CLOUD
COMPUTING

NAYAN B. RUPARELIA

REVISED
AND

UPDATED
EDITION

e

THE MIT PRESS ESSENTIAL KNOWLEDGE SERIES

CLOUD COMPUTING

The MIT Press Essential Knowledge Series

A complete list of books in this series can be found online at
https://mitpress.mit.edu/books/series/mit-press-essential-knowledge-series.

https://mitpress.mit.edu/books/series/mit-press-essential-knowledge-series

CLOUD COMPUTING

REVISED AND UPDATED EDITION

NAYAN RUPARELIA

The MIT Press | Cambridge, Massachusetts | London, England

© 2023 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form

by any electronic or mechanical means (including photocopying, recording,
or information storage and retrieval) without permission in writing from
the publisher.

The MIT Press would like to thank the anonymous peer reviewers who
provided comments on drafts of this book. The generous work of academic
experts is essential for establishing the authority and quality of our
publications. We acknowledge with gratitude the contributions of these
otherwise uncredited readers.

This book was set in Chaparral Pro by New Best-set Typesetters Ltd.
Library of Congress Cataloging-in-Publication Data

Names: Ruparelia, Nayan, author.

Title: Cloud computing / Nayan B. Ruparelia.

Description: Revised and updated edition. | Cambridge, Massachusetts :
The MIT Press, [2023]. | Series: The mit press essential knowledge series |
Includes bibliographical references and index. | Summary: “Why cloud
computing represents a paradigm shift for business, and how business
users can best take advantage of cloud services”— Provided by publisher.

Identifiers: LCCN 2022045880 (print) | LCCN 2022045881 (ebook) |
ISBN 9780262546478 (paperback) | ISBN 9780262376228 (epub) |
ISBN 9780262376211 (pdf)

Subjects: LCSH: Cloud computing.

Classification: LCC QA76.585 .R87 2023 (print) | LCC QA76.585 (ebook) |
DDC 004.67/82—dc23/eng/20220927

LC record available at https://lccn.loc.gov/2022045880

LC ebook record available at https://lccn.loc.gov/2022045881

100 9 8 7 6 5 4 3 2 1

© 0 N o A w N

o
W N RO

CONTENTS

Series Foreword vii

Preface ix

Introduction 1

A Historical Perspective 25

Types of Cloud Computing 33

Cloud Native Foundations 41
Microservices and Their Design Patterns 77
Cloud Computing: A Paradigm Shift? 101
Price Models 117

Data 141

Security 161

Transitioning to the Cloud 183

Public Cloud Examples 203

Reference Architectures 223

Future Outlook 243

Acknowledgments 255

Appendix A: Common Security Terms 257
Glossary 263

Notes 273

Further Reading 277

Index 279

SERIES FOREWORD

The MIT Press Essential Knowledge series offers accessible,
concise, beautifully produced pocket-size books on topics
of current interest. Written by leading thinkers, the books
in this series deliver expert overviews of subjects that
range from the cultural and the historical to the scientific
and the technical.

In today’s era of instant information gratification, we
have ready access to opinions, rationalizations, and super-
ficial descriptions. Much harder to come by is the founda-
tional knowledge that informs a principled understanding
of the world. Essential Knowledge books fill that need.
Synthesizing specialized subject matter for nonspecialists
and engaging critical topics through fundamentals, each
of these compact volumes offers readers a point of access
to complex ideas.

PREFACE

This is a concepts book. It does not tell you which buttons
to click on a cloud provider’s portal in order to configure
your cloud resources or how to use certain features that a
particular cloud provider offers. Instead, it will equip you
with the necessary understanding so that you will be able
to judge what cloud resources you ought to be configuring
and the rationale for doing so. Such an understanding is
vital because, without that core foundation, you will not
be able to understand the capabilities and usefulness of
cloud computing.

Cloud computing has become a mainstay since the
first edition of this book was written some seven years ago.
With its greater adoption and mind share, cloud comput-
ing has made significant strides since then. As it is now
a mainstream technology, it behooves you to know what
cloud computing is, what its benefits are, what pitfalls you
will need to overcome when transitioning to the cloud, the
appropriate security measures you will need to adopt, and
how you will use the cloud, whether it is a public cloud,
such as Amazon’s AWS (Amazon Web Services), or a pri-
vate one that you specify, implement, and use. The pur-
pose of this book, therefore, is to cut through the hype and
show how to take advantage of cloud computing.

Until the last two chapters, I refrain from consider-
ing commercial cloud services or offerings in this book for
three main reasons: (1) if one is not careful, the book could
easily become an advertisement for various cloud service
providers; (2) some vendors are here today and gone to-
morrow, in keeping with the nature of the fast-paced tech-
nology industry; and (3) the principal aim of this book is
to provide the concepts that will equip you to better make
your own decisions about such offerings in the first place.

You could be an investor who wants to learn more
about the cloud-based technologies employed by the busi-
nesses you invest in, an entrepreneur who wants to use
cloud computing to ramp up your startup in an agile man-
ner, a lawyer or judge working on a case that relates to
cloud computing, a technologist who wants to use cloud
computing in a new product or service that you are defin-
ing, a business student who wants to understand the para-
digm shift that cloud computing represents to businesses
globally, or a layperson who is curious about the subject—
regardless, this book is for you. This book will help you un-
derstand cloud computing from a user’s standpoint: when
to use it and when not to, how to select a cloud service and
integrate it with other cloud services or traditional IT, and
best practices when using cloud computing.

This book is written primarily for a nonspecialist, al-
though a technical specialist should benefit from reading

it to understand the concepts and broader impact of cloud

X PREFACE

computing. Thus no prior knowledge of cloud computing
or any of its related technologies is required in reading
this book. I advise strongly, however, that you read the
first chapter of the book as a prerequisite so that we may
have a shared, common vocabulary and understanding of
cloud computing. This will prove useful when you read the
succeeding chapters. You may read any of the chapters of
the book in any order after the first chapter. A glossary
is provided at the end of the book for some of the main
terms and acronyms used in cloud computing and related
technologies. I wish you all the best on your cloud comput-
ing journey. May it be an exciting one!

PREFACE Xi

INTRODUCTION

Consider a typical workday that you spend using your
computer. How much of your computer’s resources do
you actually use during peak usage times? The average
for most users is about 10 percent of the processor, less
than 60 percent of memory, and 20 percent of network
bandwidth. (That is at peak usage; the normal usage levels
during working hours are considerably less, on average.)
Nevertheless, you paid for 100 percent of the resources up
front when you bought your computer. Your networking
costs are not any different in nature because most internet
service providers (ISPs) have alock-in period that commits
you to their customer base for at least a year. Now suppose
that your workplace has hundreds or even thousands of
computers that are being used at a nominal rate: would it

not be good to pool the unused computing resources of all

Here, one of these situations applies:

1. Computing does not get done; this can affect the
business adversely;

2. Computing gets done late or with degraded
performance; or

3. Business needs to invest in idle capacity to
accommodate surges in resource demand.

Resource utilization

Average resource

S capacity the business
Wasted investment can afford

as resources are
underutilized

v

Time

Figure1l Investment problem solved by cloud computing.

the company’s computers and put them to good use? That
way your company would get the biggest bang for its buck.

Let us now transpose the same thinking to the data
center, where numerous servers—web servers, applica-
tion servers, database servers—are being used in a similar
manner at minimal usage rates. These servers too could
have their hardware resources pooled and shared across

2 CHAPTER 1

servers so that you could utilize them more efficiently;
otherwise, as in figure 1, you will need to invest up-front
in computing resources that may be used only occasionally.
The extra pooled resources that are unused by you could
then be used by others in your company through your
company’s network. Alternatively, if your company ap-
points a third party to provide resource pooling, then you
would access your computing resources over the internet.
But what if your company or department paid only for
the computing resources that it uses? Then your company
would not have to invest up-front, as a capital expendi-
ture, in purchasing the computing but simply sign up with
a service provider on a pay-as-you-use billing model. This
effectively means that your company changes from a capi-
tal expenditure (CapEx) model to an operating expendi-
ture (OpEx) model for meeting its computing needs. This

is where cloud computing comes in.

A Definition of Cloud Computing

Although information technology (IT) has become ubiqui-
tous at home and at work today, the industry is still in
its infancy in comparison to, say, the automotive or tele-
communications industries, which have existed for over a
century. And cloud computing, one of the latest IT inno-

vations, is still in its formative stage. It seems inevitable

INTRODUCTION 3

that during the formative stage of a technology, much of
the attention given to it borders on hype. Consequently,
everyone from the technologist to the salesperson is keen
to jump on the bandwagon by labeling anything with the
remotest resemblance (often exaggerated or extrapolated)
to cloud computing as being part of the cloud computing
domain. This creates obfuscation and results in several
definitions of cloud computing. The best definition is that
provided by the National Institute of Science and Tech-
nology (NIST), a technology agency that is part of the US
Department of Commerce and works with industry to
develop and apply technology, measurements, and stan-
dards. The NIST definition of cloud computing is:

Cloud computing is a model for enabling ubiquitous,
convenient, on-demand network access to a

shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released
with minimal management effort or service provider
interaction. This cloud model promotes availability
and is composed of five essential characteristics,

three service models, and four deployment models.!
Although the NIST definition needs updating—the

service models, for example, are now five, not three—it

is the most passable definition at present. In essence, this

4 CHAPTER 1

book follows the NIST’s definition to describe, one by one,
the essential characteristics, deployment models, and ser-
vice models of cloud computing.

Before delving into the characteristics of cloud com-
puting, let us first delve into virtualization and cloud ser-
vices because these form the basis of cloud computing in
two distinct manners: virtualization from a technical per-
spective and cloud services from a conceptual perspective.

Virtualization

Cloud computingrelies on virtualization technology. There
are two basic types of virtualization: server virtualization
and application virtualization. Application virtualization
delivers an application that is hosted on a single machine
(denoted as the server) and made available to many users.
The application can be situated in the cloud on high-grade
virtual machines (VMs); because several users access it, its
costs are shared by those users. This makes the application
cheaper to deliver to the end user. The end user does not
need to have high-grade hardware to run the application;
an inexpensive machine, such as a low-end workstation or
a thin client machine, will suffice.? And if the data used by
the virtual application are stored in the cloud, the user is
not tethered to any one device or location to use the ap-

plication or access related data. Typically in such cases, the

INTRODUCTION 5

Machine 1 Machine 2

App 1 App 2 App3 App 1 App2 App3
Operating system Operating system
Virtual machine Virtual machine

Single physical machine

Figure 2 Virtual machines hosted on a physical machine.

virtual application is consumed through a mobile app or
an internet browser by the end user.

Server virtualization uses common physical hardware
(networks, storage, or computing machines) to host VMs,
as figure 2 illustrates. A physical host machine could have
any number of VMs running on it so that one set of hard-
ware is used to run different machines.

VMs can be installed with their own operating system
and their own different set of applications; the operating
systems or applications do not need to be the same across
the VMs. However, at the infrastructure level, it is pos-
sible to have virtual storage (multiple storage volumes on
a single physical storage device) and virtual networks in
addition to VMs.

Server virtualization has a major cost benefit: it allows

you to consolidate a large number of physical machines

6 CHAPTER 1

into fewer physical machines that host the VMs. This in-
crease in computing efficiency results in lower space, main-
tenance, cooling, and electricity costs, besides the obvious
reduction in the procurement costs of the machines. An
additional benefit is that fewer physical machines and
lower electricity consumption translate to environmental
friendliness.

When the VMs are pooled together such that they
may be instantiated—that is, activated and switched on—
instantaneously in such a manner that they can join or
leave the pool, you will be able to scale your resources to
meet any change in demand, whether that change is an
increase or a decrease. This instantaneous change in the
number of VMs within a pool is known as elasticity and
can be achieved in a cost-efficient manner owing to server
virtualization.

Now, what is the difference between virtualization and
cloud computing? Let us recall from the NIST definition
of cloud computing these characteristics: on-demand self-
service, rapid elasticity, and measured service provision.
None of these features is provided as a matter of course by
virtualization. Virtualization acts as an enabling technology
to facilitate these features, but many additional enablers
are required, such as reporting, billing, demand manage-
ment, and various other business processes and tools.

To truly deploy a cloud, you need to consider how

to employ virtualization and standardize your service

INTRODUCTION 7

To truly deploy a

cloud, you need to
consider how to employ
virtualization

and standardize your
service offerings.

offerings, make them available through simple portals,
track usage and cost information, measure their avail-
ability, orchestrate them to meet demand, provide a se-
curity framework, provide instantaneous reporting, and
have a billing or charging mechanism based on usage.
Another way of looking at deployment is to understand
that virtualization per se is not a service. It can be used, in
conjunction with other tools and processes, to create an
Infrastructure-as-a-Service offering.

Containerization

A container represents a partitioning of a server’s re-
sources such that it can run an application and thereby
provide a service. The container is a run-time application
that is built and run from a container image. This provides
a cookie-cutter approach since you can build the same
containers during run time from a single image. The im-
ages are stored in a registry that acts as a repository of
all types of container images. You can have public image
repositories, such as Docker Hub, or private ones that you
create and make available only to developers in your own
organization.

You could use a VM instead of a container to provide
the same service. However, the container is lightweight
compared to a VM and so you can deploy it from a cold
start much faster than a virtual machine. This is because

the container runs on the server within the server’s

INTRODUCTION 9

environment—albeit within a jail—whereas the VM has
its own environment that is created from a partition of
the physical server’s memory, disk space, and central proc-
essing unit (CPU) resources, as figure 3 shows.

This means that a container can run on a VM as well
as on a physical one. Indeed, since cloud computing itself
is predicated on VMs, almost all containers that run in
public clouds have historically run on a VM that itself is
hosted on a physical machine. (For performance reasons,
public cloud providers favor physical machines to host
containers these days.) As figure 4 shows, VMs running on
a physical server are used to host containers that in turn
run applications; the single-purpose applications and con-
tainers, when bundled, are the microservices that cloud
service providers enable you to create.

Chapter 4 delves deeper into containers and contain-

erization.

Cloud Services

Let us examine what constitutes a service—specifically a
cloud service—by employing the analogy of an accoun-
tancy firm. Suppose you want your accounts managed,
and you appoint an accountancy firm. Let us postulate
your main criteria for selecting the firm:

10 CHAPTER 1

abelog

—
walshs
Bunesado
1senn

u ddy

aujyoew

[enuIA
| —

*S9UIYDEW [ENJIIA PUE SI9UTEIUOD Udam)aq UYL ¢ 2indig

MIOMION
Jan9s [eoisAud
JosiniedAy
e N\
walshs woalshs
Bunesedo Bunesado
1senn 1senn
> >
T e}
T el
N ey
aulyoew aujyoew
[enuUIA [enuIA
L J (J

abelio)s

suoneoldde pazijenuip

u
Jaureuon

u ddy

Janss [eoisAud

wajsAs Bunesado 1soHq

auibus Jaureyuon

}I0M}ON

c
Jaureuon

¢ ddy

I
Jaureuon

1 ddy

suoleoldde pazusureiuod

ainjyonJiselju|

11

INTRODUCTION

*S9UIYDBW [BNIIIA UO PIISOY SI9Urejuo) § aangig

Janies [eadishyd

auIyoBW [BNUIA auIyoBW [BNUIA auIyoBW [BNUIA
Jouriuog JoumIuoD JourEIu0D Joupiuoy JoumIuoD JouEIu0D U0y JouEIN0D JourEIu0)
ddy ddy ddy ddy ddy ddy ddy ddy ddy
sopmiss somies somiss sopmiss somios somiss sopmiss somiss somiss
-o10IN -0 -os0IN -o101N -os0IN -os0IN -0101N 0101 0101

CHAPTER 1

12

1. integrity and reputation of the firm (you want your
accounts to be accurate, and you do not want your

accounts released to the world!),

2. promptness in preparing the accounts and lowering
your tax bill (the benefits that you will receive), and

3. fees the firm will charge (the cost of realizing the
benefits).

You are not likely to care about the number of employ-
ees the firm employs in preparing your accounts, the soft-
ware used, or the computers the software is installed on.
Rather, your interest is in the firm’s service and its benefits.
These service benefits form a contract, a bond between you
and the accountancy firm in a written or unwritten format.
Such a contract is called a service-level agreement (SLA).

In IT, a service is a collection of IT systems, compo-
nents, and resources that work together to provide value
to users. An important element of this is that, for parties
to the contract to measure and agree on the value received,
two parameters are usually used to assess a service: cost
and the SLA. The SLA is essentially a contract between
the service consumer and the service supplier in terms of
how quickly the service will be delivered (when), its qual-
ity (what), and scope (where and how much). Notice that
these parameters represent the benefit that accrues to the

service consumer. If the service consumer happens to be

INTRODUCTION 13

internal to the company, such as a marketing department,
then the internal agreement between the supplier and the
consumer departments of that company is called an op-
erational level agreement (OLA). A cloud service therefore
is the implementation of a business process—provided
through a set of related functional components and
resources—that provides business value to its consumers.

Continuing this analogy, let’s suppose that the accoun-
tancy firm wishes to ensure that it meets the SLA condi-
tions agreed on with you. It could put in place various
metrics internally that it could use to monitor its perfor-
mance while creating the accounts. For example, the met-
rics could be that the audit needs to take three days, or the
cash book needs to be reconciled within a week. The firm
may agree to share these metrics with you, although usu-
ally they are used internally as objectives to ensure that the
firm meets the overall SLA. These objectives, or metrics,
are referred to as service-level objectives (SLOs). From an
IT standpoint, SLOs are specific, measurable characteris-
tics of the SLA such as uptime, throughput, available re-
source capacity, response time, and delivery time.

Service Models: Levels of Abstraction

Now let us look at IT from the accountancy firm’s per-
spective. The IT department at the firm has that firm’s

14 CHAPTER 1

A cloud service therefore
is the implementation
of a business process—
provided through a set
of related functional
components and
resources—that
provides business value
to its consumetrs.

accountants as its customers. These accountants have a
choice in the way they interact with their IT department:

1. They could get down to the nitty gritty and specify the
hardware and software in terms of the type and version
of software to use, the operating system that hosts the
software, the hardware’s memory, storage space, and so
on and so forth.

2. They could specify the software they wish to use and
let the IT department figure out what hardware to use.

3. They could simply agree on the type of input data
they would like to have computed and the format of the
resulting data set and leave it to the IT department to
use whatever software and hardware it wanted to employ
to compute the data.

The first choice represents a level of abstraction at the
infrastructure layer. In cloud computing, it is known as
Infrastructure-as-a-Service (IaaS). Common examples of
[aa$S are when you store data, files, or pictures in the cloud
(this uses the storage infrastructure) or use the cloud to
transfer files. A higher level of abstraction is when the
IT department provides a platform, complete with hard-
ware and operating system, and the accountants specify
the software to use, as in the second choice above. This is

Platform-as-a-Service (PaaS).

16 CHAPTER 1

If the IT department were required to decide the right
software and computing platform to use on behalf of the
accountants, as in the third choice, such that the accoun-
tants only need to care about the accuracy and timeliness
of the data returned to them, that level of abstraction
would be Software-as-a-Service (SaaS). These three lev-
els of abstraction—IaaS, PaaS, and SaaS—are the service
models referred to in the NIST definition.

What if our accountancy firm decided to outsource
the entire auditing function to another firm so that it
could concentrate on advising you on tax matters? Our ac-
countancy firm would agree to an SLA and the cost with
the other firm, which would then audit the accounts ac-
cordingly. This amounts to outsourcing an entire business
function, or process, to another firm.

That other firm could just as well be replaced by a cloud
service. Thus the cloud service, when providing a business
function, is providing a Business Process-as-a-Service
(BPaaS).

Suppose that our accountancy firm wished to obtain
the latest tax regulations. It could then commission an in-
formation service. This would be akin to Information-as-
a-Service (INaa$S). Since the tax codes and regulations are
updated regularly as the law changes, this is a service that
relies not only on the storage of data, which would then be
[aaS, but also on the manipulation of that data to provide

meaningful information. Hence INaaS is distinct from laaS.

INTRODUCTION 17

BPaaS

Business architecture D . .
(Business Process-as-a-Service)

INaaS

Information architecture — . .
(Information-as-a-Service)

SaaS

Aoplicati hi —
pplications architecture (Software-as-a-Service)

PaaS
R
(Platform-as-a-Service)
Technology architecture
laaS
R

(Infrastructure-as-a-Service)

Figure 5 Enterprise architecture stack and cloud service models.

The NIST model therefore needs to be updated with
these two service abstractions, INaaS and BPaa$, as fig-
ure 5 illustrates. IT enterprise architecture recognizes
four architecture domains, as shown in the left column of
figure 5. These are technology architecture, applications
architecture, information or data architecture, and busi-
ness architecture. Technology architecture encompasses
IT infrastructure, middleware, and operating systems;
applications architecture concerns software applications,
their interactions, and their relationships with business
processes; data architecture defines the data assets and

18 CHAPTER 1

their management; business architecture translates the
business strategy to an IT strategy, relevant governance
framework, and definition of business processes. Each of
these domains in the enterprise architecture stack maps
to and aligns with the cloud service models shown in the

right column of figure 5.

Cloud Deployment Models

The NIST definition contains four distinct deployment
models: public, private, community, and hybrid clouds.

A public cloud provides services to anyone with inter-
net access. Such a service may be provided by computing
resources located anywhere in the world. This type of cloud
has the disadvantage of data integrity for some companies
for regulatory reasons. For example, companies based in
the United States are not allowed to store consumer data
in other countries. Financial institutions especially need
to comply with strict regulations of this nature. As a result,
some companies tend to favor private clouds. Another rea-
son for favoring a private cloud over a public one is cost; the
cost of having your own private cloud becomes lower once
your annual cloud computing spend approaches $1 million.

A private cloud is one that provides services to a single
entity, either a government organization or a business en-

terprise, such that cloud services are provided to that entity

INTRODUCTION 19

fromits own private network. Usually onlylarge enterprises
can afford to have private clouds. Small or medium-size en-
terprises have the option of using a community cloud.

A community cloud provides a middle ground between
a private cloud and a public one. Various entities, rang-
ing from individuals to enterprises, that have a common
interest can pool their resources to create a hybrid cloud.
Such clouds take various shapes: a banking cloud in Swit-
zerland serving the cantonal banks (Switzerland is divided
into administrative units called cantons), a paper indus-
try cloud in the Nordic countries, or a health cloud for the
health industry in the United States. However, there could
also be community clouds for various interest groups, for
instance for chess players or numismatists.

A hybrid cloud is essentially a conglomeration of the
other types of clouds. Its use is necessary mostly when a
cloud service needs to use computing resources from other
clouds because its own resources are being utilized at full
capacity. Such a concept is known as cloud bursting be-
cause the service bursts out of its cloud to utilize resources
from other clouds to meet its SLA.

Five Characteristics of Cloud Computing

The NIST definition lists five characteristics of cloud com-

puting, given in the first column of table 1: ubiquitous

20 CHAPTER 1

Table1l Characteristics of cloud computing

Characteristic Description Parameter

Broad network access Consume services from Where
anywhere.

On-demand self-service Consume services when you When
want.

Resource pooling and Pool the infrastructure, How

virtualization virtual platforms, and
applications.

Rapid elasticity Share pooled resources to How

enable horizontal scalability.

Measured service Pay for the service you How much
consume as you consume it.

access, on-demand availability based on the consumer’s
self-service, pooling of resources, rapid elasticity, and
measured service usage.

Ubiquitous access through a network is important be-
cause you are not constrained by your location in using
the cloud service; a concomitant concern is that, as the
potential user base increases, so does the risk of security
being compromised. For this reason, network access may
be limited to a private network or a community of users.
The former translates to a private cloud and the latter to a
community cloud model.

On-demand self-service, or on-demand availability,
makes it possible for you to use the service whenever you
want. Availability has two characteristics here:

INTRODUCTION 21

1. The service will be available to you even when you are
not using it so that it will be ready for you to use when
you request it (thus the uptime of the cloud computing
services must approach 100 percent).

2. The service remains available while you are using it
(thus your user experience should not be impaired even if
there is an upsurge in the number of users).

The latter aspect means that, regardless of the varying
demands you place on the service, it should remain avail-
able to you. For example, you could have an [aaS cloud ser-
vice on which you host your website, and its usage levels will
vary according to the hits the site receives. The usage will
in turn depend on several factors, such as the time of day,
whether it is a weekend, or if you have a marketing cam-
paign running. As a result, the load placed on the cloud com-
puting infrastructure will also vary, and the infrastructure
will need to scale out when greater demand is placed on it.
Similarly, it would scale in when there was less demand so
that the infrastructure resources could be used elsewhere.
This capacity for scaling in and out is known as elasticity.

Horizontal scalability occurs when greater numbers of
the same type of resources—say, computing platforms—
are used to meet demand. Vertical scalability occurs when
the performance of those resources is improved by upgrad-
ing them, for example by increasing the amount of mem-
ory. Elasticity occurs when horizontal scalability is used to

22 CHAPTER 1

scale out when demand is high and then scale in when it is
low. To implement this, computing resources are pooled.
The resources normally tend to be virtualized because you
can use software to pool and scale them automatically.
Just as virtualizing the hardware allows you to pool and
share the resources in an elastic manner, you can have vir-
tual applications that can be shared even though a single
instance of the software runs on the pooled VMs. This tech-
nology, however, is still in its formative stage as the biggest
constraints are commercial issues such as the licensing ar-
rangements and billing model. When multiple users use the
same virtual resources in the cloud, such as the software,
storage, or VMs, those resources have multiple tenants. The
pooling of resources to provide a shared, common service
to each user of the cloud service is known as multitenancy.
A major disadvantage of current public cloud services
is a lack of transparency in terms of the resources con-
sumed and the costs incurred.? Yet these are distinct char-
acteristics of cloud computing insofar as the consumer
ought to know what computing resources are being con-
sumed as and when they are consumed, and the instanta-
neous concomitant costs of the consumption. (Of course,
this factor becomes less relevant if the charging model is
based on a “consume as much as you want” pay monthly
basis.) That is why it is important for a cloud service to
measure the consumption of the service and make that

metric transparent to the user in real time.

INTRODUCTION 23

A HISTORICAL PERSPECTIVE

Now that we have a foundational idea of what cloud com-
puting is, let us consider its history. In accordance with the
adage “standing on the shoulders of giants,” cloud com-
puting uses numerous technologies and paradigms that
were developed earlier. It uses the client-server paradigm,
whereby a local client uses the computation performed by
a server remotely, but it is directly predicated on internet-
working (to enable ubiquitous access) and virtualization
(to enable scalability via elasticity). So let us assess cloud
computing’s history by first delving into the history of its
two key components.

Internetworking

Before theinternet existed, engineers were busy contriving

various ways to connect computers in local area networks.

As a result, several protocols surfaced in the 1970s and
1980s leading to what was known as the protocol wars.
The differences between the various networking solutions
ranged from physical (what connectors to use, wired or
wireless, etc.) and logical connectivity (the topology to use:
bus, star, tree, ring, mesh networks) to protocols (packet-,
message-, or data-based protocols, connected or connec-
tionless protocols, bandwidth to use, etc.). As the number
of solutions and implementations proliferated, it became
apparent that these disparate networks needed another
network, an internetwork, to connect them. Thus the in-
ternetwork (commonly known today as the internet) was
created around 1989 by a partnership of computer and
telecommunications companies that incorporated the
TCP/IP protocol into various operating systems. Earlier,
in May 1974, the Institute of Electrical and Electronics
Engineers (IEEE) had published a paper titled “A Protocol
for Packet Network Intercommunication” that described
an internetworking protocol for sharing resources using
packet switching among network nodes. This protocol had
been developed by the Defense Advanced Research Proj-
ects Agency (DARPA) of the US Department of Defense
(DOD) in collaboration with various universities as part
of its ARPAnet. Version 4 of the internetworking protocol,
denoted IPv4, was released in 1981 by the DOD, which
made it a standard for all its military computer network-
ing in March 1982.

26 CHAPTER 2

To ensure that the whole gamut of networking opera-
tions was addressed—including how data should be pack-
etized, addressed, transmitted, routed, and received—so
that no other variance could be used to whittle the specifi-
cation, the internet protocol was designed to specify end-
to-end data communication. The internet protocol suite
(often referred to as TCP/IP) is organized into four ab-
straction layers: the link layer (which provides the com-
munication methods for data within a single network
segment, or link), the internet layer (which specifies inter-
networking between independent networks), the trans-
port layer (which handles host-to-host—i.e., computer-
to-computer—communication), and the application layer
(which handles how the data are processed by applica-
tions). The last two layers are referred to as TCP and the
first two layers as IP. The IP layers have the task of deliver-
ing packets from the source host to the destination host
using only the IP addresses in the packet headers. To ac-
complish this, the IP layers contain packet structures that
encapsulate the data to be delivered, as well as the labels
for the datagram containing the data’s source and destina-
tion information. The IP protocol is complemented by the
TCP protocol, which is a connection-oriented service.

Among the first corporations to adopt TCP/IP were
IBM, DEC (formerly Digital Equipment Corporation), and
AT&T. Beginning in 1984, IBM started releasing TCP/IP in
various systems such as MVS, VM, and OS/2. At the same

A HISTORICAL PERSPECTIVE 27

time, TCP/IP stacks began to be offered for MS-DOS and
PC-DOS by several smaller companies. Thus the internet
as we know it today became commercially available in the
mid-1980s.

Virtualization

In the 1960s, during the heyday of mainframe computers,
IBM embarked on solving a problem: how to make comput-
ing cheaper on a per user basis. As mainframes were very ex-
pensive, having efficient per user costs based on time sharing

of computing resources seemed like a viable option. (Time

sharing allows multiple users to use a single computer at
the same time.) This led IBM to pioneer virtual machines in

1964 at the IBM Cambridge Scientific Center in Cambridge,
Massachusetts, that created the control program (CP), which

was a hypervisor that ran multiple virtual machines (VMs),
with each VM having its own separate hardware stack and
a lightweight version of the operating system. This culmi-
nated in IBM releasing the first commercially available VM

on August 2, 1972. It ran on the S/370 operating system
on a mainframe computer and was called VM/370.

As with the internet, DARPA played a pivotal role

in virtualization. It funded the FLASH research project
at Stanford University on virtualization as described

in “Disco: Running Commodity Operating Systems on

28 CHAPTER 2

Scalable Multiprocessors,” a paper published in the ACM
Transactions on Computer Systems in 1997; the authors of
the paper were Edouard Bugnion, Scott Devine, Kinshuk
Govil, and Mendel Rosenblum. They described a prototype
hypervisor—software that sits between the hardware and
the operating system—which they named Disco. Disco
used the TCP/IP protocol to couple operating systems run-
ning on different machines, and so allowed them to scale
horizontally. In 1998, three of the paper’s authors co-
founded VMWare, a company that provided the very first
commercially available VMs that ran on Intel microproces-
sors, referred to as x86 machines. These were stand-alone
VMs running on workstations. In 2002, VMWare released
the first commercially available hypervisor, the ESX Server
1.5, which allowed users to consolidate physical devices by
creating a greater number of VMs on them.

The next major milestone was to have a free, open-
source hypervisor that made virtualization cost-effective.
In 1998, the same year that VMWare came on the scene, a
demonstration of Simics was presented at the USENIX 98
conference. This was followed by Xen, an open-source pro-
ject allowing multiple operating systems to be run on the
same hardware concurrently. It was created as a research
project at Cambridge University and released on October
2,2003. Xen is currently part of the Linux Foundation and
has Amazon AWS (Amazon Web Service) and Citrix as its

project members, among others.

A HISTORICAL PERSPECTIVE 29

To end our discussion of the historical aspects of vir-
tualization, let us not forget containers. They came a little
later when, with the release of FreeBSD 4.0 in 2000, jails
were introduced. A jail is a partition of various system re-
sources that share the same operating system kernel and
so imposes limited overhead on the hardware. This paved
the way for containers, which were introduced in Linux on
August 6, 2008.

Cloud Computing

Cloud computing’s history is checkered. It has evolved
gradually, based on the formative technologies that we
have considered in this chapter. Multiple users, for in-
stance, could use a single mainframe in the 1950s by using
dumb terminals. The need to perform computing, which
was an expensive resource then, on a time-shared basis
meant that virtualization technologies were pioneered
in the 1960s. By 1999, the internet was well established
when Salesforce developed its cloud-based SaaS customer
relationship management software. Around this time,
Amazon was becoming well known as a business disrup-
tor using technology. It was approached by various re-
tail companies, such as Target and Marks & Spencer, to
build online shopping sites for them that would sit on

top of Amazon’s e-commerce engine. This was followed

30 CHAPTER 2

Today, three major cloud
providers have the lion’s
share of the public cloud
computing market:
Amazon, Microsoft, and
Google.

by Amazon creating application programming interfaces
(APIs) and tools to interface with its Amazon.com web-
site catalog in 2004, and Amazon internally became a ser-
vice company that used decoupled APIs to access services.
However, in 2003, the concept of what AWS could be was
formulated at an executive retreat. Indeed, it was one of
the first businesses that considered the use of 10 percent
of its computational capacity as a financial problem that
needed to be solved.

On March 14, 2006, AWS was launched as a public
cloud by making storage available as S3 (Simple Storage
Service), which was followed by the launch of Amazon SQS
(Simple Queue Service) and Amazon EC2 (Elastic Com-
pute Cloud) in August 2006. Others, such as Oracle, IBM,
Microsoft, and Google, followed with their own offerings
in later years.

Today, three major cloud providers have the lion’s
share of the public cloud computing market: Amazon, Mi-
crosoft, and Google. Although Amazon’s AWS has around
90 percent of the market share, Microsoft has the poten-
tial to press ahead (provided it revises its pricing model and
creates lightweight Windows servers) as it has a few sticky
technologies, such as Microsoft Office, Microsoft Active
Directory (for security), and Exchange (email server), that
create a compulsive ecosystem for businesses.

32 CHAPTER 2

TYPES OF CLOUD COMPUTING

The first chapter touched on two key characteristics of
cloud services: service abstraction levels (IaaS, Paa$S, SaaS,
INaaS, and BPaaS) and deployment models (public, pri-
vate, hybrid, and community clouds). This chapter delves
deeper into both by comparing their component charac-
teristics, culminating in some key paradigms of cloud com-
puting based on cloud relationships.

Let’s recall the definition of cloud computing from the
first chapter. Cloud computing has five key properties:

1. broad network access,
2. on-demand self-service,
3. resource pooling or shared services,

4. rapid elasticity, and

5. measured service.

Every single one of these properties needs to be pres-
ent for a service to qualify as a cloud service. It is very
important to understand this because otherwise the ser-
vice is just not a cloud service, despite the claims made by
would-be cloud service providers. Consequently, all the de-
ployment models and abstraction levels that we consider
in this chapter have in common these five properties of
cloud computing.

There are a few novel concepts that I have developed
while designing and creating cloud services that we shall
consider. One such concept is based on object-oriented de-
sign (OOD) principles in terms of object relationships. An-
other concept is that of a cloud cell; this can be thought of as
a service component performing a single task, such as stor-
ing data, implementing a single business function, provid-
ing a database service, or serving web pages.' (Regardless of
whether the cloud service is hosted on a virtual machine or a
container, we shall use the generic term “cloud cell” instead
of “microservice,” which is generally applied to containers.)
You can create a cloud application that uses a number of
cloud cells to create a cloud service. This concept means that
you can reuse a number of cells and, through various com-
binations, create a variety of cloud services. We can extend
this approach further by employing cloud patterns. These
are distinct use cases based on a combination of cloud cells
and their relationships. The chapter concludes with a dis-

cussion of cloud patterns, or cloud service patterns.

34 CHAPTER 3

Business Process-as-a-Service

Information-as-a-Service

Software-as-a-Service

Platform-as-a-Service

Infrastructure-as-a-Service

Figure 6 Levels of abstraction.
Abstraction Levels

Service models can be viewed in terms of increased lev-
els of abstraction. As you move up the stack to the top,
you have the highest form of abstraction at the Business-
Process-as-a-Service (BPaaS) level, as illustrated in figure 6.

Notice that each higher level of abstraction incor-
porates the levels below it. Software-as-a-Service (SaaS)
incorporates software that provides a business function
and at the same time provides a Platform-as-a-Service
(PaaS). And Platform-as-a-Service provides an operating

TYPES OF CLOUD COMPUTING 35

environment in addition to Infrastructure-as-a-Service
(TIaaS). Table 2 describes the five abstraction levels of cloud
computing in terms of the service offerings.

Notice in the table the distinctions between the ab-
straction levels. It is easy to mistake one service for an-
other, especially when marketing departments of different
cloud service providers stretch the definitions. For exam-
ple, suppose you are provided with IaaS. The service pro-
vider will pre-install the operating system for you because
it does not wish you to have access to the infrastructure for
security reasons. The service offered is still IaaS, not PaaS,
even though it has an operating system installed. For it
to be Paa$, the service provider would additionally need
to install software that your application would need for it
to run. This additional software might be software librar-
ies that perform set tasks, a framework such as .Net that
includes a standard set of libraries, or even an application
stack such as LAMP (Linux-Apache-MySQL-PHP or Perl)
that includes a web server (Apache), a database (MySQL),
and a programming language with its libraries (PHP or
Perl) hosted on a Linux server. Once you use the IaaS or
the Paa$S service to write your application, you can host it
in the cloud and offer it as SaaS—Software-as-a-Service.
That way your customers do not have to worry about in-
stalling the application, the operating system it runs on,
or any of your application’s software dependencies. More
crucially, they do not have to worry about keeping the

36 CHAPTER 3

Table 2 Service offerings for different abstraction levels

Abstraction Level

Infrastructure-as-a-
Service (IaaS)

Platform-as-a-Service

(PaaS)

Software-as-a-Service

(SaaS)

Information-as-a-Service
(INaaS)

Business Process-as-a-
Service (BPaaS)

Service Offering

Provides hardware infrastructure such as
servers, storage, and the like on a utility basis.

As for [aaS, but also includes the operating
system and any other core applications that
make up the operating environment to enable
users to install and run software. Pricing is
generally on a utility basis.

As for Paa$, but also includes hosted
applications that fulfill a function. The
function could be a business, social, or
personal function. You simply use the
application or applications that you need,
when you need them, and avoid the cost of
installing and maintaining the application
and its supporting hardware infrastructure.
Pricing is on a per use basis.

Provides information that an individual or
corporation needs and that is relevant to their
business, business process, or a task. Pricing
is usually on a consumption, per use basis.

Fulfills a business function or replaces a
business process in an organization. Typically
combines business process outsourcing (BPO)
with Software-as-a-Service (Saa$). Pricing is
generally on a per use basis.

TYPES OF CLOUD COMPUTING 37

software current because you will install the latest version
with your SaaS offering.

Deployment Models

Recall from chapter 1 the four deployment models of cloud
computing: public, private, community, and hybrid. Each
deployment model additionally has an abstraction level
that describes it. For example, a public cloud having an
abstraction level of SaaS would be described as an SaaS
public cloud. Likewise, a PaaS private cloud would be a cloud
that has a private deployment model and a PaaS abstrac-
tion level, and so on.

Public Clouds

A public cloud, as its name suggests, is available to the pub-
lic at large. In this regard, the public can be a consumer or
an organization that wants to use cloud services. Public
cloud services are almost always consumed via the inter-
net rather than via a private or restricted network. The
public cloud is the deployment model that most people
are familiar with. The public cloud has applicability across
the various abstraction levels. As such, you will find pub-
lic clouds that provide infrastructure, platform, software,
information, or business processes as a service. The public

cloud model is almost always available only with a monthly

38 CHAPTER 3

charge for use that is based on subscription or utility (pay
per usage) price models. Examples of a public cloud ser-
vice include Google Cloud Platform, Google Docs, Micro-
soft Office 365, Amazon’s AWS (Amazon Web Service),

DocuSign, Dropbox, and Microsoft’s Azure, among others.

Private Clouds
A private cloud has as its scope an organization, business
unit, or even one person. A multinational corporation may
have its own private cloud that delivers services over its
wide area network (WAN). A WAN can be thought of as
a company-wide internet that restricts outsiders through
the use of security devices such as firewalls. A local area
network (LAN) is similar to a WAN except that it is much
smaller in scope: it normally is restricted to a particular
site, such as a home or a business location. A person could
have her own private cloud to consume services over a
LAN. For example, a home might have its own cloud that
(1) connects a streaming server to a video set-top box so
that videos can be watched, recorded, or played back from
anywhere in the house; (2) provides a backup server to
store files centrally; or (3) comes with a synchronization
service that synchronizes data across devices (laptops,
mobile phones, tablets, etc.) using a wireless LAN; this
would be akin to having your own personal Dropbox.

A private cloud is therefore one that delivers services

over a LAN or a WAN and restricts the consumption of

TYPES OF CLOUD COMPUTING 39

those services to a select group of users. In limited circum-
stances, private cloud services may be delivered via the in-
ternet, but with restrictions so that only private entities
can gain access to those services. Generally, private clouds
require some form of capital expenditure to set up, and

they may also have an operating expenditure component.

Community Clouds
The community cloud is a broader version of a private
cloud. It supports a community that has common inter-
ests or shared concerns such as security requirements, a
common regulatory environment, business models, or
hobbies. A community cloud may even have a geographic
region as its scope, for example an EU community cloud or
a North American cloud. It can have trade as its scope, for
example an ASEAN or a BRIC community cloud. The trade
concept is quite interesting because it can be extended
to any number of industries or business groups: a paper
industry cloud, a publishing cloud, a banking regulation
cloud, a health industry cloud that may be specific to a
country (e.g., a US health community cloud) or to the in-
dustry vertical globally (e.g., a worldwide health commu-
nity cloud), and then have as its participants regulatory
bodies, health providers, practitioners, and consumers, or
any combination of these.

The community cloud shares the same cloud infra-

structure if it is an [aaS community cloud, the same cloud

40 CHAPTER 3

software if it is an SaaS community cloud, or the same
cloud business processes if it is a BPaaS community cloud.
Unlike the services available through a private cloud, com-
munity cloud services are usually delivered over the inter-

net and have an operating expenditure price model.

Hybrid Clouds

A hybrid cloud is an encapsulation (see the section on
encapsulation below) of two or more cloud deployment
models (private, community, or public) that has its own
unique characteristics. The hybrid cloud can be made up
of a single deployment model, as in Hybrid cloud 1 of fig-
ure 7, which is a hybrid cloud comprised of three private
clouds; it can equally well be composed of public clouds
instead. The deployment model does not need to be the
same. You can have a hybrid cloud consisting of different
models, as is the case for Hybrid cloud 2, which has a pri-
vate and a public cloud. Then again, hybrid clouds can have
community clouds as in the case Hybrid cloud 3. There can
even be a hybrid cloud within a hybrid cloud, as in Hybrid
cloud 4, so that you could have a replica of the other com-
ponent clouds within your inner hybrid cloud for purposes
of business continuity or load balancing.

Can the component clouds of a hybrid cloud be of any
abstraction level? For instance, can you have a private
cloud that is IaaS and a public cloud that is PaaS within a
hybrid cloud? Absolutely! Let us consider an example by

TYPES OF CLOUD COMPUTING 41

Hybrid cloud contains Hybrid cloud contains
private clouds private and public clouds

Private \ ﬁ’rivate\\
cloud / t\\\ CJ ij i/)
Hybrid cloud 1 Hybrid cloud 2
‘/ \ / \ / Public \

Private) Private)

‘\ cloud / \ cloud /

\ cloud/

Hybrid cloud with private, Hybrid cloud contains
public, and community clouds another hybrid cloud

Prlvate \ / Public
cloud / \ cloud /

Hybrid cloud 3

/ID;;a;e\\) / I;ubll;\
\ cloud / \ cloud

Hybrid cloud 4

/I-ber]d \ C
\ cloud / &

-

(Community\

\ cloud /

ommunit) y\
cloud /

Figure 7 Varieties of hybrid clouds.

revisiting our accountancy firm. Suppose that our firm
wants to make use of public cloud services for customer re-
lationship management, mail, and word processing using
commonly available commercial public cloud services but
at the same time has some business applications such as
inventory-tracking software that are available in its own
private cloud. Our firm could create a hybrid cloud such
that some of the data could be shared between the public

and private clouds, for example supplier addresses. This

42 CHAPTER 3

would allow the public cloud’s word-processing service to
send letters to suppliers and at the same time allow the
private cloud’s inventory tracker to assess which supplier
ought to be contacted in order to replenish stock. What are
the advantages of such a hybrid cloud? The private cloud
provides data privacy, greater performance, and transpar-
ent service-level objectives; the public cloud provides stan-
dard services that grant it flexibility and cost efficiency, as
our accountancy firm does not have to reinvent the wheel

by having to create its own word-processing services.

Types of Cloud

Clouds can take the form of any deployment model. You
can deploy your personal cloud as a private cloud or as a
public one, for example. Dropbox is an example of a public
cloud deployment model that can be used as a personal
cloud for files. In this section we consider the personal
cloud and the cloud of things as two distinct types of cloud.

Personal Cloud

A personal cloud is defined by its scope rather than by
whether it is available on a shared basis. Recall that this
cloud’s scope is a person or a single entity and that it can
be a private, public, or hybrid cloud. Examples of public

personal clouds are iCloud, Google Drive, and Dropbox.

TYPES OF CLOUD COMPUTING 43

Dropbox is an example
of a public cloud
deployment model
that can be used as a
personal cloud for files.

An example of a private personal cloud is a network-
attached storage device that backs up your data; Apple’s
Airport Time Capsule, when connected to more than one

device, is an implementation of this concept.

Cloud of Things

A cloud of things has inanimate objects, or things, as its
scope; that is, it is a cloud that works with things instead
of people or organizations. For example, you can have
a cloud of public lighting sources—such as street or car
park lighting—operated on a pay per use basis so that the
lighting is available only to those who pay for it. The lights
therefore turn on when someone is in the vicinity and turn
off when they leave; the amount charged would depend
on the length of time they are in the vicinity, and hence
the payment would be based on their use of the lighting.
This may mean that the lights do not remain turned on
all night and waste money. It may also mean that only
those residents who use the lights pay for them rather
than everyone in the community through taxes or any
such collective charging schemes. The pay per use charging
mechanism could be provided through the agency of chip-
and-pin or near-field communication technology that is
available with most credit and debit cards. The lights con-
nect to their cloud via general packet radio service (GPRS)
and transmit information pertaining to such things as us-

age and bulb replacement needs.? Other applications of a

TYPES OF CLOUD COMPUTING 45

cloud for things would be for cars, houses, health monitor-
ing equipment, household appliances, and offices.

Cloud Cells

A cloud cell is a cloud service that provides a distinct, fun-
damental function or service; it acts as a unit so that its

service can be reused by other cloud services or cloud cells.
You can think of a cloud service as encapsulating cloud

cells. Microservices are an example of a cloud cell in its na-
tive form. Microservices are short-lived services that use

containers to provide a single service. However, you could

also have a cloud cell that is based on a long-lived service

using a virtual machine instead of a container.

Examples of cloud cells are a database cell that pro-
vides the services of a database server, a web server cell
that hosts internet sites, or an email server cell. In other
words, the same type of cloud service does not need to
be created for every cloud that needs it because you share
the cell. You invest once in creating a cloud service—as
a distinct cloud cell—and then leverage it so that other
cloud services can use it. (Of course, there are a lot of tech-
nicalities involved—how the cloud cell exposes its services
to other cells, how it advertises its services to those cells,
whether a service catalog is maintained by a controlling

cell, and what common data models and formats ought

46 CHAPTER 3

to be used to pass information between the cells—but we
won’t delve into these details since our purpose is to un-
derstand the main concepts.)

This reusability provides cost efficiencies. Thus, hav-
ing specific cloud cells that perform distinct functions and
are reused by other cloud services or cells can increase
productivity and thereby profits. This is the opposite of
Gossen’s first law of economics, referred to as the law of
diminishing marginal utility, according to which the more
of something you use, the less each additional unit of it is
worth to you than the one before it; the cost efficiencies
of reusability can be thought of as providing an increasing
marginal utility with usage. Likewise, reusing cloud cells
increases agility in calling up a particular cloud function
because you will not have to create it from scratch. The
increased agility translates to a shorter time to market.

Figure 8 shows a cloud service—called a mother cloud
cell—that consists of a number of cloud cells. The control-
ler cell is optional, depending on the use. Its main purpose
is to act as an orchestrator of services that the other cloud
cells provide. Using a web service as an example, you could
have the following cloud cells encapsulated: a web server
cell, a database cell, a storage cell, and a SaaS cell that con-
tains the business logic for the web service. A special form
of cloud cell, used mainly within the IaaS and PaaS space,
is the cloud gear. Cloud gears are specialist cloud cells

that individually provide applications such as antivirus

TYPES OF CLOUD COMPUTING 47

Figure 8 Cloud cells within a cloud service.

protection, hard disk encryption, public file sharing, and
backup.

Cloud Cell Patterns

The web service cloud we just considered follows a pat-
tern. Like all web services, it has a database, some stor-
age, business logic, and a web server. Those components,
in essence, describe a pattern for a web service. Similarly,

48 CHAPTER 3

you can have numerous use cases: email service, inven-
tory management service, order-processing service, and
audio streaming service are just a few examples. Each of
these can be described as a distinct cloud service compris-
ing cloud cells that provide distinct functions. Thus cloud
patterns are implemented by cells, and they provide a tem-
plate for a given cloud service or its use case.

Patterns are not new. In programming, they come to
us from the field of object-oriented software and were first
popularized by the “Gang of Four”—Erich Gamma, Rich-
ard Helm, Ralph Johnson, and John Vlissides, authors of
the 1994 book Design Patterns.® They described software
patterns as objects that can be reused to create a solution
to a problem. They posited that a pattern has four essen-

tial elements:

1. Pattern name

An identity that creates a common vocabulary to

invoke the pattern.
2. Problem statement

A description as to when and under what

circumstances to apply the pattern.
3. Solution

A description of elements that make up the pattern

(in our case, the names of the cloud cells), their

TYPES OF CLOUD COMPUTING 49

relationships (we discuss these in detail in the
following section), and interfaces.

4. Consequences

Trade-offs and the impact of using the pattern (in our
case, the price and value model that would apply to
the pattern).

Table 3 describes our web service example as a pattern
using the Gang of Four’s framework.

The format of table 3 can be used to describe any
number of cloud patterns that fulfill a particular use case.
When the pattern is implemented, the components of the
pattern become distinct cloud cells.

Cloud Relationships

A common theme you will find with hybrid clouds is that
the component clouds will need to share or integrate data
to be able to port the cloud-based applications or their
services from one component to another. Actually, this
need to share information is not specific to hybrid clouds.
A private or public cloud also has as its components other
clouds or cloud cells that provide given tasks or services.
And for this to happen, there needs to be defined relation-
ships between the clouds or cloud cells, and microservices

can be thought of as cloud cells in this regard.

50 CHAPTER 3

Table3 Cloud pattern for a web service

Problem

Solution

Consequences

Web Server Cloud Service

Host a customer-facing website that uses business logic
to respond to users in real time

Components:

1. Web server cell: Contains Python, Apache HTTP
server, and Node.js

2. Database cell: Contains PostgreSQL database

3. Storage cell: Provides storage for the other cells

4. Service bus cell: Provides connectivity with back-end
systems

5. Firewall cell: A virtual firewall; implements a local
demilitarized zone

Relationships: Encapsulation—composition of above five
cloud cells

Interfaces:

1. Internal: Firewall Webserver (Database, storage and
service bus cells)

2. External: Users (via the HTTP server), administrators,
and back-end database (via the service bus)

Price model: Consumption-based price model
Value models: User demand flexibility and location

flexibility

These relationships are examined as encapsulation,

composition, and federation.

Encapsulation

Encapsulation occurs when an object contains or consists

of another object. In encapsulation, one object is said to

contain another. Encapsulation minimizes your work be-

cause you can apply a cookie-cutter approach with it. For

TYPES OF CLOUD COMPUTING 51

example, a forest of eucalyptus trees could be described
as a forest that encapsulates eucalyptus trees. From an
engineering viewpoint, you need only describe one tree
and then describe the forest as an aggregate of that single
type of tree.

Encapsulation is of two types: composition and ag-
gregation. Our eucalyptus forest is an example of aggrega-
tion. Composition occurs when distinct objects contribute
to create an overall object, and not just one repeated object
type as in the eucalyptus tree forest example. Suppose you
have to describe a car: it consists of four wheels, a steering
mechanism, a hood, an engine, and so on. The car encap-
sulates these parts that, together, as a composite, make it
a car. The car is a composition of its parts, whereas the eu-
calyptus forest is an aggregation of eucalyptus trees. From
a cloud computing perspective, one cloud can encapsulate
other clouds or cloud cells. Hence, for our purposes as re-
lated to cloud computing, we define encapsulation as be-
ing the composition or aggregation of cloud services.

Aggregation

Aggregation is applicable to any cloud abstraction type.
Figure 9 shows an example of a SaaS cloud that is made
up of other SaaS components that can be described in
similar terms with regard to the functionality, operat-
ing expenditure charges, or the service-level agreements
(SLAs). So, what use does aggregation have in practice? Let

52 CHAPTER 3

Aggregate cloud

Figure 9 An aggregate Saa$ cloud.

us revisit our accountancy firm analogy. Suppose our ac-
countancy firm has an SLA with its IT department to pro-
vide accounts reconciliation through a Saa$S cloud service.
Suppose further that the accountancy firm has a surge in
new clients—perhaps as a result of better marketing or
a merger with another firm. The IT department now has
increased demands placed on it that it cannot meet using
the same SLAs. It could therefore create a replica of the
reconciliation cloud so that it can cater to the increased de-
mand. The reconciliation SaaS cloud will then be two cloud

TYPES OF CLOUD COMPUTING 53

services (or cloud cells), each cell a replica of the other. In
this way, demand for the reconciliation service can be dis-
tributed across the two cells. The effort expended in creat-
ing a replica cell is very small compared to that needed to
create a cell from first principles since an image of one cell
can be used as a template for creating another. The obvi-
ous gains from this cookie-cutter approach, which is an
example of the use of aggregation, are in agility and cost
efficiency.

Let us consider another approach: suppose that in-
stead of creating a replica of the SaaS cloud, the IT depart-
ment identifies an external company that can provide the
same type of reconciliation as its own cell, so it negotiates
an SLA with that company for its cloud function to be the
same as its own. This way the IT department will have a
SaaS$ cloud that encapsulates its own reconciliation cell to-
gether with the other company’s cloud cell to meet the in-
creased demand. The IT department could go even further
and treat the other company’s cloud cell as if it were its
own so that any extra demand that its own cloud cell could
not meet would be sent to the other company’s cell. This
is known as “cloud bursting,” whereby one cloud bursts to
another so that it can be elastic in meeting demand needs.
Yet another use case for aggregation would be to have a
cloud cell located in a different data center than the main
center. The replica cell in the different data center could

54 CHAPTER 3

then be used for disaster recovery or business continuity.
Both the primary and the secondary cells in the two data
centers would be part of one SaaS cloud service that met
business continuity SLAs. Last, IT could create a commu-
nity cloud service that aggregated cells so that some cells
that met its requirements could be reused or even shared
with other community clouds, provided that the cells were
common to both community clouds.

In summary, aggregation has many use cases. Exam-
ples include (1) to increase elasticity to meet user demand,
(2) to enable cloud bursting across different clouds or ser-
vice providers, (3) to provide business continuity, and (4)
to enable reusability, or the sharing of cloud services that
are common to different clouds. Incidentally, the example
here of a community cloud is applicable to other types of

clouds too.

Composition

When a cloud is composed of one or more distinct cloud
services, composition is being used. In figure 10, a com-
posite cloud is shown that encapsulates five cells. A key
benefit of composition is reusability. For instance, a stor-
age cell can be defined and used for one composite cloud
and the same cell, or a replica created from its image, can
be used in another composite cloud. This reusability is
predicated on standardization, so a standard storage cell

TYPES OF CLOUD COMPUTING 55

Database cell

Composite cloud

Web hosting
cell

Storage cell

Figure 10 Cloud composition.

definition with its own set of requirements, interfaces,
functions, and management characteristics needs to be
created. By management characteristics we mean:

1. updates and patches to the cloud cell,

2. upgrades to the cell's hardware,

3. upgrades to the cell’s operating system and core
applications that form part of the platform,

4. upgrades to the applications hosted on the cell, and

56 CHAPTER 3

5. changes in the roadmap that define when upgrades
and updates are to occur in future.

Any change to one characteristic of the standard cell
will change that characteristic on all its replica cells. This
makes managing changes much easier, although it does
require extra testing because any change applied to a cell
may be fine in one composite cloud but not in another. So
all the composite clouds that encapsulate the replica cells
derived from a given standard cell will need to be tested to
commit changes to the standard cell.

Standardization, reusability, and manageability are
key benefits of composition. Other benefits include agility
in instantiating and provisioning clouds. That is to say, as
you define a new cloud service, you need only decide what
building blocks—in the form of cloud cells—it should con-
tain. And presto, you have a new cloud service ready in
minutes! Moreover, with the higher level of abstraction
provided by encapsulation, details such as how a cloud cell
is built are not important. In creating the cloud cell, all
you need to know is what a cloud cell does; you do not
need to know the details of how it is built and what it con-
tains. Tools such as Terraform, CloudFormation, Ansible,
and Cloud Foundry allow you to automate the building
and deployment of cloud services, and so using templates
for cloud cells with those tools allows you to automate the

process.

TYPES OF CLOUD COMPUTING 57

Federation

Federation is a special type of composition. Cloud ser-
vices provided by disparate clouds—usually from differ-
ent cloud service providers—can be federated to create a
composite cloud service. You could think of it as a “mash-
up” of cloud services. The component cells of the federated
cloud can be a mixture of your own cloud cells and a third-
party’s cloud cells. You can even have a federated cloud
that is composed entirely of cells from third-party cloud
service providers. This means that other than negotiating
your SLAs and the prices, you do not have to go through
the trouble of creating your own cloud or its cells. This
approach assumes, of course, that the right cloud services
are available from service providers. Apart from the ben-
efit of rapidly creating and using your cloud, federation
has another benefit, from a service provider’s or broker’s
perspective. A cloud service broker can assemble a cloud
that federates cloud services from a number of cloud ser-
vice providers; can negotiate contracts, SLAs, and prices
with them; and can dispatch the federated cloud service
as an assemblage to you. As a cloud service consumer, you
then would not have to negotiate terms and prices with all
the other providers because you would simply deal with
the cloud service broker. Another benefit of federation is
that you can ramp up your services, either by adding extra
capacity to existing services to meet increased demand or

by augmenting your service offering with extra services.

58 CHAPTER 3

You can do this because you have instant access to a global
marketplace of cloud services. As a result, if you have a
customer that suddenly needs resources or services that
you do not have available as part of your current cloud
service, you can simply purchase the service from the mar-
ketplace and add that service to your cloud service catalog
as a cloud service broker or service provider. Yet another
benefit is that you can use federation to ensure that one
cell within your cloud will fork out work to another cell to
balance the workload or to ensure failure safety. (Failure
safety provides a guarantee that when one cell takes over
work from another, the transaction will not fail, thus en-
suring that a resilient service is provided.) Please note that
federation is based on a major assumption: one cloud can
integrate and interoperate with another. This “plug-and-
play” feature, as afforded by interoperability, is discussed

in more depth in the chapter on transitioning to the cloud.

TYPES OF CLOUD COMPUTING 59

CLOUD NATIVE FOUNDATIONS

Cloud computing is based on host virtualization. Host vir-
tualization technology takes two forms: virtual machines
and containers. We discussed the former in detail in the
introduction to the book. Here we consider the latter. Yet
a more important reason for this chapter is that contain-
ers form an integral part of cloud native technologies. A
formal definition of cloud native technologies is given by
the Cloud Native Computing Foundation (CNCF):

Cloud-native technologies empower organizations
to build and run scalable applications in modern,
dynamic environments such as public, private, and
hybrid clouds. Containers, service meshes,
microservices, immutable infrastructure, and
declarative APIs exemplify this approach.

These techniques enable loosely coupled systems
that are resilient, manageable, and observable.
Combined with robust automation, they allow
engineers to make high-impact changes frequently
and predictably with minimal toil.*

To elucidate the above definition: cloud native tech-
nology is predicated on containers providing services in
the cloud using immutable infrastructure,? and those ser-
vices are invoked using application programming inter-
faces (APIs). In addition, the services have telemetry to
make them observable and automation to ensure service
changes occur easily and in a timely and seamless manner.

Cloud native components thus are comprised of con-
tainers (that provide distinct services as microservices),
their management, their orchestration, and their observ-
ability. We consider these components in this chapter as a

precursor to further discussion in later chapters.

Containers: A Historical Perspective

Container technology was born in 1979 when version 7 of
the Unix operating system provided the concept of a jail
in which an application could run in. This jail was enabled
with the use of the chroot (change root) system, which

restricted an application’s access to a specific directory

62 CHAPTER 4

Cloud native technology
is predicated on
containers providing
services in the cloud
using immutable
infrastructure.

such that this directory was denoted as the application’s
root directory.® The jail system was refined in 2001 with
the partitioning of resources such as memory and central
processing units (CPUs) that would be available specifi-
cally to an application in the jail. In 2008, Linux Contain-
ers (LXC) used control groups—known as cgroups—to
group processes in a manner that would prevent any one
container from taking up all the resources of the machine;
this meant that one container could not starve other con-
tainers on the same machine of the use of resources. LXC
also used namespaces, which allowed a process to have a
distinct set of users and the running process to have root
privileges inside the container, but not outside its jail. LXC
was the enabling technology for containers. It is still avail-
able today and is actively supported and being improved.
Docker created a user-friendly API that was a wrapper over
LXC, and so Docker containers were born in 2013. Today,
Docker containers form the backbone of many microser-
vices, although alternatives such as LXC and Linux’s pod-
man (pod manager) are also popular.

Why Containers?
Although virtual machines can be used as cloud native

components instead of containers—and they sometimes

are—they are less common because they take longer to

64 CHAPTER 4

deploy and so are less suited to short-lived or on-demand
microservices. Web applications and services usually need
to use on-demand microservices to scale quickly to meet
spurts in user demand. Hence containers are favored, al-
though for some back-end services, you could use virtual
machine-based microservices. Some components of a
web service, however, such as databases, require immu-
table hardware to maintain state. Immutable hardware, or
infrastructure, does not change. It is the antithesis of a
container, which is often used as a temporary provider of
computing power. So virtual machines, or managed ser-
vices that the cloud service provider sells (such as RDS on
AWS, Cloud SQL on GCP, or Azure SQL), which may be
hosted on virtual or physical machines, are usually used
for databases instead of containers.

One of the key advantages of using a container is that
it provides consistency; thus your software will run on any
platform on a container and each deployment of a con-
tainer will be the same as another as long as they are built
and run from the same image. Yet another advantage is
that it saves space as well as management time when com-
pared to a physical or virtual machine. This is because it
can be a short-lived machine that is often run to execute a
piece of code that serves a single purpose as a microservice.
Because containers are lightweight, a number of them may
be needed to fulfill a large demand for a given service re-
quiring ease of scaling in and out. Although this agility is a

CLOUD NATIVE FOUNDATIONS 65

benefit of using containers, too many of them introduce a
management and observability overhead. Thus managing
and observing thousands or tens of thousands of contain-
ers will prove to be a difficult task, and we discuss this topic
later. But orchestrating the containers so that they run on
schedule when needed without any human intervention
is quite easy using various tools such as the open-source
container orchestration system Kubernetes; this level of
automation saves time and effort. Let us assess some of
the other benefits of using containers in a cloud native en-

vironment: statelessness, loose coupling, and scalability.

Statelessness

Short-lived containers do not maintain a memory of what
they did or for whom as this allows you to scale your appli-
cation using as many of them as needed to meet demand,
and so are denoted as stateless. This is an advantage from
a scalability perspective because the containers are then
dispensable and so can be created at will to meet user de-
mand without having to transfer state from one container
to another. Should some form of memory need to be main-
tained during the time of a transaction when various con-
tainers run and die after having provided their services
or during the provision of their services, then a cache or
a database is used to maintain state. Such a transaction is
considered to be stateful; one without state—known as

stateless—has no memory of what one service does.

66 CHAPTER 4

Loose Coupling

One of the principles of software systems design is “sepa-
ration of concerns.” Broadly, this means that you separate
your software into components such that each component
has a separate, specific concern or capability. Let a compo-
nent then be a container that provides a specific service,
and as such is a microservice. There are two ways you can
think of coupling between microservices: at design level
and at run time.

At design level, a loosely coupled service knows as lit-
tle as possible about any other services it interacts with.
Thus a change that is made to a microservice does not ne-
cessitate a change in another. This type of loose coupling is
achieved because the services collaborate with each other
through a service bus at a physical level and through a de-
fined interface or protocol at the logical level.* Conse-
quently, the service receives instructions or shares data in
a defined and standard manner: each service can be
thought of as a black box providing a specific function
through a common, standard interface. A tightly coupled
system, on the other hand, will require changes to all ser-
vices that interact with a given service if any changes are
made to that service. So a design that uses loosely coupled
services cuts down on maintenance and refactoring time.

At run-time level, loose coupling relates to the depen-
dency of services when interacting with each other. For
example, suppose service A needs to talk to service B: if

CLOUD NATIVE FOUNDATIONS 67

service A sends an instruction or data to service B and ex-
pects to receive a response, then it depends on service B.
However, if service B were down or busy and not respond-
ing immediately, should service A suspend all other tasks
and just wait until service B responds or should it continue
with other tasks and deal with service B’s response when
it arrives? Obviously, the latter is more efficient as service
Aisloosely coupled to B. The former case, in which service
A blocks all other requests or tasks while awaiting B’s re-
sponse, is an example of tight coupling during run time.
The loosely coupled system is said to be event-driven on
the basis of events occurring for service A to respond to.
Loose coupling, in an event-driven architecture, is there-
fore a very efficient way of using uptime and computa-
tional resources. Thus containers, being lightweight and
deployable speedily when needed, are suited to an event-

driven design when they are loosely coupled.

Scalability

Since loose coupling and statelessness allow you to spawn
as many containers as you need to perform a given func-
tion to meet user demand, you can scale your application
quite well using containers. You would then choose to
scale each microservice within your application on the
basis of the computing resources it is consuming; when
a resource limit is reached, you spawn a container and

its concomitant microservice to provide greater capacity.

68 CHAPTER 4

Because scalability will be independent of any particular
microservice, you will be able to scale efficiently by provi-
sioning the resources in a more targeted manner without
affecting the configuration or setup of other microser-
vices. Not only does this provide horizontal scalability to
meet the increased resource needs, it also obviates capac-
ity planning.

Challenges

So far in this section we have considered several advan-
tages of using containers and have touched on various rea-
sons to use them. However, using containers does pose
some challenges. These are listed below.

Integration: Integrating with legacy applications can
pose a problem as you would need to update the legacy
applications to fit with the microservice architecture and

refactor their connectivity to use API-based integration.

Observability: Monitoring and reporting on a large
number of containers can be challenging. You will need
to design and create the metrics, tooling, and dashboards
to observe them effectively.

Networking: Connecting containers as a service chain
requires appropriate networking and IP address
management within the subnets. This can become

challenging where large numbers of containers are involved.

CLOUD NATIVE FOUNDATIONS 69

Storage: Since containers provide microservices as and
when needed, any information inside a container will be
lost when that container is killed or shut down. Retaining
container-based information requires the adoption and

use of container storage tools.

Troubleshooting: Since containers are deployed
dynamically to different hosts, troubleshooting can be a
challenge as you can easily lose track of which container
is on what host and what it is doing. Thus container
monitoring tools are needed to complement the host
monitoring tools.

Costs: The added functionality, ease of use, and
convenience of containers come at a price: the same, if not
more, physical resources are needed to implement a like-
for-like design with a container-based solution as with a
physical one, and this represents an additional cost to you.

To address these challenges, several tools have been cre-
ated to manage, orchestrate, and observe containers. Ku-
bernetes is one such tool; we discuss it in the next section.

Managing Containers with Kubernetes

Working with a handful of containers is easy, but working

with hundreds or thousands of them becomes a major

70 CHAPTER 4

challenge. You therefore need a container management
tool such as Kubernetes to create, schedule, kill, and ob-
serve your containers in order to realize their promise
of scalability. Kubernetes started life as Borg, which was
Google’sinternal cluster management tool.® In 2015, Google
released its documentation on Borg, which was being used
by Google’s engineering teams internally. Thereafter Google
donated Borg’s specifications and code to the CNCF, which
then released Borg into the public domain as open-source
code in the form of Kubernetes.

The key premise of such a container management tool
is automation, and its main benefits are listed below.

Abstraction: Container management includes tools for
storage, security, scheduling, and monitoring to reduce

the time and complexity when working with containers.

Ease of use: Administration of the containers becomes
simplified and easier through the use of container

management tools.

Automation: Container management automates a

number of processes ranging from load balancing to
orchestration. This means that you can scale your
solution automatically and conveniently. Thus automated
scalability is yet another advantage of such a tool.

Continuous health monitoring: Container management
provides automatic health checking of applications

CLOUD NATIVE FOUNDATIONS 71

hosted on the containers as well as the containers
themselves in terms of resource utilization and failure.

Kubernetes schedules workloads across many hosts
by orchestrating the running of containers. To do this, it
allows you to define a desired state of operation in terms
of the workload and it then reconciles the current state to
your desired state by either spawning or killing contain-
ers, as required. And it provides a command-line interface
(CLI) for you to interact with the Kubernetes engine. In
Kubernetes parlance, a pod is a container, and a collec-
tion of pods resides on a node. A node is a machine, either
physical or virtual, that runs pods; the number of pods
and their creation are automatically handled by the Kuber-
netes scheduler. Please bear in mind that the Kubernetes
scheduler creates new application pods without consider-
ing the current actual utilization of nodes, and this is a
shortcoming at present. In any case, Kubernetes is good
at scaling horizontally to handle large increases in traffic
and workloads, and it does this by adding more pods and
nodes from the available computational resources. How-
ever, it lacks the ability to scale vertically, and one way of
overcoming this is to install and use Kubernetes on vir-
tual machines in the cloud that are part of an autoscaling
group so that additional machines can be made available
to it when needed.

72 CHAPTER 4

Cost Optimization

From a real-world standpoint, cloud computing costs can
very easily spiral out of control, and cloud native comput-
ing can be even worse. Other than creating your own pri-
vate cloud—and this can be a good choice if your cloud
computing costs approach $1 million per annum—you
have very few options at your disposal to contain costs.
Obvious approaches are to use tooling that optimizes or
reduces costs and to adopt processes that discipline your
use of cloud computing resources. In this section we dis-
cuss approaches that have a large impact on cost reduction
in a cloud native environment.

When implementing a microservice, the number of
containers you use will define the costs you will incur. If
you need to scale in order to meet user demand, your costs
will grow proportionately as more containers are spawned.
The number of containers that need to be spawned will de-
pend on the resources used per container, such as memory
and CPU cores, as well as on how resource-hungry your
microservices are. If you use a programming language
that executes a piece of code faster than other languages,
then the microservice that has been implemented with
the faster code will need fewer resources than one that is
slow to execute. So, one way to contain costs is to use a
programming language that will allow you to execute your

CLOUD NATIVE FOUNDATIONS 73

From a real-world
standpoint, cloud
computing costs can
very easily spiral out
of control, and cloud
native computing can
be even worse.

code faster and to use programming constructs such as
multithreading to implement your microservice.

Another factor is networking. If your microservices use
or need greater network bandwidth, then your costs will
increase. Therefore, you should try to use batch processes
for transferring data whenever possible. In general, when
you have data arriving at intervals, whether regular or ir-
regular, you may want to cache them so that you may then
perform the bulk transfer of the cached data as a batch.
This will enable you to create batch transfers of data that
do not exist in a bulk form to begin with. Of course, this
may not always be possible, especially with an event-driven
architecture. In such cases, perform batch data transfers of
static or reference data only since the dynamic data will be

part of the events in your event-driven architecture.

What’s Next?

To recap, cloud computing forms the foundation of cloud
native applications as it is used to host containers that
provide microservices, and these are accessed through de-
clarative APIs. Additionally, tools such as Kubernetes are
used to manage, orchestrate, and observe the microser-
vices and containers to provide self-healing, scalable ser-
vices. We continue this topic in the next chapter, where we

delve deeper into microservices and their design patterns.

CLOUD NATIVE FOUNDATIONS 75

MICROSERVICES AND THEIR
DESIGN PATTERNS

Although no formal definition of a microservice exists,
something that is quite close comes to us from James
Lewis and Martin Fowler, who wrote a seminal blog piece
on microservices in which they listed nine constituent
characteristics of a microservice.! We examine these char-
acteristics briefly in this chapter and then discuss mi-
croservice design patterns.

Characteristics of Microservices

The following nine characteristics define microservices
and their use:

1. Componentization via Services A monolithic

architecture has a single instance in which all its

functionality is implemented, and it scales by replicating
that instance on multiple servers. A microservices
architecture, on the other hand, decomposes the
application’s functionality into separate service elements
that are implemented such that each service element
has its own specific instance; thus a composition of
service instances together makes up the application
functionality. Such an application scales by distributing

its services across servers.

2. Organized around Business Capabilities When
implementing a large application, the general approach
in the past has been to break the implementation up
along technical capabilities. So, for instance, there
would be teams of front-end developers, back-end ones,
database administrators, middleware specialists, and
so on, all of whom worked within their own teams.
With microservices, the application’s implementation
is assorted along business capabilities and functions
instead, so that specialists from each of the technical
capabilities work together as a team within each business
function.

3. Products, Not Projects A project-based approach
tends to demarcate and assign development, testing,
delivery, and support to different teams across an
application’s life cycle. A product-based approach, on
the other hand, is inspired by Amazon’s approach of

78 CHAPTER 5

“you build it, you run it,” whereby a single team has
ownership of the product across its entire life cycle.

This ties in well with the organization of the product’s
implementation along business capabilities, as discussed

in the previous item.

4. Smart End-Points and Dumb Pipes For
communication between processes or services, use
dumb pipes instead of smart pipes. Dumb pipes

just do the messaging, such as publish-subscribe or
queuing, whereas smart pipes have a lot of built-in
intelligence, such as message translation or formatting
and rules-based message routing. Thus a lightweight
message bus, often termed an event bus, is preferred
over an enterprise service bus (ESB).? This helps the
microservices remain decoupled from each other and
own their own domain logic. And the end-points are
smart using REST protocols that favor statelessness so
the microservices are replaceable. Replaceability serves
two purposes: first, it allows easy maintainability and
refactoring as one need only replace a microservice
instead of the entire codebase, and second, it supports
scalability as one can replicate those microservices in
proportion to demand.

5. Decentralized Governance Instead of having
centralized decision-making in terms of the

programming language to use, the libraries to use in

MICROSERVICES AND THEIR DESIGN PATTERNS 79

your code, or the tools that help you build and test your
code, responsibility is devolved to the team that works

at the domain level. This means that a microservice

can be different internally from another that provides

a different service to it, but both share the same
contractual boundaries in their communications
internally between them, as well as externally, with other
applications and systems. Thus, the “you build it, you run
it” paradigm is empowered as the team that builds it not

only runs it but also takes ownership and control over it.

6. Decentralized Data Management Usually, data are
kept in a central repository that serves all the business
domains and at the same time provides transactional
consistency of the data. The general outcome of such a
centralized approach is that the data repository mutates
into a data warehouse and any transactional commits,
especially large ones, can take an inordinate amount of
time. Also, such a centralized approach does not favor the
domain-driven approach because a central view of the
metadata is imposed on all the domains; for example, the
accounting department may have a different definition
of who a customer is from the support department. To
realize a domain-driven approach more easily, data
management needs to be devolved to each of the
domains and the application or service that supports it.
But there is a disadvantage to this when updating data:

80 CHAPTER 5

transactional consistency becomes much more difficult
to maintain.? As a result, eventual consistency is favored,
with the understanding that businesses operate in such
amanner in any case.* Thus microservices prefer letting
each service manage its own database, an approach

known as “polyglot persistence.”

7. Infrastructure Automation To ensure quality, you
need to test. And you need to test at various stages such
as when developing, integrating, and releasing your
application because catching errors at an early stage of a
product’s life cycle is less expensive to fix than catching
the errors at a later stage. So continuous integration and
continuous delivery (popularly called the CI/CD pipeline)
is espoused. And to build-test-integrate-test and deliver
in a continuous manner, you need to automate the entire
pipeline. So automated building, testing, and deployment
are characteristics of a microservice architecture.

8. Design for Failure Because an application is built
using different microservices, and the application scales
by spawning multiple instances of those microservices,
the killing of a microservice (in order to scale down)

or the failure of a microservice should not affect the
functionality of the application. Thus it should be
designed with failure in mind. Real-time monitoring

of the application is therefore emphasized by the

microservice paradigm. This includes both architectural

MICROSERVICES AND THEIR DESIGN PATTERNS 81

elements (e.g., how many requests per second a database
is getting) and business ones (e.g., how many orders

per minute are received). In addition, resiliency is
emphasized; for example, Netflix uses Chaos Monkey to
terminate live instances of microservice containers or
their virtual machines in the production environment.’
The idea is to incentivize engineers to build resilient

services.

9. Evolutionary Design To continuously improve, you
need to have the capability to make changes continuously
and in an evolutionary manner. If by design you have an
architecture that embraces such change, then it is geared
toward evolutionary change. Having components as
microservices means that you can release at a speedier
rate and more easily because you can make changes

at a more granular level; that is, you can change at the
microservice level rather than at the application or
system level. Thus you need only change and deploy
those microservices that you modify. Another use case

is the ability to add and remove functionality when
needed. For example, a company running a marketing
campaign would have new microservices deployed during
the campaign and then removed from the application
afterward. One form of thinking suggests that you
bundle services that change more often in the same
microservice, but this approach should be adopted only if
it supports the domain-driven design approach.

82 CHAPTER 5

Let us denote a cloud-based application that incorpo-
rates the above nine characteristics to be one that follows
the microservice pattern. In the next section, we discuss
some design patterns related to such a microservice pat-

tern, starting with the database-per-service pattern.

Microservice Design Patterns

A design pattern solves a design problem and provides a
reusable solution to speed up the design process. A mi-
croservice design pattern is a design pattern created spe-
cifically for a microservice-based architecture.

Let us consider a selection of the patterns shown in
figure 11. To describe the patterns in a standardized and
consistent manner, let us adopt the following structure:

1. Context (Under what circumstances would we use the
pattern?)

2. Problem (What is the problem statement that the
pattern addresses?)

3. Solution (How does the pattern solve the problem?)
4. Benefits (What are the pros of using the pattern?)

5. Drawbacks (What are the cons of using the pattern,

and are there any alternative solutions?)

MICROSERVICES AND THEIR DESIGN PATTERNS 83

A design pattern solves
a design problem and
provides a reusable
solution to speed up the
design process.

Let us commence the discussion with the database-
per-service pattern using the above template.

Database-per-Service Pattern

Context An application is made up of microservices, and
some of them need to persist data. How do you ensure that
any two microservices will have seen the same data in a

consistent manner?

Problem Do you use one large database and create alock
on a table or record when its data are updated, or do you
ensure that each service has its own database?

Solution Keep each microservice’s persistent data pri-
vate to itself and accessible only through its API, gRPC, or
event bus. You can use a lightweight database, for example

SQLite, for each microservice, a NoSQL database server
instance or collection, or a private schema or table for that
microservice if using a relational database.

Benefits Doing so ensures microservices are loosely
coupled since any changes made to one microservice’s
database do not affect other microservices. Also, each mi-
croservice can have the type of database that is suited to
its needs. For example, a service that does text searches
could use Elasticsearch, whereas one that works with a so-
cial graph could use Neo4j.

MICROSERVICES AND THEIR DESIGN PATTERNS 85

Choreography

% Performance

Geodes

Queue-based
load leveling

Throttling

Caching
CQRS
Database per service
Indexing l Data
Materialized view
Saga
Sharding

Valet key

Asynchronous request-reply
Claim check
RPC e
s " Messaging
-
Publish-subscribe
Competing consumers

Queuing
Pricritized queuing

Sequential convoy

Caonsumer-driven

@ Testing

Consumer-side contract

Server component
testing

Figure11 Overview of microservice patterns.

86 CHAPTER 5

Patterns

Self-registration
ey

,«’Jf’ Client side

I~
O Discovery |/ Sewerside

\E“ Third-party registration

Ambassador

Anticorruption layer
Backends for frontends

Compute resource consolidation

Decomposition

Impler ion

External config store

Gateway aggregation

Gateway-based Gateway offloading

T

Static content hosting

Strangler

Access foken
Security

Federated identity

Gatekeeper

Bulkhead
Circuit breaker
Compensating transaction
Deployment stamps
n Reliability Health monitoring
Leader election
Retry

Scheduler agent supervisor

MICROSERVICES AND THEIR DESIGN PATTERNS

87

Drawbacks Transactional consistency that spans multi-
ple microservices is difficult to implement. Another draw-
back is that skills to support multiple types of databases
would be needed, and yet another drawback is that que-
ries that require join constructs across multiple databases
become much more difficult. However, there are various
patterns that address these issues. For example, the saga
pattern may be used to implement transactions that span
services. For queries that span services, you could con-
sider the API composition pattern or the command query
responsibility segregation (CQRS) pattern; these are dis-
cussed below in sequence.

Saga Pattern

Context You have implemented the database-per-
service pattern and would like to have transactional con-
sistency as some of your business transactions use several
microservices, each with its own private database.

Problem How do you implement transactions that span
multiple microservices? You do not want to use a two-
phase commit pattern because it is a blocking process, and
you want your microservices to be nonblocking and thus
decoupled at run time.

Solution Use a saga of local transactions; break up the
business transaction into local, microservice transactions.

88 CHAPTER 5

Then each microservice provides a status of its local trans-
action. The business transaction is completed when all
local transactions have completed successfully. If a single
local transaction were to fail, then all the other related lo-
cal transactions would be rolled back using a set of com-

pensating transactions.

Benefits Transactional consistency across multiple mi-
croservices is achieved.

Drawbacks Greater complexity in programming results
as a failed saga would need to be rolled back, and also, each
local transaction would need to provide a status response.

API Composition Pattern
Context Youhaveimplemented the database-per-service
pattern and want to implement queries that join data

from multiple microservices.

Problem How do you implement queries that span mul-
tiple microservices in a microservice architecture?

Solution Implementa query using a special microservice,
commonly called an API composer, which queries the mi-
croservices owning the data and performs an in-memory
join of the results. The API composer remains free of the

business logic, which remains with the microservices

MICROSERVICES AND THEIR DESIGN PATTERNS 89

implementing that business function for its particular do-
main. Used in conjunction with the API gateway pattern,
each service composition can be defined as an aggregate of
services behind the API gateway, which effectively actsasa
facade. In this way you can hide legacy systems and replace
them at some later date, and can provide a consistent de-
sign of the overall API to clients.

Benefits Implementing the API composer microservice
simplifies the querying of databases in a microservice
architecture. Because an in-memory cache is used, query
joins are performant.

Drawbacks Should the resulting datasets of a query be
large, then performance is affected since an in-memory cache

is used. The CQRS pattern can be an alternative solution.

CQRS Pattern

Context Youhaveimplemented the database-per-service
pattern or the event sourcing pattern and you want to per-
form queries that join data from multiple microservices.

Problem The CQRS pattern (command and query re-
sponsibility segregation) has the same problem statement
as the API composition pattern, which is an alternative so-
lution: how to implement a query that retrieves data from

multiple microservices.

90 CHAPTER 5

Solution Define a view database, or schema, that strad-
dles the private databases of the microservices and provides
an aggregated view of the data domain. The view database
should be a read-only replica of the other databases in ag-
gregate, and is kept up to date by subscribing to domain
events published by the microservice owning the data.

Benefits This pattern has five main benefits:

+ It supports multiple denormalized views that are

scalable and performant.

+ It improves separation of concerns between

microservices.

+ It enables an event-driven architecture to be
implemented and is especially useful when event
sourcing is used. Thus this pattern is often used with

event sourcing.
+ Queries are simplified.

+ Security is improved since the pattern allows only read-
only queries and the writes are performed locally by the

relevant domain microservice.
Drawbacks This pattern may not be relevant if the do-

main or the business logic is simple. It also introduces a

further lag to the eventual consistency of the application.

MICROSERVICES AND THEIR DESIGN PATTERNS 21

Publish-Subscribe Pattern

Context You want to enable your microservices to com-
municate with each other asynchronously, in an event-
driven manner, and without coupling the receivers to the

senders.

Problem In a distributed, event-driven architecture,
how should the microservices communicate or send status
events on the event bus without any coupling between the

senders and receivers?

Solution Use a publish-subscribe (also referred to as
pub-sub) paradigm for communication. In this method
a publisher publishes messages to a message bus using a
topic that serves as the subject of the message. Interested
subscribers then subscribe to the published topic to re-
ceive messages from the publisher on that topic. A mes-
sage broker, also known as a pub-sub broker, then routes
messages from publishers to subscribers in an asynchro-
nous manner using message queues (for decoupling) and

topics (as subject groupings to subscribe to).

Benefits This method provides run-time decoupling, im-
proves scalability, and enables seamless communication
between microservices. Each microservice can have its
own publication topic. Another benefit is that it enables
the creation of an event bus and event sourcing.

92 CHAPTER 5

Drawbacks It is not amenable for use in an application
that has just a handful of microservices. Instead, use a mes-
sage queue in such a situation. Another alternative could
be to use the gRPC pattern, but the concept is slightly dif-
ferent: with gRPC you execute code on another microser-
vice, whereas with pub-sub and queue-based messaging
you send a message to another microservice and it decides
which code to execute, so you need to think of the boundar-
ies for code execution, especially in a domain-driven design.

Event Sourcing

Context An application implements the database-per-
service pattern and the saga pattern. Its microservices
need to update their private databases and send messages

or events to report the status of the update.

Problem How should a microservice reliably (i.e., pre-
serve atomicity between the update and its corresponding
status message) update its private database and send sta-
tus messages? (Because of its blocking nature, two-phase
commit is not considered.)

Solution Use an event store to store events, such as a mi-
croservice updating its database, and then publishing that
event to other microservices that subscribe to the event
store’s topic. Each microservice would then have its own

event topic for publishing on the event bus and the event

MICROSERVICES AND THEIR DESIGN PATTERNS 93

store would aggregate all such events, which then would
be sourced to interested microservices that subscribe to
the relevant topic on the event bus. Thus, the event store

becomes a central store of events for all the microservices.
Benefits Event sourcing has the following benefits:

1. Itimplements an event-driven architecture that
publishes events reliably whenever any state changes

occur.

2. It provides a reliable audit log of the changes made in

a business domain.

3. It enables temporal queries to be implemented so that

the state of a microservice is known at any time.

Drawbacks The event store requires many queries to re-
construct the state of a particular microservice. Thus the
application needs to use the CQRS pattern to implement
queries.

API Gateway Pattern

Context You have a database-per-service implementa-
tion where the data needed are distributed across various
microservices that implement domain (i.e., business func-
tion) logic. These domain microservices may have differ-

ent code implementations and interfaces but you want to

94 CHAPTER 5

present a single, consistent view to external client applica-
tions that communicate to your application using a REST-
ful APIL.

Problem How can a unified front end be presented to ex-
ternal clients that talk to your application’s microservices,
using a RESTful API?

Solution Implement an API gateway that acts as the sin-
gle-entry point for all clients. The API gateway handles re-
quests in one of two ways: (1) some requests are simply
proxied and routed to the appropriate internal microser-
vice, and (2) other requests are fanned out to multiple mi-
croservices. An API gateway might also perform protocol
translation. The API gateway can also provide a RESTful
API to external client applications even though the mi-
croservices internally use a combination of protocols.
Where appropriate, the API gateway can translate between
the RESTful external API and the internal gRPC-based
APIs. The API gateway may also incorporate some extra
functionality:

+ Authentication: verifying the identity of the client
application making the request.

+ Authorization: verifying that the client is authorized to
perform that particular operation.

MICROSERVICES AND THEIR DESIGN PATTERNS 95

+ Rate limiting: limiting the number of requests per
second to or from a client.

+ Caching: caching responses to reduce the number of
requests made to the microservices.

+ Metrics collection: collecting metrics on API usage for
billing or marketing purposes.

+ Logging: logging requests to the API gateway in the
event an audit trial is needed.

Benefits The main benefits are as follows.

+ Use of an API gateway insulates client applications
from implementation details.

+ It provides an optimal and unified interface to each
client.

+ It enables client applications to retrieve data from
multiple microservices with a single round trip. Fewer
requests mean reduced overhead, and so user experience
is improved.

» It is essential for mobile applications.

« It translates external communication protocols to

internal ones.

96 CHAPTER 5

Drawbacks The main drawback is that there is an extra
middleman between the client and the service, and this in-
troduces a slight lag or latency into the request-response
transaction. However, this is small compared to the sav-
ings achievable with a reduced number of round trips
when multiple services are involved. Another drawback is
that it adds an extra layer of complexity to the solution.

Circuit Breaker Pattern

Context A microservice invokes another one but the
called service is busy handling other requests or simply
fails to respond. How do we stop one microservice cascad-
ing its faults or errors to those that invoke it?

Problem How do you prevent a failure in the network or

in a microservice from cascading to other microservices?

Solution When invoking a microservice, use a proxy that
mimics an electrical circuit breaker. When the number
of failed attempts reaches a given threshold, the circuit
breaker proxy trips and informs the calling microservice.
It then implements a time-out period during which any
further attempts to call that microservice will fail imme-
diately. Once the time-out expires, the circuit breaker per-
mits alimited number of requests to pass through on a test
basis. Should these requests succeed, normal operation

MICROSERVICES AND THEIR DESIGN PATTERNS 97

resumes; should the failures persist, the time-out period is
cycled to the next iteration. The circuit breaker, as a proxy,
keeps a count of all connection attempts and retries as

part of its functionality.

Benefits This pattern enables microservices to handle
the failure of other microservices that they invoke.

Drawbacks The trade-off between false positives and
greater latency is difficult to make when selecting opti-

mum time-out values.

Sidecar Pattern

Context You want each microservice to monitor its own
health and to report it on the event bus should issues be
detected.

Problem Since your microservices should implement
code pertinent to a business domain or one of its functions,
you do not want to burden it with peripheral tasks such as
health checking, logging, event publishing and other such

tasks that ought to be common to all microservices.

Solution Create a supporting function that connects
to the main microservice function to perform mundane
tasks. Often, the sidecar function is implemented as a

separate microservice in its own container and is referred

98 CHAPTER 5

to as a sidecar or sidekick container. The sidecar can access
the same resources as its connected microservice and so
should monitor system resources used by both itself and

its domain microservice.

Benefits A sidecar is independent from the connected
microservice and so you can use an instance per each
microservice. Because of its proximity to its domain mi-
croservice, there is minimal latency when communicating
between them.

Drawbacks You should consider whether a simple library
could replace the functionality you wish to implement
with a sidecar. Also consider the interprocess communica-
tion mechanism used by the sidecar; generally, gRPC or

the event bus should be preferred.

MICROSERVICES AND THEIR DESIGN PATTERNS 99

CLOUD COMPUTING
A Paradigm Shift?

In this chapter we step back and ask some pertinent ques-
tions: Why cloud computing? What does it give you? What
is so special about cloud computing? And how will it affect
you, your work, and our society? Just as Microsoft Win-
dowsbecame ubiquitous athome and at work, and changed
our lives, cloud computing represents a paradigm shift.
This is because cloud computing is an enabling technology
that bypasses many functions provided by your computer,
the software installed on it, and your workplace’s IT and
finance departments.

In this chapter we consider cloud computing’s para-
digm shift from three different viewpoints: (1) how it
could affect you socially and personally, (2) how it will af-
fect you in your work, and (3) how it will affect businesses.

This chapter might be construed as offering abrieflook
at those viewpoints, whereas chapter 10, on transitioning

to the cloud, will provide you with practical tools and
frameworks to realize these paradigm shifts.

Social Paradigm Shift

How you spend your leisure time and how you live, both at
a personal level and as part of society, are summed up in
the term “social life.” How social life could be affected by
cloud computing is the subject of this section. To examine
that paradigm shift in your social life, let us consider the
three types of clouds that would be the primary change
agents: the societal or community cloud, the personal
cloud, and the cloud of things.

Societal Clouds
A societal cloud is one that serves a group of people that
have something in common. As examples, that common
element could be along geographic lines (e.g., township,
state, national, or international boundaries), hobbies (e.g.,
philately, numismatics), languages, or interests (e.g., trade
unions, scouting, sports). Your membership in a societal
cloud is defined by the common element you possess.

An international societal cloud could be defined for
NATO, UNO, EU, and other such bodies. The citizens of
countries belonging to the international body would then

102 CHAPTER 6

be members of that cloud. Common benefits or issues
could be considered by the cloud members, which could
host, for instance, discussion boards, instant messaging,
storage of shared documents, and video conferencing. All
this could be done in a secure environment.

Similarly, a societal cloud could exist at a national level
for health care, training, politics, farming, education, and
the like. The data collected could be depersonalized and ag-
gregated to provide trend analyses. For example, in health
care, the information collected with regard to a particular
disease could be analyzed in terms of its concentration in
particular areas, age groups, or social or income brackets,
in real time and in an automated manner. The information
could be made available freely to anyone researching the
prevalence of that disease in the aggregate. That informa-
tion could be used to link multiple disease states and their
effect on one other. Moreover, the range and dispersion
velocity of infections could be gathered from such a medi-
cal cloud to predict the spread of a disease across a country
or region. This information could then be used to prepare
the distribution of immunization drugs or the deploy-
ment of medical resources.

A community cloud is one that provides a service to
those who have a common interest. The common interest
could be an avocation such as farming, weather fore-
casting, or participation in trade bodies, banking, law, or

A PARADIGM SHIFT? 103

publishing. In a sense, with the internet and various web-
sites that cater to common interests, we already have
internet-based communities, known as social media. Con-
verting these to societal clouds is more a case of using
cloud elasticity and an appropriate price model. So the
societal cloud is less of a paradigm shift from an individu-
al’s perspective. However, having a societal cloud that is a
community cloud comprising other clouds (a societal
cloud of clouds) enables member services to be defined in
aunique and individual manner. Thus the societal cloud, at
a high level, acts as a service broker for members belong-
ing to a societal cloud and can tailor service delivery to suit
an individual’s background and interests.

Personal Clouds

Apersonal cloudis one that belongs to you for your use. You
may already have come across such clouds in the form of
Apple iCloud, Google Drive, or Microsoft OneDrive. These
clouds allow you to store files such as documents, eBooks,
pictures, and music so that you can access those files from
any device and any location. However, you should have a
large choice in the future with regard to various use cases
forapersonal cloud.! In general, we can consider a personal
cloud in terms of the following three use case categories:
leisure and well-being, finance, and shopping. Some of the
examples cited may seem futuristic, but they demonstrate

the range of possible uses for a personal cloud.

104 CHAPTER 6

Personal Cloud for Leisure and Well-Being

The current plethora of storage clouds such as iCloud fall
in this category. In the future, as storage becomes cheaper
with economies of scale, you should see video-streaming
personal clouds that retain your collection of movies or
video clips. This would be tantamount to having your own
personal YouTube service.

Other personal clouds, such as a health wallet, are
already available; they store information on the health
providers you visited over a period of time, the results of
your health screenings, and the medical costs associated
with the health checks. Various other devices, such as your
weight scale, pedometer, or blood pressure monitor, could
be hooked up directly to your personal cloud to provide
you with immediate alerts should your readings breach an
ideal threshold. (While all those health devices hooked up
might evoke an idea of an internet, or cloud, of things, we
classify such a cloud as a personal cloud rather than a cloud
of things because such devices monitor you or are related
to you and you alone.) A health service provider could de-
personalize and aggregate everyone’s health data to ana-
lyze the best fitness and health plans for you. Alternatively,
the analytics could be sold to a health insurance company,
which would then be able to predict the health care costs
associated with someone in similar circumstances to you.

Another example of a personal cloud for leisure comes
from motoring. A car could capture your driving profile

A PARADIGM SHIFT? 105

As storage becomes
cheaper with economies
of scale, you should see
video-streaming
personal clouds that
retain your collection of
movies or video clips.
This would be
tantamount to having
your own personal
YouTube service.

and send it to your personal cloud. The information could
be, for example, the average speed at which you drive, the
locations where you drive, your general driving style (ag-
gressive or conservative), and the number of accidents
you have. Some cars already capture this type of informa-
tion, but it is stored onboard rather than made available
to you in your own personal cloud. An automobile insur-
ance company could then use this information to tailor
its insurance offering to your driving profile. Yet another
example is having smart streetlights in an area that is not
well developed. The streetlights could sense your pres-
ence through proximity sensors and provide lighting to
you on the basis of whether you have paid the local taxes
or the road tax; those motorists who have not paid these
taxes would not have the roads lit up for them unless they
paid instantaneously, using technologies such as near-
field communications, to have the lighting turned on. Of
course, this assumes that a pact is not formed between
the compliers and noncompliers to journey together in a
group to foil the lighting scheme.

Personal Cloud for Finance

A personal cloud that receives your bank statements and

credit card transactions could provide you with a balance

sheet and a budget on the fly. Then, at the end of the finan-
cial year, when your personal finance cloud obtains income

tax regulatory information from the government’s INaaS

A PARADIGM SHIFT? 107

cloud, this cloud could create an income tax statement for
you. As some governments’ tax authorities allow the re-
mittance of electronic tax returns, your cloud could file
the tax statement with the relevant government depart-
ment upon your approval. Thus the chore of creating a tax
return would be automated for most individuals and they
would not need an accountant. Another use for a personal
finance cloud would be to provide you with an integrated
view of all your investments across various pension funds,
IRA schemes, and brokerage accounts. This would enable
you to assess at a glance what your investments’ perfor-
mance is over a given period at a moment’s notice.

With various countries exploring the adoption of dig-
ital currencies, your personal finance cloud could double
as awallet or be linked to your wallets that contain digital
currencies and tokens. These wallets could even represent
credit and debit cards so that you could use them for vari-
ous purposes. For instance, wallet 1 could be for dining
out, wallet 2 for home expenses, and wallet 3 for clothing.
Or you could have the wallets affiliated with various re-
tail outlets: wallet 1 for eBay, wallet 2 for Amazon, and so
on. You might sacrifice some privacy as a result of adopt-
ing these technologies, but there is a trade-off between
privacy and convenience. The right balance is somewhat
difficult to decide on, but it needs to be considered by all
of us.

108 CHAPTER 6

Personal Cloud for Shopping

Your personal shopping cloud could store your shopping
preferences based on your shopping history across all
stores. It would then analyze your buying patterns and
alert you to what you need to buy in a timely manner by
using predictive analytics. It could even scan discounts or
offers at various stores, physical or electronic, to provide
you with a purchasing choice. Further, it could manage
your electronic wallet so that you could pay for the goods
quickly and easily. A lot of work is currently being done by
various companies on electronic payment protocols, and
some of these payment protocols could be integrated with
your personal cloud for shopping or with your electronic
wallet.

Cloud of Things

A cloud of things is a cloud service that helps in the man-
agement or use of a thing (a nonliving entity) by one or
more living entities. (Those ‘things’ are connected via
the internet of things.) For example, you could have a
cloud for your house. It could receive information from
several sensors related to security, the presence of smoke,
proximity, light, and other installed devices, and also
automatically control other things such as opening and
closing curtains, fire alarms, lighting, and heating for you
and other residents of that house. Moreover, depending

A PARADIGM SHIFT? 109

on the room, each occupant of that room could have a
personalized profile in terms of when curtains would be
drawn or lighting turned on. Likewise, for your work en-
vironment, you could have a facilities cloud. Such a cloud
would be an example of a BPaaS because of the physical
processes it would manage automatically to benefit you,
such as the drawing of curtains and monitoring of light-
ing. Another such example would be a meeting room
cloud that kept a logbook of the room’s availability so
that you could book the meeting room for a given period
provided it was available. The cloud could further inform
various parties, such as security or catering, of its occu-
pancy to enhance or ease the use of the meeting room.
The meeting room cloud itself could belong to an aggre-
gate cloud comprising meeting room clouds, and they
could then act in concert so that if a meeting room was
unavailable at a certain time, you would receive a choice
of suitable available rooms. This way you would have a
selection of meeting rooms that fulfilled your criteria in
terms of availability, room size, or location, for instance.
The meeting room aggregate cloud could in turn belong to
the facility cloud, which itself would be a composite cloud.
Cloud relationships (please refer to chapter 2) can play a
prominent role in the cloud of things because you could
have various relationships—such as encapsulation, fed-
eration, composition, and aggregation—between clouds
of things to create other clouds of things.

110 CHAPTER 6

Work Paradigm Shift

Two major trends are currently taking place in the
workplace:

+ Workstations are being replaced by zero or thin clients.

+ Ubiquitous computing, allowing the use of any device
for work.

Workstations (laptops and desktops) are being re-
placed by machines that do not have applications installed
on them. Such machines are known as zero clients if they
have the operating system embedded on the silicon chips
or thin clients if they require an operating system on disk.
If a workstation has no applications installed, you would
need to use cloud-based applications to perform your work
on the thin or zero client workstations. The clouds host-
ing those applications can have varied deployment mod-
els: they can be private, public, community, or personal
clouds, for instance. Generally, for productivity-related
applications such as Microsoft’s Office Suite or email, you
would use a public cloud service, whereas for your own be-
spoke applications, you would use a private cloud service.
But the applications do not necessarily have to be cloud-
based; they can be hosted on servers in the data center
using traditional physical or virtual computing. As long as

A PARADIGM SHIFT? 1

the application allows you access using a web browser, you
should be able to use it regardless of the underlying tech-
nology used for hosting it. The benefit of a zero or thin
client computing environment is that your company’s IT
department does not have to manage all those applica-
tions installed on a large number and variety of worksta-
tions. Instead, it would manage just one application in
the cloud or provide access to an application provided by
a third party’s cloud service. Another benefit is that be-
cause the workstations do not contain any local disk or
data storage mechanism but instead use a cloud-based
data store, the work information is stored in a central and,
hopefully, more secure data storage cloud. This means that
if the workstation were to be lost or stolen, the company’s
data would not be compromised. Indeed, in such a case,
the zero or thin client workstation would be less expensive
to replace as most of the application hosting, storage, and
computing takes place elsewhere, in the cloud.

Ubiquitous computing took hold in universities that
needed to cater to the plethora of computing devices
that students brought to the campus. Providing access to
university-provided applications and information on vari-
ous students’ devices meant that a university’s IT depart-
ment needed to have a secure way of allowing access to the
university’s resources on devices that the IT department
did not manage or have any control over. As the technol-

ogy developed, it became known as bring your own device

112 CHAPTER 6

(BYOD), which is currently being adopted by businesses to
deliver IT to their employees. But ubiquitous computing is
much more than BYOD. Ubiquitous computing means that
you can compute and access corporate information from
anywhere, not only from the campus or the workplace, by
using any device and at any time. The introduction of such
a computing framework means that the IT department in-
creasingly becomes a cloud service broker that maintains a
service catalog of allowable cloud computing applications
for an employee to use for work purposes. Those cloud-
based applications then can be used anywhere, at any time
and on any device. Any data that need to be used or stored
locally on the device are stored in a secure area within the
device, known as a sandbox. The sandbox is created when
you become an employee and deleted when you leave the
company. It stores the information so that only allowable
applications can access it; further, the data are generally
encrypted in the sandbox.

Organizational and Business Paradigm Shift

Most businesses have an IT department that looks after
central applications such as mail servers and web servers.
The more business-related IT is performed locally by the
business units or groups that deal directly with delivering
a product or service to the customer. So you have a hub-
and-spoke model wherein the centralized IT acts as a hub

and the various business groups work autonomously on

A PARADIGM SHIFT? 113

the periphery as spokes. If the central IT function is un-
aware of applications used by the various units or groups
in the business, then those applications and their comput-
ers tend to be classified as shadow IT. If something were to
go wrong with such an application or with the computer
hosting it, there would be a problem in terms of support-
ability. A strong central IT department would refuse to
support shadow IT whereas a weak one would support it
at the cost of extra effort and money expended on learning
about the system. In any case, shadow IT represents a po-
tential security breach as well as an additional expense be-
cause of its nonstandard nature. For companies, shadow
IT therefore represents a business risk.

As more applications become available via cloud com-
puting, business units are likely to increase their reliance
on shadow IT because the spending threshold will be
lower, as figure 12 shows. Because of the greater level of
abstraction provided by cloud computing, the skill set re-
quired to manage and support the shadow IT is less, and
this helps reduce shadow IT costs. Thus almost all the IT
used in a company is bound to become cloud-based. The
central IT department, to survive, will need to evolve
and become a cloud service broker. Doing so will ensure
that the business departments are enfranchised to work
in a semi-autonomous centralized structure as far as IT
is concerned. This will further ensure that shadow IT be-

comes mainstream IT and so will no longer be classified as

114 CHAPTER 6

Effort needed to meet most requirements

High

Low

Key
Funding
threshold
%
&
BN
&9
<22
X
Shadow IT skills needed
change owing to paradigm
shift
(N
T7
Low Technical skill set High

Figure 12 Finding the threshold for shadow IT.

shadow IT. As a cloud service broker, the central IT depart-
ment would become a specialist branch of the purchas-
ing department since most of the IT and computational
resources would be bought as services or used on a pay-
as-you-go basis. The increased commoditization of IT as
a result of cloud computing and related technologies will
make this more possible as the technical skill set require-
ment to use and purchase IT diminishes, as shown in fig-
ure 12. The corporate IT department’s function will evolve

A PARADIGM SHIFT? 115

to maintaining cloud service contracts with cloud service
providers, whose services are listed and described in a
cloud service catalog that the IT department maintains.

How would the IT department then measure the value
of a cloud service? How would it compare various pricing
schemes from different cloud service providers to select
the services to be made available through its cloud service
catalog? We consider these questions in the next chapter
when we discuss price and value models.

116 CHAPTER 6

PRICE MODELS

Every undertaking or service has a cost and a benefit as-
sociated with it. Consuming cloud services is no different.
This chapter considers the cost element of your using a
cloud service and the price you pay for it after assessing
various pricing regimes, known as price models. (Price
models are also referred to as pricing models.) To offset
the price you pay for the cloud service, you need to real-
ize a commensurate benefit from it. To articulate those
benefits, please refer to chapter 10, “Transitioning to the
Cloud.”

Understanding price models will enable you to com-
pare various cloud computing services in an objective
manner. Although most public cloud providers will not
provide you with a choice of price model, it is important
to know about various pricing mechanisms, especially if

you are commissioning a private or a hybrid cloud.

The chapter ends with a discussion of the various fi-
nancial metrics that you could use to evaluate cloud ser-
vices from a financial perspective.

Price Models

Price models provide a means of establishing the price
that you pay to receive the value of a product or service.
A cloud service provider computes the costs of provision-
ing and operating a cloud service using a cost model. The
cost model is then converted to a price model. The type of
price model selected will depend on the cloud service pro-
vider’s business model, marketing strategy, and revenue
expectations.

Every price model starts life as a cost model, which is
a financial model that the cloud service provider creates to
find out how much money to outlay on a particular cloud
service in creating it, operating it, and then refreshing it
with newer technologies after three years. Three years is
the usual life span of technology before it becomes out-
dated, and five years is generally the absolute maximum
the cloud provider has before replacing the technology.

The cost model includes such factors as inflation, ex-
change rate variations (if applicable), depreciation, elec-
tricity costs (these can be significant because of the power

and cooling required by the servers), floor space costs,

118 CHAPTER 7

Three years is the usual
life span of technology
before it becomes
outdated, and five years
is generally the absolute
maximum the cloud
provider has before
replacing the technology.

software license costs, labor costs, and capital costs to
buy and operate the servers. Margin and a factor for risk
are added to the sum of all the costs to arrive at a price.
The price has two components: nonrecurring and recur-
ring elements. The nonrecurring element of the price is
converted to a recurring element by amortizing the net
present value into a series of recurring cash flows. (The
mathematics for doing so is considered toward the end of
this chapter under the heading of “Net Present Value.”)
These cash flows are then added to the recurring element
to arrive at a monthly price point for providing the service
to you. This recurring price point is expressed as the price
model, and this price is used to sell and market the cloud
service.

There are a variety of price models in existence. Broadly,
let us categorize them as utility-, service-, performance-,
and marketing-oriented models. Although cloud com-
puting today mostly uses utility- and service-based price
models, a wide range of models are considered because
financial and business innovation is bound to catch up
with technical innovation, enabling some of the less-used
models to enter the cloud computing domain in the future.
You may even choose to use or specify your own model in
case you need to commission your own private, commu-
nity, or hybrid cloud, after learning about and evaluating
all your options concerning the various price models dis-

cussed below.

120 CHAPTER 7

Utility-Based Price Models

Utility models are metered price models whereby usage
of the service is monitored, and the user pays accordingly.
Originating in the price plans that utility companies have
adopted, they are characterized by regular payments, of-
ten monthly, to the cloud service provider. Three utility
price models are discussed here: consumption-, transac-
tion-, and subscription-based price models.

Consumption-Based Price Models The consumption-based
price model is a commonly used model for laaS and PaaS.
You pay for the computing resources that you use: for ex-
ample, the amount of storage (in megabytes or gigabytes),
computing or processing power (in terms of CPU cycles or
number of processor cores used), and memory (in mega-
bytes or gigabytes). An average consumption rate of these
resources is computed over a day, week, or month, and you
pay for the average utilization. This is a rather crude model
that does not scale well for SaaS, INaaS, or BPaaS, since
for these resources you want to be charged in a meaning-
ful way when it comes to how your business operates. For
instance, for an INaaS$ service that provides you with the
latest tax rules, you really ought not to care how many
CPU cores or how much memory is used in delivering that
information to you. But for the cloud service provider,
there could be other factors that contribute to the cost of
providing the service, such as application licenses, data

PRICE MODELS 121

gathering, and maintenance costs. So for SaaS, INaaS$, or
BPaa$, other price models are more appropriate.

Transaction-Based Price Models Transaction-based pric-
ing uses transactions instead of computing resources as the
basis for pricing. The transactions can be business-related,
such as invoices processed for BPaaS, data-related for IN-
aaS, or application-related for SaaS. You can also have
transaction-based pricing with IaaS and Paa$, for example,
by using the bandwidth as a proxy that indicates utilization
of computing resources; in this way a consumption-based
price model can be converted to a transaction-based model
by assessing the bandwidth used in each transaction.

The cost of a transaction is calculated by dividing the
cost of providing a cloud service by the estimated trans-
action volume over a given period. This is then the unit
transaction price. This price model is suitable for use un-

der the following circumstances:

+ Transaction volumes are known and predictable.

+ Your business process can be defined clearly and can be

measured in discrete units to represent a transaction.

+ The transaction volume is tied to your cost drivers.

From the cloud service provider’s perspective, when

business processes are standardized and driven by trans-

122 CHAPTER 7

actions, using this price model is appropriate. Transaction-
based pricing is most suitable for INaaS and BPaaS

abstraction levels and is equally suited to all cloud deploy-
ment models.

Subscription-Based Price Models Like the all-you-can-
eat model, the subscription price model relates to a price
paid regularly, usually monthly, to use a service. For ex-
ample, when you subscribe to a magazine, you pay a regu-
lar fee regardless of whether you read all of it, some of
it, or none of it. With the onset of web-based magazines
and news portals, the content is refreshed quite often,
so the content is not a fixed amount as it is with a pa-
per magazine. Paying a subscription for such a service
approaches the all-you-can-eat model as your capacity to
consume becomes less than the amount of new content
being produced. Sometimes there is a contractual period
over which you are bound to pay the subscription. In
cloud computing, for instance, you may have a monthly
fee for computing resources that are allocated to you, and
you would pay the monthly amount regardless of whether
you used those allocated resources. Also, you may have
a notice period requiring you to inform the supplier—
for example, three months beforehand—if you decide to
stop using the service. Subscription pricing can be used
well for all cloud deployment models and abstraction

levels.

PRICE MODELS 123

Service-Based Price Models

Service-based pricing uses the benefit delivered to you,
such as the SLA realized, risk transfer, or money saved, as
the criterion for defining the price you pay for the cloud
service. Broadly, the fixed price model is a risk transfer-
ence model whereas the other two models discussed—
volume-based and tiered—Ilargely provide money and
service benefits to you as a cloud user.

Fixed Price Models The price that you pay for service

in the fixed price model is fixed on a yearly, quarterly, or
monthly basis. The fixed price is usually made up of two

components, recurring and nonrecurring prices. The latter
is a one-off amount that you pay at the outset, followed

by recurring payments at regular intervals. The fixed price

model is generally chosen when you have a clearly defined

scope that is aligned with your short-term goals. Although

this is used to transfer your risks related to delivery, peo-
ple, and quality, you still own the risk of the service’s scope

by deciding how much of the service to use and to what ex-
tent. The risk transferral occurs through the SLAs that you

define and agree on with the cloud service provider. Fixed

pricing can be used well for all cloud deployment models

and abstraction levels.

Volume-Based Price Models Volume can relate to, for
example, the number of users, amount of storage space,

124 CHAPTER 7

speed of transactions (denoted as number of transactions
per minute or hour), amount of bandwidth, or process-
ing power utilized. Any of these parameters or a combi-
nation of them can be used as the basis for deciding the
price you pay for the cloud service. Because volume varies
over time, business cycle, or events such as a marketing
drive, the price can change. It is therefore imperative to
define, calculate, and measure it. For instance, the price
for a thin client computing service where your employees
use cloud services on a volume-based pricing model could
be calculated on the basis of average users, peak users, al-
located users, or concurrent users per day, or a combina-
tion of these. Similar considerations would apply to other
parameters, should they be used in the volume pricing in-
stead. Although volume pricing is most often used in IaaS
and PaaS, it is just as suitable for the other abstraction

levels.

Tiered Price Models The tiered price model uses a tiered
form of pricing that can be based on SLAs, volume, or
amount spent. [t is similar to the tiers that airlines have
for their membership levels as determined by the amount
you spend on travel with the airline. With cloud comput-
ing a similar form of tiered pricing may apply, with greater
discounts available provided you spend a certain amount
each year. Alternatively, you could have tiers based on the
SLAs such that the more stringent the SLAs, the more you

PRICE MODELS 125

pay. For example, there could be three SLA tiers and three
corresponding price tiers, with each SLA tier providing
greater benefits to you. Or you could have the tiers based
on volumetrics such as the number of users being served.
That is, suppose your business requests a cloud service
provider to provide storage to your employees such that
they can store documents and access them from anywhere
and from any computer. The storage provider could have
three tiers for its pricing: for serving less than a hundred
users, the price might be $5 per user per month. If your
company needs storage for between a hundred and a thou-
sand users, then the price might be $4 per month per user,
and for more than a thousand users, the price might be $3
per month per user. These bands, or tiers, that define the
prices for you on the basis of volume represent a tiered
price model. And the basis for creating the tiers can be
volume, SLAs, or the amount spent. Tiered pricing can
be used for all cloud deployment models and abstraction
levels.

Performance-Based Price Models

Performance models are benchmark-based models that
rely on key metrics, or benchmarks, to decide the price
paid. Most performance models originate from employee
remuneration- or outsourcing-related price strategies but
can be applied to cloud computing, especially to a private

or hybrid cloud service. Sometimes these models are used

126 CHAPTER 7

to align your business goals with those of your service pro-
vider’s goals to create a true partnership.

Performance price models exhibit some common
traits:

+ They require a clearly defined output or metric that can
be measured easily.

+ The metric is often aligned with a business process
or outcome that has a demonstrable relationship to its
impact.

We consider below the outcome-based, business-
linked, and gain-share price models as representative per-
formance models.

Outcome-Based Price Models If your department wants
to use cloud computing because it wants to reduce time
to market, then you may want to negotiate a “bonus”
payment to the cloud service provider that is linked to
that outcome. Most outcomes use metrics that relate
to cloud computing’s value proposition, as expressed
by the value models that we consider in the next sec-
tion. There is a difference in psychology between the
outcome-based model and some performance-related
price models. With the former, you provide a bonus if an
outcome is achieved, and with the latter, you penalize the

PRICE MODELS 127

provider if an SLA or benefit is not realized. Outcome-
based models are often used with other models, usually
fixed price models, to create a value culture based on

rewards.

Business-Linked Price Models Whereas outcome-based
models use metrics that measure the value of cloud com-
puting, business-linked models measure the contribution
that cloud computing makes to the key performance indi-
cators (KPIs) that affect your business model. One of the
challenges is linking the business outcome to the contribu-
tion made by cloud computing. Figure 13 shows a possible
mapping between the objectives for using cloud comput-
ing and the related business outcomes as expressed by

business KPIs.

Gain-Share Price Models The gain-share model has its
roots in employees’ remuneration schemes. The idea is
that as the organization gains, it shares some of those
gains with its employees. A typical gain-sharing organiza-
tion measures its own performance and shares the prof-
its with all its employees using a predetermined formula.
The organization’s actual performance is compared to
its historical average (known as its standard or baseline
performance) to determine the amount of the gain. In
a cloud computing context, instead of having penalties

should certain SLAs not be met, you reward the service

128 CHAPTER 7

CEIENEIND Business KPI
model

__

Demand flexibility =~ «— Agility
=R
Time to market +<—— Revenue generation
==
Asset optimization =~ «— irif:t::::t

__

Figure 13 Mapping cloud computing objectives to business and financial
KPIs.

provider by sharing your profits if the SLAs are exceeded.
It is a different approach psychologically. However, you
can combine the gain-share model with a penalty-based
performance model to create a hybrid performance model.

Marketing-Based Price Models

Certain price models are driven by marketing rather than
performance. The key driver behind such models is to at-
tract as much custom as possible and then to monetize it

PRICE MODELS 129

to create a profit. We discuss two such marketing led price
models in this section.

Freemium Price Models There are two types of freemium.
In one type, you try before you buy a more enhanced ser-
vice; in the other type you get a free service, but the adver-
tisements provided to you make up for the service’s price.
This model is especially suited to SaaS because many soft-
ware companies such as LinkedIn and Dropbox use it well.
They offer a free version of their product that has limited
functionality but they also provide the option to pay for a
premium service with extra features. The idea is to offer
enough value to users in the free version to attract and
retain them, and more value in the enhanced version to
ensure that the users convert and maximize the service

provider’s revenue.

Razor-and-Blades Price Models This pricing model re-
lies on two components, a base component and a reusable
component. Thereusable componentis utilized by the base
component to deliver a service. It is akin to selling you ra-
zors cheaply, or even giving them away for free, and then
making up for it from the prices of the consumable blades.
Printers are another example. They are sold cheaply, but
the price is made up from the printer ink supplies.

In cloud computing, a device or an app that uses a

cloud service may be given away, but the price may be

130 CHAPTER 7

A device or an app that
uses a cloud service
may be given away, but
the price may be made
up from the data that
are stored, analyzed,
and presented by the
cloud service.

made up from the data that are stored, analyzed, and pre-
sented by the cloud service. For example, you could have a
blood pressure monitor that sends data automatically to a
cloud service. The cloud service would then store and ana-
lyze the data, which it would use to alert you if a certain
blood pressure level were traversed. The sensor could be
provided for free or at a reduced price, whereas you would
pay for the use of the cloud service that made the sensor
information meaningful to you. Another example of this
is Amazon’s Kindle, which can act as a window to a virtual
storefront from which you may purchase a wide variety of
books. The Kindle device is sold at a discounted rate and
is called a loss leader, but its value is made up from the
increased sales revenue in the storefront that result from

its use.

Hybrid Price Models

The utility-, service-, and performance-based price models
discussed above are not mutually exclusive; they can be
combined to produce hybrid price models. For instance,
you could have a subscription-based system that utilizes a
tiered approach. If the dollar spend per annum were to be
at a certain level, then that level would decide the discount
tier that would apply to you. Another approach would be
to combine the risk transfer of the fixed model with the
affordability of one of the utility price models to provide a

132 CHAPTER 7

fixed monthly price to users such that they may consume

as much of the service as they wish for that fixed monthly
fee. This type of hybrid price model is quite common for
many public cloud services such as Google docs and Micro-
soft 365. In fact, it is a good pricing model for large or long-
term services, especially if they need to be perfected over
time. The hybrid price model can be applied successfully
to all the cloud abstraction levels and deployment models.

Financial Metrics

How do you translate the value that cloud computing can
provide into a meaningful financial metric? There are
various financial yardsticks that can be used to assess the
value proposition of a cloud service. Let us consider four
common financial metrics: payback method, net present
value, return on investment, and time to market. There
are other metrics that can be used as well, such as eco-
nomic value added, return on assets, and return on equity.
These latter metrics, however, are difficult to use when
considering a single service, product, or project because
they typically aggregate the computations at a corporate
level and so rely on other factors such as the company’s
tax rate and its corporate KPIs. For this reason we will not
consider them further.

PRICE MODELS 133

Payback Method

The payback method measures the time needed to recoup
your investment in a product or service. A service that has
a shorter payback period is deemed to be better than one
that has a longer period, as in the following example:

+ Suppose you purchase a cloud service at $1,000 a
month so that you can process invoices twice as fast as

you did using your older system.
+ Over a year, the cost for the service comes to $12,000.

+ Suppose that the old system processed $10,000 worth
of invoices a month and the newer system processes

$20,000 worth of invoices over a month.

+ The value obtained is the difference between the old
system and new system, which is $10,000 per month
because the new system is twice as fast.

+ Per day, the value amounts to $333 worth of invoices,

on the assumption that a month has thirty days.

+ This means that the new cloud service will pay for itself
after thirty-six (12,000 divided by 333) days.

+ Thus the payback period is thirty-six days.

Usually, the payback method is better suited for
capital expenditures because you can depreciate it over

134 CHAPTER 7

several years. Hence the one year used in our example to
arrive at the payback time for an investment of $12,000
would need to be changed to encompass the years over
which you can depreciate capital items. For operating ex-
penditures, you would probably have a lock-in period or a
contractual period with your cloud service provider, and
it is this that would substitute the one year used in our
calculation.

One of the shortcomings of the payback method is
that it does not consider the time value of money, which
can have a substantial bearing on the investment calcula-
tion during periods of high interest rates or over long pe-
riods of time. To account for this shortcoming, net present
value (NPV) calculations are usually used.

Return on Investment

Whereas the payback method considers the time to recoup
the investment, return on investment (ROI) uses the per-
centage of the investment amount that will be recouped.
ROI is widely used in the IT industry to assess capital in-
vestments. The formula for ROl is

ROI = (Gain from investment - Cost of investment) /
(Cost of investment).

For our example of a new cloud service at $1,000 per
month, the ROI would be computed as follows:

PRICE MODELS 135

+ The gain from the investment is $10,000 worth of extra
invoices a month.

+ The cost of the investment is $1,000 per month.

+ Thus ROI = ($10,000 - $1,000)/$1,000 = 900%.

Unadjusted ROI, as calculated in our example above,
assumes the present value for all gains and costs; thus
the assumption is that all gains and costs are produced at
the outset, which is not often the case. To adjust for this
anomaly, usually an NPV calculation is performed that
discounts the time value of money to get a more realistic
value for ROL

Net Present Value

When you have multiple cash flows occurring on a regular
basis, those cash flows are called a stream of cash flows.
When regular streams of cash flows are equal in value,
the cash flows are known as annuities. Because of the ef-
fect of inflation and interest rates over time, a cash flow
amount of $1,000 next month is worth more than the
same amount paid to you fifty months hence. To assess
the present value to you of a series of cash flows, we use
NPV calculations. The NPV of an investment is the present
value of all future benefits, such as cash flows, generated
by the investment, net of initial costs, discounted over

intervals of time. For example, you are to receive $1,000

136 CHAPTER 7

Interest rate = 10%

$1,000 $1,000 $1,000

a e

Present value (vears)

$909.09= $1,000
1.10

$ 826.45= $1,000
(1.10y2

$ 751.31=$1,000
(1.10)3
$ 2,486.85 = Total value of all cash flows

Figure 14 Calculating NPV using cash flows.

every year for three years and the interest rate is 10 per-
cent. You would discount those cash flows with the inter-
est rate shown in figure 14, and then add the discounted
values to obtain an NPV of $2,486.85. If you had made an
initial investment of $2,000 to obtain those cash flows,
then you would subtract that initial investment from the
discounted cash flows to obtain an NPV of $486.85, and
this would then represent a profit of 24.3 percent for your
investment of $2,000.

PRICE MODELS 137

Although NPV analysis is frequently used to justify
capital expenditures, you can use it to perform a reverse
calculation to come up with recurring expenditures as rep-
resented by that capital expenditure. Thus NPV provides a
means for converting CapEx to OpEx, and vice versa. The
benefits of using NPV analysis are the relative precision
of the results owing to the use of time value of money and
the simplicity in the interpretation of its results: a posi-
tive NPV indicates a profitable investment. Another ben-
efit of using NPV is that opportunity costs are accounted
for implicitly because of the use of a discount rate. Thus, if
a projected rate of return is less than your hurdle rate, or
your desired rate of return, then you would not make the
investment. And of those candidate projects that do pass
your hurdle rate, the one with the highest rate of return
should provide you with the optimum opportunity cost.

Returning to our invoice processing example, which
had a cloud computing cost of $1,000 per month, let us
suppose that the interest rate is 5 percent per annum, and
we decide to make use of the service for at least three years.
Those monthly outflows, as costs, can be represented as a

capital expenditure using NPV analysis:

r=5% +12 =0.4167% (converted to a monthly rate of
interest)

N = 36 months

138 CHAPTER 7

A =$1,000 (monthly amount)

FV=0
N
0 A

PV = — | =$33,365.70.
ka:'o (a+rr) 3

The present value of using a cloud service by paying
$1,000 per month for its use computes to $33,365 over
three years. You then need to compare this amount with
the amount that your IT department provides you with for
creating your own computing platform. The lower value

wins your investment time and money.

Time to Market

Estimating the time when revenues will be obtained is an-
other financial yardstick that can be used. For example, let
us assume that using traditional computing, it would take
you a year to go to market with a new offering that you
are developing. With cloud computing, however, it could
take you three months instead. Thus, the time to market
(TTM) will be nine months less. And if you expect to earn
$20,000 per month with the new system, then the earlier
TTM would represent additional inflows of $180,000. You
can therefore express TTM not only in terms of time but

also as its equivalent in monetary terms.

PRICE MODELS 139

In this chapter we consider data security in its entirety.
This account includes data integrity and privacy from an
end-to-end perspective: from the user to the data center
and back to the user through the network. We achieve such
an end-to-end perspective by discussing the entire data
journey that incorporates data encryption, certificates,
and checksums. We also consider legal and compliance is-
sues related to data and its use. We extend this discussion
by considering data sovereignty and jurisdiction issues
since these are of special concern to multinational cloud
users. We conclude the chapter with a brief discussion of
backing up and restoring data.

Data Integrity

Suppose you place a letter that contains some important
information in a safe, which you then bury somewhere
and do not let anyone know about it, and then throw
away the key in the ocean. That, in information security
(or IT security) terms, is obscurity, not security. In other
words, the information in the safe is of no use to anyone,
although it is extremely secure. On the other hand, if you
were to place the letter in a safe document box and send it
to the recipient so that only she could read the letter, then
you would be sending the information in a secure man-
ner. Now, if the safe were to be intercepted, then three
scenarios may arise: (1) the interceptor has possession
or control of the letter and can withhold it from you or
the recipient; (2) the interceptor can read the letter and
use its contents to further her own purpose (e.g., imper-
sonate you by stealing your identity or hack into your
computer systems); or (3) the interceptor can replace the
letter with another document and send it to the recipi-
ent so that false information is received. Data integrity
aims to secure the communication channel, or the data
sent acrossit, to ensure that none of these three scenarios
occurs.

For maximum data integrity, three elements are con-
sidered in securing the flow of data from one person (or
user) to another. The end-points need to be secure; that

142 CHAPTER 8

is, the sender and recipient of the data need to be authen-
ticated so that you know they are the ones for whom the
data are meant. The channel over which the information is
sent needs to be secure so that other parties cannot easily
eavesdrop and false data cannot be sent instead by oth-
ers (known as a man-in-the-middle attack); and the data
need to be encrypted so that the data cannot be freely read
by a third party. (These three elements are not mutually
exclusive, and you will often find a combination of the
three elements used to ensure data integrity.) The next
chapter, which considers security, covers the first of these
elements, securing the end-points. In this chapter we con-
sider how to ensure data integrity using encryption, how
to use checksums to verify your data’s integrity, and data

loss prevention.

Encryption

To secure the network connection (we will refer to the con-
nection as a channel through which data pass) that you
use when transmitting data, you need to encrypt it. The
data that are sent through that channel can be encrypted
as well, although often this is negligently not done. Chan-
nels are encrypted by means of certificates. These allow
the sender and receiver to communicate over a trusted
channel. Such an encrypted, trusted channel is known as
a secure socket layer (SSL) connection or a transport layer
security (TLS) connection; TLS is the modern successor to

DATA 143

SSL. When two parties need to communicate over a secure
channel, the following handshake protocol is used:

+ The sending device uses public-private encryption keys
to encrypt the channel.

« Best practice is to use valid certificates (these contain
the public key) signed by a trusted certificate authority to
jump-start the process.

+ Both parties agree on the cryptographic protocols to be
used.

+ The parties negotiate a shared secret (the private key)
to use.

+ The receiving device uses the public-private encryption

keys to decrypt the channel.

Once the handshake is completed between peers, both
parties start to communicate in a secure fashion using the
negotiated encryption algorithm and cryptographic keys.
This secure channel protects them against any eavesdrop-
ping or man-in-the-middle attacks.

The concept for data encryption (i.e., securing the data
that passes through the channel) is similar except that the
data are encrypted by the cloud service and decrypted by
your application or vice versa, depending on the direction
of data flow. So the applications, instead of the web server

or web browser, perform the data encryption.

144 CHAPTER 8

Checksums

To establish the veracity of data you receive, certain al-
gorithms are used to compute checksums on the data.
The data and the checksum then are corroborated by the
receiver.

Let us suppose, for example, that you send me a let-
ter. Separately, you could also send me some information,
such as “The letter has 251 words, of which there are 105
nouns, 81 adjectives and the rest are pronouns or verbs; it
also contains 45 sentences and 5 paragraphs.” This infor-
mation describing the letter you sent me is akin to a check-
sum. A checksum is used to determine that the data sent
are received as is. Various algorithms are used to compute
checksums automatically, on the fly, so that the receiving
party can ensure the accuracy of the information that has
been sent. Examples of such algorithms include CRC-32,
which is a 32-bit cyclic redundancy check that enables the
detection and correction of errors. Another common algo-
rithm is the message digest (MDS5) algorithm.

Whereas checksums are used to compare and validate
the data received, cryptographic hash functions are used
to verify the data. A basic requirement of a cryptographic
hash function is that it should be infeasible to find two
distinct messages that have the same hash value. Such a
function commonly acts as a one-way function that maps
data to a fixed length. It is often used to compare large
sets of data without the need to send the data over the

DATA 145

To establish the veracity
of data you receive,
certain algorithms

are used to compute
checksums on the

data. The data and the
checksum then are
corroborated by the
receiver.

» Hard disks Databases

* USB disks « Wide area networks * Spreadsheets
* Cloud storage * Local area networks * Apps

» Backup devices * Wi-Fi * Browsers

* Bluetooth

Figure 15 Three states of data.

network for comparison, and so to detect any tempering
of the data when received. Examples of such functions are
SHA-3 and BLAKES3.

Data Loss Prevention

Data loss prevention encompasses numerous functions:
the discovery, identification, monitoring, management,
and protection of data that are in use, in motion, or at rest,
wherever the data are stored and used. Usually, data loss
prevention is used for confidential or private data. Figure
15 shows the three states of data that define the scope for
data loss prevention, together with common examples of
places where data in each state can be found. These three
states encompass the entire life cycle of the data: data cre-
ation, transmission, usage, storage, archiving, and final

destruction. Thus, data at rest are inactive or semi-active

DATA 147

data that are stored in any digital form; data in motion
are fluid data that are being transported from one end-
point to another; and data in use are active data that are
in constant use.

Asauser of cloud services, you should ensure that data
loss is prevented during the entire life cycle of the data by
employing tools such as encryption (to secure the data),
checksums and cryptographic hash functions (to verify
the data’s integrity), tagging and monitoring (to know
who has accessed what data), and effective data manage-
ment (to ensure that stale or unused data are destroyed
within time-bound limits.)

Data Privacy

We regard privacy as applicable to information that identi-
fies a person. This is generally known as personally iden-
tifiable data (PID) or personally identifiable information
(PII). The NIST defines PII as:

any information about an individual that includes:

(1) any information that can be used to distinguish
or trace an individual’s identity, such as name, social
security number, date and place of birth, mother’s
maiden name, or biometric records,

148 CHAPTER 8

(2) any other information that is linked or linkable to
an individual, such as medical, educational, financial,

and employment information.

Most countries have data protection laws in place to
ensure that such data do not fall into the hands of unau-
thorized parties. Most such laws include data retention di-
rectives, for example: “providers of services should erase
or anonymize the traffic data processed when no longer
needed.” This is an example of a good directive that most
cloud service providers ought to comply with. However,
the same law has some directives that are just impractical
to follow—especially those related to cookies—to the ex-
tent that no website today complies, or attempts to comply,
with such directives. As a result, data protection laws have
been discredited somewhat and have not been treated as
seriously as is warranted by many service providers.

Data privacy is closely tied to data integrity. To en-
sure that your data remain private, you need to ensure
that data retention and transmission are implemented
with data integrity tools. Security is usually enforced with
intrusion detection, intrusion prevention, and the use of
firewalls, antivirus software, and antimalware tools. But
if these defenses are breached, as they so often are, then
your private data would be readily available if you did not
encrypt it. You can encrypt data that have been stored on
your hard drive, on disks, or in a cloud; this is known as

DATA 149

encrypting data at rest. Thus encrypted data that have
been obtained as a result of a security breach would then
not be accessible to an unauthorized user. In addition to
data-at-rest encryption, you can encrypt data that you
send to others via email, file-sharing products such as
Dropbox, or to your own cloud storage. This encryption
protects data during transit, and it ensures that any inter-
ception of the data while they are being transmitted from
one place to another would prevent the data from being
read by an interceptor.

Please bear in mind that encryption protects your
data from mostly nongovernmental actors. Some govern-
ments can and do ensure that backdoors are in place at
various strategic locations to ensure that they can access
your data readily. Examples of strategic locations include
the firmware of devices that (1) route the data (e.g., rout-
ers, VOIP servers, and modems), (2) store the data (e.g.,
hard disks), (3) provide data security (e.g., firewalls and in-
trusion detection tools), and (4) encryption algorithms.?
These backdoors are usually implanted in the firmware of
the devices so that no user or software is aware of their ex-
istence, let alone be able to guard against them. With the
onset of the internet of things, the ubiquity of backdoors
should increase markedly since the “things” that are con-
nected to the internet could have such backdoors in their
firmware. However, at present, only a select few govern-
ments (perhaps fewer than five) have this capability. One

150 CHAPTER 8

Data privacy is closely
tied to data integrity.
To ensure that your
data remain private,
you need to ensure that
data retention and
transmission are
implemented with data
integrity tools.

way to ensure that your IoT device has a relatively small
chance of being compromised by such backdoors is to in-
sist that its firmware be open source. Of course, this relies
on software developers and engineers to have noticed the
existence of such backdoors should they have examined

the source code of the firmware.

Data Jurisdiction and Sovereignty

Cloud computing, like the legal system, is a tool that ought
to be used to help the good and protect them from the bad.
Unfortunately, in real life, complexities arise, and things
do not always work out that way. One of the reasons is
that technology (cloud computing, being one of its latest
innovations, is a good example of this) changes very fast
in comparison to laws and the legal framework. This gives
an opportunity for early adopters to interpret or bypass
the spirit of the law if a void exists in the letter of the
law. To some extent, this can be for the greater good as
it does not stifle innovation. On the other hand, security
breaches and exploitation of users result from such a situ-
ation. A balance therefore needs to be struck. A large part
of the solution is to educate both users and the legal com-
munity of the information that can be collected, analyzed,
and used as a result of the progress in technology. Perhaps

greater cooperation and standardization across industry

152 CHAPTER 8

bodies and governments are also needed. An example
is MiFID (Markets in Financial Instruments Directive),
which is an EU law that regulates investment services to
increase competition and consumer protection. The main
challenge with regulations, however, is jurisdiction. What
regulation or law should a cloud service conform to if it
is provided by a company established in country A, its
users are principally in country B, its data are stored in
country C, and the cloud service itself is hosted in country
D? In such cases you should take care to understand the
legal and regulatory jurisdiction of a cloud service before
buying and using it. In particular, you need to be aware
of who would see the data, what systems would handle
it, and which applications would use it, then establish
the legal jurisdiction of those people, infrastructure, and
applications.

Tied closely to legal jurisdiction is the jurisdiction of
ownership of the data. If several people or organizations
have been involved in creating data, or if the data are con-
sumed by several parties, then who owns the data? If the
data are manipulated or enriched by intermediate systems
or cloud services, who would own the data then? Would it
be the original creator of the data, the intermediaries that
augmented the data, or the end user? What if all those
actors are in different countries, each with its own (dif-
ferent) data protection and ownership laws? These are

some of the quandaries that arise where data sovereignty

DATA 153

is concerned, and they relate acutely to cloud computing
because of its ubiquitous access. If you have the capacity or
wherewithal to do so as a business user, you should ensure
that you have a data ownership agreement with your cloud
service provider that additionally considers the legal juris-
diction for redress in the event the agreement is breached.

Migrating Data to the Cloud

Data that you want to migrate to the cloud from an on-
premises location will either be stored in a database or on

a storage device such as a hard disk. To migrate data to

cloud storage from on-premises storage, you essentially
compress the data using a compression algorithm or a tool

that implements the algorithm (such as gzip) and then

transfer the compressed data to cloud storage using a se-
cure copy (using the scp command) or by way of secure file

transfer (using sftp). For database migration, there are

two avenues: (1) back up data from the local database and

restore to the cloud database, or (2) use an ETL (extract-
transform-load) tool to extract the data from the local da-
tabase and load them to the cloud database. The former is

a straightforward and efficient option if the databases are

similar; the latter gives you the opportunity to transform

and manipulate the data before transferring them to the

target database.

154 CHAPTER 8

For migrating data from the cloud to local infrastruc-
ture, you would use essentially the same process described

above but in reverse.

Backup and Recovery

In life as well as in IT, Murphy’s law prevails.® To recover
from disasters such as loss of data, it is advisable to keep
backup copies. Data, in the broadest sense, can mean your
personal data, the source code of apps, your financial data,
and even your electronic books. We consider some of the
nuances of backup copies by considering the differences
between backing up and archiving. This is followed by a
discussion of various types of backups, and we end by con-
sidering different backup strategies.

Whenever you implement or create a backup capabil-
ity, always ensure you have a concomitant recovery ca-
pability in place. Without a recovery capability, all your
backups will be useless. In this regard, you can use metrics
that are known as the recovery time objective (RTO) and
the recovery point objective (RPO). Both metrics are ex-
pressed in terms of time, as hours or minutes. RPO is the
amount of data that you can lose without impairing your
business capability; it is measured as the time from the
critical point—such as a disaster or failure—to your most
recent backup. RTO is the time that your system (in our

DATA 155

case, the system includes the cloud service) can be down
without causing significant damage to your business; this
includes the time spent restoring the system or service
and its data.

The Difference between Backing Up and Archiving
Backing up is meant for the rapid recovery of day-to-day
data, or operational data, that are in current use. Ar-
chiving is meant to store data that are not used regularly
but that you wish to keep for regulatory or compliance
reasons. For backups, speed of recovery is important as
you would like to be up and running quickly should di-
saster strike, whereas for archiving, the capability to per-
form fast searches to locate information that is required
is far more important. As you might surmise from these
differences, backing up is performed regularly on data
that change often. However, archival data do not change
often, and your archiving schedules can be less frequent
than backup ones. Hence your backup sets will have lon-
gevity measured in weeks or months while your archive
sets will have retention periods measured in years and
decades.

Types of Backups
We define a fileset (connotes what we are backing up) and
then consider the three common types of backup schemes:

full, differential, and incremental.

156 CHAPTER 8

Filesets Usually, in storage file systems, a file hierarchy
exists. This hierarchy consists of a series of directories that
form a treelike structure. Each directory contains other di-
rectories, files, or other file-system objects such as links to
files or directories. A fileset provides a means of partition-
ing the file system at a finer granularity so that you may
select files for backup purposes and set read/write permis-
sions individually. Hence your backup fileset is a set of files

and directories that you have selected to back up.

Full Backups A full backup will back up your entire fileset
every time you perform the backup. The advantages of a
full backup are (1) all the files and directories are backed
up to one backup set, which makes it easy for you to locate
a particular file, and (2) files and directories are easily re-
stored from a single backup set should you need to restore
them. Its disadvantages are (1) it is more time-consuming
than other backup schemes, and (2) full backups require
more space when compared to other backup schemes.

Differential Backups A differential backup backs up only
those files that have changed since the last full backup was
performed. A full backup and its differential backup should
therefore include all the files (changed and unchanged) in
your fileset. The advantages of differential backups are
(1) they require less space than incremental backups, and
(2) backup times are generally faster when compared to

DATA 157

full and incremental backups. Their disadvantages are (1)
restoring all your files may take considerably longer than
with a full backup since you may need to restore both the
last differential and full backup, and (2) restoring individ-
ual files or directories may take longer since you have to
locate them on either the differential or full backup sets.

Incremental Backups An incremental backup provides
a backup of files that have changed or are new since the
last incremental backup. The first incremental backup per-
forms a full backup as it backs up all the files in the fileset;
subsequent incremental backups back up only those files
that have changed since the previous backup. Its advan-
tages are (1) backup time is faster compared to full back-
ups, (2) it requires less storage space than other backup
schemes, and (3) you can keep several versions of the same
files on different backup sets. Its disadvantage is that in
order to restore all the files, you must have all previous
incremental backups available, and so it may take longer
to restore a specific file or directory since you must search
more than one backup set to find the latest version.

Backup Strategies

Backup strategies or rotation schemes originated when
backup media were expensive and wore out owing to reuse
when tapes were used to perform backups. These days it

is far cheaper and easier to configure a disk array to store

158 CHAPTER 8

backups and to monitor the disks for failure. In fact, this is
the method that works well for cloud storage and backup
service providers. However, you can utilize the concept
governing rotation schemes by substituting tapes with
cloud service providers so that you have a backup scheme
that does not rely on a single cloud service provider.

The main purpose of a backup rotation scheme ini-
tially was to minimize the amount of storage media used
for backup data. Such a scheme defines how and when a
backup job is run and the period over which the data are
retained. For our purposes, however, the idea is to minimize
the risk of dependency on a single location or cloud backup
provider rather than to minimize backup media use. The
most common rotation schemes are FIFO (first in, first
out), grandfather-father-son, and the tower of Hanoi. We
consider the first two below in the context of cloud-based
backups.

FIFO Backup Scheme When performed using a weekly
rotation, for example, you would make a full backup every
day using seven tapes, one fresh tape per day. Then, on
the eighth day, you reuse the tape you used on the first
day, and on the ninth day, you reuse the second day’s
tape, and so on. In a cloud context, let us assume that you
appoint two different cloud backup providers, denoted
provider 1 and provider 2. If you wanted to follow a full

backup scheme, then you would back up to each provider

DATA 159

on alternate days. So, on the first day, you would use pro-
vider 1 for a full backup, and on the second day, you would
use provider 2 for a full backup. However, for a differential
backup, you would perform a full backup with provider 1
on the first day of a week, and then every day until the
end of the week you would perform a differential backup.
In the second week, you would use provider 2 in a similar
fashion, thus alternating between provider 1 and provider
2 on a weekly basis.

Grandfather-Father-Son Backup Scheme The grandfather-
father-son rotation scheme is a monthly-weekly-daily ro-
tation scheme. With this scheme you would appoint three
backup cloud providers such that the “grandfather” backup
cloud kept your monthly backups, the “father” kept your
weekly ones, and the “son” kept your daily backup sets.

160 CHAPTER 8

SECURITY

Security is holistic. As such, our scope extends to the
following six perspectives to provide a comprehensive,
end-to-end understanding of implementing and assuring

security:

1. The cloud service: We consider the shared
responsibility model that is adopted by most public
clouds.

2. Your connection to the cloud: This is where
networking and network access to the resources (access
credentials, applications, data, and business logic) are

secured and managed.

3. The users using and administering the cloud service:
Identity and access management (IAM) plays a major

role in ensuring that the right users and applications are

granted access to the cloud resources with appropriate
privileges.

4. The applications associated with the cloud service:
The applications and their end-points, such as APIs, are

considered in this regard.

5. The devices that connect to and use the cloud service:
Host-based access management is quite important in
ensuring that only applications or users access the cloud

resources by using allowed devices.

6. The data that are used by the applications hosted in
the cloud: Data integrity and encryption protocols are
used so that only privileged users and applications have
access to data and additionally to ensure that the data
have not been compromised.

In addition to the technical resources in the cloud, se-
curity covers physical access to the computing devices, the
divulgence of your passwords to others (either knowingly
or unknowingly), and, of course, the enforcement of a se-
curity policy. Also, it is of the utmost importance that the
environment be monitored for any security breaches and
that appropriate action be taken. We cover all these topics
in this chapter apart from data security, which was cov-
ered in the previous chapter.

You may want to refer to the appendix for a brief glos-
sary of commonly used terms related to security.

162 CHAPTER 9

Shared Responsibility Model

Because of its holistic nature, security is not just the cloud
service provider’s concern; it is yours too. Security, then,
is a responsibility shared by you and the cloud service
provider. The latter is normally responsible for security in
the infrastructure up through the interface point between
your application and its hosting environment in the cloud.
You, however, are responsible for security with respect to
interfacing with the cloud environment, and especially
within the application that uses that cloud environment.
Most public cloud providers use this shared responsibility
model for security. Figure 16 shows how the model applies
for the various abstraction levels.

Cloud-native applications generally come under the
PaaS or SaaS category in figure 16, depending on the type
of design and deployment used.

Let us consider, as an example, an application that you
might want to install on a virtual machine (VM) at Ama-
zon Web Services (AWS). Since it is an application that you
are installing, you will be using AWS as infrastructure (i.e.,
EC2, AWS’s reference to a VM) to host your application.
Alook at the IaaS column in figure 16 shows that the ap-
plication’s security is your responsibility but the physical
host’s responsibility will be with Amazon.

Often, the weakest link in any secure system is the hu-
man being. [tis up to us, the users of technology, to ensure

SECURITY 163

On-premises laaS PaaS

1

Virtual machines

Physical hosts Physical hosts
Physical network Physical network
Physical location Physical location

KEY

Provider You
manages - manage ﬂ Shared

Figure 16 ~ Shared responsibility model and abstraction levels.

SaaS

Business process

Business logic

Accounts and identities

API connectivity and end-
points

Information

Data

Applications

Network ports and access

Virtual machines

Physical hosts

Physical network

Physical location

Figure 16 (continued)

INaaS

Business process

Business logic

Accounts and identities

API connectivity and end-
points

Information

Data

Applications

Network ports and access

Virtual machines

Physical hosts

Physical network

Physical location

BPaaS

Business process

Business logic

Accounts and identities

API connectivity and end-
points

Information

Data

Applications

Network ports and access

Virtual machines

Physical hosts

Physical network

Physical location

SECURITY

that our computing systems remain secure by taking cer-

tain measures:

1. guarding our passwords,

2. ensuring that antimalware (includes antivirus and
antiphishing software, cookie management protocols,

etc.) is in place and is updated regularly,

3. ensuring intrusion detection and prevention software

on applications and router firewalls is running, and

4. generally, not opening emails or visiting websites that

look suspicious to prevent phishing initiatives.

These measures should ensure that the devices that
you use to access your cloud services remain secure and are
not compromised. Further, you need to ensure that any
data you transmit to your cloud are encrypted so that the
data may not be read even if intercepted by a third party.
There is very little technology can do if you, the user of
technology, do not use it in a secure manner!

Key Security Components

This section attempts to convey the mindset you need to
have to secure your cloud assets and considers the various

166 CHAPTER 9

Often, the weakest link
In any secure system

is the human being. It
is up to us, the users of
technology, to ensure
that our computing
systems remain secure
by taking certain
measures.

components at your disposal for creating a security archi-
tecture that is secure and at the same usable. But first, a
definition of security:

The protection of information and information
systems from unauthorized access, use, disclosure,
disruption, modification, or destruction in order to
provide confidentiality, integrity, and availability.*

Notice that the definition uses the terms confidenti-
ality, integrity, and availability; these three are known as
the CIA triad.

Confidentiality defines who can get what kind of in-
formation. For example, companies would be concerned
about protecting their intellectual property, while individ-
uals would tend to be more concerned about unauthorized
access to their financial or medical records.

Integrity refers to the information being correct or
consistent with its intended use. Any unauthorized modi-
fication of data, whether deliberate or accidental, is a
breach of data integrity.

Availability refers to having access to data or informa-
tion in a timely manner when it is required for its intended

use. Availability has multiple aspects:

1. Will a service be available from any other location?

2. How readily will it be available when you want to use it?

168 CHAPTER 9

3. Will there be certain times when it may not be
available because of planned maintenance?

4. If the cloud platforms hosting the service were to go
down, how long would it take to recover?

5. Once recovery is complete, will I have lost any data,
and if so, how many hours’ worth of data will it be?

The last two items are measured in metrics that are
known as the recovery time objective (RTO) and the re-
covery point objective (RPO), respectively. Both metrics
are expressed in terms of hours or minutes. Item 3 relates
to downtime. It is usually expressed as a percentage that
is calculated in the following manner.

% Availability = 100 * (Number of minutes of downtime
over a period) / (Overall minutes in the period)

The definition of security above also raises several
questions: Who decides what is authorized, or nonmali-
cious, use? How does information get categorized as re-
quiring more or less secure use? Who or what uses the
information, and why do they use it? What systems need
to process the information or data? Where and how is
the information stored and used by the systems? These
are some of the questions that a security policy for the

cloud would need to address. A security policy is very

SECURITY 169

important to have regardless of the amount of cloud
computing you or your organization perform because it
provides the foundation of the security implementation.
The security policy should cover the various touchpoints

discussed below.

Security Touchpoints

For our purposes, a cloud service user can be a person, a
process, or an application, or a system such as a comput-
ing device. Support staff, when called to help resolve an
issue, are also classified as a user. If we were to follow the
data trail, the data would originate from a user, pass over
a network to reach a computing system that hosts software,
which processes the data and stores it in a storage device,
such as a solid-state disk, and those data get backed up
onto a backup device and finally get archived in an archi-
val system after some time has elapsed. The elements that
touch the data, given in italics above, are:

. user,
¢ computing system,
« software,

+ storage device,

170 CHAPTER 9

+ backup device, and

+ archival system.

It is important to note that this entire data journey
needs to be secure from the perspective of the user. The
user’s need for privacy (i.e., confidentiality), data integrity,
and availability delineates these security characteristics.
We therefore look at security in terms of this data journey,
with special emphasis on the zero-trust approach.

Zero-Trust Model

The goal of zero trust is to eliminate trust from the system;
it assumes that the network has been breached and so veri-
fies each request for information or access as though ithad
originated from an unsecure, untrusted, or open network.

The zero-trust model is fine when it comes to how we
enforce security; but what happens to the data flow or user
once that “always verify” line has been passed? We need to
ensure that the data or user is sandboxed within a zone of
trust. All those elements within the cloud computing en-
vironment that share the same security characteristics for
a particular user can have a common security boundary.
The computing elements that reside within that boundary
trust each other.

SECURITY 171

Such boundaries are created by segmenting the net-
work into subnetworks that share the same security attri-
butes. This segmentation usually takes place at the network
layer since the network is the mode of transport for infor-
mation. Thus virtual networks are created that exist on a
physical network and each virtual network has rules to en-
sure authorized access to its internal data in conformance
with zero trust. To further enhance security for each vir-
tual network, you could incorporate three security proce-
dures: identification, authentication, and authorization.

Identification entails establishing the identity of the
user. In this regard, the user may be a person, application,
system, or “thing” that wishes to connect to the cloud or
its security container.

Authentication entails establishing the veracity of the
user’s identity. Usually, authentication is based on what
you have or what you know. An example of the latter is a
password or a PIN (personal identification number), while
an example of the former would be a smart card, finger-
print, or voice biometrics.? Authentication takes place
once a user’s identity has been established.

Authorization establishes the tasks that an authenti-
cated user can perform. The rights given to an authenti-
cated user depend on the role that the user has within the
cloud computing environment or the security container.
Authorization always takes place after a user has been
authenticated.

172 CHAPTER 9

In summary, identification asks “who are you,” au-
thentication asks “are you who you say you are,” and au-
thorization asks “what are you allowed to do within the

cloud computing environment.”

User Security: Identity and Access Management

Identity and access management (IAM) refers to the func-
tion of identifying a user and granting access to cloud
resources based on the user’s role. It is important to un-
derstand that from a cloud provider’s perspective, IAM
extends to the infrastructure in an [aaS environment in
accordance with the shared responsibility model shown
in figure 16. The general principle is to first delineate the
relevant stakeholders (or principals, in AWS parlance) and
assign roles to them in terms of what they will be doing
and therefore be allowed to access in the cloud. You then
assign permissions to those roles using policies. This, in
general, is known as role-based access control, or RBAC,
which allows granular access rights to cloud resources.
You can group related users or roles into user groups and
define group policies should you wish to implement a
less granular approach or to simplify the policies for an
entire team in your organization. With Azure, IAM is
implemented using Active Directory where you define

tasks for each task owner (or stakeholder), and this can be

SECURITY 173

optionally synchronized to your on-premise Active Direc-
tory instance.

Data Security

You need to classify, label, and encrypt data to provide
data-driven protection; this ensures confidentiality be-
cause the relevant users receive data that have the ap-
propriate labels. To ensure the integrity of the data, use
checksums and cryptographic hash functions to verify the
data and further warrant that they have not been tam-
pered with, as discussed in the previous chapter.

Application Security

You should limit access to only the applications, services,
and cloud resources required to perform the function;
therefore, you would create security containers that relate
to the function and limit access to that security container.
The zero-trust approach is intended to ensure that you pro-
vide adaptive access to the applications without requiring
human intervention during normal operating conditions.?
To operate adaptive access, a decision-making engine is
needed to apply the organization’s security policy con-
tinuously based on the contextual information it receives.

174 CHAPTER 9

When determining access privileges, an important con-
textual factor is the risk score of the device or end-point
requiring use of the application. The risk score determines
the health of the end-point or device using the application.
Mobile devices, for instance, have risk scores based on in-
formation related to the device itself, its apps, any other
content it is accessing, and the network it is using.

Network Security
The key components of a network security regime are:

1. firewalls,

2. intrusion detection and prevention,
3. network segmentation,

4. virtual private networks, and

5. certificates.

Firewalls are devices that analyze the network data to
block malicious traffic. Every computing node connected
to a network has an IP address. The firewall can block traf-
fic originating from a range of IP addresses and it can also

allow traffic on certain ports. Consider the analogy of a

house: its location is akin to an IP address and its external

SECURITY 175

doors are akin to ports. Ports are numbered and relate to
the network transport protocol (TCP or UDP) used.* For
instance, websites use TCP on port 80 that is delivered
over IP to serve web pages and computer clocks use UDP
port 123 for time synchronization via NTP.® Thus a firewall
blocks certain ports and allows traffic to or from others in
accordance with the rules you configure the firewall with.
You can have virtual firewalls that reside in the cloud and
so provide the security to cloud applications and services.

As an example of a virtual firewall, AWS provides a
Security Group that controls traffic to AWS resources and
your application hosted on a VM. The virtual firewall is
stateful, which means that outbound responses are al-
lowed for allowed inbound traffic. Therefore, you would
configure a security group for your web server VMs to al-
low web traffic by opening TCP/IP port 80, while a data-
base server ought to be in a Security Group that blocks
web traffic on port 80. (The port number 80 is well known
for web servers, but internal web servers can have any port
number assigned that is not in use.) This measure guards
against attacks on your database from the outside world
using web traffic. Thus the onus is on you as the installer
of your application to ensure that it is securely installed
in your private cloud environment. You can simplify and
extend monitoring of this configuration by using the same
tags for each resource and security group as well as the cor-

responding virtual network.

176 CHAPTER 9

Firewalls are devices
that analyze the
network data to block
malicious traffic.

Security Monitoring

Let us consider monitoring in terms of the data flow when
accessing resources. Those security mechanisms and de-
vices that appear during that data journey should be moni-
tored. as discussed in this section.

The first defense mechanism that is employed to deter
security breaches is a firewall. Individual firewalls should
be placed at the boundary of every security container. The
cloud itself, being a security container, will therefore have
an outer firewall. Where you have containers within con-
tainers, which is not uncommon, then you would have
firewall after firewall to traverse if you followed the data
flow. The firewall will contain rules that tell it what traf-
fic to allow through and what traffic to block. You can
be alerted if someone tries to enter a security container
and is blocked by the firewall. The alert can be a message,
an email, or an entry in a log file that can be monitored.
However, a security system will have several components
such as firewalls, user authentication and identification
protocols, intrusion detection and prevention ware, and
user-based security such as antivirus and antimalware
tools. Such a system, if properly configured, will generate
logs that keep track of users, services provided to the us-
ers, and data. Human review of the log files is not possible
since the logs grow to a large size very quickly. As such,
software is used to aggregate the logs and then analyze the

178 CHAPTER 9

server and firewall logs; this is the first step in detecting
any suspicious activity.

The second line of defense is at the user authentica-
tion and identification stage. If several failed attempts are
made to log in to a system or a service, then the monitor-
ing tools ought to alert the cloud system administrator of
this. If the tools are automated, then they may deny fur-
ther logins on that account or to that service by the user
concerned. Additionally, certain traffic can be deduced
to be suspect because it is trying to use a service that is
not allowed for a particular user or attempts are being
made to retrieve data that would normally not be needed
by the user. All such traffic can be analyzed and reported
by software that is known as an intrusion detection sys-
tem (IDS).

The third line of defense is on the client side. The client
devices themselves need to be protected against malicious
attacks so that user login details are not compromised
while accessing cloud services. Usually this takes the form
of antimalware (including antivirus and antispoofing
systems, personal firewalls, and means to block tracking
cookies®) that is installed on the client device that you
use to access cloud services. Mostly, such end-user client
devices are outside the scope of a cloud service provider
to monitor or configure. It is on the end-user side, then,
that the weak link in the security chain becomes evident.

However, with thin or zero client computing, this weak

SECURITY 179

link becomes irrelevant, as the client device should have a
centrally managed operating system.

SIEM, or security information and event manage-
ment, provides a holistic view of your systems’ security

footprint, and so we consider it next.

SIEM

SIEM is a combination of two technologies, security in-
formation management (SIM) and security event manage-
ment (SEM). It consists of a set of tools and services to

provide a view of an organization’s security footprint:

1. SIEM tools make visible the operation of information
security systems in real time.

2. SIEM allows the aggregation and consolidation of
event logs from numerous sources, such as infrastructure,

application, and security tools.

3. By means of if-then or when-then rules, SIEM
initiates the triggering of events and their notification.
This is done by parsing and analyzing the consolidated
log files. Rules are then applied to convert data events

into meaningful security issues.

4. Dashboards are provided to allow users to visualize
monitoring, events, and notifications, as well as any

analytics (filtering, statistical, or aggregation).

180 CHAPTER 9

Generally, a profile is created that defines the behavior
of the cloud services under normal conditions and various
predefined security events. Default rules, alerts, reports,
and dashboards are provided that can be customized to
meet your specific needs.

Some of the use cases of SIEM are as follows.

+ To detect any unauthorized network connections to
and from the cloud services.

+ To search for insecure protocols to enable you to assess
whether you should permit them.

+ To inspect traffic flows in and out of the demilitarized
zone, which manages connections between untrusted
networks, such as the internet, and trusted ones in your

cloud system.

SECURITY 181

TRANSITIONING TO THE CLOUD

Suppose you have decided that you want to use cloud com-
puting. One of the yardsticks you will need to assess a
cloud service is through service-level agreements (SLAs).
If you were to look up SLAs and metrics on the internet or
in the numerous books that have been written on cloud
computing, you would frequently encounter a discussion
of SLA metrics such as network capacity (bandwidth, la-
tency, or throughput), storage device capacity, server ca-
pacity (number of CPUs, CPU clock frequency, size of
RAM), instance starting time (time required to initialize a
new instance of a virtual machine), horizontal storage
scalability (the permissible storage capacity changes in re-
sponse to increased workloads), horizontal server scalabil-
ity (server capacity changes in response to increased
workloads expressed as the number of virtual serversin a
cloud’s resource pool), and so forth, amounting to perhaps
hundreds of such items. These SLAs are good if you need

to create and operate your own cloud. But why should you,
as a buyer and user of cloud services, need to worry about
them? After all, cloud computing is supposed to provide a
layer of abstraction that should minimize your technology
headache, not increase it. We therefore do not follow the
well-trodden route that most books on cloud computing
take but instead examine SLAs and the metrics that are
relevant to you as a user of cloud services. Additionally, we
provide a checklist that you can adapt to assess cloud ser-
vices. This gives us a set of critical success factors. We fol-
low up with a discussion on how to assess your own
maturity as a cloud service user by considering a cloud
maturity model from a user’s perspective. That way you
can assess your cloud adoption aligned to best practices, as
well as track your progress over time as you use cloud com-
puting. We follow this with a discussion on interoperabil-
ity, or how your cloud services will interoperate with other
cloud services, possibly from a different vendor, or inter-
operate with your on-premises services. We consider these
key aspects of transitioning to the cloud, which are sup-
ported by previous chapters, especially data and security.

Critical Success Factors

When transitioning to the cloud or considering a new cloud
service, you will need to develop a set of requirements to

serve as a yardstick for comparing cloud services. Addition-

184 CHAPTER 10

ally, the requirements will help you crystallize your SLAs so
that you may assess whether a cloud service is appropriate
for you. Remember, cloud computing may not fulfill all your
IT or computational needs; there will be instances, such as
if very high-speed computing or resilience is needed, when
you will want to use traditional computing. The checklist
below can help you define your requirements for cloud com-
puting. You can also use the requirements to define the criti-
cal success factors for the cloud services that you purchase. I
have placed the requirements into three general categories:
functional, nonfunctional, and business-related require-
ments. They are generic enough for you to use them for all
the deployment and service models of cloud computing.

1. Functional requirements
a. Maturity
b. Interoperability
c. Feature set

d. Usage model

2. Nonfunctional requirements

[«5)

. Security

o

. Availability

. Resilience

(@]

d. Network capacity

TRANSITIONING TO THE CLOUD 185

3. Business-related requirements
a. Price and value
b. Risks
c. Business continuity
d. Support model

e. Reporting and billing

You can create a score matrix by scoring each of the
requirements from, say, O to 3, with O denoting that a re-
quirement is not met and 3 denoting that a requirement is
met fully. Also, each requirement could be weighted to re-
flect what you consider to be most important. For instance,
maturity might have a weighting of 0 if that requirement
is not at all important to you. However, having the right
feature set might have a weighting of 3 to denote its high
importance or relevance to you. Multiplying the weighting
by the score will then provide you with a weighted score
card that you can use to compare cloud services.

Cloud Maturity Model
The matrix in figure 17 depicts a maturity model for cloud

computing. It has five levels of maturity: performed, de-
fined, managed, adapted, and optimized (the highest level

186 CHAPTER 10

of maturity). The rows labeled “Focus” and “Success fac-
tors” describe the level of maturity in terms of its main
characteristics and benefits, respectively. The other five
rows consider the maturity characteristics of your cloud
service in terms of (1) the people engaged to purchase, use,
and manage the cloud services; (2) the processes that in-
teract with the cloud services; (3) the financial and usage
monitoring and reporting of the services; (4) the security,
regulatory, functional, and financial oversight that is pro-
vided to ensure that the cloud services meet your needs;
and (5) the financial management in place to ensure that
the cloud services remain financially viable. The maturity
levels are not mutually exclusive for these five character-
istics; you might have a maturity level of 1 for people and
a maturity level of 3 for processes, for example. However,
the overall maturity of your cloud service would be de-
noted as that level at which most characteristics coalesce.
You can use the maturity model in two ways: first, to
create a strategy to improve your use and commissioning
of cloud services (this will enable you to transition from
one maturity level to a higher one), and second, to un-
derstand the best practices of cloud computing. The last
column, labeled “Optimized,” describes the optimized ma-
turity level and should be considered the ultimate goal.
We have considered the critical success factors and
the maturity levels related to cloud computing. Let us

now turn our attention to a more detailed approach by

TRANSITIONING TO THE CLOUD 187

Maturity ——»

Functional capability
Meets business needs on an ad
hoc basis

Little or no knowledge of cloud
computing

No interoperability

Cloud service reuse undefined

Minimal monitoring

No clear ownership

Credit card generally used

Standardized capability
Cost-efficient and secure

Basic roles and
responsibilities defined

Data interoperability defined
Best practice defined
Service life cycle defined

Metrics and KPIs defined

Ownership defined
Sponsorship from
management

Billing and utilization
statements tracked

Figure 17 Cloud maturity model.

considering interoperability and its concomitant factors

when transitioning to the cloud.

Interoperability

For business continuity or commercial reasons, you will

want to ensure that a cloud service can be replaced by a

188 CHAPTER 10

Maturity ——»

Effective capability Flexible capability Automated capability
Aligned to business needs Responsive to business Business functions are
needs automated
Learning and Development Knowledge management in Automated implementation
in place place promoting reusability requiring little support
Data and process Cloud service reuse in Business functions
interoperability place continuously improved
implemented Business functions Optimized processes
monitored

Metrics and KPIs reported Metrics and KPIs tracked Metrics continuously
optimized to meet business

needs
Governance process Metrics and KPIs governed Federated governance with
defined and followed across business units all business units
Communication plan participating
Penalties and chargebacks Financial planning Cost optimization
defined Cost management Cloud computing

considered a profit center

Figure 17 (continued)

similar one from another provider. This calls for interoper-
ability between services. Interoperability is the capability
to use the same or similar cloud services offered by differ-
ent cloud service providers.

The scope of interoperability applies not only to tech-
nical matters but also to such topics as the integration of
billing, reporting, management, business processes, and,

of course, data. Interoperability on all these dimensions

TRANSITIONING TO THE CLOUD 189

Interoperability is the
capability to use the
same or similar cloud
services offered by
different cloud service
providers.

should be available regardless of the cloud delivery model
used—private, public, hybrid, or community. The following
discussion forms a checklist that you can adopt and extend

to ensure that your cloud services have interoperability.

Governance and Auditing

If you are using an auditing process and policy for one
cloud service, you should ensure that any other services
you procure to interoperate with your current cloud ser-
vice conform to that same auditing standard. Similarly, for
governance, you need to ensure that the same governance
board within your organization has oversight of all the
cloud services, especially those that need to meet interop-
erability requirements.

Compliance

If you need to comply with industry-specific or country-
wide regulations, you should determine whether the cloud
services you use fall under their scope. If they do, then all
the cloud services that need to interoperate have to com-
ply with the same regulations. Generally, from a cloud ser-
vices perspective, there tends to be a gradation between
general regulations and industry-specific regulations as
the cloud service becomes more specialist in nature. This
is shown in figure 18, where general utility services such as
email and office productivity have global scope and must

abide by general international laws and regulations. When

TRANSITIONING TO THE CLOUD 191

D
= 2 £
= o
2 5 3 2 5§ 5 o
(e} i — = o= =
= =) o » = © = = = n
T o (7] = = o S o o <@
(e} [O] D =} o) Kol =} ~ ©
= = = = I} vt = ° = 1%}
& s ‘D Q 7 o]
o) « © 2 = o =
o g < < o
&= = o
(@) I =]
o
Global scope Local scope
International laws Local laws
General regulations Industry regulations

Figure 18 Scoping requirements for interoperability.

more specialist cloud services are considered, local laws
and industry-specific regulations normally apply. This is a
general observation that may not always apply to a specific

cloud service, however.

Security and Data Integrity

For data integrity, the same encryption standards and
schemes must be in place across the cloud services that
need to interoperate. Otherwise, data flow will not occur
seamlessly. For security, you should ensure that the same
security procedures are in place so that there is no dispar-
ity in security levels between interoperable cloud services.
Also, the same secret and password vaults need to be used
to ensure commonality between services. (Generally, this

192 CHAPTER 10

is achieved through single sign-on mechanisms.) Finally,
the users of all the services should undergo a common se-
curity training program because it is best to standardize

on a single security policy within an organization.

Data Integration

For seamless data integration between or with cloud ser-
vices, two factors are important: a common data format
and a common data model. Format refers to the way data

are represented; a spreadsheet stores information in a dif-
ferent format from a text file, for instance. Even when you

have the same format, there needs to be commonality
about what the data relate to. This means having the same

model for the metadata. For example, if you have two text

files, both in the same format, but one file contains infor-
mation about your inventory whereas the other one con-
tains information about your salary, then the two files have

dissimilar data models, but these data models should have

common metadata: the address fields should be labeled the

same, for instance. So you need to ensure that services that

interoperate use the same data format and models.

Process Integration

Besides having the same data format and model for in-
teroperability, you should ensure that the same tasks are
carried out on those data by the processes within the cloud

services. This is known as process integration. There are

TRANSITIONING TO THE CLOUD 193

two aspects to process integration. First, you want one

process in a cloud service to receive data from another and

commence a workflow that is an extension of the first pro-
cess; second, equivalent processes in both interoperable

clouds should be the same so that you may interchange

them, almost in a plug-and-play manner. In any case, you

need to ensure that processes use the same business pro-
cess language (BPL) and protocol so that your cloud ser-
vices are interoperable. To make things easy with data and
process integration, an enterprise service bus (ESB) is usu-
ally used to ensure that many of the technical integration
concerns are hidden at a lower layer of abstraction.

Business Continuity
There are two aspects to business continuity: disaster re-
covery and service availability. Service availability con-
cerns the need to increase capacity to meet unexpected
user demand. In such a case, you could use a second Avail-
ability Zone or region with your current cloud provider
or use cloud bursting to a secondary cloud provider. This
requires in-depth technical design that considers the right
protocol and standards to ensure that control passes from
one cloud service to another seamlessly. In addition, it is
likely that data and process integration requirements will
have to be met to enable this.

Disaster recovery refers to when you need to continue

business operations as usual even if some unforeseen

194 CHAPTER 10

event, or disaster, were to strike your cloud service. It en-
tails employing a secondary cloud service using a separate
Virtual Private Cloud and region, either from the same or
from a different cloud provider, for failover to the second-
ary system. There are two main disaster recovery strate-
gies, active-passive and active-active. We discuss these
further below.

Disaster Recovery Strategies
In an active-active disaster recovery strategy, the same
capability is replicated across two regions. Both primary
and secondary regions provide services to customers, and
you balance the load across them during normal operation.
When disaster strikes one of the active regions, you still
have its replica active in another region. Best practice is to
use two cloud accounts and different regions so that you
can have financial as well as technical and physical separa-
tion to enhance availability. Both RTO and RPO should be
zero with this approach as failover will occur to an active
region. Because you are balancing the load between your
primary and secondary services in the active-active con-
figuration, performance will be impaired should disaster
strike, as one of the nodes will be unavailable. But at least
business continuity will be maintained.

In the active-passive strategy, a secondary region is
available that is not serving customers. It can be classified

into three categories according to provisioning of cloud

TRANSITIONING TO THE CLOUD 195

resources: (1) the secondary region does not have any
cloud resources provisioned, (2) those cloud resources re-
lated to data are provisioned, and (3) business-critical
cloud resources are provisioned and running on standby.
These three active-passive strategies are known as backup
and restore, pilot light, and hot (or warm) standby,
respectively.

With the backup and restore strategy, you create
backups of your data and cloud resources (through infra-
structure as code) and store the backups on both the pri-
mary and the secondary cloud regions. On failover, cloud
resources are created in the secondary region from the
backups. Because no services apart from storage for the
backups are running, this is the least expensive option, but
it has the highest RTO and RPO associated with it. These
metrics, however, can be minimized if Infrastructure-as-
Code is utilized whereby you run a program (referred to
as a runbook or playbook for such tools as Terraform, An-
sible, or AWS’s CloudFormation) to automatically provi-
sion your cloud services, which then obviates the need to
use backups.

With the pilot light strategy, the data are replicated
across both the primary and secondary regions and so
are live. However, the cloud services are created from a
backup as part of the failover process, although basic in-
frastructure elements such as elastic load balancing can

be live. This is a more expensive option than the backup

196 CHAPTER 10

and restore option but should have an RPO approaching
zero as the data stores and databases should be current,
or nearly current.

In the warm standby strategy the secondary region
maintains live data and handles service requests in a re-
duced capacity, but it must be scaled significantly to meet
the production load should the primary region fail. This
configuration approaches the active-active strategy except
that it implements a minimum capacity during normal
operation. It is the most expensive of the active-passive
strategies although less expensive than the active-active
strategy. Its RTO and RPO should approach zero.

Monitoring and Alerting

To some extent, cloud services are becoming self-healing
in that the monitoring and remediation processes are
automated, and this is especially true for cloud native
services. However, you should ensure that any reports or
alerts arising from the monitoring of your cloud services
use a common standard and format for communication
to your team. So, for example, you could use a common
platform such as Slack for relevant team members to re-
ceive any such notifications. This way your team is able to
respond to the alerts in a timely manner. In any case, the
more you automate failure recovery through self-healing
and observability, the more mature your cloud service

will be and the less human involvement will be needed.

TRANSITIONING TO THE CLOUD 197

Additionally, you can be proactive by performing certain
tests on a regular basis. These tests could be, for example,
stress tests to ensure that you have the right capacity for
serving your customers or penetration tests to assess
whether any security gaps exist that might result in a se-
curity breach.

Billing and Reporting

The billing processes, formats, and reports (I am using
these terms generically to denote statements and in-
voices) should all be similar between the services for you
to assess the total cost of ownership in a meaningful and
rapid way. You may also need to ensure that the people
who work with billing have a common understanding of
the processes and reports for you to have interoperabil-
ity not only with the processes and reports but also with
people.

Business Processes

Transitioning to the cloud gives you a good opportunity to
redesign your business processes to make them more effi-
cient. Processes connect different parts of abusiness, soim-
proving them should improve your whole business. Cloud
computing can be an excellent enabler in reengineering

198 CHAPTER 10

a business because of the automated business processes
that you can commission with a BPaaS cloud. Even if you
do not go all the way to BPaaS, you can still derive greater
efficiencies in your processes through the onboarding of
INaaS and SaaS cloud services—and thereby effect busi-
ness change.

The business process redesign (BPR) model (created by
Hammer and Champy) shown in figure 19 provides a good
procedure for redesigning your business processes.” The
main idea in adopting the BPR model is that attempts to
improve the efficiency of organizations can succeed only if
the processes are also improved. (This also applies to loT-
related processes as the machine-to-machine interactions
need to be similarly efficient.) Thus, when using the BPR
model, one of the questions asked (during step 3 of figure
19) is whether a process or one of its workflows is nec-
essary. Only those deemed necessary are kept, improved,
and implemented. In step 5, you will design some of the
processes as BPaaS in their entirety, some using one of the
other cloud service models, and others outside the cloud.
The criteria that you use to assess whether a service ought
to have a cloud computing component are determined by
your requirements and critical success factors, which we
outlined at the start of this chapter.

Data are critical to business processes as well as
when transitioning to the cloud, as per our discussion on

TRANSITIONING TO THE CLOUD 199

Transitioning to the
cloud gives you a good
opportunity to redesign
your business processes
to make them more
efficient.

1. Develop vision
and objectives

8. Ongoing 2. Understand
continuous existing
development processes
Business
3. Identify
7}5:,/\,2;:%266;26 process processes for
redesign redesign
6. Make new .
process 4. Identify
operational change levers

5. Design the
new process

Figure 19 Business process redesign (BPR) model. Source: Based on Michael
Hammer and James Champy, Reengineering the Corporation: A Manifesto for
Business Revolution (HarperBusiness, 2006).

interoperability. Thus the discussion in chapter 8 on mi-
grating data to the cloud should be consulted, as data
migration will generally determine the success of transi-
tioning to the cloud.

TRANSITIONING TO THE CLOUD 201

PUBLIC CLOUD EXAMPLES

To this point we have addressed the key concepts of cloud
computing. In this chapter we consider some public cloud
offerings. The principal ones are Amazon’s Amazon Web
Service (AWS), Microsoft’s Azure, and the Google’s Google
Cloud Platform (GCP). We consider the concepts of these
three public clouds briefly in this chapter and then list a
select number of cloud services and compare them with
those available on AWS, Azure, and GCP. This is followed
by a discussion of reference architectures in the next chap-

ter that uses a web application as an example.

Amazon’s AWS Concepts

At a top level, AWS provides Regions, Availability Zones,
and Virtual Private Clouds for its cloud resources to reside

in. A Region represents a geographic area where physical
data centers are located.' Thus a Region has several physi-
cally separate and colocated data centers that provide fault
tolerance and stability. The physical data centers in a sin-
gle Region can combine to form logical data centers, also
known as Availability Zones. No two Availability Zones
share the same physical data center, and so each Availabil-
ity Zone has its own separate cooling and power systems
for the servers. A well-architected solution will use more
than one Availability Zone because it offers failover capa-
bilities for disaster recovery.

Howwouldyou group these Availability Zones to ensure
they are connected in a manner that allows your applica-
tions to communicate across them? The answer is, through
the mechanism of a Virtual Private Cloud (VPC). An AWS
VPCis alogically segmented network and is associated with
a specific region that allows you to span across that region’s
Availability Zones. But what if you want greater isolation
so that your Availability Zone spans across regions as well?
There are two solutions to this: (1) VPC peering across re-
gions and (2) the AWS Transit Gateway. Both allow you
to have redundancy of AWS resources across regions and
thereby address business continuity requirements.

VPC peering is performed by a VPC peering connec-
tion between two VPCs that allows you to route traffic
between your private (IPv4 or IPv6) network addresses.

In addition to using VPC peering across regions, you can

204 CHAPTER 11

also have the VPCs peer across AWS accounts, and that
allows you to have financial isolation as well. When using
a VPC peer connection, there is no single point of failure
for communication or a bandwidth bottleneck because the
connection is performed via existing routing tables rather
than through any physical device or link. VPC peering
across regions allows the VPC resources (e.g., Elastic Com-
pute Cloud [EC2] instances, RDS databases, and lambda
functions) to communicate with each other without re-
quiring any gateways, VPN connections, or other network
appliances, and the traffic remains in the private IP space.
Traffic always remains on the global AWS backbone and
does not traverse the public internet, which reduces secu-
rity threats.

The AWS Transit Gateway is a central hub that allows
you to connect your VPCs at multiple regions and addition-
ally your on-premises servers. This reduces the complex-
ity of having to maintain routing tables that are required
with VPC peering and so is a better option when you have
a large number of VPC peers. The Transit Gateway also al-
lows you to connect VPCs across different AWS accounts
so that you can have a well-architected implementation
that caters to business continuity and disaster recovery re-
quirements. Also, because of its central position as a hub,
the AWS Transit Gateway’s Network Manager provides a
complete view of your entire network that can straddle
across on-premises, AWS, and other cloud providers.

PUBLIC CLOUD EXAMPLES 205

Google Cloud Platform Concepts

GCP physical resources in a data center are collectively
known as a cluster because the plethora of resources
such as servers, storage, and network devices (together
with their concomitant building facility, power, and cool-
ing infrastructure) forms a physical cluster for compu-
tational purposes. The clusters are mapped by GCP to a
zone, which is a logical collection of resources in a region;
a region can have three or more zones and is a specific
geographic location where you can host your resources.
The logical zone and physical cluster are then mapped by
you for your project. This mapping between a logical zone
and a physical cluster remains consistent within a project,
although another project in the same region may have a
completely different zone-to-cluster mapping. However, a
project never has two zones mapped to the same physical
cluster. You can align zone-to-cluster mappings between
projects by using VPC networks. It is best practice to
spread apps across projects using a shared VPC network
for consistent zone-to-cluster mappings, and to use dif-
ferent zones in the same region—alternatively, zones in
multiple regions—to ensure diversity by separating clus-
ters between projects, as figure 20 shows.

In figure 20, you have two projects, project 1 and proj-
ect 2, that use zonal resources from a region. These re-
sources are within clusters, and you can define which

206 CHAPTER 11

Region 1

Cluster A1

Cluster A2

Zone A Zone B Zone C
Project 1 uses:
Zone A Zone B Zone C
Resources Resources Resources
‘ Cluster B1 ‘ ‘ Cluster C2
Cluster A3
Project 2 uses:
Zone A Zone B Zone C
Resources Resources Resources

Cluster C1

Figure 20 Zone to cluster aps for projects.

clusters to use within a project to achieve the required iso-
lation or redundancy in your solution. This approach lever-
ages the key capabilities of projects; as GCP does not
require each project to have its own network, you can tra-
verse zones across a region to obtain isolation or redun-
dancy. A further advantage is that aspects such as shared
services and security auditing tools are much easier to or-
chestrate since their access spans across the project. In
AWS, on the other hand, you are restricted to using re-
sources within a VPC and, should you want isolation, you
will need to use extra resources—and consequently incur
costs and increased complexity—such as separate ac-
counts, VPC peering, or the Transit Gateway.

From a security perspective, GCP uses the concept of
trust-level hierarchies. A hierarchy consists of organiza-
tions, folders, projects, and cloud services, as figure 21 il-
lustrates. The resources in GCP you access are defined by
the identity and access management (IAM) policies you
set at each hierarchical level. Because resources inherit the
policies of their parent resource, the effective IAM policy
for a resource is the union of the policy for that resource
and that inherited from its parent.

In figure 21, the organization level represents your
company, and IAM roles granted at this level are inher-
ited by all resources under that level. Similarly, the fold-
ers level represents departments or business domains in

the company and may contain projects, other folders, or a

208 CHAPTER 11

Organization

(® corp.com
Folders
7 Sales I~ Engineering ~ HR
Projects
7 corp-sales £ corp-dev & corp-hr
Google Cloud Services

5 Compute Engine

g Compute Engine

E} Compute Engine
Compute Engine

% Compute Engine

Cloud Pub/Sub

Cloud Pub/Sub Cloud Pub/Sub Storage
Storage Storage M Bucket

[Bucket [m] App Engine [®] App Engine
[m] App Engine

Figure 21 Resource hierarchy in GCP.

combination of projects and folders. IAM roles and access
controls granted at the highest folder level are inherited
by projects or other folders contained in that parent folder.
The projects level represents a trust boundary within your
company, and services within a project have an inherent
level of trust by default. For example, a compute engine

PUBLIC CLOUD EXAMPLES 209

instance can access cloud storage buckets within the same
project. The cloud services level provides a more granular
level of access control whereby you can provide access to
specific resources to apps or users. One way to implement
a zero trust security model is to ensure that very few, if
any, access controls and roles are defined at the higher hi-
erarchical levels and to define all your policies at the pro-
ject or cloud resource levels. However, you would do this
at the Google Group level rather than individually for us-
ers to ease the maintenance of your security policies. It is
best practice to use the principle of least privilege for JAM
roles, and to grant roles at the smallest scope or the lowest
hierarchical level. Another best practice is to label your re-
sources so that you can easily audit, group, and filter them.

Microsoft Azure Concepts

There is a hierarchy of resource usage, and consequently
billing, that comes with Azure. At the top level is the Azure
account that gets billed. The account has two requirements:
billing capability (a credit card or bank information) and
contact information (an email address). Within an ac-
count, you can have several subscriptions. A subscription
is a logical container for Azure resources, and every sub-
scription is tied to one, and only one, account, although

an account can have multiple subscriptions. You would

210 CHAPTER 11

generally have subscriptions for separate business activi-
ties (one for sales, one for accounting, one for HR, etc.)
or capabilities (one for development, another for testing,
a third for production). Every subscription can have a
resource attached to it. A resource is a cloud computing
resource that is managed by Azure. Virtual machines, stor-
age, virtual networks, and functions are examples of re-
sources. These can be grouped together in a resource group,
which is a logical container for grouping related resources
in a subscription and is commonly used to represent a
collection of assets needed to support a workload, appli-
cation, or specific function within a subscription. Each
resource can exist in only one resource group. A manage-
ment group, on the other hand, is a logical container that
you use across subscriptions. You can therefore define a
hierarchy comprising management groups, subscriptions,
resource groups, and resources to manage access, security
policies, and compliance through inheritance.

Azure relies on Active Directory (AD) for implement-
ing IAM and role-based access controls. Azure AD is a
cloud-based service that allows you to sign in and access
Azure resources. When an Azure account is created (or
even when you sign up for a Microsoft 365 subscription),
an Azure tenant is created for you. An Azure tenant is a
dedicated instance of Azure AD assigned to you (or your
organization) and it represents a single organization. The

hierarchy of Resources, Resource Groups, Management

PUBLIC CLOUD EXAMPLES 211

Groups, and Subscriptions (quite similar to the resource

hierarchy of Google’s GCP shown in figure 21) are thus

accessed using Azure AD and its security structures and

capabilities.

There is a plethora of cloud computing resources avail-

able to you. Microsoft places them into ten categories for

Azure:

1. Compute,

2. Networking,
3. Storage,

4. Mobile,

5. Databases,
6. Web,

7. ToT,

8. BigData,

9. Artificial Intelligence, and
10. DevOps.

Most of these are abstracted services that are man-

aged and hosted by Azure, but at the base you have the

first three categories, on which most of the other services

212

CHAPTER 11

and resources are built. For connected resources in a de-
sign to communicate with each other, a virtual network
(VNet) is used to segregate the resources and separate
them from other, unconnected ones. The VNet logically
segments the network to realize this, in the same way that
AWS uses VPC. It is best practice to have VNets defined
separately for public IP address ranges, private ones, and
management ones. A management VNet should be cre-
ated to manage the cloud resources in Azure. Additionally,
segment your application so that it has separate private
VNets for each layer: one for the presentation layer, an-
other for the business logic layer, and yet another for the
data layer, for instance. Should you want resources on
separate VNets to communicate with each other, you can
connect the VNets as long as there is no overlap in the IP
network range definitions. And this VNet connection is
allowable even if the VNets are in different locations. You
connect the VNets using VNet peering, in much the same
way that VPC peering is used in AWS. In Azure, there are
two types of peering: VNet peering for connecting VNets
in the same Azure region and Global VNet peering for con-
necting VNets across multiple Azure regions. As with AWS
and GCP, all network traffic using VNet peering remains
within the Azure backbone without traversing the inter-
net and so is less susceptible to security breaches.

To distribute workloads across multiple groups of

computing resources based on the type of network traffic,

PUBLIC CLOUD EXAMPLES 213

load balancing is used. Principally, load balancing opti-
mizes resource usage, minimizes response times, and
maximizes throughput. Also, when used across different
accounts, subscriptions, regions, or data centers, it effec-
tively implements failover by sharing the workload across
redundant computing resources.

With Azure, load balancing is categorized in accor-
dance with two dimensions: (1) global versus regional and
(2) HTTP(S) versus non-HTTP(S).

Global load-balancing services distribute network traffic
across regional backends, clouds, or hybrid on-premises
services. They route end-user traffic to the closest avail-
able backend (where resources are located) and react to
changes in service reliability or performance to maximize
availability and performance. Regional load-balancing ser-
vices distribute traffic within VNets across VMs, contain-
ers, or clusters within a region in a VNet.

At the application layer, HTTP(S) load balancers are
used as they are primarily intended for web applications
or other HTTP(S) end-points. Non-HTTP(S) load balanc-
ing is used for non-web workloads where HT TP or HTTPS
protocols are not used.

Azure provides four load-balancing solutions: Front
Door, Traffic Manager, Application Gateway, and Azure
Load Balancer, as table 4 shows.

Azure Front Door is an application delivery network

that provides global load balancing and site acceleration

214 CHAPTER 11

Table4 Azure load-balancing services

Load-Balancing Service Scope Traffic

Azure Front Door Global HTTP(S))
Application Gateway Regional HTTP(S)
Traffic Manager Global Non-HTTP(S)
Azure Load Balancer Regional Non-HTTP(S)

service for web applications to improve their latency or
response times and their availability.

Application Gateway is a managed service for appli-
cation delivery that uses HTTP/HTTPS information to
distribute traffic across resources within a given data cen-
ter. Application gateways have a single public IP address
but can host up to twenty web sites, each with a pool of
back-end resources. Application Gateway relies on HTTP
host headers to differentiate between websites. When you
enable SSL offload, the Application Gateway can also use
server name indication to distinguish between websites.

Azure Front Door and Application Gateway combined
provide the same functionality as GCP’s HTTP(S) Load
Balancer since the latter can be deployed either as a global
load balancer or as a region-specific load balancer for
HTTP(S) traffic.

Traffic Manager is a DNS-based traffic load balancer
that enables you to distribute traffic to services across
global Azure regions while providing high availability and

PUBLIC CLOUD EXAMPLES 215

responsiveness. Because it is a DNS-based load balancer,
it works only at the domain level and so cannot failover as
quickly as Front Door.

Azure Load Balancer is a high-performance, ultra-low-
latency load balancer for all UDP and TCP traffic. It is zone
redundant and so ensures high availability across avail-
ability zones. It is similar to GCP’s Network Load Balancer.

At the compute level, you have VMs (known as Com-
pute Engines on GCP and EC2 instances on AWS) that
you can purchase on a pay-as-you-go subscription basis.
You can optionally install containers on your VMs since
container-optimized VM images are available. From these
you can spin your VM instances and start using containers,
which can be LXC, Docker, or podman containers if using
Linux machines or the latter two if using Windows. If you
want Microsoft to manage these instances and containers
for you, you can use Azure Container Instances (known as
ECS on AWS and App Engine on GCP).

Public Cloud Resources

Although most resources of the three public cloud provid-
ers map to each other, though using different names, there
can be slight differences in functionality, and it is always
a good idea to consult their official documentation. Table
5 compares some of the cloud resources provided by AWS,
Azure, and GCP.

216 CHAPTER 11

"9DIAI9S UOTINIOX I9UIRIU0D SSI[I2AIS

‘syoejI3Ie
Po3IE[a1 pUE SISUIEIUOD 10J 9DIAISS
Ans13a1 1o 23eatid ‘pajeuewt

*S9IAISSOIDIW PUE SISUTEIUOD
103 wrrojyerd Gunsoy padeueur v

a8esn VY

10 gD 10] auryap noA ey siajourered
PUE SOLII9W [IIM 2OUBPIOIIE UL
Pasea1dap 10 paseaidur aq 01 (SNA)
SOUIYDEW [ENIIIA JO I9QUINU 3] SMO[[Y

“I9UUBUI 91ND3S B UL
aremijos urejurews pue ‘ofeuewr ‘Kordep
03 $195N MO[[E JBY} SIOUBISUI 19A1DS

uondrsaq

dueIsU[SI2UIBIU0D
uny pnop) JoUTeIuo)) aye8reg padeuey S
£13s189yg A13s189y
PRIy £13s189yg Iaurejuo)) A13s13a1
/IdUTEIUOD) Jourejuo)) onserq Iourejuo)) [
aduEISU]
aurduyg ddy Jaurejuo)) SOH SIaUTeIU0)) e
IaedsoIny
‘sdnoi3
2oue3ISUI dnoin
padeuey 195 aeds Surpeog oyny Jurfeds aurydeN 4
aurdug SUIYPDEBIN
andwo) [enaarp ¢Dd eurydew [enarp T
22Inosay adInosay
a21nosay d)o aInzy SMV 921A13§ pNop) #

sa01A19s pnop 21qnd pajdafas jo uostreduio) g 3[qey,

217

PUBLIC CLOUD EXAMPLES

‘sdde gom
10} SI2UTEIUOD XNUIT PUB SMOPUIA|
Suruuni pue Juswfojdap £sea moyy

‘suorjedridde gem
Burfordap 107 sad1a19s pue sureidord
Suruunai 103 wrrojerd Sunsoy pageuey

*SISWNSUOD [EUIAIUL PUE
[eu21xa 03 s[JV Surystqnd 10j 214195

*S3DIAIISOIIIU 10 SIDIAIIS
9nduwiod $S3[19A19S 91BIISIYDIO 0] Pasn
31® JeT]] SMOIOM SSI[IDAIIS SIPIAOI]

'$3IMJDI]IYDIE SSI[2ILIS 10]
pasn sassad01d paAl[-110Ys aIe 9SaY],
‘saurypew Surdeuew 10 Suruorsiaoid

INOYIIM SI[NPIYDS IO SJUIAS 0]
asuodsar ur swalsAs uo apod anNdaxXY

uondrsaq

surdug ddy

aurdug ddy

9a31dy

1asoduo)

suonPUN,g
pmo[D

a21mosay)9

sI9ureIuod
103 ddy qopp

ao1a19g ddy

Juswadeuey
1dv

sdde 51307

suonpuUnyg
aInzy

adInosay
aInzy

sdde gam
Jouuny ddy pazudurejuo) QT

J1AIDS

y[eisueag I9Urejuod
onserq pagdeuely 6
femaren gy Suysyqnd [qy - 8

suorPUN,] MOPIOM
deig SSI[19AI9G ,

saurdus

andwod

suorPUN,] SS[12AI9S IO
epquie] S9DTATISOIIN] 9

a21no0say

SMV 9JIAI3S PNOT) #

(panurjuod) g 3[qe],

CHAPTER 11

218

“B]RP paInIdNIISUN
sjaoddns pue paynquisip A[reqoj3 st
Je1]] aseqelep [Ppownnur pageuey

‘urzojrerd

a3 £q pa[puey a1 dUBUSIUTEW
pue ‘a7ess ‘AduaI[Isa yoIyMm Ut
9D1AT9S 9SE(RIEP [BUOTIR[2I PagRURIN

‘Burdessow aquIDSqNS

-ystqnd a[qeimp pue gumanb sessow
9]qeT[a1 10J S9130T0UYDI] 2TBMI[PPIUI
PpajuaLio-adessoul ‘paseq-pnod Jo 195

‘sadessowt
JO UOTIEIYIIOU JUIAD SIPIAOI]

‘suorjesridde Surdnooap
103 2214105 Surananb aFessour pageueyy

‘Bun{romiau 10 ‘98e103s ‘saurydRW
ren3a1a a8euew 03 Suraey nok InoyITM
suorjeorjdde paseq-221A19s0I0TW
Kordop 03 9214195 pageureur A,y

*sajauUIIqNY]
Sursn s1aureIU0d PajesIsaYDIO Jo
JuswaSeurw pue Juawkordap Moy

awmeay
aseqair]
£2103s211,] PNoD)

TOS pnopd

qns/qnd pnord

qns/qnd pnopd

qns/qnd propd

USeIN
DIAIIG SOYIUY

(21D) duidug
mwumﬂ.uwﬂ.ﬂx
a18005

g sowso)

aseqeje(]
aInzy

sng NDIAIIG

sng 91A19G

9de101g
ananQ)

YS3Nl dLiqe]
91ATDG

(SAV) 9214195
mwuwﬂuwn_ﬂvw
aInzy

gqoureudq

Say

O uozewy

(SNS) 14195
UOIIBdYIJON
adung

(SOS) #1418
ananQ) ajdwrg

ysay ddy

(S)H) 114138
wwquMwQBM

onselg

aseqeIep TOSON

saseqelep
pagdeuely

GurBessow
aqusqns
-ystqnd

uoTyedyIIoU
juaAg

sonenb a8essapy

saysaux
uonjedtddy

Sojautaqny|

LT

9T

ST

14"

€T

4"

T

219

PUBLIC CLOUD EXAMPLES

“ejep Sunyeorydax
10 UIZIUOIYDULS 10J 9DTATIS SUI[UQ

'ssO[e1ep jsurede
uotya01d 9315-3j0 apraoid o3 pnop a3y
w01 SaYy 1940321 pue dn ydeq 03 Pas()

‘paarf-8uo] pue passadde Apuanbaigur
91e Jet]} BIEp JO 9881035 1502-MOT

a8e1038
INA 103 pasn suonjerado aarsuaiur
0/1 103 pazrumrydo a8e103s Yoo[g

-921a19s 28e103s 102(q O

“EJep [BUOI}DESUBIIUOU
a103s 03 pasn A[reord4) aypoed
eyep A1owsw-ur paInqrisi(y

uondrsaq

ureang eye(

(uIpI0D)
a3e101G pnop)

(oaTepaY)
a3e101G pnop)

dss [e207]
{SI(J JUISISIG

a3e101g pno)
pnop
asudiajuyg

SIpay pue 2101g
Kr0wd N pnoy)

a21mosay d)o

Kdopzy
aInzy
Duhg ag

dmypeg
1L,

100D a8e103g

SASId
padeuely
aInzy

98e101g
qorg ainzy

spay
103 aE)

adInosay
aInzy

>ukgere

dmypeg
aarydry deag
TODE[D €5

98e103g
3201g dnseg

13png €3

ayoednIse[y

a21nosay
SMV

UOTJRZIUOIYDUAS
elR(

dmypeg

[eATypIy

a3e103s yporg

a3e103s 122(qO

Suryoed ee(

9J1A13§ pnop)

€¢

[44

Tc

0¢

6T

8T

(panurjuod) g 3[qe],

CHAPTER 11

220

‘[2A9] TeqO[3
10 [euo13ai-ssoid e 3e (AN 10 dD.L)
¥ 19Ae[JE OYJEI) 19UIIUI SAOUE[RY

'$921A198 10 s3soy] ajeridoidde
0] J1JJeI] S9INOI PUE SISSIIPPE
JI 1193 0] SOUIBU }SOT] SIA[OSIY

“JuawageurW P10231 SN

“Aouarey
MO[JE SI9ST 0] JUSIUOD (OM ISAI[IP 0}
Pasn 19413 JO YI0MIdU PAINALIISI]

*sama1jod
PUE S[011U0D SS30€ Paseq-a[o1 y3noiyy
S3DIN0SAI 0] SSIIVE SAIUIP PUE SMO[[Y

'SIMI[IqeIaUMNA PUE
s3107dxa wowrwod woiy suonedrdde
qam jo uoryajoid pazierjuad sapraoig

‘sAemayed yiomiau pue

‘sa[qe] 2IN01 Jo UoreINZYUOd ‘sjauqns
JO uoneaId ‘sassaIppe J[sapraoid
e} SUnR{I0M)aU [ENIIIA YIIM PNO]D
313 Ul JUSWUOIIAUD 23eAlid ‘paje[os]

410 ‘4IN

SNA PO

SNA PO

Ndd pnop

Anuapy pnod

Iowry pnoy)

OdA

I9dUE[RY
peEOT

1a8euey
Syyei],

SNd

N@D 21nzy

L101011(q
ATy

VM
femayen)

uonjeorddy

PBNA

4N

g6 ooy

g6 ooy

JuoIIpPNO[)

VI

VM

JdA

Sunuereq
peo] 1omIaN

Sunnoy SNQ

(SNQ) 2214198
sureu druwreuq

(ND) rom3au
A712AT[OP

jusju0)

(NVD)

JuswaSeurwt
ssadde pue
Anuspy

(dVM) TTema1y

uonjeoridde qapy

Sunjiomiau
[en3ara pnop)

0€

6¢

8¢

LT

9¢

14

144

221

PUBLIC CLOUD EXAMPLES

‘UOIBZI[IIN S92INO0SAI PNOTD SUIZIWIKEUT
a[IyMm 3500 Jo uonjezrundQ

Juawfordep pue

quawadeuew ayepdn ‘QuawaSeuewt
uonjen3yuod ‘uoryewrojne ssadoid
apN[UI JBY] S3DINOSIT PNOJd

0] paje[a1 syse}] sajewony

‘suonyedrjdde paseq
-pnop Jo y3[eay [er2a0 pue ‘owrndn
‘@ouewi1oj1ad ssasse 0] spreoquse(y

SINA pue 23e1031s Se yons $adIN0sax
pnop 3unpne pue 3ULIOITUOW 10,

Dygen
1SS s110ddns osfe ey suoneorjdde
103 4, 19Ke] OS] I€ SunUETRq PRO]

uondrsaq

Jusuwrageuey
150D

1a8euey
Juawforda(g

pnop

urtojruoy
pnop

s30T

Py pnory

Sunuereg
PeOTTRqOID

a21mosay d)o

JuswaGeuey
150D

uorewIoOINy
aImzy

s1ySisu]
aInzy

807 A31a10Y

Aemayen)
uonyesrddy

adInosay
aInzy

10101dXq 350D

UOT}RULIO]
PRoD

PIEMPROD

[reLLPnorD

g71ddy

a21nosay
SMV

uonjezrwndo
150D

uonyewojne

pnop

Gurroyruowt
pnop

Gurrojruowt
921n0sa1 pnop)

Sunuereq
peoj uorjeoriddy

9J1A13§ pnop)

S€

ve

€€

[43)

129

(panurjuod) g 3[qe],

CHAPTER 11

222

REFERENCE ARCHITECTURES

A reference architecture is a predefined architectural pat-
tern or collection of patterns that has proven useful in
solving a particular business or technical problem. It en-
compasses (1) a common vocabulary, (2) reusable designs,
and (3) best practices that can be used as a template for you
to get started. In this chapter we begin with a discussion
of the core architectural principles that you should bear in
mind when creating a cloud-based design. This discussion
is followed by a tour of how a cloud-based web-application

evolves to a serverless one using cloud native principles.

Architecture Principles

You should architect cloud solutions with maintainability,

availability, scalability, and security in mind. The principles

outlined in this section provide a guide to creating well-
architected solutions.

In summary, the guiding principles we consider are
separation of concerns, abstraction, automation, state-
lessness, defense in depth, and bounded contexts. The
scope of these principles can vary from software design
to overall solution design that includes cloud fabric design.

Separation of Concerns

According to the principle of separation of concerns, a par-
ticular solution should be broken up into building blocks

such that each building block has a single concern. At a

high level, this means that you break up your solution into

layers or tiers: the presentation layer, the business logic
layer, the data access layer, the data layer, and the storage

layer. From a more granular perspective, it means that you

break up your solution into services whereby each service

has a singular concern; the solution then becomes a com-
posite of different services.

Bounded Contexts

Domain-driven design ensures separation between the
business logic and the technical details. Bounded con-
texts are central to domain-driven design because they
provide the means to tackle complexity by separating a
particular solution into business contexts that are bound

224 CHAPTER 12

to a particular business concern. So the idea of bounded
contexts is somewhat related to and driven by the separa-

tion of concerns principle.

Abstraction

Abstraction attempts to hide the operational or techni-
cal details and allows you to create a solution that meets
business requirements. Since most cloud providers offer a
broad range of managed services that free you from hav-
ing to manage the back-end infrastructure and its operat-
ing system, you should favor using these services. To avoid
getting locked in to any one cloud service provider, you
should adopt a policy of using two providers with interop-
erability as the cornerstone of your policy. That way, one
cloud service can provide a hot or cold standby service to

the main one that you use.

Reusability

Favor reusability by tagging, documenting and version-
ing your components, and thereafter making use of im-
age, document, and component repositories and libraries.
A higher level of abstraction enables the reusability of
components that provide services. A catalog of services,
commonly referred to as a service catalog, will enable you
to reuse a particular service when needed as part of the
overall service-oriented solution.

REFERENCE ARCHITECTURES 225

Statelessness

State refers to user or system state. As examples, the for-
mer could be the user’s address, items in the shopping
cart, or the person’s employee ID; the latter could be the
code version that is running, the number of virtual ma-
chines (VMs) or containers being used, or the amount of
memory being consumed. Since maintaining state in an
event-driven, microservices-based architecture is difficult,
you should favor statelessness as much as possible. The

advantages of stateless components are:

1. Scalability: To scale up, you simply spin up more
containers; to scale down, your containers are killed.
As they do not maintain state, it is easy to scale your
application or service.

2. Self-healing: Should a container or a VM (in a scaling
group) fail, it can be replaced by another after it is

gracefully terminated.

3. Deployment: Especially in a canary deployment,
should you need to roll back to the previous deployment,
you can do so quite easily if state is not maintained by
your services or their hosts.?

Practice Defense in Depth

Adopt a zero-trust policy by not assuming trust within a

given subnet or zone and ensuring that authentication

226 CHAPTER 12

is applied between each component. Doing so will mini-
mize security threats from inside your network security
boundaries. In a cloud native architecture, you should ex-
tend this approach to include parameters such as script
injection and rate limiting. In this way each component
in a design seeks to protect itself from other components.
This makes the architecture resilient and its services easier
to deploy within the cloud environment.

Design for Automation

Automate everything and, to make automation pay divi-
dends, monitor and measure every system or service you
automate. The key therefore is to choose the correct met-
rics in accordance with the guidance provided in chapter
9. Because automated processes can monitor, repair, scale
and deploy your system faster than humans, you should
measure, automate, monitor, and assess your systems
continuously. Some of the elements that you can auto-
mate include the following.

1. Cloud fabric, or infrastructure: Automate the
creation and management of cloud resources

using such tools as Cloud Formation (AWS), Azure
Automation (Azure), Cloud Deployment Manager (GCP),
Terraform (a tool that is agnostic to cloud providers),
Helm charts (for Kubernetes), Puppet, Chef, or

Ansible.

REFERENCE ARCHITECTURES 227

Adopt a zero-trust
policy by not assuming
trust within a given
subnet or zone

and ensuring that
authentication is
applied between each
component.

2. CI/CD pipeline: The continuous integration/
continuous delivery pipeline can be automated using
tools such as GitHub Actions, Jenkins, Google Cloud
Build, Spinnaker, or Azure DevOps.

3. Scalability: Use autoscaling groups to scale your
computational resources or Kubernetes to scale your

microservices.

4. Monitoring: Monitor user activity and system
resources to assess what services are most in demand,
what resources have the highest utilization, and whether
there are any security breaches. Should your system
automatically take action after analyzing the monitoring
metrics, it is said to incorporate observability. So, for
example, you could monitor CPU and RAM utilization,
and should their utilization reach a certain level, then

it would trigger an automated action to spin up another
VM or container.

Well-Architected Frameworks

The general architecture principles described in the previ-
ous section form a common thread that is supported by
the well-architected frameworks (WFs) espoused by all
three major cloud providers.? Generally these are similar

REFERENCE ARCHITECTURES 229

in scope and practice, so we shall consider Amazon’s AWS
framework and its principles as a proxy.

The following terminology used by AWS to describe
the WAF has been extended in terms of service reusability:

Component: This is the AWS resource, its configura-
tion, and the software that, combined, deliver a service. A
component is a single unit that is decoupled from other
components. It is equivalent to the cloud cell paradigm
discussed in chapter 2.

Workload: Workload refers to a set of components
that together create a solution to a business problem.
Workload is usually what business and technology leaders
communicate about.

Architecture: Architecture denotes a high-level design
with a number of components as part of a given workload.
Architecture diagrams show how components work to-
gether within the workload to deliver a solution.

Service catalog: To aid reusability of workloads and
components, the service catalog catalogs all the services
used within a workload or component. Doing so enables
architects and engineers to reuse components and work-
loads that have already been built, either by others or
themselves.

Life cycle: Life cycle is a term that can be applied to a so-
lution, a service, or a product. It describes how that solution
(service, product) evolves from requirements gathering, de-

sign, implementation, testing, through to production.

230 CHAPTER 12

Milestones: These mark key changes in the architec-
ture as it evolves through the product or service lifecycle.

Technology portfolio: The technology portfolio is a
collection of workloads that are required for the business
to operate using technology.

As table 6 depicts, the five pillars of the WF are (1) cost
optimization, (2) operational excellence, (3) performance
efficiency, (4) reliability, and (5) security—or COPERS as
a mnemonic.

With this general idea of best practice in mind, let us
look at a reference architecture for a web application using

Table 6 Five Pillars of the AWS Well-Architected
Framework

Name Description

Cost optimization Run systems that deliver business value at the
lowest price point.

Operational excellence Continuously improve the efficiency of
workloads by developing, managing, running,
and monitoring them.

Performance efficiency Use cloud resources efficiently to meet system
requirements and to maintain that efficiency
as requirements change and technologies

evolve.

Reliability Run a workload to perform its intended
function correctly and consistently across its
life cycle.

Security Protect data, cloud resources, and assets in

conformance with your overall security policy.

REFERENCE ARCHITECTURES 231

cloud services, as well as using cloud native, event-driven

services.

Reference Architecture for a Web Application

A web application traditionally implements the model-
view-controller (MVC) architecture as it separates the ap-
plication into three component layers:

Model layer: This layer manages the application’s data.
It sends information from a database to the controller in
response to user requests.

View layer: This is the presentation layer as it inter-
faces with users. Data received from the model layer or
the controller layer are presented to the user as a response.
User requests received are sent over to the controller layer.

Controller layer: This layer is responsible for the busi-
ness logic. It implements the algorithms and uses data
from the model layer to provide a response to user re-
quests via the view layer.

This MVC pattern effectively decouples the data, logic,
and presentation layers so that changes in one layer do
not affect any of the others. An advantage of this approach
is that it speeds development because separate teams can
develop and deploy the layers in parallel. Another advan-
tage is that separation of the layers makes the architecture

232 CHAPTER 12

more secure and adaptable to implement the zero-trust
model’s principles.

Figure 22 shows the reference design for a web ap-
plication implemented using AWS. It makes use of two
different Availability Zones in the same region to provide
redundancy during a failover scenario. Amazon’s Cloud-
Front is used to scale traffic at the edge and to provide a
low latency response to users. (Route 53 for DNS in con-
junction with CDN for edge caching of content could have
been used instead of CloudFront.) The Elastic Load Bal-
ancer, ELB, then routes traffic to web servers located in
both Availability Zones, while static content is provided
from the S3 bucket. A Lambda Function gets fired when
a certain threshold is reached for data stored on the S3
bucket in order to send a notification via SNS to increase
the size of the S3 bucket. This optimizes storage costs
related to S3. The web server is hosted on EC2 instances
(i.e., VM instances), which form an Auto Scaling Group
to provide scalability when serving dynamic web content.
The web servers are located in public subnets and a NAT
gateway is used to traverse through to the private subnets
where the app servers are located. These app servers form
the application or the business logic layer and respond to
HTTP requests from users. The data layer consists of RDS
databases in a separate private network in conformance
with the principles of the zero-trust model. The databases

REFERENCE ARCHITECTURES 233

'SMV Yam uSisap aduarejar uonedridde qapy g 2andig

SNS

uonouny
epquie

j1o%0ng
€s

JuaU0D)|
ones|

uolbay

PNoID SMY E

CHAPTER 12

234

in the two Availability Zones are replicated so that either
can provide data to the app servers.

Let us now translate the design of figure 22 to an
Azure one. Instead of the AWS Cloud account, we would
have an Azure Subscription, AWS regions would map to
Azure regions, and the VPC would map to Azure Virtual
Networks (VNets). The EC2 instances would map to VM
instances and Amazon RDS would map to Azure DB. The
Scaling groups used in AWS are very similar to Azure’s VM
Scale Sets.

On Azure by default, a VM on a VNet can connect to
any other VM on the same Vnet even if the VMs are on dif-
ferent subnets. This is because Azure configures the rout-
ing tables to route traffic to every resource within a VNet
by default. Therefore, to have separation between subnets
so that you can mimic the private/public subnet separa-
tion of AWS, you would need to define network Security
Group rules for each subnet to implement differentiation
and isolation between the public and private subnets.

Event-Driven Serverless Reference Architecture
An event-driven architecture is one in which the com-
putation is triggered by the event of a request. So it is

asynchronous in nature, and the components in the archi-

tecture rely on a publish-subscribe (pub-sub) messaging

REFERENCE ARCHITECTURES 235

paradigm to make them decoupled, and hence scalable and
interoperable. Also, if you ensure that each component
has its own security perimeter, then you can implement
a zero-trust security model whereby each request, service,
or user can access only the data or resource that is neces-
sary for its legitimate purpose.

Serverless is defined as a cloud native development
model for applications that “allows developers to build and
run applications without having to manage servers.” It is
a model that does have servers, but they are abstracted
away so that the developers may concentrate on building
microservices. In a nutshell, a serverless compute node is
one for which you do not pay for any idle time as you would
with a VM or EC2 instance.

So an event-driven, serverless application is one that
is composed of small, easily deployable, loosely coupled,
independently scalable, serverless components using an
event bus (usually using a pub-sub model) for communi-
cation between the components to implement loose cou-
pling. The pub-sub messages are sometimes referred to as
an event stream, and best practice is for each component
to have its own event stream (i.e., pub-sub topic) for com-
munication purposes. In the past, APIs were used for inter-
nal communication between the microservice components,
but this practice is deprecated in favor of using events.

Figure 23 shows an event-driven serverless reference

architecture for a web application implemented using

236 CHAPTER 12

In a nutshell, a
serverless compute
node is one for which
you do not pay for any
idle time as you would

with a VM or EC2
Instance.

‘uonyeoridde qom ssaj1aa1as usALIp-juaay gg N3y

lszuoyimy ouny
SUONAUNF gNS/ANd SUCRKOUNS JSYIOM bl 3
©— \Y)

FOowRuAQ uozZewy uonoung 123019 @ @ o
adspaU| D uozewy 07

D) P =

W @\\rwu —] (]

izl ©

(atand) waiy
2nanp Jana-pesq Remalesy |dy
Sos —
uogoung uoyeasr) abessapy
aopa| Idv o1 34 PRNGES | femareg 314 €9 ssadojeneq
ansnd sos —
©® ® et
— (.
—
jaugns a1 ald 1eugns slealld PuUgns ajenlld _—
(a1ealid) Aemales 1Y
OdA
sdoneq

NdA 2S-0}-3S SMY

%

uciBay ..\l

3

PnoI3 sSmy m

CHAPTER 12

238

AWS. A VPC is defined within an AWS region for the ap-
plication. Of course, in a real-life production environment,
you will need to use a duplicate VPC in another region, or
perhaps even on another AWS account, to implement re-
dundancy for failure recovery. In any case, three distinct
actors (and their respective paths of ingress) are shown:
DevOps, developers, and a machine client that consumes
services via an APL

The DevOps team uses a site-to-site VPN connection
to access the AWS resources and the developers use a file
share using an S3 file gateway to upload CSV files to an
S3 bucket. The CSV file contains the data for the API end-
points that need to be used by the DynamoDB database. A
lambda function is triggered whenever a file arrives on the
S3 bucket, which then creates the APl messages to submit
to the SQS queue. Any error messages or undeliverable
messages are sent to the dead-letter queue for refactor-
ing and troubleshooting. When the SQS queue sends a
message, it is picked up by the interface function, which
updates the database with the message data. This is the
producer path for creating API end-point data.

The data path for API consumers starts with the client
on the lower left side of figure 23 that uses an HTTP- or
HTTPS-based API. The client is identified and authen-
ticated by AuthO in order to access the API; on the AWS
side, the API gateway has a lambda authorizer function

configured that ensures only valid and identified users or

REFERENCE ARCHITECTURES 239

machines can consume the API services. The network load
balancer balances HTTP(S) traffic and routes it to worker
lambda functions. Notice that we are using a set of two
functions instead of just one as we wish to have microser-
vices that do specific tasks. The worker functions imple-
ment the business logic for the API end-points and the
pub-sub functions interface with Amazon MQ Broker. We
could just as well have used SQS instead of the MQ Broker.
The MQ Broker then uses an interface lambda function to
interact with the DynamoDB database.

Notice that we are using layers in conjunction with
the lambda functions to implement zero trust. In essence,
three subnets are used to separate the components in
their respective layers:

1. the business logic layer, where the worker nodes are

located,

2. the MOM (message-oriented middleware) layer, which
is effectively the data access layer, where Amazon MQ

Broker resides together with its interface nodes, and
3. the data layer, where DynamoDB together with its

supporting lambda functions are.

This provides network segregation at no additional
cost and is aligned with best practice. Additionally, we use

access controls at the lambda function, or at the resource

240 CHAPTER 12

level, whereby each resource requires role-based access
control for it to be invoked or managed, even if the net-
work is breached at the subnet level. This effectively imple-
ments best practices defined by the zero trust model.

The reference architecture of figure 23 can be trans-
lated to similar architectures for GCP and Azure by refer-
ring to table 5 of the previous chapter. For example, you
would use Azure functions for Azure and Cloud functions
for Google instead of the AWS lambda functions. Simi-
larly, you would use Azure’s Cosmos DB or Google’s Cloud
Firestore instead of Amazon’s DynamoDB. For the event
bus, you would use Service Bus (Azure) or Cloud Pub/Sub
(Google) in place of Amazon MQ Broker. The concepts of
the reference architecture provided are therefore transfer-
rable to the other public cloud providers.

REFERENCE ARCHITECTURES 241

FUTURE OUTLOOK

In this chapter we look at the future and try to predict
what might develop over the horizon. It is with mixed feel-
ings of joy and pride, on the one hand, and sadness on
the other that I write this chapter—joy and pride because
many of the developments predicted in the first edition of
this book have actually come to pass, sadness because it is
a shortened—though revised—version of the first edition
as a result.

Cloud computing, being an enabling technology for
automation and abstraction, is in a unique position to
effect paradigm shifts related to your work, society, and
life. This chapter discusses some emerging technologies
and trends that are related to cloud computing because
they are the catalysts of change for the future technology
landscape. I discuss these trends and make some extrapo-

lations to what could happen in future. Of course, as with

Cloud computing, being
an enabling technology
for automation and
abstraction, is in a
unique position to effect
paradigm shifts related
to your work, society,

and life.

predictions in general, not all may come to pass. Neverthe-
less, it is always good to know the art of the possible and
what doors cloud computing may open for us in shaping
the future.

Internet of Things and Services

In your home, you will find many appliances that contain
microprocessors and microcontrollers: ovens, washing
machines, televisions, refrigerators, and even some rub-
bish bins. This list is set to get longer owing to the very low
prices of microcontrollers. Even disposable items such as
light bulbs now include microcontrollers. When you con-
nect these appliances to the internet, you get connected
devices, and the network they use is called the “internet
of things,” or IoT.

Why should you want to connect such devices to
the internet? Let us consider your rubbish bin as an ex-
ample. What if it became full and its sensor could let the
facilities department in your locality know that this is the
case. Facilities could then empty the bins when needed
rather than send out a van on a regular basis, or perhaps
it would send out the van when most bins in your local-
ity were full —thus they would aggregate the data received
from each bin. Suppose further that your bin could pre-
dict when it would become full (it can do this simply by

FUTURE OUTLOOK 245

extrapolating the increase in weight that it senses daily)

and then sent out an email or an API call to let the facili-
ties department know a few days in advance. This way the

department could plan ahead and ensure that an optimum

refuse collection route was in place. This would save fuel

and time for your locality. As a result, your local taxes may
be reduced (or perhaps not be increased) so that you may

benefit too. Something similar is already happening with

your printers at your workplace. The printers monitor the

paper, ink, and toner—known as consumable resources—
and send out an email to a central desk when these mate-
rials are about to run out. The printer’s replacement ink
and toner are then sent to your facilities department for
replacement. And your company does not get charged for
these services! This is because the printer is “owned” by
the printer company and leased to your work company.
Your company simply pays the printer company a monthly
amount that is based on the number of pages printed for
that month. Thus the IoT printer has a cloud-based util-
ity price model. The monitoring of several printers, the

sending out of bills based on pages printed per month,
and the automated ordering of supplies such as ink can be

thought of as a business service, and hence be categorized
as BPaaS.

When such a service is automated in the cloud and is
there purely to support [oT devices, then you have an “in-

ternet of services,” or IoS.

246 CHAPTER 13

An example of [0S is when you have many streetlights
in a particular locality connected to the internet. They are
monitored for the replacement of light bulbs in an auto-
mated manner, thus making it unnecessary for a person
to go out regularly on an inspection tour. Additionally, the
streetlights could have multiple uses: they could collect
weather-related information on temperature, condensa-
tion, and atmospheric pressure, or measure the flow of
traffic to assess the convenience of certain roads. In any
case, monitoring streetlights for light bulb replacement
would be an IoS function for the various IoT-connected
lamps. As you can tell from these examples, IoT and IoS
are related and so should be considered together.

But not all applications are benign. For instance, the
cameras fitted to cars could be connected to the internet
to provide a third party with a view of your surroundings,
the car’s GPS could send your location, and so on. Tech-
nology can therefore be used to proliferate the powers of
a police state, making Aldous Huxley’s Brave New World
that much more real.

Cloud of Things and Services (CoTS)
What have IoT and IoS got to do with cloud computing,

you may well ask. The processing that takes place in moni-

toring the IoT devices and executing the services as part

FUTURE OUTLOOK 247

of a workflow to support those IoT devices will usually be
in the cloud. This is where the IoS-type services will re-
side. So the IoT devices and their related IoS-type services
will have their own cloud. Such a cloud can be a private,
public, community, or hybrid cloud, depending on the ap-
plication and your need. I have coined the term “cloud of
things and services,” or CoTS, to refer to such a specialist
cloud.

Even though there may be few, if any, CoTS clouds

at present, they will become ubiquitous in the future
with the proliferation of IoT devices and their [oS services.
The key premise of CoTS is automation. This supports
the dual premises of IoT and loS: convenience, service,
and predictive analytics when and where needed. The
“where” is important in this regard. Considering our ex-
ample of the streetlight, you will know the exact lamp
(and its location) that needs a replacement light bulb. For
nonstationary devices, geopositioning using GPS may
be used to obtain the exact geolocation of the IoT device
in terms of longitude, latitude, and elevation.! The ubiqui-
tous characteristic of cloud computing has considerable
synergy with IoT devices because of the need to monitor
them and provide services related to them wherever they

may be.
Some broad areas where CoTS-based services can be
provided are:

248 CHAPTER 13

IoT devices and their
related IoS-type services
will have their own
cloud. ... I have coined
the term “cloud of
things and services,” or
CoTS, to refer to such a
specialist cloud.

« Smart home: Nest Protect, a smoke detector and fire
alarm system, is an example of connected devices in the
home or office.

+ Wearables: Google Glass and Apple Watch are good
examples of these connected devices. They provide a
service not only for communication but also for sensors

to monitor your health or environment.

+ Smart city: Traffic management, water distribution,
waste management, urban security, environmental
monitoring, pedestrian congestion management, and
street lighting are some example use cases where a CoTS
service could connect IoT devices.

+ Smart grids: Smart metering augmented with IoT
services for information about electricity consumption
to improve the efficiency, reliability, and trading of
electricity is a clear example; this configuration can be
extended by connecting smart batteries to the electricity
grid so that stored electricity that has been generated
locally can be sold on the grid.

+ Retail: Proximity-based advertising, smart wallets, and
near-field communication-related purchasing in the retail
sector are examples.?

This list is just the tip of the iceberg. It can easily be

extended to cover IoT services in areas such as banking,

250 CHAPTER 13

manufacturing, health care, farming, and transport as
CoTS applications.

Personal Clouds

If you can have a cloud for things, then why not have a
cloud for people? A personal cloud is one that you own
and use for your personal needs. Examples are plentiful:
(1) to store documents (your financial statements, driver’s
license, etc.); (2) to store your electronic wallet (e.g., your
financial wallet or your health wallet), (3) to store your
shopping basket for electronic shopping; (4) to store your
music and videos. All these are available services today but
are not aggregated in one place. What if they all could be
found in one place, such as your personal cloud?

Consider the use case of your health wallet. With the
onset of [oT and wearable devices, it is becoming common
for people to measure various health metrics such as blood
pressure, heart rate, and weight so that the data may be
stored in a health wallet. Microsoft, Google, and Apple
provide, or will soon provide, such wallets. If you automate
the monitoring of your health metrics using IoT and wear-
ables, then you have an interesting intersection between
the personal cloud and CoTS. Your health wallet in your
personal cloud connects with IoT devices and obtains your
health data, and so is a CoTS as well. The CoTS would have

FUTURE OUTLOOK 251

a service (remember loS) that would alert you, your doc-
tor, or your family if the health metrics reached a certain
critical level. But you can take this service one step further
by using predictive analytics. What if you received an alert
that told you of an impending deterioration in your health
as a factor of a combination of those metrics? You could
then be proactive and ensure that your health improved by
addressing the factors that produced the alert.

A Cloud Service Exchange

In this section I discuss an innovative idea that I have de-
veloped for purchasing cloud services using a cloud service
exchange. Just as stocks are exchanged for moneyin a stock
market, a cloud exchange could transact cloud services at
a given price in real time. This would enable cloud services
to be bought and sold just as commodities are. This is obvi-
ously easier to implement for services that are at a lower
abstraction layer, such IaaS and PaaS, compared to higher-
level ones such as BPaaS. However, cloud native services
would be just as easy to exchange even though they offer a
higher level of abstraction since they are consumable using
API calls. A major component of such an exchange would be
the interoperability of the cloud services. Thus, one service
should be replaceable by another seamlessly and instan-

taneously by way of the exchange. Service producers and

252 CHAPTER 13

consumers would then share the exchange platform to ef-
fect a deal, and each service would be classified in terms
of the cloud patterns discussed in this book. The outcome
would be a fair price for the cloud service user since the
price paid would depend on the supply and demand pa-
rameters of a service. A real-time mechanism for price and
service discovery would need to be implemented so that
an instantaneous trade could be realized by matching the
right service to its prospective buyer. This is something
that the future could bring to the world of IT because cloud
computing is the natural evolutionary step in the increas-
ing commoditization of IT technologies and services.

Conclusion

With the increased use of [oT devices, cloud computing
will mushroom as each device will connect to a cloud ser-
vice. And the further adaption of 5G and 6G technologies
is bound to accelerate the use of IoT and CoTS. Beyond
devices, there is no reason why every person, house, and
car could not have their own separate cloud to store health
and status information, extrapolate future outcomes, and
provide appropriate situational information. The chal-
lenge will be in creating appropriate policies and gover-
nance frameworks regarding the use and availability of
information stored in such clouds.

FUTURE OUTLOOK 253

ACKNOWLEDGMENTS

My dear wife, Leena, has been the force behind this book.
Without her encouragement, I do not think it would have
seen the light of day. Thanks, Leena, for your constant
nagging!

Elizabeth P. Swayze, Senior Editor for Computer Sci-
ence at the MIT Press, was instrumental in getting this
second edition published. Her patience and support en-
sured that it got approved for publication for the Essential
Knowledge series. Her assistant, Matthew Valades, helped
ensure that the publishing process ran smoothly through
its course, which is much appreciated. My production edi-
tor, Deborah Cantor-Adams, helped make the manuscript
ready for publication with much enthusiasm and commit-
ment. And my thanks to the rest of the MIT Press team:
designer Emily Gutheinz, art coordinator Sean Reilly, pro-
duction coordinator Tori Bodozian, and publicist Oscar
Sarkes. You are true heroes!

APPENDIX A

Common Security Terms

This appendix supplies the meaning of some commonly
used terms in IT security. Knowing these terms and what
they mean will equip you with the knowledge to ensure
that your systems and data are secure when using cloud

services.

Access control Ensures that access to services is granted only to
entitled users.

Backdoor Code installed to enable a user (e.g., an attacker)
easier access to a system by bypassing security
mechanisms that are in place.

Biometrics The use of a user’s physical characteristics to
determine access to a system or service.

Business A plan that takes measures to ensure that a business

continuity plan remains operational in the face of a disaster, an
emergency, a security breach, or an attack.

Certificate A small data file that binds a cryptographic key to
an organization’s details; it certifies the authenticity
and identity of the issuer. Also known as a digital
certificate or an SSL/TLS certificate.

Checksum A value computed using the data that are stored or

transmitted; it is used to verify the received data. A
checksum is intended to verify the integrity of data
and identify data-transmission errors, while a hash
(see Hash function) is designed to create a unique
digital fingerprint of the data. A checksum protects
against accidental changes, whereas a hash protects
against a purposeful attacker.

Confidentiality

Custodian

Data integrity

Decryption

Demilitarized zone

Digest
authentication

Encryption

Escrow passwords

False negative

False positive

258

APPENDIX A

Ensures that information is disclosed only to those
who are authorized to view it.

The user or application that is currently using or
manipulating the data and so is temporarily taking
responsibility for it.

Integrity of the data in terms of its veracity,
completeness, and immutable state at the point of use.

The transformation of an encrypted message into its
original plaintext form.

Abbreviated as DMZ, this is a perimeter network area
that sits between an organization’s internal network
and an external network, usually the internet. It
forms part of a layered security model in which
network segmentation is used to ensure the transit of
data between a secure layer and an insecure one.

A process that ensures that a client application or user
can provide proof that they have a password to use
the system or service.

Cryptographic transformation of data (called

“plaintext”) into a form (called “cipher text”) that
conceals the data’s original meaning to prevent it
from being known or used.

Passwords that are written down and stored in a
secure location (e.g., a safe or an encrypted USB
drive); they are used by emergency personnel when
privileged personnel are unavailable.

A false negative is an error that classifies a test result
incorrectly indicating the absence of a condition
when it is present (e.g., result stating the absence of a
security vulnerability when one is actually present).

A false positive is an error that classifies incorrectly
the presence of a condition (e.g., presence of a
security vulnerability when it is not present).

False reject

Firewall

Fragmentation

Fuzzing

Hash function

Identity and access
management

Identity
management

Integrity star
property
Intrusion

detection and
prevention

Failure of an authentication system to recognize a
valid user.

Alogical or physical discontinuity in a network to
prevent unauthorized access to data or resources.

Storing a data file in several “chunks” or fragments
rather than in a single contiguous sequence of bits in
one place on the storage medium.

Regression testing that generates out-of-specification
input for an application in order to find its security
vulnerabilities.

An algorithm that maps data of arbitrary size to

data of fixed size. The values returned by a hash
function are called hash values, hash codes, digests,
or hashes; the mapped value is used as an index in
the hash table. An example of a hash function use

is in scrambling passwords before storing them in a
database so that they cannot be understood or copied
by a human.

See Identity management.

The process that verifies a user’s identity and their
level of access to a particular resource, service, or
application. Under the auspices of identity and
access management (IAM), authentication and access
control play a vital role in securing data.

Approach whereby a user cannot read data of a lower
integrity level than their own.

Identifies and prevents security breaches, including
intrusions (attacks from outside the organization)
and misuse (attacks from within the organization).
IDP is usually performed at the inside and outside
boundaries of a DMZ.

APPENDIX A 259

Lattice techniques

Malware

Masquerade attack

Multifactor
authentication

(MFA)

Nonrepudiation

Penetration

Pharming

Phishing

260 APPENDIX A

Use of security designations to determine access to
different types of information.

General term used to denote viruses, worms, trojans,
and any form of unauthorized software. Malware is a
composite term derived from “malicious software.”

A type of attack in which an illegitimate user or
application poses as a legitimate one.

An authentication method that requires the user to
provide two or more verification factors (or evidence)
to gain access to a resource; the factors are based

on knowledge (something only the user knows),
possession (something only the user has, such as a
device), and inherence (something related to the user,
such as their fingerprint). MFA is a core component of
a strong identity and access management (IAM) policy.

System to ascertain that a specific user and only that
specific user sent a message and that the message has
not been modified.

Gaining unauthorized access to sensitive data by
circumventing a system’s protections.

Technique whereby a user’s session is redirected to a
masquerading website or application.

Derived from “fishing,” a practice adopted by
attackers to obtain sensitive information from a
human by fraudulent means. These can take the
form of emails, website links, texts, or phone calls
that pretend to be from authentic sources. Once the
sensitive information is obtained, it can be used in a
number of ways: for identity theft, money transfer,
deployment of malicious software on the victim’s
system, or blackmail.

Plaintext

Proprietary
information

Risk

Role-based access
control

Threat assessment
Trojans or

implants

Two-factor
authentication

User

Virus

Data before they have been encrypted into ciphertext
or data that have been decrypted.

Information that belongs to an organization and
gives it the ability to do business. Such information
includes customer lists, technical data, costs, and
trade secrets.

Security risk can be computed as the product of the
threat level and vulnerability level to quantify the
likelihood of a security breach.

Shortened as RBAC; an approach to restricting access
to resources or services to authorized users that have
defined roles. The roles could be functional (such as
sales, accounting, or marketing) or technical (e.g.,
administrative, developers, architects) and they define
what resources are accessible to users assigned to the
particular role.

The identification of types of threats that an
organization might be exposed to.

Malware disguised as benign programs or applications.

Also denoted as 2FA; a special case of multifactor
authentication wherein two factors are used for
authenticating the identity of a user. See Multifactor
authentication.

A person, organization, entity, application, or
automated process that accesses a system, whether
authorized to do so or not.

A hidden, self-replicating section of computer
software that usually contains malicious logic
and propagates by infecting another program or
application.

APPENDIX A 261

Wallet

Worm

Zombie

262

APPENDIX A

An app that can store, in a single place, financial
information (reward, debit or credit cards), health
information, keys, or documents (tickets, IDs,
boarding passes) for the consumption of services in a
convenient manner.

A program that can run independently and propagate
a complete working version of itself onto other
computers on a network; it may consume computer
resources destructively.

A computer that has been compromised by malware.

GLOSSARY

Aggregation

Aggregation denotes an “is-a” relationship. For example, a forest is an aggrega-
tion of trees. The underlying assumption here is that all the trees are similar
in terms of their attributes or properties. Should the trees be of varying types,
with different features that you need to use, then aggregation would no longer
apply. Instead, the relationship would be said to be composition.

Application programming interface

An application programming interface (API) is a software interface that
allows computer programs to communicate with each other. APIs work by
sending requests for information and receiving a response; often the HTTP
protocol is used in conjunction with its verbs PUT, POST, GET, PATCH, and
DELETE to perform CRUD (create-replace-update-delete) operations. An
API end-point is one end of the communication channel between the soft-
ware programs. A software development kit, or SDK, facilitates the creation
and usage of an APIL.

Archive
An archive houses data that require long-term preservation for regulatory
compliance, historical, or evidentiary reasons. It is accessed less often than
a backup copy but requires speedy lookup and retrieval of data. See also Cold
storage.

Backup

A backup is a copy of your current data (which may be programs, source code,
VM images or their definition, YAML manifest files for Kubernetes, etc.) that
you use to restore a system to its working state should a failure, data corrup-
tion, or disaster occur.

BPaaS
Business Process-as-a-Service; see Service model.

Cache

A cache stores data on a temporary basis to help websites, browsers, and apps
be more responsive. A cache hit occurs when the requested data can be found
in the cache, while a cache miss occurs when the data cannot be found. To
increase cache hits, data that are most often requested are stored in the cache.
Two main approaches are used to make caches more efficient, spatial locality
and temporal locality. In the former, the cache (i.e., the requested data) is
stored physically close to the data source; in the latter, the requested data have
been requested recently.

Canary deployment

Canary deployment is a term for the practice of staging a deployment whereby
a subset of users receive a release, followed by a broader group once any initial
teething problems have been ironed out.

Capital expenditure

Capital expenditure is the up-front expense borne by you or a third party to
create a product or service. CapEx is also referred to as nonrecurring or imple-
mentation costs.

Change management
Change management addresses the addition, modification, or removal of ser-
vices or service components while reducing incidents, disruption and rework.

CIA triad
The CIA triad—confidentiality, integrity, and availability—describes a secu-
rity model used to find vulnerabilities and define secure solutions.

Cloud bursting

Cloud bursting describes the situation in which your cloud service or applica-
tion instantaneously jumps (bursts out) to use the resources of another cloud.
It might do so, for example, to meet an inordinate increase in demand or for
business continuity reasons.

Cloud cell

The cloud cell is a novel concept developed in this book to denote a discrete
cloud service that performs a single business or technical function; a number
of cloud cells could be used together to provide a conglomerate unique cloud
service. Cloud cells may have relationships with other cells, such as composi-
tion, encapsulation, or federation.

264 GLOSSARY

Cloud native

Cloud native describes an approach to building applications that exploits
features such as scalability, elasticity, resiliency, and flexibility, which cloud
computing provides.

Cloud service

A cloud service is the implementation of a business process—provided
through a set of related functional components and resources—that provides
business value to the end consumer of the service. It can be categorized in
terms of five service models.

Cold storage

Generally, cold storage of data is an archival tier that retains data in a tape-
based storage system for long-term retention. This is akin to AWS Glacier.
Azure offers three tiers:

Hot: For storing data that are accessed frequently.

Cool: For storing data that are accessed infrequently and are stored for at
least thirty days.

Archive: For storing data that are rarely accessed and are intended to be
stored for at least 180 days.

Community cloud

A shared cloud computing service that is targeted to a limited group, the mem-
bers of which share a similar need or use case. These can be diverse and can
vary from business needs (compliance requirements) to individual ones (a
hobby or a pension fund) to a societal one (a state or nation).

Component

A component is an atomic unit comprising the computation engine, its con-
figuration and software that, combined, delivers a service; a component is an
example of a cloud cell.

Composition

A composition denotes a “has-a” relationship. Thus, a car is a composition of
a number of distinct units, such as steering wheel, tires, hood, doors, engine,
and so on. Each unit that contributes to creating the composed object has its
own distinct attributes or properties, and is referred to as an object.

GLOSSARY 265

Container

A container is a self-contained unit of code, its libraries and dependencies, and
a lightweight operating system that runs as an application in a common way
on a host machine.

Content delivery network

A content delivery network (CDN) is a geographically distributed group of
servers that work together to deliver web content (e.g., HTML pages, JavaS-
cript files, style sheets, images, videos) speedily to improve responsiveness.

Control bus

A control bus is a communication channel that enables microservices or soft-
ware components to send control commands or messages to each other in a
decoupled manner.

Currency

Currency describes how technically current your computational resources are.
Currency is usually considered in terms of the version number of the software
and the generation of the hardware. It is expressed in terms of N, N-1, N-2;
the latter being 2 versions old and the former being current.

Delivery model

A deliver model represents the efficient combination of end-to-end processes,
methods, and quality procedures together with the right skills on a global ba-
sis that will enable your IT department to meet its business needs.

Domain name server
A domain name server (or service) (DNS) provides a mapping of a domain
name to its IP address, similar to a telephone directory.

Dynamic host configuration protocol
Dynamic host configuration protocol (DHCP) is a network service that auto-
matically assigns a dynamic IP address to each host, or server, on a network.

Elasticity

Elasticity denotes the capacity of a cloud service to scale out horizontally when
demand is high and scale in when demand is low.

266 GLOSSARY

Encapsulation

Encapsulation may refer either to the composition or to the aggregation of
cloud services. The concept is derived from object-oriented programming and
design wherein one object can encapsulate another.

Event bus

An event bus is a communication channel that enables microservices or soft-
ware components to inform each other, in a decoupled manner, of events that
take place so that workflow may be orchestrated or the status of a job monitored.

Federation

Federation denotes the creation of a composite cloud service through creat-
ing an alliance with other, disparate clouds or cloud cells. Although the other
clouds or cloud cells would usually be provided by different cloud service pro-
viders, they may also be a mixture of your own cloud cells or a mixture of a
third party’s cloud cells.

Hybrid cloud

A hybrid cloud is a combination of private and public cloud services that is
usually based on a policy-driven, coordinated approach to the consumption
and management of those cloud services.

TaaS
Infrastructure-as-a-Service; see Service model.

Identity and access management

Identity and access management (IAM) denotes a set of policies, processes,
and technologies used to manage digital identities and control user access to
cloud services.

INaa$S
Information-as-a-service; see Service model.

Information Technology Infrastructure Library

The Information Technology Infrastructure Library (ITIL) is a framework that
provides guidance on the full life cycle of defining, developing, managing,
delivering, and improving IT services from an operational perspective rather
than a delivery perspective. ITIL is descriptive rather than prescriptive as it
provides best practice advice on IT service management.

GLOSSARY 267

Interoperability

Interoperability denotes the capability to use the same or similar cloud ser-
vices offered by different cloud service providers in such a manner that all
services work seamlessly together. This goal relies on interoperability in terms
of billing, management, reporting, data management, and application or pro-
cess functions.

Load balancer
Aload balancer enables the even distribution of the workload over two or more
resources with the aim of optimizing computational or response times.

Maturity model

A cloud maturity model gauges your maturity in the use and management of
cloud computing services and points out areas in need of improvement. It al-
lows your organization to have its methods and processes assessed according
to best practices against a clear set of benchmarks.

Microservice

Microservices are an architectural and organizational approach using service
orientation where software is composed of small independent services, which
offer a single distinct service; they communicate over decoupled channels. A
microservice implementation is an example of a cloud cell. See Cloud cell.

Multifactor authentication

Multifactor authentication (MFA) requires two or more factors of authentica-
tion (e.g., code sent over email or phone, biometric information) in addition
to passwords for access to be granted.

Multitenancy

Multitenancy denotes the pooling of resources, virtual or physical, such as
software, storage, or virtual machines, to provide a shared common service to
each user of the cloud service.

Operational level agreements

An operational level agreement is an internal agreement between the supplier
and internal consumer (or resupplier to the end consumer) within an organiza-
tion that spells out the terms and condition for providing a service.

268 GLOSSARY

Operating expenditure

Operating expenditure (OpEx) comprises the ongoing operational costs that
you incur when consuming a cloud service. It is also referred to as run-time
or recurring costs.

PaaS
Platform-as-a-Service; see Service model.

Pattern
A pattern represents the best practice design and implementation of a solution
to a problem that others face consistently in engineering.

Private cloud

A private cloud is a computing cloud that is used by only one entity; the entity
can be an organization, person, or thing. In a private cloud the cloud com-
puting resources are shared only by cloud services meant for that entity, as
demand dictates.

Public cloud

A public cloud is a form of computing cloud that is shared by a number of
entities; an entity can be an organization, person, or thing. In a public cloud,
the cloud computing resources are pooled together for the use of the entities
as demand dictates.

Recovery point objective

Recovery point objective (RPO) denotes the interval of time during which data
are lost in the event of a disaster or disruption before the organization’s maxi-
mum tolerance of amount of lost data is breached.

Recovery time objective
Recovery time objective (RTO) is the duration of time needed to recover nor-
mal operation following a disaster or a disruptive event.

Release management

Release management encompasses the planning, design, development, build-
ing, testing, deploying, and releasing phases of a service or software product
to end-users.

GLOSSARY 269

Roadmap
A roadmap is a future plan for upgrading and updating the cloud components.

Role-based access management

Role-based access management (RBAM) grants access to cloud resources on
the basis of permissions attributed to a user role. Also sometimes referred to
as role-based access control (RBAC).

SaaS
Software-as-a-Service; see Service model.

Serverless

A cloud-native development model for applications that allows developers
to build and run applications without having to manage servers, which are
abstracted away so that the developers may concentrate on building microser-
vices. Examples are Lambda Functions (AWS), Cloud Functions (GCP), and
Azure Functions.

Service
A service is a collection of IT systems, components, and resources that
work together to provide value to the end user or consumer. See also Cloud
service.

Service-level agreement

A service-level agreement (SLA) is a contract, usually written, between the
service consumer and the service supplier that specifies how quickly the ser-
vice will be delivered (when), its quality (what), and its scope (where and how
much).

Service-level objective
A service-level objective (SLO) is a metric used by a service provider to measure
its performance to ensure that it meets the SLA or the OLA.

Service model

A service model is the type of cloud service that you can use or create. The five
service models of cloud computing are IaaS, PaaS, SaaS, INaa$S, and BPaaS.

270 GLOSSARY

Thin client

Thin client may refer to a device, an application, or a service. A thin client
device is one that does not have a service or application installed on it; you
use the thin client device to access a remote application or service that may be
hosted in the cloud. A thin client application or service is one that is hosted
on a server (in traditional hosting) or in the cloud and can be accessed using a
zero, or a thin or a fat client device.

Utility price model

The utility price model, also known as a pay-per-use model, charges for us-
ing cloud resources based on usage. The usage can be measured in terms of a
single metric or a combination of metrics such as number of virtual CPU cores,
amount of memory, and network traffic.

Web application firewall

A web application firewall (WAF) is a type of application firewall that filters,
monitors, and blocks HTTP and HTTPS traffic to and from a web service based
on the traffic content.

Zero client
A zero client is similar to a thin client device except that its operating system
and browser are embedded in the hardware.

Zero trust

Zero trust designates an approach to building secure environments that rests

on the principles of (1) assuming security has been or will be breached, (2)

providing the lowest level of privilege to users necessary for them to perform

their tasks, and (3) always authenticating and authorizing requests for ser-
vices and data.

GLOSSARY 271

NOTES

Chapter 1

1. Peter Mell and Timothy Grance, “The NIST Definition of Cloud Comput-
ing” (draft), http://www.nist.gov/customcf/get_pdf.cfm?pub_id=909616 (ac-
cessed November 12, 2015).

2. Athin client machine is a computer that runs from computing resources on
a central server instead of from a local hard drive.

3. Michael Armbrust, Armando Fox, Rean Griffith, et al., “Above the Clouds: A
Berkeley View of Cloud Computing” (University of California, Berkeley, Febru-
ary 10, 2009).

Chapter 3

1. I first introduced the concept of a cloud cell as the precursor of the mi-
croservice paradigm in an article published in the twenty-first volume of
Microsoft’s Architecture Journal, titled “Extending Service Boundaries to In-
frastructure Resources.”

2. General packet radio service (GPRS) is a wireless communication service
that provides continuous connection to the internet.

3. The Gang of Four refers to the four authors—Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides—of the book Design Patterns: Elements of
Reusable Object-Oriented Software, which was published by Addison-Wesley in
1994. The book was a seminal work that has since become the authoritative
guide on software patterns.

Chapter 4

1. See the website of the Cloud Native Computing Foundation at https://
github.com/cncf/foundation/blob/master/charter.md (accessed June 22, 2021).
2. Immutable infrastructure describes servers (physical or virtual) that are
never modified after they have been deployed. Mutable infrastructure de-
scribes servers that require regular maintenance and administration and are
modifiable.

3. Aroot directory in Unix or Linux systems is the uppermost level of hierar-
chy in a directory structure. It should not be confused with a root user. A root
user is a user account that has the highest level of privileges in the system.

4. Aservice bus enables interacting software applications to communicate with
each other. The applications can be implemented with different technologies

http://www.nist.gov/customcf/get_pdf.cfm?pub_id=909616

and can be hosted on heterogeneous infrastructure. A service bus is used to
decouple applications and services from each other.

5. Borgwas first made public in a research paper published by Google authors.
Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, et al., “Large-Scale
Cluster Management at Google with Borg,” in ACM, Proceedings of the European
Conference on Computer Systems, 2015, https://research.google/pubs/pub43438
(accessed July 20, 2021).

Chapter 5

1. James Lewis and Martin Fowler, “Microservices: A Definition of This New
Architectural Term,” March 25, 2014, https://martinfowler.com/articles

/microservices.html (accessed September 11, 2021).

2. An enterprise service bus (ESB) connects services in a service-oriented ar-
chitecture. The ESB includes a lot of extra functionality beyond just providing

amessage bus, such as formatting of messaging, translating mesages from one

format to another, and routing them to a service on the basis of the content of
the message and the rules applied. It is the antithesis of a dumb pipe.

3. Transactional consistency, also referred to as hard consistency, offers up-
to-date data to all participants without any data lag but at the cost of high

latency time since it takes time to update the database so that all participants

have a consistent view of it.

4. Eventual consistency is generally found in distributed systems and NoSQL
databases, which are usually designed to be distributed. There is a lag before

all participants get a consistent view of the database and so a read request can

result in stale data. Eventually consistency is maintained, but at the cost of the

data lag, while low latency responses are provided to read requests.

5. See the Chaos Monkey website at https://github.com/netflix/chaosmonkey
(accessed September 12, 2021).

Chapter 6

1. Formally, a use case identifies, clarifies, and organizes a service’s or a sys-
tem’s requirements in a methodical manner. The use case is made up of a set
of possible sequences of interactions between a user and the service provided
when related to a particular goal. Even the informal use you put a cloud service
to or the requirement you have for it is considered a use case.

Chapter 8

1. Erika McCallister, Tim Grance, and Karen Scarfone, Guide to Protecting the
Confidentiality of Personally Identifiable Information (PII), NIST Special Publica-
tion 800-122 (US Department of Commerce, April 2010).

274 NOTES

https://research.google/pubs/pub43438
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://github.com/netflix/chaosmonkey

2. Firmware refers to the software that resides within a device and provides
its electronics with instructions to function as intended. Firmware is changed
rarely, if at all, during a device’s lifetime; indeed, some firmware is perma-
nently installed nonerasable memory (referred to as nonvolatile memory) and
cannot be changed after manufacture. VOIP stands for voice-over-internet-
protocol. It sends voice traffic over the internet so that you may have a con-
versation using software such as FaceTime or Skype.

3. Murphy’s law states that whatever can go wrong will go wrong eventually.

Chapter 9

1. Michael Nieles, Kelley L. Dempsey, and Victoria Y. Pillitteri, An Introduction

to Information Security, NIST Special Publication 800-12, rev. 1. (US Depart-
ment of Commerce, 2017).

2. Voice biometrics can be used for identification as well as verification. Iden-
tification determines an unknown speaker’s identity. Authentication verifies

whether a speaker’s identity is correct. In either case, voice biometrics use the
acoustical properties of a person’s voice to identify or authenticate since those
properties are unique to every individual.

3. Adaptive access has been defined by NIST as access control that uses an
authorization policy that considers operational need, risk, and heuristics.

4. TCP (transmission control protocol) is a connection-oriented protocol that
provides reliable, ordered, and error-checked delivery of a stream of octets

(bytes) between applications running on hosts that are linked over an IP net-
work. UDP (user datagram protocol) is a connectionless protocol that sends

messages (known as datagrams) over the IP network.

5. An IP network uses the internet protocol (IP) to deliver packets of data
from a source host to a destination host based entirely on the IP addresses
of the hosts that are contained in the packet headers. When TCP and UDP
use IP internetworking, they are referred to as TCP/IP and UDP/IP internet
protocols, respectively. NTP (network time protocol) is a networking protocol
for clock synchronization between computer systems. NTP is one of the oldest
protocols in use, having been operational since 1985. It is used to send and re-
ceive time stamps using UDP on port number 123. Examples include time de-
livery to personal computers by Apple and Microsoft by synchronizing the PCs
to their NTP servers on time.apple.com and time.windows.com, respectively.

6. Cookies are stored in a text file used by the internet browser but are ac-
cessed by websites to provide persistence between your visits to the sites. A
tracking cookie tracks the usage of your browser by recording your entries and
sending the information to the cookie designer. Not all tracking cookies are
malicious, although they can be used in such a manner.

NOTES 275

Chapter 10
1. For details, see Michael Hammer and James Champy, Reengineering the Cor-
poration: A Manifesto for Business Revolution (HarperBusiness, 2006).

Chapter 11
1. Alist of AWS regions and a map of where they are can be found at https://
aws.amazon.com/about-aws/global-infrastructure/regions_az (accessed June

18, 2022).

Chapter 12
1. Canary deployment is a way of reducing risk when introducing a new soft-
ware or service version by first rolling it out to a subset of users (or in a sand-
boxed testing environment) for testing purposes before deploying it fully in
production. The term comes from the idiom “canary in a coal mine,” which
alludes to coal miners taking a canary with them to assess the safety of the
coal mine.
2. Well-architected frameworks are available from all three major public cloud
providers: https://cloud.google.com/architecture/framework for GCP, https://
docs.aws.amazon.com/wellarchitected/latest/framework/welcome.html for
AWS, and https://docs.microsoft.com/en-us/azure/architecture/framework
for Azure (all accessed June 18, 2022).
3. Please see the RedHat website at https://www.redhat.com/en/topics/cloud
-native-apps/what-is-serverless (accessed September 7, 2021).

Chapter 13

1. The Global Positioning System (GPS) is an American satellite-based system,
owned by the US government, that provides location and time information
anywhere on or near Earth as long as there is an unobstructed line of sight to
four or more geopositioning satellites. Similar systems have been developed
by Russia (GLONASS) and China (BeiDou) using a constellation of satellites.
Indian (IRNSS) and European (Galileo) systems are also under development.
2. Near-field communication uses a technology that detects and identifies you,
when you are in its proximity, in order to initiate an instantaneous payment.

276 NOTES

https://aws.amazon.com/about-aws/global-infrastructure/regions_az
https://aws.amazon.com/about-aws/global-infrastructure/regions_az
https://cloud.google.com/architecture/framework
https://docs.aws.amazon.com/wellarchitected/latest/framework/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/framework/welcome.html
https://docs.microsoft.com/en-us/azure/architecture/framework
https://www.redhat.com/en/topics/cloud-native-apps/what-is-serverless
https://www.redhat.com/en/topics/cloud-native-apps/what-is-serverless

FURTHER READING

Bellemare, Adam. Building Event-Driven Microservices: Leveraging Organiza-
tional Data at Scale. O’Reilly, 2020.

Brynjolfsson, Erik, and Andrew McAfee. The Second Machine Age: Work, Progress,
and Prosperity in a Time of Brilliant Technologies. New York: Norton, 2014.

Culkin, John, and Zazon, Mike. AWS Cookbook: Recipes for Success on AWS.
O'Reilly, 2021.

Denzil, Watson. Corporate Finance: Principles and Practice, 8th ed. Pearson, 2019.

Erl, Thomas. Cloud Computing: Concepts, Technology and Architecture. Engle-
wood Cliffs, NJ: Prentice Hall, 2013.

Eyskens, Stephane, and Ed Price. The Azure Cloud Native Architecture Mapbook:
Explore Microsoft Cloud’s Infrastructure, Application, Data, and Security Architec-
ture. Pakt Publishing, 2021.

Kim, Gene, and Jez Humble. The DevOps Handbook: How to Create World-Class
Agility, Reliability, & Security in Technology Organizations. IT Revolution Press,
2021.

Millard, Christopher. Cloud Computing Law. Oxford University Press, 2021.

Newman, Sam. Building Microservices: Designing Fine-Grained Systems. O’Reilly:
2021.

Perry, Lea. IoT and Edge Computing for Architects: Implementing Edge and IoT Sys-
tems from Sensors to Clouds with Communication Systems, Analytics, and Security,
2nd ed. Pakt Publishing, 2020.

Abstraction level(s), 33-38, 41,
123-126, 133, 163-165
Access control, role-based, 173, 211,
221, 241, 261, 270
Aggregation, 52-55, 110, 180, 263,
267
Algorithm, 144-146, 150, 154, 232,
259
Amazon, 30, 32,108, 163, 218-219,
276n1 (chap. 11), 276n2 (chap.
12)
Antimalware. See Malware
API composition pattern, 88, 89-90
Apple, 45,104, 250, 251, 275n5
Application architecture, 13-14
Application development, 140, 142,
144-145, 154
Application integration, 140, 144,
146,150
Architecture, 18, 77, 82, 227, 230
application, 18
business, 18
cloud native, 227
data, 18
enterprise, 18
event-driven, 68, 75, 90-94, 226,
235-241
information, 18
infrastructure, 18
microservice, 69, 78, 81, 83, 89—
94,226
reference, 223, 231-241
security, 168
service-oriented, 274n2

INDEX

Architecture principles, 223—
229

Archive, 156, 220, 263, 265

Auditing, 191, 208, 222

Authentication, 95, 172-173, 178
179, 226, 228, 258-261, 268,
275n2 (chap. 9)

Authorization, 95, 172-173, 275n3
(chap. 9)

Automation, 62, 66, 71, 81, 222,
224,227,243,248

Availability, 4, 21, 110, 168-169,
171,185,194, 195, 214-215,
223,253, 264. See also CIA
triad

Availability Zone, 203-204, 233-
235

AWS, ix, 29, 32, 39, 65, 163,173,
176,196, 203-205, 208, 213,
216, 217-222, 227, 230-235,
239, 265, 270, 276n1 (chap. 11),
276n2 (chap. 12)

Azure, 39, 65, 173, 203, 210-216,
217-222,227, 229, 235, 241,
265, 270, 276n2 (chap. 12)

Backdoor, 150, 152, 257
Backup, 48, 147, 155-160, 196,
220, 263

differential, 157-158, 160
full, 157-160
grandfather-father-son, 160
incremental, 157, 158

Big data, 212

Billing, 7, 9, 96, 186, 188, 189, 198,
210, 268

Billing model, 3, 23

Biometrics, 172, 257, 275n2
(chap. 9)

Borg, 71, 274n5 (chap. 4)

BPaaS. See Business-Process-as-a-
Service

Bring-Your-Own-Device, 113.
See also University computing
model

Business continuity, 41, 55, 186,
188, 194-195, 204, 205, 257,
264

Business model, 40, 118,128

Business process, 7, 14, 18, 19, 37,
122,127,164-165, 188, 189,
194, 198-201, 265

Business-Process-as-a-Service, 17,
18, 33, 35, 37,41, 110, 121-123,
165, 199, 246, 252, 263

BYOD. See Bring-Your-Own-Device

CAPEX (capital expenditure), 3, 138,
264
Cash flow, 120, 128, 136-137
Charging mechanism. See Billing;
Price model
Checksum, 141, 143, 145-148, 174,
257
CIA triad, 168. See also Availability;
Confidentiality; Data, integrity
Client-server model, 25
Cloud
community, 20, 21, 40-41, 42, 55,
102, 103-104, 265
health, 20
hybrid, 20, 41-43, 117, 120, 126
248, 267

280 INDEX

personal, 43-45, 102, 104-109,
251-252

private, 19, 20, 21, 38, 39-43, 50,
73,111,176, 269

public, 10, 19, 23, 32, 38-39,
41-44, 50,111, 117, 133, 163
203-222, 241, 267, 269

of things and services (see Cloud
of things and services)

Cloud bursting, 20, 54, 55, 194,
264

Cloud cell patterns, 48-50. See also
Cloud patterns

Cloud cells, 34, 46-48, 54, 56, 57,
230, 264, 265, 268, 273n1
(chap. 3)

Cloud computing

actors, 150, 153, 239

definition of, 3-5, 7, 14, 20-23
(see also Cloud; Cloud cell; Cloud
patterns)

history of, 30-32

Cloud native, 61-75,197, 223,
227,232,236, 252, 265, 273nl
(chap. 4)

Cloud patterns, 34, 49-57, 253

Cloud of things, 43, 45-46, 102,
105,109-110

Cloud of things and services (CoTS),
247-251, 253. See also Internet
of things (IoT)

Cloud relationships, 33, 50-51,
110. See also Aggregation;
Composition; Encapsulation;
Federation

Cloud service broker, 113-115

Cloud service exchange, 252-

253. See also Cloud service
broker

Cloud services (conceptual), 10-14,
17-23, 34, 36, 37, 46-48, 51-59,
109, 116

Compliance, 141, 156, 191-192,
211, 263, 265

Composition, 51, 52, 55-57, 58, 78,
110, 263, 264, 265, 267

Confidentiality, 168, 171, 174, 258,
264, 274n1 (chap. 8). See also
CIA triad

Containers

historical perspective, 63-64
with Kubernetes, 70-72

Containers, 9-12, 30, 34, 46, 61-75,
82,98,99,172,174,178, 214,
216-219, 226, 229, 266

Cost of ownership, 198

CoTS. See Cloud of things and
services

Critical success factors, 184-186,
187,199

CRM. See Customer relationship
management

Currency, 266

Customer relationship management,
30,42, 56

Data

integrity, 19, 141, 142-143, 149,
151,162, 168, 171, 192-193,
258

loss, 143, 147-148, 155, 220

migrating (migration), 154-155,
201

privacy, 43, 148-152

at rest, 147, 150

sovereignty (jurisdiction), 141,
152-154

three states of, 147

Data architecture, 18

Database service, 34, 36, 46-48, 51,
56, 65, 66, 81, 82, 85, 88-93,
147,154, 176,197, 205, 212,
219, 232-233, 239-240, 259,
274nn3-4

Data center, 2, 54-55, 111, 141, 204,
206, 214, 215

Data integration, 193

Data models, 46, 193

Decoupling, 92, 219

Decryption, 258

Delivery model, 191, 266

Demilitarized zone. See DMZ

Deployment model, 4, 5, 19-20, 33,
34,38-44,111, 123,124,133

Disaster recovery, 55, 194-197,
204, 205

DMZ, 51, 181, 258, 259

Dropbox, 39, 43, 44, 130, 150

Economics, Gossen’s first law of, 47
Efficiency
cost, 7,43, 54,129, 199, 250
performance, 2, 10, 14, 22, 43, 90,
108, 127-129, 195, 214, 2186,
222,231,270
Elasticity, 7, 21-22, 25, 33, 55, 104,
265, 266
Encapsulation, 41, 51-52, 57, 110,
264, 267
Encryption, 48, 141-144, 148, 150,
162,192,258

Federation, 51, 58-59, 110, 264,
267

Financial metrics, 133-139

Firewall, 51, 175-179, 221, 259, 271

Functional requirements, 185

INDEX 281

GCP, 39, 65, 203, 206-210, 212, 213,
215-222, 227,229, 241, 270,
276n2 (chap. 12)

Google, 31-32, 39, 43, 71, 104, 250,
251, 274n5 (chap. 4)

Governance, 19, 79, 188-191, 253

GPS, 247, 248, 276n1 (chap. 13)

Health cloud, 20, 40, 103, 105, 250-
253,262

Health monitoring (cloud), 71, 98,
175,222

Host machine. See Physical
machine

Hypervisor, 11, 28-29

TaaS. See Infrastructure-as-a-Service

INaaS. See Information-as-a-Service

Information architecture, 18

Information-as-a-Service, 17, 18,
33-37,107, 121-123, 164-165
199, 267, 270

Information Technology
Infrastructure Library (ITIL),
267

Infrastructure-as-a-Service, 9, 16—
18, 22, 33-37, 40, 41, 47, 121,
122,125,163-165,173, 252,
270

Instance (cloud or microservice), 23,
77,78, 81, 82, 85,99, 183, 205,
210, 211, 216, 217, 233-237

Integrity. See CIA triad; Data,
integrity

Internet, 3, 25-28, 30, 38-41, 46,
104-109, 150, 181, 183, 205,
213,221, 245, 247, 258, 273n2
(chap. 3), 275n2 (chap. 8),
275nn5-6

282 INDEX

Internet of services (I0S), 246-248,
252. See also Cloud of things and
services

Internet of things (IoT), 152, 199,
212,245-253

Interoperability, 59, 184, 185, 188-
192,193,198, 199, 225, 252, 268

I0S. See Internet of services

IoT. See Internet of things

Key Performance Indicator (KPI),
128-129, 133, 188-189

Lambda functions, 205, 218, 233,
234,239-241, 270

Legal issues, 17, 141, 149, 152-154,
191-192

Malware (and antimalware), 149,
166, 178-179, 260, 261, 262
Maturity model, 184-189, 268
Messaging, 79, 93, 219, 274n2
Metrics, 14, 69, 96, 126-129, 133-
139, 155, 169, 183-184, 188~
189, 217, 227,229, 271
Microservice, 12, 34, 65, 67-69, 73—
75, 77-99, 219, 236, 268
Microservice pattern
API composition, 89-90
API gateway, 90, 94-97, 218, 239
circuit breaker, 97-98
CQRS, 88,90-91, 94
database-per-service, 83, 85, 88,
89, 90, 94
event sourcing, 93-94
publish-subscribe, 92-93, 235-
236, 240 (see also Messaging)
saga, 88-89
sidecar, 98-99

Microservice patterns, 83-99

Microsoft, 32, 39,101, 104, 111,
210-216, 251, 273n1 (chap. 3),
275n5, 276n2 (chap. 12)

Middleware, 18, 78, 219, 240. See
also Messaging

Monitoring, 69-71, 81, 147-148,
176, 178-180, 187-189, 197—
198, 222, 229, 231. See also
Observability

Multitenancy, 23, 268

Net present value (NPV), 120, 133,
135,136-139

Networking (and networks), 11, 21,
25-28, 33, 38-39, 69, 75, 97,
141-147,161-165, 170-177
181-185, 204-208, 211-216,
221, 235, 240-241, 245, 258,
266, 271, 275nn4-5. See also
TCP

NIST, 4-5, 7, 17-20, 148, 273n1
(chap. 1), 275n1, 275n3 (chap.
9)

Nonfunctional requirements, 185

NPV. See Net present value

Observability, 62, 66, 69, 197. See
also Monitoring

Operational Level Agreement (OLA),
14, 270

OPEX (operating expenditure), 3,
138, 269

PaaS. See Platform-as-a-Service
Paradigm shift
personal, 101, 104-110
social, 101, 102-104
work, 101, 111-116

Payback method, 133-135
Personal cloud
for finance, 107-109
for health, 105-107
for leisure, 105-107
for shopping, 109
Personal cloud, 43, 102, 104-109,
111, 251, 252
Physical machine, 6, 7, 10-12, 26,
29, 65-72, 109, 162-165, 205,
266, 273n2 (chap. 4), 275n5
PID. See PII
PII (personally identifiable
information), 148, 274n1
(chap. 8)
Platform-as-a-Service (PaaS), 16—
18, 33,35-38,41,47,121,
122,124,163, 164, 252, 269,
270
Price model
business-linked, 128
consumption-based, 51, 121
fixed, 124
freemium, 130
gain-share, 128
hybrid, 132-133
marketing, 129
outcome-based, 127
performance-based, 126
razor-and-blades, 130
service-based, 124
subscription-based, 123
tiered, 125
transaction, 122
utility, 121, 246, 271
volume-based, 124
Privacy, 43, 108, 141, 148-152, 171.
See also Data, integrity; Data,
privacy; PII

INDEX 283

Process integration, 193-194
Productivity, 47,129, 191, 192
Profit, 130, 137, 189

Profit margin, 129

Quality of service, 13, 81, 124, 266,
270

Recovery, 155-156, 169, 194-197,
239, 269. See also Disaster
recovery

Recovery point objective (RPO), 155,
169, 195-197, 269

Recovery time objective (RTO), 155,
169, 195-197, 269

Reporting, 7, 9, 69, 186-189, 198,
268

Return on investment (ROI), 129,
133,135-136

Risk, 21, 114, 120, 124, 132, 159
175,186, 261, 275n3 (chap. 9),
276n1 (chap. 12)

ROL. See Return on investment

RPO. See Recovery point objective

RTO. See Recovery time objective

SaaS. See Software-as-a-Service
Scalability
horizontal, 21, 22, 69, 183 (see
also Elasticity)
vertical, 22
Security
application, 174-175
data, 141, 150, 162,174
monitoring, 178-180
network, 175-177, 227, 235
touchpoints, 170-171
user, 173-174
Security container, 172,174,178

284 INDEX

Security information and event
management. See SIEM
Service
broker, 58, 59, 104, 113, 115
consumer, 13, 58, 270
exchange, 252
Service-level agreement (SLA),
13-14, 17, 20, 53, 54, 124-129,
183, 270
Service-level objective (SLO),
270
Shadow IT, 114, 115
Shared responsibility model, 161,
163-166,173
SIEM, 180-181
SLA. See Service-level agreement
SLO. See Service-level objective
Societal cloud, 102-104
Software-as-a-Service (SaaS), 17-18,
30, 33, 35-38, 41, 47, 52-55,
121-122,130, 163-165, 199,
270
Storage, 6, 11, 16-17, 23, 32, 37, 47,
48, 51, 55-56, 70-71, 105, 112,
121,124,147,154,157-159,
170, 196, 206, 210-212, 218-
222,224,233, 259, 265, 268

TCP (transmission control protocol),
26-28,176, 216, 221, 275nn4-5

Tenancy. See Multitenancy

Testing, 57, 78, 81, 211, 230, 259
269, 276n1 (chap. 12)

Thin client, 5,111-112, 125, 271,
273n2 (chap. 1). See also Zero
client

Time-to-market, 47, 127, 129, 133,
139,189

Training, 103, 193

University computing model, 112
Usage model, 185

Value model, 50, 51, 116, 129
Virtualization
application, 5
server, 5-7
Virtual machine (VM), 5-9, 11, 12,
28-30, 46, 61, 64-65, 72, 82,
163, 164-165, 183, 211, 217~
219, 226, 268

Well-architected
framework, 229-232, 276n2
(chap. 12)
solution, 204-205
Workflow, 194, 199, 218, 248, 267
Workstation, 5,29,111-112

Zero client, 111,179, 271

Zero-trust model, 171-173, 174,
210, 226, 233, 236, 240, 241,
271

INDEX

285

NAYAN RUPARELIA has over thirty years of experience in IT, of which ten
years have been as a CTO at organizations ranging from startups to multi-
nationals. He has demonstrable experience in leading transformation proj-
ects that make companies more agile and efficient through the application

of technology.

	Contents
	Series Foreword
	Preface
	1: Introduction
	A Definition of Cloud Computing
	Virtualization
	Cloud Services
	Service Models: Levels of Abstraction
	Cloud Deployment Models
	Five Characteristics of Cloud Computing

	2: A Historical Perspective
	Internetworking
	Virtualization
	Cloud Computing

	3: Types of Cloud Computing
	Abstraction Levels
	Deployment Models
	Types of Cloud
	Cloud Cells
	Cloud Cell Patterns
	Cloud Relationships

	4: Cloud Native Foundations
	Containers: A Historical Perspective
	Why Containers?
	Managing Containers with Kubernetes
	Cost Optimization
	What’s Next?

	5: Microservices and Their Design Patterns
	Characteristics of Microservices
	Microservice Design Patterns

	6: Cloud Computing
	Social Paradigm Shift
	Work Paradigm Shift

	7: Price Models
	Price Models
	Financial Metrics

	8: Data
	Data Integrity
	Data Privacy
	Data Jurisdiction and Sovereignty
	Migrating Data to the Cloud
	Backup and Recovery

	9: Security
	Shared Responsibility Model
	Key Security Components
	Security Touchpoints
	Zero-Trust Model�����������������������
	User Security: Identity and Access Management
	Data Security
	Application Security
	Network Security
	Security Monitoring

	10: Transitioning to the Cloud
	Critical Success Factors
	Cloud Maturity Model
	Interoperability
	Business Processes

	11: Public Cloud Examples
	Amazon’s AWS Concepts
	Google Cloud Platform Concepts
	Microsoft Azure Concepts
	Public Cloud Resources

	12: Reference Architectures
	Architecture Principles
	Well-Architected Frameworks����������������������������������
	Reference Architecture for a Web Application
	Event-Driven Serverless Reference Architecture���

	13: Future Outlook
	Internet of Things and Services
	Cloud of Things and Services (CoTS)
	Personal Clouds
	A Cloud Service Exchange
	Conclusion

	Acknowledgments
	Appendix A: Common Security Terms
	Glossary
	Notes
	Chapter 1
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13

	Further Reading
	Index

