Rafael Gomes

docker

for Developers

E) instruct JBraveS

Docker for Developers

Rafael Gomes
This book is for sale at http://leanpub.com/docker-for-developers

This version was published on 2017-07-26

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean Publishing is
the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have
the right book and build traction once you do.

©MOoM

This work is licensed under a Creative Commons Attribution 4.0
International License

http://leanpub.com/docker-for-developers
http://leanpub.com/
http://leanpub.com/manifesto
http://creativecommons.org/licenses/by/3.0/deed.en_US
http://creativecommons.org/licenses/by/3.0/deed.en_US
http://creativecommons.org/licenses/by/3.0/deed.en_US

Contents

Preface
Bestregards, L
How toread thisbook 3
Acknowledgements L 4
Introduction L L Lo 6
Why using Docker? L. 7
WhatisDocker? 14
Setup 17

Settingup on GNU/Linux 17
SettinguponMacOS 20
Settingupon Windows 21
Basiccommands L. 25
Runningacontainer. 25
Checking the list of containers 29
Managing containers 30
Creating your own image on Docker 31

Understanding storage on Docker 38

CONTENTS

Understanding the network on Docker 43
Using Docker in multiple environments 52

Managing multiple Docker containers with Docker Com-

pose 61
How to use Docker without GNU/Linux 69
Turning your application into a container 77
Codebase 79
Dependencies 83
Config. 86
Backing services L oL 90
Build, release,run 93
Processes 98
Portbinding 101
Concurrency e 104
Disposability oL 112
Development/production parity 116
Logs 118
Admin processes L. 120
Tips forusing Docker 123

Tipsforrunning 123

Best practices to build images 131

CONTENTS

Apéndice 139
Container or virtual machine? 139
Useful commands 144

Can [run GUI applications? 144

Preface

In software development it is usual to create good practices for
standards. Especially for web applications, certain concepts and
practices such as DevOps, cloud infrastructure, Phoenix, immutable
and 12 factor apps are widely accepted theories that help on systems
productivity and maintenance. While these concepts are not new,
many are the tools and systems that can help to implement them.
But Docker is one of the first and most commented tools and
platforms that combine many of these concepts in a cohesive and
simple way. As any tool, Docker is an investment that provides
the best return when you understand its purpose and how to use
it properly.

There are several presentations, papers and documents about Docker.
However, there was the opportunity of a book connecting the the-
ory to the practice of the tool, in which the reader could understand
the motivations of Docker and also how to organize the application
in order to get the best from the tool.

I am very pleased that Rafael wrote this book that I believe it’s an
important contribution to our field.

Rafael is extremely engaged in Docker and Devops communities in
Brazil, and understands what people seek in terms of knowledge
regarding this subject. In this book you will be able to understand
the basics on Docker with a simple language and many practical
examples.

I hope this publication turns into one more step to boost your
journey. I wish you success and all the best.

Preface

Best regards,

Luis Armando Bianchin

How to read this book

This material was divided in two big parts. The first one approaches
the most basic points of Docker. It is the exactly minimum necessary
that a developer needs to know to use this technology properly, that
is, knowing what happens exactly when executing each command.

In this first part, we will try not to approach the “low level” issues
of Docker, because they are more appealing for the infrastructure
team.

In case you don’t know anything about Docker, we strongly advise
you to read this first part, so you can go through the next part
that focus on building a web application on Docker following the
best practices, no pauses. In this book, we used the practices from
12factor’.

The 12 factor will be detailed in the beginning of the second part,
but we can tell what we consider the “12 commandments for web
applications on Docker”, that is, once your application follows all
the good practices presented in this document, you will be possibly
using Docker at its full potential.

This second part is divided by each good practice of 12factor.
Therefore, we present a sample code in the first chapter that will
evolve while the book develops. The idea is that you can practice
with a real code, thus absorbing the content in a practical way. We
also put together some appendices with extra-important subjects
that don’t fit in the following chapters.

1 https://12factor.net/pt_br/

https://12factor.net/pt_br/
https://12factor.net/pt_br/

Acknowledgements

My first thanks go to the person who gave me the chance of being
here and to be able to write this book: my mother. The famous
Cigana, or Dona Arlete, a wonderful person and a role model.

I want also thank to my second mother, Dona Maria, who took so
much care of me when I was a kid while Dona Arlete was taking
care of her two other kids and a nephew. I feel lucky for having two
moms while many don’t have one.

I take this chance to thanks the person who introduced Docker to
me, Robinho?, also known as Robson Peixoto. In a conversation
during the Linguégil meeting, in Salvador, Bahia, he told me: “Study
Docker!” And here I am finishing a book that transformed my life.
I truly thank you, Robinho!

Thanks to Luis Armando Bianchin, who started to write along with
me but was not able to go on for other reasons. I'm very grateful,
for your constant feedback kept me going on writing this book.

Thanks to Paulo Caroli who encouraged me to write the book and
introduced me to the Leanpub platform. If it wasn’t for him, this
book would not be here so quick.

Thanks to the amazing Emma Pinheiro®, for the beautiful cover. I
also want to thanks a lot the incredible people from Raul Hacker
Club*, who have strongly encouraged me this whole time.

Thanks for the mother of my son, Eriane Soares, who is an amazing
friend of mine and have encouraged me to write the book while we
were still living together!

*https://twitter.com/robinhopeixoto
*https://twitter.com/n3k00n3
“http://raulhc.cc/

https://twitter.com/robinhopeixoto
https://twitter.com/n3k00n3
http://raulhc.cc/
http://raulhc.cc/
https://twitter.com/robinhopeixoto
https://twitter.com/n3k00n3
http://raulhc.cc/

Acknowledgements 5

As every open knowledge product, this book wouldn’t be possible
without the help of the vibrant Docker Brazil community. I will
highlight the effort of some members of reading several chapters
many times and dedicating their precious time and suggesting
improvements:

+ Gjuniioor gjuniioor@protonmail.ch

« Marco Antonio Martins Junior’ - Wrote the chapters “Can I
run GUI applications” and “Useful commands”.

« Jorge Flavio Costa®

« Glesio Paiva’

« Bruno Emanuel Silva®

« George Moura’

« Felipe de Morais'

« Waldemar Neto™!

« Igor Garcia

« Diogo Fernandes'

Possibly, I have forgotten to mention some people here, but as I
recover my logs I will updated it.

5https://twitter.com/somatorio
®https://twitter.com/JFCostta
"https://twitter.com/glesio
®https://twitter.com/jwalker_pe
ghttps://twitter.com/ georgemoura
10https://twitter.com/feliped(-‘:morais_
11https://twitter‘com/waldemarnt
Phttps://twitter.com/diogocfernandes

mailto:gjuniioor@protonmail.ch
https://twitter.com/somatorio
https://twitter.com/JFCostta
https://twitter.com/glesio
https://twitter.com/jwalker_pe
https://twitter.com/georgemoura
https://twitter.com/felipedemorais_
https://twitter.com/waldemarnt
https://twitter.com/diogocfernandes
https://twitter.com/somatorio
https://twitter.com/JFCostta
https://twitter.com/glesio
https://twitter.com/jwalker_pe
https://twitter.com/georgemoura
https://twitter.com/felipedemorais_
https://twitter.com/waldemarnt
https://twitter.com/diogocfernandes

Introduction

This part of the book is for those who don’t have any basic
knowledge of Docker. In case you do, don’t be shy and jump to the
next part. However, even if you do know Docker, we are presenting
explanations on several available resources and how they work.

Even if you are a regular Docker user, reading this part of the book
at some point of your life can be important in order to know more
about what happens at every executed command.

Why using Docker?

Docker has been a very commented subject lately, many articles
have been written, usually talking about how to use it, auxiliary
tools, integrations and the like, but many people still ask the most
basic question when it’s about the possibility of using any new
technology: “Why should I use this?” Or would it be: “What this
has to offer me that is different from what I have today?”

It is natural that people still doubt the Docker’s potential, some even
think that it’s about some hype!®. But in this chapter we intend to
show some good reasons to use Docker.

It’s important to highlight that Docker is not a “silver bullet” - it is
not intended to solve all the problemas, much less being the only
solution to several situations.

13http:/ /techfree.com.br/2015/06/sera- que-esse-modelo-de-containers-e-um-hype/

http://techfree.com.br/2015/06/sera-que-esse-modelo-de-containers-e-um-hype/
http://techfree.com.br/2015/06/sera-que-esse-modelo-de-containers-e-um-hype/

Why using Docker? 8
Here are some good reasons for using Docker:

1 - Similar environments

It’s worth to highlight that Docker is not a “silver bullet” — it is
not intended to solve all the problemas, much less being the only
solution to several situations. Once your application is turned into
a Docker imagem, it can be instantiated as a container in any
environment you wish. That means you can use the application at
the developer’s notebook as well as it would run at the production
server.

The Docker image accepts parameters at the start of container, thus
indicating that the same image can behave differently in distinct
environments. This container can connect to its loca database for
testing, using the credentials and the testing database. But when
the container created from the image receives parameters from
the production environment, it will access the database in a more
robust infrastructure, with its respective production credentials and
database, for instance.

The Docker images can be considered atomic implantations -
which provides more predictability compared to other tools such as
Puppet, Chef, Ansible etc. — impacting positively on errors analysis,
as well as on the reliability of the continuous delivery process',
which is strongly based on the creation of a single artefact that
migrates between environments. In the case of Docker, the artefact
would be the image itself with all the dependencies required to
execute its code, whether compiled or dynamic.

2 - Application as a whole package

Using the Docker images makes possible to package all of your
application and dependencies, making the distribution easy because

Yhttps://www.thoughtworks.com/continuous- delivery

https://www.thoughtworks.com/continuous-delivery
https://www.thoughtworks.com/continuous-delivery

Why using Docker? 9

it won’t be necessary to send an extent documentation explaining
how to configure the required infrastructure to allow the execution,
just make the image available in a repository and grant the access
to the user, so the user can download the build that will be executed
with no problems.

Updating is also positively affected, because the layer structure!® of
Docker allows that, in case of change, only the altered part is trans-
ferred, so the environment can be changed faster and simpler. The
user only needs to execute one command to update the application
image, that will be reflected on the container running on the desired
moment. The Docker images can hold tags, thus making possible to
store multiple versions of the same application. That means that, if
there’s a problem on the update, the backup plan will be basically
to use the image along with the previous tag.

3 - Standardization and replication

As the Docker images are built with definition files's, it is possible
to guarantee that a given pattern will be followed, increasing the
confidence on replication. You just the need the images to follow
the [best practices] (https://docs.docker.com/engine/userguide/eng-
image/dockerfile_best-practices/) of building so it is viable to esca-
late'’the structure quickly.

In case a new member enters the team to work on development,
he/she can get the work environment with a few commands. This
process will take the time of downloading the images that are
going to be used, as well as the definition files to manage them.
This helps the introduction of a new member in the process of
developing an application, who will be able to quickly reproduce
the environment in his/her station, thus writing codes according to
the team’ standard.

Bhitp://techfree.com.br/2015/12/entendendo-armazenamentos-de-dados-no-docker/
"https://docs.docker.com/engine/reference/builder/
"https://pt.wikipedia.org/wiki/Escalabilidade

http://techfree.com.br/2015/12/entendendo-armazenamentos-de-dados-no-docker/
https://docs.docker.com/engine/reference/builder/
https://pt.wikipedia.org/wiki/Escalabilidade
https://pt.wikipedia.org/wiki/Escalabilidade
http://techfree.com.br/2015/12/entendendo-armazenamentos-de-dados-no-docker/
https://docs.docker.com/engine/reference/builder/
https://pt.wikipedia.org/wiki/Escalabilidade

Why using Docker? 10

If there’s the need of testing a new version of a certain part of
the solution, using Docker images, usually it’s only necessary to
change one or more parameters of the definition file in order to start
a modified environment with the requested version to evaluation.
That is: creating and modifying the infrastructure got easier and
faster.

4 - Common language between infrastructure
and development

The syntax used to parameterize the Docker images and environ-
ments can be considered as a common language between areas
that usually don’t dialogue well. Now it’s possible to both sectors
to make proposals and counter-proposals based on a common
document. The required infrastructure is going to be present in
the code of the developer and the infrastructure area will be able
to analyse the document, suggesting changes to get in sync with
the standards of the sector or not. All that through comments and
acceptance of merge or pull request from the code version control
system.

5 - Community

As it is possible to access github'® or gitlab'® to search code samples,
using the image repository?® of Docker makes possible to get
good models of application infrastructure or services for complex

integrations.
For example: nginx®! as a reverse proxy, and mysql®* as a database.

In case the application needs these two resources, you don’t have

http://github.com/
Phttps://about.gitlab.com/
“Ohttp://hub.docker.com/
*'https://hub.docker.com/_/nginx/
**https://hub.docker.com/_/mysql/

http://github.com/
https://about.gitlab.com/
http://hub.docker.com/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/mysql/
http://github.com/
https://about.gitlab.com/
http://hub.docker.com/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/mysql/

Why using Docker? 11

to need to waste time installing and setting up theses services. Just
use the images from the repository, setting up minimum parameters
for suitability to the environment. Usually the official images follow
the good practices for using the services offered.

Using these images doesn’t mean to “be held hostage” of their
configuration, because it is possible to send you own configuration
to the environments and just prevent the basic installation.

Questions

Some people sent some questions regarding the advantages we
presented in this text. Thus, instead of answering them one by one,
we decided to publish the questions and their answers here.

What is the difference between Docker image and
definitions created by an infrastructure automation
tool?

As an example of infrastructure automation tools we have Puppet®,
Ansible*, and Chef*. They can guarantee similar environments,
once their job is to keep a given configuration on the desired asset.

The difference between the Docker solution and the configura-
tion management may seem very thin, for both can support the
necessary configuration of every infrastructure that an application
demands to be implanted, but we think that one of the most
relevant differences is in the following fact: the image is a complete
abstraction and doesn’t require any treatment to deal with most
varied GNU/Linux distributions that exit, since the Docker image
comes along with a full file copy of a lean distribution.

23https://puppetlabs‘com/
https://www.ansible.com/
®https://www.chef.io/chef/

http://www.ibm.com/developerworks/br/library/a-devops2/
http://www.ibm.com/developerworks/br/library/a-devops2/
https://puppetlabs.com/
https://www.ansible.com/
https://www.chef.io/chef/
https://puppetlabs.com/
https://www.ansible.com/
https://www.chef.io/chef/

Why using Docker? 12

To carry within the copy of a GNU/Linux distribution is usually
not a problem for Docker, because using the layer model saves a lot
of resources by reusing the base layers. Read this article?® to know
more about Docker storage.

Another advantage of image in relation to the configuration man-
agement is that, when using the image, it is possible do make
available the complete application package in a repository, and
this “final product” be easily used without needing a complete
configuration. Just one configuration file and one command can be
enough to start an application build as a Docker image.

Still on the process of the Docker image as a product in the
repository: it can also be used in the process of updating the app, as
we previously explained in this chapter.

The use of the base image on Docker of a given
distribution is not the same of creating a definition
of a configuration management for a distribution?

No! The difference is in the host perspective. On Docker, it doesn’t
matter which GNU/Linux distribution is used on the host, for
there is a part of the image that carries all the files from a mini-
distribution that will be sufficient to support everything the app
needs. In case your Docker host is Fedora and the app needs files
from Debian, don’t worry because this given image will bring up
Debian files to support the environment. As said previously, this
usually doesn’t affect negatively in disk space consumption.

Does it mean that |, as a developer, have to worry
about everything on Infrastructure?

No! When we say that it is possible to the developer to specify
the infrastructure, we are talking about the closest layer of the

*http://techfree.com.br/2015/12/entendendo-armazenamentos-de-dados-no-docker/

http://techfree.com.br/2015/12/entendendo-armazenamentos-de-dados-no-docker/
http://techfree.com.br/2015/12/entendendo-armazenamentos-de-dados-no-docker/

Why using Docker? 13

application and not all the required architecture (Basic operational
system, firewall rules, network rules etc.).

The ideia on Docker is that relevant subjects directly connected to
the application can be configured by the developer. This does not
obligate him/she to perform this activity. This is a possibility that
pleases many developer, but in case it is not your situation you can
relax, another team will deal with this part. The deploy process will
get a little slower.

Many people refer to Docker for be used with
microservices. Is it possible to use Docker to
monolithic applications?

Yes! However, in some cases minor changes in the applications are
required so it can enjoy the facilities of Docker. A common example
is the log that usually the application sends to a given file, that is, in
the Docker model the applications in the containers should not try
to write or generate log files. Au contraire, each process in execution
writes its own event flow, no buffer, to stdout?’, because Docker
holds specific driver to treat the log sent this way. The subject
on best practices of log manager will be approached in the next
chapters.

At some point you will realize that using Docker to your application
demands lots of effort. In this cases, usually the problem relies in
how the application works and not on the Docker configuration. Be
aware of that.

Do you have more questions and/or good reasons for using Docker?
Leave your comment here®®.

Thttps://pt.wikipedia.org/wiki/Fluxos_padr%C3%A30
**http://techfree.com.br/2016/03/porque-usar-docker/

https://www.thoughtworks.com/pt/insights/blog/microservices-nutshell
https://pt.wikipedia.org/wiki/Fluxos_padr%C3%A3o
http://techfree.com.br/2016/03/porque-usar-docker/
https://pt.wikipedia.org/wiki/Fluxos_padr%C3%A3o
http://techfree.com.br/2016/03/porque-usar-docker/

What is Docker?

In a very summarised way, we can say that Docker is an open
platform, created with the goal of facilitating the development,
deployment and execution of applications in isolated environments.
It was designed especially to make an application available in the
fastest way as possible.

8 — v
— G
) —¢
7
= e

Using Docker, you can easily manage the application infrastructure,
speeding up the process of creation, maintenance and modification
of your service.

The process occurs without the need of any privileged access to
the corporate infrastructure. Therefore, the team responsible for the
application can take part in the environment specification along
with the team responsible for the servers.

Docker provided a common “language” between developers and
servers administrators. This new “language” is used to build files
with the definitions of the required infrastructure and to show how
the application will be arranged in this environment, which port
will provide the service, which data from external volumes will be

What is Docker? 15

requested and other possible requests.

Docker also provides a public cloud to share ready environments,
that can be used to enable customizations for specific environments.
It is possible to get a ready image from apache and configure the
specific requested modules to the applications, thus creating your
own customised environment. All with a few source lines of code.

Docker uses the container model to “package” the application that,
after being transformed into a Docker imagem, can be reproduced
in a platform of any size; that is, in case the application runs
flawlessly in your notebook, it will behave the same in the server
ou mainframe. Build once, and execute wherever you want.

Containers are isolated on disk, memory, processing and network
levels. This separation provides great flexibility, in which distinct
environments can co-exist in the same host without any issues. It is
worth to highlight that the overhead in this process is the minimum
necessary, because each container usually carries only one process,
that is responsible for delivering the desired service. In any case,
this container also carries every file needed (configuration, library
and related) for a complete isolated execution. Another interesting
point on Docker is the velocity to make the desired environment
feasible; as it is basically the beginning of a process and not a
whole operational system, the availability time is usually counted
in seconds.

Virtualization at operational system level

The isolation model in Docker is the virtualization at operational
system level, a virtualization method in which the kernel of the
operational system allows that multiples processes are executed
separately in the same host. These running isolated processes are
called containers.

What is Docker? 16

N 2 R

Bins/Libs Bins/Libs Bins/Libs
Docker Engine

Operating System

Infrastructure

To create the required isolation in the process, Docker uses the
kernel functionality, called namespaces®, that creates isolated en-
vironments between containers: the processes of a running applica-
tion will not have access to the resources of another one. Unless it
is expressly enabled in the configuration of each environment.

To avoid the exhaustion of machine resources due to one isolated
environment, Docker uses the cgroups® feature from kernel. This
makes possible the coexistence os different containers in the same
host, without one affecting the other for overusing shared resources.

*http://man7.org/linux/man-pages/man7/namespaces.7.html
*https://en.wikipedia.org/wiki/Cgroups

http://man7.org/linux/man-pages/man7/namespaces.7.html
https://en.wikipedia.org/wiki/Cgroups
http://man7.org/linux/man-pages/man7/namespaces.7.html
https://en.wikipedia.org/wiki/Cgroups

Set up

Docker stopped being just a software to turn into a set of softwares:
an ecosystem. In this ecosystem we have the following softwares:

« Docker Engine: It’s the base software of the solution. It is
both the daemon responsible for the containers and the client
used to send commands to daemon.

+ Docker Compose: It’s the tool responsible for defining and
executing multiple containers based on definition files.

+ Docker Machine: It’s the tool that enables to create and
keep Docker environments in virtual machines, cloud envi-
ronments and even in a physical machine.

We are not mentioning Swarm®! and other tools because they’re not
lined up with the goal of this book: introduction to developers.

Setting up on GNU/Linux

We will explain the set up in the most comprehensive way, thus you
can install the tools in any GNU/Linux distribution you are using.

Docker engine on GNU/Linux

To set up Docker Engine is simple. Access your GNU/Linux termi-
nal of choice and become root user:

*'https://docs.docker.com/swarm/overview/

https://docs.docker.com/swarm/overview/
https://docs.docker.com/swarm/overview/

Set up 18

su - root

or, in case of using sudo

sudo su - root

Execute the following command:

wget -qO- https://get.docker.com/ | sh

We advise you to read the script that’s being executed in your
operational system. Access this link®” and analyse the code when
you have the time.

This procedure takes a little while. After finishing the test, execute
the following command:

docker container run hello-world

Solving possible problems

If the internet access on the machine goes through traffic control
(that blocks the access to certain pages), you can find some problems
while in the apt-key step. In case you are facing this issue, execute
the following command:

wget -qgO- https://get.docker.com/gpg | sudo apt-key add\

Setting up Docker compose with pip

[Pip](https://en.wikipedia.org/wiki/Pip_(package manager) is a Python
package manager and, as Docker Compose is written on this lan-
guage, it is possible to set it up as it follows:

**https://get.docker.com/

https://get.docker.com/
https://get.docker.com/

S W N e

Set up 19

pip install docker-compose

Solving possible problems

If you don’t have the command pip installed in your computer,
usually it can be set up using your package management system
called python-pip or similar.

Docker machine on GNU/Linux

Setting up Docker Machine is simple. Access your terminal of choice
on GNU/Linux and become root user:

su - root

or, in case of using sudo

sudo su - root

Execute the command below:

$ curl -L https://github.com/docker/machine/releases/do\
wnload/v0.10.0/docker-machine- "uname -s - "uname -m~ > /\
usr/local/bin/docker-machine && \

chmod +x /usr/local/bin/docker-machine

To test, execute the command below:

docker-machine version

Obs.: The previous example uses the latest version available when

this book was published. Check if there’s some updated version
verifying the official documentation®”.

*https://docs.docker.com/machine/install- machine/

https://docs.docker.com/machine/install-machine/
https://docs.docker.com/machine/install-machine/

Set up 20

Setting up on MacOS

The installation of tools from the Docker ecosystem on MacOS is
made through a single big package called Docker for Mac.

You can set it up via brew cask by following the command below:
brew cask install docker

To set up the initial configuration, you must execute the Docker
application:

Q_ docker

TOP HIT

& Docker - Applications

On the following screen, select the option Ok.

Docker needs privileged access.

Docker for Mac needs privileged access to install its networking
N~ components and links to the Docker apps.

You will be asked for your password.

Your user and password will be requested to authorize the installa-
tion of softwares. Fill them in and follow the process.

Set up 21

Docker wants to make changes. Type your
password to allow this.

S
Username: Rafael Gomes

Password:

Cancel | [

To test, open a terminal and execute the command below:

docker container run hello-world

Setting up on Windows

The installation of tools of the Docker ecosystem on Windows can
be made through a single big package called Docker Toolbox.

Docker Toolbox works only on 64 bit versions** of Windows and
only for versions later than Windows 7.

It is important to highlight that it is necessary to enable the
virtualization support. On Windows 8, it is possible to check it
using the Task Manager. At the Performance tab, click on CPU
to visualize the following window:

34https://support.microsoft.com/en—us/kb/827218

https://support.microsoft.com/en-us/kb/827218
https://support.microsoft.com/en-us/kb/827218

Set up

e

File Options View

Task Manager

Processes Performance | App history | Startup | Users | Details | Services

CPU
48% 1.48 GHz

Memory
1.4/1.7 GB (82%)

Disk 0 {C3)
3%
Bluetooth

Not connected

Wi-Fi

’u’ Ll S: 0 R: DKbps

”

v

22

CPU AMD A4 Micro-6400T APU + AMD Radeon R3 Graphics
% Utilization 100%
IEaSTACENY e —
A%
EG;E(GI’\HS —
Utilization Speed Maximum speed: 1.00 GHz
48% 148GHz oo ‘
Cores: 4

Processes Threads Handles Logical processors: 4
a2 1003 31417 Vituslistion: Enabled

. L1 cache: 256 KB
Up time L2 cache: 20MB
N-NN-N7-NA v

(A) Fewer details | (%) Open Resource Monitor

To check the virtualization support on Windows 7, use this link® to

further information.

Setting up Docker Toolbox

Access the Docker Toolbox page®® and download the installer
for Windows. After double-clicking the installer, you will see this

screen:

http://www.microsoft.com/en-us/download/details.aspx?id=592
*Shttps://www.docker.com/products/docker-toolbox

http://www.microsoft.com/en-us/download/details.aspx?id=592
https://www.docker.com/products/docker-toolbox
http://www.microsoft.com/en-us/download/details.aspx?id=592
https://www.docker.com/products/docker-toolbox

Set up 23

= | Setup - Docker Toolbox = B

Welcome to the Docker Toolbox
Setup Wizard

This will install Docker Toolbox version 1.8, 1c on your
computer,

Itis recommended that you dose all other applications before
continuing.

Click Mext to continue, or Cancel to exit Setup.

Send one-time, anonymous diagonstics during install,

This data helps us detect problems and improve the installation
experience, We only use it for aggregate statistics and wil
niever share it with third parties.

Daocker Toolbox installation documentation N | | Cancel

Just click on Next.

Set up 24

B Setup - Docker Toolbax = =

Completing the Docker Toolbox
Setup Wizard

Setup has finished installing Docker Toolbox on your computer.
The application may be launched by selecting the installed
icons.

Click Finish to exit Setup,

[] view Shortcuts in File Explorer

Docker Toolbox installation documentation

Lastly, click on Finish.

To test, search and execute the Docker Quickstart Terminal soft-
ware; it will run all the required processes to start to use Docker.

In this new terminal, execute the following command to perform a
test:

docker container run hello-world

Basic commands

For using Docker it is necessary to know a few commands and
understand directly and clearly what they do, as well as some
examples of use.

We are not approaching the commands for creating image and
troubleshooting on Docker, because there are specific chapters on
these subjects.

Running a container

To create a container is necessary to know from each image it will
be executed. In order to list the images on your Docker host, execute
the command below:

docker image list

The images that appear are on your Docker host and do not require
any download from the Docker public cloud*” unless you wish to
update it. To update the image, just execute the command below:

docker image pull python

We use the image named python as an example, but in case you
wish to update any other image, just replace python with your
name.

In case you want to inspect the image you just updated, just use the
command below:

*"hub.docker.com

hub.docker.com
hub.docker.com

Basic commands 26

docker image inspect python

The command inspect®® is responsible for informing every image
corresponding data.

Now that the image is updated and inspected, we can start the
container. But before we simply copy and paste the command, let’s
see how it really works.

docker container run <parametros> <imagem> <CMD> <argum\
entos>

The most used parameters in the container’s execution are:

Parameter Explanation

-d Running container on background

-i Interactive mode. Keeps the STDIN open
even without console attached

-t Allocates a pseudo TTY

-rm Automatically removes the container
after finishing (doesn’t work with -d)

—name Name the container

-v Volume mapping

oY) Port mapping

-m Limit the use of RAM memory

-c Balance the use of CPU

Here is a simple example on the following command:

docker container run -it --rm --name meu_python python \
bash

According to the command above, a container will be created with
the name meu_python, created from the python image, and the
process executed in this container will be the bash.

*https://docs.docker.com/engine/reference/commandline/inspect/

https://docs.docker.com/engine/reference/commandline/inspect/
https://docs.docker.com/engine/reference/commandline/inspect/

Basic commands 27

It’s important to remember that, in case the CMD is not specified
in the Docker container run command, it’s going the be used the
standard value defined at the image’s Dockerfile. In this case is
python and its standard command executes the python binary, that
is, if the bash is not specified at the end of command on the example
above, instead of a shell bash of GNU/Linux it would be shown a
python shell.

Volume mapping

To map the volume, just specify the origin of the data at the host
and where it should be set inside the container.

docker container run -it --rm -v "<host>:<container>" p\
ython

The storage use is better explained in further chapters, that’s why
we are not detailing the use of this parameter.

Port mapping

To map the ports, you just have to know which port will be
mapped on host and which one should get this connection inside
the container.

docker container run -it --rm -p "<host>:<container>" p\

ython

An example with the port 80 of the host to a port 8080 inside the
container holds the following command:

Basic commands 28

docker container run -it --rm -p 80:8080 python

As the command above shows, we have the port 80 accessible on
Docker host, that passes along all the connections to the port 8080
inside the container. In other words, it’s not possible to access the
port 8080 at the IP address of Docker host because this port is
only accessible inside the container, which is isolated at the network
level, as said previously.

Managing resources

While creating the containers it is possible to specify some limits on
using resources. We will discuss here the most used - RAM memory
and CPU.

To limit the use of RAM memory that can be used by this container,
just execute the command below:

docker container run -it --rm -m 512M python

With the command above we are limiting this container to use only
512MB of RAM.

To balance the use of CPU by the containers, we specify weights for
each container; the lighter the weight, the less priority on use. The
weights can oscillate from 1 to 1024.

In case the weight of the container is not specified, it will use the
heaviest weight possible, in this case, 1024.

We will use the weight 512 as an example:

docker container run -it --rm -c 512 python

Basic commands 29

To better understand, let’s imagine that three containers are run-
ning. One of them has the standard weight 1024 and the other two
have 512. In case the three processes require the whole CPU, their
time of use will be divided as it follows:

+ The process weighting 1024 will use 50% of the processing
time.

+ The two processes weighting 512 will use 25% of the process-
ing time, each.

Checking the list of containers

To visualize the list of containers of a given Docker host, we use
docker ps®.

This command is responsible for displaying all containers, even
those not running anymore.

docker container list <parametros>

The most used parameters in running a container are:

Parameter Explanation

-a Lists all containers, including turned offs

-1 Lists the last containers, including turned
offs

-n Lists the last N containers, including
turned offs

-q Lists only the containers’ ids, great for

using on scripts

*https://docs.docker.com/engine/reference/commandline/ps/

https://docs.docker.com/engine/reference/commandline/ps/
https://docs.docker.com/engine/reference/commandline/ps/

Basic commands 30

Managing containers

Once the container is created from an image, it is possible to manage
the usage with new commands.

In case you wish to turn off the container, just use the command
docker stop®. It gets as an argument the container ID or name. Both
data can be obtained through docker ps, explained in the previous
topic.

An example:
docker container stop meu_python

In the command above, in case there was a container named meu_-
python running, it would receive a SIGTERM signal and, if it was
not turned off, it would receive a SIGKILL after 10 seconds.

In case you wish to restart the container that was turned off and
not create a new one, just execute the command docker start*!:

docker container start meu_python

It’s important to emphasize that the idea of containers
is to be disposable. In case you use the same container
for a long period without discarding it, you are proba-
bly using Docker wrongly. Docker is not a machine,
is a running process. And, as every process, it must
be discarded so another one can take its place when
reseting.

“https://docs.docker.com/engine/reference/commandline/stop/
“Mhitps://docs.docker.com/engine/reference/commandline/start/

https://docs.docker.com/engine/reference/commandline/stop/
https://docs.docker.com/engine/reference/commandline/start/
https://docs.docker.com/engine/reference/commandline/stop/
https://docs.docker.com/engine/reference/commandline/start/

Creating your own image
on Docker

Before we explain how to create your image, it’s important to bring
up a question that usually confuses Docker beginners: “Image or
container?”

What's the difference between Image and
Container?

Making a parallel with the concept of object orientation*?, image is
the class and container is the object. The image is the infrastructure
abstraction with reading only status, from where the container is
going to be instantiated.

Every container is created from an image; thus we can conclude
that we will never have an image running.

A container can only be created from a single image. In case you
require a different behavior, it will be necessary to customize the
image.

Anatomy of an image
Images can be official and non-official.

Official and non-official images

The official Docker images are those with no users in their names.
The image “Ubuntu:16.04” is official; on the other hand, the image

“https://pt.wikipedia.org/wiki/Orienta%C3%A7%C3%A30_a_objetos

https://pt.wikipedia.org/wiki/Orienta%C3%A7%C3%A3o_a_objetos
https://pt.wikipedia.org/wiki/Orienta%C3%A7%C3%A3o_a_objetos

Creating your own image on Docker 32

“nuagebec/ubuntu” is non-official. This second image belongs to

user nuagebec*, who keeps other non-official images.

Official images are maintained by Docker and are available® at the
Docker cloud.

The goal of the official images is to promote a basic environment
(i-e. debian, alpine, ruby, python), a starting point for users to create
images, as we will explain further ahead in this chapter.

The non-official images are kept by users who created them. We will
talk about sending images to the Docker cloud on another topic.

Name of the image

The name of an official image is formed by two parts. The first one
is called “repository” according to the documentation*®, and the
second one is called “tag”. In the example of image “ubuntu:14.04”,
ubuntu is the repository and 14.04 is the tag.

For Docker, the “repository” is an abstraction of the image set.
Don’t mistake it by the image storage, that we will approach later.
The “tag” is an abstraction to create unity inside the image set
determined in the “repository”.

A “repository” can contain more than one “tag” and each set
repository:tag represents a different image.

Execute the command*’ below to visualize all images that are found
locally in your station at this exact moment:

docker image list

“https://hub.docker.com/r/nuagebec/ubuntu/
“https://hub.docker.com/u/nuagebec/
“https://hub.docker.com/explore/

46https:// docs.docker.com/engine/userguide/containers/dockerimages/
“hitps://docs.docker.com/ engine/reference/commandline/images/

https://hub.docker.com/r/nuagebec/ubuntu/
https://hub.docker.com/u/nuagebec/
https://hub.docker.com/explore/
https://docs.docker.com/engine/userguide/containers/dockerimages/
https://docs.docker.com/engine/reference/commandline/images/
https://hub.docker.com/r/nuagebec/ubuntu/
https://hub.docker.com/u/nuagebec/
https://hub.docker.com/explore/
https://docs.docker.com/engine/userguide/containers/dockerimages/
https://docs.docker.com/engine/reference/commandline/images/

Creating your own image on Docker 33

How to create images

There are two ways of creating customized images: using commit
and using Dockerfile.

Creating images with commit

It is possible to create images executing the commit* command,

related to a container. This command uses the current status of the
chosen container and creates the image based on it.

Let’s see the example. First, we create a container:

docker container run -it --name containercriado ubuntu:\
16.04 bash

Now that we are at the container bash, we install the nginx:

apt-get update
apt-get install nginx -y
exit

We stop the container using the command below:
docker container stop containercriado
Now, we commit this container into an image:

docker container commit containercriado meuubuntu:nginx

“https://docs.docker.com/engine/reference/commandline/commit/

https://docs.docker.com/engine/reference/commandline/commit/
https://docs.docker.com/engine/reference/commandline/commit/

Creating your own image on Docker 34

In the previous example, containercriado is the name of the
container created and altered in the previous steps; the name
meuubuntu:nginx is the commit’s resulting image; the status of
containercriado is stored in an image called meuubuntu:nginx
which, in this case, holds the only alteration we have in the official
image of ubuntu on version 16.04 — the nginx package installed.

To see the image list and find the one you just created, execute the
command below again:

docker image list

To run a test in you new image, let’s creat a container from it and
check if the nginx is installed:

docker container run -it --rm meuubuntu:nginx dpkg -1 n\
ginx

If you want validation, run the same command on the official image
of ubuntu:

docker container run -it --rm ubuntu:16.04 dpkg -1 nginx

It’s worth to emphasize that the commit method is not
the best option to create images, because, as we saw,
the process of altering the image is completely manual
and presents a little difficulty to track the alterations
made, once the manual changes are not registered
automatically in the Docker structure.

Creating images with Dockerfile

When you use Dockerfile to create an image, basically you are
presented a list of instructions that will be applied in a given image
to the other one is created based on alterations.

W N =

Creating your own image on Docker 35

Imagem Dockerfile Imagem
Base modificada
Modificagdes
Dockerfile

We can summarize this by saying that the Dockerfile file, in fact,
represents the exact difference between a given image, that we call
base, and the image you want to create. In this model, we hold total
traceability on what is going to be modified in the new image.

Let’s go back to the example on the nginx installation on ubuntu
16.04.

First, create a file for a future test:
touch arquivo_teste

Create a file called Dockerfile and insert the following content on
it:

FROM ubuntu:16.04

RUN apt-get update && apt-get install nginx -y
COPY arquivo_teste /tmp/arquivo_teste

CMD bash

In the file above, we used four instructions®:

FROM to inform which image we will use as a base; in this case,
ubuntu:16.04.

“https://docs.docker.com/engine/reference/builder/

https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/

Creating your own image on Docker 36

RUN to inform which commands are going to be executed in this
environment to make the necessary changes in the system’s in-
frastructure. They’re like commands executed at the environment’
shell, just like the commit model, but in this case done automatically
and it is completely traceable, since this Dockerfile will be store in
the system at the version control.

COPY is used to copy files from the station where the building is be-
ing executed into the image. We use a test file just to exemplify this
possibility, but this instruction is much used to send environment
configuration files and codes to be executed in application services.

CMD to inform which command will be executed as a standard,
in case none is informed by the container initialization from this
image. In the example, we put the command bash; if this image
is being used to initiate a container and we don’t inform the
command, it will execute the bash.

After building your Dockerfile, just execute the command® below:
docker image build -t meuubuntu:nginx_auto .

Such command has the option “-t”, that also works to inform the
name of the image that is going to be created. In this case, is going
to be meuubuntu:nginx_auto and the “.” at the end, informing
which context must be used in this image building. All files from the
current folder will be send to the Docker service and only they can
be used to manipulations on Dockerfile (example of using COPY).

The sequence matters

It is important to notice that the Dockerfile file is a sequence
of instructions read from the top to the base, and each line is
executed at a time. If any instructions depend on another one, this
dependency must be described earlier in the document.

*https://docs.docker.com/engine/reference/commandline/build/

https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/

O O W N

Creating your own image on Docker 37

The result of each file instruction is stored in the local cache. If
the Dockerfile is not modified in the next image creation (build),
the process won’t take long, for everything will be in the cache. If
there’s any alterations, just the modified instruction and the next
will be executed again.

The suggestion to better use the Dockerfile cache is to keep instruc-
tions often altered next to the base of the document. It’s important
to remember to attend the dependencies between instructions as
well.

An example to make it clear:

FROM ubuntu:16.04

RUN apt-get update

RUN apt-get install nginx

RUN apt-get install phpS

COPY arquivo_teste /tmp/arquivo_teste
CMD bash

If we modify the third line of the file and, instead of installing nginx,
we change it to apache2, the instruction that updates on apt will not
be executed again, but rather the installation of apache2, because it
just entered the file, as well as the php5 and the file copy, because
all of them are subsequent to the modified line.

As we noticed, holding the Dockerfile file enables us to have
the exact notion of which changes were made in the image, thus
recording the modifications in the version control system.

Sending your image to the cloud

Understanding storage on
Docker

To understand how Docker manages its volumes, first we need to
explain how does it work at least a Docker storage backend!. We
will do this here with the AUFS, that was the first one and still is
the standard in a good part of Docker installations.

E-Jn-io-ﬂ_ﬂ'-m-uat- T 7T varflib/docker/aufs/mnt/c283f215¢57f... | +—— U(:'istn mount
T 1 T
[283f215¢57f Jvar/lib/docker/aufs/diff/c283f215¢57f.. | — Container

layer

91e54dfb1179 {var/lib/docker/aufs/diff/91e54dfb1179...

d74508fb6632 /var/lib/docker/aufs/diff/d74508fb6632...

n - Image layers

€22013c84729 {var/lib/docker/aufs/diff/91e54dfb1179... o)

d3alf33e8a5a /var/lib/docker/aufs/diff/d3al1f33e8a5a...

Image

How does it work a Docker backend (ex.: AUFS)

Storage backend is the part of Docker that takes care of data
management. On Docker there are several possibilities of storage
backend, but here we’ll only talk about the one that deploys the
AUFS.

AUFS* is a unification file system. It is responsible for managing
multiple directories, stacking them up, and provide a single and

*'http://searchdatacenter.techtarget.com/definition/back-end
*?https://en.wikipedia.org/wiki/Aufs

http://searchdatacenter.techtarget.com/definition/back-end
https://en.wikipedia.org/wiki/Aufs
http://searchdatacenter.techtarget.com/definition/back-end
https://en.wikipedia.org/wiki/Aufs

Understanding storage on Docker 39

unified view, as if they all together were only one directory.

This single directory is used to present the container and works as
if it was a single common file system. Each directory used in the
stack corresponds to one layer. And that’s how Docker unifies them
and provides reutilization amongst containers. Because the same
directory that corresponds to the image can be set up in several
stacks of several containers.

Aside the folder (layer) that corresponds to the container, every
other one is set up with read only permission; otherwise, the
changes in a container could interfere on another one. And this
really goes totally against the principles of Linux Container.

In case it is necessary to modify a file on the layers (folders)
referring to the images, the technology Copy-on-write®® (CoW) is
used, and it’s responsible for copying the file to the folder (layer) of
the container and to do all the modifications on this level. Thus, the
original file of the inferior layer is superimposed in this stack, that
is, the given container will always see only the files of the highest
layers.

Container top layer file2 | .wh.file3

Image layer 2 m_
| files | fiea [

Docker container
(AUFS storage-driver demonstrating whiteout file)

Image base layer

Removing a file

In case of removal, the file of the superior layer is marked as
whiteout file, enabling the visualization of the file of lower layers.

> https://en.wikipedia.org/wiki/Copy-on-write

https://en.wikipedia.org/wiki/Copy-on-write
https://en.wikipedia.org/wiki/Copy-on-write

Understanding storage on Docker 40

Performance issues

Docker takes advantage of the AUFS’s Copy-on-write (CoW) tech-
nology to allow image sharing and the use of disk space. AUFS
works at file level. This means that all AUFS CoW operations will
copy whole files even if only a little part of the file is being altered.
This behavior can significantly impact the container’s performance,
especially if the copied files are big and are located below several
image layers. In this case, the procedure copy-on-write will spend
a lot of time to make an internal copy.

Volume as a performance solution

By using volumes, Docker sets up this folder (layers) in the level
immediately below the container, allowing fast access of all stored
data in this layer (folder), solving the performance problem.

The volume also solves matters of data endurance, for the informa-
tion stored in the container layers (folder) are lost while removing
the container, that is, by using volumes we have a bigger guarantee
in storing these data.

Using volumes

Mapping of a specific host folder

In this model the user choses a specific folder of the host (ex.:
/var/lib/container1) and maps it into a container’s inside folder (ex.:
/var). What is written in the folder /var of the container is also
written in the folder /var/lib/container1 of the host.

Here’s the sample of the command used to this mapping model:

docker container run -v /var/lib/container1:/var ubuntu

Understanding storage on Docker 41

This model is not portable. It needs the host to have a specific folder
so the container works properly.

Mapping via data container

In this model, a container is created and, inside it, a volume to
be consumed by other containers is named. Therefore, it’s not
necessary to create a specific folder on the host to persist data.
This folder is automatically created inside the root folder of Docker
daemon. However, you don’t need to worry with it, since all the
reference is going to made for the container that holds the volume
and not for the folder.

Here’s an example of using the mapping model::

docker create -v /dbdata --name dbdata postgres /bin/tr\
ue

In the command above, we created a data container, in which
the folder /dbdata can be used by other containers, that is, the
content of the folder /dbdata can be visualized and/or edited by
other containers.

To consume this container volume, just use the command:

docker container run -d --volumes-from dbdata --name db\
2 postgres

Now the container db2 has a folder /dbdata that is the same as
the one from the container dbdata, making this model completely
portable.

A disadvantage is the need of keeping a container just to this,
because in some environment containers are removed with some
frequency, making it necessary to take special care with special con-
tainers. In a certain way, it’s an additional management problem.

Understanding storage on Docker 42

Mapping volumes

In Docker’s 1.9 version, the possibility of creating containers’ iso-
lated volumes was added. Now it’s possible to create a portable
volume, with no need of associating it to a special container.

Here’s an example of using the mapping model:
docker volume create --name dbdata

In the command above, Docker created a volume that can be
consumed by any container.

The association of the volume to the container happens in similar
way to the one practiced on mapping the host folder, because in
this case you need to associate the volume to a folder inside the
container, as we can see below:

docker container run -d -v dbdata:/var/lib/data postgres

This model is the most indicated since the release, because it gives
you portability. It is not removed easily when this container is
deleted and, still, is very easy to manage.

Understanding the network
on Docker

What Docker calls network, in fact, is an abstraction created to
ease the data communication management between containers and
untie the external knots of the Docker environment.

Don’t mistake the Docker network with the already known network
used to group the IP addresses (ex.: 192.168.10.0/24). Therefore,
every time we mention this second type of network, we’ll use “IP
network”.

Standard networks on Docker

Docker has three standard networks. These networks offer specific
configurations to manage data usage. To visualize these interfaces,
just use the command below:

docker network Is

The return is going to be:

NETWORK ID NAME DRIVER

ab09673e9b98 bridge bridge

763f9ed88176 none null

2422960a6f20 host host
Bridge

Each container created on Docker is associated to an specific
network. This is the standard network to any container, unless we
associate, explicitly, another network to it. The network gives to
the container an interface that makes a bridge with the docker0

g s W N

Understanding the network on Docker 44

interface of the Docker host. This interface receives, automatically,
the next address available in the IP network 172.17.0.0/16.

All containers in this network can communicate via TCP/IP proto-
col. If you know which is the IP address of the container you wish
to connect, it is possible to send data to it. After all, they are all in
the same IP network (172.17.0.0/16).

A detail worth noticing: as the IPs are assigned automatically, it'n
not a trivial task to discover which is the IP of the destination
container. To help on this location, Docker provides, at the moment
of creating a container, the option “-link”.

It’s important to emphasize that “-link” is an outdated
option and its use is discouraged. We’ll explain this
feature only for understanding the legacy. This func-
tion was replace with a built-in DNS on Docker and it
doesn’t work for Docker standard networks, only for
networks created by the user.

The option “-link” is responsible for associating the destination
container IP to its name. In case you create a container from the
Docker image of the mysql with the name “bd”, then create another
with the name “app” from the image tutum/apache-php, you wish
that the later container can connect on mysql using the name of the
container “bd”, just create both containers the same way:

docker container run -d --name bd -e MYSQL_ROOT_PASSWOR\
D=minhasenha mysql

docker container run -d -p 80:80 --name app --link db t\
utum/apache-php

After executing the commands, the container named “app” will be
able to connect to the mysql container using the name “bd”, that is,

Understanding the network on Docker 45

every time it try to access the name “bd”, it will be automatically
resolved to the IP of the IP network 172.17.0.0/16 that the mysql
container got on its creation.

To test it, we’ll use the function exec to run the command inside an
existent container. For this, we will use the name of the container
as a parameter of the command below:

docker container exec -it app ping db

The action will be responsible for executing the command “ping
db” inside the container “app”, that is, the container “app” will send
icmp packages, usually used to test the connectivity between two
hosts, to the “db” address. The name “db” is translated to the IP the
container - created from the image mysql - got when created.

Example: The “db” container created firstly and got the IP 172.17.0.2.
The “app” container started next and got the IP 172.17.0.3. When
the “app” container executes the command “ping db”, in fact, it will
send icmp packages to the 172.17.0.2 address.

Caution: The name of the option “-link” causes some
confusion because it doesn’t create any IP network link
between containers, once the communication between
them is already possible, even if the option link is
not configured. As we cleared up in the previous
paragraph, it just facilitates the translation of names
to the dynamic IP received in initialization.

The containers configures to this network will have the opportunity
of external traffic using the routes of the IP networks defined on
Docker host. In case Docker host has internet access, automatically,
the containers will also have.

In this network is possible to display containers ports to all the
actives that have access to the Docker host.

Understanding the network on Docker 46

None

This network aims to isolate the container regarding external
communications. The network doesn’t get any interface to external
communication. The only interface of the IP network will be the
localhost.

This network, usually, is used for containers that only manipulate
files, with no need of sending them to another place using the
network (Ex.: backup container uses the volumes of the database
container to do the dump and will be used in the data retention
process.

Wﬂomar em fvarlin/doe= Volume de dados ——montar em fbackupT‘

Container SGBD Container dump do
banco

Volume do dump

Container da

ferramenta de ——monta em Mvarbackup/db
retengao de dados

Exemplo de uso da rede none

If you have any questions on using volumes on Docker, check out
this article’® and see more on Docker storage.

Host

This network has the objective of delivering into the container all
the interfaces existent on Docker host. In a way, it can speed up the
package delivery, once there’s no bridge on the way of the messages.
But usually this overhead is minimum and the use of a bridge can
be important to security and management of traffic.

>*http://techfree.com.br/2015/12/entendendo-armazenamentos-de-dados-no-docker/

http://techfree.com.br/2015/12/entendendo-armazenamentos-de-dados-no-docker/
http://techfree.com.br/2015/12/entendendo-armazenamentos-de-dados-no-docker/

Understanding the network on Docker 47

Networks set by user

Docker allows the user to create networks. These networks are
associated to the element the Docker calls network driver.

Each network created per user must be linked to a given driver. And
in case you didn’t create your own driver, you must choose amongst
the drivers provided by Docker:

Bridge

This is the network driver more simple to use, for requires little
configuration. The network created by the user using the bridge
driver is similar to the Docker standard network named “bridge”.

One more point that deserves attention: Docker has a
standard network called “bridge” that uses a driver also
called “bridge”. Maybe, because of this, the confusion
only gets bigger. But it is important to make clear that
they are distinct.

The networks created by the user with the bridge driver have all
features described in the standard network, called bridge. However,
it has additional features.

Amongst one of the features: the network created by the user
doesn’t need to user the old “-link” option. Because every network
created by the user with the bridge driver will be able to user the
Docker internal DNS that automatically associates every container
names of this network to its respective IPs from the corresponding
IP network.

To make it clearer: the containers using the standard bridge network
will not be able to enjoy the Docker internal DNS feature. In
case you are using this network, it is necessary to specify the “-
link” legacy for translating the names in IP addresses dynamically
allocated on Docker.

Understanding the network on Docker 48

To exemplify the usage of the network created by user, let’s create
the network called isolated_nw with the bridge driver:

docker network create --driver bridge isolated_nw
Now, we verify the network:
docker network list

The result must be:

NETWORK ID NAME DRIVER
ab®9673e9b98 bridge bridge
9a49dee25aa9 isolated_nw bridge
763f9ed88176 none null
242a960a6f20 host host

Now, we create a container at the isolated nw network:

docker container run -itd --net isolated_nw alpine sh

AV

Docker Host isolated_nw

container] container?

containerd

Rede isolada

Understanding the network on Docker 49

It’s important to emphasize: a container that is in a given network
doesn’t access another container that is in another network. Even
if you know the destination IP. For one container to access another
in another network, it’s necessary that the origin is present in both
network that you wish to reach.

The containers in the isolated_nw network can expose their ports
on Docker host and these ports can be accessed both by containers
outside the network - the isolated_nw - and external machines with
access to Docker host.

EE

Docker Host

published port

isolated_nw

container2 containerd

y / /
external_container EE

Rede isolada publicando portas

containeri

Para descobrir quais containers estdo associados a uma determinada
rede, execute o comando abaixo:

docker network inspect isolated_nw

Understanding the network on Docker 50

The result must be:

[

"Name": "isolated_nw",
a49dee25aa984beb923d41aab887459f059b47e71c558a8ccc38edebdel2c7 ",
local",

“"bridge",

"Driver": "default",

"Options": {},
"Config": [

"Subnet": "172.18.0.0/16",
"Gateway": "172.18.0.1/16"
}
1

,
“Containers": {
"3b6b476a77c14249bed8344F5f75b47543c2d65f0ab399235d8b5a887ac33a5f": {
"Name": "amazing_noyce"
"EndpointID": "b92bf296fb368b686320470a8feb0d7398a4a33358646983831160dfcc@6b9db"
"MacAddress": "02:42:ac:12:00:02",

1,
"Options": {}

In the section “Containers” it is possible to check which containers
are part of this network. All containers that are in the same network
will be able to communicate using only their respective names. As
we can see in the example above, if a new container access the
isolated_nw network, it will be able to access the amazing_noyce
container using only its name.

Overlay

The overlay driver allows the communication between Dockers
hosts; by using it, the containers of a given Docker host will be able
to access, natively, containers from another Docker environment.

This driver require a more complex configuration, therefore, we’ll
approach the details in some other opportunity.

Understanding the network on Docker 51

Using networks on Docker Compose

The subject deserves a whole paper for itself. So, we’ll just show an
interesting link> for furthers references on the subject.

Concluding

We realize that the use of networks defined by the user make the
option “-link” obsolete, as well as provides a new internal Docker
DNS service, making it easy for those who want to keep a big
and complex Docker infrastructure, as well as provide the network
isolation of its services.

To know and to use well the new technologies is a good practice that
avoids future problems and facilitates building and maintaining big
and complex projects.

**https://docs.docker.com/compose/networking/

https://docs.docker.com/compose/networking/
https://docs.docker.com/compose/networking/
https://docs.docker.com/compose/networking/

Using Docker in multiple
environments

Docker host is the name of the active responsible for managing
Docker environments; in this chapter we will demonstrate how is it
possible to create them and manage them in distinct infrastructures,
such as virtual machines, cloud, and physical machine.

DigitalOcean

open‘sta‘ck

Docker machine® is the tool used for this distributed management,
and allow the docker hosts installation and management in an easy
and direct way.

This tool is very much used by users of the “non Linux” operational
systems, as we will show, but its function is not limited to that, for
is also much used to provide and manage the Docker infrastructure
on cloud, such as AWS, Digital Ocean and Openstack.

*Shttps://docs.docker.com/machine/

https://docs.docker.com/machine/
https://docs.docker.com/machine/

Using Docker in multiple environments 53

docker |"u.nI image >
lffﬂf | —>| 1 i

How it works

Before we explain how to use the Docker machine, we need to
reinforce the knowledge on Docker architecture.

Winaows

Docker client

DOCKER_HOST

As the picture above shows, the usage of Docker is divided in
two services: the one that runs in daemon mode, in background,
called Docker Host, responsible for viabilization of containers on

g s W N =

Using Docker in multiple environments 54

the kernel Linux; and the client, that we’ll call Docker client,
responsible for getting commands from the user and translating
them into management of Docker Host.

Each Docker client is configured to connect itself to a given Docker
host and, at this moment, Docker machine takes the action, for it
enables the automatization of access configuration choice of Docker
client to distinct Docker hosts.

The Docker machine enables the use of several different environ-
ments just changing the client configuration to the desired Docker
host: basically, modify some environment variables. Here’s the
example:

export DOCKER_TLS_VERIFY="41"

export DOCKER_HOST="tcp://192.168.99.100:2376"

export DOCKER_CERT_PATH="/Users/gomex/.docker/machine/m\
achines/default"”

export DOCKER_MACHINE_NAME="default"

Modifying these four variables, the Docker client will be able to use
a different environments rapidly and with no need of restart any
service.

Creating environment

The Docker machine is good mainly for creating environments that
in the future will be managed by it in the automatized exchange of
configuration context, through the modification of environment, as
we explained previously.

To create the environment, it is necessary to verify if the infrastruc-
ture you wish to create has some driver that supports this process.
Here is the list of available drivers®’.

*Thttps://docs.docker.com/machine/drivers/

https://docs.docker.com/machine/drivers/
https://docs.docker.com/machine/drivers/

Using Docker in multiple environments 55

Virtual machine

For this example, we will use the most common driver, the virtual-
box>8, that is, we need a virtualbox®® installed in our station so this
driver works properly.

Before creating the environment, let’s understand how does it work
the creation command on Docker machine:

docker-machine create —driver=<nome do driver> <nome do ambi-
ente>

Regarding the driver virtualbox, we have a few parameters that
can be used:

Parameter Explanation

-virtualbox-memory Specifies the amount of RAM
memory that the
environment can use. The
standard value is 1024MB
(always in MB).

—virtualbox-cpu-count Specifies the amount of CPU
cores that this environment
can use. The standard value

—virtualbox-disk-size 1Ssple.ciﬁes the size of the disk
that this environment can
use. The standard value is
20000MB (always in MB).

As a test we run the following command:

docker-machine create --driver=virtualbox --virtualbox-\
disk-size 30000 teste-virtualbox

The result of this command is the creation of a virtual machine at

**https://docs.docker.com/machine/drivers/virtualbox/
*hitps://www.virtualbox.org/

https://docs.docker.com/machine/drivers/virtualbox/
https://docs.docker.com/machine/drivers/virtualbox/
https://www.virtualbox.org/
https://docs.docker.com/machine/drivers/virtualbox/
https://www.virtualbox.org/

Using Docker in multiple environments 56

the virtual box. The machine will have 30GB of disk space, 1 core
and 1GB RAM memory.

To make sure the process happened as expected, just use the
following command:

docker-machine 1s

The command above is responsible for listing all the environments
that can be used from the client’s station.

To change clients, just run the command:
eval $(docker-machine env teste-virtualbox)

Executing the command ls makes possible to verify which environ-
ment is active:

docker-machine 1s
Initiate a test container to run a test on the new environment:
docker container run hello-world

If you want to change environments, just type the command below,
using the name of the desired environment::

eval $(docker-machine env <ambiente>)

If you want to turn off the environment, use the command:

Using Docker in multiple environments 57

docker-machine stop teste-virtualbox

If you want to initiate the environment, use the command:
docker-machine start teste-virtualbox

If you want to remove the environment, use the command::
docker-machine rm teste-virtualbox

Known troubleshooting: in case you’re using Docker machine on
MacOS and for some reason the station sleeps when the virtual
box environment initiates, it is possible that, when it comes back,
the Docker host presents some internet communication problems.
We advise to, every time you go through connectivity problems on
Docker host with virtual box driver, turn off the environment and
reinitiate as a solution.

Cloud

For this example we will use the most common cloud driver, AWS®.
For such, we need an AWS account to this driver®’ works properly.

It is required that your credentials are in the file ~/.aws/credentials
as it follows:

[default]
aws_access_key_id = AKID1234567890
aws_secret_access_key = MY-SECRET-KEY

In case you don’t want to put these information on file, you can
specify them via environment variables:

60
http://aws.amazon.com/
%' https://docs.docker.com/machine/drivers/aws/

http://aws.amazon.com/
https://docs.docker.com/machine/drivers/aws/
http://aws.amazon.com/
https://docs.docker.com/machine/drivers/aws/

Using Docker in multiple environments 58

export AWS_ACCESS_KEY_ID=AKID1234567890
export AWS_SECRET_ACCESS_KEY=MY-SECRET-KEY

You can find more information on AWS credentials in this article®?.

When we create an environment using the command docker-
machine create, is is translated into AWS in the creation of a EC2
instance® and then it is automatically installed in every required
software in the new environment.

The most used parameters in the creation of this environment are:

Parameter Explanation

—amazonec2-region Says what AWS region is
used to host your
environment. The
standard value is

us-east-1.
—amazonec2-zone It’s the letter that

represents the region
used. The standard value

K

s “a”.
—amazonec2-subnet-id Says which sub-network

is used in this EC2
instance. Needs to be
created previously.
—amazonec2-security- Says which security
group group is used in this EC2
instance. Needs to be
created previously.
—amazonec2-use-private- It will be created an
address interface with private IP,
because as default it only
specifies an interface with
public IP.

“htp://blogs.aws.amazon.com/security/post/ Tx3D6U6WSFGOK2H/A-New-and-
Standardized- Way-to-Manage- Credentials-in-the- AWS-SDKs
63
https://aws.amazon.com/ec2/

http://blogs.aws.amazon.com/security/post/Tx3D6U6WSFGOK2H/A-New-and-Standardized-Way-to-Manage-Credentials-in-the-AWS-SDKs
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
http://blogs.aws.amazon.com/security/post/Tx3D6U6WSFGOK2H/A-New-and-Standardized-Way-to-Manage-Credentials-in-the-AWS-SDKs
http://blogs.aws.amazon.com/security/post/Tx3D6U6WSFGOK2H/A-New-and-Standardized-Way-to-Manage-Credentials-in-the-AWS-SDKs
https://aws.amazon.com/ec2/

B W N -

Using Docker in multiple environments 59

Parameter Explanation
—amazonec2-vpc-id Says which VPC ID is
desired for this EC2

instance. Needs to be
created previously.

As an example, we will use the following command while creating
the environment:

docker-machine create --driver amazonec2 --amazonec2-zo\
ne a --amazonec2-subnet-id subnet-5d3dc191 --amazonec2-\
security-group docker-host --amazonec2-use-private-addr\
ess --amazonec2-vpc-id vpc-c1d33dc7 teste-aws

After running the command, just wait it to finish up; it is common
to take a while..

To test the success of the action, execute the command below:

docker-machine 1s

Check if the environment called teste-aws exists in the list; if so, use
the command below to change the environment:

eval $(docker-machine env teste-aws)
Create a test container to verify the new environment:
docker container run hello-world

If you want to turn off the environment, use the command:

Using Docker in multiple environments 60

docker-machine stop teste-aws

If you want to start the environment, use the command:
docker-machine start teste-aws

If you want to remove the environment, use the command:
docker-machine rm teste-aws

After being removed, the instance EC2, provided on AWS, will be
automatically removed.

Managing multiple Docker
containers with Docker
Compose

This article aims to explain in details, and with examples, how
does it work the process of managing multiple Docker containers,
because as your confidence in using Docker grows in you, your
need of using a bigger number of containers increases in the same
proportion, and following the good practice of keeping only one
service per container commonly results in some extra-request.

Managing multiple Docker containers with Docker Compose 62

Usually, with the increase of the number of running containers, it
becomes evident the need of a better communication management,
for it is ideal that the services can exchange data between containers
when required, that is, you need to deal with the network of this
new environment.

Think about the work you would have executing dozens of con-
tainers manually in the command line, one by one and every re-
quired parameter, the network configurations between containers,
volumes, etc. Well, you don’t have to think about it anymore, for
that won’t be necessary. To meet this demand of management of
multiple containers, the solution is Docker Compose®.

Shttps://docs.docker.com/compose/overview/

https://docs.docker.com/compose/overview/
https://docs.docker.com/compose/overview/

Managing multiple Docker containers with Docker Compose 63

Docker compose is a tool for define and execute multiple Docker
containers. It makes possible to configure all required parameters
to execute each container from a definition file. Inside this file we
define each container as a service, that is, from now on, every time
this text mentions service, imagine that that is the definition that
is going to be used to initiate a container, such as exposed ports,
environment variables, etc.

With Docker Compose we can also specify which volumes and
network will be created to be used in the services parameters;
in other words, that means that you don’t have to create them
manually so the services use additional network and volume
resources.

Docker Compose’s definition file is the place where all the envi-
ronment is specified (network, volume and services); it’s written
according to the YAML® format. As a standard, this file is named
docker-compose.yml®®,

Anatomy of docker-compose.ymi

The YAML standard uses the indentation to separate the code block
from the definitions; because of this the use of indentation is very
important, that is, if you don’t use it correctly, the docker-compose
will fail to execute.

Each line of this file can be defined as a value key or a list. Let’s see
the examples to make the explanation clearer:

% https://en.wikipedia.org/wiki/YAML
% https://docs.docker.com/compose/compose-file/

https://en.wikipedia.org/wiki/YAML
https://docs.docker.com/compose/compose-file/
https://en.wikipedia.org/wiki/YAML
https://docs.docker.com/compose/compose-file/

©O© 00 9 O O b W N =

(SN
N O

Managing multiple Docker containers with Docker Compose 64

version: '2'
services:
web:
build:
context: ./dir
dockerfile: Dockerfile-alternate

args:
versao: 1
ports:
- "5V :5000"
redis:

image: redis

In the file above we have the first line that define the version of
docker-compose.yml; in this case we will use the latest version. If
you want to compare the difference amongst versions, check out
this link®’.

version: '2'

On the same indentation level we have services, that define the
beginning of the services block that will be define right below.

version: '2'

services:

On the second indentation level (here it’s done with two spaces) we
have the name of the first service of this file, that gets the name
web. It opens the service definitions block, that is, from the next
level of indentation everything that is defined is going to be part of
this service.

%7https://docs.docker.com/compose/compose-file/#versioning

https://docs.docker.com/compose/compose-file/#versioning
https://docs.docker.com/compose/compose-file/#versioning

DSwWw N -

Managing multiple Docker containers with Docker Compose 65

version: '2'
services:
web:

On the next level of indentation (done again with two more spaces)
we have the first definition of the web service that, in this case, is
the build®® that informs that this service will be created not from an
existent image, but it will be necessary to build your image before
executing it. It also opens a new block of code to parameterize the
operation of this image build.

version: '2'
services:
web:
build:

On the next level of indentation (done again with two more spaces)
we have a build parameter that, in this case, is the context. It is
responsible for informing which file context will be used to build the
given image; in other words, only files that exist inside this folder
will be able to be used in the image building. The context chosen
was the ”./dir”, that is, this indicates that a folder named dir, that is
in the same file system level of docker-compose.vml or of the place
where this command will be executed, will be used as a context
in the creation of this image. When, soon after the key, a value is
provided, this indicates that no block of code will be opened.

build:

context: ./dir

On the same level of indentation of the context definition, that is,
still inside the build definition block, we have the dockerfile, that

% https://docs.docker.com/compose/reference/build/

https://docs.docker.com/compose/reference/build/
https://docs.docker.com/compose/reference/build/

g > W N -

Managing multiple Docker containers with Docker Compose 66

indicates the name of the file that will be used to build the given
image. It would be the equivalent to the parameter “-f** of the
docker build command. If this definition didn’t exist, the docker-
compose, as a standard, would look for a file called Dockerfile
inside the folder informed in the context.

build:
context: ./dir
dockerfile: Dockerfile-alternate

On the same level of indentation of the dockerfile definition, that
is, still inside the build definition block, we have the args, that
defines the arguments that will be used by Dockerfile; it’s similar
to the parameter “~build-args”” of the docker build command. As
its value is not informed in the same line, it’s evident that it opens
a new block of code.

On the next level of indentation (done again with two more spaces)
we have the key ”version” and the value ”1”, that is, as this
definition is part of the code block args, this value key is the only
argument sent to Dockerfile; in other words, the given Dockerfile
file must be prepared to receive this argument or it will be lost in
the image building.

build:
context: ./dir
dockerfile: Dockerfile-alternate
args:
versao: 1

Going back two indentation levels (four spaces less in relation to the
previous line), we have the ports definition, that would be similar

f’()httpsz/ /docs.docker.com/engine/reference/commandline/build/#specify-dockerfile-f
"https://docs.docker.com/engine/reference/commandline/build/#set-build-time-
variables-build-arg

https://docs.docker.com/engine/reference/commandline/build/#specify-dockerfile-f
https://docs.docker.com/engine/reference/commandline/build/#set-build-time-variables-build-arg
https://docs.docker.com/engine/reference/commandline/build/#specify-dockerfile-f
https://docs.docker.com/engine/reference/commandline/build/#set-build-time-variables-build-arg
https://docs.docker.com/engine/reference/commandline/build/#set-build-time-variables-build-arg

g = W N =

Managing multiple Docker containers with Docker Compose 67

to the parameter “-p”’! of the Docker container run command. It

defines which container port will be exposed at the Docker host.
In our example, is going to be the container port *5000, with the
Docker host port 5000.

web:
build:

ports:
- "5000:5000"

Going back one indentation level (two spaces less in relation to the
previous line), we leave the block of code of the web service; this
indicates that no definition informed on this line will be applied to
this service, that is, we need to start a block of code of a new service,
that in our example will be named redis.

redis:

image: redis

On the next indentation level (done again with two more spaces),
we have the first definition of the redis service, that in this case is
the image, that is responsible for showing which image will be used
to initiate this container. This image will be found in the repository
configured on Docker host, that is hub.docker.com’? by default.

Executing Docker Compose

After understanding and creation your own definition file, we
need to manage it by using the docker-compose binary; the most
common usage options are the following:

"'https://docs.docker.com/engine/reference/commandline/run/#publish-or-expose-
port-p-expose
?https://hub.docker.com/

https://docs.docker.com/engine/reference/commandline/run/#publish-or-expose-port-p-expose
https://hub.docker.com/
https://docs.docker.com/engine/reference/commandline/run/#publish-or-expose-port-p-expose
https://docs.docker.com/engine/reference/commandline/run/#publish-or-expose-port-p-expose
https://hub.docker.com/

Managing multiple Docker containers with Docker Compose 68

+ build : Used to build all the services images that are described
with the definition build in their block of code.
« up : Initiates all the services are in the docker-compose.yml

file.
« stop : Stops all the services that are in the docker-com-
pose.yml file.

« ps:Lists all the services that were initiated from the docker-
compose.yml file.

To check other options, see the documentation”.

Phttps://docs.docker.com/compose/reference/

https://docs.docker.com/compose/reference/
https://docs.docker.com/compose/reference/

How to use Docker without
GNU/Linux

This article aims to explain, with details and examples, the use of
Docker in MacOS and Windows stations.

Docker Toolbox

This text is for people who already know Docker, but still don’t
know how Docker can be used in a “non Linux” station.

As we said previously, Docker uses specific resources of the host
operational system. Today, we have support for Windows and
GNU/Linux systems, This means that is not possible to initiate
Docker containers in a MacOS station, for instance.

How to use Docker without GNU/Linux 70

But don’t worry if you don’t use GNU/Linux, or Windows as an
operational system, it is still possible to use this technology without
necessarily, executing it in your computer.

It’s worth to emphasize that Docker images and containers created
on Windows won’t work in GNU/Linux because of the dependency
of the operations system mentioned earlier.

It’s possible to user Docker on MacOS and Windows in two ways:

« Toolbox
« Docker For Mac/Windows

Because it’s more complex, therefore demanding a greater context,
we will approach in this chapter only the installation and configu-
ration of Docker Toolbox’4. This solution is, in fact, an abstraction
for installation of every environment that requires to use Docker
from a MacOS or Windows station.

The installation is simple: both on Windows and on MacOS, just
download the corresponding installer in this site’®; and execute it
following the steps in the screen.

The softwares installed on the station - MacOS or Windows - from
the Docker Toolbox package are:

« Virtualbox’®

« Docker machine’’

« Docker client”®

« Docker compose”

" https://www.docker.com/products/docker-toolbox
7 https://www.docker.com/products/docker-toolbox
"https://www.virtualbox.org/
Thttps://docs.docker.com/machine/overview/

" https://docs.docker.com/

" https://docs.docker.com/compose/overview/

https://www.docker.com/products/docker-toolbox
https://www.docker.com/products/docker-toolbox
https://www.virtualbox.org/
https://docs.docker.com/machine/overview/
https://docs.docker.com/
https://docs.docker.com/compose/overview/
https://www.docker.com/products/docker-toolbox
https://www.docker.com/products/docker-toolbox
https://www.virtualbox.org/
https://docs.docker.com/machine/overview/
https://docs.docker.com/
https://docs.docker.com/compose/overview/

How to use Docker without GNU/Linux 71

« Kitematic®

Docker Machine is the tool that allows to create and maintain
Docker environments in virtual machines, cloud environments and
even in physical machines. But in this topic we’ll only talk about
the virtual machine with virtual box.

After installing Docker Toolbox, it’s simple to create a Docker
environment with a virtual machine using Docker Machine.

First, let’s verify if there’s no virtual machines with Docker installed
in their environment:

docker-machine ls

The command above shows only environments created and main-
tained by their Docker Machine. It’s possible that, after installing
Docker Toolbox, you won’t find any machine. In this situation, we
use the command below in order to create the machine:

docker-machine create --driver virtualbox default

Docker client

Arquitetura do Docker Toolbox

¥ https://docs.docker.com/kitematic/userguide/

https://docs.docker.com/kitematic/userguide/
https://docs.docker.com/kitematic/userguide/

How to use Docker without GNU/Linux 72

The command creates an environment called “default”. In fact, is
a virtual machine (“Linux VM” that appears on the image) created
on virtual box. With the command is possible to see the machine
created:

docker-machine ls

It should retorne something like this:

NAME ACTIVE DRIVER STATE URL SWARM DOCKER ERRORS
default S virtualbox Running tcp://192.168.99.100:2376 vi.10.1

A virtual machine was created, inside it we have a GNU/Linux
operational system with Docker Host installed. This Docker service
is listening on the TCP 2376 port from the 192.168.99.100 address.
This interface uses a specific network between your computer and
the virtual box machines.

To turn off the virtual machine, just execute the command below:
docker-machine stop default

To start the machine again, just execute the command:
docker-machine start default

The command “start” is responsible only for starting the machine.
It’s necessary that the Docker control applications, installed on the
station, will be able to connect to the virtual machine created on
virtual box with the command “docker-machine create”.

The control applications (Docker and Docker-compose) use envi-
ronment variables to configure which Docker Host will be used.
The command below facilitates the work of using all the variables
correctly:

How to use Docker without GNU/Linux 73

docker-machine env default

The result of this command on MacOS is:

export DOCKER_TLS_VERIFY="1"

export DOCKER_HOST="tcp://192.168.99.100:2376"

export DOCKER_CERT_PATH="/Users/rgomes/.docker/machine/machines/default"
export DOCKER_MACHINE_NAME="default"

Run this command to configure your shell:

eval $(docker-machine env default)

As we can see, it shows what can be done to configure all the
variables. You can copy the first four lines, that start with “export”,
and paste on the terminar, or take just the last line without the “#”
in the beginning and execute on the command line:

eval $(docker-machine env default)

Now, the control applications (Docker and Docker-Compose) are
ready to use Docker Host form the connection made in the 192.168.99.100
IP service - machine created with the previously mentioned “docker-
machine create” command.

To test, we list the running containers in this Docker Host using the
command:

docker ps

While executed in the MacOS or Windows’ command line, this
Docker client connects itself to the virtual machine that here we
call “Linux VM”, and requires the list of running containers at the
remote Docker Host.

We initiate a container with the command below:
docker container run -itd alpine sh

Now we verify again the list of running containers:

How to use Docker without GNU/Linux 74

docker ps

We can see that the container created from the image “alpine” is
running. It’s important to emphasize that this process is executed
on Docker Host, in the machine created inside the virtual box that,
in this example, holds the TP 192.168.99.100.

To verify the machine’s IP address, just execute the command
below:

docker-machine ip

If the container exposes any port to the Docker Host, whether via
“-p” parameter of the “docker container run -p porta_host:porta_-
container” command or via “ports” parameter of the docker-com-
pose.yml, it’s good to remember that the IP to access the exposed
service is the IP address of the Docker Host; in the example, is
©192.168.99.100”.

At this moment, you must be asking yourself: how is it possible to
map a folder from the “non Linux” station into a container? Here
enters a new Docker artifice to overcome this problem.

Every machine created with the “virtual box” driver automatically
creates a mapping of typ “virtual box shared folders” from the user
folder to the Docker Host root.

To visualize this mapping, we access the virtual machine we’ve just
created in the previous steps:

docker-machine ssh default

In the GNU/Linux machine console, type the following commands:

How to use Docker without GNU/Linux 75

sudo su
mount | grep vboxsf

The vboxsf®! is a file system used by virtual box to put together
shared volumes of the station used to instal the virtual box. In other
words, using the shared folder resource makes possible to set up the
MacOS folder /Users in the folder /Users from the virtual machine
of the Docker Host.

All the content in the MacOS folder /Users/SeuUsuario will be ac-
cessible in the folder /Users/SeuUsuario of the GNU/Linux machine
that works as a Docker Host in the example. In case you set up the
folder /Users/SeuUsuario/MeuCogidog into the container, the data
to be set up is the same of the station and nothing needs to be done
to replicate this code into the Docher Host.

Let’s test it. Create a new file inside the user folder:
touch teste
We start a container and map the current folder into it:

docker container run -itd -v "$PWD:/tmp" --name teste a\

lpine sh

In the command above, we initiated a container that will be named
“test” and will map the current folder (the variable PWD indicates
the current address on MacOS) in the folder /tmp, into the container.

We verify if the file we’ve just created is inside the container:

docker container exec teste 1ls /tmp/teste

#https://help.ubuntu.com/community/VirtualBox/SharedFolders

https://help.ubuntu.com/community/VirtualBox/SharedFolders
https://help.ubuntu.com/community/VirtualBox/SharedFolders

How to use Docker without GNU/Linux 76

The line above executed the command “ls /tmp/teste” inside the
container named “test”, created in the previous step.

Now, access Docker Host with the command below, and verify if
the test file is in the user folder:

docker-machine ssh default

Can everything be done automatically? Yes, of course!

Now that you know how to do it manually, if you need to install
Docker Toolbox in a new machine and doesn’t remember the
commands to create the new machine or simply how to set the
environment for use, just execute the “Docker Quickstart Terminal”
software. It will do the job automatically. In case this machine
doesn’t exist, it creates one named “default”. In case the machine
is already created, it automatically configures its environment
variables and sets up for using the remote Docker Host from the
control applications (Docker and Docker-Compose).

Turning your application
into a container

We are continually evolving to deliver ever better applications, in
less time, replicable and scalable. However, the efforts and learnings
to reach this level of maturity, many times, are not so simple to
achieve.

Currently, we observe the rising of several platforms to facilitate
the deployment, configuration and scalability of the applications
we develop. However, to increase our maturity level we can not just
depend on the platform, we need to build our application following
the best practices.

Aiming to define a series of best practices common to modern web
applications, some developers from Heroku® wrote the 12Factor
app® manifesto, counting on a wide experience in developing web
applications.

THE TWELVE-FACTOR APP

“The Twelve-Factor app” (12factor) is a manifesto with a series of
best practices for building software using automation declarative
formats, maximizing the portability and minimizing divergencies
amongst execution environments, allowing the deployment in mod-
ern cloud platforms and facilitating scalability. Thus, applications

8 https://www.heroku.com/
Bhttp://12factor.net/pt_br/

https://www.heroku.com/
http://12factor.net/pt_br/
http://12factor.net/pt_br/
https://www.heroku.com/
http://12factor.net/pt_br/

Turning your application into a container 78

are build stateless and connected to any infrastructure services
combination to data retention (database, queue, cache memory and
similar).

In this chapter we’ll talk about creating applications with Docker
images based on 12factor app. The idea is to show the best practices
to create an infrastructure to support, pack and make your applica-
tion available with a high level of maturity and agility.

The use of 12factor practices fits Docker very well, because many
of its resources are better used if your application is thought within
this purpose. Therefore, we will give you an idea of how to take
advantage of your application’s whole potential.

We will show a HTTP service as an example. It’s written in Python,
that displays how many times it was accessed, and this information
is stored in a conter in a Redis instance.

Now, let’s hit these best practices!

Codebase

Aiming to facilitate controlling the code changes, by enabling the
traceability of alterations, this best practice indicates that each
application must have only one code base and, from it, must be
deployed in different environments. It’s important to emphasize
that this practice is also part of the Continuous Integration (CI**)
practices. Traditionally, most part of continuous integration sys-
tems have, as a starting point, a code base that is built and, later,
deployed to development, test and production.

For this explanation, we use the version control system Git and
the hosting service Github. We create and provide an example
repository®”.

See, every code is inside the repository, arranged by practice in
each folder, to facilitate the reproduction. Remember of entering
the corresponding folder at each best practice presented.

Docker holds the possibility of using the environment variable to
parameterize the infrastructure. Therefore, the same application
will behave differently based on the value of environment variables.

Here we use Docker Compose to compose different relevant services
for the application in time to execute. Thus, we must define the con-
figuration of these distinct services and the way they communicate.

84https://www‘thoughtworks.com/continuous— integration
8 https://github.com/gomex/exemplo-12factor-docker.git

https://www.thoughtworks.com/continuous-integration
https://github.com/gomex/exemplo-12factor-docker.git
https://www.thoughtworks.com/continuous-integration
https://github.com/gomex/exemplo-12factor-docker.git

Codebase 80

Codebase Deploys

developer 1

|
| production
—_— staging

developer 2

Later, more precisely in the third best practice (called Config) of
this suggestion compendium we will approach application param-
eterization in details. For now, we just use options via environment
variable in architecture, instead of using it internally in the appli-
cation code.

To configure the development environment for the example pre-
sented, we created the file docker-compose.yml:

©O© 00 9 O O b W N =

S =GN
O O b WO N~ O

O O b W N =~

Codebase 81

version: '2'
services:
web:
build:
ports:
- "5000:5000"
volumes:
- .:/code
labels:
- 'app.environment=${ENV_APP}'
redis:
image: redis
volumes:
- dados_${ENV_APP}:/data
labels:
- 'app.environment=${ENV_APP]"'

We can notice that the “redis” service is used from the official “redis”
image, with no modification. And the web service is generated from
the building of a Docker image.

In order to build the Docker image of the web service, we create the
following Dockerfile, using the official Python 2.7 image as a base:

FROM python:2.7

COPY requirements.txt requirements.txt
RUN pip install -r requirements.txt
ADD . /code

WORKDIR /code

CMD python app.py

After putting all files in the same folder, we start the environment
with the following command:

Codebase 82

export ENV_APP=devel ; docker-compose -p $ENV_APP up -d

As we can notice in the example of this chapter, the environment
variable ‘ENV_APP’ defines which volume is use for persisting the
data that is going to be send by the web application. In other words,
based on the change of this option, we have the service running
with a different behavior, but always from the same code. There
you have the concept of the first best practice.

Dependencies

Moving in the list of the 12factor® model, right after we approached
the code base in this article®’, we have "Dependency” as the second
best practice.

- - e e A - - -y

Vi v

__}D f = ==

This best practice suggests the declaration of all required dependen-
cies to execute the code. You must not assume that some component
is previously installed in the active responsible for hosting the
application.

To make feasible the portability “dream”, we need to manage
correctly the given application dependencies; this indicates that we

$http://12factor.net/
8 http://techfree.com.br/2016/06/dockerizando-aplicacoes-base-de-codigo/

http://12factor.net/
http://techfree.com.br/2016/06/dockerizando-aplicacoes-base-de-codigo/
http://12factor.net/
http://techfree.com.br/2016/06/dockerizando-aplicacoes-base-de-codigo/

Dependencies 84

should also avoid the need of manual work while preparing the
infrastructure that supports the application.

Automating the dependency installation process is the big secret
of success to attend this best practice. In case the infrastructure is
not automated enough to provide initialization without errors, the
attendance to this best practice is compromised.

These automated procedures help maintaining the integrity of the
process, for the name of dependency packages and their respective
versions are specified in the file located in the same repository of
the code that, in turn, is traced in a control version system. Thus,
we can conclude that nothing is modified without the due record.

Docker fits perfectly in the best practice. It’s possible to deliver a
minimum infrastructure profile for the application. In turn, it’s nec-
essary the explicit declaration of dependencies, so the application
runs in the environment.

The example application, written in Python, as we saw a little in
the code below, needs two libraries in order to work correctly:

from flask import Flask
from redis import Redis

These two dependencies are specified in the file requirements.txt
and this file is used a PIP parameter.

“PIP is a package management system used to install and manage
software packages written in Python”. (Wikipedia)

The PIP command is used with the file requirements.txt in the
creation of image, as shown at the Dockerfile of previous best
practice (codebase):

O O b W N =

Dependencies 85

FROM python:2.7

ADD requirements.txt requirements.txt
RUN pip install -r requirements.txt
ADD . /code

WORKDIR /code

CMD python app.py

Notice that one of the steps of Dockerfile is to install the depen-
dencies written in the file requirements.txt with the Python’s PIP
package manager. Check out the content of requirements.txt file:

flask==0.11 .1
redis==2.10.5

It’s important to emphasize the need of specifying the versions of
each dependency, because, as in the container model, the images
can be built at any time. It’s important to know which specific
version the application requires. Otherwise, we can find some
compatibility problems if one of the dependencies updates and
doesn’t stay compatible with the complete set of other dependencies
and the application that uses it.

To access the code written here, download the repository®® and go
to the “factor2” folder.

Another positive outcome of using the best practices is the sim-
plification if another developer uses the code. A new developer
can verify in the dependencies file which are prerequisites for the
application to run, as well as executing the environment without
the need of following the extensive documentation that is rarely
updated.

By using Docker it is possible to configure automatically the nec-
essary to run the application code, following perfectly the best
practice.

https://github.com/gomex/exemplo- 12factor-docker

https://github.com/gomex/exemplo-12factor-docker
https://github.com/gomex/exemplo-12factor-docker

Config

Moving on on the list of 12factor® model, “Config” is the third best
practice.

When we are creating a software, we apply a given behavior inside
the code and usually it’s not parameterizable. For the application
behave differently, it will be necessary to change part of the code.

The need of modifying the code to change the application’s behav-
ior makes unfeasable the execution in the machine (development)
in the same way it is used to attend users (production). And, with
that, we kill the possibility of portability. And with no portability,
what is the advantage of using containers, right?

The goal of the best practice is to make feasible the application
configuration without the need of changing the code. Since the
application behavior varies according to the environment where is
executed, the configurations must consider the environment.

Here are some examples:

« Database configuration that usually are different between
environments

+ Credentials for accessing remote services (ex.: Digital Ocean
or Twitter)

« Which DNS name will be used by the application

As we mentioned, when the configuration is statistically explicit in
the code, it’s necessary to change manually and do a new binary
build at each system reconfiguration.

¥ http://12factor.net/

http://12factor.net/
http://12factor.net/

©O© 00 = O O b» W N =

= U=
w N -,

Config 87

As showed in the codebase best practice, we use a environments
variable to modify the volume we are going to use in redis. In a
way, we are already complying with the best practice, but we can
go further and change not only the infrastructure behavior, but also
something inherent in the code itself.

Here it is the modified application:

from flask import Flask
from redis import Redis
import os
host_run=os.environ.get('HOST_RUN', '90.0.0.0")
debug=os.environ.get('DEBUG', 'True')
app = Flask(__name__)
redis = Redis(host='redis', port=6379)
@app.route('/")
def hello():
redis.incr('hits"')
return 'Hello World! %s times.' % redis.get('hits")
if __name__ == "_main__":
app.run(host=host_run, debug=debug)

Remember! To access the practice code, just clone this repository®
and go to the “factor3® folder.

As we can see, we added some parameters to the configuration of
the address used to start the web application that will be parameters
based on the "THOST_RUN” environment variable value. And the
possibility of performing or not the application debug with the
"DEBUG” environment variable.

It’s worth to say: in this case the environment variable needs to go
into the container, it’s not enough to hold the variable on Docker
Host. It is necessary to send it into the container using the parameter

**https://github.com/gomex/exemplo-12factor-docker

https://github.com/gomex/exemplo-12factor-docker
https://github.com/gomex/exemplo-12factor-docker

0 I O O b W N =~

TGN
W N P, O O

14
15
16
17
18
19
20
21
22

Config 88

“-¢”, in case you use the command “docker container run” or the
instruction “environment” on docker-compose.yml:

version: "2"

services:
web:
build:
ports:
- "5000:5000"
volumes:
- .:/code
labels:
- 'app.environment=${ENV_APP}'
environment:

- HOST_RUN=${HOST_RUN}
- DEBUG=${DEBUG/
redis:
image: redis:3.2.1

volumes:
- dados:/data
labels:
"app.environment=${ENV_APP}'
volumes:
dados:

external: false

To execute Docker-Compose, we should do this way:

export HOST_RUN="0.0.0.0"; export DEBUG=True ; docker-c\
ompose up -d

In the command above, we use the environment variables “HOST _-
RUN” and “DEBUG” from Docker Host to send the environment
variables with the same names into the container that, in turn, is

Config 89

consumed by the Python code. In case there aren’t any parameters,
the container assumes the standard values set in the code.

This best practice is followed with the help of Docker, for the code is
the same and the configuration is an attachment of the solution that
can be parameterized in different ways based on what is configured
in the environment variables.

If the application grows, the variables can be carried out in files and
paremeterized on docker-compose-yml with the option “env_file”.

Backing services

Moving on on the list of 12factor” model, we find "Backing
services” as the fourth best practice.

To bring some context, “support service” is any application your
code consumes in order to function correctly (ex.: database, message
service etc.).

Production

h
Za
v, L'l)n-,/

Outbound
email service

Attached
resources

Aiming to prevent that the code is overly dependent of a given
infrastructure, the best practice says that you, while writing the
software, don’t differentiate the internal and external service. That
is, the application must be ready to get parameters that configure
the service correctly, thus making possible the consume of applica-
tions necessary to the solution.

The application in the example was modified to support the best
practice:

*'http://12factor.net/pt_br

http://12factor.net/pt_br
http://12factor.net/pt_br

0 I O O b W N =

N = U S VN
a & 0w N -~ 0 O

=, O O 00 N O O bk w N -

(RN

Backing services 91

from flask import Flask
from redis import Redis
import os
host_run=os.environ.get('HOST_RUN', '90.0.0.0")
debug=os.environ.get('DEBUG', 'True')
host_redis=os.environ.get('HOST_REDIS', 'redis')
port_redis=os.environ.get('PORT_REDIS', '6379")
app = Flask(__name__)
redis = Redis(host=host_redis, port=port_redis)
@app.route('/")
def hello():

redis.incr('hits"')

return 'Hello World! %s times.' % redis.get('hits")
if __name__ == "_main__":

app.run(host=host_run, debug=True)

As you can see in the code above, the application now gets environ-
ment variables to configure the host name and Redis service port.
In this case, it’s possible to configure the host and Redis port you
wish to connect. And this can and must be specified in the docker-
compose.yml that has also being through a change to suit this new
best practice:

version: "2"
services:
web:
build:
ports:
- "5000:5000"
volumes:
- .:/code
labels:
- 'app.environment=${ENV_APP}'
environment:

12
13
14
15
16
17
18
19
20
21
22
23
24

Backing services 92

- HOST_RUN=${HOST_RUN}
DEBUG=${DEBUG/
PORT_REDIS=6379

- HOST_REDIS=redis
redis:

image: redis:3.2.1

volumes:
- dados:/data
labels:
- 'app.environment=${ENV_APP}'
volumes:
dados:

external: false

As we could see in the mentioned codes, the advantage of the best
practice goes through the possibility of changing behavior without
changing the code. Once more it’s possible to enable that the same
code build in a certain moment can be reused in a similar way, both
in the developer’s notebook and in the production server.

Pay attention to storing secrets inside the docker-compose.yml,
because this file is sent to the version control repository and it’s
important to think about another strategy for keeping secrets.

A possible strategy is to maintain environment variables in Docker
Host. Therefore, you need to use variables like ${variable} inside
docker-compose.yml to repass the configuration or use another
more advanced secret management resource.

Build, release, run

The next item of the list of 12factor’®> model, “Build, launch, run”,
is the fifth best practice.

In the process of automating the software deployment infrastruc-
ture, we need to be careful so the process behavior is within the
expectations and so human errors have low impact in the whole
development process, from release to production.

2N
g

Aiming to organize, divide duties and make the process clearer,
12factor indicates that the base code, to be put into production,
needs to go through three phases:

Release

+ Build - convert the repository code into executable package.
In this process we obtain the dependencies, compile the
code’s binaries and actives.

+ Release - the package produced in the build phase is com-
bined with the configuration. The result is the whole envi-
ronment, configured and ready to run.

*Zhttp://12factor.net

http://12factor.net/
http://12factor.net/

Build, release, run 94

+ Run (also known as “runtime”) - begins running the release
(application + configuration of that environment), based on
the specific configurations of the required environment.

The best practice points out that the application has explicit sepa-
rations at the

Build, Release and Run stages. Thus, every change in the ap-
plication code is build only once in the Build stage. Changes in
configuration don’t need a new build, so it’s only necessary the
release and run stages.

In such a way, it’s possible to create clear controls and processes in
each stage. In case something happens in the code build, a measure
can be taken or even the release can be canceled, so the code in
production wouldn’t be compromised due to a possible error.

The separation of duties makes possible to know in which stage the
problem happened, and fix it manually, if needed.

The artefacts produced must have a single release ID. It can be the
timestamp (like 2011-04-06-20:32:17) or an incremental number (like
v100). With the single artefact, it’s possible to guarantee the use of
the old version, whether for a rollback or even to compare behaviors
after changing the code.

In order to follow the best practice, we need to build the Docker
image with the application inside of it. It will be our artifact.

We will have a new script, here called build.sh, with the following
content:

©O© 00 9 O O b W N =

= S
B W N =~

Build, release, run 95

#!/bin/bash

USER="gomex"
TIMESTAMP=$(date "+%Y.%m.%d-%H.%M")

echo "Construindo a imagem ${USER}/app:${TIMESTAMP}"
docker build -t ${USER}/app:${TIMESTAMP}

echo "Marcando a tag latest também"
docker tag ${USER}/app:${TIMESTAMP} ${USER}/app:latest

echo "Enviando a imagem para nuvem docker"
docker push ${USER}/app:${TIMESTAMP}
docker push ${USER}/app:latest

Aside of building the image, it sends it to the Docker’s image
repository®’.

Remember: this code and others from the best practice are in the
repository’, in the folder “factor5®.

Sending the image to the repository is an important part of this best
practice, for it isolates the process. In case the image is not sent to
the repository, it remains only in the server that executed the build
process; therefore, the next stage needs to be executed in the same
server, because such stage needs the image to be available.

In the proposed model, the image in the central repository is
available to be downloaded in the server. In case you are using a
pipeline tool, it’s important to use the product variables (instead
of using the date) to uniquely identify the artifact, and guarantee
that the image that is going to be used in the Run stage is the
same built in the Release stage. Exemple on GoCD: the variables

http://hub.docker.com/
% https://github.com/gomex/exemplo- 12factor-docker

http://hub.docker.com/
https://github.com/gomex/exemplo-12factor-docker
http://hub.docker.com/
https://github.com/gomex/exemplo-12factor-docker

©O© 00 N O O b» W N =

N O S S U N
O 00 1 O O b W N~ O

Build, release, run 96

GO_PIPELINE_NAME and GO_PIPELINE_COUNTER can be
used together to identify the artifact.

With the image creation, we can guarantee that the Build stage was
fulfilled perfectly, because now we have an artifact built and ready
to be put together with the configuration.

Com a geracdo da imagem podemos garantir que a etapa Con-
struir foi atendida perfeitamente, pois, agora temos um artefato
construido e pronto para ser reunido a configuracao.

The Release stage is the file docker-compose.yml itself, because
it gets the due configurations for the environments in which you
wish to put the application. Therefore, the file docker-compose.yml
changes a little and stops making the image build, since now it will
be used only for Release and Run (later):

version: "2"
services:
web:
image: gomex/app:latest
ports:
- "5000:5000"
volumes:
- .:/code
labels:
- 'app.environment=${ENV_APP}'
environment:
- HOST_RUN=${HOST_RUN
- DEBUG=${DEBUG/
- PORT_REDIS=6379
- HOST_REDIS=redis
redis:
image: redis:3.2.1
volumes:
- dados:/data

20
21
22
23
24

Build, release, run 97

labels:
- 'app.environment=${ENV_APP}'
volumes:
dados:
external: false

In the docker-compose.yml example above, we used the tag latest
to guarantee it always searches for the last built image in the
process. But as we have already mentioned, in case you are using
some continuous delivery tool (such as GoCD, for instance), use
the variables to guarantee the image created in the specific pipeline
execution.

Therefore, release and run will use the same artifact: the Docker
image, built in the build stage.

The run stage, basically, executes the Docker-Compose with the
command below:

docker -compose up -d

Processes

Next in the list of 12factor®® model, we present "Processes” as the
sixth best practice.

Nowadays, with the automated processes and the due intelligence
in maintaining applications, it is expected that the application can
respond to demand peaks with automatic initialization of new
processes without affecting its behavior.

o

b A Q

The best practice says that 12factor application processes are state-
less (don’t store state) and share-nothing. Any data that need to
persist must be stored in stateful support service, usually used in a
database.

The final goal of this practice does not differentiates if the appli-
cation is executed in the developer’s machine or in production,
because in this case what changes is the amount of initialized
processes to respond the demands. In the developer’s machine is
only one process; in production this number can be higher.

12factor points out that the memory space or file system of the
server can be used briefly as a single transaction cache. For instance,

*http://12factor.net

http://12factor.net/
http://12factor.net/

Processes 99

the download of a big file, working over it and storing the results
in the database.

We highlight that a state should never be store between require-
ments, it doesn’t matter the processing status of the next require-
ment.

It’s important to emphasize: by following a practice, a application
doesn’t assume that any item stored in memory cache or in disk will
be available for a future requirement or job - with many different
processes running, higher are the chances of a future requirement
to be served by a different process, even by a different server. Even
when running in a single process, a restart (initiated by a code’s
deployment, changes in configuration, or the running environment
reallocating the process to a different physical location) usually will
end up with the local state (memory and file system, for instance).

Some applications require persistent sessions to store information
of the user session and so. Such sessions are used in future require-
ments from the same visitor. That is, if it’s stored with the processe,
it’s clearly violating the best practice. In this case, the advice is to
use a support service, such as redis, memcached or similar to this
type of job that is external to the process. With that, it’s possible
that the next process, no matter where it is, is able to get the update
information.

The application we are working on does not keep local data and
everything it need is stored on Redis. We don’t need to adequate
anything in this code to comply with the best practice, as we can
see:

0 < O O b W N =~

TN
w N, O

Processes 100

from flask import Flask

from redis import Redis

import os

host_redis=os.environ.get('HOST_REDIS', 'redis')
port_redis=os.environ.get('PORT_REDIS', '6379")

app = Flask(__name__)

redis = Redis(host=host_redis, port=port_redis)
@app.route('/")

def hello():

redis.incr('hits"')

return 'Hello World! %s times.' % redis.get('hits")
if __name__ == "_main__":

app.run(host="0.0.0.0", debug=True)

To access the code of the practice, go to the repository”, in the folder
“factor6”.

“Shttps://github.com/gomex/exemplo-12factor-docker

https://github.com/gomex/exemplo-12factor-docker
https://github.com/gomex/exemplo-12factor-docker

Port binding

According to the list of the 12factor” model, the seventh best
practice is port binding.

It’s usual to find applications executed inside containers of web
servers, such as Tomcat or Jboss, for instance. Usually, these ap-
plications are deployed into the services so they can be access by
user externally.

*Thttp://12factor.net

http://12factor.net/
http://12factor.net/

<N O O b W N =

Port binding 102

The best practice suggests that the given application would be self-
contained and depend on a application server, such as Jboss, Tomcat
and similar. The software must export a HTTP services and deal
with the requirements that come through it. This means that any
additional application is unnecessary for the code to be available to
the external communication.

Traditionally, the artifact deployments in an application server, such
as Tomcat and Jboss, requires the generation of an artifact, that is
sent to the given web service. But in the Docker’s container model
the ideia is that the artifact of the deployment process would be the
container itself.

The old artifact deployment process in an application server usually
didn’t have a fast return, overly increasing the process of deploying
a service, because each alteration required to send the artifact to
the web application service; the later was responsible for importing,
reading and executing the new artifact.

By using Docker, the application become self-contained easily. We
built a Dockerfile that describes what the application needs:

FROM python:2.7

ADD requirements.txt requirements.txt
RUN pip install -r requirements.txt
ADD . /code

WORKDIR /code

CMD python app.py

EXPOSE 5000

The dependencies are described in the file requirements.txt and
the data that must be persisted are managed by a service (support
services) external to the application.

Another point of the best practice: the application must export the
service by binding to a single port. As we seed in the example code,
the standard Python port (5000) is initiated, but you can choose

Port binding 103

another one if you think it’s necessary. Here’s the part of the code
that approaches the subject:

if __name__ == "_main__":

app.run(host="0.0.0.0", debug=True)

The port 5000 can be used to serve data locally in a development
environment or through a reverse proxy, when migrating to pro-
duction with the proper domain name to the given application.

Using the binding port model makes the application update process
more fluid, once using an intelligent reverse proxy makes possible
to add new knots gradually, with the new version, and remove the
old ones as the updated versions are executed in parallel.

Important: even that Docker allows using more than one port per
container, the best practice emphasizes that you should only use one
binding port per application.

Concurrency

The eighth best practice from the list of 12factor”® model is “Con-
currency’.

During the process of developing an application it’s hard to imagine
the amount of requirements it will have when in production. On the
other hand, a service that bears great usage volumes is expected in
modern solutions. Nothing is more frustrating than requiring access
to an application and it is not available. It suggests lack of care and
professionalism in most cases.

When the application is put into production, it’s usually dimen-
sioned to a given load; however, it’s important that the service is
ready to escalate. The solution must be able to initiate new processes
of the same application if necessary, without affecting the product.
The picture below shows the service scalability graphic.

%http://12factor.net

http://12factor.net/
http://12factor.net/

Concurrency 105

>

Escalabilidade

Processos em execucio

Redis.1

>

Diversidade de processos
Tipos de procesos

Aiming to avoid any kind of problem in service scalability, the best
practice says that the applications must support concurrent execu-
tions, and when a process is in execution, instantiating another one
in parallel and attend the service, without any loss.

For such, it’s important to distribute tasks correctly. It’s interesting
the process of attaining to the goals, in case it’s necessary to execute
some activity in backend and later return a page for the browser,
it’s salutary that two services respond to two activities, separately.
Docker makes this task simpler, because in this model it’s only
necessary to specify a container for each function and properly
configure the network between them.

To illustrate this best practice, we’ll use the architecture shown in
the picture below:

©O© 00 9 O O b» W N =

I O = U S S
g b 0N =~

Concurrency 106

Web Worker Redis

‘Worker

The web service is responsible for receiving the requirements anda
balance the workers, which are responsible for processing the
requirements, connecting to Redis and return the “Hello World”
screen, informing how many times it appeared and which worker
name is responding to the requirement (to be sure it’s balancing the
load), as we can see in the picture below:

Hello World I am 8f100¢708379! 5 times.

The file docker-compose.yml exemplifies the best practice:

version: "2"
services:
web:
container_name: web
build: web
networks:
- backend
ports:
- "80:80"

worker :
build: worker
networks:
backend:
aliases:

16
17
18
19
20
21
22
23
24
25
26
27
28
29

g s W N =

Concurrency 107

- apps
expose:
- 80
depends_on:
- web

redis:
image: redis
networks:
- backend

networks:
backend:

driver: bridge

To do the build of the load balancer, we have the web directory
containing Dockerfile files (responsible for creating the image used)
and nginx.conf files (configuration file from the load balancer used).

Here’s the web Dockerfile content:

FROM nginx:1.9
COPY nginx.conf /etc/nginx/nginx.conf

EXPOSE 80
CMD [”nginx”, u_gn, "daemon Off;”]

And the content of nginx.conf file:

O 00 9 O U b wWw N =~

[T S S T S = ' G i i i S G QRN
N P © © 0 N O O » W0 N~ O

Concurrency 108

user nginx;

worker_processes 2;

events {

worker_connections 1024;

http {
access_log /var/log/nginx/access.log;
error_log /var/log/nginx/error.log;

resolver 127.0.0.11 valid=1s;

server {
listen 80;

set $alias "apps";

location / {
proxy_pass http://$alias;

In the configuration file above, some innovations were introduced.

The first one, “resolv 127.0.0.11% is the Docker’s internal DNS

service. By using this approach, it’s possible to balance the load

via name, using Docker’s internal resource. For more details on

Docker’s internal DNS, check out this documentation (https://docs.docker.com/engin
dns/*?) (only in English).

The second innovation, the set $alias “apps” function, is responsible
for specifying the name “apps” used to configure the reverse proxy,
then “proxy_pass http://$alias;”. It’s important to emphasize that

“https://docs.docker.com/engine/userguide/networking/configure-dns/

https://docs.docker.com/engine/userguide/networking/configure-dns/
https://docs.docker.com/engine/userguide/networking/configure-dns/
https://docs.docker.com/engine/userguide/networking/configure-dns/

©O© 00 9 O O b W N =

N N O SN
0 <N O O B 0N~

Concurrency 109

“apps” is the name of the network specified inside the file docker-
compose.yml. In this case, the balancing is made for the network,
and every new container that enters this network is automatically
added to the load balancing.

To build the worker we have the directory worker containing the
Dockerfile files (responsible for creating the image used), app.py
(application used in all chapters) and requirements.txt (describes
the dependencies of app.py).

Below is the content of the file app.py that was modified for the
practice:

from flask import Flask

from redis import Redis

import os

import socket

print(socket.gethostname())
host_redis=os.environ.get('HOST_REDIS', 'redis')
port_redis=os.environ.get('PORT_REDIS', '6379")

app = Flask(__name__)
redis = Redis(host=host_redis, port=port_redis)

@app.route('/")
def hello():

redis.incr('hits"')

return 'Hello World I am %s! %s times.' % (socket.ge\
thostname(), redis.get('hits'))

if __name__ == "_main__":
app.run(host="0.0.0.0", debug=True)

The content of requirements.txt:

O O b W N

Concurrency 110

flask==0.11 .1
redis==2.10.5

And lastly the worker Dockerfile holds the following content:

FROM python:2.7

COPY requirements.txt requirements.txt
RUN pip install -r requirements.txt
COPY . /code

WORKDIR /code

CMD python app.py

In the redis services there’s not building the image, we’ll use the
official image to exemplify.

To test what was presented so far, clone the repository (https://github.com/gomex/exc

12factor-docker'”) and access the folder factor8, executing the
command below in order to initiate the containers:

docker -compose up -d

Access the containers through the browser at the port 80 from the
localhost address. Refresh the page and see that only one name
appears.

As a standard, Docker-Compose executes only one instance of each
service explicit on docker-compose.yml. To increase the amount of
worker containers from one to two, execute the command below:

docker -compose scale worker=2

Refresh the page and see that the name of the host alternates be-
tween two possibilities, that is, the requirements are being balanced
to both containers.

% ttps://github.com/gomex/exemplo- 12factor-docker

https://github.com/gomex/exemplo-12factor-docker
https://github.com/gomex/exemplo-12factor-docker
https://github.com/gomex/exemplo-12factor-docker

Concurrency 111

In this new environment proposal, the web service is in charge of
receiving the HTTP requirements and balance the load. Then, the
worker is responsible for processing the requirements - basically
getting the host name, access redis and count how many time the
service was required - and then rollback to return it to the web
service that, in turn, responds to the user. As we can notice, each
environment instance has a defined function, thus making easier to
escalate it.

We take the opportunity to give the credits to captain Marcosnils'’?,

who showed us that is possible to balance the load by the Docker
network name.

%https://twitter.com/marcosnils

https://twitter.com/marcosnils
https://twitter.com/marcosnils

Disposability

In the ninth position of the list of the 12factor'® model, we have
“Disposability”.

When we talk about web applications, the expectancy is that more
than one process attends to the whole traffic required to the service.
However, as important as the capacity of starting new processes is
the ability of a defective process ending up in the same velocity that
started, for a process that takes too long to finish can compromise
the whole solution, once it can still be responding to requirements
defectively.

SIGTERM

Docker client

worker2

Summing up, we can say that we applications should be able to
quickly remove defective processes.

Aiming to prevent that the service is dependent on instances
that serve it, the best practice says that the applications must be
disposable; in other words, shutting down one of its instances must
not affect the solution as a whole.

Docker gives the option to automatically dispose a container after
using it - on docker container run use the option -rm. It’s impor-

%http://12factor.net

http://12factor.net/
http://12factor.net/

©O© 00 9 O O b» W N =

N =SS
g »h 0N =~

Disposability 113

tant to highlight that this option doesn’t work while in daemon
(-d) mode, therefore, it only makes sense to use it on interactive
(-i) mode.

Another important detail of the best practice is to enable the code
to shut down “graciously” and restart with no errors. Thus, when
hearing a SIGTERM the code must finish any requirement in
progress and then shut down the process with no problems and
quickly, allowing that another process is quickly attended as well.

We consider a “gracious” shut down when an application is capable
of self-finishing with no damages to the solution; as it receives the
signal to shut down, it immediately refuses new requirements and
just finishes up the pendent tasks that are running at that moment.
It is implicit in this model: the HTTP requirements are short (no
more than a few seconds), and in the case of long connections the
client can automatically reconnect if the connection is lost.

The application went through the following alteration to attend the
specification:

from flask import Flask
from redis import Redis
from multiprocessing import Process

import signal, os

host_redis=os.environ.get('HOST_REDIS', 'redis')
port_redis=os.environ.get('PORT_REDIS', '6379")

app = Flask(__name__)
redis = Redis(host=host_redis, port=port_redis)

@app.route('/")
def hello():
redis.incr('hits"')
return 'Hello World! %s times.' % redis.get('hits")

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Disposability 114

if __name__ == "_main__":
def server_handler(signum, frame):
print 'Signal handler called with signal', sign\
um
server.terminate()

server. join()
signal .signal(signal.SIGTERM, server_handler)

def run_server():
app.run(host="0.0.0.0", debug=True)

server = Process(target=run_server)
server.start()

In the code above, we added up handling for, when it gets a
SIGTERM signal, finishing up the process quickly. Without the
handling, the code takes longer to be shut down. Therefore, we
conclude that the solution is disposable enough. We can shut down
and restart the container in another Docker Host and this change
won’t impact the data integrity.

For understanding purposes on what we work here, it’s important
to explain: according to Wikipedia a signal is “(...) an asynchronous
notification sent to processes aiming to notify the occurrence of
an event”. And SIGTERM is (...) the name of a signal known as a
computer process in POSIX operative systems. This is the standard
signal sent by kill and killall commands. It causes the process to
finish, as in SIGKILL, however it can be interpreted or ignored by
the process. Thereby, SIGTERM performs a friendlier shut down,
allowing to clear memory and closing files”.

To perform the test of what was presented so far, clone the repos-
itory (https://github.com/gomex/exemplo-12factor-docker'”®) and

B https://github.com/gomex/exemplo- 12factor-docker

https://github.com/gomex/exemplo-12factor-docker
https://github.com/gomex/exemplo-12factor-docker

Disposability 115

access the folder factor8 (that’s right, number 8; let’s show the
difference relating to factor9), executing the command below to
initiate the containers:

docker -compose up -d
Then, execute the command below to finish up the containers:
time docker-compose stop

You’ll see that the worker finishing up takes about 11 seconds,
because of the behavior of Docker-Compose that, in order to finish
up first performs a SIGTERM and wait 10 seconds so the application
shuts down by itself; otherwise, it sends a SIGKILL that shuts down
the process abruptly. This time out is configurable. In case you wish
to change it, just use the parameter “-t” or “~timeout®. Check an
example:

docker -compose stop -t 5

Obs.: The value informed after the parameter is measured in sec-
onds.

Now, to test the modified code, go to the folder factor9 and execute
the following command:

docker -compose up -d

Later, request the conclusion:

time docker-compose stop

Notice that the worker process finished up faster, for it got the

SIGTERM signal. The application shut down by itself and didn’t
need to receive a SIGKILL signal to be effectively shut down.

Development/production
parity

Next on the 12factor'® model list, we have “Development/produc-
tion parity” as the tenth best practice.

Desenvolvimento]7M udar eatada—)[Produgéo

Unfortunately, in most software work environments there is a deep
abyss between development and production. It’s not just fortuity or
lack of luck, it’s because of the differences between the development
and infrastructure teams. According to 12factor, these differences
appear within the following:

« Time: developers can work in a code for days, weeks or even
months to go into production.

+ Personnel: developers write code, operation engineers de-
ploy the code.

+ Tools: devedores can use sets such as Nginx, SQLite and OS
X, while the app in production uses Apache, MySQL and
Linux.

12factor intends to collaborate in order to reduce this abyss between
teams and equalize environments. Regarding the differences pre-
sente, here are the respective proposals:

« Time: developers can write code and see the deployment
finished hours or even minutes later.

%hittp://12factor.net

http://12factor.net/
http://12factor.net/

Development/production parity 117

+ Personnel: developers who write code are closely involved
in deployment and following its behavior in production.
+ Tools: keep development and production as similar as possi-

ble.

One of container’s making goals is to collaborate with portability
between development and production environments. The ideia is
that the image is built and only its status will be modified to be put
into production. The current code is ready to this behavior, thus
there’s not much to be modified to guarantee the best practice. It’s
like a bonus for adopting Docker and following the other 12factor
best practices.

Logs

The eleventh best practice in the 12factor'®> model list is “Logs”.

Web
STDOUT
Worker TDOUT. Console
STDOUT
Redis

While developing codes, generating data for logs is something
very much consolidated. We don’t believe that there’s softwares in
development without this concern. However, the correct use of log
goes beyond of just generating data.

For context effect, according to 12factor, log is: “(...) the stream of
aggregated, time-ordered events collected from the output streams
of all running processes and backing services”.

Usually, logs are stores in files, with events per line (backtraces
from exception may span multiple lines). But this practice is not

% http://12factor.net

http://12factor.net/
http://12factor.net/

Logs 119

recommended, at least not from an application’s perspective. This
means that the application should not worry in which file it will
store the logs.

To specity files implies on informing the correct directory of this
file, that, in turn, results in previous environment configuration.
This impacts negatively in application’s portability, because is
necessary that the environment that will get the solution follows
a series of technical requirements to back the application, burying
the possibility of “Build it once, run it anywhere”.

The best practice says that the applications should not manage
or route log files, but should be deposited without any buffer to
the standard output (STDOUT). Thus, an infrastructure external to
the application - platform - must manage, collect and format the
logs output to future reading. This is really important when the
application is running in several instances.

With Docker, such task becomes easy for Docker already collects
standard output logs and send them to some of the several log
drivers. The driver can be configured in the container initialization
in order to group the logs in the log remote service, such as syslog.

The example code in the repository(https://github.com/gomex/exemplo-
12factor-docker!%), in the folder factor11, is ready to test the best
practice, for it sends all data outputs to STDOUT and you can check

it by initiating the service with the command below:

docker -compose up

After initiating, access the browser and verify the application
requirements that appear on the Docker-Compose console.

1%https://github.com/gomex/exemplo- 12factor-docker

https://github.com/gomex/exemplo-12factor-docker
https://github.com/gomex/exemplo-12factor-docker
https://github.com/gomex/exemplo-12factor-docker

Admin processes

The twelfth and last best practice from the 12factor'®” model list:
“Admin processes”.

Imagem
Worker

Container Gi‘:ﬁi’;&r
worker! worker1
Incrementar Resetar

Container
redis

107http:// 12factor.net

http://12factor.net/
http://12factor.net/

© 0 N O O P+ W N =

Admin processes 121

Every application requires administration. That means that, once
deployed, it’s possible that the application need to receive some
commands to correct possible issues or simply change behavior. As
examples we have database migrations, running several scripts as
backup and also running a console to inspect the service.

The best practice recommends admin processes executed in envi-
ronments similar to the ones used in the running code, following
all of the practices presented so far.

Using Docker makes possible to run the processes using the same
base image in the running environment you wish. Thereby, with
can benefit from the communication between containers and the
use of volumes required and similar.

To exemplify the best practice we create the file reset.py:

from redis import Redis

import signal, os

host_redis=os.environ.get('HOST_REDIS', 'redis')
port_redis=os.environ.get('PORT_REDIS', '6379"')

redis = Redis(host=host_redis, port=port_redis)
redis.set('hits', 0)

The command is given by using a different container from the same
Docker image, and it’s responsible for reinitiating the Redis’ visit
counter. First, we start the environment, download the repository,

and access the folder factor12 and execute the command:

docker -compose up

Access the application in the browser. In case you are using GNU/Linux

or Docker For Mac and Windows, access the address 127.0.0.1. You’ll
see the following sentence:

Admin processes 122
“Hello World! 1 times.”

Access the application a couple more times so the counter goes up.

Then, execute the admin command from the worker service:
docker -compose exec worker python reset.py

The command “python reset.py” will be executed inside a new
container, but using the same image of a regular worker.

Access the application again and check if the counter started from
1 again.

Tips for using Docker

If you read the first part of the book, you already know the basics on
Docker; but now that you intend to start using it more frequently
some issues may rise, because as in any tool, Docker has its own set
of best practices and tips.

The goal of this article is to present some tips for better use Docker.
That doesn’t mean that your way of using is necessarily wrong.

Every tool requires some best practices to make its use more
effective and less likely to show future problems.

This chapter is divided in two sections: tips for running (‘docker
container run’) e best practices in image building (‘docker build’/‘Dockerfile’).

Tips for running

Remember: each ‘docker container run’ command creates a new
container based on a specific image and starts a process inside it,
after a command (‘CMD’ specified on Dockerfile).

Disposable containers

It’s expected that executed containers could be disposed without
any problems. Therefore, it’s important to use truly ephemera
containers.

For such, use the arguments ‘~rm’, that makes all containers, and
their data, to bem removed after finishing the execution, preventing
from taking unnecessary space in disk.

In general, the command ‘run’ can be used as in the example:

Tips for using Docker 124

docker container run --rm -it debian /bin/bash

Notice that ‘-it" means ‘~interactive —tty’. It’s used to fix the com-
mand line to the container, thus, after this ‘docker container run’,
every command are executed by the ‘bash’ inside the container. To
exit, use ‘exit’ or press ‘Control-d’. These parameters are very useful
to execute a container in the foreground.

Check environment variables

Some times, it’s necessary to check which meta-data are defined as
environment variables in an image. Use the command ‘env’ to get
this information:

docker container run --rm -it debian env
To check the old environment variables of a container:
docker inspect --format '{{.Config.Env}}' <container>

For other meta-data, use variations of command ‘docker inspect’.

Logs

Docker captures standard output logs (STDOUT’) and errors out-
put CSTDERR’).

These records can be routed to different systems (‘syslog’, ‘flu-
entd’, ...) that can be specified in the driver configuration'®® ‘~log-
driver=VALUE’ in the command ‘docker container run’.

When using the standard driver ‘json-file’ (also, ‘journald’), you can
use the following command to recover the logs:

1%https://docs.docker.com/engine/admin/logging/overview/

https://docs.docker.com/engine/admin/logging/overview/
https://docs.docker.com/engine/admin/logging/overview/

Tips for using Docker 125

docker logs -f <container_name>

Notice yet the argument -f” to follow up the next log messages
interactively. If you want to stop, press ‘Ctrl-c’.

Backup

Docker container data are exposed and shared via volume ar-
guments used while creating and starting the container. These
volumes don’t follow the rules from Union File System'?’, because
the data persist even when the container is removed.

To create a volume in a given container, execute as it follows:

docker container run --rm -v /usr/share/nginx/html --na\

me nginx_teste nginx

By executing this container, we’ll have the Nginx service that uses
the volume created to persist its data; the data will persist even after
the container is removed.

It a system admin best practice to do periodic backups; to execute
this activity (extract data), use the command:

docker container run --rm -v /tmp:/backup --volumes-fro\
m nginx-teste busybox tar -cvf /backup/backup_nginx.tar\
/usr/share/nginx/html

After executing the command, we have a ’backup_nginx.tar’ file
inside the folder /tmp of Docker host.

In order to restores this backup, use:

®https://docs.docker.com/engine/reference/glossary/#union-file-system

https://docs.docker.com/engine/reference/glossary/#union-file-system
https://docs.docker.com/engine/reference/glossary/#union-file-system

Tips for using Docker 126

docker container run --rm -v /tmp:/backup --volumes-fro\
m nginx-teste busybox tar -xvf /backup/backup.tar /usr/\
share/nginx/html

More information can be found in the answer!'!?, where is possible
to find some aliases for these two commands. These aliases are also
available below, in the Aliases section.

Some other sources:

+ Docker official documentation about Data backup, restora-
tion or migration'!!

« A backup tool (currently deprecated): docker-infra/docker-

112

backup

Use docker container exec to “enter a
container”

Eventually, it’s necessary to enter a running container so you can
check any problem, running tests or simply debug.

Never install daemon SSH in a Docker container. Use ‘docker
container exec’ to enter a container and run commands:

docker container exec -it <nome do container em execuga\
o> bash

The feature is useful in local development and experiments. But
avoid using container in production or automating tools around it.

Check the documentation'?.

"http://stackoverflow.com/a/34776997/1046584

"hitps://docs.docker.com/engine/userguide/containers/dockervolumes/#backup-
restore-or-migrate-data-volumes

" ttps://github.com/docker-infra/docker-backup

Bhitps://docs.docker.com/engine/reference/commandline/exec/

http://stackoverflow.com/a/34776997/1046584
https://docs.docker.com/engine/userguide/containers/dockervolumes/#backup-restore-or-migrate-data-volumes
https://docs.docker.com/engine/userguide/containers/dockervolumes/#backup-restore-or-migrate-data-volumes
https://github.com/docker-infra/docker-backup
https://github.com/docker-infra/docker-backup
https://docs.docker.com/engine/reference/commandline/exec/
http://stackoverflow.com/a/34776997/1046584
https://docs.docker.com/engine/userguide/containers/dockervolumes/#backup-restore-or-migrate-data-volumes
https://docs.docker.com/engine/userguide/containers/dockervolumes/#backup-restore-or-migrate-data-volumes
https://github.com/docker-infra/docker-backup
https://docs.docker.com/engine/reference/commandline/exec/

Tips for using Docker 127

No space in Docker Host disk

By executing containers and building images several times, the
space in disk can become scarce. When it happens, it’s necessary
to clean some containers, images and logs.

A fast way of cleaning containers and images is by using the
following command:

docker system prune
With this command you will remove:

« All the containers not in use at the moment

« All the volumes not in use by at least one container
« All the networks not in use by at least one container
 Every dangling images

Obs.: Let’s not get too deep in Docker’s low level concept and say
that dangling images are simply images with no tags, therefore
unnecessary for conventional use.

Depending on the type of application, logs can occupy some volume
too. The management depends a lot on which driver'' is used.
In the standard driver (‘json-file’), the cleaning can be done by

executing the following command inside Docker Host:

echo "" > $(docker inspect --format='{{.LogPath}}' <con\
tainer_name_or_id>)

+ The functionality proposal of cleaning the logs history was,

actually, rejected. More information on: https://github.com/docker/compose/is

"https://docs.docker.com/engine/admin/logging/overview/
hitps://github.com/docker/compose/issues/1083

https://docs.docker.com/engine/admin/logging/overview/
https://github.com/docker/compose/issues/1083
https://docs.docker.com/engine/admin/logging/overview/
https://github.com/docker/compose/issues/1083

o I O O b W N =

T S T S = = S G G G Uy S G G
, O O 0 9 O O b W N = O O

Tips for using Docker 128

« Consider specifying the ‘max-size’ option to the log driver
while executing ‘docker container run’: https://docs.docker.com/engine/refere
file-options!!®

Aliases

Alias makes possible to transform big commands into smaller ones.
We have some new options to execute more complex tasks.

Use these aliases in your ‘.zshrc’ or “bashrc’ to clean imagens and
containers, to backup and restore etc.

runs docker container exec in the latest container
function docker-exec-last {

docker container exec -ti $(docker ps -a -q -1) /bin\
/bash
}

function docker-get-ip {

sage: docker-get-ip (name or sha)

[-n "$1"] && docker inspect --format "{{ .NetworkSe\
ttings.IPAddress }}" $1
}

function docker-get-id {

Usage: docker-get-id (friendly-name)

[-n "$1"] && docker inspect --format "{{ .ID }}" "$\
qr
}

function docker-get-image {
Usage: docker-get-image (friendly-name)
[-n "$1"] && docker inspect --format "{{ .Image }}"\

https://docs.docker.com/engine/reference/logging/overview/#json-file-options

https://docs.docker.com/engine/reference/logging/overview/#json-file-options
https://docs.docker.com/engine/reference/logging/overview/#json-file-options
https://docs.docker.com/engine/reference/logging/overview/#json-file-options

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

Tips for using Docker 129

n $1 n
}

function docker-get-state {

sage: docker-get-state (friendly-name)

[-n "$1"] && docker inspect --format "{{ .State.Run\
ning }}" "$1"
}

function docker-memory {
for line in “docker ps | awk '{print $1}' | grep -v C\
ONTAINER™; do docker ps | grep $line | awk '{printf $NF\
" "}' &R echo $((“cat /sys/fs/cgroup/memory/docker/$1i\
ne*/memory.usage_in_bytes™ / 1024 / 1024))MB ; done
}
keeps the commmand history when running a container
function basher() {
if [[$1 = 'run']]
then
shift
docker container run -e HIST_FILE=/root/.bash_h\
istory -v $HOME/.bash_history:/root/.bash_history "$@"
else
docker "$@"
fi
}
backup files from a docker volume into /tmp/backup.ta\
r.gz
function docker-volume-backup-compressed() {
docker container run --rm -v /tmp:/backup --volumes-f\
rom "$1" debian: jessie tar -czvf /backup/backup.tar.gz \
"${@:2}"
}
restore files from /tmp/backup.tar.gz into a docker v\

olume

o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
T
78

Tips for using Docker 130

function docker-volume-restore-compressed() {

docker container run --rm -v /tmp:/backup --volumes-f\
rom "$1" debian: jessie tar -xzvf /backup/backup.tar.gz \
"${@:2}"

echo "Double checking files..."

docker container run --rm -v /tmp:/backup --volumes-f\
rom "$1" debian: jessie 1ls -lh "${@:2}"
}
backup files from a docker volume into /tmp/backup.tar
function docker-volume-backup() {

docker container run --rm -v /tmp:/backup --volumes-f\
rom "$1" busybox tar -cvf /backup/backup.tar "${@:2}"
}
restore files from /tmp/backup.tar into a docker volu\
me
function docker-volume-restore()

docker container run --rm -v /tmp:/backup --volumes-f\
rom "$1" busybox tar -xvf /backup/backup.tar "${@:2}"

echo "Double checking files..."

docker container run --rm -v /tmp:/backup --volumes-f\
rom "$1" busybox 1s -1h "${@:2}"
}

Sources:

« https://zwischenzugs.wordpress.com/2015/06/14/my-favourite-
docker-tip/™”

« https://website-humblec.rhcloud.com/docker-tips-and-tricks/!!®

"hitps://zwischenzugs.wordpress.com/2015/06/14/my-favourite- docker-tip/
Bhittps://website-humblec.rhcloud.com/docker-tips-and-tricks/

https://zwischenzugs.wordpress.com/2015/06/14/my-favourite-docker-tip/
https://zwischenzugs.wordpress.com/2015/06/14/my-favourite-docker-tip/
https://website-humblec.rhcloud.com/docker-tips-and-tricks/
https://zwischenzugs.wordpress.com/2015/06/14/my-favourite-docker-tip/
https://website-humblec.rhcloud.com/docker-tips-and-tricks/

Tips for using Docker 131

Best practices to build images

On Docker, images are traditionally built using a ‘Dockerfile’. There
are some good guides on the best practices to build Docker images.
Take a look at our recommendations:

« Documentacio oficial'!’

« Guia do projeto Atomic'®’
« Melhores praticas do Michael Crosby Parte 1'%

« Melhores praticas do Michael Crosby Parte 2'%*

Use a “linter”

“Linter” is a tool that provides tips and warning on some source
code. There are some simple options for ‘Dockerfile’, but it is, still,
a new evolving space.

Many options were discussed here'®.

Since January 2016, the most complete “linter” seems to be hadolint'*,
available in two versions: on-line and terminal. The interest thing
abou this tool is that it uses the mature Shell Check'® to validate

the shell commands.

The basics

The container produced by the ‘Dockerfile’ image must be as
ephemeral as possible. This means that it should be possible to

https://docs.docker.com/engine/articles/dockerfile_best-practices/

2 http://www.projectatomic.io/docs/docker-image-author-guidance/
*http://crosbymichael.com/dockerfile-best-practices.html

122 http://crosbymichael.com/dockerfile-best-practices.html

) ttps://stackoverflow.com/questions/28182047/is- there-a-way- to-lint- the-dockerfile
2http://hadolint.lukasmartinelli.ch/

Phitp://www.shellcheck net/about.html

https://docs.docker.com/engine/articles/dockerfile_best-practices/
http://www.projectatomic.io/docs/docker-image-author-guidance/
http://crosbymichael.com/dockerfile-best-practices.html
http://crosbymichael.com/dockerfile-best-practices.html
https://stackoverflow.com/questions/28182047/is-there-a-way-to-lint-the-dockerfile
http://hadolint.lukasmartinelli.ch/
http://www.shellcheck.net/about.html
https://docs.docker.com/engine/articles/dockerfile_best-practices/
http://www.projectatomic.io/docs/docker-image-author-guidance/
http://crosbymichael.com/dockerfile-best-practices.html
http://crosbymichael.com/dockerfile-best-practices.html
https://stackoverflow.com/questions/28182047/is-there-a-way-to-lint-the-dockerfile
http://hadolint.lukasmartinelli.ch/
http://www.shellcheck.net/about.html

Tips for using Docker 132

stop it, destroy it and replace it for a new container built with the
minimum effort.

It’s usual to put other files, such as documentation, in the same
directory of ‘Dockerfile’; to improve the building performance,
delete files and directories creating a dockerignore'* file in the
same directory. This file works similarly to ‘.gitignore’. Using
it helps to minimize the building context docker build.

Avoid adding packages and unnecessary extra dependencies to the
application and minimize complexity, image size, building time and
attack surface.

Also minimize the layer amount: whenever possible, group up
various commands. However, take in consideration the volatility
and maintenance of these layers.

In most cases, run only one process per container. Decoupling
applications in several container eases up horizontal scalability,
reuse and monitoring of containers.

Choose COPY over ADD

The ‘ADD’ command exists since the beginning of Docker. It’s ver-
satile, and provides some tricks aside of simply copying files from
the building context, and that’s what makes it magical and hard
to understand. It allows to download url files and automatically
extract files of known formats (tar, gzip, bzip2, etc.).

On the other hand ‘COPY’ is a simpler command to put files and
folders of the building path inside the Docker image. Thus, choose
‘COPY’ unless you are absolutely sure that ‘ADD’ is necessary. For
more details, check here!?’.

2https://docs.docker.com/engine/reference/builder/
127https:/ /labs.ctl.io/dockerfile-add-vs-copy/

https://docs.docker.com/engine/reference/builder/
https://labs.ctl.io/dockerfile-add-vs-copy/
https://docs.docker.com/engine/reference/builder/
https://labs.ctl.io/dockerfile-add-vs-copy/

0 N O O & W N =

Tips for using Docker 133

Run a “checksum” after downloading and before
using the file

Instead of using ‘ADD’ to download and add files to the image,
prefer using curl'® and verify through a ‘checksum’ after the
download. This guarantees that the file is the expected one and
will not vary over time. If the file that the URL indicates changes,
the ‘checksum’ will change and the image building will fail. This
is important, because it favor reproducibility and safety in image
building.

A good inspiration is Jenkins’ official Dockerfile!?’:

ENV JENKINS_VERSION 1.625.3
ENV JENKINS_SHA 537d910£541c25a23499b222ccd3Tca25e0T74adc

RUN curl -fL http://mirrors. jenkins-ci.org/war-stable/$\
JENKINS_VERSION/ jenkins.war -o /usr/share/jenkins/jenki\
ns.war \
&& echo "$JENKINS_SHA /usr/share/jenkins/jenkins.war"\
| shaisum -c -

Use a image with smallest base

Whenever possible, use official images as a base for your image.
You can use the ‘debian’® image, for instance, that is very well
controlled and kept small (around 150mb). Remember of also using
specific tags, such as ‘debian:jessie’.

If more tools and dependencies are required, look for images like
‘buildpack-deps’**!.

128https://curl.haxx.se/

P https://github.com/jenkinsci/docker/blob/83ce6f6070f1670563a00d0f61d04edd62b78f4f/
Dockerfile#L36

130https://hub.docker.com/J debian/

Bhitps://hub.docker.com/_/buildpack-deps/

https://curl.haxx.se/
https://github.com/jenkinsci/docker/blob/83ce6f6070f1670563a00d0f61d04edd62b78f4f/Dockerfile#L36
https://hub.docker.com/_/debian/
https://hub.docker.com/_/buildpack-deps/
https://curl.haxx.se/
https://github.com/jenkinsci/docker/blob/83ce6f6070f1670563a00d0f61d04edd62b78f4f/Dockerfile#L36
https://github.com/jenkinsci/docker/blob/83ce6f6070f1670563a00d0f61d04edd62b78f4f/Dockerfile#L36
https://hub.docker.com/_/debian/
https://hub.docker.com/_/buildpack-deps/

Tips for using Docker 134

However, in case ‘debian’ is still too big, there are minimalist images
such as ‘alpine’™®? or even ‘busybox’'**. Avoid ‘alpine’ if DNS is
required, for there are a few issues to be solved'**. In addition, avoid
it for languages that use GCC, such as Ruby, Node, Python, etc.;
because ‘alpine’ uses libc MUSL that can produce different binaries.

Avoid gigantic images such as ‘phusion/baseimage’’®>. This image
is too big, it defeats the philosophy of process per container and
much of what makes it up is not essential for Docker containers;
read more here'*® .

Other sources'®’

Use the layer building cache

Another useful feature provided by ‘Dockerfile’ is the fast rebuild
using the layer cache. In order to take advantage from this resource,
add tools and dependencies that change less frequently in the top
of ‘Dockerfile’.

For instance, consider to install the code dependencies before adding
the code. In the case of Node]JS:

COPY package. json /app/
RUN npm install
COPY . /app

To read more on this subject, check out this link®.

B2 ttps://hub.docker.com/r/gliderlabs/alpine/
B hitps://hub.docker.com/r/gliderlabs/alpine/
B*https://github.com/gliderlabs/docker-alpine/blob/master/docs/caveats.md
https://hub.docker.com/r/ phusion/baseimage/
Bhttps://blog.docker.com/2014/06/why-you-dont-need-to-run-sshd- in-docker/
137 o . . .
http://www.iron.io/microcontainers-tiny-portable- containers/
Bhttp://bitjudo.com/blog/2014/03/13/building-efficient- dockerfiles-node-dot-js/

https://hub.docker.com/r/gliderlabs/alpine/
https://hub.docker.com/r/gliderlabs/alpine/
https://github.com/gliderlabs/docker-alpine/blob/master/docs/caveats.md
https://hub.docker.com/r/phusion/baseimage/
https://blog.docker.com/2014/06/why-you-dont-need-to-run-sshd-in-docker/
http://www.iron.io/microcontainers-tiny-portable-containers/
http://bitjudo.com/blog/2014/03/13/building-efficient-dockerfiles-node-dot-js/
https://hub.docker.com/r/gliderlabs/alpine/
https://hub.docker.com/r/gliderlabs/alpine/
https://github.com/gliderlabs/docker-alpine/blob/master/docs/caveats.md
https://hub.docker.com/r/phusion/baseimage/
https://blog.docker.com/2014/06/why-you-dont-need-to-run-sshd-in-docker/
http://www.iron.io/microcontainers-tiny-portable-containers/
http://bitjudo.com/blog/2014/03/13/building-efficient-dockerfiles-node-dot-js/

O > W N =

Tips for using Docker 135

Clean on the same layer

While using a package manager to install any software, the best
practice is to clean the cache generated by the package manager
soon after installing the dependencies. For instance, using ‘apt-get’:

RUN apt-get update && \
apt-get install -y curl python-pip && \
pip install requests && \
apt-get remove -y python-pip curl && \
rm -rf /var/lib/apt/lists/*

In general, the apt cache (generated by ‘apt-get update’) must be
cleaned up by removing ‘/var/lib/apt/lists’. This helps to keep the
image size small. In addition, note that ‘pip’ and ‘curl’ also are
removed once they’re unnecessary to the production application.
Remember that the cleaning must be made in the same layer
(command ‘RUN’). Otherwise, data will be persisted on this layer
and removing them later will not have the same effect in the final
image size.

Note that, according to the documentation'*, the official Debian
and Ubuntu images run ‘apt-get clean’ automatically. Ergo, the
explicit invocation is not necessary.

Avoid to run ‘apt-get upgrade’ or ‘dist-upgrade’, badales several
packages of the base image are not going to update inside a
container with no privileges. If there’s a specific package to update,
just use ‘apt-get install -y foo’ to automatically update it.

k140

To read more on this subject, check out the link!“’ and this one!“!.

https://github.com/docker/docker/blob/03e2923e42446dbb830c654d0eec323a0bsef02a/
contrib/mkimage/debootstrap#L82-1105

“http://blog.replicated.com/2016/02/05/refactoring-a- dockerfile-for-image-size/

M“hitps://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/
#apt-get

https://github.com/docker/docker/blob/03e2923e42446dbb830c654d0eec323a0b4ef02a/contrib/mkimage/debootstrap#L82-L105
http://blog.replicated.com/2016/02/05/refactoring-a-dockerfile-for-image-size/
https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/#apt-get
https://github.com/docker/docker/blob/03e2923e42446dbb830c654d0eec323a0b4ef02a/contrib/mkimage/debootstrap#L82-L105
https://github.com/docker/docker/blob/03e2923e42446dbb830c654d0eec323a0b4ef02a/contrib/mkimage/debootstrap#L82-L105
http://blog.replicated.com/2016/02/05/refactoring-a-dockerfile-for-image-size/
https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/#apt-get
https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/#apt-get

©O© 00 9 O O » W N =~

N P R R 1l s s oy
S O 0 1 O O b W N =~ O

Tips for using Docker 136

Use a “wrapper” script as ENTRYPOINT,
sometimes

A wrapper script can help to configure the environment and define
the application configuration. It can event define the standard
configurations when they’re not available.

A great example is provided in Kelsey Hightower: 12 Fracturated
Apps’ article?:

#1/bin/sh
set -e
datadir=${APP_DATADIR:="/var/lib/data"}
host=${APP_HOST:="127.0.0.1"}
port=${APP_PORT:="3306" }
username=4${APP_USERNAME :=""}
password=${APP_PASSWORD:=""}
database=${APP_DATABASE :=""}

cat <<EOF > /etc/config.json

{
"datadir": "${datadir}",
"host": "${host}",
"port": "${port}",
"username": "${username}",
"password": "${password}",
"database": "${database}"

}

EOF

mkdir -p ${APP_DATADIR}
exec "/app"

Note: always use ‘exec’ in shell scripts regarding the application.
Therefore, the application can get Unix signals.

“2https://medium.com/ @kelseyhightower/12-fractured-apps-1080c73d481c#
xn2cylwnk

https://medium.com/@kelseyhightower/12-fractured-apps-1080c73d481c#.xn2cylwnk
https://medium.com/@kelseyhightower/12-fractured-apps-1080c73d481c#.xn2cylwnk
https://medium.com/@kelseyhightower/12-fractured-apps-1080c73d481c#.xn2cylwnk
https://medium.com/@kelseyhightower/12-fractured-apps-1080c73d481c#.xn2cylwnk

Tips for using Docker 137

Also, consider using a simple initialization system (e.g. dumb
init'#*), such as ‘CMD’ base, so the Unix signal can be duly treated.

Read more here'#.

Log for stdout

Applications inside Docker should emit logs for ‘stdout’. However,
some applications write logs in files. In these cases, the solution is
to create a file symlink for ‘stdout’.

Example: Dockerfile of nginx'**:

forward request and error logs to docker log collector
RUN 1n -sf /dev/stdout /var/log/nginx/access.log
RUN In -sf /dev/stderr /var/log/nginx/error.log

To read more, check out this link!46.

Be careful while adding data to a volume on
Dockerfile

Remember of using the instruction ‘VOLUME’ to expose data from
database, configuration or files and folders created by the container.
Use for any mutable data and parts served to the user of the service
to which the image was created.

Avoid adding a lot of data in a folder and then turn it into a
‘VOLUME’ only when starting the container, because you can slow
down the loading. By creating the container, the data will be copied
from the image to the set volume. As said before, use “‘VOLUME’
when creating the imagem.

ttps://github.com/Yelp/dumb-init
““http://engineeringblog.yelp.com/2016/01/dumb-init-an-init-for-docker.html
143 https://github.com/nginxinc/docker-nginx/blob/master/Dockerfile

146 https://serverfault.com/questions/599103/make-a-docker-application-write- to-
stdout

https://github.com/Yelp/dumb-init
https://github.com/Yelp/dumb-init
http://engineeringblog.yelp.com/2016/01/dumb-init-an-init-for-docker.html
https://github.com/nginxinc/docker-nginx/blob/master/Dockerfile
https://serverfault.com/questions/599103/make-a-docker-application-write-to-stdout
https://github.com/Yelp/dumb-init
http://engineeringblog.yelp.com/2016/01/dumb-init-an-init-for-docker.html
https://github.com/nginxinc/docker-nginx/blob/master/Dockerfile
https://serverfault.com/questions/599103/make-a-docker-application-write-to-stdout
https://serverfault.com/questions/599103/make-a-docker-application-write-to-stdout

g s W N -

Tips for using Docker 138

Besides, while still creating the image (‘build’), don’t add data to
paths previously declared as “VOLUME'’. This doesn’t work, the data
won’t be persisted, for datas in volumes are not committed into
images.

Read more at Jérome Petazzoni’s explanation'*’.

Ports EXPOSE

Docker favors reproducibility and portability. Images should be
capable of run in any server, how many times necessary. There-
fore, never expose public ports. However, expose the application’
standard ports privately.

public and private mapping, avoid
EXPOSE 80:8080

only private
EXPOSE 80

hittps://jpetazzo.github.io/2015/01/19/dockerfile-and- data-in-volumes/

https://jpetazzo.github.io/2015/01/19/dockerfile-and-data-in-volumes/
https://jpetazzo.github.io/2015/01/19/dockerfile-and-data-in-volumes/

Apéndice

Container or virtual machine?

After Docker’s sudden success - virtualization based on containers -
many people are asking about a possible migration from the virtual
machine model to containers.

A

We answer this calmly: Both!

Both are virtualization methods, but work in different “layers”.
It’s worth to detail each solution to make clear that they are not
necessarily competition.

Virtual machine

An old concept, coming from the Mainframes on mid 1960s. Each
operator had the vision of accessing a dedicated machine but, in
fact, every Mainframe resource was shared to all operators.

The goal of the model is to share physical resources amongst
several isolated environments, and each one of them is guarding
a whole machine: with memory, disk, processor, network and other
peripherals, all delivered via virtualization abstraction.

It’s like if inside the physical machine, smaller and independent ma-
chines were created. Each one has its own operational system that,
in turn, interacts with the virtual hardwares that were delivered by
the virtualization model in the machine level.

Apéndice 140

It’s important to say: the operational system installed in the virtual
machine will interact with the virtual hardware, not the real ones.

Virtual Hardware| |8 | Virtual Hardware ‘\I’inual Hardware]

Hypervisor - (Hyper-V, Xen, ESX Server)

Hardware - (CPU, Memory, NIC, Disk)

While this model evolved, the softwares that implement the solu-
tion could offer more features, such as better interface to manage
virtual environments and high availability using several physical
hosts.

With the new features for managing environments on virtual
machines, it’s possible to specify the amount of physical resource
each virtual environment uses and even to gradually increase it if
necessary.

Currently, virtual machines are a reality for any organization
that requires TI environments, for it facilitates the management
of physical machines and sharing amongst several environments

Apéndice 141

necessary for the basic infrastructure.

Container

This virtualization model is on the operational system level; that
is, different from a virtual machine, a container does not view
the whole machine, it’s just a running process in a kernel shared
amongst all other containers.

It uses the namespace to provide the due isolation of RAM memory,
processing, disk and network access. Even when shared in the same
kernel, this running process views the use of a dedicated operational
system.

It’s a relatively old virtualization model. In mid 1982, chroot was
already doing something we can consider virtualization on op-
erational system level, and in 2008, LXC was doing something
relatively similiar to the current Docker. Yet, in the beginning,
Docker was using LXC but today it has its own interface in order
to access namespace, cgroup and others.

Docker funciona
nesse nivel

Hypervisor - (Hyper-V, Xen, ESX Server)

Hardware - (CPU, Memory, NIC, Disk)

v

Apéndice 142

Being an innovative solution, Docker brings up several services and
new facilities that make the model much more attractive.

The LXC environment configuration was not a simple task; it was
necessary some technical knowledge to create and maintain an
environment with it. As Docker arrived, this process became much
simpler. Just install the binary, download the images and execute
them.

Other Docker novelty was the creation of the “images” concept.
Roughly, we can describe images as the static definitions of what
containers must be in initialization. They are like ambience pho-
tographs. Once they’re instantiated and put into execution, they
assume the role of containers; they leave the definition abstraction
and turn into running processes, within an isolated context. They
see an operational system dedicated to themselves, but in fact they
share the same kernel.

Along with the easiness of using containers, Docker put together the
concept of cloud, that offers the service of loading and “download-
ing” Docker images. It’s a web application that provides repository
of ready environments, making available an enormous level of
environment sharing.

By using Docker’s cloud service, we can realize that adopting
the container model surpasses the technical issue and introduces
subjects such as environment management and update; now it’s
possible to easily share changes and provide a centralized manage-
ment of environment definitions.

Using Docker cloud now makes possible to provide lighter testing
environments, allowing you to, in a meeting with your boss, for
instance, download the solution of a problem he/she explains and
show it to him/her before he/she leaves the room. It allows also that
you make available a pattern of best practices to a given service
and share it with everybody in your company, where you can get
feedbacks and perform modifications through time.

Apéndice 143

Conclusion

With the data presented we realized that the conflict point between
solutions is low. They can and usually will be adopted together.
You can provide a physical machine with a virtual machine server,
in which host virtual machines will be created that, in turn, will
have Docker installed. In this Docker, they will make available
environments and their respective services, each one in a container.

See that we’ll have several isolation levels. In the first one, the
physical machine, that was separated in various virtual machines,
that is, we already have our layer of operational systems interacting
with distinct virtual hardware, such as virtual network card, disks,
processor and memory. In this environment, we would only have
installed the basic operational system and Docker.

In the second isolation level, we have Docker downloading ready
images and providing running containers that, in turn, create new
isolated environments, at the level of processing, memory, disk and
network. In this case, we can have in the same virtual machine
a web application environments and a database. But in different
containers (and that wouldn’t be a best practice issue for service
management), a lot less security.

Geréncia de maquinas virtuais

Maquina Maquina Maquina Maquina
Virtual 1 Virtual 2 Virtual 1 Virtual 2

Maquina fisica 1 Méquina fisica 2

Apéndice 144

If these containers are replicated between virtual machines, it would
be possible to provide high availability with no huge costs, that
is, using an external balancer and making available the cluster of
persisted data via database.

With all this facility using a few commands, resources and knowl-
edge, we just need a little bit of time to change the paradigm of
managing actives and patience to face the new issues within the
model.

Useful commands
Here are some useful, simple commands:

« Remove all inactive containers
docker container prune
« Stop all containers
docker stop $(docker ps -q)
« Remove all local images
docker image prune
+ Remove “orphan” volumes
docker volume prune
« Shows use of containers resources running
docker stats $(docker ps --format {{.Names}})

Can | run GUI applications?

Absolutely, it’s perfectly possible to run gUI (or X11) applications
in containers; that means that all advantages of using Docker apply
also to graphic applications.

In addition, it’s possible to make the application run in multiple
systems (Linux, Windows and macOS) just by building it for Linux.

DS wWw N -

g s W N -

Apéndice 145

How?

First of all... in 99% of the cases it’s necessary to grant access
to X: xhost local’ (this access will be available until you shut
down/restart the host).

This is the simplest command, it mount the X11 socket of the host in
the container and defines the display (note that we are “evolving”
the commands little by little, but you can use only the flags that
you find necessary - the only ones that are mandatory are the
mounting of the volume ‘/tmp/.X11-unix’ and the environment
variable ‘DISPLAY’):

docker container run [--rm [-it]|-d] \
-v /tmp/.X11-unix:/tmp/.X11-unix \
-e DISPLAY \

imagem [comando]

In some cases, the ‘DISPLAY/ variable has to be’ DISPLAY=unix$DISPLAY’

(but, to be honest, I don’t know why, only know that that was the
recommended by the person who built the image).

To user the hardware 3D acceleration support:

docker container run [--rm [-it]|-d] \
-v /tmp/.X11-unix:/tmp/.X11-unix \

-e DISPLAY \

--device /dev/dri \

imagem [comando]

Adding audio:

O O b W N =

<N O O B W N =

0 N O O & W N =

Apéndice 146

docker container run [--rm [-it]|-d] \
-v /tmp/.X11-unix:/tmp/.X11-unix \

-e DISPLAY \

--device /dev/dri \

--device /dev/snd \

imagem [comando]
Adding webcam:

docker container run [--rm [-it]|-d] \
-v /tmp/.X11-unix:/tmp/.X11-unix \

-e DISPLAY \

--device /dev/dri \

--device /dev/snd \

--device /dev/video@ \

imagem [comando]

Using the same date/hour from the host:

docker container run [--rm [-it]|-d] \
-v /tmp/.X11-unix:/tmp/.X11-unix \

-e DISPLAY \

--device /dev/dri \

--device /dev/snd \

--device /dev/video@ \

-v /etc/localtime:/etc/localtime:ro \
imagem [comando]

Attention: depending on the distribution, there’s not a /etc/local-
time; you have to check how it defines the timezone and “replicate”
it into the container.

Keeping the application’s configurations:

©O© 00 9 O O b W N =

©O© 00 N O O b W N =

-
o

Apéndice 147

docker container run [--rm [-it][-d] \
-v /tmp/.X11-unix:/tmp/.X11-unix \

-e DISPLAY \

--device /dev/dri \

--device /dev/snd \

--device /dev/video@ \

-v /etc/localtime:/etc/localtime:ro \

-v $HOME/.config/app:/root/.config/app \
imagem [comando]

Obs.: the path is just an example.

Bonus: Videogame joystick (actually, any input device):

docker container run [--rm [-it][-d] \
-v /tmp/.X11-unix:/tmp/.X11-unix \

-e DISPLAY \

--device /dev/dri \

--device /dev/snd \

--device /dev/video@ \

-v /etc/localtime:/etc/localtime:ro \

-v $HOME/.config/app:/root/.config/app \
--device /dev/input \

imagem [comando]

What about docker-compose?

It works normally... Just mount the X11 socket and define the
environment variable on docker-compose.yml and will be possible
to start multiple application with only one command.

0 N O O B W N =

Apéndice 148

On Windows and macOS

Mac OS X

Install Docker for Mac

brew install socat
brew cask install xquartz

open -a XQuartz

socat TCP-LISTEN:6000,reuseaddr, fork UNIX-CLIENT:\"$DIS\
PLAY\"

docker container run -e DISPLAY=hostip:@ [...] image OU\
DISPLAY=hostip:0 docker-compose up [-d]

Windows'4®
Install xming
Install o Docker for Windows

xming :0 -ac -clipboard -multiwindow
docker container run -e DISPLAY=hostip:@ [...] image OU\
DISPLAY=hostip:0 docker-compose up [-d]

Obs.: In case you’re using Docker Toolbox, insert VM’s IP (‘docker-
machine ip default’ will inform).

“$hitps://github.com/docker/docker/issues/8710#issuecomment- 135109677

https://github.com/docker/docker/issues/8710#issuecomment-71113263
https://github.com/docker/docker/issues/8710#issuecomment-135109677
https://github.com/docker/docker/issues/8710#issuecomment-135109677

	Table of Contents
	Preface
	Best regards,

	How to read this book
	Acknowledgements
	Introduction
	Why using Docker?
	What is Docker?
	Set up
	Setting up on GNU/Linux
	Setting up on MacOS
	Setting up on Windows

	Basic commands
	Running a container
	Checking the list of containers
	Managing containers

	Creating your own image on Docker
	Understanding storage on Docker
	Understanding the network on Docker
	Using Docker in multiple environments
	Managing multiple Docker containers with Docker Compose
	How to use Docker without GNU/Linux
	Turning your application into a container
	Codebase
	Dependencies
	Config
	Backing services
	Build, release, run
	Processes
	Port binding
	Concurrency
	Disposability
	Development/production parity
	Logs
	Admin processes
	Tips for using Docker
	Tips for running
	Best practices to build images

	Apêndice
	Container or virtual machine?
	Useful commands
	Can I run GUI applications?

