on-premise and bare metal services—providing the
building blocks for you to create and deploy your own highly available, scalable, and
performant container and microservice applications.

Summary
I hope that this chapter has given you an idea about the next steps you can take in your
container journey. One of the things I have found is that while it is easy to simply use these
services, you get a lot more out of it by becoming a part of the large, friendly, and
welcoming communities of developers and other users, who are just like you, and have
sprung up around the various software and projects.

This sense of community and collaboration has been further strengthened by the formation
of the Cloud Native Computing Foundation. This has brought together large enterprises
who, until just a few years ago, wouldn't have thought about collaborating in public with
other enterprises who have been seen as their competitors on large-scale projects.

https://www.helm.sh
https://www.helm.sh
https://www.helm.sh
https://www.helm.sh
https://www.helm.sh
https://www.helm.sh
https://www.helm.sh
https://www.helm.sh
https://www.helm.sh
https://rook.io
https://rook.io
https://rook.io
https://rook.io
https://rook.io
https://rook.io
https://rook.io
https://landscape.cncf.io/
https://landscape.cncf.io/
https://landscape.cncf.io/
https://landscape.cncf.io/
https://landscape.cncf.io/
https://landscape.cncf.io/
https://landscape.cncf.io/
https://landscape.cncf.io/
https://landscape.cncf.io/
https://landscape.cncf.io/

Assessments

Chapter 1, Docker Overview
The Docker Store: https:/ ​/ ​store. ​docker. ​com/ ​ 1.
$ docker image pull nginx2.
The Moby Project3.
Seven months4.
$ docker container help5.

Chapter 2, Building Container Images
False; it is used to add metadata to the image1.
You can append CMD to an ENTRYPOINT, but not the overlay around2.
True3.
Snapshotting a failing container so that you can review it away from your Docker4.
host
The EXPOSE instruction exposes the port on the container, but does not map a5.
port on the host machine

Chapter 3, Storing and Distributing Images
False; there is also the Docker Store1.
This allows you to automatically update your Docker images whenever the2.
upstream Docker image is updated
Yes, they are (as seen in the example in the chapter)3.
True; you are logged in to Docker for Mac and Docker for Windows if you use4.
the command line to log in
You would remove them by name, rather than using the Image ID5.
Port 50006.

https://store.docker.com/
https://store.docker.com/
https://store.docker.com/
https://store.docker.com/
https://store.docker.com/
https://store.docker.com/
https://store.docker.com/
https://store.docker.com/
https://store.docker.com/
https://store.docker.com/

Assessments

[388]

Chapter 4, Managing Containers
-a or --all1.
False; it is the other way around2.
When you press Ctrl + C you are taken back to your Terminal; however, the3.
process that is keeping the container active remains running, as we have
detached from the process, rather than terminating it
False; it spawns a new process within the specified container4.
You would use the --network-alias [alias name] flag5.
Running docker volume inspect [volume name] would give you6.
information on the volume

Chapter 5, Docker Compose
YAML, or YAML Ain't Markup Language1.
The restart flag is the same as the --restart flag2.
False; you can use Docker Compose to build images at runtime3.
By default, Docker Compose uses the name of the folder that the Docker4.
Compose file is stored in
You use the -d flag to start the container's detached mode5.
Using the docker-compose config command will expose any syntax errors6.
within your Docker Compose file
The Docker App bundles your Docker Compose file into a small Docker image,7.
which can be shared via the Docker Hub or other registries, the Docker App
command-line tool when can render working Docker Compose files from the
data contained within the image

Chapter 6, Windows Containers
You can use Hyper-V isolation to run your container within a minimal1.
hypervisor
The command is docker inspect -f "{{2.
.NetworkSettings.Networks.nat.IPAddress }}” [CONTAINER NAME]
False; there are no differences in the Docker commands that you need to run to3.
manage your Windows containers

Assessments

[389]

Chapter 7, Docker Machine
The --driver flag is used1.
False; it will give you commands; instead, you need to run eval $(docker-2.
machine env my-host)

Docker Machine is a command-line tool that can be used to launch Docker hosts3.
on a number of platforms and technologies, in a simple and consistent way

Chapter 8, Docker Swarm
False; the standalone Docker Swarm is no longer supported or considered a best1.
practice
You need the IP address of your Docker Swarm manager, and also the token that2.
is used to authenticate your workers against your manager
You would use docker node ls3.
You would add the --pretty flag4.
You would use docker node promote [node name]5.
You would run docker service scale cluster=[x] [service6.
name], where [x] is the number of containers that you want to scale by

Chapter 9, Docker and Kubernetes
False; you can always see the images used by Kubernetes1.
The docker and kube-system namespaces2.
You would use kubectl describe --namespace [NAMESPACE] [POD3.
NAME]

You would run kubectl create -f [FILENAME OR URL]4.
Port 80015.
It was called Borg6.

Assessments

[390]

Chapter 10, Running Docker in Public
Clouds

False; they launch Docker Swarm clusters1.
When using Amazon Fargate, you do not have to launch Amazon EC2 instances2.
to run your Amazon ECS cluster on
The container options are listed under the Azure Web Application service3.
Using the command kubectl create namespace sock-shop4.
By running kubectl -n sock-shop describe services front-end-lb5.

Chapter 11, Portainer - A GUI for Docker
The path is /var/run/docker.sock1.
The port is 90002.
False; applications have their own definitions. You can use Docker Compose3.
when running Docker Swarm, and launch a stack
True; all of the stats are shown in real time4.

Chapter 12, Docker Security
You would add the --read-only flag; or, if you want to make a volume read-1.
only, you would add :ro
In an ideal world, you would only be running a single process per container2.
By running the Docker Bench Security application3.
The socket file for Docker, which can be found at /var/run/docker.sock; and4.
also, if your host system is running Systemd, /usr/lib/systemd
False; Quay scans both public and private images5.

Assessments

[391]

Chapter 13, Docker Workflows
The nginx (web) container serves the website; the WordPress (WordPress)1.
container runs the code that is passed to the nginx container
The wp container runs a single process, which exists once it runs2.
cAdvisor keeps metrics for only five minutes3.
You would use docker-compose down --volumes --rmi all4.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Docker Cookbook - Second Edition
Ken Cochrane, Jeeva S. Chelladhurai, Neependra K Khare

ISBN: 978-1-78862-686-6

Install Docker on various platforms
Work with Docker images and containers
Container networking and data sharing
Docker APIs and language bindings
Various PaaS solutions for Docker
Implement container orchestration using Docker Swarm and Kubernetes
Container security
Docker on various clouds

https://www.packtpub.com/virtualization-and-cloud/docker-cookbook-second-edition

Other Books You May Enjoy

[393]

Learn Docker - Fundamentals of Docker 18.x
Gabriel N. Schenker

ISBN: 978-1-78899-702-7

Containerize your traditional or microservice-based application
Share or ship your application as an immutable container image
Build a Docker swarm and a Kubernetes cluster in the cloud
Run a highly distributed application using Docker Swarm or Kubernetes
Update or rollback a distributed application with zero downtime
Secure your applications via encapsulation, networks, and secrets
Know your options when deploying your containerized app into the cloud

https://www.packtpub.com/networking-and-servers/learn-docker-fundamentals-docker-18x

Other Books You May Enjoy

[394]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
Alpine Linux 33
Amazon ECS 268, 272, 273
Amazon ECS first run process
 reference 268
Amazon Elastic Container Service, for Kubernetes

283, 284, 286
Anchore 341, 343, 344
automated build
 code setup 73
 creating 72
AWS Fargate 268, 272, 273
AWS
 Docker Community Edition, using 255, 257,

258, 261
Azure Kubernetes Service (AKS) 276, 278, 280
Azure portal
 reference 274
Azure Resource Manager (ARM) 262
Azure
 Docker Community Edition, using 262, 267

B
base operating systems
 using 195
Borg 229

C
Center for Internet Security (CIS)
 about 325
 container images/runtime and build files 327
 container runtime 327
 Docker daemon configuration 326
 Docker daemon configuration files 326
 Docker security operations 327
 host configuration 326

changes, to Portainer interface on connecting to
Docker Swarm

 dashboard 311
 endpoints 310
 endpoints, adding 316
 services 313, 314, 315
 stacks 312
Clair 341
Cloud Native Computing Foundation
 about 382
 graduated projects 383
 overview 386
 projects, incubating 384
cloud
 offerings, from Docker 254
CloudFormation 255
cluster
 information, searching 208, 210
 manager node, demoting 211, 212
 managing 207
 node, draining 212, 214
 worker node, promoting 211
clustering
 about 374
 cluster communication 375
 compatibility 374
 reference architectures 374
CNCF code of conduct
 reference 383
commands, Docker Compose
 build 152
 config 152
 create 153
 down 158
 events 153, 155
 kill 157
 logs 153

[396]

 next 154
 pause 153
 ps 151
 pull 152
 restart 153
 rm 158
 run 156
 scale 156
 start 153
 stop 153
 top 153
 unpause 153
 up 150
Community Edition (CE) 28, 254
container ecosystem 26
container images
 building 41
 building, Dockerfile used 42, 45
 building, from scratch 49, 51
 environmental variables (ENVs), using 52, 55,

58

 multi-stage builds, using 59, 62
 using 46, 48
Container Networking Interface (CNI)
 reference 385
Containerd
 reference 384
containers, at Google
 history 228
containers, Portainer
 Console 303
 Logs page 302
 Stats page 301, 302
containers
 advantages 320
 considerations 319, 320
 monitoring 361, 363, 366, 368, 370, 371
Control Groups (cgroups) 228
Core Infrastructure Initiative (CII) 383
CoreDNS
 reference 385

D
developers, Docker
 about 7

 Docker solution 8
 problem 7
Docker App
 about 159
 installing 159, 160
 overview 162, 163
Docker Bench 339
Docker Bench Security application
 about 327
 output 331
 running, on Docker for macOS 328
 running, on Docker for Windows 328
 running, on Ubuntu Linux 330
Docker Cloud 254
Docker command-line client 22, 24, 26
Docker commands
 about 322
 diff 323, 324
 run 322, 323
Docker Community Edition
 about 27
 Docker 18.06 CE 28
 Docker 18.09 CE 28
 Docker 19.03 CE 28
 Docker 19.09 CE 28
 using, for AWS 255, 257, 258, 261
 using, for Azure 262, 265, 267
Docker Compose YAML file
 about 138
 example voting application 140, 142, 144, 145,

146, 148, 149
 Moby counter application 139, 140
Docker Compose
 about 15, 28, 135
 application 136, 138
 commands 150
 Windows containers 179
Docker container
 attach command 102
 basics 97, 102
 commands 97
 exec 103
 interacting 102
 kill command 113
 logs 105

[397]

 logs command 105, 106
 miscellaneous commands 110, 115
 nginx1, pausing 112
 nginx1, unpausing 112
 removing 114
 resource limits 108
 restart command 113
 start command 113
 states 110
 stats command 108
 stop command 113
 top command 107
Docker Enterprise Edition (Docker EE) 27, 90
Docker for Amazon Web Services 29
Docker for Azure 29
Docker for Mac 28
Docker for Windows 29
Docker hosts
 about 321, 372
 containers, routing 373
 launching, in cloud 191, 194
 multiple isolated Docker hosts 373
 processes, mixing 373
 setting up, for Windows containers 171
Docker Hub
 about 28, 66
 Create menu 70
 Dashboard section 66, 67
 Explore option 68
 image, pushing 82, 83
 menu options 72
 My Profile menu 70
 options, for connecting to GitHub 74
 organizations 69
 reference 66
 setting up 74, 75, 76, 77, 78, 79
 settings page 71
Docker Machine
 about 15, 28, 184
 used, for deploying local Docker hosts 184, 188
Docker networking 117, 124
Docker Registry
 deploying 88, 89
 overview 87
Docker Store 28, 85, 86, 255

Docker Store page
 basics 97, 99, 100
Docker Swarm Cluster
 roles 201
 Swarm manager 201
 Swarm worker 202
Docker Swarm
 about 28, 200, 201
 creating 308
 services 214, 215, 216, 217, 219
 stacks 214, 220, 222
Docker Trusted Registry (DTR) 90
Docker volumes 125, 127, 129, 131
Docker, Inc. 29
Docker
 about 7, 26, 372
 and Kubernetes 231
 best practices 325
 code, contributing to 380, 381
 contributing to 379
 contributions 382
 for Cloud summary 268
 for development 356
 installing 13
 installing, on Linux 14
 installing, on macOS 15, 17
 installing, on Windows 10 professional 18, 20
 operating systems 20
 reference 380, 382
 support, offering 381
 third-party registries 90
 using, for development 348, 350, 352, 354,

356, 358, 359, 361
 versus hosts 11
 versus virtual machines 11
Dockerfile
 about 33
 ADD instruction 36
 best practices 40
 CMD instruction 38
 COPY instruction 36
 ENTRYPOINT instruction 38
 ENV instruction 40
 EXPOSE instruction 38
 FROM instruction 34

[398]

 instructions 39
 LABEL instruction 35
 ONBUILD instruction 40
 reviewing, in depth 34
 RUN instruction 35
 USER instruction 39
 WORKDIR instruction 39

E
Elastic Container Service (ECS) 268
Enterprise Edition (EE) 28, 254
enterprise, Docker
 about 10
 Docker solution 10
 problem 10
environmental variables (ENVs) 52
Envoy
 reference 385
external platforms
 extending 371
 Heroku 371

F
FastCGI Process Manager (PHP-FPM) 350
Fig 136
Fluentd
 reference 384

G
Go 229
Google Kubernetes Engine 281, 282
Grafana 364
gRPC
 reference 384

H
Helm
 reference 386
Heroku 371
hosts
 versus Docker 11
 versus virtual machines 11

I
image registries 375
image trust 321
ingress load balancing 222
IP address management (IPAM) 124

J
Jaeger
 reference 385

K
K8s 228
Kubernetes-as-a-Service
 cloud providers 231
Kubernetes
 about 227
 and Docker 231
 Docker tools 243, 244, 246, 247, 249
 enabling 232, 233, 234, 235
 overview 229, 230
 reference 383
 summary 286, 287
 using 236, 239, 240, 241, 242

L
Linkerd
 reference 385
Linux Containers (LXC) 11
Linux Foundation (LF) 383
lmctfy 228
local Docker hosts
 deploying, with Docker Machine 184

M
Microbadger
 about 91
 features 92, 93
 reference 91
Microsoft Azure App Services 273, 274, 276
Moby Project
 about 378
 references 379, 380
Modernize Traditional Apps (MTA) 29
My Profile menu item, Docker Hub

[399]

 reference 71
MySQL image
 reference 351

N
NATS
 reference 385
network overlays 223, 225
Notary
 reference 385

O
Omega 229
open source projects, Docker
 about 27
 containerd 27
 DataKit 27
 HyperKit 27
 InfraKit 27
 LibNetwork 27
 LinuxKit 27
 Moby Project 27
 Notary 27
 Runc 27
 SwarmKit 27
 VPNKit 27
OpenTracing
 reference 384
operators, Docker
 about 8
 Docker solution 9
 problem 8
output, Docker Bench Security application
 build files 334
 container images 334
 container runtime 335, 336, 337
 Docker daemon configuration 332
 Docker daemon configuration files 334
 Docker security operations 338
 Docker Swarm configuration 338
 host configuration 332

P
Platform as a service (PaaS) 371
Portainer service

 launching 308
Portainer
 about 291
 application templates 295, 296, 297
 containers 298, 299, 301
 dashboard 294
 Docker Swarm 307
 Engine 307
 events page 306
 Images 304
 networks 306
 single Docker instance, managing 291, 293
 using 293
 volumes 306
projects
 CNI 385
 Containerd 384
 CoreDNS 385
 Envoy 385
 Fluentd 384
 gRPC 384
 Helm 386
 Jaeger 385
 Linkerd 385
 NATS 385
 Notary 385
 OpenTracing 384
 Rkt 384
 Rook 386
 The Update Framework (TUF) 385
 Vitess 385
Prometheus
 reference 383

Q
Quay 339, 340

R
Redis 117
Rkt
 reference 384
Rook
 reference 386

S
scheduling 225
Seven 229
Software as a service (SaaS) 370
Swarm cluster
 deleting 222
Swarm manager 201
Swarm worker 202
Swarm
 about 201
 cluster, creating 203, 205
 creating 202
 managing 202
 nodes, listing 207
 Swarm manager, adding to cluster 205
 Swarm workers, joining to cluster 206

T
Technical Oversight Committee (TOC)
 reference 383
The Update Framework (TUF)
 reference 385
third-party security services
 about 339
 Anchore 341, 343, 344
 Clair 341

 Quay 339, 340

V
virtual machines
 versus Docker 11
 versus hosts 11
VirtualBox
 reference 21, 184
Vitess
 reference 385

W
Windows 10 Professional 171, 172
Windows container Dockerfile 177, 178
Windows containers
 about 168, 169
 access, obtaining on macOS/Linux machines

173, 174
 Docker Compose 179
 Docker host, setting up for 171
 running 174, 175, 176
WordPress image
 reference 350

Y
YAML Ain't Markup Language (YAML) 138

	Cover

	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Docker Overview

	Technical requirements
	Understanding Docker
	Developers
	The problem
	The Docker solution

	Operators
	The problem
	The Docker solution

	Enterprise
	The problem
	The Docker solution

	The differences between dedicated hosts, virtual machines, and Docker
	Docker installation
	Installing Docker on Linux (Ubuntu 18.04)
	Installing Docker on macOS
	Installing Docker on Windows 10 Professional
	Older operating systems

	The Docker command-line client
	Docker and the container ecosystem
	Open source projects
	Docker CE and Docker EE
	Docker, Inc.

	Summary
	Questions
	Further reading

	Chapter 2: Building Container Images

	Technical requirements
	Introducing the Dockerfile
	Reviewing the Dockerfile in depth
	FROM
	LABEL
	RUN
	COPY and ADD
	EXPOSE
	ENTRYPOINT and CMD
	Other Dockerfile instructions
	USER
	WORKDIR
	ONBUILD
	ENV

	Dockerfiles – best practices

	Building container images
	Using a Dockerfile to build a container image
	Using an existing container
	Building a container image from scratch
	Using environmental variables
	Using multi-stage builds

	Summary
	Questions
	Further reading

	Chapter 3: Storing and Distributing Images

	Technical requirements
	Docker Hub
	Dashboard
	Explore
	Organizations
	Create
	Profile and settings
	Other menu options
	Creating an automated build
	Setting up your code
	Setting up Docker Hub

	Pushing your own image

	Docker Store
	Docker Registry
	An overview of Docker Registry
	Deploying your own registry

	Docker Trusted Registry
	Third-party registries
	Microbadger
	Summary
	Questions
	Further reading

	Chapter 4: Managing Containers

	Technical requirements
	Docker container commands
	The basics
	Interacting with your containers
	attach
	exec

	Logs and process information
	logs
	top
	stats

	Resource limits
	Container states and miscellaneous commands
	Pause and unpause
	Stop, start, restart, and kill
	Removing containers
	Miscellaneous commands

	Docker networking and volumes
	Docker networking
	Docker volumes

	Summary
	Questions
	Further reading

	Chapter 5: Docker Compose

	Technical requirements
	Introducing Docker Compose
	Our first Docker Compose application
	Docker Compose YAML file
	Moby counter application
	Example voting application

	Docker Compose commands
	Up and PS
	Config
	Pull, build, and create
	Start, stop, restart, pause, and unpause
	Top, logs, and events
	Scale
	Kill, rm, and down

	Docker App
	Summary
	Questions
	Further reading

	Chapter 6: Windows Containers

	Technical requirements
	An introduction to Windows containers
	Setting up your Docker host for Windows containers
	Windows 10 Professional
	macOS and Linux

	Running Windows containers
	A Windows container Dockerfile
	Windows containers and Docker Compose
	Summary
	Questions
	Further reading

	Chapter 7: Docker Machine

	Technical requirements
	An introduction to Docker Machine
	Deploying local Docker hosts with Docker Machine
	Launching Docker hosts in the cloud
	Using other base operating systems
	Summary
	Questions
	Further reading

	Chapter 8: Docker Swarm

	Technical requirements
	Introducing Docker Swarm
	Roles within a Docker Swarm cluster
	Swarm manager
	Swarm worker

	Creating and managing a Swarm
	Creating a cluster
	Adding a Swarm manager to the cluster
	Joining Swarm workers to the cluster
	Listing nodes

	Managing a cluster
	Finding information on the cluster
	Promoting a worker node
	Demoting a manager node
	Draining a node

	Docker Swarm services and stacks
	Services
	Stacks

	Deleting a Swarm cluster
	Load balancing, overlays, and scheduling
	Ingress load balancing
	Network overlays
	Scheduling

	Summary
	Questions
	Further reading

	Chapter 9: Docker and Kubernetes

	Technical requirements
	An introduction to Kubernetes
	A brief history of containers at Google
	An overview of Kubernetes
	Kubernetes and Docker

	Enabling Kubernetes
	Using Kubernetes
	Kubernetes and other Docker tools
	Summary
	Questions
	Further reading

	Chapter 10: Running Docker in Public Clouds

	Technical requirements
	Docker Cloud
	Docker on-cloud
	Docker Community Edition for AWS
	Docker Community Edition for Azure
	Docker for Cloud summary

	Amazon ECS and AWS Fargate
	Microsoft Azure App Services
	Kubernetes in Microsoft Azure, Google Cloud, and Amazon Web Services
	Azure Kubernetes Service
	Google Kubernetes Engine
	Amazon Elastic Container Service for Kubernetes
	Kubernetes summary

	Summary
	Questions
	Further reading

	Chapter 11: Portainer - A GUI for Docker

	Technical requirements
	The road to Portainer
	Getting Portainer up and running
	Using Portainer
	The Dashboard
	Application templates
	Containers
	Stats
	Logs
	Console

	Images
	Networks and volumes
	Networks
	Volumes

	Events
	Engine

	Portainer and Docker Swarm
	Creating the Swarm
	The Portainer service
	Swarm differences
	Endpoints
	Dashboard and Swarm
	Stacks
	Services
	Adding endpoints

	Summary
	Questions
	Further reading

	Chapter 12: Docker Security

	Technical requirements
	Container considerations
	The advantages
	Your Docker host
	Image trust

	Docker commands
	run command
	diff command

	Best practices
	Docker best practices
	The Center for Internet Security benchmark
	Host configuration
	Docker daemon configuration
	Docker daemon configuration files
	Container images/runtime and build files
	Container runtime
	Docker security operations

	The Docker Bench Security application
	Running the tool on Docker for macOS and Docker for Windows
	Running on Ubuntu Linux
	Understanding the output
	Host configuration
	Docker daemon configuration
	Docker daemon configuration files
	Container images and build files
	Container runtime
	Docker security operations
	Docker Swarm configuration

	Summing up Docker Bench

	Third-party security services
	Quay
	Clair
	Anchore

	Summary
	Questions
	Further reading

	Chapter 13: Docker Workflows

	Technical requirements
	Docker for development
	Monitoring
	Extending to external platforms
	Heroku

	What does production look like?
	Docker hosts
	Mixing of processes
	Multiple isolated Docker hosts
	Routing to your containers

	Clustering
	Compatibility
	Reference architectures
	Cluster communication

	Image registries

	Summary
	Questions
	Further reading

	Chapter 14: Next Steps with Docker

	The Moby Project
	Contributing to Docker
	Contributing to the code
	Offering Docker support
	Other contributions

	The Cloud Native Computing Foundation
	Graduated projects
	Incubating projects
	The CNCF landscape

	Summary

	Assessments
	Other Books You May Enjoy
	Index

