

Mastering Kubernetes
Third Edition

Level up your container orchestration skills with
Kubernetes to build, run, secure, and observe large-
scale distributed apps

Gigi Sayfan

BIRMINGHAM - MUMBAI

Mastering Kubernetes
Third Edition

Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing or its dealers and distributors, will be held liable for any damages caused
or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Producers: Ben Renow-Clarke, Aarthi Kumaraswamy
Acquisition Editor – Peer Reviews: Suresh Jain
Content Development Editor: Kate Blackham
Technical Editor: Gaurav Gavas
Project Editor: Carol Lewis
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Presentation Designer: Sandip Tadge

First published: May 2017
Second edition: April 2018
Third edition: June 2020

Production reference: 1260620

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-83921-125-6

www.packt.com

http://www.packt.com

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos,
as well as industry leading tools to help you plan your personal development and
advance your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and

Videos from over 4,000 industry professionals
•	 Learn better with Skill Plans built especially for you
•	 Get a free eBook or video every month
•	 Fully searchable for easy access to vital information
•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.Packt.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get
in touch with us at customercare@packtpub.com for more details.

At www.Packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://packt.com
http://www.Packt.com
mailto:customercare@packtpub.com
http://www.Packt.com

Contributors

About the author
Gigi Sayfan has been developing software professionally for more than 20 years
in domains as diverse as instant messaging, morphing, chip fabrication process
control, embedded multimedia applications for game consoles, brain-inspired
machine learning, custom browser development, web services for 3D distributed
game platforms, IoT sensors, virtual reality, and genomics. He has written
production code in many programming languages, such as Go, Python, C, C++,
C#, Java, Delphi, JavaScript, and even Cobol and PowerBuilder for operating
systems such as Windows (3.11 through 7), Linux, macOS, Lynx (embedded), and
Sony PlayStation. His technical expertise includes databases, low-level networking,
distributed systems, unorthodox user interfaces, DevOps, and the general software
development life cycle.

Gigi is also a longtime author who has published multiple books and hundreds of
technical articles and blogs.

About the reviewer
Onur Yilmaz is a senior software engineer at a multinational enterprise software
company. He is a Certified Kubernetes Administrator (CKA) and works on
Kubernetes and cloud management systems. He is a keen supporter of cutting-edge
technologies including Docker, Kubernetes, and cloud-native applications. He is the
author of multiple books, including Introduction to DevOps with Kubernetes, Kubernetes
Design Patterns and Extensions, Serverless Architectures with Kubernetes, and Cloud-
Native Continuous Integration and Delivery. He has one master's and two bachelor's
degrees in the engineering field.

[i]

Table of Contents
Preface� xix
Chapter 1: Understanding Kubernetes Architecture� 1

What is Kubernetes?� 2
What Kubernetes is not� 2
Understanding container orchestration� 3

Physical machines, virtual machines, and containers� 3
The benefits of containers� 3
Containers in the cloud� 4
Cattle versus pets� 5

Kubernetes concepts� 5
Clusters� 6
Nodes� 6
The master� 7
Pods� 7
Labels� 8
Annotations� 8
Label selectors� 9
Services� 9
Volume� 10
Replication controllers and replica sets� 10
StatefulSet� 10
Secrets� 11
Names� 11
Namespaces� 11

Diving into Kubernetes architecture in depth� 12
Distributed system design patterns� 12

The sidecar pattern� 13

Table of Contents

[ii]

The ambassador pattern� 13
The adapter pattern� 13
Multi-node patterns� 14

The Kubernetes APIs� 14
Resource categories� 15

Kubernetes components� 18
Master components� 18
Node components� 21

Kubernetes runtimes� 22
The container runtime interface (CRI)� 23
Docker� 25
rkt� 27

App container� 27
CRI-O� 27
Hyper containers� 28

Frakti� 28
Stackube� 28

Continuous integration and deployment� 28
What is a CI/CD pipeline?� 29
Designing a CI/CD pipeline for Kubernetes� 30

Summary� 30
Chapter 2: Creating Kubernetes Clusters� 31

Overview� 31
Creating a single-node cluster with Minikube� 32

Meet kubectl� 32
Quick introduction to Minikube� 33
Getting ready� 33
On Windows� 33
On macOS� 34
Creating the cluster� 35
Troubleshooting� 36
Checking out the cluster� 37
Doing work� 38
Examining the cluster with the dashboard� 40

Creating a multi-node cluster with KinD� 42
Quick introduction to KinD� 42
Installing KinD� 42
Creating the cluster with KinD� 43
Doing work with KinD� 46
Accessing Kubernetes services locally though a proxy� 46

Creating a multi-node cluster with k3d� 47
Quick introduction to k3s and k3d� 48

Table of Contents

[iii]

Installing k3d� 48
Creating the cluster with k3d� 49

Comparing Minikube, KinD, and k3d� 51
Creating clusters in the cloud (GCP, AWS, Azure)� 52

The cloud-provider interface� 52
GCP� 53
AWS� 53

Kubernetes on EC2� 54
AWS EKS� 55
Fargate� 55

Azure� 56
Other cloud providers� 56

Once upon a time in China� 57
IBM Kubernetes Service� 57
Oracle Container Service� 58

Creating a bare-metal cluster from scratch� 58
Use cases for bare metal� 58
When should you consider creating a bare-metal cluster?� 59
Understanding the process� 59
Using virtual private cloud infrastructure� 60
Building your own cluster with Kubespray� 60
Building your cluster with KRIB� 60
Building your cluster with RKE� 61
Bootkube� 61

Summary� 61
References� 62

Chapter 3: High Availability and Reliability� 63
High availability concepts� 64

Redundancy� 64
Hot swapping� 64
Leader election� 65
Smart load balancing� 65
Idempotency� 66
Self-healing� 66

High availability best practices� 66
Creating highly available clusters� 67
Making your nodes reliable� 68
Protecting your cluster state� 69

Clustering etcd� 69
Verifying the etcd cluster� 73

Protecting your data� 73
Running redundant API servers� 74

Table of Contents

[iv]

Running leader election with Kubernetes� 74
Making your staging environment highly available� 75
Testing high availability� 76

High availability, scalability, and capacity planning� 77
Installing the cluster autoscaler� 78
Considering the vertical pod autoscaler� 80

Live cluster updates� 80
Rolling updates� 81

Complex deployments� 83
Blue-green deployments� 84
Canary deployments� 85
Managing data-contract changes� 86
Migrating data� 86
Deprecating APIs� 87

Large cluster performance, cost, and design trade-offs� 88
Availability requirements� 88
Best effort� 88
Maintenance windows� 89
Quick recovery� 90
Zero downtime� 90
Site reliability engineering� 92
Performance and data consistency� 93

Summary� 93
References� 94

Chapter 4: Securing Kubernetes� 95
Understanding Kubernetes security challenges� 96

Node challenges� 96
Network challenges� 97
Image challenges� 99
Configuration and deployment challenges� 100
Pod and container challenges� 101
Organizational, cultural, and process challenges� 102

Hardening Kubernetes� 103
Understanding service accounts in Kubernetes� 103

How does Kubernetes manage service accounts?� 105
Accessing the API server� 105

Authenticating users� 106
Authorizing requests� 108
Using admission control plugins� 110

Securing pods� 112
Using a private image repository� 112
ImagePullSecrets� 112

Table of Contents

[v]

Specifying a security context� 113
Protecting your cluster with AppArmor� 114
Pod security policies� 116
Authorizing pod security policies via RBAC� 117

Managing network policies� 118
Choosing a supported networking solution� 119
Defining a network policy� 119
Limiting egress to external networks� 121
Cross-namespace policies� 122

Using secrets� 122
Storing secrets in Kubernetes� 122
Configuring encryption at rest� 122
Creating secrets� 123
Decoding secrets� 124
Using secrets in a container� 124

Running a multi-user cluster� 125
The case for a multi-user cluster� 126
Using namespaces for safe multi-tenancy� 126
Avoiding namespace pitfalls� 127

Summary� 128
References� 128

Chapter 5: Using Kubernetes Resources in Practice� 129
Designing the Hue platform� 129

Defining the scope of Hue� 130
Smart reminders and notifications� 130
Security, identity, and privacy� 130
Hue components� 131
Hue microservices� 133

Planning workflows� 135
Automatic workflows� 135
Human workflows� 135
Budget-aware workflows� 135

Using Kubernetes to build the Hue platform� 136
Using kubectl effectively� 136
Understanding kubectl resource configuration files� 137

ApiVersion� 138
Kind� 138
Metadata� 138
Spec� 138

Deploying long-running microservices in pods� 139
Creating pods� 139
Decorating pods with labels� 141
Deploying long-running processes with deployments� 142
Updating a deployment� 143

Separating internal and external services� 144

Table of Contents

[vi]

Deploying an internal service� 145
Creating the Hue-reminders service� 146
Exposing a service externally� 148

Ingress� 149
Advanced scheduling� 150

Node selector� 150
Taints and tolerations� 151
Node affinity and anti-affinity� 153
Pod affinity and anti-affinity� 153

Using namespaces to limit access� 154
Using kustomization for hierarchical cluster structures� 156

Understanding the basics of kustomize� 156
Configuring the directory structure� 157
Applying kustomizations� 158

Patching� 160
Kustomizing the entire staging namespace� 160

Launching jobs� 162
Running jobs in parallel� 163
Cleaning up completed jobs� 164
Scheduling cron jobs� 164

Mixing non-cluster components� 166
Outside-the-cluster-network components� 166
Inside-the-cluster-network components� 167
Managing the Hue platform with Kubernetes� 167

Using liveness probes to ensure your containers are alive� 167
Using readiness probes to manage dependencies� 168
Employing init containers for orderly pod bring-up� 169
Pod readiness and readiness gates� 170
Sharing with DaemonSet pods� 171

Evolving the Hue platform with Kubernetes� 172
Utilizing Hue in an enterprise� 172
Advancing science with Hue� 173
Educating the kids of the future with Hue� 173

Summary� 173
References� 174

Chapter 6: Managing Storage� 175
Persistent volumes walkthrough� 175

Volumes� 176
Using emptyDir for intra-pod communication� 176
Using HostPath for intra-node communication� 178
Using local volumes for durable node storage� 180
Provisioning persistent volumes� 181

Table of Contents

[vii]

Provisioning persistent volumes externally� 182
Creating persistent volumes� 182

Capacity� 183
Volume mode� 183
Access modes� 183
Reclaim policy� 184
Storage class� 184
Volume type� 185
Mount options� 185

Making persistent volume claims� 185
Mounting claims as volumes� 188
Raw block volumes� 189
Storage classes� 191

Default storage class� 192
Demonstrating persistent volume storage end to end� 192

Public cloud storage volume types – GCE, AWS, and Azure� 198
Amazon EBS� 198
Amazon EFS� 199
GCE persistent disk� 201
Azure data disk� 202
Azure Files� 203

GlusterFS and Ceph volumes in Kubernetes� 204
Using GlusterFS� 205

Creating endpoints� 205
Adding a GlusterFS Kubernetes service� 206
Creating pods� 207

Using Ceph� 208
Connecting to Ceph using RBD� 208
Connecting to Ceph using CephFS� 210

Flocker as a clustered container data volume manager� 211
Integrating enterprise storage into Kubernetes� 212

Rook – the new kid on the block� 213
Projecting volumes� 214
Using out-of-tree volume plugins with FlexVolume� 215
The Container Storage Interface� 216

Volume snapshotting and cloning� 217
Volume snapshots� 217
Volume cloning� 218

Summary� 219
Chapter 7: Running Stateful Applications with Kubernetes� 221

Stateful versus stateless applications in Kubernetes� 221
Understanding the nature of distributed data-intensive apps� 222
Why manage state in Kubernetes?� 222
Why manage state outside of Kubernetes?� 222

Table of Contents

[viii]

Shared environment variables versus DNS records for discovery� 223
Accessing external data stores via DNS� 223
Accessing external data stores via environment variables� 223
Consuming a ConfigMap as an environment variable� 224
Using a redundant in-memory state� 225
Using DaemonSet for redundant persistent storage� 226
Applying persistent volume claims� 226
Utilizing StatefulSets� 226

Running a Cassandra cluster in Kubernetes� 228
Quick introduction to Cassandra� 229
The Cassandra Docker image� 230
Hooking up Kubernetes and Cassandra� 238
Creating a Cassandra headless service� 241
Using StatefulSets to create the Cassandra cluster� 241

Summary� 246
Chapter 8: Deploying and Updating Applications� 247

Horizontal pod autoscaling� 248
Declaring an HPA� 248
Custom metrics� 251
Autoscaling with Kubectl� 251

Performing rolling updates with autoscaling� 254
Handling scarce resources with limits and quotas� 257

Enabling resource quotas� 258
Resource quota types� 258

Compute resource quota� 258
Storage resource quota� 259
Object count quota� 260

Quota scopes� 261
Resource quotas and priority classes� 261
Requests and limits� 262
Working with quotas� 262

Using namespace-specific context� 262
Creating quotas� 262
Using limit ranges for default compute quotas� 267

Choosing and managing the cluster capacity� 268
Choosing your node types� 268
Choosing your storage solutions� 269
Trading off cost and response time� 269
Using multiple node configurations effectively� 270
Benefiting from elastic cloud resources� 270

Autoscaling instances� 270
Mind your cloud quotas� 271
Manage regions carefully� 271

Considering container-native solutions� 272

Table of Contents

[ix]

Pushing the envelope with Kubernetes� 273
Improving the performance and scalability of Kubernetes� 274

Caching reads in the API server� 274
The pod lifecycle event generator� 274
Serializing API objects with protocol buffers� 276
etcd3� 276
Other optimizations� 277

Measuring the performance and scalability of Kubernetes� 277
The Kubernetes SLOs� 277
Measuring API responsiveness� 277
Measuring end-to-end pod startup time� 279

Testing Kubernetes at scale� 280
Introducing the Kubemark tool� 281
Setting up a Kubemark cluster� 281
Comparing a Kubemark cluster to a real-world cluster� 281

Summary� 282
Chapter 9: Packaging Applications� 283

Understanding Helm� 283
The motivation for Helm� 284
The Helm 2 architecture� 284
Helm 2 components� 284

The Tiller server� 284
The Helm client� 285

Helm 3� 285
Using Helm� 285

Installing Helm� 286
Installing the Helm client� 286
Installing the Tiller server for Helm 2� 286

Finding charts� 287
Adding repositories� 288

Installing packages� 290
Checking the installation status� 292
Customizing a chart� 296
Additional installation options� 298
Upgrading and rolling back a release� 298
Deleting a release� 299

Working with repositories� 300
Managing charts with Helm� 301

Taking advantage of starter packs� 302
Creating your own charts� 302

The Chart.yaml file� 303
Versioning charts� 303
The appVersion field� 303
Deprecating charts� 304

Chart metadata files� 304

Table of Contents

[x]

Managing chart dependencies� 304
Managing dependencies with requirements.yaml� 305
Utilizing special fields in requirements.yaml� 306

Using templates and values� 307
Writing template files� 307
Testing and troubleshooting your charts� 309
Embedding built-in objects� 311
Feeding values from a file� 312
Scope, dependencies, and values� 313

Summary� 315
Chapter 10: Exploring Advanced Networking� 317

Understanding the Kubernetes networking model� 318
Intra-pod communication (container to container)� 318
Inter-pod communication (pod to pod)� 318
Pod-to-service communication� 319
External access� 319
Kubernetes networking versus Docker networking� 320
Lookup and discovery� 322

Self-registration� 322
Services and endpoints� 322
Loosely coupled connectivity with queues� 323
Loosely coupled connectivity with data stores� 323
Kubernetes ingress� 324

Kubernetes network plugins� 324
Basic Linux networking� 324
IP addresses and ports� 324
Network namespaces� 325
Subnets, netmasks, and CIDRs� 325
Virtual Ethernet devices� 325
Bridges� 325
Routing� 325
Maximum transmission unit� 326
Pod networking� 326
Kubenet� 326
Container networking interface� 327

Kubernetes networking solutions� 332
Bridging on bare metal clusters� 332
Contiv� 332
Open vSwitch� 333
Nuage networks VCS� 335
Flannel� 335
Calico� 337
Romana� 337
Weave Net� 340

Using network policies effectively� 340

Table of Contents

[xi]

Understanding the Kubernetes network policy design� 340
Network policies and CNI plugins� 341
Configuring network policies� 341
Implementing network policies� 342

Load balancing options� 342
External load balancer� 343

Configuring an external load balancer� 344
Finding the load balancer IP addresses� 344
Preserving client IP addresses� 345
Understanding even external load balancing� 346

Service load balancing� 346
Ingress� 347

HAProxy� 349
MetalLB� 351
Keepalived VIP� 351
Traefic� 351

Writing your own CNI plugin� 352
First look at the loopback plugin� 352

Building on the CNI plugin skeleton� 356
Reviewing the bridge plugin� 359

Summary� 362
Chapter 11: Running Kubernetes on Multiple Clouds
and Cluster Federation� 365

The history of cluster federation on Kubernetes� 366
Understanding cluster federation� 366

Important use cases for cluster federation� 368
Capacity overflow� 368
Sensitive workloads� 368
Avoiding vendor lock-in� 369
Geo-distributing high availability� 369

Learning the basics of Kubernetes federation� 370
Defining basic concepts� 370
Federation building blocks� 370
Federation features� 372

The KubeFed control plane� 372
The federation API server� 372
The federation controller manager� 372

The hard parts� 373
Federated unit of work� 374
Location affinity� 374
Cross-cluster scheduling� 375
Federated data access� 376
Federated auto-scaling� 376

Managing a Kubernetes Cluster Federation� 377
Installing kubefedctl� 377

Table of Contents

[xii]

Creating clusters� 379
Configuring the Host Cluster� 379
Registering clusters with the federation� 381
Working with federated API types� 381
Federating resources� 382

Federating an entire namespace� 384
Checking the status of federated resources� 384

Using overrides� 385
Using placement to control federation� 385
Debugging propagation failures� 387
Employing higher-order behavior� 387

Utilizing multi-cluster Ingress DNS� 387
Utilizing multi-cluster Service DNS� 388
Utilizing multi-cluster scheduling� 389

Introducing the Gardener project� 392
Understanding the terminology of Gardener� 392
Understanding the conceptual model of Gardener� 393
Diving into the Gardener architecture� 394
Managing cluster state� 394

Managing the control plane� 395
Preparing the infrastructure� 395
Using the Machine controller manager� 395
Networking across clusters� 395
Monitoring clusters� 395
The gardenctl CLI� 396

Extending Gardener� 397
Gardener ring� 401

Summary� 402
Chapter 12: Serverless Computing on Kubernetes� 405

Understanding serverless computing� 405
Running long-running services on "serverless" infrastructure� 406
Running FaaS on "serverless" infrastructure� 407

Serverless Kubernetes in the cloud� 408
Don't forget the cluster autoscaler� 408
Azure AKS and Azure Container Instances� 409
AWS EKS and Fargate� 410
Google Cloud Run� 412

Knative� 413
Knative Serving� 413

The Knative Service object� 414
The Knative Route object� 416
The Knative Configuration object� 417
The Knative Revision object� 420

Table of Contents

[xiii]

Knative Eventing� 420
Getting familiar with Knative Eventing terminology� 420
The architecture of Knative Eventing� 422

Taking Knative for a ride� 423
Installing Knative� 424
Deploying a Knative service� 426
Invoking a Knative service� 426
Checking the scale-to-zero option in Knative� 427

Kubernetes FaaS frameworks� 428
Fission� 429

Fission Workflows� 430
Experimenting with Fission� 432

Kubeless� 434
Kubeless architecture� 434
Playing with Kubeless� 435
Using the Kubeless UI� 437
Kubeless with the serverless framework� 438

Knative and riff� 439
Understanding riff runtimes� 439
Installing riff with Helm 2� 439

Summary� 442
Chapter 13: Monitoring Kubernetes Clusters� 443

Understanding observability� 444
Logging� 444

Log format� 445
Log storage� 445
Log aggregation� 445

Metrics� 445
Distributed tracing� 446
Application error reporting� 447
Dashboards and visualization� 447
Alerting� 448

Logging with Kubernetes� 448
Container logs� 448
Kubernetes component logs� 449
Centralized logging� 450

Choosing a log collection strategy� 450
Cluster-level central logging� 452
Remote central logging� 452
Dealing with sensitive log information� 453

Using Fluentd for log collection� 453
Collecting metrics with Kubernetes� 454

Monitoring with the metrics server� 455
Exploring your cluster with the Kubernetes dashboard� 457

Table of Contents

[xiv]

The rise of Prometheus� 458
Installing Prometheus� 460
Interacting with Prometheus� 462
Incorporating kube-state-metrics� 462
Utilizing the node exporter� 464
Incorporating custom metrics� 466
Alerting with Alertmanager� 466
Visualizing your metrics with Grafana� 468
Considering Loki� 470

Distributed tracing with Jaeger� 470
What is OpenTracing?� 471

OpenTracing concepts� 472
Introducing Jaeger� 472

Jaeger architecture� 473
Installing Jaeger� 475

Troubleshooting problems� 478
Taking advantage of staging environments� 478
Detecting problems at the node level� 479

Problem daemons� 479
Dashboards versus alerts� 480
Logs versus metrics versus error reports� 481
Detecting performance and root cause with distributed tracing� 482

Summary� 482
Chapter 14: Utilizing Service Meshes� 483

What is a service mesh?� 483
Control plane and data plane� 487

Choosing a service mesh� 487
Envoy� 487
Linkerd 2� 487
Kuma� 488
AWS App Mesh� 488
Maesh� 488
Istio� 488

Incorporating Istio into your Kubernetes cluster� 489
Understanding the Istio architecture� 489

Envoy� 490
Pilot� 490
Mixer� 491
Citadel� 491
Galley� 492

Preparing a minikube cluster for Istio� 492
Installing Istio� 493
Installing Bookinfo� 495

Table of Contents

[xv]

Traffic management� 499
Security� 502

Istio identity� 503
Istio PKI� 504
Istio authentication� 504
Istio authorization� 505

Policies� 509
Monitoring and observability� 512

Logs� 513
Metrics� 516
Distributed tracing� 519
Visualizing your service mesh with Kiali� 522

Summary� 523
Chapter 15: Extending Kubernetes� 525

Working with the Kubernetes API� 525
Understanding OpenAPI� 526
Setting up a proxy� 526
Exploring the Kubernetes API directly� 526

Using Postman to explore the Kubernetes API� 528
Filtering the output with HTTPie and jq� 529

Creating a pod via the Kubernetes API� 530
Accessing the Kubernetes API via the Python client� 531

Dissecting the CoreV1API group� 532
Listing objects� 534
Creating objects� 534
Watching objects� 535
Invoking Kubectl programmatically� 536
Using Python subprocesses to run Kubectl� 536

Extending the Kubernetes API� 538
Understanding Kubernetes extension points and patterns� 539

Extending Kubernetes with plugins� 539
Extending Kubernetes with the cloud controller manager� 540
Extending Kubernetes with webhooks� 541
Extending Kubernetes with controllers and operators� 541
Extending Kubernetes scheduling� 542
Extending Kubernetes with custom container runtimes� 542

Introducing custom resources� 542
Developing custom resource definitions� 543
Integrating custom resources� 545

Dealing with unknown fields� 546
Finalizing custom resources� 548
Adding custom printer columns� 548

Understanding API server aggregation� 549
Utilizing the service catalog� 550

Writing Kubernetes plugins� 552

Table of Contents

[xvi]

Writing a custom scheduler� 552
Understanding the design of the Kubernetes scheduler� 552
Scheduling pods manually� 555
Preparing our own scheduler� 556
Assigning pods to the custom scheduler� 557
Verifying that the pods were scheduled using the correct scheduler� 558

Writing Kubectl plugins� 559
Understanding Kubectl plugins� 559
Managing Kubectl plugins with Krew� 560
Creating your own Kubectl plugin� 561
Kubectl plugin gotchas� 562
Don't forget your shebangs!� 562
Naming� 562
Overriding existing Kubectl commands� 562
Flat namespace for Krew plugins� 563

Employing access control webhooks� 563
Using an authentication webhook� 564
Using an authorization webhook� 566
Using an admission control webhook� 568

Configuring a webhook admission controller on the fly� 568
Providing custom metrics for horizontal pod autoscaling� 570
Extending Kubernetes with custom storage� 571

Summary� 572
Chapter 16: The Future of Kubernetes� 575

The Kubernetes momentum� 576
The importance of the CNCF� 576

Project curation� 576
Certification� 577
Training� 578
Community and education� 578

Tooling� 578
The rise of managed Kubernetes platforms� 579

Public cloud Kubernetes platforms� 579
Bare-metal, private clouds, and Kubernetes on the edge� 579
Kubernetes Platform as a Service (PaaS)� 580

Upcoming trends� 580
Security� 580
Networking� 581
Custom hardware and devices� 582
Service mesh� 582
Serverless computing� 583
Kubernetes on the Edge� 583
Native CI/CD� 584
Operators� 584

Table of Contents

[xvii]

Summary� 585
References� 585

Other Books You May Enjoy� 587
Index� 591

[xix]

Preface
Kubernetes is an open source system that automates the deployment, scaling,
and management of containerized applications. If you are running more than just
a few containers or want to automate the management of your containers, you need
Kubernetes. This book focuses on guiding you through the advanced management
of Kubernetes clusters.

The book begins by explaining the fundamentals behind Kubernetes' architecture
and covers Kubernetes' design in detail. You will discover how to run complex
stateful microservices on Kubernetes, including such advanced features as horizontal
pod autoscaling, rolling updates, resource quotas, and persistent storage backends.
Using real-world use cases, you will explore the options for network configuration
and understand how to set up, operate, secure, and troubleshoot Kubernetes
clusters. Finally, you will learn about advanced topics such as custom resources,
API aggregation, service meshes, and serverless computing. All the content is up
to date and complies with Kubernetes 1.18. By the end of this book, you'll know
everything you need to know to go from intermediate to advanced level.

Who this book is for
The book is for system administrators and developers who have intermediate-level
knowledge about Kubernetes and are now waiting to master its advanced features.
You should also have basic networking knowledge. This advanced-level book
provides a pathway to master Kubernetes.

Preface

[xx]

What this book covers
Chapter 1, Understanding Kubernetes Architecture, in this chapter, we will build
together the foundation necessary to utilize Kubernetes to its full potential. We
will start by understanding what Kubernetes is, what Kubernetes isn't, and what
container orchestration means exactly. Then we will cover important Kubernetes
concepts that will form the vocabulary we will use throughout the book.

Chapter 2, Creating Kubernetes Clusters, in this chapter, we will roll up our sleeves and
build some Kubernetes clusters using minikube, KinD, and k3d. We will discuss and
evaluate other tools such as Kubeadm, Kube-spray, bootkube, and stackube. We will
also look into deployment environments such as local, cloud, and bare metal.

Chapter 3, High Availability and Reliability, in this chapter, we will dive into the topic
of highly available clusters. This is a complicated topic. The Kubernetes project and
the community haven't settled on one true way to achieve high-availability nirvana.
There are many aspects to highly available Kubernetes clusters, such as ensuring
that the control plane can keep functioning in the face of failures, protecting the
cluster state in etcd, protecting the system's data, and recovering capacity and/or
performance quickly. Different systems will have different reliability and availability
requirements.

Chapter 4, Securing Kubernetes, in this chapter, we will explore the important topic of
security. Kubernetes clusters are complicated systems composed of multiple layers
of interacting components. Isolation and compartmentalization of different layers is
very important when running critical applications. To secure the system and ensure
proper access to resources, capabilities, and data, we must first understand the
unique challenges facing Kubernetes as a general-purpose orchestration platform
that runs unknown workloads. Then we can take advantage of various securities,
isolation, and access control mechanisms to make sure the cluster, the applications
running on it, and the data are all safe. We will discuss various best practices and
when it is appropriate to use each mechanism.

Chapter 5, Using Kubernetes Resources in Practice, in this chapter, we will design a
fictional massive-scale platform that will challenge Kubernetes' capabilities and
scalability. The Hue platform is all about creating an omniscient and omnipotent
digital assistant. Hue is a digital extension of you. Hue will help you do anything,
find anything, and, in many cases will do a lot on your behalf. It will obviously
need to store a lot information, integrate with many external services, respond
to notifications and events, and be smart about interacting with you.

Preface

[xxi]

Chapter 6, Managing Storage, in this chapter, we'll look at how Kubernetes manages
storage. Storage is very different from compute, but at a high level they are both
resources. Kubernetes as a generic platform takes the approach of abstracting
storage behind a programming model and a set of plugins for storage providers.

Chapter 7, Running Stateful Applications with Kubernetes, in this chapter, we will learn
how to run stateful applications on Kubernetes. Kubernetes takes a lot of work out
of our hands by automatically starting and restarting pods across the cluster nodes
as needed, based on complex requirements and configurations such as namespaces,
limits, and quotas. But when pods run storage-aware software, such as databases
and queues, relocating a pod can cause the system to break.

Chapter 8, Deploying and Updating Applications, in this chapter, we will explore
the automated pod scalability that Kubernetes provides, how it affects rolling
updates, and how it interacts with quotas. We will touch on the important topic
of provisioning and how to choose and manage the size of the cluster. Finally, we
will go over how the Kubernetes team improved the performance of Kubernetes
and how they test the limits of Kubernetes with the Kubemark tool.

Chapter 9, Packaging Applications, in this chapter, we are going to look into Helm, the
Kubernetes package manager. Every successful and non-trivial platform must have
a good packaging system. Helm was developed by Deis (acquired by Microsoft on
April 4, 2017) and later contributed to the Kubernetes project directly. It became
a CNCF project in 2018. We will start by understanding the motivation for Helm,
its architecture, and its components.

Chapter 10, Exploring Advanced Networking, in this chapter, we will examine the
important topic of networking. Kubernetes as an orchestration platform manages
containers/pods running on different machines (physical or virtual) and requires
an explicit networking model.

Chapter 11, Running Kubernetes on Multiple Clouds and Cluster Federation, in this
chapter, we'll take it to the next level, with running Kubernetes on multiple clouds,
multiple clusters, and cluster federation. A Kubernetes cluster is a closely-knit unit
where all the components run in relative proximity and are connected by a fast
network (typically a physical data center or cloud provider availability zone). This
is great for many use cases, but there are several important use cases where systems
need to scale beyond a single cluster.

Chapter 12, Serverless Computing on Kubernetes, in this chapter, we will explore
the fascinating world of serverless computing in the cloud. The term "serverless"
is getting a lot of attention, but it is a misnomer used to describe two different
paradigms. A true serverless application runs as a web application in the user's
browser or a mobile app and only interacts with external services. The types of
serverless systems we build on Kubernetes are different.

Preface

[xxii]

Chapter 13, Monitoring Kubernetes Clusters, in this chapter, we're going to talk about
how to make sure your systems are up and running and performing correctly and
how to respond when they aren't. In Chapter 3, High Availability and Reliability, we
discussed related topics. The focus here is about knowing what's going on in your
system and what practices and tools you can use.

Chapter 14, Utilizing Service Meshes, in this chapter, we will learn how service meshes
allow you to externalize cross-cutting concerns like monitoring and observability
from the application code. The service mesh is a true paradigm shift in the way you
can design, evolve, and operate distributed systems on Kubernetes. I like to think of
it as aspect-oriented programming for cloud-native distributed systems.

Chapter 15, Extending Kubernetes, in this chapter, we will dig deep into the guts of
Kubernetes. We will start with the Kubernetes API and learn how to work with
Kubernetes programmatically via direct access to the API, the Python client, and
automating Kubectl. Then, we'll look into extending the Kubernetes API with custom
resources. The last part is all about the various plugins Kubernetes supports. Many
aspects of Kubernetes operation are modular and designed for extension. We will
examine the API aggregation layer and several types of plugins, such as custom
schedulers, authorization, admission control, custom metrics, and volumes. Finally,
we'll look into extending Kubectl and adding your own commands.

Chapter 16, The Future of Kubernetes, in this chapter, we'll look at the future of
Kubernetes from multiple angles. We'll start with the momentum of Kubernetes
since its inception, across dimensions such as community, ecosystem, and
mindshare. Spoiler alert: Kubernetes won the container orchestration wars by
a land slide. As Kubernetes grows and matures, the battle lines shift from beating
competitors to fighting against its own complexity. Usability, tooling, and education
will play a major role as container orchestration is still new, fast-moving, and
not a well-understood domain. Then we will take a look at some very interesting
patterns and trends, and finally, we will review my predictions from the 2nd edition
and I will make some new predictions.

To get the most out of this book
To follow the examples in each chapter, you need a recent version of Docker and
Kubernetes installed on your machine, ideally Kubernetes 1.18. If your operating
system is Windows 10 Professional, you can enable hypervisor mode; otherwise,
you will need to install VirtualBox and use a Linux guest OS. If you use macOS
then you're good to go.

Preface

[xxiii]

Download the example code files
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files emailed directly
to you.

You can download the code files by following these steps:

1.	 Log in or register at http://www.packtpub.com.
2.	 Select the SUPPORT tab.
3.	 Click on Code Downloads & Errata.
4.	 Enter the name of the book in the Search box and follow the on-screen

instructions.
Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

•	 WinRAR / 7-Zip for Windows
•	 Zipeg / iZip / UnRarX for macOS
•	 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Mastering-Kubernetes-Third-Edition. We also have other
code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781839211256_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: If you chose HyperKit instead of VirtualBox, you need to add the flag
--vm-driver=hyperkit when starting the cluster.

A block of code is set as follows:

apiVersion: "etcd.database.coreos.com/v1beta2"
kind: "EtcdCluster"

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com
https://github.com/PacktPublishing/Mastering-Kubernetes-Third-Edition
https://github.com/PacktPublishing/Mastering-Kubernetes-Third-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781839211256_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781839211256_ColorImages.pdf

Preface

[xxiv]

metadata:
 name: "example-etcd-cluster"
spec:
 size: 3
 version: "3.2.13"

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

apiVersion: "etcd.database.coreos.com/v1beta2"
kind: "EtcdCluster"
metadata:
 name: "example-etcd-cluster"
spec:
 size: 3
 version: "3.2.13"

Any command-line input or output is written as follows:

$ k get pods

NAME READY STATUS RESTARTS AGE

echo-855975f9c-r6kj8 1/1 Running 0 2m11s

Bold: Indicates a new term, an important word, or words that you see on the screen,
for example, in menus or dialog boxes, also appear in the text like this. For example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

[xxv]

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book's title
in the subject of your message. If you have questions about any aspect of this book,
please email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book we would be grateful
if you would report this to us. Please visit, http://www.packtpub.com/submit-
errata, selecting your book, clicking on the Errata Submission Form link, and
entering the details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location address
or website name. Please contact us at copyright@packtpub.com with a link to the
material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
please visit http://authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and use
your unbiased opinion to make purchase decisions, we at Packt can understand what
you think about our products, and our authors can see your feedback on their book.
Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://authors.packtpub.com
http://packtpub.com

[1]

1
Understanding Kubernetes

Architecture
In one sentence, Kubernetes is a platform to orchestrate the deployment, scaling,
and management of container-based applications. You have probably read about
Kubernetes, and maybe even dipped your toes in and used it in a side project or
maybe even at work. But to understand what Kubernetes is all about, how to use
it effectively, and what the best practices are requires much more.

Kubernetes is a big open source project and ecosystem with a lot of code and
a lot of functionality. Kubernetes came out of Google, but joined the Cloud Native
Computing Foundation (CNCF) and became the clear leader in the space of
container-based applications.

In this chapter, we will build the foundation necessary to utilize Kubernetes to its
full potential. We will start by understanding what Kubernetes is, what Kubernetes
isn't, and what container orchestration means exactly. Then we will cover important
Kubernetes concepts that will form the vocabulary we will use throughout the book.
After that, we will dive into the architecture of Kubernetes proper and look at how it
enables all the capabilities it provides for its users. Then, we will discuss the various
runtimes and container engines that Kubernetes supports (Docker is just one option),
and finally, we will discuss the role of Kubernetes in the full continuous integration
and deployment pipeline.

At the end of this chapter, you will have a solid understanding of container
orchestration, what problems Kubernetes addresses, the rationale of Kubernetes
design and architecture, and the different runtimes it supports. You'll also be familiar
with the overall structure of the open source repository and be ready to jump in and
find answers to any questions.

Understanding Kubernetes Architecture

[2]

What is Kubernetes?
Kubernetes is a platform that encompasses a huge number of services and
capabilities that keeps growing. The core functionality is scheduling workloads in
containers across your infrastructure, but it doesn't stop there. Here are some of the
other capabilities Kubernetes brings to the table:

•	 Mounting storage systems
•	 Distributing secrets
•	 Checking application health and readiness
•	 Replicating application instances
•	 Using the Horizontal Pod Autoscaler
•	 Using Cluster Autoscaling
•	 Naming and service discovery
•	 Balancing loads
•	 Rolling updates
•	 Monitoring resources
•	 Accessing and ingesting logs
•	 Debugging applications
•	 Providing authentication and authorization

We will cover all these capabilities in great detail throughout the book. At this point,
just absorb and appreciate how much value Kubernetes can add to your system.

Kubernetes has impressive scope, but it is also important to understand what
Kubernetes explicitly doesn't provide.

What Kubernetes is not
Kubernetes is not a Platform as a Service (PaaS). It doesn't dictate many important
aspects that are left to you or to other systems built on top of Kubernetes, such as
Deis, OpenShift, and Eldarion; for example:

•	 Kubernetes doesn't require a specific application type or framework
•	 Kubernetes doesn't require a specific programming language
•	 Kubernetes doesn't provide databases or message queues
•	 Kubernetes doesn't distinguish apps from services
•	 Kubernetes doesn't have a click-to-deploy service marketplace

Chapter 1

[3]

•	 Kubernetes doesn't provide a built-in function as a service solution
•	 Kubernetes doesn't mandate a logging, monitoring, and alerting system

Now that we have a clear idea about the boundaries of Kubernetes, let's dive into its
primary responsibility – container orchestration.

Understanding container orchestration
The primary responsibility of Kubernetes is container orchestration. That means
making sure that all the containers that execute various workloads are scheduled
to run on physical or virtual machines. The containers must be packed efficiently
following the constraints of the deployment environment and the cluster
configuration. In addition, Kubernetes must keep an eye on all running containers
and replace dead, unresponsive, or otherwise unhealthy containers. Kubernetes
provides many more capabilities, which you will learn about in the following
chapters. In this section, the focus is on containers and their orchestration.

Physical machines, virtual machines, and
containers
It all starts and ends with hardware. In order to run your workloads, you need
some real hardware provisioned. That includes actual physical machines with
certain compute capabilities (CPUs or cores), memory, and some local persistent
storage (spinning disks or SSDs). In addition, you will need some shared persistent
storage and to hook up all these machines using networking, so they can find and
talk to each other. At this point, you run multiple virtual machines on the physical
machines or stay at the bare-metal level (real hardware only – no virtual machines).
Kubernetes can be deployed on a bare-metal cluster or on a cluster of virtual
machines. Kubernetes, in turn, can orchestrate the containers it manages directly on
bare metal or on virtual machines. In theory, a Kubernetes cluster can be composed
of a mix of bare-metal and virtual machines, but this is not very common.

The benefits of containers
Containers represent a true paradigm shift in the development and operation
of large, complicated software systems. Here are some of the benefits compared
to more traditional models:

•	 Agile application creation and deployment
•	 Continuous development, integration, and deployment
•	 Dev and Ops separation of concerns

Understanding Kubernetes Architecture

[4]

•	 Environmental consistency across development, testing, staging, and
production

•	 Cloud and OS distribution portability
•	 Application-centric management (dependencies are packaged with the

application)
•	 Resource isolation (container CPU and memory can be limited)
•	 Resource utilization (multiple containers can be deployed on the same node)

The benefits of container-based development and deployment are significant in
many contexts, but are particularly significant if you deploy your system to the
cloud.

Containers in the cloud
Containers are ideal to package microservices because while providing isolation to
the microservice, they are very lightweight and you don't incur a lot of overhead
when deploying many microservices as you do with virtual machines. That makes
containers ideal for cloud deployment, where allocating a whole virtual machine for
each microservice would be cost-prohibitive.

All major cloud providers, such as Amazon Web Services (AWS), Google Cloud
Platform (GCP), and Microsoft's Azure, provide container hosting services these
days. Many other companies have jumped on the Kubernetes wagon and offer
managed Kubernetes services, including:

•	 IBM IKS
•	 Alibaba Cloud
•	 DigitalOcean DKS
•	 Oracle OKS
•	 OVH Managed Kubernetes
•	 Rackspace KaaS

The Google Kubernetes Engine (GKE) was always based on Kubernetes. Amazon's
Elastic Kubernetes Service (EKS) was added in addition to the proprietary AWS
ECS orchestration solution. Microsoft Azure's container service used to be based on
Apache Mesos but later switched to Kubernetes with Azure Kubernetes Service
(AKS). You could always deploy Kubernetes on all the cloud platforms, but it
wasn't deeply integrated with other services. However, at the end of 2017, all cloud
providers announced direct support for Kubernetes. Microsoft's launched AKS,
AWS released EKS, and Alibaba Cloud started working on a Kubernetes controller
manager to integrate Kubernetes seamlessly.

Chapter 1

[5]

Cattle versus pets
In the olden days, when systems were small, each server had a name. Developers
and users knew exactly what software was running on each machine. I remember
that, in many of the companies I worked for, we had multi-day discussions to decide
on a naming theme for our servers. For example, composers and Greek mythology
characters were popular choices. Everything was very cozy. You treated your servers
like beloved pets. When a server died it was a major crisis. Everybody scrambled
to try to figure out where to get another server, what was even running on the
dead server, and how to get it working on the new server. If the server stored some
important data, then hopefully you had an up-to-date backup and maybe you'd even
be able to recover it.

Obviously, that approach doesn't scale. When you have tens or hundreds of servers,
you must start treating them like cattle. You think about the collective and not
individuals. You may still have some pets like your CI/CD machines (although
managed CI/CD solutions are becoming more common), but your web servers and
backend services are just cattle.

Kubernetes takes the cattle approach to the extreme and takes full responsibility for
allocating containers to specific machines. You don't need to interact with individual
machines (nodes) most of the time. This works best for stateless workloads. For
stateful applications, the situation is a little different, but Kubernetes provides
a solution called StatefulSet, which we'll discuss soon.

In this section, we covered the idea of container orchestration and discussed the
relationships between hosts (physical or virtual) and containers, as well as the
benefits of running containers in the cloud, and finished with a discussion about
cattle versus pets. In the following section, we will get to know the world of
Kubernetes and learn its concepts and terminology.

Kubernetes concepts
In this section, I'll briefly introduce many important Kubernetes concepts and give
you some context as to why they are needed and how they interact with other
concepts. The goal is to get familiar with these terms and concepts. Later, we'll see
how these concepts are woven together and organized into API groups and resource
categories to achieve awesomeness. You can consider many of these concepts as
building blocks. Some of the concepts, such as nodes and masters, are implemented
as a set of Kubernetes components. These components are at a different abstraction
level, and I discuss them in detail in a dedicated section later in this chapter –
Kubernetes components.

Understanding Kubernetes Architecture

[6]

Here is the famous Kubernetes architecture diagram:

Figure 1.1: Kubernetes architecture diagram

Clusters
A cluster is a collection of hosts (nodes) that provide compute, memory, storage, and
networking resources. Kubernetes uses these resources to run the various workloads
that comprise your system. Note that your entire system may consist of multiple
clusters. We will discuss this advanced use case of federation in detail in Chapter 11,
Running Kubernetes on Multiple Clouds and Cluster Federation.

Nodes
A node is a single host. It may be a physical or virtual machine. Its job is to run pods.
Each Kubernetes node runs several Kubernetes components, such as the kubelet, the
container runtime, and kube-proxy. Nodes are managed by a Kubernetes master.
The nodes are the worker bees of Kubernetes and shoulder all the heavy lifting. In
the past, they were called minions. If you read some old documentation or articles,
don't get confused. Minions are just nodes.

Chapter 1

[7]

The master
The master is the control plane of Kubernetes. It consists of several components, such
as an API server, a scheduler, and a controller manager. The master is responsible
for the global state of the cluster, cluster-level scheduling of pods, and handling
of events. Usually, all the master components are set up on a single host. When
considering high-availability scenarios or very large clusters, you will want to have
master redundancy. We will discuss highly available clusters in detail in Chapter 4,
Securing Kubernetes.

Pods
A pod is the unit of work in Kubernetes. Each pod contains one or more containers.
Containers in pods are always scheduled together (always run on the same machine).
All the containers in a pod have the same IP address and port space; they can
communicate using localhost or standard inter-process communication. In addition,
all the containers in a pod can have access to shared local storage on the node
hosting the pod. Containers don't get access to local storage or any other storage by
default. Volumes of storage must be mounted into each container inside the pod
explicitly. Pods are an important feature of Kubernetes. It is possible to run multiple
applications inside a single Docker container by having something like supervisord
as the main Docker process that runs multiple processes, but this practice is often
frowned upon for the following reasons:

•	 Transparency: Making the containers within the pod visible to the
infrastructure enables the infrastructure to provide services to those
containers, such as process management and resource monitoring. This
facilitates a number of conveniences for users.

•	 Decoupling software dependencies: The individual containers may be
versioned, rebuilt, and redeployed independently. Kubernetes may even
support live updates of individual containers someday.

•	 Ease of use: Users don't need to run their own process managers, worry
about signal and exit-code propagation, and so on.

•	 Efficiency: Because the infrastructure takes on more responsibility,
containers can be more lightweight.

Pods provide a great solution for managing groups of closely related containers that
depend on each other and need to co-operate on the same host to accomplish their
purpose. It's important to remember that pods are considered ephemeral, throwaway
entities that can be discarded and replaced at will. Any pod storage is destroyed with
its pod. Each pod gets a unique ID (UID), so you can still distinguish between them
if necessary.

Understanding Kubernetes Architecture

[8]

Labels
Labels are key-value pairs that are used to group together sets of objects – very often
pods. This is important for several other concepts, such as replication controllers,
replica sets, deployments, and services that operate on dynamic groups of objects
and need to identify the members of the group. There is an N × N relationship
between objects and labels. Each object may have multiple labels, and each label
may be applied to different objects. There are certain restrictions on labels by design.
Each label on an object must have a unique key. The label key must adhere to a strict
syntax. It has two parts: prefix and name. The prefix is optional. If it exists then it
is separated from the name by a forward slash (/) and it must be a valid DNS sub-
domain. The prefix must be 253 characters long at most. The name is mandatory and
must be 63 characters long at most. Names must start and end with an alphanumeric
character (a-z, A-Z, 0-9) and contain only alphanumeric characters, dots, dashes,
and underscores. Values follow the same restrictions as names. Note that labels are
dedicated to identifying objects and not for attaching arbitrary metadata to objects.
This is what annotations are for.

Annotations
Annotations let you associate arbitrary metadata with Kubernetes objects.
Kubernetes just stores the annotations and makes their metadata available.
Annotations, like labels, are key-value pairs where the key may have an
optional prefix and is separated from the key name by a forward slash (/). The
name and prefix (if provided) must follow strict rules. For details, check out
https://kubernetes.io/docs/concepts/overview/working-with-objects/
annotations/#syntax-and-character-set.

In my experience, you always need such metadata for complicated systems, and it's
nice that Kubernetes recognizes this need and provides it out of the box so you don't
have to come up with your own separate metadata store and mapping object for
their metadata. While annotations are useful, their lack of structure can pose some
problems when trying to process annotations in a generic way. Custom resource
definitions are often touted as an alternative. We'll cover those later, in Chapter 15,
Extending Kubernetes.

https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/#syntax-and-character-set
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/#syntax-and-character-set

Chapter 1

[9]

Label selectors
Label selectors are used to select objects based on their labels. Equality-based
selectors specify a key name and a value. There are two operators, = (or ==) and !=,
for equality or inequality based on the value; for example:

role = webserver

This will select all objects that have that label key and value.

Label selectors can have multiple requirements separated by a comma; for example:

role = webserver, application != foo

Set-based selectors extend the capabilities, and allow selection based on multiple
values:

role in (webserver, backend)

Services
Services are used to expose some functionality to users or other services. They
usually encompass a group of pods, usually identified by – you guessed it – a
label. You can have services that provide access to external resources, or to pods
you control directly at the virtual IP level. Native Kubernetes services are exposed
through convenient endpoints. Note that services operate at layer 3 (TCP/UDP).
Kubernetes 1.2 added the Ingress object, which provides access to HTTP objects.
More on that later. Services are published or discovered via one of two mechanisms:
DNS or environment variables. Services can be load-balanced by Kubernetes.
However, developers can choose to manage load balancing themselves in the
case of services that use external resources or require special treatment.

There are many gory details associated with IP addresses, virtual IP addresses,
and port spaces. We will discuss them in depth in Chapter 10, Exploring Advanced
Networking.

Understanding Kubernetes Architecture

[10]

Volume
Local storage on the pod is ephemeral and goes away with the pod. Sometimes that's
all you need if the goal is just to exchange data between containers of the node, but
sometimes it's important for the data to outlive the pod, or it's necessary to share
data between pods. The volume concept supports that need. Note that, while Docker
has a volume concept too, it's quite limited (although getting more powerful).
Kubernetes uses its own separate volumes. Kubernetes also supports additional
container runtimes, so it can't rely on Docker volumes even in principle.

There are many volume types. Kubernetes currently directly supports many volume
types, but the modern approach to extending Kubernetes with more volume types
is through the Container Storage Interface (CSI), which we'll discuss in detail
later. The built-in volume types will be gradually phased out in favor of out-of-tree
plugins available through the CSI.

Replication controllers and replica sets
Replication controllers and replica sets both manage a group of pods identified by
a label selector and ensure that a certain number are always up and running. The
main difference between them is that replication controllers test for membership by
name equality and replica sets can use set-based selection. Replica sets are the way
to go as they are a superset of replication controllers. I expect replication controllers
to be deprecated at some point. Kubernetes guarantees that you will always have the
same number of pods running as you specified in a replication controller or a replica
set. Whenever the number drops due to a problem with the hosting node or the pod
itself, Kubernetes will fire up new instances. Note that, if you manually start pods
and exceed the specified number, the replica set controller will kill some extra pods.

Replication controllers used to be central to many workflows, such as rolling updates
and running one-off jobs. As Kubernetes evolved, it introduced direct support for
many of these workflows, with dedicated objects such as Deployment, Job, CronJob,
and DaemonSet. We will meet them all later.

StatefulSet
Pods come and go, and if you care about their data then you can use persistent
storage. That's all good. But sometimes you want Kubernetes to manage a
distributed data store such as Cassandra or MySQL Galera. These clustered stores
keep the data distributed across uniquely identified nodes. You can't model that with
regular pods and services. Enter StatefulSet. If you remember, earlier we discussed
pets versus cattle and how the cattle mindset is the way to go.

Chapter 1

[11]

Well, StatefulSet sits somewhere in the middle. StatefulSet ensures (similar to a
replication set) that a given number of instances with unique identities are running
at any given time. StatefulSet members have the following properties:

•	 A stable hostname, available in DNS
•	 An ordinal index
•	 Stable storage linked to the ordinal and hostname

StatefulSet can help with peer discovery as well as adding or removing members
safely.

Secrets
Secrets are small objects that contain sensitive info such as credentials and tokens.
They are stored by default as plaintext in etcd, accessible by the Kubernetes API
server, and can be mounted as files in pods (using dedicated secret volumes that
piggyback on regular data volumes) that need access to them. The same secret can be
mounted in multiple pods. Kubernetes itself creates secrets for its components, and
you can create your own secrets. Another approach is to use secrets as environment
variables. Note that secrets in a pod are always stored in memory (tmpfs in the case
of mounted secrets) for better security.

Names
Each object in Kubernetes is identified by a UID and a name. The name is used to
refer to the object in API calls. Names should be up to 253 characters long and use
lowercase alphanumeric characters, a dash (-), and a dot (.). If you delete an object,
you can create another object with the same name as the deleted object, but the
UIDs must be unique across the lifetime of the cluster. The UIDs are generated by
Kubernetes, so you don't have to worry about it.

Namespaces
A namespace is a kind of virtual cluster. You can have a single physical cluster that
contains multiple virtual clusters segregated by namespaces. By default, pods in
one namespace can access pods and services in other namespaces. In multi-tenancy
scenarios where it's important to totally isolate namespaces, you can do it with
proper network policies. Note that node objects and persistent volumes don't live
in a namespace. Kubernetes may schedule pods from different namespaces to run
on the same node. Likewise, pods from different namespaces can use the same
persistent storage.

Understanding Kubernetes Architecture

[12]

When using namespaces, you have to consider network policies and resource quotas
to ensure proper access and distribution of the physical cluster resources.

We've covered most of Kubernetes' primary concepts; there are a few more I
mentioned briefly. In the next section, we will continue our journey into Kubernetes
architecture by looking into its design motivations, the internals and implementation,
and we'll even pick at the source code.

Diving into Kubernetes architecture in
depth
Kubernetes has very ambitious goals. It aims to manage and simplify the
orchestration, deployment, and management of distributed systems across a wide
range of environments and cloud providers. It provides many capabilities and
services that should work across all that diversity while evolving and remaining
simple enough for mere mortals to use. This is a tall order. Kubernetes achieves this
by following a crystal-clear, high-level design and well-thought-out architecture
that promotes extensibility and pluggability. Many parts of Kubernetes are still
hardcoded or environment-aware, but the trend is to refactor them into plugins and
keep the core small, generic, and abstract. In this section, we will peel Kubernetes
like an onion, starting with various distributed system design patterns and how
Kubernetes supports them, then go over the surface of Kubernetes, which is its set
of APIs, and then take a look at the actual components that comprise Kubernetes.
Finally, we will take a quick tour of the source-code tree to gain an even better
insight into the structure of Kubernetes itself.

At the end of this section, you will have a solid understanding of Kubernetes
architecture and implementation, and why certain design decisions were made.

Distributed system design patterns
All happy (working) distributed systems are alike, to paraphrase Tolstoy in Anna
Karenina. That means that to function properly, all well-designed distributed systems
must follow some best practices and principles. Kubernetes doesn't want to be just a
management system; it wants to support and enable these best practices and provide
high-level services to developers and administrators. Let's look at some of those best
practices, described as design patterns.

Chapter 1

[13]

The sidecar pattern
The sidecar pattern is about co-locating another container in a pod in addition to
the main application container. The application container is unaware of the sidecar
container and just goes about its business. A great example is a central logging agent.
Your main container can just log to stdout, but the sidecar container will send all
logs to a central logging service where they will be aggregated with the logs from the
entire system. The benefits of using a sidecar container versus adding central logging
to the main application container are enormous. First, applications are not burdened
anymore with central logging, which could be a nuisance. If you want to upgrade or
change your central logging policy or switch to a totally new provider, you just need
to update the sidecar container and deploy it. None of your application containers
change, so you can't break them by accident. The Istio service mesh uses the sidecar
pattern to inject its proxies into each pod.

The ambassador pattern
The ambassador pattern is about representing a remote service as if it were local and
possibly enforcing some policy. A good example of the ambassador pattern is if you
have a Redis cluster with one master for writes and many replicas for reads. A local
ambassador container can serve as a proxy and expose Redis to the main application
container on the localhost. The main application container simply connects to Redis
on localhost:6379 (Redis default port), but it connects to the ambassador running in
the same pod, which filters the requests, and sends write requests to the real Redis
master and read requests randomly to one of the read replicas. Just like with the
sidecar pattern, the main application has no idea what's going on. That can help a
lot when testing against a real local Redis. Also, if the Redis cluster configuration
changes, only the ambassador needs to be modified; the main application remains
blissfully unaware.

The adapter pattern
The adapter pattern is about standardizing output from the main application
container. Consider the case of a service that is being rolled out incrementally: it
may generate reports in a format that doesn't conform to the previous version. Other
services and applications that consume that output haven't been upgraded yet.
An adapter container can be deployed in the same pod with the new application
container and massage the output to match the old version until all consumers
have been upgraded. The adapter container shares the filesystem with the main
application container, so it can watch the local filesystem, and whenever the new
application writes something, it immediately adapts it.

Understanding Kubernetes Architecture

[14]

Multi-node patterns
Single-node patterns are all supported directly by Kubernetes via pods. Multi-node
patterns such as leader election, work queues, and scatter-gather are not supported
directly, but composing pods with standard interfaces to accomplish them is a viable
approach with Kubernetes.

Many tools, frameworks, and add-ons that integrate deeply with Kubernetes utilize
these design patterns. The beauty of these patterns is that they are all loosely coupled
and don't require Kubernetes to be modified or even be aware of the presence of
these integrations. The vibrant ecosystem around Kubernetes is a direct result of its
architecture. Let's dig one level deeper and get familiar with the Kubernetes APIs.

The Kubernetes APIs
If you want to understand the capabilities of a system and what it provides, you
must pay a lot of attention to its API. The API provides a comprehensive view of
what you can do with the system as a user. Kubernetes exposes several sets of REST
APIs for different purposes and audiences via API groups. Some of the APIs are
used primarily by tools and some can be used directly by developers. An important
aspect of the APIs is that they are under constant development. The Kubernetes
developers keep it manageable by trying to extend (adding new objects and new
fields to existing objects) and avoid renaming or dropping existing objects and fields.
In addition, all API endpoints are versioned and often have an alpha or beta notation
too; for example:

/api/v1
/api/v2alpha1

You can access the API through the kubectl CLI, via client libraries, or directly
through REST API calls. There are elaborate authentication and authorization
mechanisms we will explore in a later chapter. If you have the right permissions, you
can list, view, create, update, and delete various Kubernetes objects. At this point,
let's get a glimpse of the surface area of the APIs. The best way to explore the API
is via API groups. Some API groups are enabled by default. Other groups can be
enabled/disabled via flags. For example, to disable the batch V1 group and enable
the batch V2 Alpha group, you can set the --runtime-config flag when running the
API server as follows:

--runtime-config=batch/v1=false,batch/v2alpha=true

Chapter 1

[15]

The following resources are enabled by default in addition to the core resources:

•	 DaemonSets
•	 Deployments
•	 HorizontalPodAutoscalers
•	 Ingress
•	 Jobs
•	 ReplicaSets

In addition to API groups, another useful classification of available APIs is by
functionality. Enter resource categories...

Resource categories
The Kubernetes API is huge, and breaking it down into categories helps a lot when
you're trying to find your way around. Kubernetes defines the following resource
categories:

•	 Workloads: Objects you use to manage and run containers in the cluster
•	 Discovery and Load Balancing: Objects you use to expose your workloads to

the world as externally accessible, load-balanced services
•	 Config and Storage: Objects you use to initialize and configure your

applications, and to persist data that's outside the container
•	 Cluster: Objects that define how the cluster itself is configured; these are

typically used only by cluster operators
•	 Metadata: Objects you use to configure the behavior of other resources

within the cluster, such as HorizontalPodAutoscaler for scaling workloads

In the following sub-sections, I'll list the resources that belong to each group with the
API group they belong to in the following format: <resource name>: <API group>;
for example, Container: core, where the resource is Container and the API group
is core. I will not specify the version here because APIs move rapidly from alpha to
beta to GA (general availability) and from V1 to V2, and so on.

Understanding Kubernetes Architecture

[16]

The workloads API
The workloads API contains many resources. Here is a list of all the resources with
the API groups they belong to:

•	 Container: core

•	 CronJob: batch

•	 DaemonSet: apps

•	 Deployment: apps

•	 Job: batch

•	 Pod: core

•	 ReplicaSet: apps

•	 ReplicationController: core

•	 StatefulSet: apps

Containers are created by controllers through pods. Pods run containers and provide
environmental dependencies such as shared or persistent storage volumes and
configuration or secret data injected into the container.

Here is an example of the detailed documentation of one of the most common
operations – getting a list of all the pods as a REST API:

GET /api/v1/pods

It accepts various query parameters (all optional):

•	 pretty: If true, the output is pretty printed
•	 labelSelector: A selector expression to limit the result
•	 watch: If true, watch for changes and return a stream of events
•	 resourceVersion: With watch, returns only events that occurred after that

version
•	 timeoutSeconds: Timeout for the list or watch operation

The next category of resources deals with high-level networking.

Discovery and Load Balancing
This category is also known as service APIs. By default, workloads are only
accessible within the cluster, and they must be exposed externally using either a
LoadBalancer or NodePort Service.

Chapter 1

[17]

For development, internally accessible workloads can be accessed via proxy through
the API master using the kubectl proxy command:

•	 Endpoints: core

•	 Ingress: networking.k8s.io

•	 Service: core

The next category of resources deals with storage and internal state management.

Config and Storage
Dynamic configuration without redeployment is a cornerstone of Kubernetes and
running complex distributed applications on your Kubernetes cluster. Storing data
is another paramount concern for any non-trivial system. The config and storage
category provides multiple resources to address these concerns:

•	 ConfigMap: core

•	 CSIDriver: storage.k8s.io

•	 CSINode: storage.k8s.io

•	 Secret: core

•	 PersistentVolumeClaim: core

•	 StorageClass: storage.k8s.io

•	 Volume: storage.k8s.io

•	 VolumeAttachment: storage.k8s.io

The next category of resources deals with helper resources that are usually part of
other high-level resources.

Metadata
The metadata resources typically show up as sub-resources of the resources of
the configuration. For example, a limit range will be part of a pod configuration.
You will not interact with these objects directly most of the time. There are many
metadata resources – there isn't much point in listing all of them. You can find the
complete list here: https://kubernetes.io/docs/reference/generated/kubernetes-
api/v1.16/#-strong-metadata-apis-strong-.

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.16/#-strong-metadata-apis-strong-
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.16/#-strong-metadata-apis-strong-

Understanding Kubernetes Architecture

[18]

Clusters
The resources in the cluster category are designed for use by cluster operators as
opposed to developers. There are many resources in this category as well. Here are
some of the most important resources:

•	 Namespace: core

•	 Node: core

•	 PersistentVolume: core

•	 ResourceQuota: core

•	 Role: rbac.authorization.k8s.io

•	 RoleBinding: rbac.authorization.k8s.io

•	 ClusterRole: rbac.authorization.k8s.io

•	 ClusterRoleBinding: rbac.authorization.k8s.io

•	 NetworkPolicy: networking.k8s.io

Now that we understand how Kubernetes organizes and exposes its capabilities
via API groups and resource categories, let's see how it manages the physical
infrastructure and keeps it up with the state of the cluster.

Kubernetes components
A Kubernetes cluster has several master components used to control the cluster, as
well as node components that run on each worker node. Let's get to know all these
components and how they work together.

Master components
The master components can all run on one node, but in a highly available setup or a
very large cluster, they may be spread across multiple nodes.

The API server
The Kubernetes API server exposes the Kubernetes REST API. It can easily scale
horizontally as it is stateless and stores all the data in the etcd cluster. The API server
is the embodiment of the Kubernetes control plane.

Chapter 1

[19]

Etcd
Etcd is a highly reliable distributed data store. Kubernetes uses it to store the entire
cluster state. In a small, transient cluster a single instance of etcd can run on the same
node with all the other master components. But for more substantial clusters, it is
typical to have a three-node or even five-node etcd cluster for redundancy and high
availability.

The Kube controller manager
The Kube controller manager is a collection of various managers rolled up into
one binary. It contains the replication controller, the pod controller, the services
controller, the endpoints controller, and others. All these managers watch over
the state of the cluster via the API and their job is to steer the cluster into the
desired state.

Cloud controller managers
When running in the cloud, Kubernetes allows cloud providers to integrate their
platform for the purpose of managing nodes, routes, services, and volumes. The
cloud provider code interacts with the Kubernetes code. It replaces some of the
functionality of the Kube controller manager. When running Kubernetes with a
cloud controller manager, you must set the Kube controller manager flag --cloud-
provider to "external". This will disable the control loops that the cloud controller
manager is taking over. The cloud controller manager was introduced in Kubernetes
1.6 and it's being used by multiple cloud providers already, such as:

•	 GCP
•	 AWS
•	 Azure
•	 Baidu Cloud
•	 DigitalOcean
•	 Oracle
•	 Linode

A quick note about Go to help you parse the code: the method name comes first,
followed by the method's parameters in parentheses. Each parameter is a pair,
consisting of a name followed by its type. Finally, the return values are specified. Go
allows multiple return types. It is very common to return an error object in addition
to the actual result. If everything is OK, the error object will be nil.

Understanding Kubernetes Architecture

[20]

Here is the main interface of the cloudprovider package:

package cloudprovider
import (
 "errors"
 "fmt"
 "strings"
 "k8s.io/api/core/v1"
 "k8s.io/apimachinery/pkg/types"
 "k8s.io/client-go/informers"
 "k8s.io/kubernetes/pkg/controller"
)
// Interface is an abstract, pluggable interface for cloud providers.
type Interface interface {
 Initialize(clientBuilder controller.ControllerClientBuilder)
 LoadBalancer() (LoadBalancer, bool)
 Instances() (Instances, bool)
 Zones() (Zones, bool)
 Clusters() (Clusters, bool)
 Routes() (Routes, bool)
 ProviderName() string
 HasClusterID() bool
}

Most of the methods return other interfaces with their own method. For example,
here is the LoadBalancer interface:

type LoadBalancer interface {
GetLoadBalancer(clusterName string,
 service *v1.Service) (status *v1.LoadBalancerStatus,
 exists bool,
 err error)

EnsureLoadBalancer(clusterName string,

 service *v1.Service,
 nodes []*v1.Node) (*v1.LoadBalancerStatus, error)

UpdateLoadBalancer(clusterName string, service *v1.Service, nodes
[]*v1.Node) error

EnsureLoadBalancerDeleted(clusterName string, service *v1.Service)
error
}

Chapter 1

[21]

The cloud controller manager is instrumental in bringing Kubernetes to all the major
cloud providers, but the heart and soul of Kubernetes is the scheduler.

kube-scheduler
Kube-scheduler is responsible for scheduling pods into nodes. This is a very
complicated task as it needs to consider multiple interacting factors, such as the
following:

•	 Resource requirements
•	 Service requirements
•	 Hardware/software policy constraints
•	 Node affinity and anti-affinity specifications
•	 Pod affinity and anti-affinity specifications
•	 Taints and tolerations
•	 Data locality
•	 Deadlines

If you need some special scheduling logic not covered by the default kube-scheduler,
you can replace it with your own custom scheduler. You can also run your custom
scheduler side by side with the default scheduler and have your custom scheduler
schedule only a subset of the pods.

DNS
Starting with Kubernetes 1.3, a DNS service is part of the standard Kubernetes
cluster. It is scheduled as a regular pod. Every service (except headless services)
receives a DNS name. Pods can receive a DNS name too. This is very useful for
automatic discovery.

Node components
Nodes in the cluster need a couple of components to interact with the cluster master
components, receive workloads to execute, and update the Kubernetes API server
regarding their status.

Proxy
Kube-proxy does low-level network housekeeping on each node. It reflects the
Kubernetes services locally and can perform TCP and UDP forwarding. It finds
cluster IPs via environment variables or DNS.

Understanding Kubernetes Architecture

[22]

Kubelet
The kubelet is the Kubernetes representative on the node. It oversees communicating
with the master components and manages the running pods. That includes the
following:

•	 Receiving pod specs
•	 Downloading pod secrets from the API server
•	 Mounting volumes
•	 Running the pod's containers (via the configured runtime)
•	 Reporting the status of the node and each pod
•	 Running the container startup, liveness, and readiness probes

In this section, we dug into the guts of Kubernetes and explored its architecture from
a very high level of vision and supported design patterns, through its APIs and the
components used to control and manage the cluster. In the next section, we will take
a quick look at the various runtimes that Kubernetes supports.

Kubernetes runtimes
Kubernetes originally only supported Docker as a container runtime engine. But that
is no longer the case. Kubernetes now supports several different runtimes:

•	 Docker (via a CRI shim)
•	 rkt (direct integration to be replaced with Rktlet)
•	 CRI-O
•	 Frakti (Kubernetes on the Hypervisor, previously Hypernetes)
•	 rktlet (CRI implementation for rkt)
•	 CRI-containerd

The major design policy is that Kubernetes itself should be completely decoupled
from specific runtimes. The Container Runtime Interface (CRI) enables it.

In this section, you'll get a closer look at the CRI and get to know the individual
runtime engines. At the end of this section, you'll be able to make a well-informed
decision about which runtime engine is appropriate for your use case and under
what circumstances you may switch or even combine multiple runtimes in the
same system.

Chapter 1

[23]

The container runtime interface (CRI)
The CRI is a collection of a gRPC API, specifications/requirements, and libraries
for container runtimes to integrate with a kubelet on a node. In Kubernetes 1.7,
the internal Docker integration in Kubernetes was replaced with a CRI-based
integration. This is a big deal. It opened the door to multiple implementations that
can take advantage of advances in the container world. The kubelet doesn't need to
interface directly with multiple runtimes. Instead, it can talk to any CRI-compliant
container runtime. The following diagram illustrates the flow:

Figure 1.2: The container runtime interface (CRI) flow diagram

There are two gRPC service interfaces, ImageService and RuntimeService, that CRI
container runtimes (or shims) must implement. ImageService is responsible for
managing images. Here is the gRPC/protobuf interface (this is Google's Protobuf
specification language and not Go):

service ImageService {

 rpc ListImages(ListImagesRequest) returns (ListImagesResponse) {}

 rpc ImageStatus(ImageStatusRequest) returns (ImageStatusResponse) {}

 rpc PullImage(PullImageRequest) returns (PullImageResponse) {}

 rpc RemoveImage(RemoveImageRequest) returns (RemoveImageResponse) {}

 rpc ImageFsInfo(ImageFsInfoRequest) returns (ImageFsInfoResponse) {}
}

Understanding Kubernetes Architecture

[24]

RuntimeService is responsible for managing pods and containers. Here is the gRPC/
protobuf interface:

service RuntimeService {

 rpc Version(VersionRequest) returns (VersionResponse) {}

 rpc RunPodSandbox(RunPodSandboxRequest) returns
(RunPodSandboxResponse) {}

 rpc StopPodSandbox(StopPodSandboxRequest) returns
(StopPodSandboxResponse) {}

 rpc RemovePodSandbox(RemovePodSandboxRequest) returns
(RemovePodSandboxResponse) {}

 rpc PodSandboxStatus(PodSandboxStatusRequest) returns
(PodSandboxStatusResponse) {}

 rpc ListPodSandbox(ListPodSandboxRequest) returns
(ListPodSandboxResponse) {}

 rpc CreateContainer(CreateContainerRequest) returns
(CreateContainerResponse) {}

 rpc StartContainer(StartContainerRequest) returns
(StartContainerResponse) {}

 rpc StopContainer(StopContainerRequest) returns
(StopContainerResponse) {}

 rpc RemoveContainer(RemoveContainerRequest) returns
(RemoveContainerResponse) {}

 rpc ListContainers(ListContainersRequest) returns
(ListContainersResponse) {}

 rpc ContainerStatus(ContainerStatusRequest) returns
(ContainerStatusResponse) {}

 rpc UpdateContainerResources(UpdateContainerResourcesRequest)
returns (UpdateContainerResourcesResponse) {}

 rpc ExecSync(ExecSyncRequest) returns (ExecSyncResponse) {}

Chapter 1

[25]

 rpc Exec(ExecRequest) returns (ExecResponse) {}

 rpc Attach(AttachRequest) returns (AttachResponse) {}

 rpc PortForward(PortForwardRequest) returns (PortForwardResponse) {}

 rpc ContainerStats(ContainerStatsRequest) returns
(ContainerStatsResponse) {}

 rpc ListContainerStats(ListContainerStatsRequest) returns
(ListContainerStatsResponse) {}

 rpc UpdateRuntimeConfig(UpdateRuntimeConfigRequest) returns
(UpdateRuntimeConfigResponse) {}

 rpc Status(StatusRequest) returns (StatusResponse) {}
}

The data types used as arguments and return types are called messages and are also
defined as part of the API. Here is one of them:

message CreateContainerRequest {
 string pod_sandbox_id = 1;
 ContainerConfig config = 2;
 PodSandboxConfig sandbox_config = 3;
}

As you can see, messages can be embedded inside each other. The
CreateContainerRequest message has one string field and two other fields, which are
themselves messages: ContainerConfig and PodSandboxConfig.

Now that you are familiar at the code level with what Kubernetes considers a
runtime engine, let's look at the individual runtime engines briefly.

Docker
Docker is, of course, the 800-pound gorilla of containers. Kubernetes was originally
designed to manage only Docker containers. The multi-runtime capability was first
introduced in Kubernetes 1.3 and the CRI in Kubernetes 1.5. Until then, Kubernetes
could only manage Docker containers.

Understanding Kubernetes Architecture

[26]

I assume you're very familiar with Docker and what it brings to the table if you are
reading this book. Docker enjoys tremendous popularity and growth, but there is
also a lot of criticism of it. Critics often mention the following concerns:

•	 Security
•	 Difficulty setting up multi-container applications (in particular, networking)
•	 Development, monitoring, and logging
•	 The limitations of Docker containers running one command
•	 Releasing half-baked features too fast

Docker is aware of the criticisms and has addressed some of these concerns. In
particular, Docker invested in its Docker Swarm product. Docker Swarm is a Docker-
native orchestration solution that competes with Kubernetes. It is simpler to use than
Kubernetes, but it's not as powerful or mature.

Starting with Docker 1.12, swarm mode is included in the Docker daemon natively,
which upset some people due to bloat and scope creep. As a result, more people
turned to CoreOS rkt as an alternative solution.

Starting with Docker 1.11, released in April 2016, Docker has changed the way it
runs containers. The runtime now uses containerd and runC to run Open Container
Initiative (OCI) images in containers:

Figure 1.3: Architecture of Docker 1.11 after building it on runC and containerd

Chapter 1

[27]

rkt
rkt is a container manager from CoreOS (the developers of the CoreOS Linux distro,
etcd, flannel, and more). It is not developed anymore as CoreOS was acquired
by Red Hat, who was later acquired by IBM. However, the legacy of rkt is the
proliferation of multiple container runtimes beyond Docker and pushing Docker
toward the standardized OCI effort.

The rkt runtime prides itself on its simplicity and a strong emphasis on security
and isolation. It doesn't have a daemon like Docker Engine and relies on the OS init
system, such as systemd, to launch the rkt executable. rkt can download images
(both App Container (appc) images and OCI images), verify them, and run them in
containers. Its architecture is much simpler.

App container
CoreOS started a standardization effort in December 2014 called appc. This includes
a standard image format (ACI – Application Container Image), runtime, signing,
and discovery. A few months later, Docker started its own standardization effort
with OCI. At this point, it seems these efforts will converge. This is a great thing as
tools, images, and runtime will be able to interoperate freely. We're not there yet.

CRI-O
CRI-O is a Kubernetes incubator project. It is designed to provide an integration
path between Kubernetes and OCI-compliant container runtimes like Docker. CRI-O
provides the following capabilities:

•	 Support for multiple image formats, including the existing Docker image
format

•	 Support for multiple means to download images, including trust and image
verification

•	 Container image management (managing image layers, overlay filesystems,
and so on)

•	 Container process lifecycle management
•	 Monitoring and logging required to satisfy the CRI
•	 Resource isolation as required by the CRI

It supports runc and Kata containers right now, but any OCI-compliant container
runtime can be plugged in and be integrated with Kubernetes.

Understanding Kubernetes Architecture

[28]

Hyper containers
Hyper containers are another option. A Hyper container has a lightweight VM (its
own guest kernel) and it can run on bare metal. Instead of relying on Linux cgroups
for isolation, it relies on a hypervisor. This approach presents an interesting mix
compared to standard bare-metal clusters, which are difficult to set up, and public
clouds, where containers are deployed on heavyweight VMs.

Frakti
Frakti lets Kubernetes use hypervisors via the OCI-compliant runV project to run its
pods and containers. It's a lightweight, portable, and secure approach that provides
strong isolation with its own kernel compared to the traditional Linux namespace-
based approaches, but not as heavyweight as a full-fledged VM.

Stackube
Stackube (previously called Hypernetes) is a multi-tenant distribution that uses
Hyper containers as well as some OpenStack components for authentication,
persistent storage, and networking. Since containers don't share the host kernel, it is
safe to run containers of different tenants on the same physical host. Stackube uses
Frakti, of course, as its container runtime.

In this section, we've covered the various runtime engines that Kubernetes supports
as well as the trend toward standardization, convergence, and externalizing the
runtime support from core Kubernetes. In the next section, we'll take a step back
and look at the big picture, and how Kubernetes fits into the CI/CD pipeline.

Continuous integration and deployment
Kubernetes is a great platform for running your microservice-based applications.
But, at the end of the day, it is an implementation detail. Users, and often most
developers, may not be aware that the system is deployed on Kubernetes. But
Kubernetes can change the game and make things that were too difficult before
possible.

In this section, we'll explore the CI/CD pipeline and what Kubernetes brings to
the table. At the end of this section, you'll be able to design CI/CD pipelines that
take advantage of Kubernetes properties such as easy scaling and development-
production parity to improve the productivity and robustness of day-to-day
development and deployment.

Chapter 1

[29]

What is a CI/CD pipeline?
A CI/CD pipeline is a set of tools and steps that takes a set of changes by developers
or operators that modify the code, data, or configuration of a system, tests them,
and deploys them to production (and possibly other environments). Some pipelines
are fully automated and some are semi-automated with human checks. In large
organizations, there may be test and staging environments that changes are deployed
to automatically, but release to production requires manual intervention. The
following diagram depicts a typical pipeline:

Figure 1.4: Diagram representing CI/CD pipeline

It may be worth mentioning that developers can be completely isolated from
production infrastructure. Their interface is just a Git workflow, where a good
example is Deis Workflow (PaaS on Kubernetes, similar to Heroku).

Understanding Kubernetes Architecture

[30]

Designing a CI/CD pipeline for Kubernetes
When your deployment target is a Kubernetes cluster, you should rethink some
traditional practices. For starters, the packaging is different. You need to bake
images for your containers. Reverting code changes is super easy and instantaneous
by using smart labeling. It gives you a lot of confidence that, if a bad change slips
through the testing net somehow, you'll be able to revert to the previous version
immediately. But you want to be careful there. Schema changes and data migrations
can't be automatically rolled back.

Another unique capability of Kubernetes is that developers can run a whole
cluster locally. That takes some work when you design your cluster, but since the
microservices that comprise your system run in containers, and those containers
interact via APIs, it is possible and practical to do. As always, if your system is very
data-driven, you will need to accommodate that and provide data snapshots and
synthetic data that your developers can use.

There are many commercial CI/CD solutions that support Kubernetes, but there are
also several Kubernetes-native solutions, such as Tekton, Argo CD, and Jenkins X.

A Kubernetes-native CI/CD solution runs inside your cluster, is specified using
Kubernetes CRDs, and uses containers to execute the steps. By using a Kubernetes-
native CI/CD solution, you get to benefit from Kubernetes managing and easily
scaling your CI/CD pipelines, which is otherwise often a non-trivial task.

Summary
In this chapter, we covered a lot of ground, and you got to understand the design
and architecture of Kubernetes. Kubernetes is an orchestration platform for
microservice-based applications running as containers. Kubernetes clusters have
master and worker nodes. Containers run within pods. Each pod runs on a single
physical or virtual machine. Kubernetes directly supports many concepts, such
as services, labels, and persistent storage. You can implement various distributed
system design patterns on Kubernetes. Container runtimes just need to implement
the CRI. Docker, rkt, hyper containers, and more are supported.

In Chapter 2, Creating Kubernetes Clusters, we will explore the various ways to create
Kubernetes clusters, discuss when to use different options, and build a multi-node
cluster.

[31]

2
Creating Kubernetes

Clusters

Overview
In the previous chapter, we learned what Kubernetes is all about, how it is designed,
what concepts it supports, its runtime engines, and how it fits within the CI/CD
pipeline.

Creating a Kubernetes cluster from scratch is a non-trivial task. There are many
options and tools to select from. There are many factors to consider. In this
chapter, we will roll our sleeves up and build us some Kubernetes clusters using
Minikube, KinD, and K3d. We will discuss and evaluate other tools such as
Kubeadm, Kubespray, KRIB, RKE, and bootkube. We will also look into deployment
environments such as local, cloud, and bare metal. The topics we will cover are
as follows:

•	 Creating a single-node cluster with Minikube
•	 Creating a multi-node cluster with KinD
•	 Creating a multi-node cluster using k3d
•	 Creating clusters in the cloud
•	 Creating bare-metal clusters from scratch
•	 Reviewing other options for creating Kubernetes clusters

Creating Kubernetes Clusters

[32]

At the end of this chapter, you will have a solid understanding of the various options
to create Kubernetes clusters and knowledge of the best-of-breed tools to support the
creation of Kubernetes clusters. You will have also built several clusters, both single-
node and multi-node.

Creating a single-node cluster with
Minikube
In this section, we will create a local single-node cluster using Minikube. Local
clusters are the most useful for developers that want quick edit-test-deploy-debug
cycles on their machine, before committing their changes. Local clusters are very
useful for DevOps and operators that want to play with Kubernetes locally, without
concerns about breaking a shared environment. While Kubernetes is typically
deployed on Linux in production, many developers work on Windows PCs or Macs.
That said, there are not too many differences if you do want to install Minikube
on Linux:

Figure 2.1: The minikube logo

Meet kubectl
Before we start creating clusters, let us talk about kubectl. It is the official Kubernetes
CLI and it interacts with your Kubernetes cluster's API server via its API. It is
configured by default using the ~/.kube/config file, which is a YAML file that
contains metadata, connection info, and authentication tokens or certificates for
one or more clusters. Kubectl provides commands you can use to view your
configuration and switch between clusters if it contains more than one. You can
also point kubectl at a different config file by setting the KUBECONFIG environment
variable. I prefer a third approach, which is keeping separate config file for each
cluster and copying the active cluster's config file to ~/.kube/config (symlinks do
not work).

We will discover together what kubectl can do along the way. The purpose here is
just to avoid confusion when working with different clusters and configuration files.

Chapter 2

[33]

Quick introduction to Minikube
Minikube is the most mature local Kubernetes cluster. It runs the latest stable
Kubernetes release and it supports Windows, macOS, and Linux. It supports:

•	 LoadBalancer service type via Minikube tunnel
•	 NodePort service type via Minikube service
•	 Multiple clusters
•	 Filesystem mounts
•	 GPU support for machine learning
•	 RBAC
•	 Persistent volumes
•	 Ingress
•	 Dashboard via Minikube dashboard
•	 Custom container runtimes via the start --container-runtime flag
•	 Configuration API server and kubelet options via command-line flags
•	 Add-ons

Getting ready
There are some prerequisites to install before you can create the cluster itself. These
include VirtualBox, the kubectl command-line interface to Kubernetes, and, of
course, Minikube itself. Here is a list of the latest versions at the time of writing:

•	 VirtualBox: https://www.virtualbox.org/wiki/Downloads
•	 Kubectl: https://kubernetes.io/docs/tasks/tools/install-kubectl/
•	 Minikube: https://kubernetes.io/docs/tasks/tools/install-minikube/

On Windows
Install VirtualBox and make sure kubectl and Minikube are on your path. I
personally just throw all command-line programs I use into c:. You may prefer
another approach. I use the excellent ConEMU to manage multiple consoles,
terminals, and SSH sessions. It works with Command Prompt, PowerShell, PuTTY,
Cygwin, msys, and Git-Bash. It does not get much better than that on Windows.

https://www.virtualbox.org/wiki/Downloads
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-minikube/

Creating Kubernetes Clusters

[34]

With Windows 10 Pro, you have the option to use the Hyper-V hypervisor. This
is technically a better solution than VirtualBox, but it requires the Pro version
of Windows and is completely Windows-specific. By using VirtualBox, these
instructions are universal and will be easy to adapt to other versions of Windows, or
other operating systems altogether. If you have Hyper-V enabled, you must disable it
because VirtualBox cannot coexist with Hyper-V.

I recommend using PowerShell in administrator mode. You can add the following
alias and function to your PowerShell profile:

Set-Alias -Name k -Value kubectl
function mk
{
 minikube-windows-amd64 `
 --show-libmachine-logs `
 --alsologtostderr `
 @args
}

On macOS
On macOS, you have the option of using HyperKit instead of VirtualBox:

$ curl -LO https://storage.googleapis.com/minikube/releases/latest/docker-
machine-driver-hyperkit \
 && chmod +x docker-machine-driver-hyperkit \
 && sudo mv docker-machine-driver-hyperkit /usr/local/bin/ \
 && sudo chown root:wheel /usr/local/bin/docker-machine-driver-hyperkit \
 && sudo chmod u+s /usr/local/bin/docker-machine-driver-hyperkit

You can add aliases to your .bashrc file (similar to the PowerShell alias and function
on Windows):

alias k='kubectl'
alias mk='/usr/local/bin/minikube'

If you chose HyperKit instead of VirtualBox, you need to add the flag --vm-
driver=hyperkit when starting the cluster.

It is also important to disable any VPN when using HyperKit.

Now, you can use k and mk and type less. The flags to Minikube in the mk function
provide better logging and direct it to the console in addition to files (similar to tee).

Chapter 2

[35]

Type mk version to verify Minikube is correctly installed and functioning:

$ mk version
minikube version: v1.10.1

Type k version to verify kubectl is correctly installed and functioning:

$ k version
Client Version: version.Info{Major:"1", Minor:"18", GitVersion:"v1.18.3",
GitCommit:"641856db18352033a0d96dbc99153fa3b27298e5", GitTreeState:"clean",
BuildDate:"2020-05-20T12:52:00Z", GoVersion:"go1.13.9", Compiler:"gc",
Platform:"darwin/amd64"}
The connection to the server localhost:8080 was refused — did you specify
the right host or port?
Unable to connect to the server: dial tcp 192.168.99.100:8443: getsockopt:
operation timed out

Do not worry about the error on the last line. There is no cluster running, so kubectl
cannot connect to anything. That is expected.

You can explore the available commands and flags for both Minikube and kubectl. I
will not go over each command, only the commands I use.

Creating the cluster
The Minikube tool supports multiple versions of Kubernetes. At the time of writing,
the latest version is 1.18.0, which is also the default:

$ mk start
 minikube v1.10.1 on darwin (amd64)
 Creating virtualbox VM (CPUs=2, Memory=2048MB, Disk=20000MB) ...
 Configuring environment for Kubernetes v1.18.0 on Docker 19.03.8
 Pulling images ...
 Launching Kubernetes ...
 Verifying: apiserver proxy etcd scheduler controller dns
 Done! kubectl is now configured to use "minikube"

When you restart an existing stopped cluster, you will see the following output:

$ mk start
 minikube v1.10.1 on darwin (amd64)
 Tip: Use 'minikube start -p <name>' to create a new cluster, or

'minikube delete' to delete this one.
 Restarting existing virtualbox VM for "minikube" ...
 Waiting for SSH access ...

Creating Kubernetes Clusters

[36]

 Configuring environment for Kubernetes v1.18.0 on Docker 19.03.8
 Relaunching Kubernetes v1.18.0 using kubeadm ...
 Verifying: apiserver proxy etcd scheduler controller dns
 Done! kubectl is now configured to use "minikube"

Let us review what Minikube did behind the curtains for you. You will need to do
a lot of it when creating a cluster from scratch:

1.	 Start a VirtualBox VM
2.	 Create certificates for the local machine and the VM
3.	 Download images
4.	 Set up networking between the local machine and the VM
5.	 Run the local Kubernetes cluster on the VM
6.	 Configure the cluster
7.	 Start all the Kubernetes control plane components
8.	 Configure kubectl to talk to the cluster

Troubleshooting
If something goes wrong during the process, try to follow the error messages.
You can add the --alsologtostderr flag to get detailed error info to the console.
Everything Minikube does is organized neatly under ~/.minikube. Here is the
directory structure:

$ tree ~/.minikube -L 2
/Users/gigi.sayfan/.minikube
├── addons
├── apiserver.crt
├── apiserver.key
├── ca.crt
├── ca.key
├── ca.pem
├── cache
│ ├── images
│ ├── iso
│ └── v1.15.0
├── cert.pem
├── certs
│ ├── ca-key.pem
│ ├── ca.pem
│ ├── cert.pem
│ └── key.pem

Chapter 2

[37]

├── client.crt
├── client.key
├── config
├── files
├── key.pem
├── logs
├── machines
│ ├── minikube
│ ├── server-key.pem
│ └── server.pem
├── profiles
│ └── minikube
├── proxy-client-ca.crt
├── proxy-client-ca.key
├── proxy-client.crt
└── proxy-client.key
 13 directories, 19 files

Checking out the cluster
Now that we have a cluster up and running, let's peek inside.

First, let's ssh into the VM:
$ mk ssh
 _ _
 _ _ () ()
 ___ ___ (_) ___ (_)| |/') _ _ | |_ __
/' _ ` _ `\| |/' _ `\| || , < () ()| '_`\ /'__`\
| () () || || () || || |\`\ | (_) || |_))(___/
(_) (_) (_)(_)(_) (_)(_)(_) (_)`___/'(_,__/'`____)

$ uname -a
Linux minikube 4.19.107 #1 SMP Mon May 11 14:51:04 PDT 2020 x86_64 GNU/
Linux
$

Great! That works. The weird marks symbols are ASCII art for "minikube." Now, let
us start using kubectl, because it is the Swiss Army knife of Kubernetes and will be
useful for all clusters (including federated clusters).

Creating Kubernetes Clusters

[38]

Disconnect from the VM via Ctrl + D or by typing:

$ logout

We will cover many of the kubectl commands throughout our journey. First, let us
check the cluster status using cluster-info:

$ k cluster-info
Kubernetes master is running at https://192.168.99.103:8443
KubeDNS is running at https://192.168.99.103:8443/api/v1/namespaces/kube-
system/services/kube-dns:dns/proxy
To further debug and diagnose cluster problems, use kubectl cluster-info
dump.

You can see that the master is running properly. To see a much more detailed view
of all the objects in the cluster as JSON, type k cluster-info dump. The output can be
a little daunting, so let us use more specific commands to explore the cluster.

Let us check out the nodes in the cluster using get nodes:

$ k get nodes
NAME STATUS ROLES AGE VERSION
minikube Ready master 28m v1.16.3

So, we have one node called minikube. To get a lot more information about it, type k
describe node minikube.

The output is verbose; I will let you try it yourself.

Doing work
We have a nice empty cluster up and running (well, not completely empty as the
DNS service and dashboard run as pods in the kube-system namespace). It is time to
deploy some pods:

$ k create deployment echo --image=gcr.io/google_containers/echoserver:1.8
deployment.apps/echo created

Chapter 2

[39]

Let us check out the pod that was created:

$ k get pods
NAME READY STATUS RESTARTS AGE
echo-855975f9c-r6kj8 1/1 Running 0 2m11s

To expose our pod as a service, type the following:

$ k expose deployment echo --type=NodePort --port=8080
service/echo exposed

Exposing the service as type NodePort means that it is exposed to the host on some
port. But it is not the 8080 port we ran the pod on. Ports get mapped in the cluster. To
access the service, we need the cluster IP and the exposed port:

$ mk ip
192.168.99.103

$ k get service echo --output="jsonpath='{.spec.ports[0].nodePort}'"
31800

Now, we can access the echo service, which returns a lot of information.

Replace the IP address and port with the results of the previous commands:

$ curl http://192.168.99.103:31800/hi
 Hostname: echo-855975f9c-r6kj8

 Pod Information:
 -no pod information available-

 Server values:
 server_version=nginx: 1.13.3 - lua: 10008

 Request Information:

Creating Kubernetes Clusters

[40]

 client_address=172.17.0.1
 method=GET
 real path=/hi
 query=
 request_version=1.1
 request_uri=http://192.168.99.103:8080/hi

 Request Headers:
 accept=*/*
 host=192.168.99.103:31800
 user-agent=curl/7.64.0

 Request Body:
 -no body in request-

Congratulations! You just created a local Kubernetes cluster, deployed a service, and
exposed it to the world.

Examining the cluster with the dashboard
Kubernetes has a very nice web interface, which is deployed, of course, as a service
in a pod. The dashboard is well designed and provides a high-level overview of your
cluster. It also lets you drill down into individual resources, view logs, edit resource
files, and more. It is the perfect weapon when you want to check out your cluster
manually. To launch it, type:

$ mk dashboard
 Enabling dashboard ...
 Verifying dashboard health ...
 Launching proxy ...
 Verifying proxy health ...
 Opening http://127.0.0.1:56853/api/v1/namespaces/kube-system/services/

http:kubernetes-dashboard:/proxy/ in your default browser...

Minikube will open a browser window with the dashboard UI. Note that, on
Windows, Microsoft Edge cannot display the dashboard. I had to run it myself on a
different browser.

Here is the workloads view, which displays deployments, replica sets, replication
controllers, and pods:

Chapter 2

[41]

Figure 2.2: Kubernetes dashboard UI

Creating Kubernetes Clusters

[42]

It can also display daemon sets, stateful sets, and jobs, but we do not have any in this
cluster.

In this section, we created a local single-node Kubernetes cluster on Windows,
explored it a little bit using kubectl, deployed a service, and played with the web UI.
In the next section, we will move on to a multi-node cluster.

Creating a multi-node cluster with KinD
In this section, we will create a multi-node cluster using KinD. We will also repeat
the deployment of the echo server we deployed on Minikube and observe the
differences. Spoiler alert – everything will be faster and easier!

Quick introduction to KinD
KinD stands for Kubernetes in Docker. It is a tool for creating ephemeral clusters (no
persistent storage). It was built primarily for running the Kubernetes conformance
tests. It supports Kubernetes 1.11+. Under the cover, it uses kubeadm to bootstrap
Docker containers as nodes in the cluster. KinD is a combination of a library and a
CLI. You can use the library in your code for testing or other purposes. KinD can
create highly available clusters with multiple master nodes. Finally, KinD is a CNCF
conformant Kubernetes installer. It better be if it is used for the conformance tests of
Kubernetes itself :-).

KinD is super fast to start, but it has some limitations too: no persistent storage and
no support for alternative runtimes yet, only Docker.

Let's install KinD and get going.

Installing KinD
You must have Docker installed as KinD is literally running as a Docker container. If
you have Go 1.11+ installed, you can install the KinD CLI via:

$ GO111MODULE="on" go get sigs.k8s.io/kind@v0.8.1

Otherwise, on macOS, type:

$ curl -Lo ./kind-darwin-amd64 https://github.com/kubernetes-sigs/kind/
releases/download/v0.8.1/kind-darwin-amd64
$ chmod +x ./kind-darwin-amd64
$ mv ./kind-darwin-amd64 /usr/local/bin/kind

Chapter 2

[43]

On Windows, type (in PowerShell):

c:\> curl.exe -Lo kind-windows-amd64.exe https://github.com/kubernetes-
sigs/kind/releases/download/v0.8.1/kind-windows-amd64
c:\> Move-Item .\kind-windows-amd64.exe c:\windows\kind.exe

Creating the cluster with KinD
Creating a cluster is super easy:

$ kind create cluster
Creating cluster "kind" ...
  Ensuring node image (kindest/node:v1.16.3)
  Preparing nodes
  Creating kubeadm config
  Starting control-plane

Cluster creation complete. You can now use the cluster with:
export KUBECONFIG="$(kind get kubeconfig-path --name="kind")"
kubectl cluster-info

KinD suggests that you export KUBECONFIG, but as I mentioned earlier, I prefer
to copy the config file to ~/.kube/config so I do not have to export again if I want to
access the cluster from another terminal window:

$ cp $(kind get kubeconfig-path --name="kind") ~/.kube/config

Now, we can access the cluster using kubectl:

$ k cluster-info
Kubernetes master is running at https://localhost:58560
KubeDNS is running at https://localhost:58560/api/v1/namespaces/kube-
system/services/kube-dns:dns/proxy
To further debug and diagnose cluster problems, use 'kubectl cluster-info
dump.'

However, this creates a single-node cluster:

$ k get nodes
NAME STATUS ROLES AGE VERSION
kind-control-plane Ready master 11m v1.16.3

Let us delete it and create a multi-node cluster:

$ kind delete cluster
Deleting cluster "kind" ...

Creating Kubernetes Clusters

[44]

To create a multi-node cluster, we need to provide a configuration file with the
specification of our nodes. Here is a configuration file that will create a cluster with
one control-plane node and two worker nodes:

kind: Cluster
apiVersion: kind.sigs.k8s.io/v1alpha3
nodes:
- role: control-plane
- role: worker
- role: worker

Let us save the configuration file as kind-multi-node-config.yaml and create the
cluster:

$ kind create cluster --config kind-multi-node-config.yaml
Creating cluster "kind" ...
  Ensuring node image (kindest/node:v1.16.3)
  Preparing nodes
  Creating kubeadm config
  Starting control-plane
  Joining worker nodes
Cluster creation complete. You can now use the cluster with:

export KUBECONFIG="$(kind get kubeconfig-path --name="kind")"
kubectl cluster-info

Yeah, it works! We have a local three-node cluster now:

$ k get nodes
NAME STATUS ROLES AGE VERSION
kind-control-plane Ready master 12m v1.16.3
kind-worker NotReady <none> 11m v1.16.3
kind-worker2 NotReady <none> 11m v1.16.3

KinD is also kind enough (see what I did there) to let us create highly available (HA)
clusters with multiple control plane nodes for redundancy. Let us give it a try and
see what it looks like with two control-plane nodes and two worker nodes:

kind: Cluster
apiVersion: kind.sigs.k8s.io/v1alpha3
nodes:
- role: control-plane
- role: control-plane
- role: worker

Chapter 2

[45]

- role: worker

Let us save the configuration file as kind-ha-multi-node-config.yaml, delete the
current cluster, and create a new HA cluster:

$ kind delete cluster
Deleting cluster "kind" ...
$ kind create cluster --config kind-ha-multi-node-config.yaml
Creating cluster "kind" ...
  Ensuring node image (kindest/node:v1.16.3)
  Preparing nodes
  Starting the external load balancer
  Creating kubeadm config
  Starting control-plane
  Joining more control-plane nodes
  Joining worker nodes
Cluster creation complete. You can now use the cluster with:
export KUBECONFIG="$(kind get kubeconfig-path --name="kind")"
kubectl cluster-info

Hmmm... there is something new here. Now, KinD creates an external load balancer,
as well as join more control-plane nodes before joining the worker nodes. The load
balancer is necessary to distribute requests across all the control-plane nodes.

Note that the external load balancer does not show as a node using kubectl:

$ k get nodes
NAME STATUS ROLES AGE VERSION
kind-control-plane Ready master 8m31s v1.16.3
kind-control-plane2 Ready master 8m14s v1.16.3
kind-worker Ready <none> 7m35s v1.16.3
kind-worker2 Ready <none> 7m35s v1.16.3

However, KinD has its own get nodes command, where you can see the load
balancer:

$ kind get nodes
kind-control-plane2
kind-worker
kind-control-plane
kind-worker2
kind-external-load-balancer

Creating Kubernetes Clusters

[46]

Doing work with KinD
Let us deploy our echo service on the KinD cluster. It starts the same:

$ k create deployment echo --image=gcr.io/google_containers/echoserver:1.8
deployment.apps/echo created

$ k expose deployment echo --type=NodePort --port=8080
service/echo exposed

Checking our services, we can see the echo service front and center:

$ k get svc echo
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
echo NodePort 10.105.48.21 <none> 8080:31550/TCP 3m5s

However, there is no external IP to the service. With Minikube, we got the IP of the
Minikube node itself via $(minikube ip), and we can use it in combination with the
node port to access the service. That is not an option with KinD clusters. Let us see
how to use a proxy to access the echo service.

Accessing Kubernetes services locally
though a proxy
In this section, we will go into a lot of detail about networking, services, and how to
expose them outside the cluster.

Here, I am just showing how to get it done and keeping you in suspense for now.
First, we need to run the kubectl proxy command, which exposes the API server,
pods, and services on localhost:

$ k proxy &
[1] 10653
Starting to serve on 127.0.0.1:8001

Then, we can access the echo service though a specially crafted proxy URL that
includes the exposed port (8080) and NOT the node port.

I use Httpie here. You can use curl too. To install Httpie, follow the instructions here:
https://httpie.org/doc#installation:

$ http http://localhost:8001/api/v1/namespaces/default/services/echo:8080/
proxy/
HTTP/1.1 200 OK

https://httpie.org/doc#installation

Chapter 2

[47]

Content-Length: 534
Content-Type: text/plain
Date: Thu, 28 May 2020 21:27:56 GMT
Server: echoserver

Hostname: echo-74545d499-wqkn9

Pod Information:
 -no pod information available-

Server values:
 server_version=nginx: 1.13.3 - lua: 10008

Request Information:
 client_address=10.40.0.0
 method=GET
 real path=/
 query=
 request_version=1.1
 request_uri=http://localhost:8080/

Request Headers:
 accept=*/*
 accept-encoding=gzip, deflate
 host=localhost:8001
 user-agent=HTTPie/0.9.9
 x-forwarded-for=127.0.0.1, 172.17.0.1
 x-forwarded-uri=/api/v1/namespaces/default/services/echo:8080/proxy/

Request Body:
 -no body in request-

We will deep dive into exactly what is going on in a future chapter (Chapter 12,
Serverless Computing on Kubernetes). Let us check out my favorite local cluster
solution: k3d.

Creating a multi-node cluster with k3d
In this section, we'll create a multi-node cluster using k3d from Rancher. We will not
repeat the deployment of the echo server because it is identical to the KinD cluster,
including accessing it though a proxy. Spoiler alert – it is even faster and more user-
friendly than KinD!

Creating Kubernetes Clusters

[48]

Quick introduction to k3s and k3d
Rancher created k3s, which is a lightweight Kubernetes distribution. Rancher says
that k3s is five less than k8s, if that makes any sense. The basic idea is to remove
features and capabilities that most people don't need, such as:

•	 Non-default features
•	 Legacy features
•	 Alpha features
•	 In-tree storage drivers
•	 In-tree cloud providers

However, the big ticket item is that k3s removed Docker and uses containerd instead.
You can still bring Docker back if you depend on it.

Another major change is that k3s stores its state in a SQLite DB instead of etcd.

For networking and DNS, k3s uses Flannel and CoreDNS.

k3s also added a simplified installer that takes care of SSL and certificate
provisioning.

The end result is astonishing – a single binary (less than 40 MB) that needs only 512
MB of memory.

Unlike Minikube and KinD, k3s is actually designed for production. The primary use
case is for edge computing, IoT, and CI systems. It is optimized for ARM devices.

OK. That's k3s, but what's k3d? k3d takes all the goodness that is k3s, packages it in
Docker (similar to KinD), and adds a friendly CLI to manage it.

Installing k3d
Installing k3d is as simple as:

$ curl -s https://raw.githubusercontent.com/rancher/k3d/master/install.sh |
bash

The usual disclaimer is in effect – make sure to read the installation script before
downloading and piping it to bash.

Chapter 2

[49]

Creating the cluster with k3d
Are you ready to be amazed? Creating a single-node cluster with k3d takes less than
2 seconds!

$ time k3d create --workers 1
2020/05/28 17:07:36 Created cluster network with ID
f09fde83314b059d1a442ec1d01fcd62e522e5f1d838121528c5a1ae582e3cbf
2020/05/28 17:07:36 Creating cluster [k3s-default]
2020/05/28 17:07:36 Creating server using docker.io/rancher/k3s:v1.17.3-
k3s1...
2020/05/28 17:07:36 Booting 1 workers for cluster k3s-default
2020/05/28 17:07:37 Created worker with ID
8a6bd47f7a5abfbac5c396c45f13db04c7e18749ff4d2e054e737fe7f7843010
2020/05/28 17:07:37 SUCCESS: created cluster [k3s-default]
2020/05/28 17:07:37 You can now use the cluster with:

export KUBECONFIG="$(k3d get-kubeconfig --name='k3s-default')"
kubectl cluster-info

real 0m1.896s
user 0m0.009s
sys 0m0.011s

What about a multi-node cluster? We saw that KinD was much slower, especially
when creating a HA cluster with multiple control-plane nodes and an external load
balancer.

Let's delete the single-node cluster first:

$ k3d delete
2020/05/28 17:08:42 Removing cluster [k3s-default]
2020/05/28 17:08:42 ...Removing 1 workers
2020/05/28 17:08:43 ...Removing server
2020/05/28 17:08:45 SUCCESS: removed cluster [k3s-default]

Now, let's create a cluster with three worker nodes. That takes a little over 5 seconds:

$ time k3d create --workers 3
2020/05/28 17:09:16 Created cluster network with ID
5cd1e01434edb1facdab28e563b78b605af416e2ad062dc121400c3f8a5d166c
2020/05/28 17:09:16 Creating cluster [k3s-default]
2020/05/28 17:09:16 Creating server using docker.io/rancher/k3s:v1.17.3-
k3s1...
2020/05/28 17:09:17 Booting 3 workers for cluster k3s-default

Creating Kubernetes Clusters

[50]

2020/05/28 17:09:19 Created worker with ID
4b442116f8df7debecc9d70cee8ae8fb8f16783c0a8f111268be531f71dd54fa
2020/05/28 17:09:20 Created worker with ID
369879f1a38d60935908705f56b34a95caf6a44970beeb509c0cfb2047cd503a
2020/05/28 17:09:20 Created worker with ID
d531937996fd25490276e32150b69aa2356c90cfcd1b480ab77ec3d2be08a2f6
2020/05/28 17:09:20 SUCCESS: created cluster [k3s-default]
2020/05/28 17:09:20 You can now use the cluster with:

export KUBECONFIG="$(k3d get-kubeconfig --name='k3s-default')"
kubectl cluster-info

real 0m5.164s
user 0m0.011s
sys 0m0.019s

Let's verify the cluster works as expected:

$ export KUBECONFIG="$(k3d get-kubeconfig --name='k3s-default')"
$ kubectl cluster-info
Kubernetes master is running at https://localhost:6443
CoreDNS is running at https://localhost:6443/api/v1/namespaces/kube-system/
services/kube-dns:dns/proxy
To further debug and diagnose cluster problems, use 'kubectl cluster-info
dump'.

Here are the nodes. Note that there is just one master called k3d-k3s-default-server:

$ k get nodes
NAME STATUS ROLES AGE VERSION
k3d-k3s-default-server Ready <none> 14h v1.17.3-k3s1
k3d-k3s-default-worker-0 Ready <none> 14h v1.17.3-k3s1
k3d-k3s-default-worker-1 Ready <none> 14h v1.17.3-k3s1
k3d-k3s-default-worker-2 Ready <none> 14h v1.17.3-k3s1

You can stop and start clusters, create multiple clusters, and list existing clusters
using the k3d CLI. Here are all the commands. Feel free to explore them further:

$ k3d
NAME:
 k3d - Run k3s in Docker!

USAGE:
 k3d [global options] command [command options] [arguments...]

Chapter 2

[51]

VERSION:
 v1.7.0

AUTHORS:
 Thorsten Klein iwilltry42@gmail.com
 Rishabh Gupta r.g.gupta@outlook.com
 Darren Shepherd

COMMANDS:
 check-tools, ct Check if docker is running
 shell Start a subshell for a cluster
 create, c Create a single- or multi-node k3s cluster in docker
containers
 delete, d, del Delete cluster
 stop Stop cluster
 start Start a stopped cluster
 list, ls, l List all clusters
 get-kubeconfig Get kubeconfig location for cluster
 help, h Shows a list of commands or help for one command

GLOBAL OPTIONS:
 --verbose Enable verbose output
 --help, -h show help
 --version, -v print the version

You can repeat the steps for deploying, exposing, and accessing the echo service on
your own. It works just like KinD.

OK. We created clusters using Minikube, KinD, and k3d. Let's compare them so that
you can decide which one works for you.

Comparing Minikube, KinD, and k3d
Minikube is the official local Kubernetes release. It is part of Kubernetes; it's very
mature and very full featured. That said, it requires a VM and is both slow to install
and to start. It can also get into trouble with networking at arbitrary times and
sometimes the only remedy is deleting the cluster and rebooting. Also, Minikube
supports a single node only. I suggest using Minikube only if it supports some
feature that you need that is not available in either KinD or k3d.

Creating Kubernetes Clusters

[52]

KinD is much faster than Minikube and is used for Kubernetes conformance tests,
so by definition, it is a conformant Kubernetes distribution. It is the only local
cluster solution that provides HA clusters with multiple control-plane nodes. It is
also designed to be used as a library, which I don't find as a big attraction because
it is very easy to automate CLIs from code. The main downside of KinD for local
development is that it is ephemeral. I recommend using KinD if you contribute to
Kubernetes itself and want to test against it.

k3d is the clear winner for me. It's lightning fast, supports multiple clusters, and
supports multiple worker nodes per cluster. It's also easy to stop and start clusters
without losing state.

Alright. Let's take a look at the cloud.

Creating clusters in the cloud (GCP, AWS,
Azure)
Creating clusters locally is fun. It's also important during development and when
trying to troubleshoot problems locally. But, in the end, Kubernetes is designed for
cloud-native applications (applications that run in the cloud). Kubernetes doesn't
want to be aware of individual cloud environments because that doesn't scale.
Instead, Kubernetes has the concept of a cloud-provider interface. Every cloud
provider can implement this interface and then host Kubernetes. Note that, as of
version 1.5, Kubernetes still maintains implementations for many cloud providers in
its tree, but in the future, they will be refactored out.

The cloud-provider interface
The cloud-provider interface is a collection of Go data types and interfaces. It is
defined in a file called cloud.go, available at https://github.com/kubernetes/cloud-
provider/blob/master/cloud.go.

Here is the main interface:

type Interface interface {
 Initialize(clientBuilder controller.ControllerClientBuilder)
 LoadBalancer() (LoadBalancer, bool)
 Instances() (Instances, bool)
 Zones() (Zones, bool)
 Clusters() (Clusters, bool)
 Routes() (Routes, bool)
 ProviderName() string

https://github.com/kubernetes/cloud-provider/blob/master/cloud.go
https://github.com/kubernetes/cloud-provider/blob/master/cloud.go

Chapter 2

[53]

 HasClusterID() bool
}

This is very clear. Kubernetes operates in terms of instances, zones, clusters, and
routes, and also requires access to a load balancer and provider name. The main
interface is primarily a gateway. Most methods return yet other interfaces.

For example, the Clusters interface is very simple:

type Clusters interface {
 ListClusters() ([]string, error)
 Master(clusterName string) (string, error)
}

The ListClusters() method returns cluster names. The Master() method returns the
IP address or DNS name of the master node.

The other interfaces are not much more complicated. The entire file is 214 lines long
(at the time of writing), including lots of comments. The take-home point is that it is
not too complicated to implement a Kubernetes provider if your cloud utilizes those
basic concepts.

GCP
The Google Cloud Platform (GCP) supports Kubernetes out of the box. The so-
called Google Kubernetes Engine (GKE) is a container management solution built
on Kubernetes. You don't need to install Kubernetes on GCP, and you can use the
Google Cloud API to create Kubernetes clusters and provision them. The fact that
Kubernetes is a built-in part of the GCP means it will always be well integrated and
well tested, and you don't have to worry about changes in the underlying platform
breaking the cloud-provider interface.

All in all, if you plan to base your system on Kubernetes and you don't have any
existing code on other cloud platforms, then GCP is a solid choice. It leads the pack
in terms of maturity, polish, and depth of integration to GCP services, and is usually
the first to update to newer versions of Kubernetes.

AWS
AWS has its own container management service called Elastic Container Service
(ECS) that is not based on Kubernetes. It also has a managed Kubernetes service
called Elastic Kubernetes Service (EKS). However, you can run Kubernetes yourself
on AWS EC2 instances.

Creating Kubernetes Clusters

[54]

In fact, most of the production Kubernetes deployments in the world run on
AWS EC2. Let's talk about how to roll your own Kubernetes first and then we'll
discuss EKS.

Kubernetes on EC2
AWS was a supported cloud provider from the get-go. There is a lot of
documentation on how to set it up. While you could provision some EC2 instances
yourself and use kubeadm to create a cluster, I recommend using the Kops
(Kubernetes Operations) project. Kops is a Kubernetes project available on GitHub:
https://github.com/kubernetes/kops/blob/master/docs/aws.md. It is not part of the
core Kubernetes repository, but it is developed and maintained by the Kubernetes
developers.

It supports the following features:

•	 Automated Kubernetes cluster CRUD for the cloud (AWS).
•	 Highly available Kubernetes clusters.
•	 Uses a state-sync model for dry-run and automatic idempotency.
•	 Custom support for kubectl add-ons.
•	 Kops can generate Terraform configuration.
•	 Based on a simple meta-model defined in a directory tree.
•	 Easy command-line syntax.
•	 Community support.

To create a cluster, you need to do some minimal DNS configuration via route53, set
up a S3 bucket to store the cluster configuration, and then run a single command:

kops create cluster --cloud=aws --zones=us-east-1c ${NAME}

The complete instructions can be found here: https://github.com/kubernetes/kops/
blob/master/docs/getting_started/aws.md.

At the end of 2017, AWS joined the CNCF and made two big announcements
regarding Kubernetes: its own Kubernetes-based container orchestration solution
(EKS) and a container-on-demand solution (Fargate).

https://github.com/kubernetes/kops/blob/master/docs/aws.md
https://github.com/kubernetes/kops/blob/master/docs/getting_started/aws.md
https://github.com/kubernetes/kops/blob/master/docs/getting_started/aws.md

Chapter 2

[55]

AWS EKS
AWS EKS is a fully managed and highly available Kubernetes solution. It has three
masters running in three AZs. EKS also takes care of upgrades and patching. The
great thing about EKS is that it runs a stock Kubernetes. This means you can use all
the standard plugins and tools developed by the community. It also opens the door
to convenient cluster federation with other cloud providers and/or your own on-
premise Kubernetes clusters.

EKS provides deep integration with AWS infrastructure like how IAM authentication
is integrated with Kubernetes role-based access control (RBAC).

You can also use AWS PrivateLink if you want to access your Kubernetes masters
directly from your own Amazon Virtual Private Cloud (Amazon VPC). With
PrivateLink, your Kubernetes masters and the Amazon EKS service endpoint appear
as an elastic network interface with private IP addresses in your Amazon VPC.

Another important piece of the puzzle is a special CNI plugin that lets your
Kubernetes components talk to each other using AWS networking.

EKS keeps getting better and Amazon demonstrated that it is committed to keeping
it up to date and improving it. If you are an AWS shop and getting into Kubernetes,
I recommend starting with EKS as opposed to building your own cluster.

The eksctl tool is a great CLI for creating and managing EKS clusters and node
groups. I successfully created, deleted, and added nodes to several Kubernetes
clusters on AWS using eksctl. Check out https://eksctl.io/.

Fargate
AWS Fargate lets you run containers directly without worrying about provisioning
hardware. It eliminates a huge part of the operational complexity at the cost of losing
some control. When using Fargate, you package your application into a container,
specify CPU and memory requirements, define networking and IAM policies, and
you're off to the races. Fargate can run on top of ECS at the moment and EKS in
the future. It is a very interesting member in the serverless camp, although it's not
directly related to Kubernetes.

https://eksctl.io/

Creating Kubernetes Clusters

[56]

Azure
Azure used to have its own container management service. You could use the Mesos-
based DC/OS or Docker Swarm to manage them. But you can also use Kubernetes,
of course. You could also provision the cluster yourself (for example, using Azure's
desired state configuration) and then create the Kubernetes cluster using kubeadm.
Azure doesn't have a Kops equivalent, but the Kubespray project is a good option.

However, in the second half of 2017, Azure jumped on the Kubernetes bandwagon
too and introduced the Azure Kubernetes Service (AKS). It is similar to Amazon
EKS, although it's a little further ahead in its implementation.

AKS provides a REST API as well as a CLI to manage your Kubernetes cluster.
However, you can use kubectl and any other Kubernetes tooling directly.

Here are some of the benefits of using AKS:

•	 Automated Kubernetes version upgrades and patching
•	 Easy cluster scaling
•	 Self-healing hosted control plane (masters)
•	 Cost savings – pay only for running agent pool nodes

AKS also offers integration with Azure Container Instances (ACI), which is similar
to AWS Fargate. This means that not only the control plane of your Kubernetes
cluster is managed, but also the worker nodes.

Another interesting feature of AKS is AKS-Engine: https://github.com/Azure/aks-
engine. AKS-Engine is an open source project, which is the core of AKS. One of the
downsides of using a managed service is that you have to accept the choices of the
cloud provider. If you have special requirements, then the other option is to create
your own cluster, which is a big undertaking. With AKS Engine, you get to take the
work the AKS team did and customize just the parts that are important to you.

Other cloud providers
GCP, AWS, and Azure are leading the pack, but there are quite a few other
companies that offer managed Kubernetes services. In general, I recommend using
these providers if you already have significant business connections or integrations.

https://github.com/Azure/aks-engine
https://github.com/Azure/aks-engine

Chapter 2

[57]

Once upon a time in China
If you operate in China with its special constraints and limitations, you should
probably use a Chinese cloud platform. There are three big ones: Alibaba, Tencent,
and Huawei.

The Chinese Alibaba Cloud is an up and comer on the cloud platform scene. It
mimics AWS pretty closely, although its English documentation leaves a lot to
be desired. I deployed some production application on Ali baba cloud, but not
Kubernetes clusters. The Alibaba cloud supports Kubernetes in several ways via its
Alibaba container service for Kubernetes (ACK):

•	 Run your own dedicated Kubernetes cluster (you must create three master
nodes and upgrade and maintain them)

•	 Use the managed Kubernetes cluster (you're just responsible for the worker
nodes)

•	 Use the serverless Kubernetes cluster via Elastic container instances (ECIs),
which is like Fargate and ACI

ACK is a CNCF certified Kubernetes distribution. If you need to deploy cloud-native
applications in China, then ACK looks like a solid option.

Tencent is another large Chinese company with its own cloud platform and
Kubernetes support. Tencent Kubernetes engine (TKE) seems less mature than
ACK.

Finally, the Huawei cloud platform offers the Cloud Container Engine (CCE), which
is built on Kubernetes. It supports VMs, bare metal, and GPU accelerated instances.

IBM Kubernetes Service
IBM is investing heavily in Kubernetes. It acquired RedHat at the end of 2018.
RedHat was, of course, a major player in the Kubernetes world, building its
OpenShift Kubernetes-based platform and contributing RBAC to Kubernetes. IBM
has its own cloud platform and offers a managed Kubernetes cluster. You can try it
out for free with $200 credit.

IBM is also involved in the development of Istio and Knative, so IKS will likely have
deep integration with those up and coming technologies.

Creating Kubernetes Clusters

[58]

Oracle Container Service
Oracle also has a cloud platform and, of course, offers a managed Kubernetes service
too, with high availability, bare-metal instances, and multi-AZ support.

In this section, we covered the cloud-provider interface and looked at the
recommended ways to create Kubernetes clusters on various cloud providers. The
scene is still young, and the tools are evolving quickly. I believe convergence will
happen soon. Tools and projects like Kargo and Kubernetes-anywhere have already
been deprecated or merged into other projects. Kubeadm has matured and is the
underlying foundation of many other tools to bootstrap and create Kubernetes
clusters on and off the cloud. Now, let's consider what it takes to create bare-metal
clusters where you have to provision the hardware and low-level networking too.

Creating a bare-metal cluster from
scratch
In the previous section, we looked at running Kubernetes on cloud providers. This
is the dominant deployment story for Kubernetes. But there are strong use cases for
running Kubernetes on bare metal. I won't focus on hosted versus on-premises here.
This is yet another dimension. If you already manage a lot of servers on-premises,
you are in the best position to decide.

Use cases for bare metal
Bare-metal clusters are a bear, especially if you manage them yourself. There are
companies that provide commercial support for bare-metal Kubernetes clusters, such
as Platform 9, but the offerings are not mature yet. A solid open source option is
Kubespray, which can deploy industrial-strength Kubernetes clusters on bare metal,
AWS, GCE, Azure, and OpenStack.

Here are some use cases where it makes sense:

•	 Price: If you already manage large-scale bare clusters, it may be much
cheaper to run Kubernetes clusters on your physical infrastructure.

•	 Low network latency: If you must have low latency between your nodes,
then the VM overhead might be too much.

•	 Regulatory requirements: If you must comply with regulations, you may not
be allowed to use cloud providers.

•	 You want total control over hardware: Cloud providers give you many
options, but you may have special needs.

Chapter 2

[59]

When should you consider creating a bare-
metal cluster?
The complexities of creating a cluster from scratch are significant. A Kubernetes
cluster is not a trivial beast. There is a lot of documentation on the web on how to set
up bare-metal clusters, but as the whole ecosystem moves forward, many of these
guides get out of date quickly.

You should consider going down this route if you have the operational capability
to debug problems at every level of the stack. Most of the problems will probably
be networking-related, but filesystems and storage drivers can bite you too, as well
as general incompatibilities and version mismatches between components such as
Kubernetes itself, Docker (or other runtimes, if you use them), images, your OS, your
OS kernel, and the various add-ons and tools you use. If you opt for using VMs on
top of bare metal, then you add another layer of complexity.

Understanding the process
There is a lot to do. Here is a list of some of the concerns you'll have to address:

•	 Implementing your own cloud-provider interface or sidestepping it
•	 Choosing a networking model and how to implement it (CNI plugin, direct

compile)
•	 Whether or not to use network policies
•	 Select images for system components
•	 Security model and SSL certificates
•	 Admin credentials
•	 Templates for components such as API Server, replication controller, and

scheduler
•	 Cluster services: DNS, logging, monitoring, and GUI

I recommend the following guide from the Kubernetes site to get a deeper
understanding of what it takes to create a HA cluster from scratch using kubeadm:
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/high-
availability/.

https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/high-availability/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/high-availability/

Creating Kubernetes Clusters

[60]

Using virtual private cloud infrastructure
If your use case falls under the bare-metal use cases, but you don't have the
necessary skilled manpower or the inclination to deal with the infrastructure
challenges of bare metal, you have the option to use a private cloud such as
OpenStack with Stackube: https://github.com/openstack/stackube. If you want
to aim a little higher in the abstraction ladder, then Mirantis offers a cloud platform
built on top of OpenStack and Kubernetes.

Let's review a few more tools for building Kubernetes clusters on bare metal. Some
of these tools support OpenStack as well.

Building your own cluster with Kubespray
Kubespray is a project for deploying production-ready highly available Kubernetes
clusters. It uses Ansible and can deploy Kubernetes on a large number of targets,
such as:

•	 AWS
•	 GCE
•	 Azure
•	 OpenStack
•	 vSphere
•	 Packet (bare metal)
•	 Oracle Cloud Infrastructure (experimental)

And also to plain bare metal.

It is highly customizable and support multiple operating systems for the nodes,
multiple CNI plugins for networking, and multiple container runtimes.

If you want to test it locally, it can deploy to a multi-node vagrant setup too. If you're
an Ansible fan, Kubespray may be a great choice for you.

Building your cluster with KRIB
KRIB is a Kubernetes installer for bare metal clusters that are provisioned using
Digital Rebar Provision (DRP). DRP is a single Golang executable that takes care of
a lot of the heavy lifting like DHCP in terms of bare-metal provisioning (PXE/iPXE),
and workflow automation. KRIB drives kubeadm to ensure it ends up with a valid
Kubernetes cluster. The process involves:

https://github.com/openstack/stackube

Chapter 2

[61]

•	 Server discovery
•	 Installation of the KRIB Content and Certificate Plugin
•	 Starting the cluster deployment
•	 Monitoring the deployment
•	 Accessing the cluster

See https://kubernetes.io/docs/setup/production-environment/tools/krib/ for
more details.

Building your cluster with RKE
Rancher Kubernetes Engine (RKE) is a friendly Kubernetes installer that can install
Kubernetes on bare-metal as well as virtualized servers. RKE aims to address the
complexity of installing Kubernetes. It is open source and has great documentation.
Check it out here: http://rancher.com/docs/rke/v0.1.x/en/.

Bootkube
Bootkube is very interesting too. It can launch self-hosted Kubernetes clusters. Self-
hosted means that most of the cluster components run as regular pods and can be
managed, monitored, and upgraded using the same tools and processes you use for
your containerized applications. There are significant benefits to this approach that
simplify the development and operation of Kubernetes clusters.

It is a Kubernetes incubator project, but it doesn't seem very active. Check it out here:
https://github.com/kubernetes-incubator/bootkube.

In this section, we considered the option to build a bare-metal cluster Kubernetes
cluster. We looked into the use cases that require it and highlighted the challenges
and difficulties.

Summary
In this chapter, we got into some hands-on cluster creation. We created a single-node
cluster using Minikube and a multi-node cluster using KinD and k3d. Then, we
looked at the many options to create Kubernetes clusters on cloud providers. Finally,
we touched on the complexities of creating Kubernetes clusters on bare metal. The
current state of affairs is very dynamic. The basic components are changing rapidly,
the tooling is getting better, and there are different options for each environment.
Kubeadm is now the cornerstone of most installation options, which is great for
consistency and consolidation of effort.

https://kubernetes.io/docs/setup/production-environment/tools/krib/
http://rancher.com/docs/rke/v0.1.x/en/
https://github.com/kubernetes-incubator/bootkube

Creating Kubernetes Clusters

[62]

It's still not completely trivial to stand up a Kubernetes cluster on your own, but with
some effort and attention to detail, you can get it done quickly.

In the next chapter, we will explore the important topics of scalability and high
availability. Once your cluster is up and running, you need to make sure it stays that
way, even as the volume of requests increases. This requires ongoing attention and
building the ability to recover from failures, as well as adjusting to changes in traffic.

References
•	 https://github.com/kubernetes/minikube

•	 https://kind.sigs.k8s.io/

•	 https://k3s.io/

•	 https://github.com/rancher/k3d

•	 https://kubespray.io/#/

•	 https://www.alibabacloud.com/product/kubernetes

•	 https://www.ibm.com/cloud/container-service

https://github.com/kubernetes/minikube
https://kind.sigs.k8s.io/
https://k3s.io/
https://github.com/rancher/k3d
https://kubespray.io/#/
https://www.alibabacloud.com/product/kubernetes
https://www.ibm.com/cloud/container-service

[63]

3
High Availability

and Reliability
In Chapter 2, Creating Kubernetes Clusters, we learned how to create Kubernetes
clusters in different environments, experimented with different tools, and created
a couple of clusters. Creating a Kubernetes cluster is just the beginning of the story.
Once the cluster is up and running, you need to make sure it stays operational.

In this chapter, we will dive into the topic of highly available clusters. This is a
complicated topic. The Kubernetes project and the community haven't settled
on one true way to achieve high availability nirvana. There are many aspects
to highly available Kubernetes clusters, such as ensuring that the control plane
can keep functioning in the face of failures, protecting the cluster state in etcd,
protecting the system's data, and recovering capacity and/or performance quickly.
Different systems will have different reliability and availability requirements. How
to design and implement a highly available Kubernetes cluster will depend on
those requirements.

At the end of this chapter, you will understand the various concepts associated with
high availability and be familiar with Kubernetes high availability best practices
and when to employ them. You will be able to upgrade live clusters using different
strategies and techniques, and you will be able to choose between multiple possible
solutions based on trade-offs between performance, cost, and availability.

High Availability and Reliability

[64]

High availability concepts
In this section, we will start our journey into high availability by exploring the
concepts and building blocks of reliable and highly available systems. The million
(trillion?) dollar question is, how do we build reliable and highly available systems
from unreliable components? Components will fail; you can take that to the bank.
Hardware will fail; networks will fail; configuration will be wrong; software will
have bugs; people will make mistakes. Accepting that, we need to design a system
that can be reliable and highly available even when components fail. The idea is
to start with redundancy, detect component failure, and replace bad components
quickly.

Redundancy
Redundancy is the foundation of reliable and highly available systems at the
hardware and data levels. If a critical component fails and you want the system to
keep running, you must have another identical component ready to go. Kubernetes
itself takes care of your stateless pods via replication controllers and replica sets. But,
your cluster state in etcd and the master components themselves need redundancy
to function when some components fail. In addition, if your system's stateful
components are not backed up by redundant storage (for example, on a cloud
platform), then you need to add redundancy to prevent data loss.

Hot swapping
Hot swapping is the concept of replacing a failed component on the fly without
taking the system down, with minimal (ideally, zero) interruption for users. If the
component is stateless (or its state is stored in separate redundant storage), then hot
swapping a new component to replace it is easy and just involves redirecting all
clients to the new component. But, if it stores local state, including in memory, then
hot swapping is not trivial. There are two main options:

•	 Give up on in-flight transactions
•	 Keep a hot replica in sync

Chapter 3

[65]

The first solution is much simpler. Most systems are resilient enough to cope with
failures. Clients can retry failed requests and the hot-swapped component will
service them.

The second solution is more complicated and fragile, and will incur a performance
overhead because every interaction must be replicated to both copies (and
acknowledged). It may be necessary for some parts of the system.

Leader election
Leader or master election is a common pattern in distributed systems. You often
have multiple identical components that collaborate and share the load, but one
component is elected as the leader and certain operations are serialized through the
leader. You can think of distributed systems with leader election as a combination
of redundancy and hot swapping. The components are all redundant and, when
the current leader fails or becomes unavailable, a new leader is elected and hot-
swapped in.

Smart load balancing
Load balancing is about distributing the workload across multiple replicas that
service incoming requests. This is useful for scaling up and down under heavy load
by adjusting the number of replicas. When some replicas fail, the load balancer
will stop sending requests to failed or unreachable components. Kubernetes will
provision new replicas, restore capacity, and update the load balancer. Kubernetes
provides great facilities to support this via services, endpoints, replica sets, labels,
and ingress controllers.

High Availability and Reliability

[66]

Idempotency
Many types of failure can be temporary. This is most common with networking
issues or with too-stringent timeouts. A component that doesn't respond to a health
check will be considered unreachable and another component will take its place.
Work that was scheduled for the presumably failed component may be sent to
another component. But the original component may still be working and complete
the same work. The end result is that the same work may be performed twice. It is
very difficult to avoid this situation. To support exactly-once semantics, you need
to pay a heavy price in overhead, performance, latency, and complexity. Thus, most
systems opt to support at-least-once semantics, which means it is OK for the same
work to be performed multiple times without violating the system's data integrity.
This property is called idempotency. Idempotent systems maintain their state even
if an operation is performed multiple times.

Self-healing
When component failures occur in dynamic systems, you usually want the system
to be able to heal itself. Kubernetes replication controllers and replica sets are great
examples of self-healing systems. But failure can extend well beyond pods. Self-
healing starts with the automated detection of problems followed by an automated
resolution. Quotas and limits help create checks and balances to ensure automated
self-healing doesn't run amok due to unpredictable circumstances such as DDOS
attacks. Self-healing systems deal very well with transient failures by retrying failed
operations and escalating failures only when it's clear there is no other option. Some
self-healing systems have fallback paths including serving cached content if up-to-
date content is unavailable. Self-healing systems attempt to degrade gracefully and
keep working until the core issue can be fixed.

In this section, we considered various concepts involved in creating reliable and
highly available systems. In the next section, we will apply them and demonstrate
best practices for systems deployed on Kubernetes clusters.

High availability best practices
Building reliable and highly available distributed systems is a non-trivial endeavor.
In this section, we will check some of the best practices that enable a Kubernetes-
based system to function reliably and be available in the face of various failure
categories. We will also dive deep and see how to go about constructing your own
highly available clusters.

Chapter 3

[67]

Note that you should roll your own highly available Kubernetes cluster only in very
special cases. Tools such as Kubespray provide battle-tested ways to create highly
available clusters. You should take advantage of all the work and effort that went
into these tools.

Creating highly available clusters
To create a highly available Kubernetes cluster, the master components must be
redundant. That means etcd must be deployed as a cluster (typically across three
or five nodes) and the Kubernetes API server must be redundant. Auxiliary cluster-
management services such as Heapster storage may be deployed redundantly too,
if necessary. The following diagram depicts a typical reliable and highly available
Kubernetes cluster in a stacked etcd topology. There are several load-balanced
master nodes, each one containing whole master components as well as an etcd
component:

Figure 3.1: A highly available cluster configuration

This is not the only way to configure highly available clusters. You may prefer,
for example, to deploy a standalone etcd cluster to optimize the machines to their
workload or if you require more redundancy for your etcd cluster than the rest of the
master nodes.

High Availability and Reliability

[68]

The following diagram shows a Kubernetes cluster where etcd is deployed as an
external cluster:

Figure 3.2: etcd used as an external cluster

Self-hosted Kubernetes clusters, where control plane components are deployed as
pods and stateful sets in the cluster, are a great approach to simplify the robustness,
disaster recovery, and self-healing of the control plane components by applying
Kubernetes to Kubernetes.

Making your nodes reliable
Nodes will fail, or some components will fail, but many failures are transient. The
basic guarantee is to make sure that the Docker daemon (or whatever the CRI
implementation is) and the kubelet restart automatically in the event of a failure.

If you run CoreOS, a modern Debian-based OS (including Ubuntu >= 16.04), or any
other OS that uses systemd as its init mechanism, then it's easy to deploy Docker
and the kubelet as self-starting daemons:

systemctl enable docker
systemctl enable kublet

Chapter 3

[69]

For other operating systems, the Kubernetes project selected monit for their high-
availability example, but you can use any process monitor you prefer. The main
requirement is to make sure that those two critical components will restart in the
event of failure, without external intervention.

Protecting your cluster state
The Kubernetes cluster state is stored in etcd. The etcd cluster was designed to be
super reliable and distributed across multiple nodes. It's important to take advantage
of these capabilities for a reliable and highly available Kubernetes cluster.

Clustering etcd
You should have at least three nodes in your etcd cluster. If you need more reliability
and redundancy, you can go for five, seven, or any other odd number of nodes. The
number of nodes must be odd to have a clear majority in the event of a network split.

In order to create a cluster, the etcd nodes should be able to discover each other.
There are several methods to accomplish this. I recommend using the excellent etcd
operator from CoreOS:

Figure 3.3: The Kubernetes etcd operator logo

The operator takes care of many complicated aspects of etcd operation, such as the
following:

•	 Create and destroy
•	 Resizing
•	 Failovers
•	 Rolling upgrades
•	 Backup and restore

High Availability and Reliability

[70]

Installing the etcd operator
The easiest way to install the etcd operator is using Helm – the Kubernetes package
manager. If you don't have Helm installed yet, follow the instructions here: https://
github.com/kubernetes/helm#install.

Next, save the following YAML to helm-rbac.yaml:

apiVersion: v1
kind: ServiceAccount
metadata:
 name: tiller
 namespace: kube-system

apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:
 name: tiller
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: cluster-admin
subjects:
 - kind: ServiceAccount
 name: tiller
 namespace: kube-system

This creates a service account for Tiller and gives it a cluster admin role:

$ k apply -f helm-rbac.yaml
serviceaccount/tiller created
clusterrolebinding.rbac.authorization.k8s.io/tiller created

Then initialize Helm with the Tiller service account:

$ helm2 init --service-account tiller
$HELM_HOME has been configured at /Users/gigi.sayfan/.helm.

Tiller (the Helm server-side component) has been installed into your
Kubernetes Cluster.

Please note: by default, Tiller is deployed with an insecure 'allow
unauthenticated users' policy.

https://github.com/kubernetes/helm#install
https://github.com/kubernetes/helm#install

Chapter 3

[71]

To prevent this, run 'helm init' with the --tiller-tls-verify flag.
For more information on securing your installation see: https://docs.helm.
sh/using_helm/#securing-your-helm-installation

Don't worry about the warnings at this point. We will dive deep into Helm in
Chapter 9, Packaging Applications.

Now, we can finally install the etcd operator. I use x as a short release name to make
the output less verbose. You may want to use more meaningful names:

$ helm2 install stable/etcd-operator --name x
NAME: x
LAST DEPLOYED: Thu May 28 17:33:16 2020
NAMESPACE: default
STATUS: DEPLOYED

RESOURCES:
==> v1/Pod(related)
NAME READY STATUS
RESTARTS AGE
x-etcd-operator-etcd-backup-operator-dffcbd97-hfsnc 0/1 Pending 0
0s
x-etcd-operator-etcd-operator-669975754b-vhhq5 0/1 Pending 0
0s
x-etcd-operator-etcd-restore-operator-6b787cc5c-6dk77 0/1 Pending 0
0s

==> v1/Service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
etcd-restore-operator ClusterIP 10.43.182.231 <none> 19999/TCP 0s

==> v1/ServiceAccount
NAME SECRETS AGE
x-etcd-operator-etcd-backup-operator 1 0s
x-etcd-operator-etcd-operator 1 0s
x-etcd-operator-etcd-restore-operator 1 0s

==> v1beta1/ClusterRole
NAME AGE
x-etcd-operator-etcd-operator 0s

==> v1beta1/ClusterRoleBinding
NAME AGE

High Availability and Reliability

[72]

x-etcd-operator-etcd-backup-operator 0s
x-etcd-operator-etcd-operator 0s
x-etcd-operator-etcd-restore-operator 0s

==> v1beta2/Deployment
NAME READY UP-TO-DATE AVAILABLE AGE
x-etcd-operator-etcd-backup-operator 0/1 1 0 0s
x-etcd-operator-etcd-operator 0/1 1 0 0s
x-etcd-operator-etcd-restore-operator 0/1 1 0 0s

NOTES:
1. etcd-operator deployed.
 If you would like to deploy an etcd-cluster set cluster.enabled to true
in values.yaml
 Check the etcd-operator logs
 export POD=$(kubectl get pods -l app=x-etcd-operator-etcd-operator
--namespace default --output name)
 kubectl logs $POD --namespace=default

Now that the operator is installed, we can use it to create the etcd cluster.

Creating the etcd Cluster
Save the following to etcd-cluster.yaml:

apiVersion: "etcd.database.coreos.com/v1beta2"
kind: "EtcdCluster"
metadata:
 name: "example-etcd-cluster"
spec:
 size: 3
 version: "3.2.13"

To create the cluster type, use the following command:

$ k create -f etcd-cluster.yaml
etcdcluster.etcd.database.coreos.com/etcd-cluster created

Let's verify the cluster pods were created properly:

$ k get pods -o wide | grep etcd-cluster
etcd-cluster-2fs2lpz7p7 1/1 Running 0 2m53s 10.42.2.4
k3d-k3s-default-worker-1

Chapter 3

[73]

etcd-cluster-58547r5f6x 1/1 Running 0 3m49s 10.42.1.5
k3d-k3s-default-worker-0
etcd-cluster-z7s4bfksdl 1/1 Running 0 117s 10.42.3.5
k3d-k3s-default-worker-2

As you can see, each etcd pod was scheduled to run on a different node. This is
exactly what we want with a redundant datastore like etcd.

The -o wide format for kubectl's get command provides additional information for
the get pods command the node for the pod is scheduled on.

Verifying the etcd cluster
Once the etcd cluster is up and running, you can access it with the etcdctl tool
to check on the cluster status and health. Kubernetes lets you execute commands
directly inside pods or containers via the exec command (similar to docker exec).

Here is how to check if the cluster is healthy:

$ k exec etcd-cluster-2fs2lpz7p7 -- etcdctl cluster-health

member 1691519f36d795b7 is healthy: got healthy result from http://etcd-
cluster-2fs2lpz7p7.etcd-cluster.default.svc:2379
member 1b67c8cb37fca67e is healthy: got healthy result from http://etcd-
cluster-58547r5f6x.etcd-cluster.default.svc:2379
member 3d4cbb73aeb3a077 is healthy: got healthy result from http://etcd-
cluster-z7s4bfksdl.etcd-cluster.default.svc:2379
cluster is healthy

Here is to how to set and get key-value pairs:

$ k exec etcd-cluster-2fs2lpz7p7 -- etcdctl set test "Yeah, it works"
Yeah, it works
$ k exec etcd-cluster-2fs2lpz7p7 -- etcdctl get test
Yeah, it works

Protecting your data
Protecting the cluster state and configuration is great, but even more important
is protecting your own data. If somehow the cluster state gets corrupted, you can
always rebuild the cluster from scratch (although the cluster will not be available
during the rebuild). But if your own data is corrupted or lost, you're in deep trouble.
The same rules apply: redundancy is king. But while the Kubernetes cluster state is
very dynamic, much of your data may be less dynamic.

High Availability and Reliability

[74]

For example, a lot of historic data is often important and can be backed up and
restored. Live data might be lost, but the overall system may be restored to an earlier
snapshot and suffer only temporary damage.

You should consider Velero as a solution for backing up your entire cluster,
including your own data. Heptio (now part of VMware) developed Velero, which is
open source and may be a life-saver for critical systems.

Check it out at https://velero.io.

Running redundant API servers
API servers are stateless, fetching all the necessary data on the fly from the etcd
cluster. This means that you can easily run multiple API servers without needing to
coordinate between them. Once you have multiple API servers running, you can put
a load balancer in front of them to make it transparent to clients.

Running leader election with Kubernetes
Some master components, such as the scheduler and the controller manager, can't
have multiple instances active at the same time. This would be chaos, as multiple
schedulers would try to schedule the same pod into multiple nodes or multiple times
into the same node. The correct way to have a highly scalable Kubernetes cluster
is to have these components run in leader election mode. This means that multiple
instances are running, but only one is active at a time and if it fails, another one is
elected as leader and takes its place.

Kubernetes supports this mode via the --leader-elect flag. The scheduler and the
controller manager can be deployed as pods by copying their respective manifests to
/etc/kubernetes/manifests.

Here is a snippet from a scheduler manifest that shows the use of the flag:

 command:
 - /bin/sh
 - -c
 - /usr/local/bin/kube-scheduler --master=127.0.0.1:8080 --v=2
--leader-elect=true 1>>/var/log/kube-scheduler.log
 2>&1

Here is a snippet from a controller manager manifest that shows the use of the flag:

 - command:
 - /bin/sh

https://velero.io

Chapter 3

[75]

 - -c
 - /usr/local/bin/kube-controller-manager --master=127.0.0.1:8080
--cluster-name=e2e-test-bburns
 --cluster-cidr=10.245.0.0/16 --allocate-node-cidrs=true --cloud-
provider=gce --service-account-private-key-file=/srv/kubernetes/server.
key
 --v=2 --leader-elect=true 1>>/var/log/kube-controller-manager.log
2>&1
 image: gcr.io/google_containers/kube-controller-manager:fda24638d5
1a48baa13c35337fcd4793

There are several other flags to control leader election. All of them have reasonable
defaults:

--leader-elect-lease-duration duration Default: 15s
--leader-elect-renew-deadline duration Default: 10s
--leader-elect-resource-lock endpoints Default: "endpoints"
("configmaps" is the other option)
--leader-elect-retry-period duration Default: 2s

Note that it is not possible to have these components restarted automatically by
Kubernetes like other pods because these are exactly the Kubernetes components
responsible for restarting failed pods, so they can't restart themselves if they fail.
There must be a ready-to-go replacement already running.

Making your staging environment highly
available
High availability is not trivial to set up. If you go to the trouble of setting up high
availability, it means there is a business case for a highly available system. It follows
that you want to test your reliable and highly available cluster before you deploy it
to production (unless you're Netflix, where you test in production). Also, any change
to the cluster may, in theory, break your high availability without disrupting other
cluster functions. The essential point is that, just like anything else, if you don't test
it, assume it doesn't work.

We've established that you need to test reliability and high availability. The best
way to do this is to create a staging environment that replicates your production
environment as closely as possible. This can get expensive. There are several ways to
manage the cost:

•	 An ad hoc highly available staging environment: Create a large highly
available cluster only for the duration of high availability testing.

High Availability and Reliability

[76]

•	 Compress time: Create interesting event streams and scenarios ahead of
time, feed the input, and simulate the situations in rapid succession.

•	 Combine high availability testing with performance and stress testing: At
the end of your performance and stress tests, overload the system and see
how the reliability and high availability configuration handles the load.

Testing high availability
Testing high availability takes planning and a deep understanding of your
system. The goal of every test is to reveal flaws in the system's design and/or
implementation, and to provide good enough coverage that, if the tests pass, you'll
be confident that the system behaves as expected.

In the realm of reliability, self-healing, and high availability, it means you need to
figure out ways to break the system and watch it put itself back together.

This requires several elements, as follows:

•	 A comprehensive list of possible failures (including reasonable combinations)
•	 For each possible failure, it should be clear how the system should respond
•	 A way to induce the failure
•	 A way to observe how the system reacts

None of the elements are trivial. The best approach in my experience is to do it
incrementally and try to come up with a relatively small number of generic failure
categories and generic responses, rather than an exhaustive, ever-changing list of
low-level failures.

For example, a generic failure category is node-unresponsive; the generic response
could be rebooting the node; the way to induce the failure could be stopping the
virtual machine (VM) of the node (if it's a VM). The observation should be that, while
the node is down, the system still functions properly based on standard acceptance
tests; the node is eventually up, and the system gets back to normal. There may
be many other things you want to test, such as whether the problem was logged,
whether relevant alerts went out to the right people, and whether various stats and
reports were updated.

But beware of over-generalizing. In the case of the generic unresponsive node failure,
a key component is detecting that the node is unresponsive. If your method of
detection is faulty, then your system will not react properly. Use best practices like
health checks and readiness checks.

Chapter 3

[77]

Note that, sometimes, a failure can't be resolved in a single response. For example, in
our unresponsive node case, if it's a hardware failure, then rebooting will not help.
In this case, a second line of response comes into play and maybe a new node is
provisioned to replace the failed node. In this case, you can't be too generic and you
may need to create tests for specific types of pod/role that were on the node (such as
etcd, master, worker, database, and monitoring).

If you have high quality requirements, be prepared to spend much more time
setting up the proper testing environments and the tests than even the production
environment.

One last important point is to try to be as unintrusive as possible. That means that,
ideally, your production system will not have testing features that allow shutting
down parts of it or cause it to be configured to run at reduced capacity for testing.
The reason is that it increases the attack surface of your system and it could be
triggered by accident by mistakes in configuration. Ideally, you can control your
testing environment without resorting to modifying the code or configuration that
will be deployed in production. With Kubernetes, it is usually easy to inject pods and
containers with custom test functionality that can interact with system components
in the staging environment, but will never be deployed in production.

In this section, we looked at what it takes to actually have a reliable and highly
available cluster, including etcd, the API server, the scheduler, and the controller
manager. We considered best practices for protecting the cluster itself, as well as
your data, and paid special attention to the issue of starting environments and
testing.

High availability, scalability, and capacity
planning
Highly available systems must also be scalable. The load on most complicated
distributed systems can vary dramatically based on the time of day, weekdays versus
weekends, seasonal effects, marketing campaigns, and many other factors. Successful
systems will have more users over time and accumulate more and more data. That
means that the physical resources of the clusters—mostly nodes and storage—will
have to grow over time too. If your cluster is under-provisioned, it will not be able to
satisfy all the demand and it will not be available because requests will time out or
be queued up and not processed fast enough.

High Availability and Reliability

[78]

This is the realm of capacity planning. One simple approach is to over-provision
your cluster. Anticipate the demand and make sure you have enough of a buffer for
spikes of activity. But be aware that this approach suffers from several deficiencies:

•	 For highly dynamic and complicated distributed systems, it's difficult to
forecast the demand even approximately.

•	 Over-provisioning is expensive. You spend a lot of money on resources that
are rarely or never used.

•	 You have to periodically redo the whole process because the average and
peak load on the system changes over time.

A much better approach is to use intent-based capacity planning where high-level
abstraction is used and the system adjusts itself accordingly. In the context of
Kubernetes, there is the horizontal pod autoscaler (HPA) that can grow and shrink
the number of pods needed to handle requests for a particular service. But, that
works only to change the ratio of resources allocated to different services. When
the entire cluster approaches saturation, you simply need more resources. This is
where the cluster autoscaler comes into play. It is a Kubernetes project that became
available with Kubernetes 1.8. It works particularly well in cloud environments
where additional resources can be provisioned via programmatic APIs.

When the cluster autoscaler (CA) determines that pods can't be scheduled (that is,
they are in the pending state), it provisions a new node for the cluster. It can also
remove nodes from the cluster if it determines that the cluster has more nodes than
necessary to handle the load. The CA will check for pending pods every 30 seconds.
It will remove nodes only after 10 minutes of not being used, to avoid thrashing.

Here are some issues to consider:

•	 A cluster may require more nodes even if the total CPU or memory
utilization is low due to control mechanisms like affinity, anti-affinity, taints,
tolerations, pod priorities, and pod disruption budgets.

•	 In addition to the built-in delays in triggering the scaling up or down of
nodes, there is an additional delay of several minutes when provisioning a
new node from the cloud provider.

•	 The interactions between the HPA and the CA can be subtle.

Installing the cluster autoscaler
Note that you can't test the CA locally. You must have a Kubernetes cluster running
on one of the following supported cloud providers:

Chapter 3

[79]

•	 GCE
•	 GKE
•	 AWS EKS
•	 Azure
•	 Alibaba Cloud
•	 Baidu Cloud

I have installed the CA successfully on GKE as well as AWS EKS.

The eks-cluster-autoscaler.yaml file contains all the Kubernetes resources needed
to install the CA on EKS. It involves creating a service account and giving it various
RBAC permissions because it needs to monitor node usage across the cluster and
be able to act on it. Finally, there is a deployment that actually deploys the CA
image itself with a command-line interface that includes the range of nodes (that
is, the minimum and maximum number) it should maintain, and in the case of
EKS, a node group is needed too. The maximum number is important to prevent a
situation where an attack or error causes the CA to just add more and more nodes
uncontrollably, racking up a huge bill. Here is a snippet from the pod template:

 spec: serviceAccountName: cluster-autoscaler
 containers: - image: k8s.gcr.io/cluster-autoscaler:v1.2.2
 name: cluster-autoscaler
 resources:
 limits:
 cpu: 100m
 memory: 300Mi
 requests:
 cpu: 100m
 memory: 300Mi
 command:
 - ./cluster-autoscaler
 - --v=4 - --stderrthreshold=info
 - --cloud-provider=aws
 - --skip-nodes-with-local-storage=false -
--nodes=2:5:eksctl-project-nodegroup-ng-name-NodeGroup-suffix
 env: - name: AWS_REGION
 value: us-east-1 volumeMounts: - name: ssl-
certs
 mountPath: /etc/ssl/certs/ca-certificates.crt
 readOnly: true imagePullPolicy: "Always"
volumes: - name: ssl-certs
 hostPath: path: "/etc/ssl/certs/ca-bundle.crt"

High Availability and Reliability

[80]

The combination of the HPA and CA provides a truly elastic cluster where the HPA
ensures that services use the proper amount of pods to handle the load per service,
and the CA makes sure that the number of nodes matches the overall load on the
cluster.

Considering the vertical pod autoscaler
The vertical pod autoscaler (VPA) is another autoscaler that operates on pods. Its
job is to provide additional resources (CPU and memory) to pods that have too low
limits. It is designed primarily for stateful services, but can work for stateless services
too. It is based on a CRD (custom resource definition) and has three components:

•	 Recommender: Watches CPU and memory usage and provides
recommendations for new values for CPU and memory requests

•	 Updater: Kills managed pods whose CPU and memory requests don't match
the recommendations made by the recommender

•	 Admission plugin: Sets the CPU and memory requests for new or recreated
pods based on recommendations

The VPA is still in beta. Here are some of the main limitations:

•	 Unable to update running pods (hence the updater kills pods to get them
restarted with the correct requests)

•	 Can't evict pods that aren't managed by a controller
•	 The VPA is incompatible with the HPA

This section covered the interactions between auto-scalability and high availability
and looked at different approaches for scaling Kubernetes clusters and the
applications running on those clusters.

Live cluster updates
One of the most complicated and risky tasks involved in running a Kubernetes cluster
is a live upgrade. The interactions between different parts of the system in different
versions are often difficult to predict, but in many situations, it is required. Large
clusters with many users can't afford to be offline for maintenance. The best way to
attack complexity is to divide and conquer. Microservice architecture helps a lot here.
You never upgrade your entire system. You just constantly upgrade several sets of
related microservices, and if APIs have changed, then you upgrade their clients, too.
A properly designed upgrade will preserve backward-compatibility at least until all
clients have been upgraded, and then deprecate old APIs across several releases.

Chapter 3

[81]

In this section, we will discuss how to go about updating your cluster using various
strategies such as rolling updates, blue-green deployments, and canary deployments.
We will also discuss when it's appropriate to introduce breaking upgrades versus
backward-compatible upgrades. Then we will get into the critical topic of schema
and data migrations.

Rolling updates
Rolling updates are updates where you gradually update components from the
current version to the next. This means that your cluster will run current and new
components at the same time. There are two different cases to consider here:

•	 New components are backward-compatible
•	 New components are not backward-compatible

If the new components are backward-compatible, then the upgrade should be very
easy. In earlier versions of Kubernetes, you had to manage rolling updates very
carefully with labels and change the number of replicas gradually for both the old
and new versions (although kubectl rolling-update is a convenient shortcut for
replication controllers). But, the Deployment resource introduced in Kubernetes
1.2 makes it much easier and supports replica sets. It has the following capabilities
built in:

•	 Running server side (it keeps going if your machine disconnects)
•	 Versioning
•	 Multiple concurrent rollouts
•	 Updating deployments
•	 Aggregating status across all pods
•	 Rollbacks
•	 Canary deployments
•	 Multiple upgrade strategies (rolling upgrade is the default)

Here is a sample manifest for a deployment that deploys three nginx pods:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
 labels:
 app: nginx
spec:

High Availability and Reliability

[82]

 replicas: 3 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.7.9 ports:
 - containerPort: 80

The resource kind is Deployment and it's got the name nginx-deployment, which
you can use to refer to this deployment later (for example, for updates or rollbacks).
The most important part is, of course, the spec, which contains a pod template. The
replicas determine how many pods will be in the cluster, and the template spec has
the configuration for each container. In this case, this is just a single container.

To start the rolling update, create the Deployment resource and check that it rolled
out successfully:

$ k create -f nginx-deployment.yaml
deployment.apps/nginx-deployment created

$ k rollout status deployment/nginx-deployment
deployment "nginx-deployment" successfully rolled out

Deployments have an update strategy, which defaults to rollingUpdate:

$ k get deployment nginx-deployment -o yaml | grep strategy -A 4
strategy:
 rollingUpdate:
 maxSurge: 25%
 maxUnavailable: 25%
 type: RollingUpdate

The following diagram illustrates how a rolling update works:

Chapter 3

[83]

Figure 3.4: How a rolling update progresses

Complex deployments
The Deployment resource is great when you just want to upgrade one pod, but you
may often need to upgrade multiple pods, and those pods sometimes have version
inter-dependencies. In those situations, you must sometimes forgo a rolling update
or introduce a temporary compatibility layer. For example, suppose service A
depends on service B. Service B now has a breaking change. The v1 pods of service
A can't interoperate with the pods from service B v2. It is also undesirable from both
reliability and change-management points of view to make the v2 pods of service
B support the old and new APIs. In this case, the solution may be to introduce an
adapter service that implements the v1 API of the B service. This service will sit
between A and B, and will translate requests and responses across versions. This
adds complexity to the deployment process and requires several steps, but the
benefit is that the A and B services themselves are simple. You can do rolling updates
across incompatible versions and all indirection will go away once everybody
upgrades to v2 (all A pods and all B pods).

But rolling updates are not always the answer.

High Availability and Reliability

[84]

Blue-green deployments
Rolling updates are great for availability, but sometimes the complexity involved
in managing a proper rolling update is considered too high, or it adds a significant
amount of work that pushes back more important projects. In these cases, blue-green
upgrades provide a great alternative. With a blue-green release, you prepare a full
copy of your production environment with the new version. Now you have two
copies, old (blue) and new (green). It doesn't matter which one is blue and which
one is green. The important thing is that you have two fully independent production
environments. Currently, blue is active and services all requests. You can run all
your tests on green. Once you're happy, you flip the switch and green becomes
active. If something goes wrong, rolling back is just as easy; just switch back from
green to blue.

The following diagram illustrates how blue-green deployments work using two
deployments, two labels, and a single service that uses a label selector to switch from
the blue deployment to the green deployment:

Figure 3.5: Blue-green deployment in practice

Chapter 3

[85]

I totally ignored the storage and in-memory state in the previous discussion.
This immediate switch assumes that blue and green are composed of stateless
components only and share a common persistence layer.

If there were storage changes or breaking changes to the API accessible to external
clients, then additional steps need to be taken. For example, if blue and green have their
own storage, then all incoming requests may need to be sent to both blue and green,
and green may need to ingest historical data from blue to get in sync before switching.

Canary deployments
Blue-green deployments are cool. However, there are times where a more nuanced
approach is needed. Suppose you are responsible for a large distributed system
with many users. The developers plan to deploy a new version of their service. They
tested the new version of the service in the test and staging environments. But, the
production environment is too complicated to be replicated one to one for testing
purposes. This means there is a risk that the service will misbehave in production.
That's where canary deployments shine.

The basic idea is to test the service in production, but in a limited capacity. This way,
if something is wrong with the new version, only a small fraction of your users or a
small fraction of requests will be impacted. This can be implemented very easily in
Kubernetes at the pod level. If a service is backed up by 10 pods, then you deploy
the new version and then only 10% of the requests will be routed by the service load
balancer to the canary pod, while 90% of the requests will still be serviced by the
current version.

The following diagram illustrates this approach:

Figure 3.6: Canary deployment in practice

High Availability and Reliability

[86]

There are more sophisticated ways to route traffic to a canary deployment using a
service mesh. We will examine that in a later chapter (Chapter 14, Utilizing Service
Meshes).

Let's address the hard problem of managing data-contract changes.

Managing data-contract changes
Data contracts describe how data is organized. It's an umbrella term for structure
metadata. The most common example is a relational database schema. Other examples
include network payloads, file formats, and even the content of string arguments
or responses. If you have a configuration file, then this configuration file has both a
file format (JSON, YAML, TOML, XML, INI, or a custom format) and some internal
structure that describes what kind of hierarchy, keys, values, and data types are valid.
Sometimes the data contract is explicit and sometimes it's implicit. Either way, you
need to manage it carefully, or else you'll get runtime errors when code that's reading,
parsing, or validating encounters data with an unfamiliar structure.

Migrating data
Data migration is a big deal. Many systems these days manage staggering amounts
of data measured in terabytes, petabytes, or more. The amount of collected and
managed data will continue to increase for the foreseeable future. The pace of data
collection exceeds the pace of hardware innovation. The essential point is that if
you have a lot of data and you need to migrate it, it can take a while. In a previous
company, I oversaw a project to migrate close to 100 terabytes of data from one
Cassandra cluster of a legacy system to another Cassandra cluster.

The second Cassandra cluster had a different schema and was accessed by a
Kubernetes cluster 24/7. The project was very complicated, and thus it kept getting
pushed back when urgent issues popped up. The legacy system was still in place
side by side with the next-gen system long after the original estimate.

There were a lot of mechanisms in place to split the data and send it to both clusters,
but then we ran into scalability issues with the new system and we had to address
those before we could continue. The historical data was important, but it didn't have
to be accessed with the same service level as recent hot data. So, we embarked on yet
another project to send historical data to cheaper storage. That meant, of course, that
client libraries or frontend services had to know how to query both stores and merge
the results. When you deal with a lot of data, you can't take anything for granted.
You run into scalability issues with your tools, your infrastructure, your third-party
dependencies, and your processes. Moving to a large scale is not just a quantity
change; it often means qualitative change as well. Don't expect it to go smoothly.
It is much more than copying some files from A to B.

Chapter 3

[87]

Deprecating APIs
API deprecation comes in two flavors: internal and external. Internal APIs are APIs
used by components that are fully controlled by you and your team or organization.
You can be sure that all API users will upgrade to the new API within a short time.
External APIs are used by users or services outside your direct sphere of influence.
There are a few gray-area situations when you work for a huge organization (think
Google), and even internal APIs may need to be treated as external APIs. If you're
lucky, all your external APIs are used by self-updating applications or through a web
interface you control. In those cases, the API is practically hidden and you don't even
need to publish it.

If you have a lot of users (or a few very important users) using your API, you should
consider deprecation very carefully. Deprecating an API means you force your users
to change their application to work with you or stay locked to an earlier version.

There are a few ways you can mitigate the pain:

•	 Don't deprecate. Extend the existing API or keep the previous API active. It is
sometimes pretty simple, although it adds to the testing burden.

•	 Provide client libraries in all relevant programming languages to your
target audience. This is always a good practice. It allows you to make many
changes to the underlying API without disrupting users (as long as you keep
the programming language interface stable).

•	 If you have to deprecate, explain why, allow ample time for users to
upgrade, and provide as much support as possible (for example, an upgrade
guide with examples). Your users will appreciate it.

Large cluster performance, cost,
and design trade-offs
In the previous section, we looked at live cluster upgrades and application updates.
We explored various techniques and how Kubernetes supports them. We also
discussed difficult problems such as breaking changes, data contract changes, data
migration, and API deprecation. In this section, we will consider the various options
and configurations of large clusters with different reliability and high availability
properties. When you design your cluster, you need to understand your options and
choose wisely based on the needs of your organization.

High Availability and Reliability

[88]

The topics we will cover include various availability requirements, from best effort
all the way to the holy grail of zero downtime. Finally, we will settle down on the
practical site-reliability engineering approach. For each category of availability, we
will consider what it means from the perspectives of performance and cost.

Availability requirements
Different systems have very different requirements for reliability and availability.
Moreover, different sub-systems have very different requirements. For example,
billing systems are always a high priority because if the billing system is down,
you can't make money. But, even within the billing system, if the ability to dispute
charges is sometimes unavailable, it may be OK from a business point of view.

Best effort
Best effort means, counter-intuitively, no guarantee whatsoever. If it works, great!
If it doesn't work – oh well, what are you going to do? This level of reliability and
availability may be appropriate for internal components that change often so the
effort to make them robust is not worth it. As long as the services or clients that
invoke the unreliable services are able to handle the occasional errors or outages,
then all is well. It may also be appropriate for services released in the wild as beta.

Best effort is great for developers. Developers can move fast and break things. They
are not worried about the consequences and they don't have to go through a gauntlet
of rigorous tests and approvals. The performance of best-effort services may be better
than more robust services because the best-effort service can often skip expensive
steps such as verifying requests, persisting intermediate results, and replicating data.
But, on the other hand, more robust services are often heavily optimized and their
supporting hardware is fine-tuned to their workload. The cost of best-effort services
is usually lower because they don't need to employ redundancy, unless the operators
neglect to do basic capacity planning and just over-provision needlessly.

In the context of Kubernetes, the big question is whether all the services provided
by the cluster are best effort. If this is the case, then the cluster itself doesn't have
to be highly available. You could probably have a single master node with a single
instance of etcd, and Heapster or another monitoring solution may not need to be
deployed. This is typically appropriate for local development clusters only. Even a
shared development cluster that multiple developers use should have a decent level
of reliability and robustness or else all the developers will be twiddling their thumbs
whenever the cluster goes down unexpectedly.

Chapter 3

[89]

Maintenance windows
In a system with maintenance windows, special times are dedicated for performing
various maintenance activities, such as applying security patches, upgrading
software, pruning log files, and database cleanups. With a maintenance window, the
system (or a sub-system) becomes unavailable. This is planned off-time and, often,
users are notified. The benefit of maintenance windows is that you don't have to
worry how your maintenance actions are going to interact with live requests coming
into the system. It can drastically simplify operations. System administrators and
operators love maintenance windows just as much as developers love best-effort
systems.

The downside, of course, is that the system is down during maintenance. This may
only be acceptable for systems where user activity is limited to certain times (such as
US office hours or weekdays only).

With Kubernetes, you can set up maintenance windows by redirecting all incoming
requests via the load balancer to a web page (or JSON response) that notifies users
about the maintenance window.

But in most cases, the flexibility of Kubernetes should allow you to do live
maintenance. In extreme cases, such as upgrading the Kubernetes version, or the
switch from etcd v2 to etcd v3, you may want to resort to a maintenance window.
Blue-green deployment is another alternative. But the larger the cluster, the more
expansive the blue-green alternative, because you must duplicate your entire
production cluster, which is both costly and can cause you to run into problems
like insufficient quota.

Quick recovery
Quick recovery is another important aspect of highly available clusters. Something
will go wrong at some point. Your unavailability clock starts running. How quickly
can you get back to normal?

Sometimes it's not up to you. For example, if your cloud provider has an outage (and
you didn't implement a federated cluster, as we will discuss later), then you just have
to sit and wait until they sort it out. But the most likely culprit is a problem with
a recent deployment. There are, of course, time-related issues, and even calendar-
related issues. Do you remember the leap-year bug that took down Microsoft Azure
on February 29, 2012?

High Availability and Reliability

[90]

The poster boy of quick recovery is, of course, blue-green deployment – if you keep
the previous version running when the problem is discovered. But, that's usually
good for problems that happen during deployment or shortly after. If a sneaky bug
lays dormant and is discovered only hours after the deployment, then you will have
torn down your blue deployment already and you will not be able to revert to it.

On the other hand, rolling updates mean that if the problem is discovered early, then
most of your pods will still run the previous version.

Data-related problems can take a long time to reverse, even if your backups are up to
date and your restore procedure actually works (definitely test this regularly).

Tools like Heptio Velero can help in some scenarios by creating snapshot backups of
your cluster that you can just restore if something goes wrong and you're not sure
how to fix it.

Zero downtime
Finally, we arrive at the zero-downtime system. There is no such thing as a
zero-downtime system. All systems fail and all software systems definitely fail.
Sometimes the failure is serious enough that the system or some of its services will
be down. Think about zero downtime as a best-effort distributed system design.
You design for zero downtime in the sense that you provide a lot of redundancy
and mechanisms to address expected failures without bringing the system down. As
always, remember that, even if there is a business case for zero downtime, it doesn't
mean that every component must have zero downtime. Reliable (within reason)
systems can be constructed from highly unreliable components.

The plan for zero downtime is as follows:

•	 Redundancy at every level: This is a required condition. You can't have a
single point of failure in your design because when it fails, your system is
down.

•	 Automated hot swapping of failed components: Redundancy is only
as good as the ability of the redundant components to kick into action
as soon as the original component has failed. Some components can share
the load (for example, stateless web servers), so there is no need for explicit
action. In other cases, such as the Kubernetes scheduler and controller
manager, you need a leader election in place to make sure the cluster
keeps humming along.

Chapter 3

[91]

•	 Tons of metrics, monitoring, and alerts to detect problems early: Even with
careful design, you may miss something or some implicit assumption might
invalidate your design. Often, such subtle issues creep up on you and with
enough attention, you may discover it before it becomes an all-out system
failure. For example, suppose there is a mechanism in place to clean up old
log files when disk space is over 90% full, but for some reason, it doesn't
work. If you set an alert for when disk space is over 95% full, then you'll
catch it and be able to prevent the system failure.

•	 Tenacious testing before deployment to production: Comprehensive tests
have proven themselves as a reliable way to improve quality. It is hard
work to have comprehensive tests for something as complicated as a large
Kubernetes cluster running a massive distributed system, but you need it.
What should you test? Everything. That's right. For zero downtime, you
need to test both the application and the infrastructure together. Your 100%
passing unit tests are a good start, but they don't provide much confidence
that when you deploy your application on your production Kubernetes
cluster, it will still run as expected. The best tests are, of course, on your
production cluster after a blue-green deployment or identical cluster. In lieu
of a full-fledged identical cluster, consider a staging environment with as
much fidelity as possible to your production environment. Here is a list of
tests you should run. Each of these tests should be comprehensive because if
you leave something untested, it might be broken:

•	 Unit tests
•	 Acceptance tests
•	 Performance tests
•	 Stress tests
•	 Rollback tests
•	 Data restore tests
•	 Penetration tests

Does that sound crazy? Good. Zero-downtime, large-scale systems are hard. There is
a reason why Microsoft, Google, Amazon, Facebook, and other big companies have
tens of thousands of software engineers (combined) just working on infrastructure,
operations, and making sure things are up and running.

High Availability and Reliability

[92]

•	 Keep the raw data: For many systems, the data is the most critical asset.
If you keep the raw data, you can recover from any data corruption and
processed data loss that happens later. This will not really help you with zero
downtime because it can take a while to re-process the raw data, but it will
help with zero data loss, which is often more important. The downside to this
approach is that the raw data is often huge compared to the processed data.
A good option may be to store the raw data in cheaper storage compared to
the processed data.

•	 Perceived uptime as a last resort: OK. Some part of the system is down.
You may still be able to maintain some level of service. In many situations,
you may have access to a slightly stale version of the data or can let the user
access some other part of the system. It is not a great user experience, but
technically the system is still available.

Site reliability engineering
Site reliability engineering (SRE) is a real-world approach for operating reliable
distributed systems. SRE embraces failures and works with service-level indicators
(SLIs), service-level objectives (SLOs), and service-level agreements (SLAs). Each
service has an objective, such as latency below 50 milliseconds for 95% of requests. If
a service violates its objectives, then the team focuses on fixing the issue before going
back to work on new features and capabilities.

The beauty of SRE is that you get to play with the knobs for cost and performance
If you want to invest more in reliability, then be ready to pay for it with resources
and development time.

Performance and data consistency
When you develop or operate distributed systems, the CAP theorem should always
be in the back of your mind. CAP stands for consistency, availability, and partition
tolerance.

Consistency means that every read receives the most recent write or an error.
Availability means that every request receives a non-error response (but the
response may be stale). Partition tolerance means the system continues to operate
even when an arbitrary number of messages between nodes are dropped or delayed
by the network.

Chapter 3

[93]

The theorem says that you can have, at most, two out of the three. Since any
distributed system can suffer from a network partition, in practice you can choose
between CP or AP. CP means that in order to remain consistent, the system will
not be available in the event of a network partition. AP means that the system will
always be available but might not be consistent. For example, reads from different
partitions might return different results because one of the partitions didn't receive a
write. In this section, we will focus on highly available systems, which means AP. To
achieve high availability, we must sacrifice consistency. But that doesn't mean that
our system will have corrupt or arbitrary data. The keyword is eventual consistency.
Our system may be a little bit behind and provide access to somewhat stale data, but
eventually, you'll get what you expect.

When you start thinking in terms of eventual consistency, it opens the door to
potentially significant performance improvements. For example, if some important
value is updated frequently (for example, every second), but you send its value only
every minute, you have reduced your network traffic by a factor of 60 and you're
on average only 30 seconds behind real-time updates. This is very significant. This
is huge. You have just scaled your system to handle 60 times more users or requests
with the same amount of resources.

Summary
In this chapter, we looked at reliable and highly available large-scale Kubernetes
clusters. This is arguably the sweet spot for Kubernetes. While it is useful to be able
to orchestrate a small cluster running a few containers, it is not necessary, but at
scale, you must have an orchestration solution in place you can trust to scale with
your system, and provide the tools and the best practices to do that.

You now have a solid understanding of the concepts of reliability and high
availability in distributed systems. You delved into the best practices for running
reliable and highly available Kubernetes clusters. You explored the nuances of live
Kubernetes cluster upgrades and you can make wise design choices regarding levels
of reliability and availability, as well as their performance and cost.

In the next chapter, we will address the important topic of security in Kubernetes.
We will also discuss the challenges of securing Kubernetes and the risks involved.
We will learn all about namespaces, service accounts, admission control,
authentication, authorization, and encryption.

High Availability and Reliability

[94]

References
•	 https://kubernetes.io/docs/setup/production-environment/tools/

kubeadm/ha-topology/

•	 https://kubernetes.io/docs/setup/production-environment/tools/
kubeadm/high-availability/

•	 https://medium.com/magalix/kubernetes-autoscaling-101-cluster-
autoscaler-horizontal-pod-autoscaler-and-vertical-pod-2a441d9ad231

https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/ha-topology/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/ha-topology/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/high-availability/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/high-availability/
https://medium.com/magalix/kubernetes-autoscaling-101-cluster-autoscaler-horizontal-pod-autoscaler-and-vertical-pod-2a441d9ad231
https://medium.com/magalix/kubernetes-autoscaling-101-cluster-autoscaler-horizontal-pod-autoscaler-and-vertical-pod-2a441d9ad231

[95]

4
Securing Kubernetes

In Chapter 3, High Availability and Reliability, we looked at reliable and highly
available Kubernetes clusters, the basic concepts, the best practices, how to do
live updates, and the many design trade-offs regarding performance and cost.

In this chapter, we will explore the important topic of security. Kubernetes clusters
are complicated systems composed of multiple layers of interacting components.
Isolation and compartmentalization of different layers is very important when
running critical applications. To secure the system and ensure proper access to
resources, capabilities, and data, we must first understand the unique challenges
facing Kubernetes as a general-purpose orchestration platform that runs unknown
workloads. Then we can take advantage of various securities, isolation, and access
control mechanisms to make sure the cluster, the applications running on it, and the
data are all safe. We will discuss various best practices and when it is appropriate to
use each mechanism.

At the end of this chapter, you will have a good understanding of Kubernetes
security challenges. You will gain practical knowledge of how to harden Kubernetes
against various potential attacks, establishing defense in depth, and will even be able
to safely run a multi-tenant cluster while providing different users full isolation as
well as full control over their part of the cluster.

Securing Kubernetes

[96]

Understanding Kubernetes security
challenges
Kubernetes is a very flexible system that manages very low-level resources in a
generic way. Kubernetes itself can be deployed on many operating systems and
hardware or virtual-machine solutions, on-premises, or in the cloud. Kubernetes
runs workloads implemented by runtimes it interacts with through a well-
defined runtime interface, but without understanding how they are implemented.
Kubernetes manipulates critical resources such as networking, DNS, and resource
allocation on behalf of or in service of applications it knows nothing about.
This means that Kubernetes is faced with the difficult task of providing good
security mechanisms and capabilities in a way that application developers and
cluster administrators can utilize, while protecting itself, the developers, and the
administrators from common mistakes.

In this section, we will discuss security challenges in several layers or components of
a Kubernetes cluster: nodes, network, images, pods, and containers. Defense in depth
is an important security concept that requires systems to protect themselves at each
level, both to mitigate attacks that penetrate other layers and to limit the scope and
damage of a breach. Recognizing the challenges in each layer is the first step toward
defense in depth.

Node challenges
The nodes are the hosts of the runtime engines. If an attacker gets access to a node,
this is a serious threat. It can control at least the host itself and all the workloads
running on it. But it gets worse. The node has a kubelet running that talks to the API
server. A sophisticated attacker can replace the kubelet with a modified version and
effectively evade detection by communicating normally with the Kubernetes API
server, yet running its own workloads instead of the scheduled workloads, collecting
information about the overall cluster, and disrupting the API server and the rest
of the cluster by sending malicious messages. The node will have access to shared
resources and to secrets that may allow it to infiltrate even deeper. A node breach is
very serious, both because of the possible damage and the difficulty of detecting it
after the fact.

Nodes can be compromised at the physical level too. This is more relevant on bare-
metal machines where you can tell which hardware is assigned to the Kubernetes
cluster.

Chapter 4

[97]

Another attack vector is resource drain. Imagine that your nodes become part
of a bot network that, unrelated to your Kubernetes cluster, just runs its own
workloads like cryptocurrency mining and drains CPU and memory. The danger
here is that your cluster will choke and run out of resources to run your workloads
or alternatively, your infrastructure may scale automatically and allocate more
resources.

Another problem is the installation of debugging and troubleshooting tools or
modifying the configuration outside of an automated deployment. Those are
typically untested and, if left behind and active, can lead to at least degraded
performance, but can also cause more sinister problems. At the least, it increases
the attack surface.

Where security is concerned, it's a numbers game. You want to understand the attack
surface of the system and where you're vulnerable. Let's list all the node challenges:

•	 An attacker takes control of the host
•	 An attacker replaces the kubelet
•	 An attacker takes control of a node that runs master components (such as the

API server, scheduler, or controller manager)
•	 An attacker gets physical access to a node
•	 An attacker drains resources unrelated to the Kubernetes cluster
•	 Self-inflicted damage occurs through the installation of debugging and

troubleshooting tools or a configuration change

Network challenges
Any non-trivial Kubernetes cluster spans at least one network. There are many
challenges related to networking. You need to understand how your system
components are connected at a very fine level. Which components are supposed to
talk to each other? What network protocols do they use? What ports? What data do
they exchange? How is your cluster connected to the outside world?

There is a complex chain of exposing ports and capabilities or services:

•	 Container to host
•	 Host to host within the internal network
•	 Host to the world

Securing Kubernetes

[98]

Using overlay networks (which will be discussed more in Chapter 10, Exploring
Advanced Networking) can help with defense in depth where, even if an attacker gains
access to a container, they are sandboxed and can't escape to the underlay network's
infrastructure.

Discovering components is a big challenge too. There are several options here, such
as DNS, dedicated discovery services, and load balancers. Each comes with a set of
pros and cons that take careful planning and insight to get right for your situation.

Making sure two containers can find each other and exchange information is not
trivial.

You need to decide which resources and endpoints should be publicly accessible.
Then you need to come up with a proper way to authenticate users, services, and
authorize them to operate on resources. Often you may want to control access
between internal services too.

Sensitive data must be encrypted on the way into and out of the cluster and
sometimes at rest, too. That means key management and safe key exchange,
which is one of the most difficult problems to solve in security.

If your cluster shares networking infrastructure with other Kubernetes clusters
or non-Kubernetes processes then you have to be diligent about isolation and
separation.

The ingredients are network policies, firewall rules, and software-defined
networking (SDN). The recipe is often customized. This is especially challenging
with on-premises and bare-metal clusters. Let's recap:

•	 Come up with a connectivity plan
•	 Choose components, protocols, and ports
•	 Figure out dynamic discovery
•	 Public versus private access
•	 Authentication and authorization (including between internal services)
•	 Design firewall rules
•	 Decide on a network policy
•	 Key management and exchange

There is a constant tension between making it easy for containers, users, and services
to find and talk to each other at the network level versus locking down access and
preventing attacks through the network or attacks on the network itself.

Chapter 4

[99]

Many of these challenges are not Kubernetes-specific. However, the fact that
Kubernetes is a generic platform that manages key infrastructure and deals with low-
level networking makes it necessary to think about dynamic and flexible solutions
that can integrate system-specific requirements into Kubernetes.

Image challenges
Kubernetes runs containers that comply with one of its runtime engines. It has no
idea what these containers are doing (except collecting metrics). You can put certain
limits on containers via quotas. You can also limit their access to other parts of the
network via network policies. But, in the end, containers do need access to host
resources, other hosts in the network, distributed storage, and external services. The
image determines the behavior of a container. There are two categories of problems
with images:

•	 Malicious images
•	 Vulnerable images

Malicious images are images that contain code or configuration that was designed
by an attacker to do some harm, collect information, or just take advantage of your
infrastructure for their purposes (for example, crypto mining). Malicious code can
be injected into your image preparation pipeline, including any image repositories
you use. Alternatively, you may install third-party images that were compromised
themselves and now contain malicious code.

Vulnerable images are images you designed (or third-party images you install) that
just happen to contain some vulnerability that allows an attacker to take control
of the running container or cause some other harm, including injecting their own
code later.

It's hard to tell which category is worse. At the extreme, they are equivalent because
they allow seizing total control of the container. The other defenses that are in place
(remember defense in depth?) and the restrictions you put on the container will
determine how much damage it can do. Minimizing the danger of bad images is very
challenging. Fast-moving companies utilizing microservices may generate many
images daily. Verifying an image is not an easy task either. Consider, for example,
how Docker images are made of layers.

The base images that contain the operating system may become vulnerable any time
a new vulnerability is discovered. Moreover, if you rely on base images prepared by
someone else (very common) then malicious code may find its way into those base
images, which you have no control over and you trust implicitly.

Securing Kubernetes

[100]

When a vulnerability in a third-party dependency is discovered, ideally there is
already a fixed version and you should patch it as soon as possible.

We can summarize the image challenges that developers are likely to face as follows:

•	 Kubernetes doesn't know what images are doing
•	 Kubernetes must provide access to sensitive resources for the designated

function
•	 It's difficult to protect the image preparation and delivery pipeline (including

image repositories)
•	 The speed of development and deployment of new images conflict with the

careful review of changes
•	 Base images that contain the OS or other common dependencies can easily

get out of date and become vulnerable
•	 Base images are often not under your control and might be more prone to the

injection of malicious code

Integrating a static image analyzer like CoreOS Clair or the Anchore Engine into
your CI/CD pipeline can help a lot. In addition, minimizing the blast radius by
limiting the resource access of containers only to what they need to perform their job
can reduce the impact on your system if a container gets compromised. You must
also be diligent about patching known vulnerabilities.

Configuration and deployment challenges
Kubernetes clusters are administered remotely. Various manifests and policies
determine the state of the cluster at each point in time. If an attacker gets access to
a machine with administrative control over the cluster, they can wreak havoc, such
as collecting information, injecting bad images, weakening security, and tampering
with logs. As usual, bugs and mistakes can be just as harmful; by neglecting
important security measures, you leave the cluster open for attack. It is very common
these days for employees with administrative access to the cluster to work remotely
from home or from a coffee shop and have their laptops with them, where you are
just one kubectl command from opening the floodgates.

Let's reiterate the challenges:

•	 Kubernetes is administered remotely
•	 An attacker with remote administrative access can gain complete control

over the cluster

Chapter 4

[101]

•	 Configuration and deployment is typically more difficult to test than code
•	 Remote or out-of-office employees risk extended exposure, allowing an

attacker to gain access to their laptops or phones with administrative access

There are some best practices to minimize this risk, such as a layer of indirection
in the form of a jump box, requiring a VPN connection, and using multi-factor
authentication and one-time passwords.

Pod and container challenges
In Kubernetes, pods are the unit of work and contain one or more containers. The
pod is a grouping and deployment construct. But often, containers that are deployed
together in the same pod interact through direct mechanisms. The containers all
share the same localhost network and often share mounted volumes from the host.
This easy integration between containers in the same pod can result in exposing
parts of the host to all the containers. This might allow one bad container (either
malicious or just vulnerable) to open the way for an escalated attack on other
containers in the pod, later taking over the node itself and the entire cluster. Master
add-ons are often collocated with master components and present that kind of
danger, especially because many of them are experimental. The same goes for
daemon sets that run pods on every node. The practice of sidecar containers where
additional containers are deployed in a pod along with your application container
is very popular, especially with service meshes. This increases that risk because the
sidecar containers are often outside your control, and if compromised, can provide
access to your infrastructure.

Multi-container pod challenges include the following:

•	 The same pod containers share the localhost network
•	 The same pod containers sometimes share a mounted volume on the host

filesystem
•	 Bad containers might poison other containers in the pod
•	 Bad containers have an easier time attacking the node if collocated with

another container that accesses crucial node resources
•	 Experimental add-ons that are collocated with master components might be

experimental and less secure
•	 Service meshes introduce a sidecar container that might become an attack

vector

Securing Kubernetes

[102]

Consider carefully the interaction between containers running in the same pod. You
should realize that a bad container might try to compromise its sibling containers in
the same pod as its first attack.

Organizational, cultural, and process
challenges
Security is often held in contrast to productivity. This is a normal trade-off and
nothing to worry about. Traditionally, when developers and operations were
separate, this conflict was managed at an organizational level. Developers pushed for
more productivity and treated security requirements as the cost of doing business.
Operations controlled the production environment and were responsible for access
and security procedures. The DevOps movement brought down the wall between
developers and operations. Now, speed of development often takes a front-row
seat. Concepts such as continuous deployment deploying multiple times a day
without human intervention were unheard of in most organizations. Kubernetes
was designed for this new world of cloud-native applications. But, it was developed
based on Google's experience. Google had a lot of time and skilled experts to develop
the proper processes and tooling to balance rapid deployments with security. For
smaller organizations, this balancing act might be very challenging and security
could be weakened by focusing too much on productivity.

The challenges facing organizations that adopt Kubernetes are as follows:

•	 Developers that control the operation of Kubernetes might be less security-
oriented

•	 The speed of development might be considered more important than security
•	 Continuous deployment might make it difficult to detect certain security

problems before they reach production
•	 Smaller organizations might not have the knowledge and expertise to

manage security properly in Kubernetes clusters

There are no easy answers here. You should be deliberate in striking the right
balance between security and agility. I recommend having a dedicated security
team (or at least one person focused on security) participate in all planning meetings
and advocate for security. It's important to bake security into your system from the
get-go.

In this section, we reviewed the many challenges you face when you try to build a
secure Kubernetes cluster. Most of these challenges are not specific to Kubernetes,
but using Kubernetes means there is a large part of your system that is generic and is
unaware of what the system is doing.

Chapter 4

[103]

This can pose problems when trying to lock down a system. The challenges are
spread across different levels:

•	 Node challenges
•	 Network challenges
•	 Image challenges
•	 Configuration and deployment challenges
•	 Pod and container challenges
•	 Organizational and process challenges

In the next section, we will look at the facilities Kubernetes provides to address some
of those challenges. Many of the challenges require solutions at the larger system
scope. It is important to realize that just utilizing all of Kubernetes' security features
is not enough.

Hardening Kubernetes
The previous section cataloged and listed the variety of security challenges facing
developers and administrators deploying and maintaining Kubernetes clusters. In
this section, we will hone in on the design aspects, mechanisms, and features offered
by Kubernetes to address some of the challenges. You can get to a pretty good state
of security by judicious use of capabilities such as service accounts, network policies,
authentication, authorization, admission control, AppArmor, and secrets.

Remember that a Kubernetes cluster is one part of a bigger system that includes
other software systems, people, and processes. Kubernetes can't solve all problems.
You should always keep in mind general security principles, such as defense in
depth, a need-to-know basis, and the principle of least privilege. In addition, log
everything you think may be useful in the event of an attack and have alerts for early
detection when the system deviates from its state. It may be just a bug or it may be
an attack. Either way, you want to know about it and respond.

Understanding service accounts in
Kubernetes
Kubernetes has regular users that are managed outside the cluster for humans
connecting to the cluster (for example, via the kubectl command), and it has service
accounts.

Securing Kubernetes

[104]

Regular user accounts are global and can access multiple namespaces in the cluster.
Service accounts are constrained to one namespace. This is important. It ensures
namespace isolation, because whenever the API server receives a request from a pod,
its credentials will apply only to its own namespace.

Kubernetes manages service accounts on behalf of the pods. Whenever Kubernetes
instantiates a pod, it assigns the pod a service account. The service account identifies
all the pod processes when they interact with the API server. Each service account
has a set of credentials mounted in a secret volume. Each namespace has a default
service account called default. When you create a pod, it is automatically assigned
the default service account unless you specify a different service account.

You can create additional service accounts. Create a file called custom-service-
account.yaml with the following content:

apiVersion: v1
kind: ServiceAccount
metadata:
 name: custom-service-account

Now type the following:

$ kubectl create -f custom-service-account.yaml
serviceaccount/custom-service-account created
Here is the service account listed alongside the default service account:

$ kubectl get serviceAccounts
NAME SECRETS AGE
custom-service-account 1 39s
default 1 18d

Note that a secret was created automatically for your new service account.

To get more detail, type the following:

$ kubectl get serviceAccounts/custom-service-account -o yaml
apiVersion: v1
kind: ServiceAccount
metadata:
 creationTimestamp: "2020-06-01T01:24:24Z"
 name: custom-service-account
 namespace: default
 resourceVersion: "654316"
 selfLink: /api/v1/namespaces/default/serviceaccounts/custom-service-
account

Chapter 4

[105]

 uid: 69393e47-c3b2-11e9-bb43-0242ac130002
secrets:
- name: custom-service-account-token-kdwhs

You can see the secret itself, which includes a ca.crt file and a token, by typing the
following:

$ kubectl get secret custom-service-account-token-kdwhs -o yaml

How does Kubernetes manage service accounts?
The API server has a dedicated component called the service account admission
controller. It is responsible for checking, at pod creation time, if the API server has a
custom service account and, if it does, that the custom service account exists. If there
is no service account specified, then it assigns the default service account.

It also ensures the pod has ImagePullSecrets, which are necessary when images
need to be pulled from a remote image registry. If the pod spec doesn't have any
secrets, it uses the service account's ImagePullSecrets.

Finally, it adds a volume with an API token for API access and a volumeSource
mounted at /var/run/secrets/kubernetes.io/serviceaccount.

The API token is created and added to the secret by another component called the
Token Controller whenever a service account is created. The Token Controller
also monitors secrets and adds or removes tokens wherever secrets are added to or
removed from a service account.

The service account controller ensures the default service account exists for every
namespace.

Accessing the API server
Accessing the API server requires a chain of steps that include authentication,
authorization, and admission control. At each stage, the request may be rejected.
Each stage consists of multiple plugins that are chained together.

Securing Kubernetes

[106]

The following diagram illustrates this:

Figure 4.1: Accessing the API server

Authenticating users
When you first create the cluster, some keys and certificates are created for you to
authenticate against the cluster. Kubectl uses them to authenticate itself to the API
server and vice versa over TLS (an encrypted HTTPS connection). You can view your
configuration using this command:

$ kubectl config view
apiVersion: v1
clusters:
- cluster:
 certificate-authority-data: DATA+OMITTED
 server: https://localhost:6443
 name: default
contexts:
- context:
 cluster: default
 user: default
 name: default
current-context: default
kind: Config
preferences: {}
users:

Chapter 4

[107]

- name: default
 user:
 password: DATA+OMITTED
 username: admin

This is the configuration for a k3d cluster. It may look different for other types of
clusters.

Note that if multiple users need to access the cluster, the creator should provide the
necessary client certificates and keys to the other users in a secure manner.

This is just establishing basic trust with the Kubernetes API server itself. You're not
authenticated yet. Various authentication modules may look at the request and check
for various additional client certificates, passwords, bearer tokens, and JWT tokens
(for service accounts). Most requests require an authenticated user (either a regular
user or a service account), although there are some anonymous requests too. If a
request fails to authenticate with all the authenticators it will be rejected with a 401
HTTP status code (unauthorized, which is a bit of a misnomer).

The cluster administrator determines what authentication strategies to use by
providing various command-line arguments to the API server:

•	 --client-ca-file= (for x509 client certificates specified in a file)
•	 --token-auth-file= (for bearer tokens specified in a file)
•	 --basic-auth-file= (for user/password pairs specified in a file)
•	 --enable-bootstrap-token-auth (for bootstrap tokens used by kubeadm)

Service accounts use an automatically loaded authentication plugin. The
administrator may provide two optional flags:

•	 --service-account-key-file= (A PEM-encoded key for signing bearer tokens.
If unspecified, the API server's TLS private key will be used.)

•	 --service-account-lookup (If enabled, tokens that are deleted from the API
will be revoked.)

There are several other methods, such as OpenID Connect, webhooks, Keystone (the
OpenStack identity service), and an authenticating proxy. The main theme is that the
authentication stage is extensible and can support any authentication mechanism.

The various authentication plugins will examine the request and, based on the
provided credentials, will associate the following attributes:

•	 username (a user-friendly name)
•	 uid (a unique identifier and more consistent than the username)

Securing Kubernetes

[108]

•	 groups (a set of group names the user belongs to)
•	 extra fields (these map string keys to string values)

In Kubernetes 1.11, kubectl gained the ability to use credential plugins to receive
an opaque token from a provider such as an organizational LDAP server. These
credentials are sent by kubectl to the API server that typically uses a webhook token
authenticator to authenticate the credentials and accept the request.

The authenticators have no knowledge whatsoever of what a particular user
is allowed to do. They just map a set of credentials to a set of identities. The
authenticators run in an unspecified order; the first authenticator to accept the
passed credentials will associate an identity with the incoming request and the
authentication is considered successful. If all authenticators reject the credentials
then authentication failed.

Impersonation
It is possible for users to impersonate different users (with proper authorization).
For example, an admin may want to troubleshoot some issue as a different user with
fewer privileges. This requires passing impersonation headers to the API request.
The headers are as follows:

•	 Impersonate-User: The username to act as.
•	 Impersonate-Group: A group name to act as. Can be provided multiple

times to set multiple groups. Optional. Requires Impersonate-User.
•	 Impersonate-Extra-(extra name): A dynamic header used to associate extra

fields with the user. Optional. Requires Impersonate-User.

With kubectl, you pass --as and --as-group parameters.

Authorizing requests
Once a user is authenticated, authorization commences. Kubernetes has generic
authorization semantics. A set of authorization modules receives the request, which
includes information such as the authenticated username and the request's verb
(list, get, watch, create, and so on). Unlike authentication, all authorization plugins
will get a shot at any request. If a single authorization plugin rejects the request
or no plugin had an opinion then it will be rejected with a 403 HTTP status code
(forbidden). A request will continue only if at least one plugin accepts it and no other
plugin rejected it.

The cluster administrator determines what authorization plugins to use by
specifying the --authorization-mode command-line flag, which is a comma-
separated list of plugin names.

Chapter 4

[109]

The following modes are supported:

•	 --authorization-mode=AlwaysDeny rejects all requests. Use if you don't need
authorization.

•	 --authorization-mode=AlwaysAllow allows all requests. Use if you don't need
authorization. This is useful during testing.

•	 --authorization-mode=ABAC allows for a simple, local file-based, user-
configured authorization policy. ABAC stands for Attribute-Based Access
Control.

•	 --authorization-mode=RBAC is a role-based mechanism where authorization
policies are stored and driven by the Kubernetes API. RBAC stands for Role-
Based Access Control.

•	 --authorization-mode=Node is a special mode designed to authorize API
requests made by kubelets.

•	 --authorization-mode=Webhook allows for authorization to be driven by a
remote service using REST.

You can add your own custom authorization plugin by implementing the following
straightforward Go interface:

type Authorizer interface {

 Authorize(a Attributes) (authorized bool, reason string, err error)

}

The Attributes input argument is also an interface that provides all the information
you need to make an authorization decision:

type Attributes interface {
 GetUser() user.Info
 GetVerb() string
 IsReadOnly() bool
 GetNamespace() string
 GetResource() string
 GetSubresource() string
 GetName() string
 GetAPIGroup() string
 GetAPIVersion() string
 IsResourceRequest() bool
 GetPath() string
}

Securing Kubernetes

[110]

You can find the source code at https://github.com/kubernetes/apiserver/blob/
master/pkg/authorization/authorizer/interfaces.go.

Using the kubectl can-i command, you check what actions you can perform and
even impersonate other users:

$ kubectl auth can-i create deployments
Yes

$ kubectl auth can-i create deployments --as jack
no

Using admission control plugins
OK. The request was authenticated and authorized, but there is one more step before
it can be executed. The request must go through a gauntlet of admission-control
plugins. Similar to the authorizers, if a single admission controller rejects a request,
it is denied.

Admission controllers are a neat concept. The idea is that there may be global
cluster concerns that could be grounds for rejecting a request. Without admission
controllers, all authorizers would have to be aware of these concerns and reject
the request. But, with admission controllers, this logic can be performed once. In
addition, an admission controller may modify the request. Admission controllers
run in either validating mode or mutating mode. As usual, the cluster administrator
decides which admission control plugins run by providing a command-line
argument called admission-control. The value is a comma-separated and ordered
list of plugins. Here is the list of recommended plugins for Kubernetes >= 1.9 (the
order matters):

--admission-control=NamespaceLifecycle,LimitRanger,ServiceAccount,Persiste
ntVolumeLabel,DefaultStorageClass,MutatingAdmissionWebhook,ValidatingAdmis
sionWebhook,ResourceQuota,DefaultTolerationSeconds

Let's look at some of the available plugins (more are added all the time):

•	 DefaultStorageClass: Adds a default storage class to requests for the
creation of a PersistentVolumeClaim that doesn't specify a storage class.

•	 DefaultTolerationSeconds: Sets the default toleration of pods for taints
(if not set already): notready:NoExecute and notreachable:NoExecute.

•	 EventRateLimit: Limits flooding of the API server with events (new in
Kubernetes 1.9).

https://github.com/kubernetes/apiserver/blob/master/pkg/authorization/authorizer/interfaces.go
https://github.com/kubernetes/apiserver/blob/master/pkg/authorization/authorizer/interfaces.go

Chapter 4

[111]

•	 ExtendedResourceToleration: Combine taints on nodes with special
resources such as GPUs and Field Programmable Gate Array (FPGA) with
toleration on pods that request those resources. The end result is that the
node with the extra resources will be dedicated for pods with the proper
toleration.

•	 ImagePolicyWebhook: This complicated plugin connects to an external
backend to decide whether a request should be rejected based on the image.

•	 LimitPodHardAntiAffinity: Denies any pod that defines the
AntiAffinity topology key other than kubernetes.io/hostname in
requiredDuringSchedulingRequiredDuringExecution.

•	 LimitRanger: Rejects requests that violate resource limits.
•	 MutatingAdmissionWebhook: Calls registered mutating webhooks that are able

to modify their target object. Note that there is no guarantee that the change
will be effective due to potential changes by other mutating webhooks.

•	 NamespaceAutoProvision: Creates the namespace in the request if it doesn't
exist already.

•	 NamespaceLifecycle: Rejects object creation requests in namespaces that are
in the process of being terminated or don't exist.

•	 PodSecurityPolicy: Rejects a request if the request security context doesn't
conform to pod security policies.

•	 ResourceQuota: Rejects requests that violate the namespace's resource quota.
•	 ServiceAccount: Automation for service accounts.
•	 ValidatingAdmissionWebhook: This admission controller calls any validating

webhooks that match the request. Matching webhooks are called in parallel;
if any of them rejects the request, the request fails.

As you can see, the admission control plugins have very diverse functionality. They
support namespace-wide policies and enforce validity of requests mostly from the
resource management and security points of view. This frees up the authorization
plugins to focus on valid operations. ImagePolicyWebHook is the gateway to
validating images, which is a big challenge. MutatingAdmissionWebhook and
ValidatingAdmissionWebhook are the gateways to dynamic admission control, where
you can deploy your own admission controller without compiling it into Kubernetes.
Dynamic admission control is suitable for tasks like semantic validation of resources
(do all pods have the standard set of labels?).

The division of responsibility for validating an incoming request through the
separate stages of authentication, authorization, and admission, each with its
own plugins, makes a complicated process much more manageable to understand
and use.

Securing Kubernetes

[112]

The mutating admission controllers provide a lot of flexibility and the ability to
automatically enforce certain policies without burdening the users (for example,
creating a namespace automatically if it doesn't exist).

Securing pods
Pod security is a major concern, since Kubernetes schedules the pods and lets them
run. There are several independent mechanisms for securing pods and containers.
Together these mechanisms support defense in depth, where, even if an attacker
(or a mistake) bypasses one mechanism, it will get blocked by another.

Using a private image repository
This approach gives you a lot of confidence that your cluster will only pull images
that you have previously vetted, and you can manage upgrades better. You can
configure your HOME/.docker/config.json on each node. But, on many cloud
providers, you can't do this because nodes are provisioned automatically for you.

ImagePullSecrets
This approach is recommended for clusters on cloud providers. The idea is that the
credentials for the registry will be provided by the pod, so it doesn't matter what
node it is scheduled to run on. This circumvents the problem with .dockercfg at the
node level.

First, you need to create a secret object for the credentials:

$ kubectl create secret the-registry-secret
 --docker-server=<docker registry server>
 --docker-username=<username>
 --docker-password=<password>
 --docker-email=<email>
secret 'docker-registry-secret' created.

You can create secrets for multiple registries (or multiple users for the same registry)
if needed. The kubelet will combine all ImagePullSecrets.

But, since pods can access secrets only in their own namespace, you must create
a secret on each namespace where you want the pod to run.

Once the secret is defined, you can add it to the pod spec and run some pods on
your cluster. The pod will use the credentials from the secret to pull images from
the target image registry:

Chapter 4

[113]

apiVersion: v1
kind: Pod
metadata:
 name: cool-pod
 namespace: the-namespace
spec:
 containers:
 - name: cool-container
 image: cool/app:v1
 imagePullSecrets:
 - name: the-registry-secret

Specifying a security context
A security context is a set of operating-system-level security settings such as UID,
gid, capabilities, and SELinux role. These settings are applied at the container level
as a container security context. You can specify a pod security context that will apply
to all the containers in the pod. The pod security context can also apply its security
settings (in particular, fsGroup and seLinuxOptions) to volumes.

Here is a sample pod security context:

apiVersion: v1
kind: Pod
metadata:
 name: hello-world
spec:
 containers:
 ...
 securityContext:
 fsGroup: 1234
 supplementalGroups: [5678]
 seLinuxOptions:
 level: 's0:c123,c456'

The container security context is applied to each container and it overrides the
pod security context. It is embedded in the containers section of the pod manifest.
Container context settings can't be applied to volumes, which remain at the
pod level.

Here is a sample container security context:

apiVersion: v1

Securing Kubernetes

[114]

kind: Pod
metadata:
 name: hello-world
spec:
 containers:
 - name: hello-world-container
 # The container definition
 # ...
 securityContext:
 privileged: true
 seLinuxOptions:
 level: 's0:c123,c456'

Protecting your cluster with AppArmor
AppArmor is a Linux kernel security module. With AppArmor, you can restrict a process
running in a container to a limited set of resources such as network access, Linux
capabilities, and file permissions. You configure AppArmor through profiles.

Requirements
AppArmor support was added as beta in Kubernetes 1.4. It is not available for every
operating system, so you must choose a supported OS distribution in order to take
advantage of it. Ubuntu and SUSE Linux support AppArmor and enable it by default.
Other distributions have optional support. To check if AppArmor is enabled, type the
following:

cat /sys/module/apparmor/parameters/enabled
Y

If the result is Y then it's enabled.

The profile must be loaded into the kernel. Check the following file:

/sys/kernel/security/apparmor/profiles

Also, only the Docker runtime supports AppArmor at this time.

Securing a pod with AppArmor
Since AppArmor is still in beta, you specify the metadata as annotations and not as
bonafide fields. When it gets out of beta, this will change.

Chapter 4

[115]

To apply a profile to a container, add the following annotation:

container.apparmor.security.beta.kubernetes.io/:

The profile reference can be either the default profile, runtime/default, or a profile
file on the host/localhost.

Here is a sample profile that prevents writing to files:

#include <tunables/global>
profile k8s-apparmor-example-deny-write flags=(attach_disconnected) {
 #include <abstractions/base>
 file,
 # Deny all file writes.
 deny /** w,
}

AppArmor is not a Kubernetes resource, so the format is not the YAML or JSON you're
familiar with.

To verify the profile was attached correctly, check the attributes of process 1:

kubectl exec <pod-name> cat /proc/1/attr/current

Pods can be scheduled on any node in the cluster by default. This means the profile
should be loaded into every node. This is a classic use case for DaemonSet.

Writing AppArmor profiles
Writing profiles for AppArmor by hand is not trivial. There are some tools that
can help: aa-genprof and aa-logprof can generate a profile for you and assist in
fine-tuning it by running your application with AppArmor in complain mode. The
tools keep track of your application's activity and AppArmor warnings, and create a
corresponding profile. This approach works, but it feels clunky.

My favorite tool is bane (https://github.com/jessfraz/bane), which generates
AppArmor profiles from a simpler profile language based on the TOML syntax. Bane
profiles are very readable and easy to grasp. Here is a snippet from a bane profile:

Name = 'nginx-sample'
[Filesystem]
read only paths for the container
ReadOnlyPaths = [
 '/bin/**',
 '/boot/**',

https://github.com/jessfraz/bane

Securing Kubernetes

[116]

 '/dev/**',
]
paths where you want to log on write
LogOnWritePaths = [
 '/**'
]

allowed capabilities
[Capabilities]
Allow = [
 'chown',
 'setuid',
]
[Network]
Raw = false
Packet = false
Protocols = [
 'tcp',
 'udp',
 'icmp'
]

The generated AppArmor profile is pretty gnarly.

Pod security policies
Pod security policies (PSPs) are available as beta since Kubernetes 1.4. It must be
enabled, and you must also enable the PSP admission control to use them. A PSP
is defined at the cluster level and defines the security context for pods. There are a
couple of differences between using a PSP and directly specifying a security context
in the pod manifest, as we did earlier:

•	 Apply the same policy to multiple pods or containers
•	 Let the administrator control pod creation so users don't create pods with

inappropriate security contexts
•	 Dynamically generate a different security context for a pod via the admission

controller

PSPs really scale the concept of security contexts. Typically, you'll have a relatively
small number of security policies compared to the number of pods (or rather, pod
templates). This means that many pod templates and containers will have the same
security policy. Without PSP, you have to manage it individually for each pod manifest.

Chapter 4

[117]

Here is a sample PSP that allows everything:

kind: PodSecurityPolicy
apiVersion: extensions/v1beta1policy/v1beta1
metadata:
 name: permissive
spec:
 seLinux:
 rule: RunAsAny
 supplementalGroups:
 rule: RunAsAny
 runAsUser:
 rule: RunAsAny
 fsGroup:
 rule: RunAsAny
 volumes:
 - "*"

As you can see it is much more human-readable than AppArmor, and is available on
every OS and runtime.

Authorizing pod security policies via RBAC
This is the recommended way to enable the use of policies. Let's create a ClusterRole
(Role works too) to grant access to use the target policies. It should look like the
following:

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: <role name>
rules:
- apiGroups: ['extensionspolicy']
 resources: ['podsecuritypolicies']
 verbs: ['use']
 resourceNames:
 - <list of policies to authorize>

Then, we need to bind the cluster role to the authorized users:

kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:

Securing Kubernetes

[118]

 name: <binding name>
roleRef:
 kind: ClusterRole
 name: <role name>
 apiGroup: rbac.authorization.k8s.io
subjects:
 - < list of authorized service accounts >

Here is a specific service account:

- kind: ServiceAccount
 name: <authorized service account name>
 namespace: <authorized pod namespace>

You can also authorize specific users, but it's not recommended:

- kind: User
 apiGroup: rbac.authorization.k8s.io
 name: <authorized user name>

If using a role binding instead of cluster role binding, then it will apply only to pods
in the same namespace as the binding. This can be paired with system groups to
grant access to all pods run in the namespace:

- kind: Group
 apiGroup: rbac.authorization.k8s.io
 name: system:serviceaccounts

Or equivalently, granting access to all authenticated users in a namespace is done as
follows:

- kind: Group
 apiGroup: rbac.authorization.k8s.io
 name: system:authenticated

Managing network policies
Node, pod, and container security is imperative, but it's not enough. Network
segmentation is critical to design secure Kubernetes clusters that allow multi-
tenancy, as well as to minimize the impact of security breaches. Defense in depth
mandates that you compartmentalize parts of the system that don't need to talk
to each other, while also carefully managing the direction, protocols, and ports
of traffic.

Chapter 4

[119]

Network policies allow the fine-grained control and proper network segmentation
of your cluster. At the core, a network policy is a set of firewall rules applied to a set
of namespaces and pods selected by labels. This is very flexible because labels can
define virtual network segments and be managed as a Kubernetes resource.

This is a huge improvement over trying to segment your network using traditional
approaches like IP address ranges and subnet masks, where you often run out of IP
addresses or allocate too many just in case.

Choosing a supported networking solution
Some networking backends (network plugins) don't support network policies. For
example, the popular Flannel can't be used to apply policies. This is critical. You will
be able to define network policies even if your network plugin doesn't support them.
Your policies will simply have no effect, giving you a false sense of security.

Here is a list of network plugins that support network policies (both ingress and
egress):

•	 Calico
•	 WeaveNet
•	 Canal
•	 Cillium
•	 Kube-Router
•	 Romana
•	 Contiv

If you run your cluster on a managed Kubernetes service then the choice has already
been made for you.

We will explore the ins and outs of network plugins in Chapter 10, Exploring
Advanced Networking. Here we focus on network policies.

Defining a network policy
You define a network policy using a standard YAML manifest.

Here is a sample policy:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:

Securing Kubernetes

[120]

 name: the-network-policy
 namespace: default
spec:
 podSelector:
 matchLabels:
 role: db
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 project: cool-project
 - podSelector:
 matchLabels:
 role: frontend
 ports:
 - protocol: tcp
 port: 6379

The spec part has two important parts, the podSelector and the ingress. The
podSelector governs which pods this network policy applies to. The ingress
governs which namespaces and pods can access these pods and which protocols
and ports they can use.

In the preceding sample network policy, the pod selector specified the target for the
network policy to be all the pods that are labeled role: db. The ingress section has
a from sub-section with a namespace selector and a pod selector. All the namespaces
in the cluster that are labeled project: cool-project, and within these namespaces,
all the pods that are labeled role: frontend can access the target pods labeled role:
db. The ports section defines a list of pairs (protocol and port) that further restrict
what protocols and ports are allowed. In this case, the protocol is tcp and the port is
6379 (the standard Redis port).

Note that the network policy is cluster-wide, so pods from multiple namespaces
in the cluster can access the target namespace. The current namespace is always
included, so even if it doesn't have the project:cool label, pods with role:frontend
can still have access.

It's important to realize that the network policy operates in a whitelist fashion. By
default, all access is forbidden, and the network policy can open certain protocols
and ports to certain pods that match the labels. However, the whitelist nature of the
network policy applies only to pods that are selected for at least one network policy.
If a pod is not selected it will allow all access. Always make sure all your pods are
covered by a network policy.

Chapter 4

[121]

Another implication of the whitelist nature is that, if multiple network policies exist,
then the unified effect of all the rules applies. If one policy gives access to port 1234
and another gives access to port 5678 for the same set of pods, then a pod may be
accessed through either 1234 or 5678.

To use network policies responsibly, consider starting with a deny-all network
policy:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: deny-all
spec:
 podSelector: {}
 policyTypes:
 - Ingress
 - Egress

Then, start adding network policies to allow ingress to specific pods explicitly. Note
that you must apply the deny-all policy for each namespace:

$ kubectl -n <namespace> create -f deny-all-network-policy.yaml

Limiting egress to external networks
Kubernetes 1.8 added egress network policy support, so you can control outbound
traffic too. Here is an example that prevents access to the external IP 1.2.3.4. The
order: 999 ensures the policy is applied before other policies:

apiVersion: v1
kind: policy
metadata:
 name: default-deny-egress
spec:
 order: 999
 egress:
 - action: deny
 destination:
 net: 1.2.3.4
 source: {}

Securing Kubernetes

[122]

Cross-namespace policies
If you divide your cluster into multiple namespaces, it can come in handy
sometimes if pods can communicate across namespaces. You can specify the
ingress.namespaceSelector field in your network policy to enable access from
multiple namespaces. This is useful, for example, if you have production and
staging namespaces and you periodically populate your staging environments
with snapshots of your production data.

Using secrets
Secrets are paramount in secure systems. They can be credentials such as usernames
and passwords, access tokens, API keys, certificates, or crypto keys. Secrets are
typically small. If you have large amounts of data you want to protect, you should
encrypt it and keep the encryption/decryption keys as secrets.

Storing secrets in Kubernetes
Kubernetes used to store secrets in etcd as plaintext by default. This means that
direct access to etcd should be limited and carefully guarded. Starting with
Kubernetes 1.7, you can now encrypt your secrets at rest (when they're stored by
etcd).

Secrets are managed at the namespace level. Pods can mount secrets either as files
via secret volumes or as environment variables. From a security standpoint, this
means that any user or service that can create a pod in a namespace can have access
to any secret managed for that namespace. If you want to limit access to a secret, put
it in a namespace accessible to a limited set of users or services.

When a secret is mounted into a container, it is never written to disk. It is stored in
tmpfs. When the kubelet communicates with the API server, it normally uses TLS, so
the secret is protected in transit.

Configuring encryption at rest
You need cto pass this argument when you start the API server:

--encryption-provider-config

Here is a sample encryption config:

apiVersion: apiserver.config.k8s.io/v1
kind: EncryptionConfiguration
resources:

Chapter 4

[123]

 - resources:
 - secrets
 providers:
 - identity: {}
 - aesgcm:
 keys:
 - name: key1
 secret: c2VjcmV0IGlzIHNlY3VyZQ==
 - name: key2
 secret: dGhpcyBpcyBwYXNzd29yZA==
 - aescbc:
 keys:
 - name: key1
 secret: c2VjcmV0IGlzIHNlY3VyZQ==
 - name: key2
 secret: dGhpcyBpcyBwYXNzd29yZA==
 - secretbox:
 keys:
 - name: key1
 secret: YWJjZGVmZ2hpamtsbW5vcHFyc3R1dnd4eXoxMjM0NTY=

Creating secrets
Secrets must be created before you try to create a pod that requires them. The secret
must exist; otherwise, the pod creation will fail.

You can create secrets with the following command: kubectl create secret.

Here I create a generic secret called hush-hush, which contains two keys, a username
and password:

$ kubectl create secret generic hush-hush --from-literal=username=tobias
--from-literal=password=cutoffs
secret/hush-hush created

The resulting secret is opaque:

$ kubectl describe secrets/hush-hush
Name: hush-hush
Namespace: default
Labels: <none>
Annotations: <none>

Type: Opaque

Securing Kubernetes

[124]

Data
====
password: 7 bytes
username: 6 bytes

You can create secrets from files using --from-file instead of --from-literal, and
you can also create secrets manually if you encode the secret value as base64.

Key names inside a secret must follow the rules for DNS sub-domains (without the
leading dot).

Decoding secrets
To get the content of a secret you can use kubectl get secret:

$ kubectl get secrets/hush-hush -o yaml
apiVersion: v1
data:
 password: Y3V0b2Zmcw==
 username: dG9iaWFz
kind: Secret
metadata:
 creationTimestamp: "2020-06-01T06:57:07Z"
 name: hush-hush
 namespace: default
 resourceVersion: "56655"
 selfLink: /api/v1/namespaces/default/secrets/hush-hush
 uid: 8d50c767-c705-11e9-ae89-0242ac120002
type: Opaque

The values are base64-encoded. You need to decode them yourself:

$ echo 'Y3V0b2Zmcw==' | base64 --decode
cutoffs

Using secrets in a container
Containers can access secrets as files by mounting volumes from the pod. Another
approach is to access the secrets as environment variables. Finally, a container (given
that its service account has the permission) can access the Kubernetes API directly or
use kubectl get secret.

Chapter 4

[125]

To use a secret mounted as a volume, the pod manifest should declare the volume
and it should be mounted in the container's spec:

apiVersion: v1
kind: Pod
metadata:
 name: pod-with-secret
spec:
 containers:
 - name: container-with-secret
 image: g1g1/py-kube:0.2
 command: ["/bin/bash", "-c", "while true ; do sleep 10 ; done"]
 volumeMounts:
 - name: secret-volume
 mountPath: "/mnt/hush-hush"
 readOnly: true
 volumes:
 - name: secret-volume
 secret:
 secretName: hush-hush

The volume name (secret-volume) binds the pod volume to the mount in the
container. Multiple containers can mount the same volume. When this pod is
running, the username and password are available as files under /etc/hush-hush:

$ kubectl create -f pod-with-secret.yaml

$ kubectl exec pod-with-secret -- cat /mnt/hush-hush/username
tobias

$ kubectl exec pod-with-secret -- cat /mnt/hush-hush/password
cutoffs

Running a multi-user cluster
In this section, we will look briefly at the option to use a single cluster to host
systems for multiple users or multiple user communities (which is also known as
multi-tenancy). The idea is that those users are totally isolated and may not even
be aware that they share the cluster with other users. Each user community will
have its own resources, and there will be no communication between them (except
maybe through public endpoints). The Kubernetes namespace concept is the ultimate
expression of this idea.

Securing Kubernetes

[126]

The case for a multi-user cluster
Why should you run a single cluster for multiple isolated users or deployments? Isn't
it simpler to just have a dedicated cluster for each user? There are two main reasons:
cost and operational complexity. If you have many relatively small deployments
and you want to create a dedicated cluster for each one, then you'll have a separate
master node and possibly a three-node etcd cluster for each one. That can add
up. Operational complexity is very important too. Managing tens, hundreds, or
thousands of independent clusters is no picnic. Every upgrade and every patch
needs to be applied to each cluster. Operations might fail and you'll have to manage
a fleet of clusters where some of them are in a slightly different state than the others.
Meta-operations across all clusters may be more difficult. You'll have to aggregate
and write your tools to perform operations and collect data from all clusters.

Let's look at some use cases and requirements for multiple isolated communities or
deployments:

•	 A platform or service provider for software-as-a-service
•	 Managing separate testing, staging, and production environments
•	 Delegating responsibility to community/deployment admins
•	 Enforcing resource quotas and limits on each community
•	 Users see only resources in their community

Using namespaces for safe multi-tenancy
Kubernetes namespaces are the perfect answer to safe multi-tenant clusters. This is
not a surprise, as this was one of the design goals of namespaces.

You can easily create namespaces in addition to the built-in kube-system and
default. Here is a YAML file that will create a new namespace called custom-
namespace. All it has is a metadata item called name. It doesn't get any simpler:

apiVersion: v1
kind: Namespace
metadata:
 name: custom-namespace

Let's create the namespace:

$ kubectl create -f custom-namespace.yaml
namespace/custom-namespace created

Chapter 4

[127]

$ kubectl get namespaces
NAME STATUS AGE
custom-namespace Active 36s
default Active 26h
kube-node-lease Active 26h
kube-public Active 26h
kube-system Active 26h

We can see the default namespace, our new custom-namespace, and a few system
namespaces prefixed with kube-.

The status field can be Active or Terminating. When you delete a namespace, it will
move into the Terminating state. When the namespace is in this state, you will not
be able to create new resources in this namespace. This simplifies the clean-up of
namespace resources and ensures the namespace is really deleted. Without it, the
replication controllers might create new pods when existing pods are deleted.

To work with a namespace, you add the --namespace (or -n for short) argument to
kubectl commands. Here is how to run a pod in interactive mode in the custom-
namespace namespace:

$ kubectl run trouble -it -n custom-namespace --image=g1g1/py-kube:0.2
--generator=run-pod/v1 bash
If you don't see a command prompt, try pressing enter.
root@trouble:/#

Listing pods in the custom-namespace returns only the pod we just launched:

$ kubectl get pods --namespace=custom-namespace
NAME READY STATUS RESTARTS AGE
trouble 1/1 Running 0 113s

Listing pods without the namespace returns the pods in the default namespace:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
pod-with-secret 1/1 Running 0 11h

Avoiding namespace pitfalls
Namespaces are great, but they can add some friction. When you use just the default
namespace, you can simply omit the namespace. When using multiple namespaces,
you must qualify everything with the namespace. This can add some burden, but
doesn't present any danger.

Securing Kubernetes

[128]

However, if some users (for example, cluster administrators) can access multiple
namespaces, then you're open to accidentally modifying or querying the wrong
namespace. The best way to avoid this situation is to hermetically seal the namespace
and require different users and credentials for each namespace, just like you should
use a user account for most operations on your machine or remote machines and use
root via sudo only when you have too.

In addition, you should use tools that help make it clear what namespace you're
operating on (for example, shell prompt if working from the command line or listing
the namespace prominently in a web interface). One of the most popular tools is kubens
(available along with kubectx), available at https://github.com/ahmetb/kubectx.

Make sure that users that can operate on a dedicated namespace don't have access
to the default namespace. Otherwise, every time they forget to specify a namespace,
they'll operate quietly on the default namespace.

Summary
In this chapter, we covered the many security challenges facing developers and
administrators building systems and deploying applications on Kubernetes clusters.
But we also explored the many security features and the flexible plugin-based
security model that provides many ways to limit, control, and manage containers,
pods, and nodes. Kubernetes already provides versatile solutions to most security
challenges, and it will only get better as capabilities such as AppArmor and various
plugins move from alpha/beta status to general availability. Finally, we considered
how to use namespaces to support multi-user communities or deployments in the
same Kubernetes cluster.

In the next chapter, we will look in detail into many Kubernetes resources and
concepts, and how to use them and combine them effectively. The Kubernetes object
model is built on top of a solid foundation of a small number of generic concepts
such as resources, manifests, and metadata. This empowers an extensible, yet
surprisingly consistent, object model to expose a very diverse set of capabilities for
developers and administrators.

References
•	 https://www.stackrox.com/post/2019/04/setting-up-kubernetes-network-

policies-a-detailed-guide/

•	 https://github.com/ahmetb/kubernetes-network-policy-recipes

•	 https://jeremievallee.com/2018/05/28/kubernetes-rbac-namespace-user.
html

https://github.com/ahmetb/kubectx
https://www.stackrox.com/post/2019/04/setting-up-kubernetes-network-policies-a-detailed-guide/
https://www.stackrox.com/post/2019/04/setting-up-kubernetes-network-policies-a-detailed-guide/
https://github.com/ahmetb/kubernetes-network-policy-recipes
https://jeremievallee.com/2018/05/28/kubernetes-rbac-namespace-user.html
https://jeremievallee.com/2018/05/28/kubernetes-rbac-namespace-user.html

[129]

5
Using Kubernetes

Resources in Practice
In this chapter, we will design a fictional massive-scale platform that will challenge
Kubernetes' capabilities and scalability. The Hue platform is all about creating an
omniscient and omnipotent digital assistant. Hue is a digital extension of you. Hue
will help you do anything, find anything, and, in many cases will do a lot on your
behalf. It will obviously need to store a lot of information, integrate with many
external services, respond to notifications and events, and be smart about interacting
with you.

We will take the opportunity in this chapter to get to know kubectl and related tools
a little better and explore in detail familiar resources we've seen before, such as pods,
as well as new resources such as jobs. We will explore advanced scheduling and
resource management. At the end of this chapter, you will have a clear picture of
how impressive Kubernetes is and how it can be used as the foundation for hugely
complex systems.

Designing the Hue platform
In this section, we will set the stage and define the scope of the amazing Hue
platform. Hue is not Big Brother, Hue is Little Brother! Hue will do whatever
you allow it to do. Hue will be able to do a lot, which might concern some people,
but you get to pick how much or how little Hue can help you with. Get ready
for a wild ride!

Using Kubernetes Resources in Practice

[130]

Defining the scope of Hue
Hue will manage your digital persona. It will know you better than you know
yourself. Here is a list of some of the services Hue can manage and help you with:

•	 Search and content aggregation
•	 Medical – electronic health records, DNA sequencing
•	 Smart home
•	 Finance – banking, savings, retirement, investing
•	 Office
•	 Social
•	 Travel
•	 Wellbeing
•	 Family

Smart reminders and notifications
Let's think of the possibilities. Hue will know you, but also know your friends, the
aggregate of other users across all domains. Hue will update its models in real time.
It will not be confused by stale data. It will act on your behalf, present relevant
information, and learn your preferences continuously. It can recommend new shows
or books that you may like, make restaurant reservations based on your schedule
and your family or friends, and control your house automation.

Security, identity, and privacy
Hue is your proxy online. The ramifications of someone stealing your Hue identity,
or even just eavesdropping on your Hue interactions, are devastating. Potential users
may even be reluctant to trust the Hue organization with their identity. Let's devise
a non-trust system where users have the power to pull the plug on Hue at any time.
Here are a few ideas:

•	 Strong identity via a dedicated device with multi-factor authorization,
including multiple biometric factors

•	 Frequently rotating credentials
•	 Quick service pause and identity verification of all external services (will

require original proof of identity for each provider)
•	 The Hue backend will interact with all external services via short-lived

tokens

Chapter 5

[131]

•	 Architecting Hue as a collection of loosely coupled microservices with strong
compartmentalization

•	 GDPR compliance
•	 End-to-end encryption
•	 Avoid owning critical data (let external providers manage it)

Hue's architecture will need to support enormous variation and flexibility. It will
also need to be very extensible where existing capabilities and external services
are constantly upgraded, and new capabilities and external services are integrated
into the platform. That level of scale calls for microservices, where each capability
or service is totally independent of other services except for well-defined interfaces
via standard and/or discoverable APIs.

Hue components
Before embarking on our microservice journey, let's review the types of component
we need to construct for Hue.

User profile
The user profile is a major component, with lots of sub-components. It is the essence
of the user, their preferences, their history across every area, and everything that
Hue knows about them. The benefit you can get from Hue is affected strongly by the
richness of the profile. But the more information is managed by the profile, the more
damage you can suffer if the data (or part of it) is compromised.

A big piece of managing the user profile is the reports and insights that Hue will
provide to the user. Hue will employ sophisticated machine learning to better
understand the user and their interactions with other users and external service
providers.

User graph
The user graph component models networks of interactions between users across
multiple domains. Each user participates in multiple networks: social networks such
as Facebook, Instagram, and Twitter; professional networks; hobby networks; and
volunteer communities. Some of these networks are ad hoc and Hue will be able to
structure them to benefit users. Hue can take advantage of the rich profiles it has of
user connections to improve interactions even without exposing private information.

Using Kubernetes Resources in Practice

[132]

Identity
Identity management is critical, as mentioned previously, so it merits a separate
component. A user may prefer to manage multiple mutually exclusive profiles with
separate identities. For example, maybe users are not comfortable with mixing their
health profile with their social profile at the risk of inadvertently exposing personal
health information to their friends. While Hue can find useful connections for you,
you may prefer to trade off capabilities for more privacy.

Authorizer
The authorizer is a critical component where the user explicitly authorizes Hue to
perform certain actions or collect various data on its behalf. This involves access to
physical devices, accounts of external services, and levels of initiative.

External service
Hue is an aggregator of external services. It is not designed to replace your bank,
your health provider, or your social network. It will keep a lot of metadata about
your activities, but the content will remain with your external services. Each external
service will require a dedicated component to interact with the external service API
and policies. When no API is available, Hue emulates the user by automating the
browser or native apps.

Generic sensor
A big part of Hue's value proposition is to act on the user's behalf. In order to do
that effectively, Hue needs to be aware of various events. For example, if Hue
reserved a vacation for you but it senses that a cheaper flight is available, it can
either automatically change your flight or ask you for confirmation. There is an
infinite number of things to sense. To reign in sensing, a generic sensor is needed.
The generic sensor will be extensible, but exposes a generic interface that the other
parts of Hue can utilize uniformly even as more and more sensors are added.

Generic actuator
This is the counterpart of the generic sensor. Hue needs to perform actions on your
behalf; for example, reserving a flight or a doctor's appointment. To do that, Hue
needs a generic actuator that can be extended to support particular functions but
can interact with other components, such as the identity manager and the authorizer,
in a uniform fashion.

Chapter 5

[133]

User learner
This is the brain of Hue. It will constantly monitor all your interactions (that you
authorize) and update its model of you and other users in your networks. This will
allow Hue to become more and more useful over time, predict what you need and
what will interest you, provide better choices, surface more relevant information at
the right time, and avoid being annoying and overbearing.

Hue microservices
The complexity of each of the components is enormous. Some of the components,
such as the external service, the generic sensor, and the generic actuator, will need to
operate across hundreds, thousands, or more external services that constantly change
outside the control of Hue. Even the user learner needs to learn the user's preferences
across many areas and domains. Microservices address this need by allowing Hue
to evolve gradually and grow more isolated capabilities without collapsing under
its own complexity. Each microservice interacts with generic Hue infrastructure
services through standard interfaces and, optionally, with a few other services
through well-defined and versioned interfaces. The surface area of each microservice
is manageable and the orchestration between microservices is based on standard best
practices.

Plugins
Plugins are the key to extending Hue without a proliferation of interfaces. The thing
about plugins is that often, you need plugin chains that cross multiple abstraction
layers. For example, if you want to add a new integration for Hue with YouTube,
then you can collect a lot of YouTube-specific information – your channels, favorite
videos, recommendations, and videos you have watched. To display this information
to users and allow them to act on it, you need plugins across multiple components
and eventually in the user interface as well. Smart design will help by aggregating
categories of actions such as recommendations, selections, and delayed notifications
to many different services.

The great thing about plugins is that they can be developed by anyone. Initially, the
Hue development team will have to develop the plugins, but as Hue becomes more
popular, external services will want to integrate with Hue and build Hue plugins to
enable their service.

That will lead, of course, to a whole ecosystem of plugin registration, approval, and
curation.

Using Kubernetes Resources in Practice

[134]

Data stores
Hue will need several types of data stores, and multiple instances of each type, to
manage its data and metadata:

•	 Relational database
•	 Graph database
•	 Time-series database
•	 In-memory caching
•	 Blob storage

Due to the scope of Hue, each one of these databases will have to be clustered,
scalable, and distributed.

In addition, Hue will use local storage on edge devices.

Stateless microservices
The microservices should be mostly stateless. This will allow specific instances to be
started and killed quickly and migrated across the infrastructure as necessary. The
state will be managed by the stores and accessed by the microservices with short-
lived access tokens. Hue will store frequently accessed data in easily hydrated fast
caches when appropriate.

Serverless functions
A big part of Hue's functionality per user will involve relatively short interactions
with external services or other Hue services. For those activities it may not be
necessary to run a full-fledged persistent microservice that needs to be scaled and
managed. A more appropriate solution may be to use a serverless function that is
more lightweight.

Queue-based interactions
All these microservices need to talk to each other. Users will ask Hue to perform
tasks on their behalf. External services will notify Hue of various events. Queues
coupled with stateless microservices provide the perfect solution. Multiple instances
of each microservice will listen to various queues and respond when relevant events
or requests are popped from the queue. Serverless functions may be triggered as
a result of particular events too. This arrangement is very robust and easy to scale.
Every component can be redundant and highly available. While each component
is fallible, the system is very fault-tolerant.

Chapter 5

[135]

A queue can be used for asynchronous RPC or request-response style interactions
too, where the calling instance provides a private queue name and the response is
posted to the private queue.

That said, sometimes direct service-to-service interaction (or serverless function-to-
service interaction) though a well-defined interface makes more sense and simplifies
the architecture.

Planning workflows
Hue often needs to support workflows. A typical workflow will take a high-level
task, such as making a dentist appointment. It will extract the user's dentist's details
and schedule, match it with the user's schedule, choose between multiple options,
potentially confirm with the user, make the appointment, and set up a reminder. We
can classify workflows into fully automatic and human workflows where humans
are involved. Then there are workflows that involve spending money and might
require an additional level of approval.

Automatic workflows
Automatic workflows don't require human intervention. Hue has full authority
to execute all the steps from start to finish. The more autonomy the user allocates
to Hue, the more effective it will be. The user will be able to view and audit all
workflows, past and present.

Human workflows
Human workflows require interaction with a human. Most often it will be the user
that needs to make a choice from multiple options or approve an action. But it may
involve a person on another service. For example, to make an appointment with a
dentist, Hue may have to get a list of available times from the secretary. In the future,
Hue will be able to handle conversation with humans and possibly automate some of
these workflows too.

Budget-aware workflows
Some workflows, such as paying bills or purchasing a gift, require spending money.
While, in theory, Hue can be granted unlimited access to the user's bank account,
most users will probably be more comfortable with setting budgets for different
workflows or just making spending a human-approved activity. Potentially, the
user can grant Hue access to a dedicated account or set of accounts and, based on
reminders and reports, allocate more or fewer funds to Hue as needed.

Using Kubernetes Resources in Practice

[136]

Using Kubernetes to build the Hue
platform
In this section, we will look at various Kubernetes resources and how they can help
us build Hue. First, we'll get to know the versatile kubectl a little better, then we
will look at how to run long-running processes in Kubernetes, exposing services
internally and externally, using namespaces to limit access, launching ad hoc jobs,
and mixing in non-cluster components. Obviously, Hue is a huge project, so we will
demonstrate the ideas on a local cluster and not actually build a real Hue Kubernetes
cluster. Consider it primarily a thought experiment. If you wish to explore building
a real microservice-based distributed system on Kubernetes, check out Hands-On
Microservices with Kubernetes.

Using kubectl effectively
kubectl is your Swiss Army knife. It can do pretty much anything around a cluster.
Under the hood, kubectl connects to your cluster via the API. It reads your ~/.kube/
config file, which contains information necessary to connect to your cluster or
clusters. The commands are divided into multiple categories:

•	 Generic commands: Deal with resources in a generic way: create, get, delete,
run, apply, patch, replace, and so on

•	 Cluster management commands: Deal with nodes and the cluster at large:
cluster-info, certificate, drain, and so on

•	 Troubleshooting commands: Describe, logs, attach, exec, and so on
•	 Deployment commands: Deal with deployment and scaling: rollout, scale,

auto-scale, and so on
•	 Settings commands: Deal with labels and annotations: label, annotate, and

so on
•	 Misc commands: Help, config, and version
•	 Custimization commands: Integrate the kustomize.io capabilities into

kubectl

You can view the configuration with Kubernetes' config view command.

Here is the configuration for my local k3s cluster:

$ k config view
apiVersion: v1
clusters:

Chapter 5

[137]

- cluster:
 certificate-authority-data: DATA+OMITTED
 server: https://localhost:6443
 name: default
contexts:
- context:
 cluster: default
 user: default
 name: default
current-context: default
kind: Config
preferences: {}
users:
- name: default
 user:
 password: 6ce7b64ff48ac13f06af428d92b3d4bf
 username: admin

Understanding kubectl resource configuration
files
Many kubectl operations, such as create, require a complicated hierarchical
structure (since the API requires this structure). kubectl uses YAML or JSON
configuration files. YAML is more concise and human-readable. Here is a YAML
configuration file for creating a pod:

apiVersion: v1
kind: Pod
metadata:
 name: ""
 labels:
 name: ""
 namespace: ""
 annotations: []
 generateName: ""
spec:
 ...

Using Kubernetes Resources in Practice

[138]

ApiVersion
The very important Kubernetes API keeps evolving and can support different
versions of the same resource via different versions of the API.

Kind
Kind tells Kubernetes what type of resource it is dealing with; in this case, pod. This
is always required.

Metadata
A lot of information that describes the pod and where it operates:

•	 Name: Identifies the pod uniquely within its namespace
•	 Labels: Multiple labels can be applied
•	 Namespace: The namespace the pod belongs to
•	 Annotations: A list of annotations available for query

Spec
Spec is a pod template that contains all the information necessary to launch a pod. It
can be quite elaborate, so we'll explore it in multiple parts:

spec:
 containers: [
 ...
],
 "restartPolicy": "",
 "volumes": []

Container spec
The pod spec's containers section is a list of container specs. Each container spec has
the following structure:

name: "",
image: "",
command: [""],
args: [""],
env:
 - name: "",

Chapter 5

[139]

 value: ""

imagePullPolicy: "",
ports:
 - containerPort": 0,
 name: "",
 protocol: ""
resources:
 cpu: ""
 memory: ""

Each container has an image, a command that, if specified, replaces the Docker image
command. It also has arguments and environment variables. Then, there are of
course the image pull policy, ports, and resource limits. We covered those in earlier
chapters.

Deploying long-running microservices in
pods
Long-running microservices should run in pods and be stateless. Let's look at
how to create pods for one of Hue's microservices. Later, we will raise the level of
abstraction and use a deployment.

Creating pods
Let's start with a regular pod configuration file for creating a Hue learner internal
service. This service doesn't need to be exposed as a public service and it will listen
to a queue for notifications and store its insights in some persistent storage.

We need a simple container that will run in the pod. Here is possibly the simplest
Docker file ever, which will simulate the Hue learner:

FROM busybox
CMD ash -c "echo 'Started...'; while true ; do sleep 10 ; done"

It uses the busybox base image, prints to standard output Started..., and then goes
into an infinite loop, which is, by all accounts, long-running.

I have built two Docker images tagged as g1g1/hue-learn:0.3 and g1g1/hue-
learn:v0.4 and pushed them to the Docker Hub registry (g1g1 is my username):

$ docker build . -t g1g1/hue-learn:0.3
$ docker build . -t g1g1/hue-learn:0.4

Using Kubernetes Resources in Practice

[140]

$ docker push g1g1/hue-learn:0.3
$ docker push g1g1/hue-learn:0.4

Now these images are available to be pulled into containers inside of Hue's pods.

We'll use YAML here because it's more concise and human-readable. Here are the
boilerplate and metadata labels:

apiVersion: v1
kind: Pod
metadata:
 name: hue-learner
 labels:
 app: hue
 service: learner
 runtime-environment: production
 tier: internal-service

The reason I use an annotation for the version and not a label is that labels are used
to identify the set of pods in the deployment. Modifying labels is not allowed.

Next comes the important containers spec, which defines for each container the
mandatory name and image:

spec:
 containers:
 - name: hue-learner
 image: g1g1/hue-learn:0.3

The resources section tells Kubernetes the resource requirements of the container,
which allows for more efficient and compact scheduling and allocations. Here, the
container requests 200 milli-cpu units (0.2 core) and 256 MiB (2 to the power of 28
bytes):

 resources:
 requests:
 cpu: 200m
 memory: 256Mi

The environment section allows the cluster administrator to provide environment
variables that will be available to the container. Here it tells it to discover the queue
and the store via dns. In a testing environment, it may use a different discovery
method:

Chapter 5

[141]

 env:
 - name: DISCOVER_QUEUE
 value: dns
 - name: DISCOVER_STORE
 value: dns

Decorating pods with labels
Labeling pods wisely is key for flexible operations. It lets you evolve your cluster
live, organize your microservices into groups you can operate on uniformly, and
drill down on the fly to observe different subsets.

For example, our Hue learner pod has the following labels:

•	 runtime-environment: production
•	 tier: internal-service

The runtime-environment label allows performing global operations on all pods that
belong to a certain environment. The tier label can be used to query all pods that
belong to a particular tier. These are just examples; your imagination is the limit here.

Here is how to list the labels with the get pods command:

$ kubectl get po -n kube-system --show-labels
NAME READY STATUS RESTARTS AGE LABELS
coredns-b7464766c-s4z28 1/1 Running 3 15d k8s-app=kube-
dns,pod-template-hash=b7464766c
svclb-traefik-688zv 2/2 Running 6 15d
app=svclb-traefik,controller-revision-hash=66fd644d6,pod-template-
generation=1,svccontroller.k3s.cattle.io/svcname=traefik
svclb-traefik-hfk8t 2/2 Running 6 15d
app=svclb-traefik,controller-revision-hash=66fd644d6,pod-template-
generation=1,svccontroller.k3s.cattle.io/svcname=traefik
svclb-traefik-kp9wh 2/2 Running 6 15d
app=svclb-traefik,controller-revision-hash=66fd644d6,pod-template-
generation=1,svccontroller.k3s.cattle.io/svcname=traefik
svclb-traefik-sgmbg 2/2 Running 6 15d
app=svclb-traefik,controller-revision-hash=66fd644d6,pod-template-
generation=1,svccontroller.k3s.cattle.io/svcname=traefik
traefik-56688c4464-c4sfq 1/1 Running 3 15d
app=traefik,chart=traefik-1.64.0,heritage=Tiller,pod-template-
hash=56688c4464,release=traefik

Using Kubernetes Resources in Practice

[142]

Now, if you want to filter and list only the pods of the traefik app type:

$ kubectl get po -n kube-system -l app=traefik
NAME READY STATUS RESTARTS AGE
traefik-56688c4464-c4sfq 1/1 Running 3 15d

Deploying long-running processes with
deployments
In a large-scale system, pods should never be just created and let loose. If a pod dies
unexpectedly for whatever reason, you want another one to replace it to maintain
overall capacity. You can create replication controllers or replica sets yourself, but
that leaves the door open to mistakes, as well as the possibility of partial failure. It
makes much more sense to specify how many replicas you want when you launch
your pods in a declarative manner. This is what Kubernetes deployments are for.

Let's deploy three instances of our Hue learner microservice with a Kubernetes
deployment resource. Note that deployment objects became stable at Kubernetes 1.9:

apiVersion: apps/v1
 kind: Deployment
 metadata:
 name: hue-learn
 labels:
 app: hue
 service: learn
 spec:
 replicas: 3
 selector:
 matchLabels:
 app: hue
 service: learn
 template:
 metadata:
 labels:
 app: hue
 spec:
 <same spec as in the pod template>

Chapter 5

[143]

The pod spec is identical to the spec section from the pod configuration file
previously.

Let's create the deployment and check its status:

$ kubectl create -f hue-learn-deployment.yaml
deployment.apps/hue-learn created

$ kubectl get deployment hue-learn
NAME READY UP-TO-DATE AVAILABLE AGE
hue-learn 3/3 3 3 32s

$ kubectl get pods -l app=hue
NAME READY STATUS RESTARTS AGE
hue-learn-558f5c45cd-fbvpj 1/1 Running 0 81s
hue-learn-558f5c45cd-s6vkk 1/1 Running 0 81s
hue-learn-558f5c45cd-tdlpq 1/1 Running 0 81s

You can get a lot more information about the deployment using the kubectl
describe command.

Updating a deployment
The Hue platform is a large and ever-evolving system. You need to upgrade
constantly. Deployments can be updated to roll out updates in a painless manner.
You change the pod template to trigger a rolling update fully managed by
Kubernetes.

Currently, all the pods are running with version 0.3:

$ kubectl get pods -o jsonpath='{.items[*].spec.containers[0].image}'
g1g1/hue-learn:0.3
g1g1/hue-learn:0.3
g1g1/hue-learn:0.3

Let's update the deployment to upgrade to version 0.4. Modify the image version in
the deployment file. Don't modify labels; it will cause an error. Save it to hue-learn-
deployment-0.4.yaml. Then we can use the apply command to upgrade the version
and verify that the pods now run 0.4:

$ kubectl apply -f hue-learn-deployment-0.4.yaml
deployment "hue-learn" updated

Using Kubernetes Resources in Practice

[144]

Note that it can take several minutes to see the following output due to the nature of
the rolling update operation:

$ kubectl get pods -o jsonpath='{.items[*].spec.containers[0].image}'
g1g1/hue-learn:0.4
g1g1/hue-learn:0.4
g1g1/hue-learn:0.4

Note that new pods are created and the original 0.3 pods are terminated in a rolling
update manner:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE IP
NODE
hue-learn-558f5c45cd-fbvpj 1/1 Terminating 0 8m7s
10.42.3.15 k3d-k3s-default-server
hue-learn-558f5c45cd-s6vkk 0/1 Terminating 0 8m7s
10.42.0.7 k3d-k3s-default-worker-0
hue-learn-558f5c45cd-tdlpq 0/1 Terminating 0 8m7s
10.42.2.15 k3d-k3s-default-worker-2
hue-learn-5c9bb545d9-lggk7 1/1 Running 0 38s
10.42.2.16 k3d-k3s-default-worker-2
hue-learn-5c9bb545d9-pwflv 1/1 Running 0 31s
10.42.1.10 k3d-k3s-default-worker-1
hue-learn-5c9bb545d9-q25hl 1/1 Running 0 35s
10.42.0.8 k3d-k3s-default-worker-0

Separating internal and external services
Internal services are services that are accessed directly only by other services or jobs
in the cluster (or administrators that log in and run ad hoc tools). In some cases,
internal services are not accessed at all, and just perform their function and store
their results in a persistent store that other services access in a decoupled way.

But some services need to be exposed to users or external programs. Let's look at a
fake Hue service that manages a list of reminders for a user. It doesn't really do much
– just returns a fixed list of reminders – but we'll use it to illustrate how to expose
services. I already pushed a hue-reminders image to Docker Hub:

docker push g1g1/hue-reminders:3.0

Chapter 5

[145]

Deploying an internal service
Here is the deployment, which is very similar to the Hue-learner deployment,
except that I dropped the annotations, env, and resources sections, kept just one or
two labels to save space, and added a ports section to the container. That's crucial
because a service must expose a port through which other services can access it:

apiVersion: apps/v1
kind: Deploymen
tmetadata:
 name: hue-reminders
spec:
 replicas: 2
 selector:
 matchLabels:
 app: hue
 service: reminders
 template:
 metadata:
 name: hue-reminders
 labels:
 app: hue
 service: reminders
 spec:
 containers:
 - name: hue-reminders
 image: g1g1/hue-reminders:3.0
 ports:
 - containerPort: 8080

When we run the deployment, two hue-reminders pods are added to the cluster:

$ kubectl create -f hue-reminders-deployment.yaml
deployment.apps/hue-reminders created

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
hue-learn-5c9bb545d9-lggk7 1/1 Running 0 22m
hue-learn-5c9bb545d9-pwflv 1/1 Running 0 22m
hue-learn-5c9bb545d9-q25hl 1/1 Running 0 22m
hue-reminders-9b7d65d86-4kf5t 1/1 Running 0 7s
hue-reminders-9b7d65d86-tch4w 1/1 Running 0 7s

Using Kubernetes Resources in Practice

[146]

OK. The pods are running. In theory, other services can look up or be configured
with their internal IP address and just access them directly because they are all in
the same network address space. But this doesn't scale. Every time a reminder's pod
dies and is replaced by a new one, or when we just scale up the number of pods, all
the services that access these pods must know about it. Kubernetes services solve
this issue by providing a single stable access point to all the pods. Here is the service
definition:

apiVersion: v1
kind: Service
metadata:
 name: hue-reminders
 labels:
 app: hue
 service: reminders
spec:
 ports:
 - port: 8080
 protocol: TCP
 selector:
 app: hue
 service: reminders

The service has a selector that determines the backing pods by their matching labels.
It also exposes a port, which other services will use to access it (it doesn't have to be
the same port as the container's port).

The protocol field can be one of TCP, UDP, and since Kubernetes 1.12 also SCTP (if
the feature gate is enabled).

Creating the Hue-reminders service
Let's create the service and explore it a little bit:

$ kubectl create -f hue-reminders-service.yaml
service/hue-reminders created

$ kubectl describe svc hue-reminders
Name: hue-reminders
Namespace: default
Labels: app=hue
 service=reminders
Annotations: <none>

Chapter 5

[147]

Selector: app=hue,service=reminders
Type: ClusterIP
IP: 10.43.166.58
Port: <unset> 8080/TCP
TargetPort: 8080/TCP
Endpoints: 10.42.1.12:8080,10.42.2.17:8080
Session Affinity: None
Events: <none>

The service is up and running. Other pods can find it through environment variables
or DNS. The environment variables for all services are set at pod creation time. That
means that if a pod is already running when you create your service, you'll have to
kill it and let Kubernetes recreate it with the environment variables (you create your
pods via a deployment, right?):

$ kubectl exec hue-learn-5c9bb545d9-w8hrr -- printenv | grep HUE_REMINDERS_
SERVICE
HUE_REMINDERS_SERVICE_HOST=10.43.166.58
HUE_REMINDERS_SERVICE_PORT=8080

But using DNS is much simpler. Your service DNS name is:

<service name>.<namespace>.svc.cluster.local

$ kubectl exec hue-learn-5c9bb545d9-w8hrr -- nslookup hue-reminders.
default.svc.cluster.local
Server: 10.43.0.10
Address 1: 10.43.0.10 kube-dns.kube-system.svc.cluster.local

Name: hue-reminders.default.svc.cluster.local
Address 1: 10.43.247.147 hue-reminders.default.svc.cluster.local

Now, all the services in the default namespace can access the hue-reminders service
though its service endpoint and port 8080:

$ kubectl exec hue-learn-5c9bb545d9-w8hrr -- wget -q -O - hue-reminders.
default.svc.cluster.local:8080
Dentist appointment at 3pm
Dinner at 7pm

Yes, at the moment hue-reminders always returns the same two reminders:

Dentist appointment at 3pm
Dinner at 7pm

Using Kubernetes Resources in Practice

[148]

Exposing a service externally
The service is accessible inside the cluster. If you want to expose it to the world,
Kubernetes provides three ways to do it:

•	 Configure NodePort for direct access
•	 Configure a cloud load balancer if you run it in a cloud environment
•	 Configure your own load balancer if you run on bare metal

Before you configure a service for external access, you should make sure it is secure.
The Kubernetes documentation has a good example that covers all the gory details
here:

https://github.com/kubernetes/examples/blob/master/staging/https-nginx/
README.md.

We've already covered the principles in Chapter 4, Securing Kubernetes.

Here is the spec section of the hue-reminders service when exposed to the world
through NodePort:

spec:
 type: NodePort
 ports:
 - port: 8080
 targetPort: 8080
 protocol: TCP
 name: http

 - port: 443
 protocol: TCP
 name: https
 selector:
 app: hue-reminders

The main downside of exposing services though NodePort is that the port numbers
are shared across all services and you must coordinate them globally across your
entire cluster to avoid conflicts.

But there are other reasons that you may want to avoid exposing a Kubernetes
service directly, and you may prefer to use an Ingress resource in front of the service.

https://github.com/kubernetes/examples/blob/master/staging/https-nginx/README.md
https://github.com/kubernetes/examples/blob/master/staging/https-nginx/README.md

Chapter 5

[149]

Ingress
Ingress is a Kubernetes configuration object that lets you expose a service to the
outside world and takes care of a lot of details. It can do the following:

•	 Provide an externally visible URL to your service
•	 Load balance traffic
•	 Terminate SSL
•	 Provide name-based virtual hosting

To use Ingress, you must have an Ingress controller running in your cluster. Note
that Ingress was introduced in Kubernetes 1.1, but it is still in beta and has many
limitations. If you're running your cluster on GKE, you're probably OK. Otherwise,
proceed with caution. One of the current limitations of the Ingress controller is
that it isn't built for scale. As such, it is not a good option for the Hue platform yet.
We'll cover the Ingress controller in greater detail in Chapter 10, Exploring Advanced
Networking.

Here is what an Ingress resource looks like:

apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:
 name: test-ingress
 annotations:
 nginx.ingress.kubernetes.io/rewrite-target: /
spec:
 rules:
 - http:
 paths:
 - path: /testpath
 backend:
 serviceName: test
 servicePort: 80

Note the annotation, which hints that it is an Ingress object that works with the
Nginx Ingress controller. There are many other Ingress controllers and they typically
use annotations to encode information they need that is not captured by the Ingress
object itself and its rules.

Using Kubernetes Resources in Practice

[150]

Other Ingress controllers include:

•	 Traefik
•	 Gloo
•	 Contour
•	 AWS ALB Ingress controller
•	 HAPRoxy Ingress
•	 Voyager

Advanced scheduling
One of the strongest suits of Kubernetes is its powerful yet flexible scheduler. The
job of the scheduler, put simply, is to choose nodes to run newly created pods. In
theory the scheduler could even move existing pods around between nodes, but in
practice it doesn't do that at the moment and instead leaves this functionality for
other components.

By default, the scheduler follows several guiding principles, including:

•	 Split pods from the same replica set or stateful set across nodes
•	 Schedule pods to nodes that have enough resources to satisfy the pod

requests
•	 Balance out the overall resource utilization of nodes

This is pretty good default behavior, but sometimes you may want better control
over specific pod placement. Kubernetes 1.6 introduced several advanced scheduling
options that give you fine-grained control over which pods are scheduled or not
scheduled on which nodes as well as which pods are to be scheduled together or
separately.

Let's review these mechanisms in the context of Hue.

Node selector
The node selector is pretty simple. A pod can specify which nodes it wants to be
scheduled on in its spec. For example, the trouble-shooter pod has a nodeSelector
that specifies the kubernetes.io/hostname label of the worker-2 node:

apiVersion: v1
kind: Pod
metadata:

Chapter 5

[151]

 name: trouble-shooter
 labels:
 role: trouble-shooter
spec:
 nodeSelector:
 kubernetes.io/hostname: k3d-k3s-default-worker-2
 containers:
 - name: trouble-shooter
 image: g1g1/py-kube:0.2
 command: ["bash"]
 args: ["-c", "echo started...; while true ; do sleep 1 ; done"]

When creating this pod it is indeed scheduled to the worker-2 node:

$ k apply -f trouble-shooter.yaml
pod/trouble-shooter created

$ k get po trouble-shooter -o jsonpath='{.spec.nodeName}'
k3d-k3s-default-worker-2

Taints and tolerations
You can taint a node in order to prevent pods from being scheduled on this node.
This can be useful, for example, if you don't want pods to be scheduled on your
master nodes. Tolerations allow pods to declare that they can "tolerate" a specific
node taint and then these pods can be scheduled on the tainted node. A node can
have multiple taints and a pod can have multiple tolerations. A taint is a triplet: key,
value, effect. The key and value are used to identify the taint. The effect is one of:

•	 NoSchedule (no pods will be scheduled to the node unless it tolerates the
taint)

•	 PreferNoSchedule (soft version of NoSchedule; the scheduler will attempt not
to schedule pods that don't tolerate the taint)

•	 NoExecute (no new pods will be scheduled, but also existing pods that don't
tolerate the taint will be evicted)

Currently, there is a hue-learn pod that runs on the master node (k3d-k3s-default-
server):

$ kubectl get po -o wide
NAME READY STATUS RESTARTS AGE IP
NODE
hue-learn-5c9bb545d9-dk4c4 1/1 Running 0 7h40m

Using Kubernetes Resources in Practice

[152]

10.42.3.17 k3d-k3s-default-server
hue-learn-5c9bb545d9-sqx28 1/1 Running 0 7h40m
10.42.2.18 k3d-k3s-default-worker-2
hue-learn-5c9bb545d9-w8hrr 1/1 Running 0 7h40m
10.42.0.11 k3d-k3s-default-worker-0
hue-reminders-6f9f54d8f-hwjwd 1/1 Running 0 3h51m
10.42.0.13 k3d-k3s-default-worker-0
hue-reminders-6f9f54d8f-p4z8z 1/1 Running 0 3h51m
10.42.1.14 k3d-k3s-default-worker-1

Let's taint our master node:

$ k taint nodes k3d-k3s-default-server master=true:NoExecute
node/k3d-k3s-default-server tainted

We can now review the taint:

$ k get nodes k3d-k3s-default-server -o jsonpath='{.spec.taints[0]}'
map[effect:NoExecute key:master value:true]

Yeah, it worked! there are now no pods scheduled on the master node. The pod on
the master was terminated and a new pod (hue-learn-5c9bb545d9-nn4xk) is now
running on worker-1:

$ kubectl get po -o wide
NAME READY STATUS RESTARTS AGE IP
NODE
hue-learn-5c9bb545d9-nn4xk 1/1 Running 0 3m46s
10.42.1.15 k3d-k3s-default-worker-1
hue-learn-5c9bb545d9-sqx28 1/1 Running 0 9h
10.42.2.18 k3d-k3s-default-worker-2
hue-learn-5c9bb545d9-w8hrr 1/1 Running 0 9h
10.42.0.11 k3d-k3s-default-worker-0
hue-reminders-6f9f54d8f-hwjwd 1/1 Running 0 6h
10.42.0.13 k3d-k3s-default-worker-0
hue-reminders-6f9f54d8f-p4z8z 1/1 Running 0 6h
10.42.1.14 k3d-k3s-default-worker-1
trouble-shooter 1/1 Running 0 16m
10.42.2.20 k3d-k3s-default-worker-2

To allow pods to tolerate the taint, add a toleration to their spec, such as:

tolerations:
- key: "master"
 operator: "Equal"
 value: "true"
 effect: "NoSchedule"

Chapter 5

[153]

Node affinity and anti-affinity
Node affinity is a more sophisticated form of nodeSelector. It has three main
advantages:

•	 Rich selection criteria (nodeSelector is just AND of exact matches on the labels)
•	 Rules can be soft
•	 You can achieve anti-affinity using operators such as NotIn and DoesNotExist

Note that if you specify both nodeSelector and nodeAffinity then the pod will be
scheduled only to a node that satisfies both requirements.

For example, if we add the following section to our trouble-shooter pod it will not
be able to run on any node because it conflicts with nodeSelector:

affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: NotIn
 values:
 - k3d-k3s-default-worker-2

Pod affinity and anti-affinity
Pod affinity and anti-affinity provide yet another avenue for managing where
your workloads run. All the methods we discussed so far – node selectors, taints/
tolerations, node affinity/anti-affinity – were about assigning pods to nodes. But
pod affinity is about the relationships between different pods. Pod affinity has
several other concepts associated with it: namespacing (since pods are namespaced),
topology zone (node, rack, cloud provider zone, cloud provider region), and weight
(for preferred scheduling). A simple example is if you want hue-reminders to always
be scheduled with a trouble-shooter pod. Let's see how to define it in the pod
template spec of the hue-reminders deployment:

 affinity:
 podAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:

Using Kubernetes Resources in Practice

[154]

 - key: role
 operator: In
 values:
 - trouble-shooter
 topologyKey: failure-domain.beta.kubernetes.io/zone

Then after re-deploying hue-reminders, all the hue-reminders pods are scheduled to
run on worker-2 next to the trouble-shooter pod:

$ k get po -o wide
NAME READY STATUS RESTARTS AGE IP
NODE
hue-learn-5c9bb545d9-nn4xk 1/1 Running 0 156m
10.42.1.15 k3d-k3s-default-worker-1
hue-learn-5c9bb545d9-sqx28 1/1 Running 0 12h
10.42.2.18 k3d-k3s-default-worker-2
hue-learn-5c9bb545d9-w8hrr 1/1 Running 0 12h
10.42.0.11 k3d-k3s-default-worker-0
hue-reminders-5cb9b845d8-kck5d 1/1 Running 0 14s
10.42.2.24 k3d-k3s-default-worker-2
hue-reminders-5cb9b845d8-kpvx5 1/1 Running 0 14s
10.42.2.23 k3d-k3s-default-worker-2
trouble-shooter 1/1 Running 0 14m
10.42.2.21 k3d-k3s-default-worker-2

Using namespaces to limit access
The Hue project is moving along nicely, and we have a few hundred microservices
and about 100 developers and DevOps engineers working on it. Groups of related
microservices emerge, and you notice that many of these groups are pretty
autonomous. They are completely oblivious to the other groups. Also, there are some
sensitive areas such as health and finance that you want to control access to more
effectively. Enter namespaces.

Let's create a new service, Hue-finance, and put it in a new namespace called
restricted.

Here is the YAML file for the new restricted namespace:

kind: Namespace
apiVersion: v1
metadata:
 name: restricted
 labels:
 name: restricted

Chapter 5

[155]

We can create it as usual:

$ kubectl create -f restricted-namespace.yaml
namespace "restricted" created

Once the namespace has been created, we can configure a context for the namespace.
This will allow restricting access just to this namespace to specific users:

$ kubectl config set-context restricted --namespace=restricted
--cluster=default --user=default
Context "restricted" set.

$ kubectl config use-context restricted
Switched to context "restricted".

Let's check our cluster configuration:

apiVersion: v1
clusters:
- cluster:
 certificate-authority-data: DATA+OMITTED
 server: https://localhost:6443
 name: default
contexts:
- context:
 cluster: default
 user: default
 name: default
- context:
 cluster: default
 namespace: restricted
 user: default
 name: restricted
current-context: restricted
kind: Config
preferences: {}
users:
- name: default
 user:
 password: <REDACTED>
 username: admin

Using Kubernetes Resources in Practice

[156]

As you can see, there are two contexts now and the current context is restricted. If
we wanted to, we could even create dedicated users with their own credentials that
are allowed to operate in the restricted namespace. This is not necessary in this case
since we are the cluster admin.

Now, in this empty namespace, we can create our hue-finance service, and it will be
on its own:

$ kubectl create -f hue-finance-deployment.yaml
deployment.apps/hue-learn created

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
hue-finance-7d4b84cc8d-gcjnz 1/1 Running 0 6s
hue-finance-7d4b84cc8d-tqvr9 1/1 Running 0 6s
hue-finance-7d4b84cc8d-zthdr 1/1 Running 0 6s

You don't have to switch contexts. You can also use the --namespace=<namespace>
and --all-namespaces command-line switches, but when operating for a while in the
same non-default namespace it's nice to set the context to that namespace.

Using kustomization for hierarchical
cluster structures
This is not a typo. Kubectl recently incorporated the functionality of kustomize
(https://kustomize.io/). It is a way to configure Kubernetes without templates.
There was a lot of drama about the way the kustomize functionality was integrated
into kubectl itself, since there are other options and it was an open question if kubectl
should be that opinionated. But that's all in the past. The bottom line is that kubectl
apply -k unlocks a treasure trove of configuration options. Let's understand what
problem it helps us to solve and take advantage of it to help us manage Hue.

Understanding the basics of kustomize
Kustomize was created as a response to template-heavy approaches like Helm to
configure and customize Kubernetes clusters. It is designed around the principle
of declarative application management. It takes a valid Kubernetes YAML
manifest (base) and specializes it or extends it by overlaying additional YAML
patches (overlays). Overlays depend on their bases. All files are valid YAML files.
There are no placeholders.

https://kustomize.io/

Chapter 5

[157]

A kustomization.yaml file controls the process. Any directory that contains a
kustomization.yaml file is called a root. For example:

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
namespace: staging
commonLabels:
 environment: staging
bases:
 - ../base
patchesStrategicMerge:
 - hue-learn-patch.yaml

resources:
 - namespace.yaml

kustomize can work well in a GitOps environment where different kustomizations
live in a Git repo and changes to the bases, overlays, or kustomization.yaml files
trigger a deployment.

One of the best use cases for kustomize is organizing your system into multiple
namespaces such as staging and production. Let's restructure the Hue platform
deployment manifests.

Configuring the directory structure
First, we need a base directory that will contain the commonalities of all the
manifests. Then we will have an overlays directory that contains staging and
production sub-directories:

$ tree
.
├── base
│ ├── hue-learn.yaml
│ └── kustomization.yaml
├── overlays
│ ├── production
│ │ ├── kustomization.yaml
│ │ └── namespace.yaml
│ └── staging
│ ├── hue-learn-patch.yaml
│ ├── kustomization.yaml
│ └── namespace.yaml

Using Kubernetes Resources in Practice

[158]

The hue-learn.yaml file in the base directory is just an example. There may be many
files there. Let's review it quickly:

apiVersion: v1
kind: Pod
metadata:
 name: hue-learner
 labels:
 tier: internal-service
spec:
 containers:
 - name: hue-learner
 image: g1g1/hue-learn:0.3
 resources:
 requests:
 cpu: 200m
 memory: 256Mi
 env:
 - name: DISCOVER_QUEUE
 value: dns
 - name: DISCOVER_STORE
 value: dns

It is very similar to the manifest we created earlier, but it doesn't have the app: hue
label. It is not necessary because the label is provided by the kustomization.yaml file
as a common label for all the listed resources:

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
commonLabels:
 app: hue

resources:
 - hue-learn.yaml

Applying kustomizations
We can observe the results by running the kubectl kustomize command on the base
directory. You can see that the common label app: hue was added:

$ kubectl kustomize base

apiVersion: v1

Chapter 5

[159]

kind: Pod
metadata:
 labels:
 app: hue
 tier: internal-service
 name: hue-learner
spec:
 containers:
 - env:
 - name: DISCOVER_QUEUE
 value: dns
 - name: DISCOVER_STORE
 value: dns
 image: g1g1/hue-learn:0.3
 name: hue-learner
 resources:
 requests:
 cpu: 200m
 memory: 256Mi

In order to actually deploy the kustomization, we can run kubectl -k apply. But the
base is not supposed to be deployed on its own. Let's dive into the overlays/staging
directory and examine it.

The namespace.yaml file just creates the staging namespace. It will also benefit from
all the kustomizations, as we'll soon see:

apiVersion: v1
kind: Namespace
metadata:
 name: staging

The kustomization.yaml file adds the common label environment: staging. It
depends on the base directory and adds the namespace.yaml file to the resources list
(which already includes the hue-learn.yaml from the base directory):

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
namespace: staging
commonLabels:
 environment: staging
bases:
 - ../../base

Using Kubernetes Resources in Practice

[160]

patchesStrategicMerge:
 - hue-learn-patch.yaml

resources:
 - namespace.yaml

But that's not all. The most interesting part of kustomization is patching.

Patching
Patches add or replace parts of manifests. They never remove existing resources or
parts of resources. The hue-learn-patch.yaml updates the image from g1g1/hue-
learn:0.3 to g1g1/hue-learn:0.4:

apiVersion: v1
kind: Pod
metadata:
 name: hue-learner
spec:
 containers:
 - name: hue-learner
 image: g1g1/hue-learn:0.4

This is a strategic merge. Kustomize supports another type of patch called
JsonPatches6902. It is based on RFC 6902. It is often more concise than a strategic
merge. Note that since JSON is a subset of YAML, we can use YAML syntax for
JSON 6902 patches. Here is the same patch of changing the image version:

- op: replace
 path: /spec/containers/0/image
 value: g1g1/hue-learn:0.4

Kustomizing the entire staging namespace
Here is what kustomize generates when it is running on the overlays/staging
directory:

$ kubextl kustomize overlays/staging

apiVersion: v1
kind: Namespace
metadata:

http://RFC 6902

Chapter 5

[161]

 labels:
 environment: staging
 name: staging

apiVersion: v1
kind: Pod
metadata:
 labels:
 app: hue
 environment: staging
 tier: internal-service
 name: hue-learner
 namespace: staging
spec:
 containers:
 - env:
 - name: DISCOVER_QUEUE
 value: dns
 - name: DISCOVER_STORE
 value: dns
 image: g1g1/hue-learn:0.4
 name: hue-learner
 resources:
 requests:
 cpu: 200m
 memory: 256Mi

Note that the namespace didn't inherit the app: hue label from the base, but only the
environment: staging label from its local kustomization file. The hue-learn pod on
the other hand got all labels as well the namespace designation.

It's time to deploy it to the cluster:

$ kubectl apply -k overlays/staging/
namespace/staging created
pod/hue-learner created

Now, we can review the pod in the newly created staging namespace:

$ kubectl get po -n staging
NAME READY STATUS RESTARTS AGE
hue-learner 1/1 Running 0 8s

Using Kubernetes Resources in Practice

[162]

Launching jobs
Hue has evolved and has a lot of long-running processes deployed as microservices,
but it also has a lot of tasks that run, accomplish some goal, and exit. Kubernetes
supports this functionality via the Job resource. A Kubernetes job manages one or
more pods and ensures that they run until they are successful. If one of the pods
managed by the job fails or is deleted, then the job will run a new pod until it
succeeds.

There are also many serverless or function-as-a-service solutions for Kubernetes,
but they are built on top of native Kubernetes. We will dedicate a whole chapter to
serverless computing.

Here is a job that runs a Python process to compute the factorial of 5 (hint: it's 120):

apiVersion: batch/v1
kind: Job
metadata:
 name: factorial5
spec:
 template:
 metadata:
 name: factorial5
 spec:
 containers:
 - name: factorial5
 image: g1g1/py-kube:0.2
 command: ["python",
 "-c",
 "import math; print(math.factorial(5))"]
 restartPolicy: Never

Note that the restartPolicy must be either Never or OnFailure. The default value –
Always – is invalid because a job shouldn't restart after a successful completion.

Let's start the job and check its status:

$ kubectl create -f factorial-job.yaml
job.batch/factorial5 created

$ kubectl get jobs
NAME COMPLETIONS DURATION AGE
factorial5 1/1 2s 2m53s

Chapter 5

[163]

The pods of completed tasks are displayed with a status of Completed:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
factorial5-tf9qb 0/1 Completed 0 26m
hue-learn-5c9bb545d9-nn4xk 1/1 Running 3 2d11h
hue-learn-5c9bb545d9-sqx28 1/1 Running 3 2d21h
hue-learn-5c9bb545d9-w8hrr 1/1 Running 3 2d21h
hue-reminders-5cb9b845d8-kck5d 1/1 Running 3 2d8h
hue-reminders-5cb9b845d8-kpvx5 1/1 Running 3 2d8h
trouble-shooter 1/1 Running 3 2d9h

The factorial5 pod has a status of Completed. Let's check out its output in the logs:

$ kubectl logs factorial5-tf9qb
120

Running jobs in parallel
You can also run a job with parallelism. There are two fields in the spec, called
completions and parallelism. completions is set to 1 by default. If you want more
than one successful completion, then increase this value. parallelism determines
how many pods to launch. A job will not launch more pods than needed for
successful completion, even if the parallelism value is greater.

Let's run another job that just sleeps for 20 seconds until it has three successful
completions. We'll use a parallelism factor of six, but only three pods will be
launched:

apiVersion: batch/v1
kind: Job
metadata:
 name: sleep20
spec:
 completions: 3
 parallelism: 6
 template:
 metadata:
 name: sleep20
 spec:
 containers:
 - name: sleep20
 image: g1g1/py-kube:0.2

Using Kubernetes Resources in Practice

[164]

 command: ["python",
 "-c",
 "import time; print('started...');
 time.sleep(20); print('done.')"]
 restartPolicy: Never

We can now see that all jobs completed, and the pods are not ready because they
already did the job:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
sleep20-2mb7g 0/1 Completed 0 17m
sleep20-74pwh 0/1 Completed 0 15m
sleep20-txgpz 0/1 Completed 0 15m

Cleaning up completed jobs
When a job completes, it sticks around – and its pods, too. This is by design, so
you can look at logs or connect to pods and explore. But normally, when a job has
completed successfully, it is not needed anymore. It's your responsibility to clean
up completed jobs and their pods. The easiest way is to simply delete the job object,
which will delete all the pods too:

$ kubectl get jobs
NAME COMPLETIONS DURATION AGE
factorial5 1/1 2s 6h59m
sleep20 3/3 3m7s 5h54m

$ kubectl delete job factorial5
job.batch "factorial5" deleted

$ kubectl delete job sleep20
job.batch "sleep20" deleted

Scheduling cron jobs
Kubernetes cron jobs are jobs that run for a specified time, once or repeatedly. They
behave as regular Unix cron jobs specified in the /etc/crontab file.

Chapter 5

[165]

In Kubernetes 1.4 they were known as a ScheduledJob. But in Kubernetes 1.5, the
name was changed to CronJob. Starting with Kubernetes 1.8 the CronJob resource is
enabled by default in the API server and there is no need to pass a --runtime-config
flag anymore, but it's still in beta. Here is the configuration to launch a cron job every
minute to remind you to stretch. In the schedule, you may replace the * with ?:

apiVersion: batch/v1beta1
kind: CronJob
metadata:
 name: cron-demo
spec:
 schedule: "*/1 * * * *"
 jobTemplate:
 spec:
 template:
 metadata:
 labels:
 name: cron-demo
 spec:
 containers:
 - name: cron-demo
 image: g1g1/py-kube:0.2
 args:
 - python
 - -c
 - from datetime import datetime; print('[{}] CronJob demo
here...'.format(datetime.now()))
 restartPolicy: OnFailure

In the pod spec, under the job template, I added a label name: cron-demo. The
reason is that cron jobs and their pods are assigned names with a random prefix
by Kubernetes. The label allows you to easily discover all the pods of a particular
cron job.

See the following command lines:

$ kubectl get pods

NAME READY STATUS RESTARTS AGE
cron-demo-1568250120-7jrq8 0/1 Completed 0 3m
cron-demo-1568250180-sw5qq 0/1 Completed 0 2m
cron-demo-1568250240-mmfzm 0/1 Completed 0 1m

Using Kubernetes Resources in Practice

[166]

Note that each invocation of a cron job launches a new job object with a new pod:

$ kubectl get jobs
NAME COMPLETIONS DURATION AGE
cron-demo-1568244780 1/1 2s 1m
cron-demo-1568250060 1/1 3s 88s
cron-demo-1568250120 1/1 3s 38s

As usual, you can check the output of the pod of a completed cron job using the logs
command:

$ kubectl logs cron-demo-1568250240-mmfzm
[2020-06-01 01:04:03.245204] CronJob demo here...

When you delete a cron job it stops scheduling new jobs, then deletes all the existing
job objects and all the pods it created.

You can use the designated label (name=cron-demo in this case) to locate all the job
objects launched by the cron job. You can also suspend a cron job so it doesn't create
more jobs without deleting completed jobs and pods. You can also manage previous
jobs by setting in the spec history limits: .spec.successfulJobsHistoryLimit and
.spec.failedJobsHistoryLimit.

Mixing non-cluster components
Most real-time system components in the Kubernetes cluster will communicate with
out-of-cluster components. Those could be completely external third-party services
accessible through some API, but can also be internal services running in the same
local network that, for various reasons, are not part of the Kubernetes cluster.

There are two categories here: inside the cluster network and outside the cluster
network. Why is the distinction important?

Outside-the-cluster-network components
These components have no direct access to the cluster. They can only access it
through APIs, externally visible URLs, and exposed services. These components are
treated just like any external user. Often, cluster components will just use external
services, which pose no security issue. For example, in a previous job we had a
Kubernetes cluster that reported exceptions to a third-party service (https://sentry.
io/welcome/). It was one-way communication from the Kubernetes cluster to the
third-party service.

https://sentry.io/welcome/
https://sentry.io/welcome/

Chapter 5

[167]

Inside-the-cluster-network components
These are components that run inside the network but are not managed by
Kubernetes. There are many reasons to run such components. They could be legacy
applications that have not been kubernetized yet, or some distributed data store
that is not easy to run inside Kubernetes. The reason to run these components inside
the network is for performance, and to have isolation from the outside world so
traffic between these components and pods can be more secure. Being part of the
same network ensures low latency, and the reduced need for authentication is both
convenient and can avoid authentication overhead.

Managing the Hue platform with Kubernetes
In this section, we will look at how Kubernetes can help operate a huge platform
such as Hue. Kubernetes itself provides a lot of capabilities to orchestrate pods and
manage quotas and limits, detecting and recovering from certain types of generic
failures (hardware malfunctions, process crashes, unreachable services). But in a
complicated system such as Hue, pods and services may be up and running but in an
invalid state or waiting for other dependencies in order to perform their duties. This
is tricky because if a service or pod is not ready yet but is already receiving requests,
then you need to manage it somehow: fail (puts responsibility on the caller), retry
(how many times? For how long? How often?), and queue for later (who will manage
this queue?).

It is often better if the system at large can be aware of the readiness state of different
components, or if components are visible only when they are truly ready. Kubernetes
doesn't know Hue, but it provides several mechanisms such as liveness probes,
readiness probes, and init containers to support application-specific management
of your cluster.

Using liveness probes to ensure your containers
are alive
Kubelets watch over your containers. If a container process crashes, the kubelet
will take care of it based on the restart policy. But this is not always enough. Your
process may not crash but instead run into an infinite loop or a deadlock. The restart
policy might not be nuanced enough. With a liveness probe, you get to decide when
a container is considered alive. Here is a pod template for the Hue music service. It
has a livenessProbe section, which uses the httpGet probe. An HTTP probe requires
a scheme (http or https, default to http; a host, default to PodIp; a path; and a port).

Using Kubernetes Resources in Practice

[168]

The probe is considered successful if the HTTP status is between 200 and
399. Your container may need some time to initialize, so you can specify an
initialDelayInSeconds. The kubelet will not hit the liveness check during
this period:

apiVersion: v1
kind: Pod
metadata:
 labels:
 app: music
 service: music
 name: hue-music
spec:
 containers:
 - name: hue-music
 image: busybox
 livenessProbe:
 httpGet:
 path: /pulse
 port: 8888
 httpHeaders:
 - name: X-Custom-Header
 value: ItsAlive
 initialDelaySeconds: 30
 timeoutSeconds: 1

If a liveness probe fails for any container, then the pod's restart policy comes into
effect. Make sure your restart policy is not Never, because that will make the probe
useless.

There are two other types of probe:

•	 TcpSocket – Just checks that a port is open
•	 Exec – Runs a command that returns 0 for success

Using readiness probes to manage
dependencies
Readiness probes are used for different purposes. Your container may be up and
running, but it may depend on other services that are unavailable at the moment.
For example, hue-music may depend on access to a data service that contains your
listening history. Without access, it is unable to perform its duties.

Chapter 5

[169]

In this case, other services or external clients should not send requests to the Hue
music service, but there is no need to restart it. Readiness probes address this
use case. When a readiness probe fails for a container, the container's pod will be
removed from any service endpoint it is registered with. This ensures that requests
don't flood services that can't process them. Note that you can also use readiness
probes to temporarily remove pods that are overbooked until they drain some
internal queue.

Here is a sample readiness probe. I use the exec probe here to execute a custom
command. If the command exits a non-zero exit code, the container will be torn
down:

readinessProbe:
 exec:
 command:
 - /usr/local/bin/checker
 - --full-check
 - --data-service=hue-multimedia-service
 initialDelaySeconds: 60
 timeoutSeconds: 5

It is fine to have both a readiness probe and a liveness probe on the same container
as they serve different purposes.

Employing init containers for orderly pod
bring-up
Liveness and readiness probes are great. They recognize that, at startup, there may
be a period where the container is not ready yet but shouldn't be considered failed.
To accommodate that, there is the initialDelayInSeconds setting, which describes
the time for which containers will not be considered failed. But what if this initial
delay is potentially very long? Maybe, in most cases, a container is ready after a
couple of seconds and ready to process requests, but because the initial delay is set
to five minutes just in case, we waste a lot of time where the container is idle. If the
container is part of a high-traffic service, then many instances can all sit idle for five
minutes after each upgrade and pretty much make the service unavailable.

Init containers address this problem. A pod may have a set of init containers that
run to completion before other containers are started. An init container can take care
of all the non-deterministic initialization and let application containers with their
readiness probe have minimal delay.

Using Kubernetes Resources in Practice

[170]

Init containers came out of beta in Kubernetes 1.6. You specify them in the pod spec
as the initContainers field, which is very similar to the containers field. Here is an
example:

apiVersion: v1
kind: Pod
metadata:
 name: hue-fitness
spec:
 containers:
 - name: hue-fitness
 image: busybox
 initContainers:
 - name: install
 image: busybox

Pod readiness and readiness gates
Pod readiness was introduced in Kubernetes 1.11 and became stable in Kubernetes
1.14. While readiness probes allow you to determine at the pod level if a pod's
ready to serve requests, the overall infrastructure that supports delivering traffic to
the pod might not be ready yet. For example, the service, network policy, and load
balancer might take some extra time. This can be a problem especially during rolling
deployments where Kubernetes might terminate the old pods before the new pods
are really ready, which will cause degradation in service capacity and even cause a
service outage in extreme cases (if all old pods were terminated and no new pod is
fully ready).

This is the problem that the Pod ready++ proposal addresses. The idea is to extend
the concept of pod readiness to check additional conditions in addition to making
sure all the containers are ready. This is done by adding a new field to the PodSpec
called readinessGates. You can specify a set of conditions that must be satisfied
for the pod to be considered ready. In the following example, the pod is not ready
because the "www.example.com/feature-1" condition has a status of False:

Kind: Pod
...
spec:
 readinessGates:
 - conditionType: www.example.com/feature-1
status:
 conditions:
 - type: Ready # this is a builtin PodCondition

Chapter 5

[171]

 status: "False"
 lastProbeTime: null
 lastTransitionTime: 2018-01-01T00:00:00Z
 - type: "www.example.com/feature-1" # an extra PodCondition
 status: "False"
 lastProbeTime: null
 lastTransitionTime: 2018-01-01T00:00:00Z
 containerStatuses:
 - containerID: docker://abcd...
 ready: true
...

Sharing with DaemonSet pods
DaemonSet pods are pods that are deployed automatically, one per node (or a
designated subset of the nodes). They are typically used for keeping an eye on
nodes and ensuring they are operational. This is a very important function, which
we will cover in Chapter 13, Monitoring Kubernetes Clusters. But they can be used
for much more. The nature of the default Kubernetes scheduler is that it schedules
pods based on resource availability and requests. If you have lots of pods that don't
require a lot of resources, similarly many pods will be scheduled on the same node.
Let's consider a pod that performs a small task and then, every second, sends a
summary of all its activities to a remote service. Now, imagine that, on average, 50 of
these pods are scheduled on the same node. This means that, every second, 50 pods
make 50 network requests with very little data. How about we cut it down by 50×
to just a single network request? With a DaemonSet pod, all the other 50 pods can
communicate with it instead of talking directly to the remote service. The DaemonSet
pod will collect all the data from the 50 pods and, once a second, will report it in
aggregate to the remote service. Of course, that requires the remote service API to
support aggregate reporting. The nice thing is that the pods themselves don't have to
be modified; they will just be configured to talk to the DaemonSet pod on localhost
instead of the remote service. The DaemonSet pod serves as an aggregating proxy.

The interesting part about this configuration file is that the hostNetwork, hostPID,
and hostIPC options are set to true. This enables the pods to communicate efficiently
with the proxy, utilizing the fact they are running on the same physical host:

apiVersion: apps/v1
kind: DaemonSet
metadata:
 name: hue-collect-proxy
 labels:
 tier: stats

Using Kubernetes Resources in Practice

[172]

 app: hue-collect-proxy
spec:
 selector:
 matchLabels:
 tier: stats
 app: hue-collect-proxy
 template:
 metadata:
 labels:
 tier: stats
 app: hue-collect-proxy
 spec:
 hostPID: true
 hostIPC: true
 hostNetwork: true
 containers:
 - name: hue-collect-proxy
 image: busybox

Evolving the Hue platform with
Kubernetes
In this section, we'll discuss other ways to extend the Hue platform and service
additional markets and communities. The question is always this: what Kubernetes
features and capabilities can we use to address new challenges or requirements?

Utilizing Hue in an enterprise
An enterprise often can't run in the cloud, either due to security and compliance
reasons or for performance reasons because the system has to work with data and
legacy systems that are not cost-effective to move to the cloud. Either way, Hue for
enterprise must support on-premises clusters and/or bare-metal clusters.

While Kubernetes is most often deployed on the cloud, and even has a special cloud-
provider interface, it doesn't depend on the cloud and can be deployed anywhere. It
does require more expertise, but enterprise organizations that already run systems
on their own data centers have that expertise.

Chapter 5

[173]

Advancing science with Hue
Hue is so great at integrating information from multiple sources that it would be a
boon for the scientific community. Consider how Hue can help multi-disciplinary
collaboration between scientists from different disciplines.

A network of scientific communities might require deployment across multiple
geographically distributed clusters. Enter cluster federation. Kubernetes has this use
case in mind and has developed support for it. We will discuss it at length in a later
chapter.

Educating the kids of the future with Hue
Hue can be utilized for education and provide many services to online education
systems. But privacy concerns may prevent deploying Hue for kids as a single,
centralized system. One possibility is to have a single cluster, with namespaces
for different schools. Another deployment option is that each school or county has
its own Hue Kubernetes cluster. In the second case, Hue for education must be
extremely easy to operate to cater for schools without a lot of technical expertise.
Kubernetes can help a lot by providing self-healing and auto-scaling features and
capabilities for Hue, to be as close to zero-administration as possible.

Summary
In this chapter, we designed and planned the development, deployment, and
management of the Hue platform – an imaginary omniscient and omnipotent
service – built on microservice architecture. We used Kubernetes as the underlying
orchestration platform, of course, and delved into many of its concepts and
resources. In particular, we focused on deploying pods for long-running services
as opposed to jobs for launching short-term or cron jobs, explored internal services
versus external services, and also used namespaces to segment a Kubernetes cluster.
Then we looked at the management of a large system such as Hue with liveness and
readiness probes, init containers, and DaemonSets.

You should now feel comfortable architecting web-scale systems composed of
microservices and understand how to deploy and manage them in a Kubernetes
cluster.

In the next chapter, we will look into the super-important area of storage. Data is
king but often the least flexible element of the system. Kubernetes provides a storage
model and many options for integrating with various storage solutions.

Using Kubernetes Resources in Practice

[174]

References
•	 https://blog.jetstack.io/blog/kustomize-cert-manager/

•	 https://skryvets.com/blog/2019/05/15/kubernetes-kustomize-json-
patches-6902

https://blog.jetstack.io/blog/kustomize-cert-manager/
https://skryvets.com/blog/2019/05/15/kubernetes-kustomize-json-patches-6902
https://skryvets.com/blog/2019/05/15/kubernetes-kustomize-json-patches-6902

[175]

6
Managing Storage

In this chapter, we'll look at how Kubernetes manages storage. Storage is very
different from compute, but at a high level they are both resources. Kubernetes as
a generic platform takes the approach of abstracting storage behind a programming
model and a set of plugins for storage providers. First, we'll go into detail about the
conceptual storage model and how storage is made available to containers in the
cluster. Then, we'll cover the common cloud platform storage providers, such as
Amazon Web Services (AWS), Google Compute Engine (GCE), and Azure. Then
we'll look at a prominent open source storage provider, GlusterFS from Red Hat,
which provides a distributed filesystem. We'll also look into an alternative solution
– Flocker – that manages your data in containers as part of the Kubernetes cluster.
Finally, we'll see how Kubernetes supports the integration of existing enterprise
storage solutions.

At the end of this chapter, you'll have a solid understanding of how storage
is represented in Kubernetes, the various storage options in each deployment
environment (local testing, public cloud, and enterprise), and how to choose the
best option for your use case.

You should try the code samples in this chapter on minikube or another cluster that
supports storage adequately. The KinD cluster has some problems related to labeling
nodes, which is necessary for some storage solutions.

Persistent volumes walkthrough
In this section, we will understand the Kubernetes storage conceptual model and see
how to map persistent storage into containers so they can read and write. Let's start
by understanding the problem of storage. Containers and pods are ephemeral.

Managing Storage

[176]

Anything a container writes to its own filesystem gets wiped out when the container
dies. Containers can also mount directories from their host node and read or write
to them. These will survive container restarts, but the nodes themselves are not
immortal. Also, if the pod itself is rescheduled to a different node, the container
will not have access to the old node host's filesystem.

There are other problems, such as ownership for mounted hosted directories when
the container dies. Just imagine a bunch of containers writing important data to
various data directories on their host and then going away, leaving all that data all
over the nodes with no direct way to tell what container wrote what data. You can
try to record this information, but where would you record it? It's pretty clear that
for a large-scale system, you need persistent storage accessible from any node to
reliably manage the data.

Volumes
The basic Kubernetes storage abstraction is the volume. Containers mount volumes
that bind to their pod and they access the storage wherever it may be as if it's in their
local filesystem. This is nothing new, and it is great, because as a developer who
writes applications that need access to data, you don't have to worry about where
and how the data is stored.

Using emptyDir for intra-pod communication
It is very simple to share data between containers in the same pod using a shared
volume. Container 1 and container 2 simply mount the same volume and can
communicate by reading and writing to this shared space. The most basic volume
is the emptyDir. An emptyDir volume is an empty directory on the host. Note that
it is not persistent because when the pod is removed from the node, the contents
are erased. If a container just crashes, the pod will stick around and you can access
it later. Another very interesting option is to use a RAM disk, by specifying the
medium as Memory. Now, your containers communicate through shared memory,
which is much faster, but more volatile of course. If the node is restarted, the
emptyDir's volume contents are lost.

Here is a pod configuration file that has two containers that mount the same volume,
called shared-volume. The containers mount it in different paths, but when the hue-
global-listener container is writing a file to /notifications, the hue-job-scheduler
will see that file under /incoming:

apiVersion: v1
kind: Pod
metadata:

Chapter 6

[177]

 name: hue-scheduler
spec:
 containers:
 - image: g1g1/hue-global-listener:1.0
 name: hue-global-listener
 volumeMounts:
 - mountPath: /notifications
 name: shared-volume
 - image: g1g1/hue-job-scheduler:1,0
 name: hue-job-scheduler
 volumeMounts:
 - mountPath: /incoming
 name: shared-volume
 volumes:
 - name: shared-volume
 emptyDir: {}

To use the shared memory option, we just need to add medium: Memory to the
emptyDir section:

 volumes:
 - name: shared-volume
 emptyDir:
 medium: Memory

To verify it worked, let's create the pod and then write a file using one container and
read it using the other container:

$ kubectl create -f hue-scheduler.yaml
pod/hue-scheduler created

Note that the pod has two containers:

$ kubectl get pod hue-scheduler -o json | jq .spec.containers
[
 {
 "image": "g1g1/hue-global-listener:1.0",
 "name": "hue-global-listener",
 "volumeMounts": [
 {
 "mountPath": "/notifications",
 "name": "shared-volume"
 },
 ...

Managing Storage

[178]

]
 ...
 },
 {
 "image": "g1g1/hue-job-scheduler:1.0",
 "name": "hue-job-scheduler",
 "volumeMounts": [
 {
 "mountPath": "/incoming",
 "name": "shared-volume"
 },
 ...
]
 ...
 }
]

Now, we can create a file in the /notifications directory of the hue-global-listener
container and list it in the /incoming directory of the hue-job-scheduler container:

$ kubectl exec -it hue-scheduler -c hue-global-listener -- touch /
notifications/1.txt
$ kubectl exec -it hue-scheduler -c hue-job-scheduler -- ls /incoming
1.txt

Using HostPath for intra-node communication
Sometimes, you want your pods to get access to some host information (for example,
the Docker daemon) or you want pods on the same node to communicate with each
other. This is useful if the pods know they are on the same host. Since Kubernetes
schedules pods based on available resources, pods usually don't know what other
pods they share the node with. There are several cases where a pod can rely on other
pods being scheduled with it on the same node:

•	 In a single-node cluster, all pods obviously share the same node
•	 DaemonSet pods always share a node with any other pod that matches their

selector
•	 Pods are always scheduled together due to node or pod affinity

Chapter 6

[179]

For example, in Chapter 5, Using Kubernetes Resources in Practice, we discussed a
DaemonSet pod that serves as an aggregating proxy to other pods. Another way
to implement this behavior is for the pods to simply write their data to a mounted
volume that is bound to a host directory and the DaemonSet pod can directly read
it and act on it.

Before you decide to use the HostPath volume, make sure you understand the
limitations:

•	 The behavior of pods with the same configuration might be different if they
are data-driven and the files on their host are different

•	 It can violate resource-based scheduling (coming soon to Kubernetes)
because Kubernetes can't monitor HostPath resources

•	 The containers that access host directories must have a security context with
privileged set to true or, on the host side, you need to change the permissions
to allow writing

Here is a configuration file that mounts the /coupons directory into the hue-coupon-
hunter container, which is mapped to the host's /etc/hue/data/coupons directory:

apiVersion: v1
kind: Pod
metadata:
 name: hue-coupon-hunter
spec:
 containers:
 - image: busybox name: hue-coupon-hunter
 volumeMounts:
 - mountPath: /coupons
 name: coupons-volume
 volumes:
 - name: coupons-volume
 host-path:
 path: /etc/hue/data/coupons

Since the pod doesn't have a privileged security context, it will not be able to write
to the host directory. Let's change the container spec to enable it by adding a security
context:

 - image: the_g1g1/hue-coupon-hunter
 name: hue-coupon-hunter
 volumeMounts:
 - mountPath: /coupons

Managing Storage

[180]

 name: coupons-volume
 securityContext:
 privileged: true

In the following diagram, you can see that each container has its own local storage
area inaccessible to other containers or pods, and the host's /data directory is
mounted as a volume into both container 1 and container 2:

Figure 6.1: Container directories

Using local volumes for durable node storage
Local volumes are similar to HostPath, but they persist across pod restarts and node
restarts. In that sense, they are considered persistent volumes. They were added in
Kubernetes 1.7. As of Kubernetes 1.14, they are considered stable. The purpose of
local volumes is to support StatefulSets where specific pods need to be scheduled
on nodes that contain specific storage volumes. Local volumes have node affinity
annotations that simplify the binding of pods to the storage they need to access.

We need to define a storage class for using local volumes. We will cover storage
classes in depth later in this chapter. In one sentence, storage classes use a
provisioner to allocate storage to pods. Let's define the storage class in a file
called local-storage-class.yaml and create it:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: local-storage
provisioner: kubernetes.io/no-provisioner
volumeBindingMode: WaitForFirstConsumer

Chapter 6

[181]

$ kubectl create -f local-storage-class.yaml
storageclass.storage.k8s.io/local-storage created

Now, we can create a persistent volume using the storage class that will persist even
after the pod that's using it is terminated:

apiVersion: v1
kind: PersistentVolume
metadata:
 name: local-pv
 labels:
 release: stable
 capacity: 100Gi
spec:
 capacity:
 storage: 100Gi
 volumeMode: Filesystem
 accessModes:
 - ReadWriteOnce
 persistentVolumeReclaimPolicy: Delete
 storageClassName: local-storage
 local:
 path: /mnt/disks/disk-1
 nodeAffinity:
 required:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - minikube

Provisioning persistent volumes
While emptyDir volumes can be mounted and used by containers, they are not
persistent and don't require any special provisioning because they use existing
storage on the node. HostPath volumes persist on the original node, but if a pod is
restarted on a different node, it can't access the HostPath volume from its previous
node. Local volumes are real persistent volumes that use storage provisioned ahead
of time by administrators or dynamic provisioning via storage classes. They persist
on the node and can survive pod restarts and rescheduling and even node restarts.
Some persistent volumes use external storage (not a disk physically attached to the
node) provisioned ahead of time by administrators.

Managing Storage

[182]

In cloud environments, the provisioning may be very streamlined but it is still
required, and as a Kubernetes cluster administrator you have to at least make sure
your storage quota is adequate and monitor usage versus your quota diligently.

Remember that persistent volumes are resources that the Kubernetes cluster is using,
similar to nodes. As such, they are not managed by the Kubernetes API server.

You can provision resources statically or dynamically.

Provisioning persistent volumes statically
Static provisioning is straightforward. The cluster administrator creates persistent
volumes backed up by some storage media ahead of time, and these persistent
volumes can be claimed by containers.

Provisioning persistent volumes dynamically
Dynamic provisioning may happen when a persistent volume claim doesn't match
any of the statically provisioned persistent volumes. If the claim specified a storage
class and the administrator configured that class for dynamic provisioning, then a
persistent volume may be provisioned on the fly. We will see examples later when
we discuss persistent volume claims and storage classes.

Provisioning persistent volumes externally
One of the recent trends is to move storage provisioners out of Kubernetes core into
volume plugins (also known as out-of-tree). External provisioners work just like in-
tree dynamic provisioners but can be deployed and updated independently. More
and more in-tree storage provisioners migrate out-of-tree. Check out this Kubernetes
incubator project:

https://github.com/kubernetes-incubator/external-storage

Creating persistent volumes
Here is the configuration file for an NFS persistent volume:

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv-777
spec:
 capacity:
 storage: 100Gi

https://github.com/kubernetes-incubator/external-storage

Chapter 6

[183]

 volumeMode: Filesystem
 accessModes:
 - ReadWriteMany
 - ReadOnlyMany
 persistentVolumeReclaimPolicy: Recycle
 storageClassName: slow
 mountOptions:
 - hard
 - nfsvers=4.1
 nfs:
 path: /tmp
 server: 172.17.0.2

A persistent volume has a spec and metadata that possibly includes a storage
class name. Let's focus on the spec here. There are six sections: capacity, volume
mode, access modes, reclaim policy, storage class, and the volume type (nfs in the
example).

Capacity
Each volume has a designated amount of storage. Storage claims may be satisfied
by persistent volumes that have at least that amount of storage. In the example, the
persistent volume has a capacity of 100 gibibytes (a single gibibyte (GiB) is 2 to
the power of 30 bytes). It is important when allocating static persistent volumes to
understand the storage request patterns. For example, if you provision 20 persistent
volumes with 100 GiB capacity and a container claims a persistent volume with 150
GiB, then this claim will not be satisfied even though there is enough capacity overall
in the cluster:

capacity:
 storage: 100Gi

Volume mode
The optional volume mode was added in Kubernetes 1.9 as an alpha feature (moved
to beta in Kubernetes 1.13) for static provisioning. It lets you specify whether you
want a filesystem ("Filesystem") or raw storage ("Block"). If you don't specify
volume mode, then the default is "Filesystem", just like it was pre-1.9.

Access modes
There are three access modes:

•	 ReadOnlyMany: Can be mounted read-only by many nodes

Managing Storage

[184]

•	 ReadWriteOnce: Can be mounted as read-write by a single node
•	 ReadWriteMany: Can be mounted as read-write by many nodes

The storage is mounted to nodes, so even with ReadWriteOnce, multiple containers on
the same node can mount the volume and write to it. If that causes a problem, you
need to handle it through some other mechanism (for example, claim the volume
only in DaemonSet pods that you know will have just one per node).

Different storage providers support some subset of these modes. When you
provision a persistent volume, you can specify which modes it will support. For
example, NFS supports all modes, but in the example, only these modes were
enabled:

accessModes:
 - ReadWriteMany
 - ReadOnlyMany

Reclaim policy
The reclaim policy determines what happens when a persistent volume claim is
deleted. There are three different policies:

•	 Retain: The volume will need to be reclaimed manually
•	 Delete: The associated storage asset, such as AWS EBS, GCE PD, Azure disk,

or OpenStack Cinder volume, is deleted
•	 Recycle: Delete content only (rm -rf /volume/*)

The Retain and Delete policies mean the persistent volume is not available anymore
for future claims. The Recycle policy allows the volume to be claimed again.

Currently, only NFS and HostPath support recycling. AWS EBS, GCE PD, Azure
disks, and Cinder volumes support deletion. Dynamically provisioned volumes are
always deleted.

Storage class
You can specify a storage class using the optional storageClassName field of the spec.
If you do, then only persistent volume claims that specify the same storage class can
be bound to the persistent volume. If you don't specify a storage class, then only
persistent volume claims that don't specify a storage class can be bound to it:

 storageClassName: slow

Chapter 6

[185]

Volume type
The volume type is specified by name in the spec. There is no volumeType section. In
the preceding example, NFS is the volume type:

nfs:
 path: /tmp
 server: 172.17.0.8

Each volume type may have its own set of parameters. In this case, it's a path and
server.

We will go over various volume types later.

Mount options
Some persistent volume types have additional mount options you can specify.
The mount options are not validated. If you provide an invalid mount option, the
volume provisioning will fail. For example, NFS supports additional mount options:

 mountOptions:
 - hard
 - nfsvers=4.1

Making persistent volume claims
When containers want access to some persistent storage, they make a claim (or
rather, the developer and cluster administrator coordinate on necessary storage
resources to claim). The claim will match some storage (such as a volume).

Let's create a local volume. First, we need to create a backing directory:

$ mk ssh "sudo mkdir -p /mnt/disks/disk-1"

Now, we can create a local volume backed by the /mnt/disks/disk1 directory:

apiVersion: v1
kind: PersistentVolume
metadata:
 name: local-pv
 labels:
 release: stable
 capacity: 100Gi

Managing Storage

[186]

spec:
 capacity:
 storage: 100Gi
 volumeMode: Filesystem
 accessModes:
 - ReadWriteOnce
 persistentVolumeReclaimPolicy: Delete
 storageClassName: local-storage
 local:
 path: /mnt/disks/disk-1
 nodeAffinity:
 required:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - minikube

$ kubectl create -f local-volume.yaml
persistentvolume/local-pv created

Here is a sample claim that matches the persistent volume we just created:

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: local-storage-claim
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 80Gi
 storageClassName: local-storage
 selector:
 matchLabels:
 release: "stable"
 matchExpressions:
 - {key: capacity, operator: In, values: [80Gi, 100Gi]}

Chapter 6

[187]

Let's create the claim and then explain what the different pieces do:

$ kubectl create -f local-persistent-volume-claim.yaml
persistentvolumeclaim/local-storage-claim created

The name storage-claim will be important later when mounting the claim into a
container.

The access mode in the spec is ReadWriteOnce, which means if the claim is satisfied,
no other claim with the ReadWriteOnce access mode can be satisfied, but claims for
ReadOnlyMany can still be satisfied.

The resources section requests 80 GiB. This can be satisfied by our persistent volume,
which has a capacity of 100 Gi. But, this is a little bit of a waste because 20 Gi will not
be used by definition.

The storage class name is normal. As mentioned earlier it must match the class name
of the persistent volume. However, with PVC there is a difference between an empty
class name ("") and no class name at all. The former (empty class name) matches
persistent volumes with no storage class name. The latter (no class name) will be able
to bind to persistent volumes only if the DefaultStorageClass admission plugin is
turned off or if it's on and the default storage class is used.

The selector section allows you to filter available volumes further. For example,
here the volume must match the label release:stable and also have a label with
either capacity:80Gi or capacity:100Gi. Imagine that we have several other
volumes provisioned with capacities of 200 Gi and 500 Gi. We don't want to claim
a 500 Gi volume when we only need 80 Gi.

Kubernetes always tries to match the smallest volume that can satisfy a claim,
but if there are no 80 Gi or 100 Gi volumes then the labels will prevent assigning
a 200 Gi or 500 Gi volume and use dynamic provisioning instead.

It's important to realize that claims don't mention volumes by name. You can't claim
a specific volume. The matching is done by Kubernetes based on storage class,
capacity, and labels.

Finally, persistent volume claims belong to a namespace. Binding a persistent
volume to a claim is exclusive. That means that a persistent volume will be bound to
a namespace. Even if the access mode is ReadOnlyMany or ReadWriteMany, all the pods
that mount the persistent volume claim must be from that claim's namespace.

Managing Storage

[188]

Mounting claims as volumes
OK. We have provisioned a volume and claimed it. It's time to use the claimed
storage in a container. This turns out to be pretty simple. First, the persistent volume
claim must be used as a volume in the pod and then the containers in the pod can
mount it, just like any other volume. Here is a pod configuration file that specifies the
persistent volume claim we created earlier (bound to the local persistent volume we
provisioned):

kind: Pod
apiVersion: v1
metadata:
 name: the-pod
spec:
 containers:
 - name: the-container
 image: g1g1/py-kube:0.2
 volumeMounts:
 - mountPath: "/mnt/data"
 name: persistent-volume
 volumes:
 - name: persistent-volume
 persistentVolumeClaim:
 claimName: local-storage-claim

The key is in the persistentVolumeClaim section under volumes. The claim name
(storage-claim here) uniquely identifies the specific claim within the current
namespace and makes it available as a volume named persistent-volume here.
Then, the container can refer to it by its name and mount it to /mnt/data.

Before we create the pod it's important to note that the persistent volume claim
didn't actually claim any storage yet and wasn't bound to our local volume. The
claim is pending until some container actually attempts to mount a volume using
the claim:

$ kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE
local-storage-claim Pending local-
storage 12s

Now, the claim will be bound when creating the pod:

$ kubectl create -f pod-with-local-claim.yaml

Chapter 6

[189]

pod/the-pod created

$ kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE
local-storage-claim Bound local-pv 100Gi RWO local-
storage 20m

Raw block volumes
Kubernetes 1.9 added this capability as an alpha feature. As of Kubernetes 1.16, it is
in beta.

Raw block volumes provide direct access to the underlying storage, which is not
mediated via a filesystem abstraction. This is very useful for applications that
require high performance from storage, such as databases, or when consistent I/O
performance and low latency are needed. Fiber Channel (FC), iSCSI, and a local SSD
are all suitable for use as raw block storage. As of Kubernetes 1.16, the following
storage providers support raw block volumes:

•	 AWS Elastic Block Store
•	 AzureDisk
•	 FC
•	 GCEPersistentDisk
•	 iSCSI
•	 Local volume
•	 RBD (Ceph Block Device)
•	 Vsphere volume (alpha)

Here is how to define a raw block volume using an FC provider:

apiVersion: v1
kind: PersistentVolume
metadata:
 name: block-pv
spec:
 capacity:
 storage: 10Gi
 accessModes:
 - ReadWriteOnce
 volumeMode: Block

Managing Storage

[190]

 persistentVolumeReclaimPolicy: Retain
 fc:
 targetWWNs: ["50060e801049cfd1"]
 lun: 0
 readOnly: false

A matching Persistent Volume Claim (PVC) must specify volumeMode: Block as
well. Here is what it looks like:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: block-pvc
spec:
 accessModes:
 - ReadWriteOnce
 volumeMode: Block
 resources:
 requests:
 storage: 10Gi

Pods consume raw block volumes as devices under /dev and not as mounted
filesystems. Containers can then access this device and read/write to it. In practice,
this means that I/O requests to block storage go directly to the underlying block
storage and don't pass though the filesystem drivers. This is faster in theory, but
in practice, it can actually decrease performance if your applications benefit from
filesystem buffering.

Here is a pod with a container that binds the block-pvc with the raw block storage as
a device named /dev/xdva:

apiVersion: v1
kind: Pod
metadata:
 name: pod-with-block-volume
spec:
 containers:
 - name: fc-container
 image: fedora:26
 command: ["/bin/sh", "-c"]
 args: ["tail -f /dev/null"]
 volumeDevices:
 - name: data

Chapter 6

[191]

 devicePath: /dev/xvda
 volumes:
 - name: data
 persistentVolumeClaim:
 claimName: block-pvc

Storage classes
Storage classes let an administrator configure your cluster with custom persistent
storage (as long as there is a proper plugin to support it). A storage class has a name
in the metadata (it must be specified in the annotation to claim), a provisioner, and
parameters.

We declared a storage class for local storage earlier. Here is a sample storage class
that uses AWS EBS as a provisioner (so, it works only on AWS):

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: slow
provisioner: kubernetes.io/aws-ebs
parameters:
 type: io1
 iopsPerGB: "10"
 fsType: ext4

You may create multiple storage classes for the same provisioner with different
parameters. Each provisioner has its own parameters.

The currently supported provisioners are as follows:

•	 AWS Elastic Block Store
•	 AzureFile
•	 AzureDisk
•	 CephFS
•	 Cinder
•	 FC
•	 FlexVolume
•	 Flocker
•	 GcePersistentDisk

Managing Storage

[192]

•	 GlusterFS
•	 iSCSI
•	 Quobyte
•	 NFS
•	 RBD
•	 Vsphere volume
•	 Portworx volume
•	 ScaleIO
•	 StorageOS
•	 Local

This list doesn't contain provisioners for other volume types, such as gitRepo or
secret, that are not backed by your typical network storage. Those volume types
don't require a storage class. Utilizing volume types intelligently is a major part of
architecting and managing your cluster.

Default storage class
The cluster administrator can also assign a default storage class. When a default
storage class is assigned and the DefaultStorageClass admission plugin is turned on,
then claims with no storage class will be dynamically provisioned using the default
storage class. If the default storage class is not defined or the admission plugin is
not turned on, then claims with no storage class can only match volumes with no
storage class.

Demonstrating persistent volume storage end
to end
To illustrate all the concepts, let's do a mini demonstration where we create a
HostPath volume, claim it, mount it, and have containers write to it.

Let's start by creating a hostPath volume using the dir storage class. Save the
following in dir-persistent-volume.yaml:

kind: PersistentVolume
apiVersion: v1
metadata:
 name: dir-pv
spec:

Chapter 6

[193]

 storageClassName: dir
 capacity:
 storage: 1Gi
 accessModes:
 - ReadWriteMany
 hostPath:
 path: "/tmp/data"

Then, let's create it:

$ kubectl create -f dir-persistent-volume.yaml
persistentvolume/dir-pv created

To check out the available volumes, you can use the resource type
persistentvolumes or pv for short:

$ kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM
STORAGECLASS
dir-pv 1Gi RWX Retain Available dir

The capacity is 1 GiB as requested. The reclaim policy is Retain because host
path volumes are retained (not destroyed). The status is Available because the
volume has not been claimed yet. The access mode is specified as RWX, which means
ReadWriteMany. All access modes have a shorthand version:

•	 RWO: ReadWriteOnce
•	 ROX: ReadOnlyMany
•	 RWX: ReadWriteMany

We have a persistent volume. Let's create a claim. Save the following to dir-
persistent-volume-claim.yaml:

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: dir-pvc
spec:
 storageClassName: dir accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi

Managing Storage

[194]

Then, run the following command:

$ kubectl create -f dir-persistent-volume-claim.yaml
persistentvolumeclaim/dir-pvc created

Let's check the claim and the volume:

$ kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS
dir-pvc Bound dir-pv 1Gi RWX dir

$ kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM
STORAGECLASS
dir-pv 1Gi RWX Retain Bound default/dir-
pvc dir

As you can see, the claim and the volume are bound to each other and reference
each other. The reason the binding works is that the same storage class is used by
the volume and the claim. But, what happens if they don't match? Let's remove
the storage class from the persistent volume claim and see what happens. Save
the following persistent volume claim to some-persistent-volume-claim.yaml:

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: some-pvc
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 1Gi

Then, create it:

$ kubectl create -f some-persistent-volume-claim.yaml
persistentvolumeclaim/some-pvc created

OK. It was created. Let's check it out:

$ kubectl get pvc
NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS
dir-pvc Bound dir-pv 1Gi

Chapter 6

[195]

RWX dir
some-pvc Bound pvc-276fdd9d-b787-4c3e-a94b-e886edaa1039 1Gi
RWX standard

Very interesting. The some-pvc claim was bound to a new volume using the standard
storage class. This is an example of dynamic provisioning, where a new persistent
volume was created on the fly to satisfy the some-pvc claim that didn't match any
existing volume.

Here is the dynamic volume. It is also a HostPath volume created under /tmp/
hostpath-provisioner:

$ kubectl get pv pvc-276fdd9d-b787-4c3e-a94b-e886edaa1039 -o yaml
apiVersion: v1
kind: PersistentVolume
metadata:
 annotations:
 hostPathProvisionerIdentity: 7f22c7da-dc16-11e9-a3e9-080027a42754
 pv.kubernetes.io/provisioned-by: k8s.io/minikube-hostpath
 creationTimestamp: "2020-06-08T23:11:36Z"
 finalizers:
 - kubernetes.io/pv-protection
 name: pvc-276fdd9d-b787-4c3e-a94b-e886edaa1039
 resourceVersion: "193570"
 selfLink: /api/v1/persistentvolumes/pvc-276fdd9d-b787-4c3e-a94b-
e886edaa1039
 uid: e1f6579f-8ddb-401f-be44-f52742c91cfa
spec:
 accessModes:
 - ReadWriteMany
 capacity:
 storage: 1Gi
 claimRef:
 apiVersion: v1
 kind: PersistentVolumeClaim
 name: some-pvc
 namespace: default
 resourceVersion: "193563"
 uid: 276fdd9d-b787-4c3e-a94b-e886edaa1039
 hostPath:
 path: /tmp/hostpath-provisioner/pvc-276fdd9d-b787-4c3e-a94b-
e886edaa1039
 type: ""

Managing Storage

[196]

 persistentVolumeReclaimPolicy: Delete
 storageClassName: standard
 volumeMode: Filesystem
status:
 phase: Bound

The final step is to create a pod and assign the claim as a volume. Save the following
to shell-pod.yaml:

kind: Pod
apiVersion: v1
metadata:
 name: just-a-shell
 labels:
 name: just-a-shell
spec:
 containers:
 - name: a-shell
 image: g1g1/py-kube:0.2
 command: ["/bin/bash", "-c", "while true ; do sleep 1 ; done"]
 volumeMounts:
 - mountPath: "/data"
 name: pv
 - name: another-shell
 image: g1g1/py-kube:0.2
 command: ["/bin/bash", "-c", "while true ; do sleep 1 ; done"]
 volumeMounts:
 - mountPath: "/another-data"
 name: pv
 volumes:
 - name: pv
 persistentVolumeClaim:
 claimName: dir-pvc

This pod has two containers that use the g1g1/py-kube:0.2 image and both run a
shell command that just sleeps in an infinite loop. The idea is that the containers will
keep running, so we can connect to them later and check their filesystem. The pod
mounts our persistent volume claim with a volume name of pv. Note that the volume
specification is done at the pod level just once and multiple containers can mount it
into different directories.

Chapter 6

[197]

Let's create the pod and verify that both containers are running:

$ kubectl create -f shell-pod.yaml
pod/just-a-shell created
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
just-a-shell 2/2 Running 0 3m41s

Then, SSH to the node. This is the host, whose /tmp/data is the pod's volume that is
mounted as /data and /another-data into each of the running containers:

$ minikube ssh
 _ _
 _ _ () ()
 ___ ___ (_) ___ (_)| |/') _ _ | |_ __
/' _ ' _ '\| |/' _ '\| || , < () ()| '_'\ /'__'\
| () () || || () || || |\'\ | (_) || |_))(___/
(_) (_) (_)(_)(_) (_)(_)(_) (_)'___/'(_,__/''____)
$

Inside the node, we can communicate with the containers using Docker commands.
Let's look at the last two running containers:

$ docker ps -n 2 --format '{{.ID}}\t{{.Image}}\t{{.Command}}'
341f7ab2b4cc 1c757b9abf75 "/bin/bash -c 'while…"
189b2fc840e2 1c757b9abf75 "/bin/bash -c 'while…"

Then, let's create a file in the /tmp/data directory on the host. It should be visible to
both containers via the mounted volume:

$ sudo su
$ echo "yeah, it works!" > /tmp/data/cool.txt

Let's check that the cool.txt file is indeed available:

$ docker exec -it 189b2fc840e2 cat /data/cool.txt
yeah, it works!

$ docker exec -it 341f7ab2b4cc cat /another-data/cool.txt
yeah, it works!

Managing Storage

[198]

We can even create a new file, yo.txt, in one of the containers and see that it's
available to the other container or to the node itself:

$ docker exec -it 341f7ab2b4cc bash
root@just-a-shell:/# echo yo > /another-data/yo.txt
root@just-a-shell:/#

Let's verify directly from kubectl that yo.txt is available to both containers:

$ kubectl exec -it just-a-shell -c a-shell -- cat /data/yo.txt
yo

$ kubectl exec -it just-a-shell -c another-shell -- cat /another-data/
yo.txt
yo

Yes. Everything works as expected and both containers share the same storage.

Public cloud storage volume types –
GCE, AWS, and Azure
In this section, we'll look at some of the common volume types available in the
leading public cloud platforms. Managing storage at scale is a difficult task that
eventually involves physical resources, similar to nodes. If you choose to run your
Kubernetes cluster on a public cloud platform, you can let your cloud provider deal
with all these challenges and focus on your system. But it's important to understand
the various options, constraints, and limitations of each volume type.

Many of the volume types we will go over are handled by in-tree plugins (part of
core Kubernetes), but are in the process of migrating to out-of-tree CSI plugins. We
will cover CSI later.

Amazon EBS
AWS provides Elastic Block Store (EBS) as persistent storage for EC2 instances. An
AWS Kubernetes cluster can use AWS EBS as persistent storage with the following
limitations:

•	 The pods must run on AWS EC2 instances as nodes
•	 Pods can only access EBS volumes provisioned in their availability zone
•	 An EBS volume can be mounted on a single EC2 instance.

Chapter 6

[199]

Those are severe limitations. The restriction for a single availability zone, while
great for performance, eliminates the ability to share storage at scale or across a
geographically distributed system without custom replication and synchronization.
The limit of a single EBS volume to a single EC2 instance means even within the
same availability zone, pods can't share storage (even for reading) unless you make
sure they run on the same node.

With all the disclaimers out of the way, let's see how to mount an EBS volume:

apiVersion: v1
kind: Pod
metadata:
 name: some-pod
spec:
 containers:
 - image: some-container
 name: some-container
 volumeMounts:
 - mountPath: /ebs
 name: some-volume
 volumes:
 - name: some-volume
 awsElasticBlockStore:
 volumeID: <volume-id>
 fsType: ext4

You must create the EBS volume in AWS and then you just mount it into the pod.
There is no need for a claim or storage class because you mount the volume directly
by ID. The awsElasticBlockStore volume type is known to Kubernetes.

Amazon EFS
AWS recently released a new service called Elastic File System (EFS). This is really a
managed NFS service. It's using NFS 4.1 protocol and it has many benefits over EBS:

•	 Multiple EC2 instances can access the same files across multiple availability
zones (but within the same region)

•	 Capacity is automatically scaled up and down based on actual usage
•	 You pay only for what you use

Managing Storage

[200]

•	 You can connect on-premises servers to EFS over VPN
•	 EFS runs off SSD drives that are automatically replicated across availability

zones

That said, EFS is more expansive than EBS even when you consider the automatic
replication to multiple availability zones (assuming you fully utilize your EBS
volumes). It uses an external provisioner and it is not trivial to deploy. Follow the
instructions here:

https://github.com/kubernetes-incubator/external-storage/tree/master/aws/
efs

From Kubernetes' point of view, AWS EFS is just an NFS volume. You provision it
as such:

apiVersion: v1
kind: PersistentVolume
metadata:
 name: efs-share
spec:
 capacity:
 storage: 200Gi
 accessModes:
 - ReadWriteMany
 nfs:
 server: eu-west-1b.fs-64HJku4i.efs.eu-west-1.amazonaws.com
 path: /

Once everything is set up, you've defined your storage class, and the persistent
volume exists, you can create a claim and mount it into as many pods as you like in
ReadWriteMany mode. Here is the persistent claim:

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: efs
 annotations:
 volume.beta.kubernetes.io/storage-class: "aws-efs"
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 1Mi

https://github.com/kubernetes-incubator/external-storage/tree/master/aws/efs
https://github.com/kubernetes-incubator/external-storage/tree/master/aws/efs

Chapter 6

[201]

Here is a pod that consumes it:

kind: Pod
apiVersion: v1
metadata:
 name: test-pod
spec:
 containers:
 - name: test-pod
 image: gcr.io/google_containers/busybox:1.24
 command:
 - "/bin/sh"
 args:
 - "-c"
 - "touch /mnt/SUCCESS && exit 0 || exit 1"
 volumeMounts:
 - name: efs-pvc
 mountPath: "/mnt"
 restartPolicy: "Never"
 volumes:
 - name: efs-pvc
 persistentVolumeClaim:
 claimName: efs

GCE persistent disk
The gcePersistentDisk volume type is very similar to awsElasticBlockStore. You
must provision the disk ahead of time. It can only be used by GCE instances in the
same project and zone. But the same volume can be used as read-only on multiple
instances. This means it supports ReadWriteOnce and ReadOnlyMany. You can use
a GCE persistent disk to share data as read-only between multiple pods in the
same zone.

The pod that's using a persistent disk in ReadWriteOnce mode must be controlled by
a replication controller, a replica set, or a deployment with a replica count of 0 or 1.
Trying to scale beyond 1 will fail for obvious reasons:

apiVersion: v1
kind: Pod
metadata:
 name: some-pod
spec:
 containers:

Managing Storage

[202]

 - image: some-image
 name: some-container
 volumeMounts:
 - mountPath: /pd
 name: some-volume
 volumes:
 - name: some-volume
 gcePersistentDisk:
 pdName: <persistent disk name>
 fsType: ext4

The GCE persistent disk supports a regional disk option since Kubernetes 1.10 (in
beta). Regional persistent disks automatically sync between two zones. The key to
using them in Kubernetes is to specify a special label for failure domain that specifies
the two zones:

apiVersion: v1
kind: PersistentVolume
metadata:
 name: test-volume
 labels:
 failure-domain.beta.kubernetes.io/zone: us-central1-a__us-
central1-b
spec:
 capacity:
 storage: 400Gi
 accessModes:
 - ReadWriteOnce
 gcePersistentDisk:
 pdName: data-disk
 fsType: ext4

Azure data disk
The Azure data disk is a virtual hard disk stored in Azure Storage. It's similar in
capabilities to AWS EBS. Here is a sample pod configuration file:

apiVersion: v1
kind: Pod
metadata:
 name: some-pod
spec:
 containers:

Chapter 6

[203]

 - image: some-container
 name: some-container
 volumeMounts:
 - name: some-volume
 mountPath: /azure
 volumes:
 - name: some-volume
 azureDisk:
 diskName: test.vhd
 diskURI: https://someaccount.blob.microsoft.net/vhds/test.vhd

In addition to the mandatory diskName and diskURI parameters, it also has a few
optional parameters:

•	 kind: Either Shared (multiple disks per storage account), Dedicated (a single
blob disk per storage account), or Managed (an Azure-managed data disk).
The default is Shared.

•	 cachingMode: The disk caching mode. This must be either None, ReadOnly, or
ReadWrite. The default is None.

•	 fsType: The filesystem type set to mount. The default is ext4.
•	 readOnly: Sets whether the filesystem is to be used as readOnly. The default is

false.

Azure data disks are limited to 1,023 GB. Each Azure VM can have up to 16 data
disks. You can attach an Azure data disk to a single Azure VM.

Azure Files
In addition to the data disk, Azure has also a shared filesystem similar to AWS
EFS. However, Azure Files uses the SMB/CIFS protocol (it supports SMB 2.1 and
SMB 3.0). It is based on the Azure storage platform and has the same availability,
durability, scalability, and geo-redundancy capabilities as Azure Blob, Table, or
Queue storage.

In order to use Azure Files, you need to install on each client VM the cifs-utils
package. You also need to create a secret, which is a required parameter:

apiVersion: v1
kind: Secret
metadata:
 name: azure-file-secret
type: Opaque

Managing Storage

[204]

data:
 azurestorageaccountname: <base64 encoded account name>
 azurestorageaccountkey: <base64 encoded account key>

Here is a pod that uses Azure Files:

apiVersion: v1
kind: Pod
metadata:
 name: some-pod
spec:
 containers:
 - image: some-container
 name: some-container
 volumeMounts:
 - name: some-volume
 mountPath: /azure
 volumes:
 - name: some-volume
 azureFile:
 secretName: azure-file-secret
 shareName: azure-share
 readOnly: false

Azure Files supports sharing within the same region as well as connecting on-
premises clients.

GlusterFS and Ceph volumes in
Kubernetes
GlusterFS and Ceph are two distributed persistent storage systems. GlusterFS is, at
its core, a network filesystem. Ceph is, at its core, an object store. Both expose block,
object, and filesystem interfaces. Both use the xfs filesystem under the hood to store
the data and metadata as xattr attributes. There are several reasons why you may
want to use GlusterFs or Ceph as persistent volumes in your Kubernetes cluster:

•	 You may have a lot of data and applications that access the data in GlusterFS
or Ceph

•	 You have operational expertise managing GlusterFS or Ceph
•	 You run in the cloud, but the limitations of the cloud platform's persistent

storage are a non-starter

Chapter 6

[205]

Using GlusterFS
GlusterFS is intentionally simple, exposing the underlying directories as they are
and leaving it to clients (or middleware) to handle high availability, replication,
and distribution. Gluster organizes the data into logical volumes, which encompass
multiple nodes (machines) that contain bricks, which store files. Files are allocated
to bricks according to the Distributed Hash Table (DHT). If files are renamed or
the GlusterFS cluster is expanded or rebalanced, files may be moved between bricks.
The following diagram shows the GlusterFS building blocks:

Figure 6.2: Gluster FS building blocks

To use a GlusterFS cluster as persistent storage for Kubernetes (assuming you have
an up-and-running GlusterFS cluster), you need to follow several steps. In particular,
the GlusterFS nodes are managed by the plugin as a Kubernetes service (although as
an application developer it doesn't concern you).

Creating endpoints
Here is an example of an endpoints resource that you can create as a normal
Kubernetes resource using kubectl create:

{
 "kind": "Endpoints",
 "apiVersion": "v1",
 "metadata": {
 "name": "glusterfs-cluster"
 },
 "subsets": [

Managing Storage

[206]

 {
 "addresses": [
 {
 "ip": "10.240.106.152"
 }
],
 "ports": [
 {
 "port": 1
 }
]
 },
 {
 "addresses": [
 {
 "ip": "10.240.79.157"
 }
],
 "ports": [
 {
 "port": 1
 }
]
 }

]
}

Adding a GlusterFS Kubernetes service
To make the endpoints persistent, you use a Kubernetes service with no selector to
indicate the endpoints are managed manually:

Chapter 6

[207]

{
 "kind": "Service",
 "apiVersion": "v1",
 "metadata": {
 "name": "glusterfs-cluster"
 },
 "spec": {
 "ports": [
 {"port": 1}
]
 }
}

Creating pods
Finally, in the pod spec's volumes section, provide the following information:

"volumes": [
 {
 "name": "glusterfsvol",
 "glusterfs": {
 "endpoints": "glusterfs-cluster",
 "path": "kube_vol",
 "readOnly": true
 }
 }
]

The containers can then mount glusterfsvol by name.

The endpoints tell the GlusterFS volume plugin how to find the storage nodes of the
GlusterFS cluster.

Managing Storage

[208]

Using Ceph
Ceph's object store can be accessed using multiple interfaces. Kubernetes supports
the Rados Block Device (RBD) (block) and CEPHFS (filesystem) interfaces. Unlike
GlusterFS, Ceph does a lot of work automatically. It does distribution, replication,
and self-healing all on its own. The following diagram shows how RADOS – the
underlying object store – can be accessed in multiple days:

Figure 6.3: Ways to access RADOS

Kubernetes supports Ceph via the Rados Block Device (RBD) interface.

Connecting to Ceph using RBD
You must install ceph-common on each node of the Kubernetes cluster. Once you have
your Ceph cluster up and running, you need to provide some information required
by the Ceph RBD volume plugin in the pod configuration file:

•	 monitors: The Ceph monitors.
•	 pool: The name of the RADOS pool. If not provided, the default RBD pool is

used.
•	 image: The image name that RBD has created.
•	 user: The RADOS username. If not provided, the default admin is used.
•	 keyring: The path to the keyring file. If not provided, the default /etc/ceph/

keyring is used.

Chapter 6

[209]

•	 secretName: The name of the authentication secrets. If provided, secretName
overrides keyring. See the following paragraph for more information about
how to create a secret.

•	 fsType: The filesystem type (ext4, xfs, and so on) that is formatted on the
device.

•	 readOnly: Whether the filesystem is used as readOnly.

If the Ceph authentication secret is used, you need to create a secret object:

apiVersion: v1
kind: Secret
metadata:
 name: ceph-secret
type: "kubernetes.io/rbd"
data:
 key: QVFCMTZWMVZvRjVtRXhBQTVrQ1FzN2JCajhWVUxSdzI2Qzg0SEE9PQ==

The secret type is kubernetes.io/rbd.

Here is a sample pod that uses Ceph through RBD with a secret:

apiVersion: v1
kind: Pod
metadata:
 name: rbd2
spec:
 containers:
 - image: kubernetes/pause
 name: rbd-rw
 volumeMounts:
 - name: rbdpd
 mountPath: /mnt/rbd
 volumes:
 - name: rbdpd
 rbd:
 monitors:
 - '10.16.154.78:6789'
 - '10.16.154.82:6789'
 - '10.16.154.83:6789'
 pool: kube
 image: foo
 fsType: ext4
 readOnly: true

Managing Storage

[210]

 user: admin
 secretRef:
 name: ceph-secret

Ceph RBD supports the ReadWriteOnce and ReadOnlyMany access modes.

Connecting to Ceph using CephFS
If your Ceph cluster is already configured with CephFS, then you can assign it very
easily to pods. Also, CephFS supports ReadWriteMany access modes.

The configuration is similar to Ceph RBD, except you don't have a pool, image, or
filesystem type. The secret can be a reference to a Kubernetes secret object (preferred)
or a secret file:

apiVersion: v1
kind: Pod
metadata:
 name: cephfs2
spec:
 containers:
 - name: cephfs-rw
 image: kubernetes/pause
 volumeMounts:
 - mountPath: "/mnt/cephfs"
 name: cephfs
 volumes:
 - name: cephfs
 cephfs:
 monitors:
 - 10.16.154.78:6789
 - 10.16.154.82:6789
 - 10.16.154.83:6789
 user: admin
 secretRef:
 name: ceph-secret
 readOnly: true

You can also provide a path as a parameter in the CephFS system. The default is /.

The in-tree RBD provisioner has an out-of-tree copy now in the external-storage
Kubernetes incubator project.

Chapter 6

[211]

Flocker as a clustered container data
volume manager
So far, we have discussed storage solutions that stored the data outside the
Kubernetes cluster (except for emptyDir and HostPath, which are not persistent).
Flocker is a little different. It is Docker-aware. It was designed to let Docker data
volumes transfer with their container when the container is moved between nodes.
You may want to use the Flocker volume plugin if you're migrating a Docker-based
system that uses a different orchestration platform, such as Docker Compose or
Mesos, to Kubernetes and you use Flocker for orchestrating storage. Personally, I feel
that there is a lot of duplication between what Flocker does and what Kubernetes
does to abstract storage.

Flocker has a control service and agents on each node. Its architecture is very similar
to Kubernetes with its API server and the kubelet running on each node. The Flocker
control service exposes a REST API and manages the configuration of the state
across the cluster. The agents are responsible for ensuring that the state of their node
matches the current configuration. For example, if a dataset needs to be on node X,
then the Flocker agent on node X will create it.

The following diagram showcases the Flocker architecture:

Figure 6.4: The Flocker architecture

Managing Storage

[212]

In order to use Flocker as persistent volumes in Kubernetes, you first must have
a properly configured Flocker cluster. Flocker can work with many backing stores
(again, very similar to Kubernetes persistent volumes).

Then you need to create Flocker datasets, and at that point you're ready to hook it up
as a persistent volume. After all your hard work, this part is easy and you just need
to specify the Flocker dataset name:

apiVersion: v1
kind: Pod
metadata:
 name: flocker-web
spec:
 containers:
 - name: web
 image: nginx
 ports:
 - name: web
 containerPort: 80
 volumeMounts:
 # name must match the volume name below
 - name: www-root
 mountPath: "/usr/share/nginx/html"
 volumes:
 - name: www-root
 flocker:
 datasetName: my-flocker-vol

Integrating enterprise storage into
Kubernetes
If you have an existing Storage Area Network (SAN) exposed over the iSCSI
interface, Kubernetes has a volume plugin for you. It follows the same model as
other shared persistent storage plugins we've seen earlier. It supports the following
features:

•	 Connect to one portal
•	 Mount a device directly or via multipathd
•	 Format and partition any new device
•	 Authenticate via CHAP

Chapter 6

[213]

You must configure the iSCSI initiator, but you don't have to provide any initiator
information. All you need to provide is the following:

•	 The IP address of the iSCSI target and port (if not the default 3260)
•	 The target's iqn (an iSCSI-qualified name) – typically the reversed domain

name
•	 LUN – the logical unit number
•	 The filesystem type
•	 A read-only Boolean flag

The iSCSI plugin supports ReadWriteOnce and ReadonlyMany. Note that you can't
partition your device at this time. Here is the volume spec:

volumes:
 - name: iscsi-volume
 iscsi:
 targetPortal: 10.0.2.34:3260
 iqn: iqn.2001-04.com.example:storage.kube.sys1.xyz
 lun: 0
 fsType: ext4
 readOnly: true

Rook – the new kid on the block
Rook is an open source cloud-native storage orchestrator. It is currently an
incubating CNCF project. It provides a consistent experience on top of multiple
storage solutions including Ceph, edgeFS, Cassandra, Minio, NFS, CockroachDB,
and YugabyteDB (although only Ceph and EdgeFS support is considered stable).
Here are the features Rook provides:

•	 Scheduling
•	 Life cycle management
•	 Resource management
•	 Monitoring

Rook takes advantage of modern Kubernetes' best practices like CRDs and operators.
Once you install the Rook operator, you can create a Ceph cluster using a Rook CRD
as follows:

apiVersion: ceph.rook.io/v1
kind: CephCluster

Managing Storage

[214]

metadata:
 name: rook-ceph
 namespace: rook-ceph
spec:
 cephVersion:
 # For the latest ceph images, see https://hub.docker.com/r/ceph/
ceph/tags
 image: ceph/ceph:v14.2.4-20190917
 dataDirHostPath: /var/lib/rook
 mon:
 count: 3
 dashboard:
 enabled: true
 storage:
 useAllNodes: true
 useAllDevices: false
 # Important: Directories should only be used in pre-production
environments
 directories:
 - path: /var/lib/rook

Note that the Rook framework itself is still considered alpha software. It is definitely
a project to watch even if you decide not to use it right away.

Projecting volumes
It's possible to project multiple volumes into a single directory, so they appear as
a single volume. The supported volume types are Kubernetes-managed: secret,
downwardAPI, and configMap. This is useful if you want to mount multiple sources
of configuration into a pod. Instead of having to create a separate volume for
each source, you can bundle all of them into a single projected volume. Here
is an example:

apiVersion: v1
kind: Pod
metadata:
 name: the-pod
spec:
 containers:
 - name: the-container
 image: busybox
 volumeMounts:

Chapter 6

[215]

 - name: all-in-one
 mountPath: "/projected-volume"
 readOnly: true
 volumes:
 - name: all-in-one
 projected:
 sources:
 - secret:
 name: the-secret
 items:
 - key: username
 path: the-group/the-user
 - downwardAPI:
 items:
 - path: "labels"
 fieldRef:
 fieldPath: metadata.labels
 - path: "cpu_limit"
 resourceFieldRef:
 containerName: the-container
 resource: limits.cpu
 - configMap:
 name: the-configmap
 items:
 - key: config
 path: the-group/the-config

Using out-of-tree volume plugins with
FlexVolume
FlexVolume became generally available in Kubernetes 1.8. It allows you to consume
out-of-tree storage through a uniform API. Storage providers write a driver that
you install on all nodes. The FlexVolume plugin can dynamically discover existing
drivers. Here is an example of using a FlexVolume to bind to an external NFS
volume:

apiVersion: v1
kind: Pod
metadata:
 name: nginx-nfs
 namespace: default

Managing Storage

[216]

spec:
 containers:
 - name: nginx-nfs
 image: nginx
 volumeMounts:
 - name: test
 mountPath: /data
 ports:
 - containerPort: 80
 volumes:
 - name: test
 flexVolume:
 driver: "k8s/nfs"
 fsType: "nfs"
 options:
 server: "172.16.0.25"
 share: "dws_nas_scratch"

However, at this point I highly recommend you avoid using the FlexVolume plugin
and utilize CSI plugins instead.

The Container Storage Interface
The Container Storage Interface (CSI) is an initiative to standardize the interaction
between container orchestrators and storage providers. It is driven by Kubernetes,
Docker, Mesos, and Cloud Foundry. The idea is that storage providers implement
just one CSI driver and container orchestrators need to support only the CSI. It is the
equivalent of CNI for storage. There are several advantages over the FlexVolume
approach:

•	 CSI is an industry-wide standard
•	 New capabilities are made available for CSI plugins only (such as volume

snapshots and volume cloning)
•	 FlexVolume plugins require access to the node and master root filesystem to

deploy drivers
•	 FlexVolume's storage driver often requires many external dependencies
•	 FlexVolume's EXEC-style interface is clunky

A CSI volume plugin was added in Kubernetes 1.9 as an alpha feature and is
generally available since Kubernetes 1.13. FlexVolume will remain for backward
compatibility, at least for a while.

Chapter 6

[217]

Here is a diagram that demonstrates how CSI works within Kubernetes:

Figure 6.5: CSI within Kubernetes

There is currently a major migration effort to port all in-tree plugins to out-of-tree
CSI drivers.

See https://kubernetes-csi.github.io for more details.

Volume snapshotting and cloning
These features are available only to CSI drivers. They represent the benefits
of a uniform storage model that allows adding optional advanced functionality
across all storage providers with a uniform interface.

Volume snapshots
Volume snapshots are in alpha status as of Kubernetes 1.12. They are exactly what
they sound like: a snapshot of a volume at a certain point in time. You can create and
later restore volumes from a snapshot. It's interesting that the API objects associated
with snapshots are CRDs and not part of the core Kubernetes API. The objects are:

•	 VolumeSnapshotClass

•	 VolumeSnapshotContents

•	 VolumeSnapshot

https://kubernetes-csi.github.io

Managing Storage

[218]

Volume snapshots work using an external-prosnapshotter sidecar container that
the Kubernetes team developed. It watches for snapshot CRDs to be created and
interacts with the snapshot controller, which can invoke the CreateSnapshot and
DeleteSnapshot operations of CSI drivers that implement snapshot support.

You can also provision volumes from a snapshot.

Here is a persistent volume claim bound to a snapshot:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: restore-pvc
spec:
 storageClassName: csi-hostpath-sc
 dataSource:
 name: new-snapshot-test
 kind: VolumeSnapshot
 apiGroup: snapshot.storage.k8s.io
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 10Gi

Volume cloning
Volume cloning is available in beta status as of Kubernetes 1.16. Volume clones are
new volumes that are populated with the content of an existing volume. Once the
volume cloning is complete, there is no relation between the original and clone.
Their context will diverge over time. You can perform a clone by creating a snapshot
and then creating a new volume from the snapshot. But volume cloning is more
streamlined and efficient.

Volume cloning must be enabled with a feature gate: --feature-
gates=VolumePVCDataSource=true

It works just for dynamic provisioning and uses the storage class of the source
volume for the clone as well. You initiate a volume clone by specifying an existing
persistent volume claim as the data source of a new persistent volume claim. That
triggers dynamic provisioning of a new volume that clones the source claim's
volume:

apiVersion: v1

Chapter 6

[219]

kind: PersistentVolumeClaim
metadata:
 name: clone-of-pvc-1
 namespace: myns
spec:
 accessModes:
 - ReadWriteOnce
 storageClassName: cloning
 resources:
 requests:
 storage: 5Gi
 dataSource:
 kind: PersistentVolumeClaim
 name: pvc-1

Summary
In this chapter, we took a deep look into storage in Kubernetes. We've looked at the
generic conceptual model based on volumes, claims, and storage classes, as well
as the implementation of volume plugins. Kubernetes eventually maps all storage
systems into mounted filesystems in containers or devices of raw block storage. This
straightforward model allows administrators to configure and hook up any storage
system from localhost directories through cloud-based shared storage all the way to
enterprise storage systems. The transition of storage provisioners from in-tree to CSI-
based out-of-tree drivers bodes well for the storage ecosystem. You should now have
a clear understanding of how storage is modeled and implemented in Kubernetes
and be able to make intelligent choices regarding how to implement storage in your
Kubernetes cluster.

In Chapter 7, Running Stateful Applications with Kubernetes, we'll see how
Kubernetes can raise the level of abstraction and, on top of storage, how it can
help in developing, deploying, and operating stateful applications using concepts
such as stateful sets.

[221]

7
Running Stateful

Applications with Kubernetes
In this chapter, we will learn how to run stateful applications on Kubernetes.
Kubernetes takes a lot of work out of our hands by automatically starting and
restarting pods across the cluster nodes as needed, based on complex requirements
and configurations such as namespaces, limits, and quotas. But when pods run
storage-aware software, such as databases and queues, relocating a pod can cause
the system to break. First, we'll explore the essence of stateful pods and why they
are much more complicated to manage in Kubernetes. We will look at a few ways to
manage the complexity, such as shared environment variables and DNS records. In
some situations, a redundant in-memory state, a DaemonSet, or persistent storage
claims can do the trick. The main solution that Kubernetes promotes for state-
aware pods is the StatefulSet (previously called PetSet) resource, which allows us
to manage an indexed collection of pods with stable properties. Finally, we will
dive deep into a full-fledged example of running a Cassandra cluster on top of
Kubernetes.

Stateful versus stateless applications in
Kubernetes
A stateless Kubernetes application is an application that doesn't manage its state
in the Kubernetes cluster. All of the state is stored outside the cluster and the
cluster containers access it in some manner. In this section, we'll learn why state
management is critical to the design of a distributed system and the benefits of
managing state within the Kubernetes cluster.

Running Stateful Applications with Kubernetes

[222]

Understanding the nature of distributed data-
intensive apps
Let's start from the basics here. Distributed applications are a collection of processes
that run on multiple machines, process inputs, manipulate data, expose APIs, and
possibly have other side effects. Each process is a combination of its program,
its runtime environment, and its inputs and outputs. The programs you write at
school get their input as command-line arguments, maybe they read a file or access
a database, and then write their results to the screen or a file or a database. Some
programs keep state in memory and can serve requests over the network. Simple
programs run on a single machine and can hold all their state in memory or read
from a file. Their runtime environment is their operating system. If they crash, the
user has to restart them manually. They are tied to their machine. A distributed
application is a different animal. A single machine is not enough to process all the
data or serve all the requests quickly enough. A single machine can't hold all the
data. The data that needs to be processed is so large that it can't be downloaded cost-
effectively into each processing machine. Machines can fail and need to be replaced.
Upgrades need to be performed over all the processing machines. Users may be
distributed across the globe.

Taking all these issues into account, it becomes clear that the traditional approach
doesn't work. The limiting factor becomes the data. Users/clients must receive only
summary or processed data. All massive data processing must be done close to the
data itself because transferring data is prohibitively slow and expensive. Instead, the
bulk of processing code must run in the same data center and network environment
of the data.

Why manage state in Kubernetes?
The main reason to manage state in Kubernetes itself as opposed to a separate
cluster is that a lot of the infrastructure needed to monitor, scale, allocate, secure,
and operate a storage cluster is already provided by Kubernetes. Running a parallel
storage cluster will lead to a lot of duplicated effort.

Why manage state outside of Kubernetes?
Let's not rule out the other option. It may be better in some situations to manage state
in a separate non-Kubernetes cluster, as long as it shares the same internal network
(data proximity trumps everything).

Chapter 7

[223]

Some valid reasons are as follows:

•	 You already have a separate storage cluster and you don't want to rock the
boat

•	 Your storage cluster is used by other non-Kubernetes applications
•	 Kubernetes support for your storage cluster is not stable or mature enough
•	 You may want to approach stateful applications in Kubernetes incrementally,

starting with a separate storage cluster and integrating more tightly with
Kubernetes later

Shared environment variables versus DNS
records for discovery
Kubernetes provides several mechanisms for global discovery across the cluster. If
your storage cluster is not managed by Kubernetes, you still need to tell Kubernetes
pods how to find it and access it. There are two common methods:

•	 DNS
•	 Environment variables

In some cases, you may want to use both, as environment variables can
override DNS.

Accessing external data stores via DNS
The DNS approach is simple and straightforward. Assuming your external storage
cluster is load balanced and can provide a stable endpoint, then pods can just hit that
endpoint directly and connect to the external cluster.

Accessing external data stores via environment
variables
Another simple approach is to use environment variables to pass connection
information to an external storage cluster. Kubernetes offers the ConfigMap resource
as a way to keep configuration separate from the container image. The configuration
is a set of key-value pairs. The configuration information can be exposed as an
environment variable inside the container as well as volumes. You may prefer
to use secrets for sensitive connection information.

Running Stateful Applications with Kubernetes

[224]

Creating a ConfigMap
The following file is a ConfigMap that keeps a list of addresses:

apiVersion: v1
kind: ConfigMap
metadata:
 name: db-config
data:
 db-ip-addresses: 1.2.3.4,5.6.7.8

Save it as db-config-map.yaml and run:

$ kubectl create -f db-config-map.yaml
configmap/db-config created

The data section contains all the key-value pairs (in this case, just a single pair with
a key name of db-ip-addresses). It will be important later when consuming the
ConfigMap in a pod. You can check out the content to make sure it's OK:

$ kubectl get configmap db-config -o yaml
apiVersion: v1
data:
 db-ip-addresses: 1.2.3.4,5.6.7.8
kind: ConfigMap
metadata:
 creationTimestamp: "2020-06-08T14:25:39Z"
 name: db-config
 namespace: default
 resourceVersion: "366427"
 selfLink: /api/v1/namespaces/default/configmaps/db-config
 uid: 2d0a357a-e38e-11e9-90a4-0242ac120002

There are other ways to create a ConfigMap. You can directly create them using the
--from-value or --from-file command-line arguments.

Consuming a ConfigMap as an environment
variable
When you are creating a pod, you can specify a ConfigMap and consume its values
in several ways. Here is how to consume our configuration map as an environment
variable:

Chapter 7

[225]

apiVersion: v1
kind: Pod
metadata:
 name: some-pod
spec:
 containers:
 - name: some-container
 image: busybox
 command: ["/bin/sh", "-c", "env"]
 env:
 - name: DB_IP_ADDRESSES
 valueFrom:
 configMapKeyRef:
 name: db-config
 key: db-ip-addresses
 restartPolicy: Never

This pod runs the busybox minimal container and executes an env bash command
and immediately exits. The db-ip-addresses key from db-configmap is mapped to the
DB_IP_ADDRESSES environment variable, and is reflected in the output:

$ kubectl create -f pod-with-db.yaml
pod/some-pod created

$ kubectl logs some-pod | grep DB_IP
DB_IP_ADDRESSES=1.2.3.4,5.6.7.8

Using a redundant in-memory state
In some cases, you may want to keep a transient state in memory. Distributed
caching is a common case. Time-sensitive information is another one. For these use
cases, there is no need for persistent storage, and multiple pods accessed through a
service may be just the right solution. We can use standard Kubernetes techniques,
such as labeling, to identify pods that belong to the distributed cache, store
redundant copies of the same state, and expose them through a service. If a pod dies,
Kubernetes will create a new one and, until it catches up, the other pods will serve
the state. We can even use the pod's anti-affinity feature to ensure that pods that
maintain redundant copies of the same state are not scheduled to the same node.

Of course, you could also use something like Memcached or Redis.

Running Stateful Applications with Kubernetes

[226]

Using DaemonSet for redundant persistent storage
Some stateful applications, such as distributed databases or queues, manage their
state redundantly and sync their nodes automatically (we'll take a very deep
look into Cassandra later). In these cases, it is important that pods are scheduled
to separate nodes. It is also important that pods are scheduled to nodes with a
particular hardware configuration or are even dedicated to the stateful application.
The DaemonSet feature is perfect for this use case. We can label a set of nodes and
make sure that the stateful pods are scheduled on a one-by-one basis to the selected
group of nodes.

Applying persistent volume claims
If the stateful application can use effectively shared persistent storage, then using
a persistent volume claim in each pod is the way to go, as we demonstrated in
Chapter 6, Managing Storage. The stateful application will be presented with a
mounted volume that looks just like a local filesystem.

Utilizing StatefulSets
StatefulSets are especially designed to support distributed stateful applications
where the identities of the members are important, and if a pod is restarted it must
retain its identity in the set. It provides ordered deployment and scaling. Unlike
regular pods, the pods of a StatefulSet are associated with persistent storage.

When to use a StatefulSet
StatefulSets are great for applications that require one or more of the following:

•	 Stable, unique network identifiers
•	 Stable, persistent storage
•	 Ordered, graceful deployment and scaling
•	 Ordered, graceful deletion and termination

The components of a StatefulSet
There are several pieces that need to be configured correctly in order to have a
working StatefulSet:

•	 A headless service responsible for managing the network identity of the
StatefulSet pods

Chapter 7

[227]

•	 The StatefulSet itself with a number of replicas
•	 Persistent storage provisioned dynamically or by an administrator

Here is an example of a headless service called nginx that will be used for a
StatefulSet:

apiVersion: v1
kind: Service
metadata:
 name: nginx
 labels:
 app: nginx
spec:
ports:
 - port: 80
 name: web
clusterIP: None
selector:
 app: nginx

Now, the StatefulSet configuration file will reference the service:

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: nginx
 labels:
 app: nginx
spec:
 serviceName: "nginx"
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx

Running Stateful Applications with Kubernetes

[228]

The next part is the pod template, which includes a mounted volume named www:

 spec:
 terminationGracePeriodSeconds: 1800
 containers:
 - name: nginx
 image: gcr.io/google_containers/nginx-slim:0.8
 imagePullPolicy: Always
 ports:
 - containerPort: 80
 name: web
 volumeMounts:
 - name: www
 mountPath: /usr/share/nginx/html

Last but not least, volumeClaimTemplates uses a claim named www matching the
mounted volume. The claim requests 1 GiB of storage with ReadWriteOnce access:

volumeClaimTemplates:
 - metadata:
 name: www
 spec:
 accessModes: ["ReadWriteOnce"]
 resources:
 requests:
 storage: 1Gi

Running a Cassandra cluster in Kubernetes
In this section, we will explore in detail a very large example of configuring a
Cassandra cluster to run on a Kubernetes cluster. The full example can be accessed
here:

https://kubernetes.io/docs/tutorials/stateful-application/cassandra/

First, we'll learn a little bit about Cassandra and its idiosyncrasies, and then follow
a step-by-step procedure to get it running using several of the techniques and
strategies we've covered in the previous section.

https://kubernetes.io/docs/tutorials/stateful-application/cassandra/

Chapter 7

[229]

Quick introduction to Cassandra
Cassandra is a distributed columnar data store. It was designed from the get-go for
big data. Cassandra is fast, robust (no single point of failure), highly available, and
linearly scalable. It also has multi-datacenter support. It achieves all this by having a
laser focus and carefully crafting the features it supports—and just as importantly—
the features it doesn't support. In a previous company, I ran a Kubernetes cluster
that used Cassandra as the main data store for sensor data (about 100 TB). Cassandra
allocates the data to a set of nodes (node ring) based on a distributed hash table
(DHT) algorithm. The cluster nodes talk to each other via a gossip protocol and learn
quickly about the overall state of the cluster (what nodes joined and what nodes
left or are unavailable). Cassandra constantly compacts the data and balances the
cluster. The data is typically replicated multiple times for redundancy, robustness,
and high availability. From a developer's point of view, Cassandra is very good for
time-series data and provides a flexible model where you can specify the consistency
level in each query. It is also idempotent (a very important feature for a distributed
database), which means repeated inserts or updates are allowed.

Here is a diagram that shows how a Cassandra cluster is organized and how a client
can access any node and how the request will be forwarded automatically to the
nodes that have the requested data:

Figure 7.1: Request interacting with a Cassandra cluster

Running Stateful Applications with Kubernetes

[230]

The Cassandra Docker image
Deploying Cassandra on Kubernetes as opposed to a standalone Cassandra cluster
deployment requires a special Docker image. This is an important step because it
means we can use Kubernetes to keep track of our Cassandra pods. The image is
available here:

https://github.com/kubernetes/examples/blob/master/cassandra/image/
Dockerfile

The Dockerfile is coming up. The base image is a flavor of Debian designed for use
in containers (see https://github.com/kubernetes/kubernetes/tree/master/build/
debian-base).

The Cassandra Dockerfile defines some build arguments that must be set when
the image is built, creates a bunch of labels, defines many environment variables,
adds all the files to the root directory inside the container, runs the build.sh script,
declares the Cassandra data volume (where the data is stored), exposes a bunch of
ports, and finally uses dumb-init to execute the run.sh script:

FROM k8s.gcr.io/debian-base-amd64:0.3

ARG BUILD_DATE
ARG VCS_REF
ARG CASSANDRA_VERSION
ARG DEV_CONTAINER

LABEL \
 org.label-schema.build-date=$BUILD_DATE \
 org.label-schema.docker.dockerfile="/Dockerfile" \
 org.label-schema.license="Apache License 2.0" \
 org.label-schema.name="k8s-for-greeks/docker-cassandra-k8s" \
 org.label-schema.url="https://github.com/k8s-for-greeks/" \
 org.label-schema.vcs-ref=$VCS_REF \
 org.label-schema.vcs-type="Git" \
 org.label-schema.vcs-url="https://github.com/k8s-for-greeks/docker-
cassandra-k8s"

ENV CASSANDRA_HOME=/usr/local/apache-cassandra-${CASSANDRA_VERSION} \
 CASSANDRA_CONF=/etc/cassandra \
 CASSANDRA_DATA=/cassandra_data \
 CASSANDRA_LOGS=/var/log/cassandra \
 JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64 \
 PATH=${PATH}:/usr/lib/jvm/java-8-openjdk-amd64/bin:/usr/local/

https://github.com/kubernetes/examples/blob/master/cassandra/image/Dockerfile
https://github.com/kubernetes/examples/blob/master/cassandra/image/Dockerfile
https://github.com/kubernetes/kubernetes/tree/master/build/debian-base
https://github.com/kubernetes/kubernetes/tree/master/build/debian-base

Chapter 7

[231]

apache-cassandra-${CASSANDRA_VERSION}/bin

ADD files /

RUN clean-install bash \
 && /build.sh \
 && rm /build.sh

VOLUME ["/$CASSANDRA_DATA"]

7000: intra-node communication
7001: TLS intra-node communication
7199: JMX
9042: CQL
9160: thrift service
EXPOSE 7000 7001 7199 9042 9160

CMD ["/usr/bin/dumb-init", "/bin/bash", "/run.sh"]

Here are all the files used by the Dockerfile:

•	 build.sh

•	 cassandra-seed.h

•	 cassandra.yaml

•	 jvm.options

•	 kubernetes-cassandra.jar

•	 logback.xml

•	 ready-probe.sh

•	 run.sh

We will not cover all of them; we'll focus on the build.sh and run.sh scripts.

Exploring the build.sh script
Cassandra is a Java program. The build script installs the Java runtime environment
and a few necessary libraries and tools. It then sets a few variables that will be used
later, such as CASSANDRA_PATH.

Running Stateful Applications with Kubernetes

[232]

It downloads the correct version of Cassandra from the Apache organization
(Cassandra is an Apache open source project), creates the /cassandra_data/
data directory where Cassandra will store its SSTables and the /etc/cassandra
configuration directory, copies files into the configuration directory, adds a
Cassandra user, sets the readiness probe, installs Python, moves the Cassandra jar
file and the seed shared library to their target destination, and then cleans up all the
intermediate files generated during this process:

apt-get update && apt-get dist-upgrade -y

clean-install \
 openjdk-8-jre-headless \
 libjemalloc1 \
 localepurge \
 dumb-init \
 wget

CASSANDRA_PATH="cassandra/${CASSANDRA_VERSION}/apache-cassandra-
${CASSANDRA_VERSION}-bin.tar.gz"
CASSANDRA_DOWNLOAD=http://www.apache.org/dyn/closer.
cgi?path=/${CASSANDRA_PATH}&as_json=1
CASSANDRA_MIRROR='wget -q -O - ${CASSANDRA_DOWNLOAD} | grep -oP
"(?<=\"preferred\": \")[^\"]+"'

echo "Downloading Apache Cassandra from $CASSANDRA_MIRROR$CASSANDRA_
PATH..."
wget -q -O - $CASSANDRA_MIRROR$CASSANDRA_PATH \
 | tar -xzf - -C /usr/local

mkdir -p /cassandra_data/data
mkdir -p /etc/Cassandra

mv /logback.xml /cassandra.yaml /jvm.options /etc/cassandra/
mv /usr/local/apache-cassandra-${CASSANDRA_VERSION}/conf/cassandra-env.
sh /etc/cassandra/

adduser --disabled-password --no-create-home --gecos '' --disabled-
login cassandra
chmod +x /ready-probe.sh
chown cassandra: /ready-probe.sh

DEV_IMAGE=${DEV_CONTAINER:-}
if [! -z "$DEV_IMAGE"]; then

Chapter 7

[233]

 clean-install python;
else
 rm -rf $CASSANDRA_HOME/pylib;
fi

mv /kubernetes-cassandra.jar /usr/local/apache-cassandra-${CASSANDRA_
VERSION}/lib
mv /cassandra-seed.so /etc/cassandra/
mv /cassandra-seed.h /usr/local/lib/include

apt-get -y purge localepurge
apt-get -y autoremove
apt-get clean

rm <many files and directories>

Exploring the run.sh script
The run.sh script requires some shell skills and knowledge of Cassandra to
understand, but it's worth the effort.

First, some local variables are set for the Cassandra configuration file at /etc/
cassandra/cassandra.yaml. The CASSANDRA_CFG variable will be used in the rest of the
script:

set -e
CASSANDRA_CONF_DIR=/etc/Cassandra
CASSANDRA_CFG=$CASSANDRA_CONF_DIR/cassandra.yaml

If no CASSANDRA_SEEDS were specified, then set the HOSTNAME, which is used by the
StatefulSet later:

we are doing StatefulSet or just setting our seeds
if [-z "$CASSANDRA_SEEDS"]; then
 HOSTNAME=$(hostname -f)
 CASSANDRA_SEEDS=$(hostname -f)
fi

Then comes a long list of environment variables with defaults. The syntax ${VAR_
NAME:-} uses the VAR_NAME environment variable, if it's defined, or the default value.

A similar syntax, ${VAR_NAME:=}, does the same thing, but also assigns the default
value to the environment variable if it's not defined. This a subtle but important
difference.

Running Stateful Applications with Kubernetes

[234]

Both variations are used here:

The following vars relate to their counter parts in $CASSANDRA_CFG
for instance rpc_address
CASSANDRA_RPC_ADDRESS="${CASSANDRA_RPC_ADDRESS:-0.0.0.0}"
CASSANDRA_NUM_TOKENS="${CASSANDRA_NUM_TOKENS:-32}"
CASSANDRA_CLUSTER_NAME="${CASSANDRA_CLUSTER_NAME:='Test Cluster'}"
CASSANDRA_LISTEN_ADDRESS=${POD_IP:-$HOSTNAME}
CASSANDRA_BROADCAST_ADDRESS=${POD_IP:-$HOSTNAME}
CASSANDRA_BROADCAST_RPC_ADDRESS=${POD_IP:-$HOSTNAME}
CASSANDRA_DISK_OPTIMIZATION_STRATEGY="${CASSANDRA_DISK_OPTIMIZATION_
TRATEGY:-ssd}"
CASSANDRA_MIGRATION_WAIT="${CASSANDRA_MIGRATION_WAIT:-1}"
CASSANDRA_ENDPOINT_SNITCH="${CASSANDRA_ENDPOINT_SNITCH:-SimpleSnitch}"
CASSANDRA_DC="${CASSANDRA_DC}"
CASSANDRA_RACK="${CASSANDRA_RACK}"
CASSANDRA_RING_DELAY="${CASSANDRA_RING_DELAY:-30000}"
CASSANDRA_AUTO_BOOTSTRAP="${CASSANDRA_AUTO_BOOTSTRAP:-true}"
CASSANDRA_SEEDS="${CASSANDRA_SEEDS:false}"
CASSANDRA_SEED_PROVIDER="${CASSANDRA_SEED_PROVIDER:-org.apache.
cassandra.locator.SimpleSeedProvider}"
CASSANDRA_AUTO_BOOTSTRAP="${CASSANDRA_AUTO_BOOTSTRAP:false}"

By the way, I contributed my part to Kubernetes by opening a pull request to fix a
minor typo here. See https://github.com/kubernetes/examples/pull/348.

The next part configures monitoring Java Management Exceptions (JMX) and
controls garbage collection output:

Turn off JMX auth
CASSANDRA_OPEN_JMX="${CASSANDRA_OPEN_JMX:-false}"
send GC to STDOUT
CASSANDRA_GC_STDOUT="${CASSANDRA_GC_STDOUT:-false}"

Then comes a section where all the variables are printed to the screen. Let's skip most
of it:

echo Starting Cassandra on ${CASSANDRA_LISTEN_ADDRESS}
echo CASSANDRA_CONF_DIR ${CASSANDRA_CONF_DIR}
echo CASSANDRA_CFG ${CASSANDRA_CFG}
echo CASSANDRA_AUTO_BOOTSTRAP ${CASSANDRA_AUTO_BOOTSTRAP}
...

https://github.com/kubernetes/examples/pull/348

Chapter 7

[235]

The next section is very important. By default, Cassandra uses a simple snitch, which
is unaware of racks and data centers. This is not optimal when the cluster spans
multiple data centers and racks.

Cassandra is rack-aware and datacenter-aware and can optimize both for
redundancy and high availability while limiting communication across data centers
appropriately:

if DC and RACK are set, use GossipingPropertyFileSnitch
if [[$CASSANDRA_DC && $CASSANDRA_RACK]]; then
 echo "dc=$CASSANDRA_DC" > $CASSANDRA_CONF_DIR/cassandra-rackdc.
properties
 echo "rack=$CASSANDRA_RACK" >> $CASSANDRA_CONF_DIR/cassandra-rackdc.
properties
 CASSANDRA_ENDPOINT_SNITCH="GossipingPropertyFileSnitch"
fi

Memory management is also important, and you can control the maximum heap size
to ensure Cassandra doesn't start thrashing and swapping to disk:

if [-n "$CASSANDRA_MAX_HEAP"]; then
 sed -ri "s/^(#)?-Xmx[0-9]+.*/-Xmx$CASSANDRA_MAX_HEAP/" "$CASSANDRA_
CONF_DIR/jvm.options"
 sed -ri "s/^(#)?-Xms[0-9]+.*/-Xms$CASSANDRA_MAX_HEAP/" "$CASSANDRA_
CONF_DIR/jvm.options"
fi

if [-n "$CASSANDRA_REPLACE_NODE"]; then
 echo "-Dcassandra.replace_address=$CASSANDRA_REPLACE_NODE/" >>
"$CASSANDRA_CONF_DIR/jvm.options"
fi

The rack and data center information is stored in a simple Java properties file:

for rackdc in dc rack; do
 var="CASSANDRA_${rackdc^^}"
 val="${!var}"
 if ["$val"]; then
 sed -ri 's/^('"$rackdc"'=).*/\1 '"$val"'/' "$CASSANDRA_CONF_DIR/
cassandra-rackdc.properties"
 fi
done

Running Stateful Applications with Kubernetes

[236]

The next section loops over all the variables defined earlier, finds the corresponding
key in the Cassandra.yaml configuration files, and overwrites them. That ensures that
each configuration file is customized on the fly just before it launches Cassandra:

for yaml in \
 broadcast_address \
 broadcast_rpc_address \
 cluster_name \
 disk_optimization_strategy \
 endpoint_snitch \
 listen_address \
 num_tokens \
 rpc_address \
 start_rpc \
 key_cache_size_in_mb \
 concurrent_reads \
 concurrent_writes \
 memtable_cleanup_threshold \
 memtable_allocation_type \
 memtable_flush_writers \
 concurrent_compactors \
 compaction_throughput_mb_per_sec \
 counter_cache_size_in_mb \
 internode_compression \
 endpoint_snitch \
 gc_warn_threshold_in_ms \
 listen_interface \
 rpc_interface \
 ; do
 var="CASSANDRA_${yaml^^}"
 val="${!var}"
 if ["$val"]; then
 sed -ri 's/^(#)?('"$yaml"':).*/\2 '"$val"'/' "$CASSANDRA_CFG"
 fi
done

echo "auto_bootstrap: ${CASSANDRA_AUTO_BOOTSTRAP}" >> $CASSANDRA_CFG

The next section is all about setting the seeds or seed provider depending on the
deployment solution (StatefulSet or not). There is a little trick for the first pod to
bootstrap as its own seed:

Chapter 7

[237]

set the seed to itself. This is only for the first pod, otherwise
it will be able to get seeds from the seed provider
if [[$CASSANDRA_SEEDS == 'false']]; then
 sed -ri 's/- seeds:.*/- seeds: "'"$POD_IP"'"/' $CASSANDRA_CFG
else # if we have seeds set them. Probably StatefulSet
 sed -ri 's/- seeds:.*/- seeds: "'"$CASSANDRA_SEEDS"'"/' $CASSANDRA_
CFG
fi

sed -ri 's/- class_name: SEED_PROVIDER/- class_name: '"$CASSANDRA_SEED_
PROVIDER"'/' $CASSANDRA_CFG

The following section sets up various options for remote management and
JMX monitoring. It's critical in complicated distributed systems to have proper
administration tools.

Cassandra has deep support for the ubiquitous JMX standard:

send gc to stdout
if [[$CASSANDRA_GC_STDOUT == 'true']]; then
 sed -ri 's/ -Xloggc:\/var\/log\/cassandra\/gc\.log//' $CASSANDRA_
CONF_DIR/cassandra-env.sh
fi

enable RMI and JMX to work on one port
echo "JVM_OPTS=\"\$JVM_OPTS -Djava.rmi.server.hostname=$POD_IP\"" >>
$CASSANDRA_CONF_DIR/cassandra-env.sh

getting WARNING messages with Migration Service
echo "-Dcassandra.migration_task_wait_in_seconds=${CASSANDRA_MIGRATION_
WAIT}" >> $CASSANDRA_CONF_DIR/jvm.options
echo "-Dcassandra.ring_delay_ms=${CASSANDRA_RING_DELAY}" >> $CASSANDRA_
CONF_DIR/jvm.options

if [[$CASSANDRA_OPEN_JMX == 'true']]; then
 export LOCAL_JMX=no
 sed -ri 's/ -Dcom\.sun\.management\.jmxremote\.authenticate=true/
-Dcom\.sun\.management\.jmxremote\.authenticate=false/' $CASSANDRA_
CONF_DIR/cassandra-env.sh
 sed -ri 's/ -Dcom\.sun\.management\.jmxremote\.password\.file=\/etc\/
cassandra\/jmxremote\.password//' $CASSANDRA_CONF_DIR/cassandra-env.sh
fi

Running Stateful Applications with Kubernetes

[238]

Finally, it protects the data directory such that only the cassandra user can access
it, the CLASSPATH is set to the Cassandra jar file, and it launches Cassandra in the
foreground (not daemonized) as the cassandra user:

chmod 700 "${CASSANDRA_DATA}"
chown -c -R cassandra "${CASSANDRA_DATA}" "${CASSANDRA_CONF_DIR}"

export CLASSPATH=/kubernetes-cassandra.jar

su cassandra -c "$CASSANDRA_HOME/bin/cassandra -f"

Hooking up Kubernetes and Cassandra
Connecting Kubernetes and Cassandra takes some work because Cassandra was
designed to be very self-sufficient, but we want to let it hook into Kubernetes
at the right time to provide capabilities such as automatically restarting failed
nodes, monitoring, allocating Cassandra pods, and providing a unified view of the
Cassandra pods side by side with other pods.

Cassandra is a complicated beast and has many knobs to control it. It comes with
a Cassandra.yaml configuration file, and you can override all the options with
environment variables.

Digging into the Cassandra configuration file
There are two settings that are particularly relevant: the seed provider and the snitch.
The seed provider is responsible for publishing a list of IP addresses (seeds) of nodes
in the cluster. Every node that starts running connects to the seeds (there are usually
at least three) and if it successfully reaches one of them they immediately exchange
information about all the nodes in the cluster. This information is updated constantly
for each node as the nodes gossip with each other.

The default seed provider configured in Cassandra.yaml is just a static list of IP
addresses, in this case just the loopback interface:

any class that implements the SeedProvider interface and has a
constructor that takes a Map<String, String> of parameters will do.
seed_provider:
 # Addresses of hosts that are deemed contact points.
 # Cassandra nodes use this list of hosts to find each other and
learn
 # the topology of the ring. You must change this if you are
running

Chapter 7

[239]

 # multiple nodes!
 #- class_name: io.k8s.cassandra.KubernetesSeedProvider
 - class_name: SEED_PROVIDER
 parameters:
 # seeds is actually a comma-delimited list of addresses.
 # Ex: "<ip1>,<ip2>,<ip3>"
 - seeds: "127.0.0.1"

The other important setting is the snitch. It has two roles: it teaches Cassandra
enough about your network topology to route requests efficiently, and it allows
Cassandra to spread replicas around your cluster to avoid correlated failures. It does
this by grouping machines into data centers and racks. Cassandra will do its best
not to have more than one replica on the same rack (which may not actually be a
physical location).

Cassandra comes pre-loaded with several snitch classes, but none of them are
Kubernetes-aware. The default is SimpleSnitch, but it can be overridden:

You can use a custom Snitch by setting this to the full class
name of the snitch, which will be assumed to be on your classpath.
endpoint_snitch: SimpleSnitch

Other snitches are:

•	 GossipingPropertyFileSnitch

•	 PropertyFileSnitch

•	 Ec2Snitch

•	 Ec2MultiRegionSnitch

•	 RackInferringSnitch

The custom seed provider
When running Cassandra nodes as pods in Kubernetes, Kubernetes may move pods
around, including seeds. To accommodate that, a Cassandra seed provider needs to
interact with the Kubernetes API server.

Here is a short snippet from the custom KubernetesSeedProvider Java class that
implements the Cassandra SeedProvider API:

public class KubernetesSeedProvider implements SeedProvider {

...

Running Stateful Applications with Kubernetes

[240]

 /**
 * Call Kubernetes API to collect a list of seed providers
 *
 * @return list of seed providers
 */
 public List<InetAddress> getSeeds() {
 GoInterface go = (GoInterface) Native.loadLibrary("cassandra-seed.
so", GoInterface.class);

 String service = getEnvOrDefault("CASSANDRA_SERVICE", "cassandra");
 String namespace = getEnvOrDefault("POD_NAMESPACE", "default");

 String initialSeeds = getEnvOrDefault("CASSANDRA_SEEDS", "");

 if ("".equals(initialSeeds)) {
 initialSeeds = getEnvOrDefault("POD_IP", "");
 }

 String seedSizeVar = getEnvOrDefault("CASSANDRA_SERVICE_NUM_SEEDS",
"8");
 Integer seedSize = Integer.valueOf(seedSizeVar);

 String data = go.GetEndpoints(namespace, service, initialSeeds);
 ObjectMapper mapper = new ObjectMapper();

 try {
 Endpoints = mapper.readValue(data, Endpoints.class);
 logger.info("cassandra seeds: {}", endpoints.ips.toString());
 return Collections.unmodifiableList(endpoints.ips);
 } catch (IOException e) {
 // This should not happen
 logger.error("unexpected error building cassandra seeds: {}" ,
e.getMessage());
 return Collections.emptyList();
 }
}

Chapter 7

[241]

Creating a Cassandra headless service
The role of the headless service is to allow clients in the Kubernetes cluster to connect
to the Cassandra cluster through a standard Kubernetes service instead of keeping
track of the network identities of the nodes or putting a dedicated load balancer in
front of all the nodes. Kubernetes provides all that out of the box through its services.

Here is the configuration file:

apiVersion: v1
kind: Service
metadata:
 labels:
 app: cassandra
 name: Cassandra
spec:
 clusterIP: None
 ports:
 - port: 9042
 selector:
 app: Cassandra

The app: Cassandra label will group all the pods to participate in the service.
Kubernetes will create endpoint records and the DNS will return a record for
discovery. clusterIP is set to None, which means the service is headless and
Kubernetes will not do any load balancing or proxying. This is important because
Cassandra nodes do their own communication directly.

The 9042 port is used by Cassandra to serve CQL requests. Those can be queries,
inserts/updates (it's always an upsert with Cassandra), or deletes.

Using StatefulSets to create the Cassandra cluster
Declaring a StatefulSet is not trivial. It is arguably the most complex Kubernetes
resource. It has a lot of moving parts: standard metadata, the StatefulSet spec, the
pod template (which is often pretty complex itself), and volume claim templates.

Dissecting the StatefulSet YAML file
Let's go methodically over this example StatefulSet YAML file that declares a three-
node Cassandra cluster.

Running Stateful Applications with Kubernetes

[242]

Here is the basic metadata. Note the apiVersion string is apps/v1 (StatefulSets
became generally available in Kubernetes 1.9):

apiVersion: "apps/v1"
kind: StatefulSet
metadata:
 name: Cassandra
 labels:
 app: cassandra

The StatefulSet spec defines the headless service name, the label selector (app:
cassandra), how many pods there are in the StatefulSet, and the pod template
(explained later). The replicas field specifies how many pods are in the StatefulSet:

spec:
 serviceName: Cassandra
 replicas: 3
 selector:
 matchLabels:
 app: Cassandra
 template:
 ...

The term replicas for the pods is an unfortunate choice because the pods are not
replicas of each other. They share the same pod template, but they have a unique
identity and they are responsible for different subsets of the state in general. This is
even more confusing in the case of Cassandra, which uses the same term, replicas, to
refer to groups of nodes that redundantly duplicate some subset of the state (but are
not identical, because each can manage additional state too). I opened a GitHub issue
with the Kubernetes project to change the term from replicas to members:

https://github.com/kubernetes/kubernetes.github.io/issues/2103

The pod template contains a single container based on the custom Cassandra
image. It also sets the termination grace period to 30 minutes. This means that when
Kubernetes needs to terminate the pod, it will send the containers a SIGTERM signal
notifying them they should exit and giving them a chance to do it gracefully. Any
container that is still running after the grace period will be killed via SIGKILL.

Here is the pod template with the app: cassandra label:

 template:
 metadata:
 labels:

https://github.com/kubernetes/kubernetes.github.io/issues/2103

Chapter 7

[243]

 app: Cassandra
 spec:
 terminationGracePeriodSeconds: 1800
 containers:
 ...

The containers section has multiple important parts. It starts with a name and the
image we looked at earlier:

 containers:
 - name: Cassandra
 image: gcr.io/google-samples/cassandra:v14
 imagePullPolicy: Always

Then, it defines multiple container ports needed for external and internal
communication by Cassandra nodes:

 ports:
 - containerPort: 7000
 name: intra-node
 - containerPort: 7001
 name: tls-intra-node
 - containerPort: 7199
 name: jmx
 - containerPort: 9042
 name: cql

The resources section specifies the CPU and memory needed by the container. This
is critical because the storage management layer should never be a performance
bottleneck due to CPU or memory. Note that it follows the best practice of identical
requests and limits to ensure the resources are always available once allocated:

 resources:
 limits:
 cpu: "500m"
 memory: 1Gi
 requests:
 cpu: "500m"
 memory: 1Gi

Cassandra needs access to Inter Process Communication (IPC), which the container
requests through the security context's capabilities:

 securityContext:

Running Stateful Applications with Kubernetes

[244]

 capabilities:
 add:
 - IPC_LOCK

The lifecycle section runs the Cassandra nodetool drain command to make sure
data on the node is transferred to other nodes in the Cassandra cluster when the
container needs to shut down. This is the reason a 30-minute grace period is needed.
Node draining involves moving a lot of data around:

 lifecycle:
 preStop:
 exec:
 command:
 - /bin/sh
 - -c
 - nodetool drain

The env section specifies environment variables that will be available inside the
container. The following is a partial list of the necessary variables. The CASSANDRA_
SEEDS variable is set to the headless service so a Cassandra node can talk to seed nodes
on startup and discover the whole cluster. Note that in this configuration we don't
use the special Kubernetes seed provider. POD_IP is interesting because it utilizes the
Downward API to populate its value via the field reference to status.podIP:

 env:
 - name: MAX_HEAP_SIZE
 value: 512M
 - name: HEAP_NEWSIZE
 value: 100M
 - name: CASSANDRA_SEEDS
 value: "cassandra-0.cassandra.default.svc.cluster.local"
 - name: CASSANDRA_CLUSTER_NAME
 value: "K8Demo"
 - name: CASSANDRA_DC
 value: "DC1-K8Demo"
 - name: CASSANDRA_RACK
 value: "Rack1-K8Demo"
 - name: CASSANDRA_SEED_PROVIDER
 value: io.k8s.cassandra.KubernetesSeedProvider
 - name: POD_IP
 valueFrom:
 fieldRef:
 fieldPath: status.podIP

Chapter 7

[245]

The readiness probe makes sure that requests are not sent to the node until it is
actually ready to service them. The ready-probe.sh script utilizes Cassandra's
nodetool status command:

 readinessProbe:
 exec:
 command:
 - /bin/bash
 - -c
 - /ready-probe.sh
 initialDelaySeconds: 15
 timeoutSeconds: 5

The last part of the container spec is the volume mount, which must match a
persistent volume claim:

 volumeMounts:
 - name: cassandra-data
 mountPath: /var/lib/cassandra

That's it for the container spec. The last part is the volume claim templates. In this
case, dynamic provisioning is used. It's highly recommended to use SSD drives for
Cassandra storage, and especially its journal. The requested storage in this example
is 1 GiB. I discovered through experimentation that 1-2 TB is ideal for a single
Cassandra node. The reason is that Cassandra does a lot of data shuffling under
the covers, compacting and rebalancing the data. If a node leaves the cluster or a
new one joins the cluster, you have to wait until the data is properly rebalanced
before the data from the node that left is properly re-distributed or a new node is
populated. Note that Cassandra needs a lot of disk space to do all this shuffling.
It is recommended to have 50% free disk space. When you consider that you also
need replication (typically 3x), then the required storage space can be 6x your data
size. You can get by with 30% free space if you're adventurous and maybe use just
2x replication depending on your use case. But don't get below 10% free disk space,
even on a single node. I learned the hard way that Cassandra will simply get stuck
and will be unable to compact and rebalance such nodes without extreme measures.

A storage class called fast must be defined in this case. Usually, for Cassandra, you
need a special storage class and can't use the Kubernetes cluster default storage class.

The access mode is, of course, ReadWriteOnce:

 volumeClaimTemplates:
 - metadata:
 name: cassandra-data

Running Stateful Applications with Kubernetes

[246]

 spec:
 storageClassName: fast
 accessModes: ["ReadWriteOnce"]
 resources:
 requests:
 storage: 1Gi

When deploying a StatefulSet, Kubernetes creates the pod in order according to its
index number. When scaling up or down, it also does it in order. For Cassandra, this
is not important because it can handle nodes joining or leaving the cluster in any
order. When a Cassandra pod is destroyed (ungracefully), the persistent volume
remains. If a pod with the same index is created later, the original persistent volume
will be mounted into it. This stable connection between a particular pod and its
storage enables Cassandra to manage the state properly.

Summary
In this chapter, we covered the topic of stateful applications and how to integrate
them with Kubernetes. We discovered that stateful applications are complicated
and considered several mechanisms for discovery, such as DNS and environment
variables. We also discussed several state management solutions, such as in-memory
redundant storage and persistent storage. The bulk of the chapter revolved around
deploying a Cassandra cluster inside a Kubernetes cluster using a StatefulSet. We
drilled down into the low-level details in order to appreciate what it really takes
to integrate a third-party complex distributed system such as Cassandra into
Kubernetes. At this point, you should have a thorough understanding of stateful
applications and how to apply them in your Kubernetes-based system. You are
armed with multiple methods for various use cases, and maybe you've even learned
a little bit about Cassandra.

In the next chapter, we will continue our journey and explore the important topic of
scalability, in particular auto-scalability, and how to deploy and do live upgrades
and updates as the cluster dynamically grows. These issues are very intricate,
especially when the cluster has stateful apps running on it.

[247]

8
Deploying and Updating

Applications
In this chapter, we will explore the automated pod scalability that Kubernetes
provides, how it affects rolling updates, and how it interacts with quotas. We will
touch on the important topic of provisioning and how to choose and manage the
size of the cluster. Finally, we will go over how the Kubernetes team improved the
performance of Kubernetes and how they test the limits of Kubernetes with the
Kubemark tool. Here are the main points we will cover:

•	 Horizontal pod autoscaling
•	 Performing rolling updates with autoscaling
•	 Handling scarce resources with quotas and limits
•	 Pushing the envelope with Kubernetes performance

At the end of this chapter, you will have the ability to plan a large-scale cluster,
provision it economically, and make informed decisions about the various trade-offs
between performance, cost, and availability. You will also understand how to set up
horizontal pod autoscaling and use resource quotas intelligently to let Kubernetes
automatically handle intermittent fluctuations in volume as well as deploy software
safely to your cluster.

Deploying and Updating Applications

[248]

Horizontal pod autoscaling
Kubernetes can watch over your pods and scale them when the CPU utilization or
some other metric crosses a threshold. The autoscaling resource specifies the details
(percentage of CPU, how often to check) and the corresponding autoscale controller
adjusts the number of replicas, if needed.

The following diagram illustrates the different players and their relationships:

Figure 8.1: HPA interacting with pods

As you can see, the horizontal pod autoscaler (HPA) doesn't create or destroy pods
directly. It relies instead on the replication controller or deployment resources. This
is very smart because you don't need to deal with situations where autoscaling
conflicts with the replication controller or deployments trying to scale the number of
pods, unaware of the autoscaler efforts.

The autoscaler automatically does what we had to do ourselves before. Without the
autoscaler, if we had a replication controller with replicas set to 3, but we determined
that based on average CPU utilization we actually needed 4, then we would update
the replication controller from 3 to 4 and keep monitoring the CPU utilization
manually in all pods. The autoscaler will do it for us.

Declaring an HPA
To declare an HPA, we need a replication controller, or a deployment, and an
autoscaling resource. Here is a simple deployment configured to maintain 3 Nginx
pods:

apiVersion: apps/v1
kind: Deployment
metadata:

Chapter 8

[249]

 name: nginx
spec:
 replicas: 3
 selector:
 matchLabels:
 run: nginx
 template:
 metadata:
 labels:
 run: nginx
 spec:
 containers:
 - name: nginx
 image: nginx
 resources:
 requests:
 cpu: 400m
 ports:
 - containerPort: 80

Note that in order to participate in autoscaling, the containers must request a specific
amount of CPU.

The HPA references the Nginx deployment in scaleTargetRef:

apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
 name: nginx
spec:
 maxReplicas: 4
 minReplicas: 2
 targetCPUUtilizationPercentage: 90
 scaleTargetRef:
 apiVersion: apps/v1
 kind: Deployment
 name: nginx

The minReplicas and maxReplicas values specify the range of scaling. This is needed
to avoid runaway situations that could occur because of some problem. Imagine that,
due to some bug, every pod immediately uses 100% CPU regardless of the actual
load. Without the maxReplicas limit, Kubernetes will keep creating more and more
pods until all cluster resources are exhausted.

Deploying and Updating Applications

[250]

If we are running in a cloud environment with autoscaling of VMs, then we
will incur a significant cost. The other side of this problem is that, if there is no
minReplicas and there is a lull in activity, then all pods could be terminated, and
when new requests come in all the pods will have to be created and scheduled again.
If there are patterns of on and off activity, then this cycle can repeat multiple times.
Keeping the minimum of replicas running can smooth this phenomenon. In the
preceding example, minReplicas is set to 2 and maxReplicas is set to 4. Kubernetes
will ensure that there are always between 2 to 4 Nginx instances running.

The target CPU utilization percentage is a mouthful. Let's abbreviate it to TCUP.
You specify a single number like 80%, but Kubernetes doesn't start scaling up
and down immediately when the threshold is crossed. This could lead to constant
thrashing if the average load hovers around the TCUP. Kubernetes will alternate
frequently between adding more replicas and removing replicas. A new scale-up
algorithm was added in Kubernetes 1.12 that can handle automatically scaling up
your cluster. Scaling down is left to the cluster administrator, who can configure how
long the autoscaler will wait before scaling down a pod. The mechanism is a special
flag to the controller-manager called --horizontal-pod-autoscaler-downscale-
stabilization. It determines the minimum wait between consecutive downscale
operations. The default value is five minutes.

Let's check the HPA:

$ kubectl get hpa
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS
AGE
nginx Deployment/nginx <unknown>/90% 2 4 0
4s

As you can see, the targets are unknown. The HPA requires a metrics server to
measure the CPU percentage. One of the easiest ways to install the metrics server is
by using Helm. We have installed Helm in Chapter 3, High Availability and Reliability
already. Here is the command to install the Kubernetes metrics server into the
monitoring namespace:

$ helm install metrics-server bitnami/metrics-server
 --version 4.2.1 \
 --namespace monitoring

After redeploying nginx and the HPA, you can see the utilization and that the replica
count is 3, which is within the range of 2-4:

$ kubectl get hpa
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
nginx Deployment/nginx 0%/90% 2 4 3 109s

Chapter 8

[251]

Custom metrics
CPU utilization is an important metric to gauge if pods that are bombarded with
too many requests should be scaled up, or if they are mostly idle and can be scaled
down. But CPU is not the only and sometimes not even the best metric to keep track
of. Memory may be the limiting factor, or even more specialized metrics, such as
the depth of a pod's internal on-disk queue, the average latency on a request, or the
average number of service timeouts.

The horizontal pod custom metrics were added as an alpha extension in version 1.2.
In version 1.6 they were upgraded to beta status. You can now autoscale your pods
based on multiple custom metrics. The autoscaler will evaluate all the metrics and
will autoscale based on the largest number of replicas required, so the requirements
of all the metrics are respected.

Using the HPA with custom metrics requires some configuration when launching
your cluster. First, you need to enable the API aggregation layer. Then you need to
register your resource metrics API and your custom metrics API. Heapster provides
an implementation of the resource metrics API you can use. Just start Heapster
with the --api-server flag set to true, but note that Heapster is deprecated as of
Kubernetes 1.11. You need to run a separate server that exposes the custom metrics
API. A good starting point is https://github.com/kubernetes-incubator/custom-
metrics-apiserver.

The next step is to start kube-controller-manager with the following flags:

•	 --horizontal-pod-autoscaler-use-rest-clients=true

•	 --kubeconfig or --master

The --master flag will override --kubeconfig if both are specified. These flags
specify the location of the API aggregation layer, allowing the controller manager to
communicate to the API server.

In Kubernetes 1.7, the standard aggregation layer that Kubernetes provides runs in-
process with the kube-apiserver, so the target IP address can be found with:

$ kubectl get pods --selector k8s-app=kube-apiserver -n kube-system -o
jsonpath='{.items[0].status.podIP}'

Autoscaling with Kubectl
Kubectl can create an autoscale resource using the standard create command and a
configuration file. But Kubectl also has a special command, autoscale, that lets you
easily set an autoscaler in one command without a special configuration file.

https://github.com/kubernetes-incubator/custom-metrics-apiserver
https://github.com/kubernetes-incubator/custom-metrics-apiserver

Deploying and Updating Applications

[252]

First, let's start a deployment that makes sure there are three replicas of a simple pod
that just runs an infinite bash loop:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: bash-loop
spec:
 replicas: 3
 selector:
 matchLabels:
 name: bash-loop
 template:
 metadata:
 labels:
 name: bash-loop
 spec:
 containers:
 - name: bash-loop
 image: g1g1/py-kube:0.2
 resources:
 requests:
 cpu: 100m
 command: ["/bin/bash", "-c", "while true; do sleep 10; done"]

$ kubectl create -f bash-loop-deployment.yaml
deployment.apps/bash-loop created

Here is the resulting deployment:

$ kubectl get deployment
NAME READY UP-TO-DATE AVAILABLE AGE
bash-loop 3/3 3 3 61m

You can see that the desired and current count are both three, meaning three pods
are running. Let's make sure:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
bash-loop-6746f7f75f-2w8ft 1/1 Running 0 62m
bash-loop-6746f7f75f-b2nks 1/1 Running 1 62m
bash-loop-6746f7f75f-g9j8t 1/1 Running 0 62m

Chapter 8

[253]

Now, let's create an autoscaler. To make it interesting, we'll set the minimum number
of replicas to 4 and the maximum number to 6:

$ kubectl autoscale deployment bash-loop --min=4 --max=6 --cpu-percent=50
horizontalpodautoscaler.autoscaling/bash-loop autoscaled

Here is the resulting HPA (you can use hpa). It shows the referenced deployment, the
target and current CPU percentage, and the min/max pods. The name matches the
referenced deployment, bash-loop:

$ kubectl get hpa
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS
AGE
bash-loop Deployment/bash-loop 0%/50% 4 6 4
58s

Originally, the deployment was set to have three replicas, but the autoscaler has
a minimum of four pods. What's the effect on the deployment? Now the desired
number of replicas is four. If the average CPU utilization goes above 50%, then it
may climb to five or even six:

$ kubectl get deployment
NAME READY UP-TO-DATE AVAILABLE AGE
bash-loop 4/4 4 4 65m

Just to make sure everything works, here is another look at the pods. Note the new
pod (2 minutes and 23 seconds old) that was created because of the autoscaling:

$ kubectl get po
NAME READY STATUS RESTARTS AGE
bash-loop-6746f7f75f-2w8ft 1/1 Running 0 66m
bash-loop-6746f7f75f-b2nks 1/1 Running 1 66m
bash-loop-6746f7f75f-g9j8t 1/1 Running 0 66m
bash-loop-6746f7f75f-mvv74 1/1 Running 0 2m23s

When we delete the HPA, the deployment retains the last desired number of replicas
(four in this case). Nobody remembers that deployment was created with three
replicas:

$ kubectl delete hpa bash-loop
horizontalpodautoscaler.autoscaling "bash-loop" deleted

As you can see, the deployment wasn't reset and still maintains four pods even when
the autoscaler is gone:

$ kubectl get deployment

Deploying and Updating Applications

[254]

NAME READY UP-TO-DATE AVAILABLE AGE
bash-loop 4/4 4 4 68m

Let's try something else. What happens if we create a new HPA with a range of 2 to 6
and the same CPU target of 50%?

$ kubectl autoscale deployment bash-loop --min=2 --max=6 --cpu-percent=50
horizontalpodautoscaler.autoscaling/bash-loop autoscaled

Well, the deployment still maintains its four replicas, which is within the range:

$ kubectl get deployment
NAME READY UP-TO-DATE AVAILABLE AGE
bash-loop 4/4 4 4 73m

However, the actual CPU utilization is zero, or close to zero. The replica count
should have been scaled down to two replicas, but because the HPA doesn't scale
down immediately we have to wait a few minutes:

$ kubectl get deployment
NAME READY UP-TO-DATE AVAILABLE AGE
bash-loop 2/2 2 2 78m

Let's check out the HPA itself:

$ kubectl get hpa
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS
AGE
bash-loop Deployment/bash-loop 0%/50% 2 6 2
8m43s

Performing rolling updates with
autoscaling
Rolling updates are the cornerstone of managing large clusters. Kubernetes supports
rolling updates at the replication controller level and by using deployments. Rolling
updates using replication controllers are incompatible with the HPA. The reason
is that during a rolling deployment, a new replication controller is created and the
HPA remains bound to the old replication controller. Unfortunately, the intuitive
Kubectl rolling-update command triggers a replication controller rolling update.

Chapter 8

[255]

Since rolling updates are such an important capability, I recommend that you always
bind HPAs to a deployment object instead of a replication controller or a replica set.
When the HPA is bound to a deployment, it can set the replicas in the deployment
spec and let the deployment take care of the necessary underlying rolling update and
replication.

Here is a deployment configuration file we've used for deploying the hue-reminders
service:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: hue-reminders
spec:
 replicas: 2
 selector:
 matchLabels:
 app: hue
 service: reminders
 template:
 metadata:
 name: hue-reminders
 labels:
 app: hue
 service: reminders
 spec:
 containers:
 - name: hue-reminders
 image: g1g1/hue-reminders:2.2
 resources:
 requests:
 cpu: 100m
 ports:
 - containerPort: 80

To support it with autoscaling and ensure we always have between 10 to 15 instances
running, we can create an autoscaler configuration file:

apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
 name: hue-reminders
spec:

Deploying and Updating Applications

[256]

 maxReplicas: 15
 minReplicas: 10
 targetCPUUtilizationPercentage: 90
 scaleTargetRef:
 apiVersion: apps/v1
 kind: Deployment
 name: hue-reminders

Alternatively, we can use the kubectl autoscale command:

$ kubectl autoscale deployment hue-reminders --min=10 --max=15 --cpu-
percent=90

Let's perform a rolling update from version 2.2 to 3.0:

$ kubectl set image deployment/hue-reminders hue-reminders=g1g1/hue-
reminders:3.0 --record

We can check the status using rollout status:

$ kubectl rollout status deployment hue-reminders

Waiting for deployment "hue-reminders" rollout to finish: 7 out of 10 new
replicas have been updated...
Waiting for deployment "hue-reminders" rollout to finish: 7 out of 10 new
replicas have been updated...
Waiting for deployment "hue-reminders" rollout to finish: 7 out of 10 new
replicas have been updated...
Waiting for deployment "hue-reminders" rollout to finish: 8 out of 10 new
replicas have been updated...
Waiting for deployment "hue-reminders" rollout to finish: 8 out of 10 new
replicas have been updated...
Waiting for deployment "hue-reminders" rollout to finish: 8 out of 10 new
replicas have been updated...
Waiting for deployment "hue-reminders" rollout to finish: 8 out of 10 new
replicas have been updated...
Waiting for deployment "hue-reminders" rollout to finish: 9 out of 10 new
replicas have been updated...
Waiting for deployment "hue-reminders" rollout to finish: 4 old replicas are
pending termination...
Waiting for deployment "hue-reminders" rollout to finish: 3 old replicas are
pending termination...
Waiting for deployment "hue-reminders" rollout to finish: 3 old replicas are
pending termination...
Waiting for deployment "hue-reminders" rollout to finish: 3 old replicas are

Chapter 8

[257]

pending termination...
Waiting for deployment "hue-reminders" rollout to finish: 2 old replicas are
pending termination...
Waiting for deployment "hue-reminders" rollout to finish: 2 old replicas are
pending termination...
Waiting for deployment "hue-reminders" rollout to finish: 2 old replicas are
pending termination...
Waiting for deployment "hue-reminders" rollout to finish: 1 old replicas are
pending termination...
Waiting for deployment "hue-reminders" rollout to finish: 1 old replicas are
pending termination...
Waiting for deployment "hue-reminders" rollout to finish: 1 old replicas are
pending termination...
Waiting for deployment "hue-reminders" rollout to finish: 8 of 10 updated
replicas are available...
Waiting for deployment "hue-reminders" rollout to finish: 9 of 10 updated
replicas are available...
deployment "hue-reminders" successfully rolled out

Finally, we review the history of the deployment:

$ kubectl rollout history deployment hue-reminders
deployment.extensions/hue-reminders
REVISION CHANGE-CAUSE
1 <none>
2 kubectl set image deployment/hue-reminders hue-reminders=g1g1/
hue-reminders:3.0 --record=true

Handling scarce resources with limits
and quotas
With the HPA creating pods on the fly, we need to think about managing our
resources. Scheduling can easily get out of control, and inefficient use of resources
is a real concern. There are several factors that can interact with each other in
subtle ways:

•	 Overall cluster capacity
•	 Resource granularity per node
•	 Division of workloads per namespace
•	 DaemonSets
•	 StatefulSets
•	 Affinity, anti-affinity, taints, and tolerations

Deploying and Updating Applications

[258]

First, let's understand the core issue. The Kubernetes scheduler has to take into
account all these factors when it schedules pods. If there are conflicts or a lot of
overlapping requirements, then Kubernetes may have a problem finding room
to schedule new pods. For example, a very extreme yet simple scenario is that a
DaemonSet runs on every node a pod that requires 50% of the available memory.
Now, Kubernetes can't schedule any pod that needs more than 50% memory because
the DaemonSet pod gets priority. Even if you provision new nodes, the DaemonSet
will immediately commandeer half of the memory.

StatefulSets are similar to DaemonSets in that they require new nodes to expand. The
trigger to adding new members to the stateful set is growth in data, but the impact is
taking resources from the pool available for Kubernetes to schedule other members.
In a multi-tenant situation, the noisy neighbor problem can rear its head in a
provisioning or resource allocation context. You may plan exact rations meticulously
in your namespace between different pods and their resource requirements, but you
share the actual nodes with your neighbors from other namespaces that you may not
even have visibility into.

Most of these problems can be mitigated by judiciously using namespace resource
quotas and careful management of the cluster capacity across multiple resource
types such as CPU, memory, and storage.

But, in most situations, a more robust and dynamic approach is to take advantage of
the cluster autoscaler, which can add capacity to the cluster when needed.

Enabling resource quotas
Most Kubernetes distributions support ResourceQuota out of the box. The API
server's --admission-control flag must have ResourceQuota as one of its arguments.
You will also have to create a ResourceQuota object to enforce it. Note that there may
be at most one ResourceQuota object per namespace to prevent potential conflicts.
This is enforced by Kubernetes.

Resource quota types
There are different types of quota we can manage and control. The categories are
compute, storage, and objects.

Compute resource quota
Compute resources are CPU and memory. For each one, you can specify a limit
or request a certain amount. Here is the list of compute-related fields. Note that
requests.cpu can be specified as just cpu, and requests.memory can be specified as
just memory:

Chapter 8

[259]

•	 limits.cpu: Across all pods in a non-terminal state, the sum of CPU limits
cannot exceed this value

•	 limits.memory: Across all pods in a non-terminal state, the sum of memory
limits cannot exceed this value

•	 requests.cpu: Across all pods in a non-terminal state, the sum of CPU
requests cannot exceed this value

•	 requests.memory: Across all pods in a non-terminal state, the sum of memory
requests cannot exceed this value

Since Kubernetes 1.10 you can also specify a quota for extended resources such as
GPU resources. Here is an example:

requests.nvidia.com/gpu: 10

Storage resource quota
The storage resource quota type is a little more complicated. There are two entities
you can restrict per namespace: the amount of storage and the number of persistent
volume claims. However, in addition to just globally setting the quota on the total
storage or the total number of persistent volume claims, you can also do that per
storage class. The notation for storage class resource quota is a little verbose, but it
gets the job done:

•	 requests.storage: The total amount of requested storage across all persistent
volume claims

•	 persistentvolumeclaims: The maximum number of persistent volume claims
allowed in the namespace

•	 .storageclass.storage.k8s.io/requests.storage: The total amount of
requested storage across all persistent volume claims associated with the
storage class name

•	 .storageclass.storage.k8s.io/persistentvolumeclaims: The maximum
number of persistent volume claims allowed in the namespace that are
associated with the storage class name

Kubernetes 1.8 added alpha support for ephemeral storage quotas too:

•	 requests.ephemeral-storage: The total amount of requested ephemeral
storage across all pods in the namespace claims

•	 limits.ephemeral-storage: The total amount of limits for ephemeral storage
across all pods in the namespace claims

Deploying and Updating Applications

[260]

Object count quota
Kubernetes has another category of resource quotas, which is API objects. My guess
is that the goal is to protect the Kubernetes API server from having to manage too
many objects. Remember that Kubernetes does a lot of work under the hood. It often
has to query multiple objects to authenticate, authorize, and ensure that an operation
doesn't violate any of the many policies that may be in place. A simple example is
pod scheduling based on replication controllers. Imagine that you have 1,000,000,000
replication controller objects. Maybe you just have three pods and most of the
replication controllers have zero replicas. Still, Kubernetes will spend all its time just
verifying that indeed all those billion replication controllers have no replicas of their
pod templates and that they don't need to kill any pods. This is an extreme example,
but the concept applies. Too many API objects means a lot of work for Kubernetes.

Since Kubernetes 1.9 you can restrict the number of any namespaced resource (prior
to that coverage of objects that can be restricted was a little spotty). The syntax
is interesting: count/<resource type>.<group>. Typically, in the YAML files and
kubectl you identify objects by group first as in <group>/<resource type>.

Here are some objects you may want to limit (note that deployments can be limited
for two separate API groups):

count/configmaps
count/deployments.apps
count/deployments.extensions
count/persistentvolumeclaims
count/replicasets.apps
count/replicationcontrollers
count/secrets
count/services
count/statefulsets.apps
count/jobs.batch
count/cronjobs.batch

Since Kubernetes 1.5 you can restrict the number of custom resources too. Note that
while the custom resource definition is cluster-wide this allows you to restrict the
actual number of the custom resources in each namespace. For example:

count/awesome.custom.resource

The most glaring omission is namespaces. There is no limit to the number of
namespaces. Since all limits are per namespace, you can easily overwhelm
Kubernetes by creating too many namespaces, where each namespace has only a
small number of API objects.

Chapter 8

[261]

But, the ability to create namespaces, which don't need resource quotas to constrain
them, should be reserved for the cluster administrator only.

Quota scopes
Some resources, such as pods, may be in different states, and it is useful to have
different quotas for these different states. For example, if there are many pods that
are terminating (this happens a lot during rolling updates) then it is OK to create
more pods even if the total number exceeds the quota. This can be achieved by only
applying a pod object count quota to non-terminating pods. Here are the existing
scopes:

•	 Terminating: Match pods where activeDeadlineSeconds >= 0
•	 NotTerminating: Match pods where activeDeadlineSeconds is nil
•	 BestEffort: Match pods that have best effort quality of service
•	 NotBestEffort: Match pods that do not have best effort quality of service

While the BestEffort scope applies only to pods, the Terminating, NotTerminating,
and NotBestEffort scopes apply to CPU and memory too. This is interesting because
a resource quota limit can prevent a pod from terminating. Here are the supported
objects:

•	 cpu

•	 memory

•	 limits.cpu

•	 limits.memory

•	 requests.cpu

•	 requests.memory

•	 pods

Resource quotas and priority classes
Kubernetes 1.9 introduced priority classes as a way to prioritize scheduling pods
when resources are scarce. In Kubernetes 1.14 priority classes became stable.
However, as of Kubernetes 1.12 resource quotas support separate resource quotas
per priority class (in beta). That means that with priority classes you can sculpt your
resource quotas in a very fine-grained manner even within a namespace.

Deploying and Updating Applications

[262]

Requests and limits
The meaning of requests and limits in the context of resource quotas is that it
requires the containers to explicitly specify the target attribute. This way, Kubernetes
can manage the total quota because it knows exactly what range of resources is
allocated to each container.

Working with quotas
That was a lot of theory. It's time to get hands on. Let's create a namespace first:

$ kubectl create namespace ns
namespace/ns created

Using namespace-specific context
When working with namespaces other than the default, I prefer to use a context, so I
don't have to keep typing --namespace=ns for every command:

$ kubectl config set-context ns --namespace=ns --user=default
--cluster=default
Context "ns" created.

$ kubectl config use-context ns
Switched to context "ns".

Creating quotas
Here is a quota for compute:

apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-quota
spec:
 hard:
 pods: 2
 requests.cpu: 1
 requests.memory: 20Mi
 limits.cpu: 2
 limits.memory: 2Gi

Chapter 8

[263]

We create it by typing:

$ kubectl apply -f compute-quota.yaml
resourcequota/compute-quota created

And here is a count quota:

apiVersion: v1
kind: ResourceQuota
metadata:
 name: object-counts-quota
spec:
 hard:
 count/configmaps: 10
 count/persistentvolumeclaims: 4
 count/jobs.batch: 20
 count/secrets: 3

We create it by typing:

$ kubectl apply -f object-count-quota.yaml
resourcequota/object-counts-quota created

We can observe all the quotas:

$ kubectl get quota
NAME CREATED AT
compute-quota 2020-06-08T16:44:28Z
object-counts-quota 2020-06-08T18:14:01Z

We can drill down to get all the information by using describe for both resource
quotas:

$ kubectl describe quota compute-quota
Name: compute-quota
Namespace: ns
Resource Used Hard
-------- ---- ----
limits.cpu 0 2
limits.memory 0 2Gi
pods 0 2
requests.cpu 0 1
requests.memory 0 20Mi

Deploying and Updating Applications

[264]

$ kubectl describe quota object-counts-quota
Name: object-counts-quota
Namespace: ns
Resource Used Hard
-------- ---- ----
count/configmaps 0 10
count/jobs.batch 0 20
count/persistentvolumeclaims 0 4
count/secrets 1 3

As you can see, it reflects exactly the specification and it is defined in the ns
namespace.

This view gives us an instant understanding of global resource usage of important
resources across the cluster without diving into too many separate objects.

Let's add an Nginx server to our namespace:

$ kubectl create -f nginx-deployment.yaml
deployment.apps/nginx created

Let's check the pods:

$ kubectl get pods
No resources found.

Uh-oh. No resources found. But, there was no error when the deployment was
created. Let's check out the deployment then:

$ kubectl describe deployment nginx
Name: nginx
Namespace: ns
CreationTimestamp: Mon, 8 Jun 2020 21:13:02 -0700
Labels: <none>
Annotations: deployment.kubernetes.io/revision: 1
Selector: run=nginx
Replicas: 3 desired | 0 updated | 0 total | 0 available | 3
unavailable
StrategyType: RollingUpdate
MinReadySeconds: 0
RollingUpdateStrategy: 25% max unavailable, 25% max surge
Pod Template:
 Labels: run=nginx
 Containers:
 nginx:

Chapter 8

[265]

 Image: nginx
 Port: 80/TCP
 Host Port: 0/TCP
 Requests:
 cpu: 400m
 Environment: <none>
 Mounts: <none>
 Volumes: <none>
Conditions:
 Type Status Reason
 ---- ------ ------
 Progressing True NewReplicaSetCreated
 Available False MinimumReplicasUnavailable
 ReplicaFailure True FailedCreate
OldReplicaSets: <none>
NewReplicaSet: nginx-5759dd6b5c (0/3 replicas created)
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal ScalingReplicaSet 72s deployment-controller Scaled up replica
set nginx-5759dd6b5c to 3

There it is, in the conditions section – the ReplicationFailure status is True and the
reason is FailedCreate. You can see that the deployment created a new replica set
called 5759dd6b5c, but it couldn't create the pods it was supposed to create. We still
don't know why. Let's check out the ReplicaSet object. I use the JSON output format
(-o json) and pipe it to jq for its nice layout, which is much better than the jsonpath
output format that kubectl supports natively:

$ kubectl get rs nginx-5759dd6b5c -o json | jq .status.conditions
[
 {
 "lastTransitionTime": "2020-06-08T04:13:02Z",
 "message": "pods \"nginx-5759dd6b5c-9wjk7\" is forbidden: failed quota:
compute-quota: must specify limits.cpu,limits.memory,requests.memory",
 "reason": "FailedCreate",
 "status": "True",
 "type": "ReplicaFailure"
 }
]

Deploying and Updating Applications

[266]

The message is crystal clear. Since there is a compute quota in the namespace,
every container must specify its CPU, memory requests, and limit. The quota
controller must account for all container compute resources usage to ensure the
total namespace quota is respected.

OK. We understand the problem, but how to resolve it? We can create a dedicated
deployment object for each pod type we want to use and carefully set the CPU and
memory requests and limit.

For example, we can define nginx deployment with resources. Since the resource
quota specifies a hard limit of 2 pods, let's reduce the number of replicas from 3 to 2
as well:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
spec:
 replicas: 2
 selector:
 matchLabels:
 run: nginx
 template:
 metadata:
 labels:
 run: nginx
 spec:
 containers:
 - name: nginx
 image: nginx
 resources:
 requests:
 cpu: 400m
 memory: 6Mi
 limits:
 cpu: 400m
 memory: 6Mi
 ports:
 - containerPort: 80

Let's create it and check the pods:

$ kubectl create -f nginx-deployment-with-resources.yaml

Chapter 8

[267]

deployment.apps/nginx created

$ kubectl get po
NAME READY STATUS RESTARTS AGE
nginx-c6db6d7d-zpz96 1/1 Running 0 36s
nginx-c6db6d7d-dztkr 1/1 Running 0 36s

Yeah, it works! However, specifying the limit and resources for each pod type can be
exhausting. Is there an easier or better way?

Using limit ranges for default compute quotas
A better way is to specify default compute limits. Enter limit ranges. Here is
a configuration file that sets some defaults for containers:

apiVersion: v1
kind: LimitRange
metadata:
 name: limits
spec:
 limits:
 - default:
 cpu: 400m
 memory: 5Mi
 defaultRequest:
 cpu: 400m
 memory: 5Mi
 type: Container

Let's create it and observe the default limits:

$ kubectl create -f limits.yaml
limitrange 'limits' created

$ kubectl describe limits
Name: limits
Namespace: ns
Type Resource Min Max Default Request Default Limit Max Limit/
Request Ratio
---- -------- --- --- --------------- ------------- -----------

Container cpu - - 100m 200m -
Container memory - - 5Mi 6Mi -

Deploying and Updating Applications

[268]

To test it, let's delete our current nginx deployment with the explicit limits and
deploy again our original nginx:

$ kubectl delete deployment nginx
deployment.extensions "nginx" deleted

$ kubectl create -f nginx-deployment.yaml
deployment.apps/nginx created

$ kubectl get deployment
NAME READY UP-TO-DATE AVAILABLE AGE
nginx 2/3 2 2 26s

As you can see, only 2 out of 3 pods are ready. What happened? The default
limits worked, but if you recall, the compute quota had a hard limit of 2 pods for
the namespace. There is no way to override it with the RangeLimit object, so the
deployment was able to create only two nginx pods.

Choosing and managing the cluster
capacity
With Kubernetes' horizontal pod autoscaling, DaemonSets, StatefulSets, and quotas,
we can scale and control our pods, storage, and other objects. However, in the end,
we're limited by the physical (virtual) resources available to our Kubernetes cluster.
If all your nodes are running at 100% capacity, you need to add more nodes to your
cluster. There is no way around it. Kubernetes will just fail to scale. On the other
hand, if you have very dynamic workloads then Kubernetes can scale down your
pods, but if you don't scale down your nodes correspondingly you will still pay
for the excess capacity. In the cloud you can stop and start instances on demand.
Combining it with the cluster autoscaler can solve the compute capacity problem
automatically. That's the theory. In practice there are always nuances.

Choosing your node types
The simplest solution is to choose a single node type with a known quantity of CPU,
memory, and local storage. But that is typically not the most efficient and cost-
effective solution. It makes capacity planning simple because the only question is
how many nodes are needed. Whenever you add a node, you add a known quantity
of CPU and memory to your cluster, but most Kubernetes clusters and components
within the cluster handle different workloads. We may have a stream processing
pipeline where many pods receive some data and process it in one place.

Chapter 8

[269]

This workload is CPU-heavy and may or may not need a lot of memory. Other
components, such as a distributed memory cache, need a lot of memory, but very
little CPU. Other components, such as a Cassandra cluster, need multiple SSD disks
attached to each node.

For each type of node you should consider proper labeling and making sure that
Kubernetes schedules the pods that are designed to run on that node type.

Choosing your storage solutions
Storage is a huge factor in scaling a cluster. There are three categories of scalable
storage solution:

•	 Roll your own
•	 Use your cloud platform storage solution
•	 Use an out-of-cluster solution

When you use roll your own, you install some type of storage solution in your
Kubernetes cluster. The benefits are flexibility and full control, but you have to
manage and scale it yourself.

When you use your cloud platform storage solution, you get a lot out of the box, but
you lose control, you typically pay more, and depending on the service you may be
locked in to that provider.

When you use an out-of-cluster solution, the performance and cost of data transfer
may be much greater. You typically use this option if you need to integrate with an
existing system.

Of course, large clusters may have multiple data stores from all categories. This is
one of the most critical decisions you have to make, and your storage needs may
change and evolve over time.

Trading off cost and response time
If money is not an issue you can just over-provision your cluster. Every node will
have the best hardware configuration available, you'll have way more nodes than
are needed to process your workloads, and you'll have copious amounts of available
storage. But guess what? Money is always an issue!

You may get by with over-provisioning when you're just starting and your cluster
doesn't handle a lot of traffic. You may just run five nodes, even if two nodes are
enough most of the time. Multiply everything by 1,000 and someone will come asking
questions if you have thousands of idle machines and petabytes of empty storage.

Deploying and Updating Applications

[270]

OK. So, you measure and optimize carefully and you get 99.99999% utilization of
every resource. Congratulations, you just created a system that can't handle an iota
of extra load or the failure of a single node without dropping requests on the floor or
delaying responses.

You need to find the middle ground. Understand the typical fluctuations of your
workloads and consider the cost/benefit ratio of having excess capacity versus
having reduced response time or processing ability.

Sometimes, if you have strict availability and reliability requirements, you can build
redundancy into the system and then you over-provision by design. For example,
you want to be able to hot swap a failed component with no downtime and no
noticeable effects. Maybe you can't lose even a single transaction. In this case, you'll
have a live backup for all critical components, and that extra capacity can be used to
mitigate temporary fluctuations without any special actions.

Using multiple node configurations effectively
Effective capacity planning requires you to understand the usage patterns of your
system and the load each component can handle. That may include a lot of data
streams generated inside the system. When you have a solid understanding of the
typical workloads, you can look at workflows and which components handle which
parts of the load. Then you can compute the number of pods and their resource
requirements. In my experience, there are some relatively fixed workloads, some
workloads that vary predictably (such as office hours versus non-office hours), and
then you have your completely crazy workloads that behave erratically. You have
to plan according for each workload, and you can design several families of node
configurations that can be used to schedule pods that match a particular workload.

Benefiting from elastic cloud resources
Most cloud providers let you scale instances automatically, which is a perfect
complement to Kubernetes' horizontal pod autoscaling. If you use cloud storage, it
also grows magically without you having to do anything. However, there are some
gotchas that you need to be aware of.

Autoscaling instances
All the big cloud providers have instance autoscaling in place. There are some
differences, but scaling up and down based on CPU utilization is always available,
and sometimes custom metrics are available too. Sometimes, load balancing is
offered as well. As you can see, there is some overlap with Kubernetes here.

Chapter 8

[271]

If your cloud provider doesn't have adequate autoscaling with proper control, it
is relatively easy to roll your own, where you monitor your cluster resource usage
and invoke cloud APIs to add or remove instances. You can extract the metrics from
Kubernetes.

Here is a diagram that shows how two new instances are added based on a CPU load
monitor:

Figure 8.2: Adding load instances

Mind your cloud quotas
When working with cloud providers, some of the most annoying things are quotas.
I've worked with four different cloud providers (AWS, GCP, Azure, and Alibaba
cloud) and I was always bitten by quotas at some point. The quotas exist to let
the cloud providers do their own capacity planning (and also to protect you from
inadvertently starting 1,000,000 instances that you won't be able to pay for), but from
your point of view it is yet one more thing that can trip you up. Imagine that you set
up a beautiful autoscaling system that works like magic, and suddenly the system
doesn't scale when you hit 100 nodes. You quickly discover that you are limited to
100 nodes and you open a support request to increase the quota. However, a human
must approve quota requests, and that can take a day or two. In the meantime, your
system is unable to handle the load.

Manage regions carefully
Cloud platforms are organized in regions and availability zones. Some services
and machine configurations are available only in some regions. Cloud quotas are
also managed at the regional level. Performance and cost of data transfers within
regions is much lower (often free) than across regions. When planning your cluster,
you should consider carefully your geo-distribution strategy. If you need to run
your cluster across multiple regions, you may have some tough decisions to make
regarding redundancy, availability, performance, and cost.

Deploying and Updating Applications

[272]

Considering container-native solutions
A container-native solution is when your cloud provider offers a way to deploy
containers directly into their infrastructure. You don't need to provision instances
and then install a container runtime (like the Docker daemon) and only then deploy
your containers. Instead, you just provide your containers and the platform is
responsible for finding a machine to run your container. You are totally separated
from the actual machines your containers are running on.

All the major cloud providers now provide solutions that abstract instances
completely:

•	 AWS Fargate
•	 Azure Container Instances (ACI)
•	 Google Cloud Run

These solutions are not Kubernetes-specific, but they can work great with
Kubernetes. The cloud providers already provide managed Kubernetes control plane
with Google's Google Kubernetes Engine (GKE), Microsoft's Azure Kubernetes
Service (AKS), and Amazon Web Services' Elastic Kubernetes Service (EKS). But
managing the data plane (the nodes) was left to the cluster administrator.

The container-native solution allows the cloud provider to do that on your behalf.
Google Run for GKE and AKS with ACI already provide it. AWS EKS will support
Fargate in the near future.

For example, in AKS you can provision virtual nodes. A virtual node is not backed
up by an actual VM. Instead it utilizes ACI to deploy containers when necessary. You
pay for it only when it the cluster needs to scale beyond the capacity of the regular
nodes. It is faster to scale then using the cluster autoscaler that needs to provision an
actual VM-backed node.

Chapter 8

[273]

The following diagram illustrates this burst to the ACI approach:

Figure 8.3: Virtual node scaling

Pushing the envelope with Kubernetes
In this section, we will see how the Kubernetes team pushes Kubernetes to its
limit. The numbers are quite telling, but some of the tools and techniques, such as
Kubemark, are ingenious, and you may even use them to test your clusters. In the
wild, there are some Kubernetes clusters with 3,000 - 5,000 nodes. At CERN, the
OpenStack team achieved 2 million requests per second:

http://superuser.openstack.org/articles/scaling-magnum-and-kubernetes-2-
million-requests-per-second/

Mirantis conducted a performance and scaling test in their scaling lab where they
deployed 5,000 Kubernetes nodes (in VMs) on 500 physical servers.

http://superuser.openstack.org/articles/scaling-magnum-and-kubernetes-2-million-requests-per-second/
http://superuser.openstack.org/articles/scaling-magnum-and-kubernetes-2-million-requests-per-second/

Deploying and Updating Applications

[274]

OpenAI scaled their machine learning Kubernetes cluster to 2,500 nodes an learned
some valuable lessons such as minding the query load of logging agents and storing
events in a separate etcd cluster:

https://blog.openai.com/scaling-kubernetes-to-2500-nodes/

There are many more interesting use cases here:

https://www.cncf.io/projects/case-studies/

By the end of this section you'll appreciate the effort and creativeness that goes into
improving Kubernetes on a large scale, you will know how far you can push a single
Kubernetes cluster and what performance to expect, and you'll get an inside look at
some tools and techniques that can help you evaluate the performance of your own
Kubernetes clusters.

Improving the performance and scalability
of Kubernetes
The Kubernetes team focused heavily on performance and scalability in Kubernetes
1.6. When Kubernetes 1.2 was released, it supported clusters of up to 1,000 nodes
within the Kubernetes service-level objectives. Kubernetes 1.3 doubled the number
to 2,000 nodes, and Kubernetes 1.6 brought it to a staggering 5,000 nodes per cluster.
We will get into the numbers later, but first let's look under the hood and see how
Kubernetes achieved these impressive improvements.

Caching reads in the API server
Kubernetes keeps the state of the system in etcd, which is very reliable, though
not superfast (although etcd 3 delivered massive improvement specifically to
enable larger Kubernetes clusters). The various Kubernetes components operate
on snapshots of that state and don't rely on real-time updates. That fact allows the
trading of some latency for throughput. All the snapshots used to be updated by etcd
watches. Now, the API server has an in-memory read cache that is used for updating
state snapshots. The in-memory read cache is updated by etcd watches. These
schemes significantly reduces the load on etcd and increase the overall throughput
of the API server.

The pod lifecycle event generator
Increasing the number of nodes in a cluster is key for horizontal scalability, but pod
density is crucial too. Pod density is the number of pods that the Kubelet can manage
efficiently on one node.

https://blog.openai.com/scaling-kubernetes-to-2500-nodes/
https://www.cncf.io/projects/case-studies/

Chapter 8

[275]

If pod density is low, then you can't run too many pods on one node. That means
that you might not benefit from more powerful nodes (more CPU and memory
per node) because the Kubelet will not be able to manage more pods. The other
alternative is to force the developers to compromise their design and create coarse-
grained pods that do more work per pod. Ideally, Kubernetes should not force your
hand when it comes to pod granularity. The Kubernetes team understands this very
well and invested a lot of work in improving pod density.

In Kubernetes 1.1, the official (tested and advertised) number was 30 pods per node.
I actually ran 40 pods per node on Kubernetes 1.1, but I paid for it in excessive
Kubelet overhead that stole CPU from the worker pods. In Kubernetes 1.2, the
number jumped to 100 pods per node.

The Kubelet used to poll the container runtime constantly for each pod in its own
goroutine. That put a lot of pressure on the container runtime that during peaks to
performance has reliability issues, in particular CPU utilization. The solution was
the Pod Lifecycle Event Generator (PLEG). The way the PLEG works is that it lists
the state of all the pods and containers and compares it to the previous state. This
is done once for all the pods and containers. Then, by comparing the state to the
previous state, the PLEG knows which pods need to sync again and invokes only
those pods. That change resulted in a significant four-times-lower CPU usage by
the Kubelet and the container runtime. It also reduced the polling period, which
improves responsiveness.

The following diagram shows the CPU utilization for 120 pods on Kubernetes 1.1
versus Kubernetes 1.2. You can see the 4X factor very clearly:

Figure 8.4: CPU utilization for 120 pods with Kube 1.1 and Kube 1.2

Deploying and Updating Applications

[276]

Serializing API objects with protocol buffers
The API server has a REST API. REST APIs typically use JSON as their serialization
format, and the Kubernetes API server was no different. However, JSON
serialization implies marshaling and unmarshaling JSON to native data structures.
This is an expensive operation. In a large-scale Kubernetes cluster, a lot of
components need to query or update the API server frequently. The cost of all that
JSON parsing and composition adds up quickly. In Kubernetes 1.3, the Kubernetes
team added an efficient protocol buffers serialization format. The JSON format is
still there, but all internal communication between Kubernetes components uses the
protocol buffers serialization format.

etcd3
Kubernetes switched from etcd2 to etcd3 in Kubernetes 1.6. This was a big deal.
Scaling Kubernetes to 5,000 nodes wasn't possible due to limitations of etcd2,
especially related to the watch implementation. The scalability needs of Kubernetes
drove many of the improvements of etcd3, as CoreOS used Kubernetes as a
measuring stick. Some of the big ticket items are talked about here.

GRPC instead of REST
etcd2 has a REST API, etcd3 has a gRPC API (and a REST API via gRPC gateway).
The http/2 protocol at the base of gRPC can use a single TCP connections for
multiple streams of requests and responses.

Leases instead of TTLs
etcd2 uses Time to Live (TTL) per key as the mechanism to expire keys, while etcd3
uses leases with TTLs where multiple keys can share the same key. This significantly
reduces keep-alive traffic.

Watch implementation
The watch implementation of etcd3 takes advantage of gRPC bi-directional streams
and maintain a single TCP connection to send multiple events, which reduced the
memory footprint by at least an order of magnitude.

State storage
With etcd3 Kubernetes started storing all the state as protocol buffers, which
eliminated a lot of wasteful JSON serialization overhead.

Chapter 8

[277]

Other optimizations
The Kubernetes team made many other optimizations such as:

•	 Optimizing the scheduler (which resulted in 5-10x higher scheduling
throughput)

•	 Switching all controllers to a new recommended design using shared
informers, which reduced resource consumption of controller-manager

•	 Optimizing individual operations in the API server (conversions, deep
copies, patch)

•	 Reducing memory allocation in the API server (which significantly impacts
the latency of API calls)

Measuring the performance and scalability
of Kubernetes
In order to improve performance and scalability, you need a sound idea of what
you want to improve and how you're going to measure the improvements. You
must also make sure that you don't violate basic properties and guarantees in the
quest for improved performance and scalability. What I love about performance
improvements is that they often buy you scalability improvements for free. For
example, if a pod needs 50% of the CPU of a node to do its job and you improve
performance so that the pod can do the same work using 33% CPU, then you can
suddenly run three pods instead of two on that node, and you've improved the
scalability of your cluster by 50% overall (or reduced your cost by 33%).

The Kubernetes SLOs
Kubernetes has Service Level Objectives (SLOs). Those guarantees must be
respected when trying to improve performance and scalability. Kubernetes has a
one-second response time for API calls. That's 1,000 milliseconds. It actually achieves
an order of magnitude faster response times most of the time.

Measuring API responsiveness
The API has many different endpoints. There is no simple API responsiveness
number. Each call has to be measured separately. In addition, due to the complexity
and the distributed nature of the system, not to mention networking issues, there
can be a lot of volatility to the results. A solid methodology is to break the API
measurements into separate endpoints and then run a lot of tests over time and look
at percentiles (which is standard practice).

Deploying and Updating Applications

[278]

It's also important to use enough hardware to manage a large number of objects.
The Kubernetes team used a 32-core VM with 120 GB for the master in this test.

The following diagram describes the 50th, 90th, and 99th percentile of various
important API call latencies for Kubernetes 1.3. You can see that the 90th percentile
is very low, below 20 milliseconds. Even the 99th percentile is less than 125
milliseconds for the DELETE pods operation, and less than 100 milliseconds
for all other operations:

Figure 8.5: API call latencies

Another category of API calls is LIST operations. Those calls are more expansive
because they need to collect a lot of information in a large cluster, compose
the response, and send a potential large response. This is where performance
improvements such as the in-memory read cache and the protocol buffers
serialization really shine. The response time is understandably greater than the
single API calls, but it is still way below the SLO of one second (1,000 milliseconds):

Chapter 8

[279]

Figure 8.6: API LIST call latencies

Measuring end-to-end pod startup time
One of the most important performance characteristics of a large dynamic cluster
is end-to-end pod startup time. Kubernetes creates, destroys, and shuffles pods
around all the time. You could say that the primary function of Kubernetes is to
schedule pods.

In the following diagram, you can see that pod startup time is less volatile than
API calls. This makes sense since there is a lot of work that needs to be done, such
as launching a new instance of a runtime, that doesn't depend on cluster size. With
Kubernetes 1.2 on a 1,000-node cluster, the 99th percentile end-to-end time to launch
a pod was less than 3 seconds. With Kubernetes 1.3, the 99th percentile end-to-end
time to launch a pod was a little over 2.5 seconds.

Deploying and Updating Applications

[280]

It's remarkable that the time is very close, but a little better with Kubernetes 1.3 on a
2,000-node cluster versus a 1,000-node cluster:

Figures 8.7 and 8.8: Pod startup latencies

Testing Kubernetes at scale
Clusters with thousands of nodes are expensive. Even a project such as Kubernetes
that enjoys the support of Google and other industry giants still needs to come up
with reasonable ways to test without breaking the bank.

The Kubernetes team runs a full-fledged test on a real cluster at least once per release
to collect real-world performance and scalability data. However, there is also a need
for a lightweight and cheaper way to experiment with potential improvements and
to detect regressions. Enter the Kubemark.

Chapter 8

[281]

Introducing the Kubemark tool
The Kubemark is a Kubernetes cluster that runs mock nodes called hollow nodes used
for running lightweight benchmarks against large-scale (hollow) clusters. Some of
the Kubernetes components that are available on a real node such as the Kubelet are
replaced with a hollow Kubelet. The hollow Kubelet fakes a lot of the functionality of
a real Kubelet. A hollow Kubelet doesn't actually start any containers, and it doesn't
mount any volumes. But from the Kubernetes cluster point of view – the state stored in
etcd – all those objects exist and you can query the API server. The hollow Kubelet is
actually the real Kubelet with an injected mock Docker client that doesn't do anything.

Another important hollow component is the hollow proxy, which mocks the
Kubeproxy component. It again uses the real Kubeproxy code with a mock proxier
interface that does nothing and avoids touching iptables.

Setting up a Kubemark cluster
A Kubemark cluster uses the power of Kubernetes. To set up a Kubemark cluster,
perform the following steps:

1.	 Create a regular Kubernetes cluster where we can run N hollow nodes.
2.	 Create a dedicated VM to start all master components for the Kubemark

cluster.
3.	 Schedule N hollow node pods on the base Kubernetes cluster. Those hollow

nodes are configured to talk to the Kubemark API server running on the
dedicated VM.

4.	 Create add-on pods by scheduling them on the base cluster and configuring
them to talk to the Kubemark API server.

A full-fledged guide is available here:

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-
scalability/kubemark-guide.md

Comparing a Kubemark cluster to a real-world
cluster
The performance of Kubemark clusters is mostly similar to the performance of real
clusters. For the pod startup end-to-end latency, the difference is negligible. For the
API-responsiveness, the differences are greater, though generally less than a factor
of two. However, trends are exactly the same: an improvement/regression on a real
cluster is visible as a similar percentage drop/increase in metrics on Kubemark.

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-scalability/kubemark-guide.md
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-scalability/kubemark-guide.md

Deploying and Updating Applications

[282]

Summary
In this chapter, we've covered many topics relating to scaling Kubernetes clusters.
We discussed how the HPA can automatically manage the number of running pods
based on CPU utilization or other metrics, how to perform rolling updates correctly
and safely in the context of autoscaling, and how to handle scarce resources via
resource quotas. Then we moved on to overall capacity planning and management
of the cluster's physical or virtual resources. Finally, we delved into the ins and outs
of performance benchmarking on Kubernetes.

At this point, you have a good understanding of all the factors that come into play
when a Kubernetes cluster is facing dynamic and growing workloads. You have
multiple tools to choose from for planning and designing your own scaling strategy.

In the next chapter, we will learn how to package applications for deployment
on Kubernetes. We will discuss Helm as well as Kustomize and other solutions.

[283]

9
Packaging Applications

In this chapter, we are going to look at Helm, the Kubernetes package manager.
Every successful and non-trivial platform must have a good packaging system. Helm
was developed by Deis (acquired by Microsoft in April 2017) and later contributed
to the Kubernetes project directly. It became a CNCF project in 2018. We will start
by understanding the motivation for Helm, its architecture, and its components.
Then, we'll get hands-on and demonstrate how to use Helm and its charts within
Kubernetes. That includes finding, installing, customizing, deleting, and managing
charts. Last but not least, we'll cover how to create your own charts and handle
versioning, dependencies, and templating.

The topics we will cover are as follows:

•	 Understanding Helm
•	 Using Helm
•	 Creating your own charts

Understanding Helm
Kubernetes provides many ways to organize and orchestrate your containers at
runtime, but it lacks a higher-level organization for grouping sets of images together.
This is where Helm comes in. In this section, we'll go over the motivation for Helm,
its architecture and components, and discuss what has changed in the transition
from Helm 2 to Helm 3.

Packaging Applications

[284]

The motivation for Helm
Helm provides support for several important use cases:

•	 Managing complexity
•	 Easy upgrades
•	 Simple sharing
•	 Safe rollbacks

Charts can describe even the most complex apps, provide repeatable application
installation, and serve as a single point of authority. In-place upgrades and custom
hooks allow easy updates. It's simple to share charts that can be versioned and
hosted on public or private servers. When you need to roll back recent upgrades,
Helm provides a single command that allows you to roll back a cohesive set of
changes to your infrastructure.

The Helm 2 architecture
Helm is designed to perform the following:

•	 Create new charts from scratch
•	 Package charts into chart archive (TGZ) files
•	 Interact with chart repositories where charts are stored
•	 Install and uninstall charts into an existing Kubernetes cluster
•	 Manage the release cycle of charts that have been installed with Helm

Helm uses a client-server architecture to achieve these goals.

Helm 2 components
Helm has a server component that runs on your Kubernetes cluster and a client
component that you can run on a local machine.

The Tiller server
This server is responsible for managing releases. It interacts with the Helm clients as
well as the Kubernetes API server. Its main functions are as follows:

•	 Listening for incoming requests from the Helm client
•	 Combining a chart and configuration to build a release

Chapter 9

[285]

•	 Installing charts into Kubernetes
•	 Tracking the subsequent release
•	 Upgrading and uninstalling charts by interacting with Kubernetes

The Helm client
You install the Helm client on your machine. It is responsible for the following:

•	 Local chart development
•	 Managing repositories
•	 Interacting with the Tiller server
•	 Sending charts to be installed
•	 Asking for information about releases
•	 Requesting upgrades or the uninstallation of existing releases

Helm 3
Helm 2 is great and plays a very important role in the Kubernetes ecosystem.
However, there was a lot of criticism about Tiller – its server-side component. Helm
2 was designed and implemented before RBAC became the official access control
method. In the interest of usability, Tiller is installed by default with a very open set
of permissions. It wasn't easy to lock it down for production usage. This is especially
challenging in multi-tenant clusters.

The Helm team listened to the criticisms and came up with the Helm 3 design.
Instead of the Tiller in-cluster component, Helm 3 utilizes the Kubernetes API server
itself via CRDs to manage the state of releases. The bottom line is that Helm 3 is a
client-only program. It can still manage releases and perform the same tasks as Helm
2, but without needing to install a server-side component.

This approach is more Kubernetes-native, is less complicated, and the security
concerns are gone. Helm users can perform via Helm only as much as their Kube
config allows.

Using Helm
Helm is a rich package management system that lets you perform all the necessary
steps to manage the applications installed on your cluster. Let's roll up our sleeves
and get going. We'll look at installing both Helm 2 and Helm 3, but we will use Helm
3 for all of our hands-on experiments and demonstrations.

Packaging Applications

[286]

Installing Helm
Installing Helm involves installing the client and the server. Helm is implemented
in Go. The Helm 2 executable can serve as either the client or the server. Helm 3,
as mentioned before, is a client-only program.

Installing the Helm client
You must have Kubectl configured properly to talk to your Kubernetes cluster
because the Helm client uses the Kubectl configuration to talk to the Helm server
(Tiller).

Helm provides binary releases for all platforms here:

https://github.com/helm/helm/releases

For Windows, the chocolatey package manager is the best option (and is usually up
to date):

choco install kubernetes-helm

For macOS and Linux, you can install the client from a script:

$ curl https://raw.githubusercontent.com/helm/helm/master/scripts/get >
get_helm.sh
$ chmod 700 get_helm.sh
$./get_helm.sh

On macOS, you can also use Homebrew:

$ brew install kubernetes-helm

$ helm version
version.BuildInfo{Version:"v3.0.0", GitCommit:"e29ce2a54e96cd02ccfce88bee4f
58bb6e2a28b6", GitTreeState:"clean", GoVersion:"go1.13.4"}

Installing the Tiller server for Helm 2
If you run Helm 2 for some reason, then you need to install Tiller – the server-side
component – which is not necessary for Helm 3. Tiller typically runs inside your
cluster. For development, it is sometimes easier to run Tiller locally.

https://github.com/helm/helm/releases

Chapter 9

[287]

Installing Tiller in-cluster
The easiest way to install Tiller is from a machine where the Helm 2 client is
installed. Run the following command: helm init.

This will initialize both the client as well as the Tiller server on the remote
Kubernetes cluster. When the installation is complete, you will have a running Tiller
pod in the kube-system namespace of your cluster:

$ kubectl get po --namespace=kube-system -l name=tiller
NAME READY STATUS RESTARTS AGE

tiller-deploy-3210613906-2j5sh 1/1 Running 0 1m

You can also run helm version to check both the client's version and the server's
version:

$ helm version

Client: &version.Version{SemVer:"2.16.8", GitCommit:"1402a4d6ec9fb349e17b91
2e32fe259ca21181e3", GitTreeState:"clean"}

Server: &version.Version{SemVer:"2.16.8", GitCommit:"1402a4d6ec9fb349e17b91
2e32fe259ca21181e3", GitTreeState:"clean"}

Finding charts
In order to install useful applications and software with Helm, you need to find
their charts first. Helm was designed to work with multiple repositories of charts.
Helm 2 was configured to search the stable repository by default, but you could
add additional repositories. Helm 3 comes with no default, but you can search Helm
Hub (https://hub.helm.sh/) or specific repositories. Helm Hub was launched in
December 2018, and it was designed to make it easier for you to discover charts and
repositories hosted outside the stable or incubator repositories.

This is where the helm search command comes in. Helm can search the Helm Hub
or a specific repository.

The hub contains 1,300 charts at the moment:

$ helm search hub | wc -l
 1300

Packaging Applications

[288]

We can search the hub for a specific keyword like mariadb:

$ helm search hub mariadb
URL CHART VERSION APP
VERSION DESCRIPTION
https://hub.helm.sh/charts/ibm-charts/ibm-galer... 1.1.0
Galera Cluster is a multi-master solution for M...

https://hub.helm.sh/charts/ibm-charts/ibm-maria... 1.1.2
MariaDB is developed as open source software an...

https://hub.helm.sh/charts/bitnami/mariadb 7.5.1 10.3.23
Fast, reliable, scalable, and easy to use open-...

https://hub.helm.sh/charts/bitnami/phpmyadmin 6.2.0 5.0.2
phpMyAdmin is an mysql administration frontend

https://hub.helm.sh/charts/bitnami/mariadb-cluster 1.0.1 10.2.14
Chart to create a Highly available MariaDB cluster

https://hub.helm.sh/charts/bitnami/mariadb-galera 3.1.3 10.4.13
MariaDB Galera is a multi-master database clust...

As you can see, there are several charts that match the keyword MariaDB. You can
investigate them further and find the best one for your use case.

Adding repositories
By default, Helm 3 comes with no repositories set up, so you can only search the hub.
Let's add the bitnami repository, so we can limit our search to that repository only:

$ helm repo add bitnami https://charts.bitnami.com/bitnami
"bitnami" has been added to your repositories

Now, we can search the bitnami repo:

$ helm search repo mariadb
NAME CHART VERSION APP VERSION DESCRIPTION
bitnami/mariadb 7.5.1 10.3.23 Fast, reliable, scalable,
and easy to use open-...

bitnami/mariadb-cluster 1.0.1 10.2.14 Chart to create a Highly
available MariaDB cluster

bitnami/mariadb-galera 3.1.3 10.4.13 MariaDB Galera is a multi-
master database clust...

stable/mariadb 7.3.14 10.3.22 DEPRECATED Fast, reliable,
scalable, and easy t...

bitnami/phpmyadmin 6.2.0 5.0.2 phpMyAdmin is an mysql
administration frontend

Chapter 9

[289]

stable/phpmyadmin 4.3.5 5.0.1 DEPRECATED phpMyAdmin
is an mysql administratio...

The results are a subset of the results returned from the hub.

The official repository has a rich library of charts that represent all of the modern
open source databases, monitoring systems, Kubernetes-specific helpers, and a slew
of other offerings, such as a Minecraft server. Searching for Helm charts is a good
way to find interesting projects and tools. I often search for the kube keyword:

$ helm search repo kube
NAME CHART VERSION APP VERSION DESCRIPTION
bitnami/kube-state-metrics 0.3.2 1.9.7 kube-
state-metrics is a simple service that lis...

bitnami/kubeapps 3.7.1 v1.10.1 Kubeapps is a
dashboard for your Kubernetes clu...

bitnami/kubewatch 1.0.14 0.0.4 Kubewatch
notifies your slack rooms when change...

kubefed-charts/kubefed 0.3.0 KubeFed helm cha
rt

kubefed-charts/federation-v2 0.0.10 Kubernetes
Federation V2 helm chart

bitnami/external-dns 3.2.0 0.7.2 ExternalDNS is a
Kubernetes addon that configur...

bitnami/metallb 0.1.14 0.9.3 The
Metal LB for Kubernetes

bitnami/metrics-server 4.2.0 0.3.7 Metrics
Server is a cluster-wide aggregator of ...

bitnami/prometheus-operator 0.20.0 0.39.0 The
Prometheus Operator for Kubernetes provides...

To get more information about a specific chart, we can use the show command (you
can use the inspectalias command too). Let's look at bitnami/mariadb:

$ helm show chart bitnami/mariadb
Error: failed to download "bitnami/mariadb" (hint: running 'helm repo
update' may help)

Ha-ha. Helm requires that the repositories are up to date. Let's update our
repositories:

$ helm repo update
Hang tight while we grab the latest from your chart repositories...

Packaging Applications

[290]

...Successfully got an update from the "bitnami" chart repository
Update Complete. Happy Helming!

Now, it works:

$ helm show chart bitnami/mariadb
apiVersion: v1
appVersion: 10.3.22
description: Fast, reliable, scalable, and easy to use open-source
relational database
 system. MariaDB Server is intended for mission-critical, heavy-load
production systems
 as well as for embedding into mass-deployed software. Highly available
MariaDB cluster.
home: https://mariadb.org
icon: https://bitnami.com/assets/stacks/mariadb/img/mariadb-stack-220x234.
png
keywords:
- mariadb
- mysql
- database
- sql
- prometheus
maintainers:
- email: containers@bitnami.com
 name: Bitnami
name: mariadb
sources:
- https://github.com/bitnami/bitnami-docker-mariadb
- https://github.com/prometheus/mysqld_exporter
version: 7.5.1

You can also ask Helm to show you the README file, the values, or all of the
information associated with a chart. This can be overwhelming at times.

Installing packages
OK. You've found the package of your dreams. Now, you probably want to install it
on your Kubernetes cluster. When you install a package, Helm creates a release that
you can use to keep track of the installation progress. Let's install MariaDB using the
helm install command. Let's go over the output in detail.

Chapter 9

[291]

The first part of the output lists the name of the release that we provided mariadb,
when it was deployed, the namespace, and the revision:

$ helm install mariadb bitnami/mariadb

NAME: mariadb
LAST DEPLOYED: Mon Jun 8 12:26:34 2020
NAMESPACE: ns
STATUS: deployed
REVISION: 1

The next part includes custom notes, which can be pretty wordy. There is a lot
of useful information here about verifying, getting credentials, connecting to the
database, and upgrading the chart if necessary:

NOTES:
Please be patient while the chart is being deployed

Tip:
 Watch the deployment status using the command: kubectl get pods -w
--namespace default -l release=mariadb

Services:
 echo Master: mariadb.ns.svc.cluster.local:3306
 echo Slave: mariadb-slave.ns.svc.cluster.local:3306

Administrator credentials:
 Username: root
 Password : $(kubectl get secret --namespace default mariadb -o
jsonpath="{.data.mariadb-root-password}" | base64 --decode)
To connect to your database:
 1. Run a pod that you can use as a client:
 kubectl run mariadb-client --rm --tty -i --restart='Never' --image
docker.io/bitnami/mariadb:10.3.18-debian-9-r36 --namespace default
--command – bash
 2. To connect to master service (read/write):
 mysql -h mariadb.ns.svc.cluster.local -uroot -p my_database
 3. To connect to slave service (read-only):

 mysql -h mariadb-slave.ns.svc.cluster.local -uroot -p my_database

To upgrade this helm chart:
 1. Obtain the password as described on the 'Administrator credentials'

Packaging Applications

[292]

section and set the 'rootUser.password' parameter as shown below:
 ROOT_PASSWORD=$(kubectl get secret --namespace default mariadb -o
jsonpath="{.data.mariadb-root-password}" | base64 --decode)
 helm upgrade mariadb bitnami/mariadb --set rootUser.password=$ROOT_
PASSWORD

Checking the installation status
Helm doesn't wait for the installation to complete because it may take a while.
The helm status command displays the latest information on a release in the same
format as the output of the initial helm install command. In the output of the
install command, you can see that the persistent volume claim had a pending
status. Let's check it out now:

$ kubectl get pods -w -l release=mariadb
NAME READY STATUS RESTARTS AGE
mariadb-master-0 0/1 Pending 0 4m21s
mariadb-slave-0 0/1 Pending 0 4m21s

Oh, no. The pods are pending. A quick investigation shows that MariaDB declares
a persistent volume claim; however, since there is no default storage class in the
cluster, there is no way to provide the storage needed:

$ kubectl describe pvc data-mariadb-master-0
Name: data-mariadb-master-0
Namespace: default
StorageClass:
Status: Pending
Volume:
Labels: app=mariadb
 component=master
 heritage=Helm
 release=mariadb
Annotations: <none>
Finalizers: [kubernetes.io/pvc-protection]
Capacity:
Access Modes:
VolumeMode: Filesystem
Events:
 Type Reason Age From
Message
 ---- ------ ---- ----

Chapter 9

[293]

 Normal FailedBinding 3m3s (x42 over 13m) persistentvolume-
controller no persistent volumes available for this claim and no storage
class is set
Mounted By: mariadb-master-0

That's OK. We can create a default storage class with a dynamic provisioner. First,
let's use Helm to install a dynamic host path provisioner. Refer to https://github.
com/rimusz/hostpath-provisioner for details. We add a new Helm repo, update our
repo list, and then install the proper chart:

$ helm repo add rimusz https://charts.rimusz.net
"rimusz" has been added to your repositories

$ helm repo update
Hang tight while we grab the latest from your chart repositories...
...Successfully got an update from the "rimusz" chart repository
...Successfully got an update from the "bitnami" chart repository
Update Complete. Happy Helming!

$ helm upgrade --install hostpath-provisioner --namespace kube-system
rimusz/hostpath-provisioner
Release "hostpath-provisioner" does not exist. Installing it now.
NAME: hostpath-provisioner
LAST DEPLOYED: Mon Jun 8 17:52:56 2020
NAMESPACE: kube-system
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
The Hostpath Provisioner service has now been installed.

A storage class named 'hostpath' has now been created
and is available to provision dynamic volumes.

You can use this storageclass by creating a 'PersistentVolumeClaim' with
the
correct storageClassName attribute. For example:

 kind: PersistentVolumeClaim
 apiVersion: v1
 metadata:
 name: test-dynamic-volume-claim
 spec:

https://github.com/rimusz/hostpath-provisioner
https://github.com/rimusz/hostpath-provisioner

Packaging Applications

[294]

 storageClassName: "hostpath"
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 100Mi

Since we don't control the persistent volume claim that the MariaDB chart is creating,
we can't specify the new "hostpath" storage class. However, we can make sure it is
the default storage class!

$ kubectl get sc
NAME PROVISIONER AGE
hostpath (default) hostpath 6m26s

If you have another storage class set as the default, you can make it non-default like
so:

kubectl patch storageclass <your-class-name> -p '{"metadata":
{"annotations":{"storageclass.kubernetes.io/is-default-class":"false"}}}'

We have to perform one more non-conventional step. Because we run our tests on
k3d + k3s where the nodes are virtual, the host directory of the host path provisioner
is actually allocated inside the Docker container that corresponds to the node. For
some reason, the permissions for those directories allow only the root to create
directories. This can be fixed by running the following command on each of the
Docker containers that correspond to the k3s nodes:

$ docker exec -it <container name> chmod -R 0777 /mnt/hostpath

Now, we can try again. This time everything works. Yay!

Here are the pods, the volumes, the persistent volume claims, and the StatefulSets
created by the MariaDB release:

$ kubectl get po
NAME READY STATUS RESTARTS AGE
mariadb-master-0 1/1 Running 0 24m
mariadb-slave-0 1/1 Running 9 24m

$ kubectl get pv
NAME CAPACITY ACCESS MODES
RECLAIM POLICY STATUS CLAIM STORAGECLASS
REASON AGE
pvc-b51aeb37-4a43-4f97-ad52-40e6b6eda4f4 8Gi RWO Delete

Chapter 9

[295]

Bound default/data-mariadb-master-0 hostpath 30m
pvc-58c7e42e-a01b-4544-8691-3e56de4676eb 8Gi RWO Delete
Bound default/data-mariadb-slave-0 hostpath 30m

$ kubectl get pvc
NAME STATUS VOLUME
CAPACITY ACCESS MODES STORAGECLASS AGE
data-mariadb-master-0 Bound pvc-b51aeb37-4a43-4f97-ad52-40e6b6eda4f4
8Gi RWO hostpath 30m
data-mariadb-slave-0 Bound pvc-58c7e42e-a01b-4544-8691-3e56de4676eb
8Gi RWO hostpath 30m

$ kubectl get sts
NAME READY AGE
mariadb-master 1/1 30m
mariadb-slave 1/1 30m

Let's try to connect and verify that MariaDB is indeed accessible. Let's modify
the suggested commands from the notes a little bit in order to connect. Instead of
running bash and then running mysql, we can directly run the mysql command on the
container. First, let's get the root password and copy it to the clipboard (on macOS):

$ kubectl get secret -o yaml mariadb -o jsonpath="{.data.mariadb-root-
password}" | base64 --decode | pbcopy

Then we can connect using mariadb-client and paste the password when you see If
you don't see a command prompt, try pressing enter.:

$ kubectl run --generator=run-pod/v1 mariadb-client --rm -it --image
bitnami/mariadb --command -- mysql -h mariadb.default.svc.cluster.local
-uroot -p
If you don't see a command prompt, try pressing enter.

Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MariaDB connection id is 1364
Server version: 10.3.18-MariaDB-log Source distribution
Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input
statement.
MariaDB [(none)]>

Packaging Applications

[296]

Then, we can start playing with our MariaDB database:

MariaDB [(none)]> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| my_database |
| mysql |
| performance_schema |
| test |
+--------------------+
5 rows in set (0.001 sec)

Customizing a chart
Very often, as a user, you will want to customize or configure the charts that you
install. Helm fully supports customization via config files. To learn about possible
customizations, you can use the helm show command again; however, this time,
focus on the values. Here is a partial output:

$ helm show values bitnami/mariadb
db:
 forcePassword: false
 name: my_database
 password: null
 user: null
image:
 debug: false
 pullPolicy: IfNotPresent
 registry: docker.io
 repository: bitnami/mariadb
 tag: 10.3.18-debian-9-r36
master:
 affinity: {}
 antiAffinity: soft
 config: |-
 [mysqld]
 skip-name-resolve
 explicit_defaults_for_timestamp
 basedir=/opt/bitnami/mariadb
 port=3306

Chapter 9

[297]

 socket=/opt/bitnami/mariadb/tmp/mysql.sock
 tmpdir=/opt/bitnami/mariadb/tmp
 max_allowed_packet=16M
 bind-address=0.0.0.0
 pid-file=/opt/bitnami/mariadb/tmp/mysqld.pid
 log-error=/opt/bitnami/mariadb/logs/mysqld.log
 character-set-server=UTF8
 collation-server=utf8_general_ci

 [client]
 port=3306
 socket=/opt/bitnami/mariadb/tmp/mysql.sock
 default-character-set=UTF8
...
rbac:
 create: false
replication:
 enabled: true
 forcePassword: false
 password: null
 user: replicator
rootUser:
 forcePassword: false
 password: null

For example, if you want to set a root password and create a database when
installing MariaDB, you can create the following YAML file and save it as mariadb-
config.yaml:

mariadbRootPassword: supersecret
mariadbDatabase: awesome_stuff

First uninstall the existing mariadb release:

$ helm uninstall mariadb

Then, run Helm and pass it the YAML file:

$ helm install -f mariadb-config.yaml mariadb bitnami/mariadb

You can also set individual values on the command line with --set. If both --f and
--set try to set the same values, then --set takes precedence.

Packaging Applications

[298]

For example, in this case, the root password will be evenbettersecret:

$ helm install -f mariadb-config.yaml --set mariadbRootPassword=evenbetterse
cret bitnami/mariadb

You can specify multiple values using comma-separated lists: --set a=1, b=2.

Additional installation options
The helm install command can install from several sources:

•	 A chart repository (as we've seen)
•	 A local chart archive (helm install foo-0.1.1.tgz)
•	 An unpacked chart folder (helm install path/to/foo)
•	 A full URL (helm install https://example.com/charts/foo-1.2.3.tgz)

Upgrading and rolling back a release
You may want to upgrade a package that you have installed to the latest and greatest
version. Helm provides the upgrade command, which operates intelligently and only
updates things that have changed. For example, let's check the current values of our
mariadb installation:

$ helm get values mariadb
USER-SUPPLIED VALUES:
mariadbDatabase: awesome_stuff
mariadbRootPassword: evenbettersecret

Now, let's run, upgrade, and change the name of the database:

$ helm upgrade mariadb --set mariadbDatabase=awesome_sauce bitnami/mariadb
$ helm get values mariadb
USER-SUPPLIED VALUES:
mariadbDatabase: awesome_sauce

Note that we've lost our root password. All of the existing values are replaced when
you upgrade. OK, let's roll back. The helm history command shows us all of the
available revisions we can roll back to:

$ helm history mariadb
REVISION UPDATED STATUS CHART APP
VERSION DESCRIPTION
1 Mon Jun 8 09:14:10 2020 superseded mariadb-7.3.14 10.3.22
Install complete

https://example.com/charts/foo-1.2.3.tgz

Chapter 9

[299]

2 Mon Jun 8 09:22:22 2020 superseded mariadb-7.3.14 10.3.22
Upgrade complete
3 Mon Jun 8 09:23:47 2020 superseded mariadb-7.3.14 10.3.22
Upgrade complete
4 Mon Jun 8 09:24:17 2020 deployed mariadb-7.3.14 10.3.22
Upgrade complete

Let's roll back to revision 3:

$ helm rollback mariadb 3
Rollback was a success! Happy Helming!

$ helm history mariadb
REVISION UPDATED STATUS CHART APP
VERSION DESCRIPTION
1 Mon Jun 8 09:14:10 2020 superseded mariadb-7.3.14 10.3.22
Install complete
2 Mon Jun 8 09:22:22 2020 superseded mariadb-7.3.14 10.3.22
Upgrade complete
3 Mon Jun 8 09:23:47 2020 superseded mariadb-7.3.14 10.3.22
Upgrade complete
4 Mon Jun 8 09:24:17 2019 superseded mariadb-7.3.14 10.3.22
Upgrade complete
5 Mon Jun 8 09:26:04 2019 deployed mariadb-7.3.14 10.3.22
Rollback to 3

As you can see, the rollback created a new revision number 5. Revision 4 is still there
in case we want to go back to it.

Let's verify that our changes were rolled back:

$ helm get values mariadb
USER-SUPPLIED VALUES:
mariadbDatabase: awesome_stuff
mariadbRootPassword: evenbettersecret

Yep. The database name was rolled back to awesome_stuff and we got the root
password back.

Deleting a release
You can, of course, uninstall a release too using the helm uninstall command.

First, let's examine the list of releases. We have only the mariadb release:

$ helm list

Packaging Applications

[300]

NAME NAMESPACE REVISION UPDATED
STATUS CHART APP VERSION
mariadb default 5 2020-06-08 09:26:04.766743 -0700 PDT
deployed mariadb-7.3.14 10.3.22

Now, let's uninstall it:

$ helm uninstall mariadb
release "mariadb" uninstalled

So, no more releases:

$ helm list
NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION

Helm can keep track of uninstalled releases too. If you provide --keep-history when
you uninstall, then you'll be able to see any uninstalled releases using the --all or
--uninstalled flags with helm list:

$ helm list --all
NAME NAMESPACE REVISION UPDATED
STATUS CHART APP VERSION
mariadb default 1 2020-06-08 09:35:47.641033 -0700 PDT
uninstalled mariadb-7.3.14 10.3.22

Working with repositories
Helm stores charts in repositories that are simple HTTP servers. Any standard HTTP
server can host a Helm repository. In the cloud, the Helm team verifies that both
AWS S3 and Google Cloud storage can serve as Helm repositories in web-enabled
mode.

Note that Helm doesn't provide tools to upload charts to remote repositories because
that would require the remote server to understand Helm, to know where to put the
chart, and to know how to update the index.yaml file.

On the client side, the helm repo command lets you list, add, remove, index, and
update:

$ helm repo

This command consists of multiple subcommands to interact with chart repositories.

It can be used to add, remove, list, and index chart repositories. Example usage:

$ helm repo add [NAME] [REPO_URL]

Chapter 9

[301]

Usage:
 helm repo [command]
Available Commands:
 add add a chart repository
 index generate an index file given a directory containing packaged
charts
 list list chart repositories
 remove remove a chart repository
 update update information of available charts locally from chart
repositories

We've already used the helm repo add command earlier. Let's see how to create our
own charts and manage them.

Managing charts with Helm
Helm provides several commands to manage charts.

It can create a new chart for you:

$ helm create cool-chart
Creating cool-chart

Helm will create the following files and directories under cool-chart:

$ tree cool-chart
cool-chart
├── Chart.yaml
├── charts
├── templates
│ ├── NOTES.txt
│ ├── _helpers.tpl
│ ├── deployment.yaml
│ ├── ingress.yaml
│ ├── service.yaml
│ ├── serviceaccount.yaml
│ └── tests
│ └── test-connection.yaml
└── values.yaml

Once you have edited your chart, you can package it into a tar gzipped archive:

$ helm package cool-chart
Successfully packaged chart and saved it to: cool-chart-0.1.0.tgz

Packaging Applications

[302]

Helm will create an archive called cool-chart-0.1.0.tgz and store it in the local
directory.

You can also use helm lint to help you to find issues with your chart's formatting or
information:

$ helm lint cool-chart
==> Linting cool-chart
[INFO] Chart.yaml: icon is recommended
1 chart(s) linted, 0 chart(s) failed

Taking advantage of starter packs
The helm create command takes an optional --starter flag that lets you specify a
starter chart.

Starters are just regular charts located in $HELM_HOME/starters. As a chart developer,
you may author charts that are specifically designed to be used as starters. Such
charts should be designed with the following considerations in mind:

•	 The YAML will be overwritten by the generator
•	 Users will expect to be able to modify such a chart's contents, so the

documentation should indicate how users can do this

At the moment, there is no way to install charts; the only way to add a chart to
$HELM_HOME/starters is to manually copy it there. Make sure to mention that in your
chart's documentation if you develop starter pack charts.

Creating your own charts
A chart is a collection of files that describe a related set of Kubernetes resources. A
single chart might be used to deploy something simple, such as a Memcached pod,
or something complex, such as a full web app stack with HTTP servers, databases,
caches, queues, and so on.

Charts are created as files laid out in a particular directory tree. Then, they can be
packaged into versioned archives to be deployed. The key file is Chart.yaml.

Chapter 9

[303]

The Chart.yaml file
The Chart.yaml file is the main file of a Helm chart. It requires name and version
fields:

•	 name: The name of the chart (same as the directory name)
•	 version: A SemVer 2 version

It may also contain various optional fields:

•	 kubeVersion: A SemVer range of compatible Kubernetes versions
•	 description: A single sentence describing this project
•	 keywords: A list of keywords about this project
•	 home: The URL of this project's home page
•	 sources: A list of URLs to source code for this project
•	 dependencies: A list of (name, version, repository) for each dependency

(repository is the URL)
•	 maintainers: A list of (name, email, URL) for each maintainer (name is

required)
•	 icon: The URL to an SVG or PNG image to be used as an icon
•	 appVersion: The version of the app that this contains
•	 deprecated: Whether this chart is deprecated (Boolean)

Versioning charts
The version field inside of the Chart.yaml is used by many Helm tools. When
generating a package, the helm package command will use the version that it finds
in Chart.yaml when constructing the package name. The system assumes that the
version number in the chart package name matches the version number in Chart.
yaml. Violating this assumption will cause an error.

The appVersion field
The appVersion field is not related to the version field. It is not used by Helm and
serves as metadata or a piece of documentation for users who want to understand
what they are deploying. Helm ignores it.

Packaging Applications

[304]

Deprecating charts
From time to time, you may want to deprecate a chart. You can mark a chart as
deprecated by setting the optional deprecated field in Chart.yaml to true. This is
enough to deprecate the latest version of a chart. You can later reuse the chart name
and publish a newer version that is not deprecated. The workflow for deprecating
charts is:

•	 Update the chart's Chart.yaml file to mark the chart as deprecated and bump
the version

•	 Release the new version to the chart repository
•	 Remove the chart from the source repository (for example, Git)

Chart metadata files
Charts may contain various metadata files like README.md, LICENSE, and NOTES.
txt that describe the installation, configuration, usage, and license of a chart. The
README.md file should be formatted as Markdown. It should provide the following
information:

1.	 A description of the application or service the chart provides
2.	 Any prerequisites or requirements to run the chart
3.	 Description of options in the YAML and default values
4.	 Any other information that may be relevant to the installation or

configuration of the chart
If the chart contains a templates/NOTES.txt file, it will be displayed after the
installation or when viewing the release status. The notes should be concise to
avoid clutter and point to the README.md file for detailed explanations. It's common
to put usage notes and any next steps in this NOTES.txt file. Remember that the file
is evaluated as a template. The notes are printed to the screen when you run helm
install as well as helm status.

Managing chart dependencies
In Helm, a chart may depend on other charts. These dependencies are expressed
explicitly by listing them in a requirements.yaml file or by copying the dependency
charts into the charts sub-folder during installation. This provides a great way to
benefit from and reuse the knowledge and work of others. A dependency can be
either a chart archive (foo-1.2.3.tgz) or an unpacked chart folder. But its name
cannot start with _ or .. Such files are ignored by the chart loader.

Chapter 9

[305]

Managing dependencies with requirements.yaml
Instead of manually placing charts in the charts sub-folder, it is better to declare
dependencies using a requirements.yaml file inside of your chart. The following is
just an illustration. The charts are fictional.

A requirements.yaml file is a simple file used for listing the chart dependencies:

dependencies:
 - name: foo
 version: 1.2.3
 repository: http://example.com/charts
 - name: bar
 version: 43.52.6
 repository: http://another.example.com/charts

The name field is the name of the chart you want.

The version field is the version of the chart you want.

The repository field is the full URL to the chart repository.

Note that you must also use helm repo add to add the repository locally if it isn't
added already.

Once you have a dependencies file, you can run the Helm dependency update, and it
will use your dependency file to download all of the specified charts into the charts
sub-folder for you:

$ helm dep up cool-chart
Hang tight while we grab the latest from your chart repositories...
...Successfully got an update from the "local" chart repository
...Successfully got an update from the "bitnami" chart repository
...Successfully got an update from the "example" chart repository
...Successfully got an update from the "another" chart repository
Update Complete. Happy Helming!

Saving 2 charts
Downloading Foo from repo http://example.com/charts
Downloading Bar from repo http://another.example.com/charts

Helm stores the dependency charts as archives in the charts folder. In our example,
the charts sub-folder will contain the following files:

charts/
 foo-1.2.3.tgz
 bar-43.52.61.tgz

Packaging Applications

[306]

Managing charts and their dependencies with requirements.yaml is best practice
for explicitly documenting dependencies, sharing across the team, and supporting
automated pipelines.

Utilizing special fields in requirements.yaml
Each entry in the requirements.yaml file may also contain the optional fields tags
and condition.

These fields can be used to dynamically control the loading of charts (by default, all
charts are loaded). If the tags or condition fields are present, Helm will evaluate
them and determine if the target chart should be loaded or not:

•	 Condition: The condition field holds one or more comma-delimited YAML
paths. If a path exists in the top parent's values and resolves to a Boolean
value, the chart will be enabled or disabled based on that Boolean value.
Only the first valid path found in the list is evaluated, and if no paths exist,
then the condition has no effect and the chart will be loaded.

•	 Tags: The tags field is a YAML list of labels to associate with this chart. In
the top parent's values, all charts with tags can be enabled or disabled by
specifying the tag and a Boolean value.

Here are example requirements.yaml and values.yaml files that make good use
of conditions and tags to enable and disable the installation of dependencies. The
requirements.yaml file defines two conditions for installing its dependencies based
on the value of the global enabled field and the specific subchart's enabled field:

parent/requirements.yaml
dependencies:
 - name: subchart1
 repository: http://localhost:10191
 version: 0.1.0
 condition: subchart1.enabled, global.subchart1.enabled
 tags:
 - front-end
 - subchart1
 - name: subchart2
 repository: http://localhost:10191
 version: 0.1.0
 condition: subchart2.enabled,global.subchart2.enabled
 tags:
 - back-end
 - subchart2

Chapter 9

[307]

The values.yaml file assigns values to some of the condition variables. The subchart2
tag doesn't get a value, so it is considered to be enabled automatically:

parent/values.yaml
subchart1:
 enabled: true
tags:
 front-end: false
 back-end: true

You can set tags and condition values from the command line too when installing a
chart, and they'll take precedence over the values.yaml file:

$ helm install --set subchart2.enabled=false

The resolution of tags and conditions is as follows:

•	 Conditions that are set in values override tags. The first condition path that
exists per chart takes effect, while other conditions are ignored.

•	 If any of a chart's tags are true, the chart is enabled.
•	 Tags and condition values must be set in the top parent's values.
•	 The tags' key-in values must be a top-level key. Globals and nested tags

tables are not currently supported.

Using templates and values
Any non-trivial application will require you to configure and adapt to the specific
use case. Helm charts are templates that use the Go template language to populate
placeholders. Helm supports additional functions from the Sprig library and a few
other specialized functions. The template files are stored in the templates/ sub-folder
of the chart. Helm will use the template engine to render all of the files in this folder
and apply the provided value files.

Writing template files
Template files are just text files that follow the Go template language rules. They can
generate Kubernetes configuration files along with any other file. Here is the service
template file of the GitLab CE chart:

apiVersion: v1
kind: Service
metadata:
 name: {{ template "gitlab-ce.fullname" . }}

Packaging Applications

[308]

 labels:
 app: {{ template "gitlab-ce.fullname" . }}
 chart: "{{ .Chart.Name }}-{{ .Chart.Version }}"
 release: "{{ .Release.Name }}"
 heritage: "{{ .Release.Service }}"
spec:
 type: {{ .Values.serviceType }}
 ports:
 - name: ssh
 port: {{ .Values.sshPort | int }}
 targetPort: ssh
 - name: http
 port: {{ .Values.httpPort | int }}
 targetPort: http
 - name: https
 port: {{ .Values.httpsPort | int }}
 targetPort: https
 selector:
 app: {{ template "gitlab-ce.fullname" . }}

It is available here: https://github.com/helm/charts/tree/master/stable/gitlab-
ce/templates/svc.yaml.

Don't worry if it looks confusing. The basic idea is that you have a simple text file
with a placeholder for values that can be populated later in various ways, as well
as some functions and pipelines that can be applied to those values.

Using pipelines and functions
Helm allows rich and sophisticated syntax in the template files via the built-in Go
template functions, sprig functions, and pipelines. Here is an example template that
takes advantage of these capabilities. It uses the repeat, quote, and upper functions
for the food and drink keys, and it uses pipelines to chain multiple functions
together:

apiVersion: v1
kind: ConfigMap
metadata:
 name: {{ .Release.Name }}-configmap
data:
 greeting: "Hello World"
 drink: {{ .Values.favorite.drink | repeat 3 | quote }}
 food: {{ .Values.favorite.food | upper }}

https://github.com/helm/charts/tree/master/stable/gitlab-ce/templates/svc.yaml
https://github.com/helm/charts/tree/master/stable/gitlab-ce/templates/svc.yaml

Chapter 9

[309]

Let's add a values.yaml file:

favorite:
 drink: coffee
 food: pizza

Testing and troubleshooting your charts
Now, we can use helm template to see the result:

$ helm template food food-chart

Source: food-chart/templates/config-map.yaml
apiVersion: v1
kind: ConfigMap
metadata:
 name: food-configmap
data:
 greeting: "Hello World"
 drink: "coffeecoffeecoffee"
 food: PIZZA

As you can see, our templating worked. The drink coffee was repeated 3 times and
quoted. The food pizza became uppercase PIZZA (unquoted).

Another good way of debugging is to run install with the --dry-run flag. It provides
additional information:

$ helm install food food-chart --dry-run
NAME: food
LAST DEPLOYED: Mon Jun 8 09:46:19 2020
NAMESPACE: default
STATUS: pending-install
REVISION: 1
TEST SUITE: None
USER-SUPPLIED VALUES:
{}

COMPUTED VALUES:
favorite:
 drink: coffee
 food: pizza

Packaging Applications

[310]

HOOKS:
MANIFEST:

Source: food-chart/templates/config-map.yaml
apiVersion: v1
kind: ConfigMap
metadata:
 name: food-configmap
data:
 greeting: "Hello World"
 drink: "coffeecoffeecoffee"
 food: PIZZA

You can also override values on the command line:

$ helm template food food-chart --set favorite.drink=water

Source: food-chart/templates/config-map.yaml
apiVersion: v1
kind: ConfigMap
metadata:
 name: food-configmap
data:
 greeting: "Hello World"
 drink: "waterwaterwater"
 food: PIZZA

The ultimate test is, of course, to install your chart in your cluster. You don't need to
upload your chart to a chart repository for testing; just run helm install locally:

$ helm install food food-chart
NAME: food
LAST DEPLOYED: Mon Jun 8 08:22:36 2020
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None

There is now a Helm release called food:

$ helm list
NAME NAMESPACE REVISION UPDATED
STATUS CHART APP VERSION
food default 1 2020-06-08 08:22:36.217166 -0700 PDT
deployed food-chart-0.1.0 1.16.0

Chapter 9

[311]

More importantly, the food ConfigMap was created with the correct data:

$ kubectl get cm -o yaml
apiVersion: v1
items:
- apiVersion: v1
 data:
 drink: coffeecoffeecoffee
 food: PIZZA
 greeting: Hello World
 kind: ConfigMap
 metadata:
 creationTimestamp: "2020-06-08T15:22:36Z"
 name: food-configmap
 namespace: default
 resourceVersion: "313012"
 selfLink: /api/v1/namespaces/default/configmaps/food-configmap
 uid: a3c02518-4fe2-4a72-bdd0-99a268c7033f
kind: List
metadata:
 resourceVersion: ""
 selfLink: ""

Embedding built-in objects
Helm provides some built-in objects that you can use in your templates. In the
GitLab chart template, Release.Name, Release.Service, Chart.Name, and Chart.
Version are examples of Helm's predefined values. Other objects are:

•	 Values

•	 Chart

•	 Template

•	 Files

•	 Capabilities

The Values object contains all the values defined in the values file or on the
command line. The Chart object is the content of Chart.yaml. The Template object
contains information about the current template. The Files and Capabilities objects
are map-like objects that allow access via various functions to non-specialized files
and any general information about the Kubernetes cluster.

Packaging Applications

[312]

Note that unknown fields in Chart.yaml are ignored by the template engine and
cannot be used to pass arbitrarily structured data to templates.

Feeding values from a file
Here is part of the GitLab CE default values file. The values from this file are used
to populate multiple templates. The values represent defaults that you can override
by copying the file and modifying it to fit your needs. Note the useful comments that
explain the purpose and various options for each value:

GitLab CE image
ref: https://hub.docker.com/r/gitlab/gitlab-ce/tags/
##
image: gitlab/gitlab-ce:9.4.1-ce.0

For minikube, set this to NodePort, elsewhere use LoadBalancer
ref: http://kubernetes.io/docs/user-guide/services/#publishing-services-
--service-types
##
serviceType: LoadBalancer

Ingress configuration options
##
ingress:
 annotations:
 # kubernetes.io/ingress.class: nginx
 # kubernetes.io/tls-acme: "true"
 enabled: false
 tls:
 # - secretName: gitlab.cluster.local
 # hosts:
 # - gitlab.cluster.local
 url: gitlab.cluster.local

Configure external service ports
ref: http://kubernetes.io/docs/user-guide/services/
sshPort: 22
httpPort: 80
httpsPort: 443

Chapter 9

[313]

Here is how to provide your own YAML values file to override the defaults during
the install command:

$ helm install --values=custom-values.yaml gitlab-ce

Scope, dependencies, and values
value files can declare values for the top-level chart, as well as for any of the charts
that are included in that chart's charts folder. For example, let's look at the sentry
chart from https://github.com/sapcc/helm-charts/blob/master/system/sentry.

This chart has two chart dependencies: postgresql and redis:

Figure 9.1: sentry chart

Both the postgressql and redis charts have their own values.yaml file with their
defaults. However, the top-level values.yaml file contains some default values for its
dependency charts, postgresql and redis:

postgresql:
 postgresDatabase: sentry
 persistence:
 enabled: true
 accessMode: ReadWriteMany
 size: 50Gi

https://github.com/sapcc/helm-charts/blob/master/system/sentry

Packaging Applications

[314]

 resources:
 requests:
 memory: 10Gi
 cpu: 4

redis:
 # redisPassword:
 persistence:
 enabled: true
 accessMode: ReadWriteMany
 size: 10Gi
 resources:
 requests:
 memory: 10Gi
 cpu: 2

The top-level chart has access to the values of its dependent charts, but not vice
versa. There is also a global value that is accessible to all charts. For example, you
could add something like this:

global:
 app: cool-app

When a global value is present, it will be replicated to each dependent chart's values,
as follows:

global:
 app: cool-app
postgresql:
 global:
 app: cool-app
 ...
 redis:
 global:
 app: cool-app
 ...

Chapter 9

[315]

Summary
In this chapter, we took a look at Helm, the Kubernetes package manager. Helm
gives Kubernetes the ability to manage complicated software composed of many
Kubernetes resources with inter-dependencies. It serves the same purpose as an
OS package manager. It organizes packages and lets you search charts, install and
upgrade charts, and share charts with collaborators. You can develop your own
charts and store them in repositories. Helm 3 is a client-side-only solution that uses
CRDs to manage the status of releases, instead of the Tiller server-side component of
Helm 2, which poses a lot of security issues with its default configuration.

At this point, you should be able to understand the important role that Helm
serves in the Kubernetes ecosystem and community. You should be able to use it
productively and even develop and share your own charts.

In the next chapter, we will look at how Kubernetes does networking at a pretty low
level.

[317]

10
Exploring Advanced

Networking
In this chapter, we will examine the important topic of networking. Kubernetes as
an orchestration platform manages containers/pods running on different machines
(physical or virtual) and requires an explicit networking model. We will look at the
following topics:

•	 The Kubernetes networking model
•	 Standard interfaces that Kubernetes supports, such as EXEC, Kubenet, and,

in particular, CNI
•	 Various networking solutions that satisfy the requirements of Kubernetes

networking
•	 Network policies and load balancing options
•	 Writing a custom CNI plugin

By the end of this chapter, you will understand the Kubernetes approach to
networking and be familiar with the solution space for aspects such as standard
interfaces, networking implementations, and load balancing. You will even be able
to write your very own CNI plugin if you wish.

Exploring Advanced Networking

[318]

Understanding the Kubernetes
networking model
The Kubernetes networking model is based on a flat address space. All pods in a
cluster can directly see one another. Each pod has its own IP address. There is no
need to configure any Network Address Translation (NAT). In addition, containers
in the same pod share their pod's IP address and can communicate with one another
through localhost. This model is pretty opinionated, but once set up, it makes life
considerably easier for both developers and administrators. It makes it particularly
easy to migrate traditional network applications to Kubernetes. A pod represents
a traditional node and each container represents a traditional process.

Intra-pod communication (container
to container)
A running pod is always scheduled on one (physical or virtual) node. This means
that all the containers run on the same node and can talk to each other in various
ways, such as using the local filesystem, any IPC mechanism, or using localhost
and well-known ports. There is no danger of port collision between different pods
because each pod has its own IP address and, when a container in the pod uses
localhost, it applies to the pod's IP address only. So, if container 1 in pod 1 connects
to port 1234 that container 2 listens to on pod 1, it will not conflict with another
container in pod 2 running on the same node that also listens on port 1234. The only
caveat is that if you're exposing ports to the host, then you should be careful about
pod-to-node affinity. This can be handled using several mechanisms, including
DaemonSet and pod anti-affinity.

Inter-pod communication (pod to pod)
Pods in Kubernetes are allocated a network-visible IP address (not private to
the node). Pods can communicate directly without the help of network address
translation, tunnels, proxies, or any other obfuscating layer. Well-known port
numbers can be used for a configuration-free communication scheme. The pod's
internal IP address is the same as its external IP address that other pods see (within
the cluster network; not exposed to the outside world). This means that standard
naming and discovery mechanisms such as DNS work out of the box.

Chapter 10

[319]

Pod-to-service communication
Pods can talk to one another directly using their IP addresses and well-known ports,
but that requires the pods to know each other's IP addresses. In a Kubernetes cluster,
pods can be destroyed and created constantly. There may also be multiple replicas
of the same pod spec, each with its own IP address. The service provides a layer of
indirection that is very useful because the service is stable even if the set of actual
pods that respond to requests is ever-changing. In addition, you get automatic,
highly available load balancing because the kube-proxy on each node takes care
of redirecting traffic to the correct pod:

Figure 10.1: kube-proxy redirecting traffic to pods

External access
Eventually, some containers need be accessible from the outside world. The pod
IP addresses are not visible externally. The service is the right vehicle, but external
access typically requires two redirects. For example, cloud provider load balancers
are not Kubernetes aware, so they can't direct traffic to a particular service directly
to a node that runs a pod that can process the request. Instead, the public load
balancer just directs traffic to any node in the cluster and the kube-proxy on that
node will redirect again to an appropriate pod if the current node doesn't run the
necessary pod.

Exploring Advanced Networking

[320]

The following diagram shows how the external load balancer on the right side just
sends traffic to an arbitrary node, where the kube-proxy takes care of further routing
if needed:

Figure 10.2: External versus internal load balancers

Kubernetes networking versus Docker
networking
Docker is the incumbent container runtime. It also has its own separate networking
model that is not used by Kubernetes, but it is useful to understand. Docker
networking follows a different model by default, although over time, it starts to
gravitate toward the Kubernetes model. In Docker networking, each container has
its own private IP address from the 172.xxx.xxx.xxx address space confined to its
own node. It can talk to other containers on the same node via their own 172.xxx.xxx.
xxx different IP addresses. This makes sense for Docker because it doesn't have the
notion of a pod with multiple interacting containers, so it models every container as
lightweight VMs that have their own network identity. Note that with Kubernetes,
containers from different pods that run on the same node can't connect over localhost
(unless exposing host ports, which is discouraged). The whole idea is that, in general,
Kubernetes can kill and create pods anywhere, so different pods shouldn't rely, in
general, on other pods available on the node. DaemonSets are a notable exception,
but the Kubernetes networking model is designed to work for all use cases and
doesn't add special cases for direct communication between different pods on the
same node.

Chapter 10

[321]

How do Docker containers communicate across nodes? The container must
publish ports to the host. This obviously requires port coordination, because if two
containers try to publish the same host port, they'll conflict with one another. Then,
containers (or other processes) connect to the host's port that gets channeled into the
container. A big downside is that containers can't self-register with external services
because they don't know what their host's IP address is. You could work around
this by passing the host's IP address as an environment variable when you run the
container, but that requires external coordination and complicates the process.

The following diagram shows the networking setup with Docker using the bridge
network driver. Each container has its own IP address; Docker creates the docker0
bridge on every node:

Figure 10.3: Networking setup with Docker using the bridge network driver

Docker now supports other network drivers with their own models:

•	 host: Use host networking directly
•	 overlay: Use an overlay network instead of OS routing to connect across

Docker daemons
•	 macvlan: Assign a MAC address to a container and make it look like a

physical device
•	 none: Disable networking when using a custom network driver

There are also third-party network plugins.

Exploring Advanced Networking

[322]

Now that we understand the differences between Kubernetes and Docker
networking models, it's time to talk about how pods and containers find one another.

Lookup and discovery
In order for pods and containers to communicate with each other, they need to
find one another. There are several ways for containers to locate other containers
or announce themselves. There are also some architectural patterns that allow
containers to interact indirectly. Each approach has its own pros and cons.

Self-registration
We've mentioned self-registration several times. Let's understand what it means
exactly. When a container runs, it knows its pod's IP address. Each container
that wants to be accessible to other containers in the cluster can connect to a
registration service and register its IP address and port. Other containers can query
the registration service for the IP addresses and ports of all registered containers
and connect to them. When a container is destroyed (gracefully), it will unregister
itself. If a container dies ungracefully, then a mechanism needs to be established to
detect that. For example, the registration service can periodically ping all registered
containers, or the containers are required periodically to send a keepalive message to
the registration service.

The benefit of self-registration is that once the generic registration service is in place
(no need to customize it for different purposes), there is no need to worry about
keeping track of containers. Another huge benefit is that containers can employ
sophisticated policies and decide to unregister temporarily if they are unavailable
based on local conditions; for example, if a container is busy and doesn't want to
receive any more requests at the moment. This sort of smart and decentralized
dynamic load balancing can be very difficult to achieve globally. The downside is
that the registration service is yet another non-standard component that containers
need to know about in order to locate other containers.

Services and endpoints
Kubernetes services can be regarded as a registration service. Pods that belong to a
service are registered automatically based on their labels. Other pods can look up
the endpoints to find all the service pods or take advantage of the service itself and
directly send a message to the service that will get routed to one of the backend pods,
although, most of the time, pods will just send their message to the service itself that
will forward it to one of the backing pods. Dynamic membership can be achieved
using a combination of the replica count of deployments, health checks, readiness
checks, and horizontal pod autoscaling.

Chapter 10

[323]

Loosely coupled connectivity with queues
What if containers can talk to one another without knowing their IP addresses
and ports or even service IP addresses or network names? What if most of the
communication can be asynchronous and decoupled? In many cases, systems
can be composed of loosely coupled components that are not only unaware of the
identities of other components, but they are unaware that other components even
exist. Queues facilitate such loosely coupled systems. Components (containers)
listen to messages from the queue, respond to messages, perform their jobs, and post
messages to the queue regarding progress, completion status, and errors. Queues
have many benefits:

•	 It is easy to add processing capacity without coordination; just add more
containers that listen to the queue

•	 It is easy to keep track of overall load by means of queue depth
•	 It is easy to have multiple versions of components running side by side by

versioning messages and/or topics
•	 It is easy to implement load balancing as well as redundancy by having

multiple consumers process requests in different modes
•	 It is easy to add or remove other types of listeners dynamically

The downsides of queues are the following:

•	 There is a need to ensure that the queue provides appropriate durability
and high availability so that it doesn't become a critical single point of
failure (SPOF)

•	 Containers need to work with the async queue API (could be abstracted
away)

•	 Implementing request-response requires somewhat cumbersome listening
on response queues

Overall, queues are an excellent mechanism for large-scale systems and they can
be utilized in large Kubernetes clusters to ease coordination.

Loosely coupled connectivity with data stores
Another loosely coupled method is to use a data store (for example, Redis) to store
messages and then other containers can read them. While possible, this is not the
design objective of data stores and the result is often cumbersome, fragile, and
doesn't have the best performance. Data stores are optimized for data storage and
not for communication.

Exploring Advanced Networking

[324]

That said, data stores can be used in conjunction with queues, where a component
stores some data in a data store and then sends a message to the queue that data
is ready for processing. Multiple components listen to the message and all start
processing the data in parallel.

Kubernetes ingress
Kubernetes offers an ingress resource and controller that is designed to expose
Kubernetes services to the outside world. You can do it yourself, of course, but
many tasks involved in defining ingress are common across most applications for
a particular type of ingress such as a web application, CDN, or DDoS protector.
You can also write your own ingress objects.

The ingress object is often used for smart load balancing and TLS termination.
Instead of configuring and deploying your own Nginx server, you can benefit
from the built-in ingress controller. If you need a refresher, hop over to Chapter 5,
Using Kubernetes Resources in Practice, where we discussed the ingress resource with
examples.

Kubernetes network plugins
Kubernetes has a network plugin system since networking is so diverse and different
and people would like to implement it in different ways. Kubernetes is flexible
enough to support any scenario. The primary network plugin is CNI, which we will
discuss in depth. But Kubernetes also comes with a simpler network plugin, called
Kubenet. Before we go over the details, let's get on the same page with the basics of
Linux networking (just the tip of the iceberg).

Basic Linux networking
Linux, by default, has a single shared network space. The physical network
interfaces are all accessible in this namespace. However, the physical namespace
can be divided into multiple logical namespaces, which is very relevant to container
networking.

IP addresses and ports
Network entities are identified by their IP address. Servers can listen to incoming
connections on multiple ports. Clients can connect to (TCP)s or send/receive data
from (UDP), servers within their network.

Chapter 10

[325]

Network namespaces
Namespaces group a bunch of network devices such that they can reach other
servers in the same namespace, but not other servers, even if they are physically on
the same network. Linking networks or network segments can be done via bridges,
switches, gateways, and routing.

Subnets, netmasks, and CIDRs
The granular division of network segments is very useful when designing and
maintaining networks. Dividing networks into smaller subnets with a common
prefix is a common practice. These subnets can be defined by bitmasks that represent
the size of the subnet (how many hosts it can contain). For example, a netmask of
255.255.255.0 means that the first 3 octets are used for routing and only 256 (actually
254) individual hosts are available. The Classless Inter-Domain Routing (CIDR)
notation is often used for this purpose because it is more concise, encodes more
information, and also allows hosts from multiple legacy classes (A, B, C, D, E) to be
combined. For example, 172.27.15.0/24 means that the first 24 bits (3 octets) are used
for routing.

Virtual Ethernet devices
Virtual Ethernet (veth) devices represent physical network devices. When you
create a veth device that's linked to a physical device, you can assign that veth device
(and, by extension, the physical device) to a namespace where devices from other
namespaces can't reach it directly, even if, physically, they are on the same local
network.

Bridges
Bridges connect multiple network segments to an aggregate network, so that all the
nodes can communicate with one another. Bridging is done at the L1 (physical) and
L2 (data link) layers of the OSI network model.

Routing
Routing connects separate networks, typically based on routing tables that instruct
network devices how to forward packets to their destination. Routing is done
through various network devices, such as routers, bridges, gateways, switches,
and firewalls, including regular Linux boxes.

Exploring Advanced Networking

[326]

Maximum transmission unit
The maximum transmission unit (MTU) determines how big packets can be. On
Ethernet networks, for example, the MTU is 1,500 bytes. The bigger the MTU, the
better the ratio between payload and headers, which is a good thing. However, the
downside is that minimum latency is reduced because you have to wait for the entire
packet to arrive and, furthermore, in the case of failure, you have to retransmit the
entire big packet.

Pod networking
Here is a diagram that describes the relationship between pod, host, and the global
internet at the networking level via veth0:

Figure 10.4: veth relationships

Kubenet
Back to Kubernetes. Kubenet is a network plugin. It's very rudimentary and just
creates a Linux bridge called cbr0 and a veth device for each pod. Cloud providers
typically use it to set up routing rules for communication between nodes, or in
single-node environments. The veth pair connects each pod to its host node using an
IP address from the host's IP addresses range.

Requirements
The Kubenet plugin has the following requirements:

•	 The node must be assigned a subnet to allocate IP addresses for its pods

Chapter 10

[327]

•	 The standard CNI bridge, lo, and host-local plugins are required at version
0.2.0 or greater

•	 The kubelet must be run with the --network-plugin=kubenet argument
•	 The kubelet must be run with the --non-masquerade-cidr=<clusterCidr>

argument
•	 The kubelet must be run with --pod-cidr, or the kube-controller-manager

must be run with --allocate-node-cidrs=true --cluster-cidr=<cidr>

Setting the MTU
The MTU is critical for network performance. Kubernetes network plugins such as
Kubenet make their best efforts to deduce optimal MTU, but sometimes they need
help. If an existing network interface (for example, the Docker docker0 bridge) sets
a small MTU, then Kubenet will reuse it. Another example is IPSEC, which requires
a lowering of the MTU due to the extra overhead from IPSEC encapsulation, but
the Kubenet network plugin doesn't take it into consideration. The solution is to
avoid relying on the automatic calculation of the MTU and just tell the kubelet what
MTU should be used for network plugins via the --network-plugin-mtu command-
line switch that is provided to all network plugins, although, at the moment, only
the Kubenet network plugin accounts for this command-line switch.

Container networking interface
Container Networking Interface (CNI) is a specification as well as a set of libraries
for writing network plugins to configure network interfaces in Linux containers (not
just Docker). The specification actually evolved from the rkt network proposal. There
is a lot of momentum behind CNI and it is the established industry standard. Some
of the organizations that use CNI are as follows:

•	 Kubernetes
•	 OpenShift
•	 Mesos
•	 Kurma
•	 Cloud Foundry
•	 Nuage
•	 IBM
•	 AWS EKS and ECS
•	 Lyft

Exploring Advanced Networking

[328]

The CNI team maintains some core plugins, but there are a lot of third-party plugins
as well that contribute to the success of CNI. Here is a non-exhaustive list:

•	 Project Calico: A layer 3 virtual network
•	 Weave: A multi-host Docker network
•	 Contiv networking: Policy-based networking
•	 Cilium: BPF and XDP for containers
•	 Multus: A multi plugin
•	 CNI-Genie: A generic CNI network plugin
•	 Flannel: A network fabric for containers, designed for Kubernetes
•	 Infoblox: Enterprise IP address management for containers
•	 Silk: A CNI plugin designed for Cloud Foundry
•	 Linen: A CNI plugin designed for overlay networks with Open vSwitch and

that fits in an SDN/OpenFlow network environment
•	 SR-IOV: A CNI plugin that supports I/O virtualization
•	 ovn-kubernetes: A CNI plugin built on Open vSwitch (OVS) and Open

Virtual Networking (OVN)
•	 DANM: A CNI-compliant networking solution for TelCo workloads running

on Kubernetes

CNI plugins provide a standard networking interface to arbitrary networking
solutions.

Container runtime
CNI defines a plugin spec for networking application containers, but the plugin
must be plugged into a container runtime that provides some services. In the context
of CNI, an application container is a network-addressable entity (has its own IP
address). For Docker, each container has its own IP address. For Kubernetes, each
pod has its own IP address, and the pod is the CNI container and not the containers
within the pod.

Likewise, rkt's app containers are similar to Kubernetes pods in that they may
contain multiple Linux containers. If in doubt, just remember that a CNI container
must have its own IP address. The runtime's job is to configure a network and
then execute one or more CNI plugins, passing them the network configuration
in JSON format.

Chapter 10

[329]

The following diagram shows a container runtime using the CNI plugin interface to
communicate with multiple CNI plugins:

Figure 10.5: The CNI plugin interface in practice

CNI plugin
The CNI plugin's job is to add a network interface to the container network
namespace and bridge the container to the host via a veth pair. It should then assign
an IP address via an IP Address Management (IPAM) plugin and set up routes.

The container runtime (Docker, rkt, or any other CRI-compliant runtime) invokes the
CNI plugin as an executable. The plugin needs to support the following operations:

•	 Add a container to the network
•	 Remove a container from the network
•	 Report the version

The plugin uses a simple command-line interface, standard input/output, and
environment variables. The network configuration in JSON format is passed to the
plugin through standard input. The other arguments are defined as environment
variables:

•	 CNI_COMMAND: Indicates the desired operation: ADD, DEL, or VERSION
•	 CNI_CONTAINERID: Container ID
•	 CNI_NETNS: Path to the network namespace file

Exploring Advanced Networking

[330]

•	 CNI_IFNAME: Interface name to set up; the plugin must honor this interface
name or return an error

•	 CNI_ARGS: Extra arguments passed in by the user at invocation time;
alphanumeric key-value pairs separated by semicolons, for example,
FOO=BAR;ABC=123

•	 CNI_PATH: List of paths to search for CNI plugin executables; paths are
separated by an OS-specific list separator, for example,: on Linux and ;
on Windows

If the command succeeds, the plugin returns a zero-exit code and the generated
interfaces (in the case of the ADD command) are streamed to standard output as
JSON. This low-tech interface is smart in the sense that it doesn't require any specific
programming language or component technology or binary API. CNI plugin writers
can use their favorite programming language, too.

The result of invoking the CNI plugin with the ADD command appears as follows:

{
 "cniVersion": "0.3.0",
 "interfaces": [(this key omitted by IPAM plugins)
 {
 "name": "<name>",
 "mac": "<MAC address>", (required if L2 addresses are
meaningful)
 "sandbox": "<netns path or hypervisor identifier>" (required
for container/hypervisor interfaces, empty/omitted for host interfaces)
 }
],
 "ip": [
 {
 "version": "<4-or-6>",
 "address": "<ip-and-prefix-in-CIDR>",
 "gateway": "<ip-address-of-the-gateway>", (optional)
 "interface": <numeric index into 'interfaces' list>
 },
 ...
],
 "routes": [(optional)
 {
 "dst": "<ip-and-prefix-in-cidr>",

Chapter 10

[331]

 "gw": "<ip-of-next-hop>" (optional)
 },
 ...
]
 "dns": {
 "nameservers": <list-of-nameservers> (optional)
 "domain": <name-of-local-domain> (optional)
 "search": <list-of-additional-search-domains> (optional)
 "options": <list-of-options> (optional)
 }
}

The input network configuration contains a lot of information: cniVersion, name,
type, args (optional), ipMasq (optional), ipam, and dns. The ipam and dns parameters
are dictionaries with their own specific keys. Here is an example of a network
configuration:

{
 "cniVersion": "0.3.0",
 "name": "dbnet",
 "type": "bridge",
 // type (plugin) specific
 "bridge": "cni0",
 "ipam": {
 "type": "host-local",
 // ipam specific
 "subnet": "10.1.0.0/16",
 "gateway": "10.1.0.1"
 },
 "dns": {
 "nameservers": ["10.1.0.1"]
 }
}

Note that additional plugin-specific elements can be added. In this case, the bridge:
cni0 element is a custom one that the specific bridge plugin understands.

The CNI spec also supports network configuration lists where multiple CNI plugins
can be invoked in order.

Later in this chapter, we will dig into a fully fledged implementation of a CNI
plugin.

Exploring Advanced Networking

[332]

Kubernetes networking solutions
Networking is a vast topic. There are many ways to set up networks and connect
devices, pods, and containers. Kubernetes can't be opinionated about it. The high-
level networking model of a flat address space for pods is all that Kubernetes
prescribes. Within that space, many valid solutions are possible, with various
capabilities and policies for different environments. In this section, we'll examine
some of the available solutions and understand how they map to the Kubernetes
networking model.

Bridging on bare metal clusters
The most basic environment is a raw bare metal cluster with just an L2 physical
network. You can connect your containers to the physical network with a Linux
bridge device. The procedure is quite involved and requires familiarity with low-
level Linux network commands such as brctl, ipaddr, iproute, iplink, and nsenter.
If you plan to implement it, this guide can serve as a good start (search for the With
Linux Bridge devices section): http://blog.oddbit.com/2014/08/11/four-ways-to-
connect-a-docker/.

Contiv
Contiv is a general-purpose network plugin for container networking that can be
used with Docker directly, Mesos, Docker Swarm, and, of course, Kubernetes via
a CNI plugin. Contiv is focused on network policies that overlap somewhat with
Kubernetes' own network policy object. Here are some of the capabilities of the
Contiv net plugin:

•	 Supports both Libnetwork's CNM and the CNI specification
•	 A feature-rich policy model for providing secure, predictable application

deployment
•	 Best-in-class throughput for container workloads
•	 Multi-tenancy, isolation, and overlapping subnets

http://blog.oddbit.com/2014/08/11/four-ways-to-connect-a-docker/
http://blog.oddbit.com/2014/08/11/four-ways-to-connect-a-docker/

Chapter 10

[333]

•	 Integrated IPAM and service discovery
•	 A variety of physical topologies:
•	 Layer2 (VLAN)
•	 Layer3 (BGP)
•	 Overlay (VXLAN)
•	 Cisco SDN solution (ACI)
•	 IPv6 support
•	 Scalable policy and route distribution

Integration with application blueprints, including the following:

•	 Docker Compose
•	 Kubernetes deployment manager
•	 Service load balancing is incorporated in east-west microservice load

balancing
•	 Traffic isolation for storage, control (for example, etcd/consul), network,

and management traffic

Contiv has many features and capabilities. However, I'm not sure if it's the best
choice for Kubernetes due to its broad surface area and the fact that it caters to
multiple platforms.

Open vSwitch
Open vSwitch is a mature software-based virtual switch solution endorsed by
many big players. The Open Virtualization Network (OVN) solution lets you build
various virtual networking topologies. It has a dedicated Kubernetes plugin, but it is
not easy to set up, as demonstrated by this guide: https://github.com/openvswitch/
ovn-kubernetes. The Linen CNI plugin may be easier to set up although it doesn't
support all the features of OVN:

https://github.com/John-Lin/linen-cni

https://github.com/openvswitch/ovn-kubernetes
https://github.com/openvswitch/ovn-kubernetes
https://github.com/John-Lin/linen-cni

Exploring Advanced Networking

[334]

Here is a diagram of the Linen CNI plugin:

Figure 10.6: The Linen CNI plugin

Open vSwitch can connect bare metal servers, VMs, and pods/containers using the
same logical network. It actually supports both overlay and underlay modes.

Here are some of its key features:

•	 Standard 802.1Q VLAN model with trunk and access ports
•	 NIC bonding with or without LACP on the upstream switch
•	 NetFlow, sFlow(R), and mirroring for increased visibility
•	 Quality of Service (QoS) configuration, plus policing
•	 Geneve, GRE, VXLAN, STT, and LISP tunneling

Chapter 10

[335]

•	 802.1ag connectivity fault management
•	 OpenFlow 1.0 plus numerous extensions
•	 Transactional configuration database with C and Python bindings
•	 High-performance forwarding using a Linux kernel module

Nuage networks VCS
The Virtualized Cloud Services (VCS) product from Nuage networks provides a
highly scalable, policy-based Software-Defined Networking (SDN) platform. It is an
enterprise-grade offering that builds on top of the open source open vSwitch for the
data plane, along with a feature-rich SDN controller built on open standards.

The Nuage platform uses overlays to provide seamless policy-based networking
between Kubernetes pods and non-Kubernetes environments (VMs and bare metal
servers). Nuage's policy abstraction model is designed with applications in mind
and makes it easy to declare fine-grained policies for applications. The platform's
real-time analytics engine enables visibility and security monitoring for Kubernetes
applications.

In addition, all VCS components can be installed in containers. There are no special
hardware requirements.

Flannel
Flannel is a virtual network that gives a subnet to each host for use with container
runtimes. It runs a flanneld agent on each host that allocates a subnet to the
node from a reserved address space stored in etcd. Forwarding packets between
containers and, ultimately, hosts is done by one of multiple backends. The most
common backend uses UDP over a TUN device that tunnels through port 8285 by
default (make sure it's open in your firewall).

The following diagram describes in detail the various components of Flannel, the
virtual network devices it creates, and how they interact with the host and the pod
via the docker0 bridge.

Exploring Advanced Networking

[336]

It also shows the UDP encapsulation of packets and how they are transmitted
between hosts:

Figure 10.7: Flannel

Other backends include the following:

•	 vxlan: Uses in-kernel VXLAN to encapsulate the packets.
•	 host-gw: Creates IP routes to subnets via remote machine IPs. Note that this

requires direct layer2 connectivity between hosts running Flannel.
•	 aws-vpc: Creates IP routes in an Amazon VPC route table.
•	 gce: Creates IP routes in a Google Compute Engine network.
•	 alloc: Only performs subnet allocation (no forwarding of data packets).
•	 ali-vpc: Creates IP routes in an Alibaba Cloud VPC route table.

Chapter 10

[337]

Calico
Calico is a versatile virtual networking and network security solution for containers.
Calico can integrate with all the primary container orchestration frameworks and
runtimes:

•	 Kubernetes (CNI plugin)
•	 Mesos (CNI plugin)
•	 Docker (Libnetwork plugin)
•	 OpenStack (Neutron plugin)

Calico can also be deployed on-premises or on public clouds with its full feature
set. Calico's network policy enforcement can be specialized for each workload and
ensures that traffic is controlled precisely and packets always go from their source
to vetted destinations. Calico can map automatically network policy concepts from
orchestration platforms to its own network policy. The reference implementation of
Kubernetes' network policy is Calico. Calico can be deployed together with Flannel
utilizing the Flannel networking layer and Calico's network policy facilities.

Romana
Romana is a modern cloud-native container networking solution. It operates at layer
3, taking advantage of standard IP address management techniques. Whole networks
can become the unit of isolation as Romana uses Linux hosts to create gateways and
routes to the networks. Operating at layer 3 means that no encapsulation is needed.
Network policy is enforced as a distributed firewall across all endpoints and services.
Hybrid deployments across cloud platforms and on-premises deployments are easier
as there is no need to configure virtual overlay networks. New Romana virtual IPs
allow on-premises users to expose services on layer 2 LANs via external IPs and
service specs.

Some of the benefits of using real routable IP addresses are as follows:

•	 Performance: Traffic is forwarded and processed by hosts and network
equipment at full speed; no cycles are spent encapsulating packets.

•	 Scalability: Native, routed IP networking offers tremendous scalability, as
demonstrated by the internet itself. Romana's use of routed IP addressing
for endpoints means that no time, CPU, or memory-intensive tunnels or
other encapsulation needs to be managed or maintained and that network
equipment can run at optimal efficiency.

•	 Visibility: Packet traces show the real IP addresses, allowing easier
troubleshooting and traffic management.

Exploring Advanced Networking

[338]

The following diagram shows how Romana eliminates a lot of the overhead by using
direct L2 routing, where ToR stands for the top-of-rack switch:

Figure 10.8: Romana blocks and routes in an L2-to-host data center

Chapter 10

[339]

When networks are configured for L3-to-host routing, where hosts don't necessarily
share an L2 segment, in this case, there is no need to configure routes between hosts
that use the default route to the ToR switch. Here is a diagram to illustrate this:

Figure 10.9: Romana blocks and routes in an L3-to-host data center

Exploring Advanced Networking

[340]

Weave Net
Weave Net is all about ease of use and zero configuration. It uses VXLAN
encapsulation under the hood and micro DNS on each node. As a developer, you
operate at a higher abstraction level. You name your containers and Weave Net
lets you connect to them and use standard ports for services. That helps to migrate
existing applications into containerized applications and microservices. Weave
Net has a CNI plugin for interfacing with Kubernetes (and Mesos). On Kubernetes
1.4 and higher, you can integrate Weave Net with Kubernetes by running a single
command that deploys a DaemonSet:

kubectl apply -f https://git.io/weave-kube

The Weave Net pods on every node will take care of attaching any new pod you
create to the Weave network. Weave Net supports the network policy API, while
also providing a complete, yet easy-to-setup, solution.

Using network policies effectively
The Kubernetes network policy is about managing network traffic to selected
pods and namespaces. In a world of hundreds of microservices deployed and
orchestrated, as is often the case with Kubernetes, managing networking and
connectivity between pods is essential. It's important to understand that it is not
primarily a security mechanism. If an attacker can reach the internal network,
they will probably be able to create their own pods that comply with the network
policy in place and communicate freely with other pods. In the previous section, we
looked at different Kubernetes networking solutions and focused on the container
networking interface. In this section, the focus is on network policy, although there
are strong connections between the networking solution and how network policy is
implemented on top of it.

Understanding the Kubernetes network policy
design
A network policy is a specification of how selections of pods can communicate
with each other and other network endpoints. Network policy resources use labels
to select pods and define whitelist rules that allow traffic to the selected pods in
addition to what is allowed by the isolation policy for a given namespace.

Chapter 10

[341]

Network policies and CNI plugins
There is an intricate relationship between network policies and CNI plugins. Some
CNI plugins implement both network connectivity and network policy, while others
implement just one aspect, but they can collaborate with another CNI plugin that
implements the other aspect (for example, Calico and Flannel).

Configuring network policies
Network policies are configured via the NetworkPolicy resource. Here is a sample
network policy:

apiVersion: extensions/v1beta1networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: test-network-policy
 namespace: default
spec:
 podSelector:
 matchLabels:
 role: db
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 project: awesome-project
 - podSelector:
 matchLabels:
 role: frontend
 ports:
 - protocol: tcp
 port: 6379

Exploring Advanced Networking

[342]

Implementing network policies
While the network policy API itself is generic and is part of the Kubernetes API, the
implementation is tightly coupled to the networking solution. That means that on
each node, there is a special agent or gatekeeper that does the following:

1.	 Intercepts all traffic coming into the node
2.	 Verifies that it adheres to the network policy
3.	 Forwards or rejects each request

Kubernetes provides the facilities to define and store network policies through the
API. Enforcing the network policy is left to the networking solution or a dedicated
network policy solution that is tightly integrated with the specific networking
solution. Calico and Canal are good examples of this approach. Calico has its own
networking solution and a network policy solution that works together. However,
it can also provide network policy enforcement on top of Flannel as part of Canal. In
both cases, there is tight integration between the two pieces. The following diagram
shows how the Kubernetes policy controller manages the network policies and how
agents on the nodes execute it:

Figure 10.10: Kubernetes policy controller

Load balancing options
Load balancing is a critical capability in dynamic systems, such as a Kubernetes
cluster. Nodes, VMs, and pods come and go, but the clients typically can't keep track
of which individual entities can service their requests. Even if they could, it requires
a complicated dance of managing a dynamic map of the cluster, refreshing it
frequently, and handling disconnected, unresponsive, or just slow nodes.

Chapter 10

[343]

This so-called client-side load balancing is appropriate in special cases only. Server-
side load balancing is a battle-tested and well-understood mechanism that adds a
layer of indirection that hides the internal turmoil from the clients or consumers
outside the cluster. There are options for external as well as internal load balancers.
You can also mix and match and use both. The hybrid approach has its own
particular pros and cons, such as performance versus flexibility.

External load balancer
An external load balancer is a load balancer that runs outside the Kubernetes cluster.
There must be an external load balancer provider that Kubernetes can interact with
to configure the external load balancer with health checks, firewall rules, and to get
the external IP address of the load balancer.

The following diagram shows the connection between the load balancer (in the
cloud), the Kubernetes API server, and the cluster nodes. The external load balancer
has an up-to-date picture of which pods run on which nodes and it can direct
external service traffic to the right pods:

Figure 10.11: Cloud-based load balancer

Exploring Advanced Networking

[344]

Configuring an external load balancer
The external load balancer is configured via the service configuration file, or directly
through Kubectl. We use a service type of load balancer instead of using a service
type of ClusterIP, which directly exposes a Kubernetes node as a load balancer.
This depends on an external load balancer provider being properly installed and
configured in the cluster. Google's GKE is the most well-tested provider, but other
cloud platforms provide their integrated solution on top of their cloud load balancer.

Via a configuration file
Here is an example service configuration file that accomplishes this goal:

apiVersion: v1
kind: Service
metadata:
 name: api-gateway
spec:
 type: LoadBalancer
 ports:
 - port: 80
 targetPort: 5000
 selector:
 svc: api-gateway
 app: delinkcious

Via Kubectl
You may also accomplish the same result using a direct kubectl command:

$ kubectl expose deployment api-gateway --port=80 --target-port=5000
--name=api-gateway --type=LoadBalancer

The decision whether to use a service configuration file or kubectl command is
usually determined by the way you set up the rest of your infrastructure and deploy
your system. Configuration files are more declarative and arguably more appropriate
for production usage where you want a versioned, auditable, and repeatable way to
manage your infrastructure.

Finding the load balancer IP addresses
The load balancer will have two IP addresses of interest. The internal IP address can
be used inside the cluster to access the service. Clients outside the cluster will use the
external IP address.

Chapter 10

[345]

It's a good practice to create a DNS entry for the external IP address. It is particularly
important if you want to use TLS/SSL, which require stable hostnames. To get
both addresses, use the kubectl describe service command. The IP field denotes
the internal IP address, and the LoadBalancer Ingress field denotes the external
IP address:

$ kubectl describe services example-service
Name: example-service
Selector: app=example
Type: LoadBalancer
IP: 10.67.252.103
LoadBalancer Ingress: 123.45.678.9
Port: <unnamed> 80/TCP
NodePort: <unnamed> 32445/TCP
Endpoints: 10.64.0.4:80,10.64.1.5:80,10.64.2.4:80
Session Affinity: None
No events.

Preserving client IP addresses
Sometimes, the service may be interested in the source IP address of the clients.
Up until Kubernetes 1.5, this information wasn't available. In Kubernetes 1.5, there
is a beta feature available only on GKE through an annotation to get the source IP
address. In Kubernetes 1.7, the capability to preserve the original client IP was added
to the API.

Specifying original client IP address preservation
You need to configure the following two fields of the service spec:

•	 service.spec.externalTrafficPolicy: This field determines whether the
service should route external traffic to a node-local endpoint or a cluster-
wide endpoint, which is the default. The Cluster option doesn't reveal the
client source IP and might add a hop to a different node, but spreads the load
well. The Local option keeps the client source IP and doesn't add an extra
hop as long as the service type is LoadBalancer or NodePort. Its downside is
that it might not balance the load very well.

•	 service.spec.healthCheckNodePort: This field is optional. If used, then the
service health check will use this port number. The default is the allocated
node port. This has an effect on services of the LoadBalancer type whose
externalTrafficPolicy is set to Local.

Exploring Advanced Networking

[346]

Here is an example:

apiVersion: v1
kind: Service
metadata:
 name: api-gateway
spec:
 type: LoadBalancer
 externalTrafficPolicy: Local
 ports:
 - port: 80
 targetPort: 5000
 selector:
 svc: api-gateway
 app: delinkcious

Understanding even external load balancing
External load balancers operate at the node level; while they direct traffic to a
particular pod, the load distribution is done at the node level. This means that if your
service has four pods, and three of them are on node A and the last one is on node B,
then an external load balancer is likely to divide the load evenly between node A and
node B. This will have the three pods on node A handle half of the load (1/6 each)
and the single pod on node B handle the other half of the load on its own. Weights
may be added in the future to address this issue.

Service load balancing
Service load balancing is designed for funneling internal traffic within the
Kubernetes cluster and not for external load balancing. This is done by using
a service type of ClusterIP. It is possible to expose a service load balancer directly via
a preallocated port by using a service type of NodePort and utilizing it as an external
load balancer, but it wasn't designed for that use case. Desirable features such as SSL
termination and HTTP caching will not be readily available.

The following diagram shows how the service load balancer (the yellow clouds) can
route traffic to one of the backend pods it manages (via labels of course):

Chapter 10

[347]

Figure 10.12: Service load balancer routing traffic

Ingress
Ingress in Kubernetes is, at its core, a set of rules that allow inbound connections to
reach cluster services. In addition, some ingress controllers support the following:

•	 Connection algorithms
•	 Request limits
•	 URL rewrites and redirects
•	 TCP/UDP load balancing
•	 SSL termination
•	 Access control and authorization

Ingress is specified using an Ingress resource and serviced by an ingress controller.
It's important to note that ingress is still in beta (since Kubernetes 1.1) and it doesn't
yet demonstrate all the necessary capabilities. Here is an example of an ingress
resource that manages traffic into two services.

Exploring Advanced Networking

[348]

The rules map the externally visible http://foo.bar.com/foo to the s1 service, and
http://foo.bar.com/bar to the s2 service:

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: test
spec:
 rules:
 - host: foo.bar.com
 http:
 paths:
 - path: /foo
 backend:
 serviceName: s1
 servicePort: 80
 - path: /bar
 backend:
 serviceName: s2
 servicePort: 80

There are two official ingress controllers right now. One of them is an L7 ingress
controller for GCE only, while the other is a more general-purpose Nginx ingress
controller that lets you configure the Nginx web server through a ConfigMap. The
NGNIX ingress controller is very sophisticated and brings to bear a lot of features
that are not available yet through the ingress resource directly. It uses the endpoint's
API to directly forward traffic to pods. It supports Minikube, GCE, AWS, Azure, and
bare metal clusters. For more details, check out the following link:

https://github.com/kubernetes/ingress-nginx

However, there are many more ingress controllers that may be better for your use
case, such as:

•	 Ambassador
•	 Traefik
•	 Contour
•	 Gloo

http://foo.bar.com/foo
http://foo.bar.com/bar
https://github.com/kubernetes/ingress-nginx

Chapter 10

[349]

HAProxy
We discussed using a cloud provider external load balancer using the load balancer
service type and using the internal service load balancer inside the cluster using
ClusterIP. If we want a custom external load balancer, we can create a custom
external load balancer provider and use LoadBalancer or the third service type,
NodePort. High-Availability Proxy (HAProxy) is a mature and battle-tested load-
balancing solution. It is considered one of the best choices for implementing external
load balancing with on-premises clusters. This can be done in several ways:

•	 Utilize NodePort and carefully manage port allocations
•	 Implement the custom load balancer provider interface
•	 Run HAProxy inside your cluster as the only target of your frontend servers

at the edge of the cluster (load balanced or not)

You can use all these approaches with HAProxy. Regardless, it is still recommended
to use ingress objects. The service-loadbalancer project is a community project that
implemented a load-balancing solution on top of HAProxy. You can find it here:
https://github.com/kubernetes/contrib/tree/master/service-loadbalancer.

Utilizing the NodePort
Each service will be allocated a dedicated port from a predefined range. This usually
is a high range, such as 30,000 and upward, so as to avoid clashing with other
applications using low known ports. HAProxy will run outside the cluster in this
case and it will be configured with the correct port for each service. Then it can just
forward any traffic to any nodes and Kubernetes via the internal service, and the
load balancer will route it to a proper pod (double load balancing). This is, of course,
sub-optimal because it introduces another hop. The way to circumvent it is to query
the endpoint's API and dynamically manage for each service the list of its backend
pods and directly forward traffic to the pods.

Custom load balancer provider using HAProxy
This approach is a little more complicated, but the benefit is that it is better
integrated with Kubernetes and can make the transition to/from on-premises
from/to the cloud easier.

https://github.com/kubernetes/contrib/tree/master/service-loadbalancer

Exploring Advanced Networking

[350]

Running HAProxy inside the Kubernetes cluster
In this approach, we use the internal HAProxy load balancer inside the cluster. There
may be multiple nodes running HAProxy and they will share the same configuration
to map incoming requests and load-balance them across the backend servers (the
Apache servers in the following diagram):

Figure 10.13: HAProxy load balancing

HAProxy also developed its own ingress controller, which is Kubernetes aware. This
is arguably the most streamlined way to utilize HAProxy in your Kubernetes cluster.
Here are some of the capabilities you acquire when using the HAProxy ingress
controller:

•	 Streamlined integration with the HAProxy load balancer
•	 SSL termination
•	 Rate limiting
•	 IP whitelisting
•	 Multiple load balancing algorithms: round-robin, least connections, URL

hash, and random
•	 A dashboard that shows the health of your pods, current request rates,

response times, and so on
•	 Traff﻿ic overload protection

Chapter 10

[351]

MetalLB
MetalLB also provides a load balancer solution for bare metal clusters. It is highly
configurable and supports multiple modes such as L2 and BGP. I had success
configuring it even for minikube.

For more details, check out the following link:

https://metallb.universe.tf

Keepalived VIP
Keepalived Virtual IP (Keepalived VIP) is not necessarily a load-balancing solution
of its own.

It can be a complement to the Nginx ingress controller or the HAProxy-based
service LoadBalancer. The main motivation is that pods move around in Kubernetes,
including your load balancer(s). That creates a problem for clients outside the
network that require a stable endpoint. DNS is often not good enough due to
performance issues. Keepalived provides a high-performance virtual IP address
that can serve as the address to the Nginx ingress controller or the HAProxy load
balancer. Keepalived utilizes core Linux networking facilities, such as IPVS (IP
virtual server) and implements high availability via Virtual Redundancy Router
Protocol (VRRP). Everything runs at layer 4 (TCP/UDP). It takes some effort and
attention to detail to configure it. Luckily, there is a Kubernetes contrib project
that can get you started: https://github.com/kubernetes/contrib/tree/master/
keepalived-vip.

Traefic
Traefic is a modern HTTP reverse proxy and load balancer. It was designed to
support microservices. It works with many backends, including Kubernetes, to
manage its configuration automatically and dynamically. This is a game changer
compared to traditional load balancers. It has an impressive list of features:

•	 It is fast
•	 Single Go executable
•	 Tiny official Docker image
•	 Rest API
•	 Hot-reloading of configuration; no need to restart the process

https://metallb.universe.tf
https://github.com/kubernetes/contrib/tree/master/keepalived-vip
https://github.com/kubernetes/contrib/tree/master/keepalived-vip

Exploring Advanced Networking

[352]

•	 Circuit breakers; retry
•	 Round-robin, rebalancer, load balancers
•	 Metrics (Rest, Prometheus, Datadog, Statsd, InfluxDB)
•	 Clean AngularJS web UI
•	 Websocket, HTTP/2, GRPC ready
•	 Access logs (JSON, CLF)
•	 Let's Encrypt support (automatic HTTPS with renewal)
•	 High availability with cluster mode

Load balancing on Kubernetes is an exciting area. It offers many options for both
north-south and east-west load balancing. Now that we have covered load balancing
in detail, let's dive deep into the CNI plugins and how they are implemented.

Writing your own CNI plugin
In this section, we will look at what it takes to actually write your own CNI plugin.
First, we will look at the simplest plugin possible – the loopback plugin. Then, we
will examine the plugin skeleton that implements most of the boilerplate associated
with writing a CNI plugin. Finally, we will review the implementation of the bridge
plugin. Before we dive in, here is a quick reminder of what a CNI plugin is:

•	 A CNI plugin is an executable
•	 It is responsible for connecting new containers to the network, assigning

unique IP addresses to CNI containers, and taking care of routing
•	 A container is a network namespace (in Kubernetes, a pod is a CNI container)
•	 Network definitions are managed as JSON files, but stream to the plugin via

standard input (no files are being read by the plugin)
•	 Auxiliary information can be provided via environment variables

First look at the loopback plugin
The loopback plugin simply adds the loopback interface. It is so simple that it doesn't
require any network configuration information. Most CNI plugins are implemented
in Golang and the loopback CNI plugin is no exception. The full source code is
available here: https://github.com/containernetworking/plugins/blob/master/
plugins/main/loopback.

https://github.com/containernetworking/plugins/blob/master/plugins/main/loopback
https://github.com/containernetworking/plugins/blob/master/plugins/main/loopback

Chapter 10

[353]

There are multiple packages from the container networking project on GitHub that
provide many of the building blocks necessary to implement CNI plugins and the
netlink package for adding interfaces, removing interfaces, setting IP addresses,
and setting routes. Let's look at the imports of the loopback.go file first:

package main

import (
 "encoding/json"
 "errors"
 "fmt"
 "net"

 "github.com/vishvananda/netlink"

 "github.com/containernetworking/cni/pkg/skel"
 "github.com/containernetworking/cni/pkg/types"
 "github.com/containernetworking/cni/pkg/types/current"
 "github.com/containernetworking/cni/pkg/version"

 "github.com/containernetworking/plugins/pkg/ns"
 bv "github.com/containernetworking/plugins/pkg/utils/buildversion")

Then, the plugin implements two commands, cmdAdd and cmdDel, which are called
when a container is added to or removed from the network. Here is the add
command, which does all the heavy lifting:

func cmdAdd(args *skel.CmdArgs) error {
 conf, err := parseNetConf(args.StdinData)
 if err != nil {
 return err
 }

 var v4Addr, v6Addr *net.IPNet

 args.IfName = "lo" // ignore config, this only works for loopback
 err = ns.WithNetNSPath(args.Netns, func(_ ns.NetNS) error {
 link, err := netlink.LinkByName(args.IfName)
 if err != nil {
 return err // not tested
 }

 err = netlink.LinkSetUp(link)

Exploring Advanced Networking

[354]

 if err != nil {
 return err // not tested
 }
 v4Addrs, err := netlink.AddrList(link, netlink.FAMILY_V4)
 if err != nil {
 return err // not tested
 }
 if len(v4Addrs) != 0 {
 v4Addr = v4Addrs[0].IPNet
 // sanity check that this is a loopback address
 for _, addr := range v6Addrs {
 if !addr.IP.IsLoopback() {
 return fmt.Errorf("loopback interface found with
non-loopback address %q", addr.IP)
 }
 }
 }

 v6Addrs, err := netlink.AddrList(link, netlink.FAMILY_V6)
 if err != nil {
 return err // not tested
 }
 if len(v6Addrs) != 0 {
 v6Addr = v6Addrs[0].IPNet
 // sanity check that this is a loopback address
 for _, addr := range v6Addrs {
 if !addr.IP.IsLoopback() {
 return fmt.Errorf("loopback interface found with
non-loopback address %q", addr.IP)
 }
 }
 }

 return nil
 })
 if err != nil {
 return err // not tested
 }

 var result types.Result
 if conf.PrevResult != nil {
 // If loopback has previous result which passes from previous

Chapter 10

[355]

CNI plugin,
 // loopback should pass it transparently
 result = conf.PrevResult
 } else {
 loopbackInterface := ¤t.Interface{Name: args.IfName, Mac:
"00:00:00:00:00:00", Sandbox: args.Netns}
 r := ¤t.Result{CNIVersion: conf.CNIVersion, Interfaces:
[]*current.Interface{loopbackInterface}}

 if v4Addr != nil {
 r.IPs = append(r.IPs, ¤t.IPConfig{
 Version: "4",
 Interface: current.Int(0),
 Address: *v4Addr,
 })
 }

 if v6Addr != nil {
 r.IPs = append(r.IPs, ¤t.IPConfig{
 Version: "6",
 Interface: current.Int(0),
 Address: *v6Addr,
 })
 }

 result = r
 }

 return types.PrintResult(result, conf.CNIVersion)
}

The core of this function is setting the interface name to lo (for loopback) and adding
the link to the container's network namespace. It supports both IPv4 and IPv6.

The del command does the opposite and is much simpler:

func cmdDel(args *skel.CmdArgs) error {
 if args.Netns == "" {
 return nil
 }
 args.IfName = "lo" // ignore config, this only works for loopback
 err := ns.WithNetNSPath(args.Netns, func(ns.NetNS) error {
 link, err := netlink.LinkByName(args.IfName)

Exploring Advanced Networking

[356]

 if err != nil {
 return err // not tested
 }

 err = netlink.LinkSetDown(link)
 if err != nil {
 return err // not tested
 }

 return nil
 })
 if err != nil {
 return err // not tested
 }

 return nil
}

The main function simply calls the PluginMain() function of the skel package,
passing the command functions. The skel package will take care of running the CNI
plugin executable and will invoke the cmdAdd and cmdDel functions at the right time:

func main() {
 skel.PluginMain(cmdAdd, cmdCheck, cmdDel, version.All,
bv.BuildString("loopback"))
}

Building on the CNI plugin skeleton
Let's now explore the skel package and see what it does under the covers. The
PluginMain() entry point is responsible for invoking PluginMainWithError(),
catching errors, printing them to standard output, and exiting:

func PluginMain(cmdAdd, cmdCheck, cmdDel func(_ *CmdArgs) error,
versionInfo version.PluginInfo, about string) {
 if e := PluginMainWithError(cmdAdd, cmdCheck, cmdDel, versionInfo,
about); e != nil {
 if err := e.Print(); err != nil {
 log.Print("Error writing error JSON to stdout: ", err)
 }
 os.Exit(1)
 }
}

Chapter 10

[357]

The PluginErrorWithMain() function instantiates a dispatcher, sets it up with all the
I/O streams and the environment, and invokes its internal pluginMain() method:

func PluginMainWithError(cmdAdd, cmdCheck, cmdDel func(_ *CmdArgs)
error, versionInfo version.PluginInfo, about string) *types.Error {
 return (&dispatcher{
 Getenv: os.Getenv,
 Stdin: os.Stdin,
 Stdout: os.Stdout,
 Stderr: os.Stderr,
 }).pluginMain(cmdAdd, cmdCheck, cmdDel, versionInfo, about)
}

Here is, finally, the main logic of the skeleton. It gets the cmd arguments from the
environment (which includes the configuration from standard input), detects which
cmd is invoked, and calls the appropriate plugin function (cmdAdd or cmdDel). It can
also return version information:

func (t *dispatcher) pluginMain(cmdAdd, cmdCheck, cmdDel func(_
*CmdArgs) error, versionInfo version.PluginInfo, about string) *types.
Error {
 cmd, cmdArgs, err := t.getCmdArgsFromEnv()
 if err != nil {
 // Print the about string to stderr when no command is set
 if err.Code == types.ErrInvalidEnvironmentVariables &&
t.Getenv("CNI_COMMAND") == "" && about != "" {
 _, _ = fmt.Fprintln(t.Stderr, about)
 return nil
 }
 return err
 }

 if cmd != "VERSION" {
 if err = validateConfig(cmdArgs.StdinData); err != nil {
 return err
 }
 if err = utils.ValidateContainerID(cmdArgs.ContainerID); err !=
nil {
 return err
 }
 if err = utils.ValidateInterfaceName(cmdArgs.IfName); err !=
nil {
 return err

Exploring Advanced Networking

[358]

 }
 }

 switch cmd {
 case "ADD":
 err = t.checkVersionAndCall(cmdArgs, versionInfo, cmdAdd)
 case "CHECK":
 configVersion, err := t.ConfVersionDecoder.Decode(cmdArgs.
StdinData)
 if err != nil {
 return types.NewError(types.ErrDecodingFailure, err.
Error(), "")
 }
 if gtet, err := version.GreaterThanOrEqualTo(configVersion,
"0.4.0"); err != nil {
 return types.NewError(types.ErrDecodingFailure, err.
Error(), "")
 } else if !gtet {
 return types.NewError(types.ErrIncompatibleCNIVersion,
"config version does not allow CHECK", "")
 }
 for _, pluginVersion := range versionInfo.SupportedVersions() {
 gtet, err := version.GreaterThanOrEqualTo(pluginVersion,
configVersion)
 if err != nil {
 return types.NewError(types.ErrDecodingFailure, err.
Error(), "")
 } else if gtet {
 if err := t.checkVersionAndCall(cmdArgs, versionInfo,
cmdCheck); err != nil {
 return err
 }
 return nil
 }
 }
 return types.NewError(types.ErrIncompatibleCNIVersion, "plugin
version does not allow CHECK", "")
 case "DEL":
 err = t.checkVersionAndCall(cmdArgs, versionInfo, cmdDel)
 case "VERSION":
 if err := versionInfo.Encode(t.Stdout); err != nil {
 return types.NewError(types.ErrIOFailure, err.Error(), "")
 }

Chapter 10

[359]

 default:
 return types.NewError(types.ErrInvalidEnvironmentVariables,
fmt.Sprintf("unknown CNI_COMMAND: %v", cmd), "")
 }

 if err != nil {
 return err
 }
 return nil
}

The loopback plugin is one of the simplest CNI plugins. Now, let's check out the
bridge plugin.

Reviewing the bridge plugin
The bridge plugin is more substantial. Let's look at some of the key parts of its
implementation. The full source code is available here:

https://github.com/containernetworking/plugins/tree/master/plugins/main/
bridge

The plugin defines a network configuration struct with the following fields in the
bridge.go file:

type NetConf struct {
 types.NetConf
 BrName string 'json:"bridge"'
 IsGW bool 'json:"isGateway"'
 IsDefaultGW bool 'json:"isDefaultGateway"'
 ForceAddress bool 'json:"forceAddress"'
 IPMasq bool 'json:"ipMasq"'
 MTU int 'json:"mtu"'
 HairpinMode bool 'json:"hairpinMode"'
 PromiscMode bool 'json:"promiscMode"'
 Vlan int 'json:"vlan"'
}

We will not cover what each parameter does and how it interacts with the other
parameters due to space limitations. The goal is to understand the flow and have a
starting point if you want to implement your own CNI plugin. The configuration is
loaded from JSON via the loadNetConf() function.

https://github.com/containernetworking/plugins/tree/master/plugins/main/bridge
https://github.com/containernetworking/plugins/tree/master/plugins/main/bridge

Exploring Advanced Networking

[360]

It is called at the beginning of the cmdAdd() and cmdDel() functions:

n, cniVersion, err := loadNetConf(args.StdinData)

Here is the core of the cmdAdd() function, which uses information from network
configuration, sets up the bridge, and sets up a veth device:

br, brInterface, err := setupBridge(n)
 if err != nil {
 return err
 }

 netns, err := ns.GetNS(args.Netns)
 if err != nil {
 return fmt.Errorf("failed to open netns %q: %v", args.Netns,
err)
 }
 defer netns.Close()

 hostInterface, containerInterface, err := setupVeth(netns, br,
args.IfName, n.MTU, n.HairpinMode, n.Vlan)
 if err != nil {
 return err
 }

Later, the function handles the L3 mode with its multiple cases:

 // Assume L2 interface only
 result := ¤t.Result{CNIVersion: cniVersion, Interfaces:
[]*current.Interface{brInterface, hostInterface, containerInterface}}
 if isLayer3 {
 // run the IPAM plugin and get back the config to apply
 r, err := ipam.ExecAdd(n.IPAM.Type, args.StdinData)
 if err != nil {
 return err
 }

 // release IP in case of failure
 defer func() {
 if !success {
 ipam.ExecDel(n.IPAM.Type, args.StdinData)
 }
 }()

Chapter 10

[361]

 // Convert whatever the IPAM result was into the current Result
type
 ipamResult, err := current.NewResultFromResult(r)
 if err != nil {
 return err
 }

 result.IPs = ipamResult.IPs
 result.Routes = ipamResult.Routes

 if len(result.IPs) == 0 {
 return errors.New("IPAM plugin returned missing IP config")
 }

 // Gather gateway information for each IP family
 gwsV4, gwsV6, err := calcGateways(result, n)
 if err != nil {
 return err
 }

 // Configure the container hardware address and IP address(es)
 if err := netns.Do(func(_ ns.NetNS) error {
 ...
 }

 if n.IsGW {
 ...
 }

 if n.IPMasq {
 ...
 }
 }

Finally, it updates the MAC address that may have changed and returns the results:

 // Refetch the bridge since its MAC address may change when the
first
 // veth is added or after its IP address is set
 br, err = bridgeByName(n.BrName)
 if err != nil {
 return err

Exploring Advanced Networking

[362]

 }
 brInterface.Mac = br.Attrs().HardwareAddr.String()

 result.DNS = n.DNS

 // Return an error requested by testcases, if any
 if debugPostIPAMError != nil {
 return debugPostIPAMError
 }

 success = true

 return types.PrintResult(result, cniVersion)

This is just part of the full implementation. There is also route setting and hardware
IP allocation. If you plan to write your own CNI plugin, I encourage you to pursue
the full source code, which is quite extensive, to get the full picture.

Summary
In this chapter, we covered a lot of ground. Networking is such a vast topic as there
are so many combinations of hardware, software, operating environments, and
user skills. It is a very complicated endeavor to come up with a comprehensive
networking solution that is both robust, secure, performs well, and is easy to
maintain. For Kubernetes clusters, the cloud providers mostly solve these issues.
But if you run on-premises clusters or need a tailor-made solution, you get a lot
of options to choose from. Kubernetes is a very flexible platform, designed for
extension. Networking in particular is totally pluggable. The main topics we
discussed were the Kubernetes networking model (flat address space where pods
can reach other and share localhost between all containers inside a pod), how
lookup and discovery work, the Kubernetes network plugins, various networking
solutions at different levels of abstraction (a lot of interesting variations), using
network policies effectively to control the traffic inside the cluster, and the spectrum
of load-balancing solutions, and finally, we looked at how to write a CNI plugin by
dissecting a real-world implementation.

At this point, you are probably overwhelmed, especially if you're not a subject matter
expert. Nonetheless, you should have a solid grasp of the internals of Kubernetes
networking, be aware of all the interlocking pieces required to implement a fully
fledged solution, and be able to craft your own solution based on trade-offs that
make sense for your system and your skill level.

Chapter 10

[363]

In Chapter 11, Running Kubernetes on Multiple Clouds and Cluster Federation, we will go
even bigger and look at running Kubernetes on multiple clusters, cloud providers,
and federation. This is an important part of the Kubernetes story for geo-distributed
deployments and ultimate scalability. Federated Kubernetes clusters can exceed local
limitations, but they bring a whole slew of challenges as well.

[365]

11
Running Kubernetes

on Multiple Clouds and
Cluster Federation

In this chapter, we'll take it to the next level by running Kubernetes on multiple
clouds, multiple clusters, and cluster federation. A Kubernetes cluster is a closely
knit unit where all of the components run in relative proximity and are connected
by a fast network (typically, a physical data center or cloud provider availability
zone). This is great for many use cases, but there are several important use cases
where systems need to scale beyond a single cluster. One approach to address
this use case is with Kubernetes federation, which is a methodical way to combine
multiple Kubernetes clusters and interact with them as a single entity. Another
approach taken by the Gardener (https://gardener.cloud/) project is to provide an
abstraction around managing multiple separate Kubernetes clusters.

We will cover the following topics:

•	 The history of cluster federation on Kubernetes
•	 Understanding cluster federation
•	 A deep dive into what cluster federation is all about
•	 How to prepare, configure, and manage a cluster federation
•	 How to run a federated workload across multiple clusters
•	 Introduction to the Gardener project

https://gardener.cloud/

Running Kubernetes on Multiple Clouds and Cluster Federation

[366]

The history of cluster federation on
Kubernetes
Before jumping into the details of cluster federation, let's get some historical context.
It's funny to talk about the history of a project like Kubernetes that didn't even exist
5 years ago, but the pace of development and a large number of contributors took
Kubernetes through accelerated evolution. This is especially relevant for Kubernetes
federation.

In March 2015, the first revision of the Kubernetes Cluster Federation (https://
github.com/kubernetes/community/blob/master/contributors/design-proposals/
multicluster/federation.md) proposal was published. Back then, it was fondly
nicknamed "Ubernetes." The basic idea was to reuse the existing Kubernetes APIs to
manage multiple clusters. This proposal, now called Federation V1, went through
several rounds of revision and implementation, but it never reached general
availability and is considered deprecated at this point. The SIG cluster workgroup
realized that the multi-cluster problem was more complicated than initially
perceived. There are many ways to skin this particular cat, and there is no one-size-
fits-all solution.

The new direction for cluster federation is dedicated APIs for federation. In the rest
of the chapter, we will consider the Federation V2 design. Note that the current
status is considered Alpha, so I don't recommend putting it to use in production
without significant consideration.

Understanding cluster federation
Cluster federation is conceptually simple. You aggregate multiple Kubernetes
clusters and treat them as a single logical cluster. There is a federation control
plane that presents to clients a single unified view of the system.

The following diagram demonstrates the big picture of the Kubernetes Cluster
Federation. The pink box is a host cluster that runs the federation APIs and the
green boxes are member clusters:

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/multicluster/federation.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/multicluster/federation.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/multicluster/federation.md

Chapter 11

[367]

Figure 11.1: The Kubernetes Cluster Federation

The federation control plane consists of a federation API server and a federation
controller manager that collaborate with each other. The federated API server
forwards requests to all the clusters in the federation. In addition, the federated
controller manager performs the duties of the controller manager across all of the
clusters by routing requests to the individual federation cluster members' changes.
In practice, cluster federation is not trivial and can't be totally abstracted away.
Cross-pod communication and data transfer may suddenly incur a massive latency
and cost overhead. Let's look at the use cases for cluster federation first, understand
how the federated components and resources work, and then examine the hard
parts: location affinity, cross-cluster scheduling, and federated data access.

Running Kubernetes on Multiple Clouds and Cluster Federation

[368]

Important use cases for cluster federation
There are four categories of use cases that benefit from cluster federation.

Capacity overflow
Public cloud platforms such as AWS, GCE, and Azure are great and provide many
benefits, but they are not cheap. Many large organizations have invested a lot in their
own data centers. Other organizations work with private service providers such as
OVS, Rackspace, or Digital Ocean. If you have the operational capacity to manage
and operate infrastructure on your own, it makes a lot of economic sense to run your
Kubernetes cluster on your infrastructure rather than in the cloud. But what if some
of your workloads fluctuate and, for a relatively short amount of time, require a lot
more capacity?

For example, your system may be hit especially hard on the weekends or maybe
during holidays. The traditional approach is to just provision extra capacity. But
in many dynamic situations, this is not easy. With capacity overflow, you can
run the bulk of your work in a Kubernetes cluster running on an on-premises
data center or with a private service provider and have a secondary cloud-based
Kubernetes cluster running on one of the big platform providers. Most of the time,
the cloud-based cluster will be shut down (stopped instances), but when the need
arises, you can elastically add capacity to your system by starting some stopped
instances. Kubernetes Cluster Federation can make this configuration relatively
straightforward. It eliminates a lot of headaches about capacity planning and
paying for hardware that's not used most of the time.

This approach is sometimes called "cloud bursting."

Sensitive workloads
This is almost the opposite of capacity overflow. Maybe you've embraced the
cloud-native lifestyle, and your entire system runs on the cloud, but some data
or workloads deal with sensitive information. Regulatory compliance or your
organization's security policies may dictate that those data and workloads must run
in an environment that's fully controlled by you. Your sensitive data and workloads
may be subject to external auditing. It may be critical to ensure that no information
ever leaks from the private Kubernetes cluster to the cloud-based Kubernetes
cluster. But it may be desirable to have visibility in the public cluster and be able to
launch non-sensitive workloads from the private cluster to the cloud-based cluster.
If the nature of a workload can change dynamically from non-sensitive to sensitive,
then it needs to be addressed by coming up with a proper policy and process of
implementation.

Chapter 11

[369]

For example, you may prevent workloads from changing their nature. Alternatively,
you may migrate a workload that has suddenly become sensitive and ensure that
it doesn't run on the cloud-based cluster anymore. Another important instance is
national compliance, where certain data is required by law to remain and be accessed
only from a designated geographical region (typically, a country). In this case,
a cluster must be created in that geographical region.

Avoiding vendor lock-in
Large organizations often prefer to have options and not be tied to a single provider.
The risk is often too great, because the provider may shut down or be unable to
provide the same level of service. Having multiple providers is often good for
negotiating prices, too. Kubernetes is designed to be vendor-agnostic. You can run it
on different cloud platforms, private service providers, and on-premises data centers.

However, this is not trivial. If you want to be sure that you are able to switch
providers quickly or shift some workloads from one provider to the next, you
should already be running your system on multiple providers. You can do
it yourself, or there are some companies that provide the service of running
Kubernetes transparently on multiple providers. Since different providers run
different data centers, you automatically get some redundancy and protection
from vendor-wide outages.

Geo-distributing high availability
High availability means that a service will remain available to users even when some
parts of the system fail. In the context of a federated Kubernetes cluster, the scope of
failure is an entire cluster, which is typically due to problems with the physical data
center hosting the cluster, or perhaps a wider issue with the platform provider. The
key to high availability is redundancy. Geo-distributed redundancy means having
multiple clusters running in different locations. It may be different availability zones
of the same cloud provider, different regions of the same cloud provider, or even
different cloud providers altogether (refer to the Avoiding vendor lock-in section).
There are many issues to address when it comes to running a cluster federation with
redundancy. We'll discuss some of these issues later. Assuming that the technical
and organizational issues have been resolved, high availability will allow you to
switch traffic from a failed cluster to another cluster. This should be transparent
to the users up to a point (if there is a delay during the switchover, some in-flight
requests or tasks may disappear or fail). The system administrators may need to take
extra steps to support the switchover and to deal with the original cluster failure.

Now that we understand why multi-cluster federation is such an important aspect
of Kubernetes, it's time to dive in.

Running Kubernetes on Multiple Clouds and Cluster Federation

[370]

Learning the basics of Kubernetes federation
Kubernetes federation is a complex topic, and we will ease our way into it. In this
section, we will first look at some basic concepts, then at the building blocks of the
API, and finally at its supported features and capabilities.

Defining basic concepts
Let's start our journey into the Kubernetes federation with some basic concepts and
terminology. The following table describes the most important concepts and terms:

Concept Description

Federate Create a common interface to a pool of clusters in order to deploy
Kubernetes applications across those clusters.

KubeFed The API and control plane of Kubernetes Cluster Federation.

Host Cluster A cluster that exposes the KubeFed API and runs the KubeFed
control plane.

Cluster
Registration The process of adding a new cluster to the federation.

Member Cluster
A cluster that is registered with the KubeFed API and that KubeFed
controllers have authentication credentials for. The Host Cluster can
be a Member Cluster too.

ServiceDNSRecord A resource that associates one or more Kubernetes Service resources
with a scheme to construct DNS resource records for the Service.

IngressDNSRecord A resource that associates one or more Kubernetes Ingress resources
with a scheme to construct DNS resource records for the Ingress.

Endpoint A resource that represents a Domain Name System (DNS) resource
record.

DNSEndpoint A Custom Resource wrapper for the Endpoint resource.

In addition to these concepts, the architecture is based on three building blocks.

Federation building blocks
A federation is responsible for a given set of API types (Kubernetes resources) that
it manages and distributes into a set of member clusters. For each API type, there
are common dedicated resources that the federation control plane uses to keep
their state:

Chapter 11

[371]

•	 FederatedTemplate: This stores the basic specification of the managed
resource

•	 FederatedPlacement: This type holds the specification of the clusters that the
resource should be distributed to

•	 FederatedOverrides: This optional resource can specify how the Template
resource should behave on specific clusters

These types are all associated by name. For example, for the ReplicaSet resource,
there are FederatedReplicaSetTemplate, FederatedReplicaSetPlacement, and
FederatedReplicaSetOverrides.

In addition to this, the following elements can be used by higher-level APIs to
customize and control the behavior of the federation:

•	 Status: Collects the status of resources distributed by KubeFed across all
federated clusters

•	 Policy: Determines which subset of clusters a resource is allowed to be
distributed to

•	 Scheduling: Decides how workloads should be distributed across different
clusters

The following diagram illustrates the full life cycle and interaction of all the elements
of the Kubernetes federation:

Figure 11.2: Life cycle of the Kubernetes federation

Running Kubernetes on Multiple Clouds and Cluster Federation

[372]

Federation features
These concepts and the foundational building blocks are used to implement the
following features:

•	 Push propagation of arbitrary types to remote clusters
•	 A command-line interface program called kubefedctl to interact with the

KubeFed API
•	 Generating KubeFed APIs without writing code
•	 Multi-cluster Service DNS via external-dns
•	 Multi-cluster Ingress DNS via external-dns
•	 Replica Scheduling Preferences

The KubeFed control plane
The KubeFed control plane requires Kubernetes 1.13 or later. It consists of two
components that, together, enable a federation of Kubernetes clusters to appear
and function as a single unified Kubernetes cluster.

The federation API server
The federation API server manages the Kubernetes clusters that, together, comprise
the federation. It manages the federation state (which clusters are part of the
federation) in an etcd database in the same way as a regular Kubernetes cluster, but
the state it keeps is just those clusters that are members of the federation. The state
of each cluster is stored in the etcd database of that cluster. The main purpose of the
federation API server is to interact with the federation controller manager and route
requests to the federation's member clusters. The federation members don't need to
know that they are part of a federation: they just work the same.

The federation controller manager
The federation controller manager makes sure the federation's desired state matches
the actual state. It forwards any necessary changes to the relevant cluster or clusters.
The federated controller manager binary contains multiple controllers for all of the
different federated resources that we'll cover later in the chapter. The control logic is
similar, though: it observes changes and brings the cluster state to the desired state
when they deviate. This is done for each member in the cluster federation.

Chapter 11

[373]

The following diagram demonstrates this perpetual control loop:

Figure 11.3: The federation controller manager's perpetual control loop

The hard parts
So far, the federation seems almost straightforward. KubeFed does the heavy lifting
for you. You just group a bunch of clusters together, access them through the control
plane, and everything just gets replicated to all of the clusters. But there are hard and
difficult factors and basic concepts that complicate this simplified view. Much of the
power of Kubernetes is derived from its ability to do a lot of work behind the scenes.
Within a single cluster deployed fully in a single physical data center or availability
zone where all the components are connected with a fast network, Kubernetes is very
effective on its own. In a Kubernetes Cluster Federation, the situation is different.
Latency, data transfer costs, and moving pods between clusters all have different
trade-offs. Depending on the use case, making federation work may require extra
attention, planning, and maintenance on the part of the system designers and
operators. In addition, some of the federated resources are not as mature as their
local counterparts, and that adds more uncertainty. Refer to https://github.com/
kubernetes-sigs/kubefed for up-to-date information.

https://github.com/kubernetes-sigs/kubefed
https://github.com/kubernetes-sigs/kubefed

Running Kubernetes on Multiple Clouds and Cluster Federation

[374]

Federated unit of work
The unit of work in a Kubernetes cluster is the pod. You can't break a pod in
Kubernetes. The entire pod will always be deployed together and be subject to
the same life cycle treatment. Should the pod remain the unit of work for a cluster
federation? Maybe it makes more sense to be able to associate a bigger unit, such as
a whole ReplicaSet, deployment, or service with a specific cluster. If the cluster fails,
the entire ReplicaSet, deployment, or service is scheduled to a different cluster. How
about a collection of tightly coupled ReplicaSets? The answers to these questions are
not always easy and may even change dynamically as the system evolves.

Location affinity
Location affinity is a major concern. When can pods be distributed across clusters?
What are the relationships between those pods? Are there any requirements for
affinity between pods or pods and other resources, such as storage? There are several
major categories:

•	 Strictly coupled
•	 Loosely coupled
•	 Preferentially coupled
•	 Strictly decoupled
•	 Uniformly spread

When designing the system and how to allocate and schedule services and pods
across the federation, it's important to make sure the location affinity requirements
are always respected.

Strictly coupled
The strictly coupled requirement applies to applications where the pods must be in
the same cluster. If you partition the pods, the application will fail (perhaps due to
real-time requirements that can't be met when networking across clusters), or the
cost may be too high (pods accessing a lot of local data). The only way to move such
tightly coupled applications to another cluster is to start a complete copy (including
data) on another cluster and then shut down the application on the current cluster. If
the data is too large, the application may practically be immovable and sensitive to
catastrophic failure. This is the most difficult situation to deal with, and, if possible,
you should architect your system to avoid the strictly coupled requirement.

Chapter 11

[375]

Loosely coupled
Loosely coupled applications are best when the workload is embarrassingly parallel,
and each pod doesn't need to know about the other pods or access a lot of data.
In these situations, pods can be scheduled to clusters just based on capacity and
resource utilization across the federation. If necessary, pods can be moved from one
cluster to another without problems. For example, consider a stateless validation
service that performs a calculation and gets all of its input in the request itself and
doesn't query or write any federation-wide data. It just validates its input and
returns a valid/invalid verdict to the caller.

Preferentially coupled
Preferentially coupled applications perform better when all the pods are in the same
cluster or the pods and the data are co-located, but this is not a hard requirement. For
example, this could work with applications that require only eventual consistency,
where some federation-wide application periodically synchronizes the application
state across all clusters. In these cases, allocation is done explicitly to one cluster but
leaves a safety hatch for running or migrating to other clusters under stress.

Strictly decoupled
Some services have fault isolation or high-availability requirements that force
partitioning across clusters. There is no point running three replicas of a critical
service if all replicas might end up scheduled to the same cluster, because that
cluster just becomes an ad hoc SPOF.

Uniformly spread
Uniformly spread is when an instance of a service, ReplicaSet, or pod must run on
each cluster. It is similar to DaemonSet, but instead of ensuring there is one instance
on each node, it's one per cluster. A good example is a Redis cache backed up by
some external persistent storage. The pods in each cluster should have their own
cluster-local Redis cache to avoid accessing the central storage, which may be slower
or become a bottleneck. On the other hand, there is no need for more than one Redis
service per cluster (it could be distributed across several pods in the same cluster).

Cross-cluster scheduling
Cross-cluster scheduling goes hand in hand with location affinity. When a new pod
is created or an existing pod fails and a replacement needs to be scheduled, where
should it go? The current cluster federation doesn't handle all the scenarios and
options for location affinity that we mentioned earlier.

Running Kubernetes on Multiple Clouds and Cluster Federation

[376]

At this point, cluster federation handles the loosely coupled (including weighted
distribution) and strictly coupled (by making sure the number of replicas matches
the number of clusters) categories well. Anything else will require that you don't
use cluster federation. You'll have to add your own custom federation layer, which
takes more specialized concerns into account and can accommodate more intricate
scheduling use cases.

Federated data access
This is a tough problem. If you have a lot of data and pods running in multiple
clusters (possibly on different continents) and need to access them quickly, then you
have several unpleasant options:

•	 Replicate your data to each cluster (this is slow to replicate, expensive to
transfer, expensive to store, and complicated to sync and deal with errors)

•	 Access the data remotely (this is slow to access, expensive on each access,
and can be a SPOF)

•	 Use a sophisticated hybrid solution with per-cluster caching of some of the
hottest data (this is complicated, results in stale data, and you still need to
transfer a lot of data)

Federated auto-scaling
There is currently no support for federated auto-calling. There are two dimensions
of scaling that can be utilized, as well as a combination of the two dimensions:

•	 Per-cluster scaling
•	 Adding/removing clusters from the federation
•	 Hybrid approach

Consider the relatively simple scenario of a loosely coupled application running on
three clusters with five pods in each cluster. At some point, 15 pods can't handle
the load anymore. We need to add more capacity. We can increase the number
of pods per cluster, but if we do this at the federation level, then we will have six
pods running in each cluster. We've increased the federation capacity by three pods
when only one pod is needed. Of course, if you have more clusters, the problem
gets worse. Another option is to pick a cluster and just change its capacity. This is
possible with annotations, but now we're explicitly managing capacity across the
federation. It can get complicated very quickly if we have lots of clusters running
hundreds of services with dynamically changing requirements.

Chapter 11

[377]

Adding a whole new cluster is even more complicated. Where should we add
the new cluster? There is no requirement for extra availability that can guide the
decision. It is just about extra capacity. Creating a new cluster also often requires
a complicated first-time setup, where it may take days to approve various quotas
on public cloud platforms. The hybrid approach increases the capacity of existing
clusters in the federation until it reaches a threshold and then starts adding new
clusters. The benefit of this approach is that when you're getting closer to the
capacity limit of each cluster, you start preparing new clusters that will be ready
to go when necessary. Other than that, it also requires a lot of effort, and you pay
for the flexibility and scalability with increased complexity.

Managing a Kubernetes Cluster
Federation
Managing a Kubernetes Cluster Federation involves many activities above and
beyond managing a single cluster. You need to consider cascading resource deletion,
load balancing across clusters, failover across clusters, federated service discovery,
and federated discovery. Let's go over the various activities in detail. Note that due
to the Alpha status of KubeFed, this should not be considered a step-by-step guide
to follow. The goal here is to get a sense of what's involved in the management of
multiple Kubernetes clusters as a federation.

Installing kubefedctl
The best way to interact with KubeFed is through the kubefedctl CLI. Here are the
instructions to install the latest release of kubefedctl for macOS:

VERSION=0.3.0
OS=Darwin
ARCH=amd64
curl -LO https://github.com/kubernetes-sigs/kubefed/releases/download/
v${VERSION}/kubefedctl-${VERSION}-${OS}-${ARCH}.tgz
tar -zxvf kubefedctl-*.tgz
chmod u+x kubefedctl
sudo mv kubefedctl /usr/local/bin/

If typing kubefedctl is too much of a burden, then you can alias it like I did:

alias kf='kubefedctl'

Running Kubernetes on Multiple Clouds and Cluster Federation

[378]

To verify it's installed correctly, just run it and you will see the following:

$ kf
kubefedctl controls a Kubernetes Cluster Federation. Find more information
at https://sigs.k8s.io/kubefed.

Usage:
 kubefedctl [flags]
 kubefedctl [command]

Available Commands:
 disable Disables propagation of a Kubernetes API type
 enable Enables propagation of a Kubernetes API type
 federate Federate creates a federated resource from a
kubernetes resource
 help Help about any command
 join Register a cluster with a KubeFed control plane
 orphaning-deletion Manage orphaning delete policy
 unjoin Remove the registration of a cluster from a KubeFed
control plane
 version Print the version info

Flags:
 --alsologtostderr log to standard error as well as
files
 -h, --help help for kubefedctl
 --log-backtrace-at traceLocation when logging hits line file:N, emit
a stack trace (default :0)
 --log-dir string If non-empty, write log files in
this directory
 --log-file string If non-empty, use this log file
 --log-flush-frequency duration Maximum number of seconds between
log flushes (default 5s)
 --logtostderr log to standard error instead of
files (default true)
 --skip-headers If true, avoid header prefixes in
the log messages
 --stderrthreshold severity logs at or above this threshold go
to stderr
 -v, --v Level number for the log level verbosity
 --vmodule moduleSpec comma-separated list of pattern=N
settings for file-filtered logging

Use "kubefedctl [command] --help" for more information about a command.

Chapter 11

[379]

The next step is to create some clusters that will form our federation.

Creating clusters
KubeFed officially supports four Kubernetes environments:

•	 KinD (Kubernetes in Docker)
•	 Minikube
•	 GKE
•	 IBM Cloud

The KinD environment is used by the KubeFed end-to-end tests. However, minikube
is the easiest to set up for playing around with. Here are the instructions for creating
two minikube clusters:

minikube start -p cluster-1
minikube start -p cluster-2

Then, in each cluster, verify all of the pods are running before moving forward.

Configuring the Host Cluster
OK. It's time to install the KubeFed control plane in your host cluster. The KubeFed
project provides a convenient Helm chart for the task. Unfortunately, KubeFed
doesn't support Helm 3 yet, because they use an outdated annotation (crd-install
hook). You probably have Helm 3 installed, but you should install Helm 2 as well if
you want to try using KubeFed. Since Helm 2 uses Tiller in the cluster, you need to
create a service account for Tiller and give it administrator permissions so that it can
install the KubeFed control plane securely:

$ kubectl config use-context cluster-1
Switched to context "cluster-1".

$ cat << EOF | kubectl apply -f –
apiVersion: v1
kind: ServiceAccount
metadata:
 name: tiller
 namespace: kube-system

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding

Running Kubernetes on Multiple Clouds and Cluster Federation

[380]

metadata:
 name: tiller
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: cluster-admin
subjects:
 - kind: ServiceAccount
 name: tiller
 namespace: kube-system
EOF
serviceaccount/tiller created
clusterrolebinding.rbac.authorization.k8s.io/tiller created

$ helm2 init --service-account tiller

Next, we need to add the KubeFed chart repository:

$ helm2 repo add kubefed-charts https://raw.githubusercontent.com/
kubernetes-sigs/kubefed/master/charts
"kubefed-charts" has been added to your repositories

$ helm2 repo list
NAME URL
stable https://kubernetes-charts.storage.googleapis.com
local http://127.0.0.1:8879/charts
kubefed-charts https://raw.githubusercontent.com/kubernetes-sigs/kubefed/
master/charts

We can verify that the KubeFed chart is now available using this helm search
command:

$ helm2 search kubefed
NAME CHART VERSION APP VERSION DESCRIPTION
kubefed-charts/federation-v2 0.0.10

Update your repo:

$ helm2 repo update
Hang tight while we grab the latest from your chart repositories...
...Successfully got an update from the "kubefed-charts" chart
repository
...Successfully got an update from the "stable" chart repository
Update Complete. Happy Helming!

Chapter 11

[381]

Then, the installation is as simple as:

$ helm2 install kubefed-charts/kubefed --name kubefed --version=$VERSION
--namespace kube-federation-system --devel

Registering clusters with the federation
Once the control plane is installed, make sure your ~/.kube/config file has contexts
for the host cluster and all of the member clusters. Then, you can use the kubefedctl
join command to add clusters to the federation:

$ kf join cluster1 --cluster-context cluster-1 --host-cluster-context
cluster-1 --v=2
$ kf join cluster2 --cluster-context cluster-2 --host-cluster-context
cluster-1 --v=2

Note that cluster-1, here, is the host cluster but is also registered as a member
cluster. This is totally fine. There is no need to have a dedicated host cluster.

To check the status of the federation, you can get the kubefedclusters CRDs:

$ kubectl -n kube-federation-system get kubefedclusters

 NAME READY AGE
 cluster-1 True 1m
 cluster-2 True 1m

You use kubectl here and not kubefedctl.

If you want to unregister a cluster from the federation, use the kubefedctl unjoin
command.

$ kf unjoin cluster-2 --cluster-context cluster-2 --host-cluster-context
cluster-1 --v=2

Working with federated API types
Kubernetes federation V1 supported only a limited number of Kubernetes API types.
With KubeFed V2, any API type can be federated, including your own CRDs.

The preceding command works with Helm 2. In the future, we
expect it to work with Helm 3. You can refer to https://github.
com/kubernetes-sigs/kubefed/blob/master/charts/
kubefed/README.md#installing-the-chart to check for this.

https://github.com/kubernetes-sigs/kubefed/blob/master/charts/kubefed/README.md#installing-the-chart
https://github.com/kubernetes-sigs/kubefed/blob/master/charts/kubefed/README.md#installing-the-chart
https://github.com/kubernetes-sigs/kubefed/blob/master/charts/kubefed/README.md#installing-the-chart

Running Kubernetes on Multiple Clouds and Cluster Federation

[382]

However, this doesn't happen automatically. You need to first enable any type that
you want to federate:

$ kf enable <API Type>

The specification of the type to enable is pretty flexible. It can be the kind of type, the
plural name, the group-qualified plural name, or the short name. For example, for
deployments, it can be Deployment (kind), deploy (short name), deployments (plural),
or deployment.apps (group-qualified plural name).

When you enable a type, kubefedctl generates a Federated<Type> CRD (for example,
FederatedDeployment) and a Federated<Type>Config association to the original type
(Deployment).

Note that the target type must be installed on all member clusters. Ideally, all clusters
should run the same version of Kubernetes and be upgraded in tandem to avoid
versioning issues. Even if all of the clusters run the same version of Kubernetes, they
might not have the same CRDs installed. Remember, you can federate CRDs too, but
only as long as they are installed on all clusters.

Suppose you have a CRD called awesome in the API group example.com. You can
verify it is installed in cluster-1 and cluster-2 by running this little script:

CLUSTER_CONTEXTS=(cluster-1 cluster-2)
for c in ${CLUSTER_CONTEXTS}; do
 echo ----- ${c} -----
 kubectl --context=${c} api-resources --api-group=example.com
done

The result should be:

----- cluster1 -----
NAME SHORTNAMES APIGROUP NAMESPACED KIND
awesome example.com true Awesome
----- cluster2 -----
NAME SHORTNAMES APIGROUP NAMESPACED KIND
awesome Awesome

Federating resources
Enabling API types for your federation doesn't actually distribute any resources
across the clusters. When you are ready to propagate resources across your
federation, you can use the federate command:

kubefedctl federate <TYPE NAME> <RESOURCE NAME> [flags]

Chapter 11

[383]

Let's look at the output of federating a pod without actually federating it (similar
to a dry run). Here is the command:

$ kf federate pod trouble --output yaml

Here are some selected parts of the generated output. First, the API version is types.
kubefed.io/v1beta1, and the kind is FederatedPod:

apiVersion: types.kubefed.io/v1beta1
kind: FederatedPod
metadata:
 name: trouble
 namespace: default

Then comes the spec that contains the placement with its clusterSelector, in case
you want to only federate to clusters that match some criteria:

spec:
 placement:
 clusterSelector:
 matchLabels: {}

The rest of the spec is a standard pod template:

 template:
 metadata:
 labels:
 run: trouble
 spec:
 containers:
 - args:
 - bash
 image: g1g1/py-kube:0.2
 imagePullPolicy: IfNotPresent
 name: trouble
 resources: {}
 ...

By default, the federated resource will be created in the same namespace as the target
type. Of course, the API type must be enabled and installed in all the federation
clusters.

Running Kubernetes on Multiple Clouds and Cluster Federation

[384]

Federating an entire namespace
KubeFed supports whole namespace federation too. This is very useful because
namespaces are convenient for organizing groups of resources together, and it
often makes sense to federate all of the resources in a namespace in one fell swoop.
Conceptually, a namespace is also a Kubernetes resource, so you can think of it as
just federating a single resource, which is the namespace. However, in practice,
namespaces are different from other resources because they are the only resources
that contain other resources. The key to federated namespaces is the --contents flag
that is required. You can also exclude some resources from the federation using the
--skip-api-resources flag with a comma-separated list of resources:

kubefedctl federate namespace awesome-namespace --contents --skip-api-
resources "secrets,apps"

Checking the status of federated resources
The top-level status field of a federated resource contains information about the
propagation of the resource across the federation's member clusters. Here is an
example:

apiVersion: types.kubefed.io/v1beta1
kind: FederatedNamespace
metadata:
 name: awesome-namespace
 namespace: awesome-namespace
spec:
 placement: clusterSelector: {}
status:
 # The status True of the condition of type Propagation
 # indicates that the state of all member clusters is as
 # intended as of the last probe time.
 conditions:
 - type: Propagation
 status: True
 lastTransitionTime: "2019-12-08T14:33:45Z"
 lastUpdateTime: "2019-12-08T14:33:45Z"
 # The namespace 'awesome-namespace' has been verified to exist in the
 # following clusters as of the lastUpdateTime recorded
 # in the 'Propagation' condition. Since that time, no
 # change has been detected to this resource or the
 # resources it manages.
 clusters:
 - name: cluster-1
 - name: cluster-2

Chapter 11

[385]

Using overrides
In the real world, not all clusters are the same. You may need to make various
cluster-specific changes. The overrides field of the FederatedDeployment allows
you to do exactly that. You specify the overrides field using the jsonpatch (http://
jsonpatch.com/) syntax, similar to Kustomize.

For each override, you specify a path (for example, /spec/replicas), and then you
either provide a value to set (for example, value: 5) or an operation (for example,
add or remove) and a value to apply. Here is an example:

kind: FederatedDeployment
...
spec:
 ...
 overrides:
 # Apply overrides to cluster1
 - clusterName: cluster1
 clusterOverrides:
 # Set the replicas field to 5
 - path: "/spec/replicas"
 value: 5
 # Set the image of the first container
 - path: "/spec/template/spec/containers/0/image"
 value: "nginx:1.17.0-alpine"
 # Ensure the annotation "foo: bar" exists
 - path: "/metadata/annotations"
 op: "add"
 value:
 foo: bar
 # Ensure an annotation with key "baz" does not exist
 - path: "/metadata/annotations/baz"
 op: "remove"

Using placement to control federation
The placement field of the federated resources controls which member cluster the
resource will be federated to. There two ways to place federated resources:

•	 A direct list of cluster names
•	 A label-based cluster selector

http://jsonpatch.com/
http://jsonpatch.com/

Running Kubernetes on Multiple Clouds and Cluster Federation

[386]

Here is a direct list placement:

spec:
 placement:
 clusters:
 - name: cluster-1
 - name: cluster-2

And here is a label-based cluster selector that deploys the resource to clusters that
have a label federate: True:

spec:
 placement:
 clusterSelector:
 matchLabels:
 federate: True

So far, so good; however, there's more. If there is no placement field, or if there is a
placement with an empty clusterSelector, then the resource will be placed in all of
the member clusters:

spec:
 placement:
 clusterSelector: {}

However, if an empty list of clusters is specified, then the resource will not be
deployed to ANY cluster!

spec:
 placement:
 clusters: []

In general, a list of clusters, if specified, always overrides the cluster selector. In this
case, the resource will not be deployed to any cluster because of the empty list of
clusters, not even to clusters that have a matching label:

spec:
 placement:
 clusters: []
 clusterSelector:
 matchLabels:
 federate: True

Chapter 11

[387]

Debugging propagation failures
You can use kubectl and the same techniques you use to debug general Kubernetes
issues. The kubectl describe command will show you events related to a federated
resource:

$ kubectl describe <federated CRD> <CR name> -n awesome-namespace

If that doesn't help, then you can check the federation controller logs:

$ kubectl logs deployment/kubefed-controller-manager -n kube-federation-
system

Now that you have a good sense of how to work with federated resources, let's look
at some of the higher abstractions that are built on top of the basics.

Employing higher-order behavior
There several high-level multi-cluster considerations and patterns that KubeFed
supports out of the box. These behaviors are built on top of the foundation building
blocks of templates, overrides, and placement. Let's review them.

Utilizing multi-cluster Ingress DNS
Ingress in a single cluster is done at the edge of the cluster and forwards traffic into
the cluster. Ingress literally means entrance. However, in the multi-cluster world, the
situation is different. The cluster may be needed to send requests from the receiving
cluster to a different cluster. Finding the correct destination relies on an external
DNS, which is used in addition to the in-cluster CoreDNS. The primary idea is that
the endpoints from all of the clusters are managed by a DNS endpoint controller and
an Ingress DNS controller. They watch all the clusters and update the multi-cluster
IngressDNSRecord and domain names. An External DNS Controller interacts with
the external DNS Provider to assign external names that are valid across all the
clusters and allow you to locate endpoints across clusters.

Running Kubernetes on Multiple Clouds and Cluster Federation

[388]

The following diagram illustrates the flow of information and the control loops:

Figure 11.4: Ingress DNS

Utilizing multi-cluster Service DNS
In a Kubernetes federation, services need to be federated, which means their backing
pods may be federated across multiple clusters. In order to access those pods and
their endpoints, federated services require a mechanism that is very similar to the
multi-cluster ingress DNS.

The typical workflow is:

1.	 Create FederatedDeployment and FederatedService objects.
2.	 Create a Domain object that associates a DNS zone and an authoritative

nameserver for the KubeFed control plane.
3.	 Create a ServiceDNSRecord object that identifies the intended domain name

of a multi-cluster Service object.

Chapter 11

[389]

4.	 The DNS Endpoint controller will create a DNSEndpoint object associated with
the ServiceDNSRecord. It contains three A records:

•	 <service>.<namespace>.<federation>.svc.<federation-domain>

•	 <service>.<namespace>.<federation>.svc.<region>.<federation-
domain>

•	 <service>.<namespace>.<federation>.svc.<availability-
zone>.<region>.<federation-domain>

5.	 An external DNS system watches and lists DNSEndpoint objects and creates
DNS resource records in external DNS providers.

The following diagram illustrates this process:

Figure 11.5: Service DNS

Next, let's look at the critical topic of multi-cluster scheduling.

Utilizing multi-cluster scheduling
Consider what it means to do multi-cluster scheduling. You need to specify for each
deployment the total number of replicas just like on a single cluster, but you also
need to provide some constraints and guidance for distributing the pods across the
different clusters. Enter the ReplicaSchedulingPreference. This resource allows
you to specify all of your preferences and accomplish a healthy distribution of your
workloads across all the federation clusters.

Running Kubernetes on Multiple Clouds and Cluster Federation

[390]

Here is a simple example that specifies the total number of 15 replicas. KubeFed will
try to distribute the 15 replicas evenly across all of the member clusters:

apiVersion: scheduling.kubefed.io/v1alpha1
kind: ReplicaSchedulingPreference
metadata:
 name: awesome-deployment
 namespace: awesome-ns
spec:
 targetKind: FederatedDeployment
 totalReplicas: 15

If there are three clusters in the federation, then 5 replicas will run in each cluster.

The following example is a little more elaborate and uses weighted distribution. The
weights are 2:3 for cluster-1 and cluster-2. This means that the 15 replicas will be
distributed in a ratio of 2 to 3, which results in 6 replicas running in cluster-1 and 9
replicas running in cluster-2:

apiVersion: scheduling.kubefed.io/v1alpha1
kind: ReplicaSchedulingPreference
metadata:
 name: awesome-deployment
 namespace: awesome-ns
spec:
 targetKind: FederatedDeployment
 totalReplicas: 15
 clusters:
 cluster-1:
 weight: 2
 cluster-2:
 weight: 3

Weighted distribution is nice, but it can lead to undesirable edge cases, especially
when one of the member clusters becomes unreachable or is otherwise unavailable.
To maintain some boundaries, you can specify for each cluster a range of the
minimum and maximum number of replicas that are allowed to run in the cluster.
KubeFed will do its best to maintain the weighted distribution without violating
the constraints of the minimum and maximum number of replicas. In particular, the
maximum number is a hard limit that KubeFed will always respect. The minimum
number might be impossible to uphold under certain circumstances.

Chapter 11

[391]

In the following example, the same 2:3 ratio of 15 replicas is maintained. However,
cluster-1 has a maxReplicas limit of 5, so it will run just 5 replicas and not 6 as before.
On the other hand, cluster-2 has a maxReplicas limit of 12, so it can pick up the slack
and run 10 replicas, which is one more replica than before. The end result is that
all 15 replicas are scheduled, that is, cluster-1 runs 5 replicas and cluster-2 runs 10
replicas, which is a ratio of 1:2 and not 2:3. That's the best KubeFed can do under this
particular set of constraints while still scheduling all 15 replicas:

apiVersion: scheduling.kubefed.io/v1alpha1
kind: ReplicaSchedulingPreference
metadata:
 name: awesome-deployment
 namespace: awesome-ns
spec:
 targetKind: FederatedDeployment
 totalReplicas: 15
 clusters:
 cluster-1:
 weight: 2
 minReplicas: 4
 maxReplicas: 5
 cluster-2:
 weight: 3
 minReplicas: 4
 maxReplicas: 12

You can also do a uniform distribution with exceptions. For example, you can
distribute evenly across all clusters except one particular cluster that has some
constraints. Here, 100 replicas will be distributed evenly to all clusters, except for
cluster-3, which must have at least 5 replicas:

apiVersion: scheduling.kubefed.io/v1alpha1
kind: ReplicaSchedulingPreference
metadata:
 name: awesome-deployment
 namespace: awesome-ns
spec:
 targetKind: FederatedDeployment
 totalReplicas: 100
 clusters:
 "*":
 weight: 1
 cluster-3:
 minReplicas: 5
 weight: 1

Running Kubernetes on Multiple Clouds and Cluster Federation

[392]

Cluster federation shines when you want to treat your multi-cluster system like one
big cluster. However, in many cases, the correct level of abstraction is a collection of
separate clusters. This is where the Gardener project comes in.

Introducing the Gardener project
The Gardener (https://gardener.cloud/) project is an open source project
developed by SAP. It lets you manage thousands (yes, thousands!) of Kubernetes
clusters efficiently and economically. Gardener solves a very complex problem, and
the solution is elegant but not simple. In this section, we will cover the terminology
of Gardener, its conceptual model, dive deep into its architecture, and learn about
its features of extensibility. The primary theme of Gardener is to use Kubernetes to
manage Kubernetes clusters. A good way to think about Gardener is as Kubernetes-
control-plane-as-a-service.

Understanding the terminology of Gardener
The Gardener project, as you may have guessed, uses botanical terminology
to describe the world. There is a garden, which is a Kubernetes cluster that is
responsible for managing seed clusters. A seed is a Kubernetes cluster that is
responsible for managing a set of shoot clusters. A shoot cluster is a Kubernetes
cluster that runs actual workloads. The cool idea behind Gardener is that the shoot
clusters contain only the worker nodes. The control planes of all the shoot clusters
run as Kubernetes pods and services in the seed cluster.

The following diagram describes, in detail, the structure of Gardener and the
relationships between its components:

https://gardener.cloud/

Chapter 11

[393]

Figure 11.6: The structure of Gardener and its components

Don't panic! Underlying all of this complexity is a crystal-clear conceptual model.

Understanding the conceptual model of
Gardener
The architecture diagram of Gardener can be overwhelming. Let's unpack it
slowly and consider the underlying principles. Gardener really embraces the
spirit of Kubernetes and offloads a lot of the complexity of managing a large set of
Kubernetes clusters to Kubernetes itself. At its heart, Gardener is an aggregated API
server (an extended Kubernetes API server) that manages a set of custom resources
using various controllers. It embraces and takes full advantage of Kubernetes
extensibility. This approach is common in the Kubernetes community. Define a
set of custom resources and let Kubernetes manage them for you. The novelty of
Gardener is that it takes this approach to the extreme and abstracts away parts of the
Kubernetes infrastructure itself.

Running Kubernetes on Multiple Clouds and Cluster Federation

[394]

In a "normal" Kubernetes cluster, the control plane runs in the same cluster as
the worker nodes. Typically, in large clusters, control plane components like the
Kubernetes API server and etcd run on dedicated nodes and don't mix with the
worker nodes. Gardener thinks in terms of many clusters, and it takes all the control
planes of all the shoot clusters and uses a seed cluster to manage them. So the
Kubernetes control planes of the shoot clusters are managed in the seed cluster as
regular Kubernetes Deployments, which are automatically provided with replication,
monitoring, self-healing, and rolling updates by Kubernetes.

So the control plane of a Kubernetes shoot cluster is analogous to a Deployment.
The seed cluster, on the other hand, maps to a Kubernetes node. It manages multiple
shoot clusters. We recommend that you have a seed cluster per cloud provider. The
Gardener developers actually work on a Gardenlet controller for seed clusters that is
similar to the kubelet on nodes.

If the seed clusters are like Kubernetes nodes, then the garden cluster that manages
those seed clusters is like a Kubernetes cluster that manages its worker nodes.

By pushing the Kubernetes model this far, the Gardener project leverages the
strengths of Kubernetes to achieve a robustness and a performance that would be
very difficult to build from scratch.

Let's dive into the architecture.

Diving into the Gardener architecture
Gardener creates a Kubernetes namespace in the seed cluster for each shoot cluster. It
manages the certificates of the shoot cluster as Kubernetes secrets in the seed cluster.

Managing cluster state
The etcd data store for each cluster is deployed as a StatefulSet with one replica.
In addition to this, events are stored in a separate etcd instance. The etcd data
is periodically snapshotted and stored in remote storage for backup and restore
purposes. This enables the very fast recovery of clusters that have lost their control
plane (for example, when an entire seed cluster becomes unreachable). Note that
when a seed cluster goes down, the shoot cluster continues to run as usual.

Chapter 11

[395]

Managing the control plane
As mentioned before, the control plane of a shoot cluster X runs in a separate seed
cluster, while the worker nodes run in a shoot cluster. This means that pods in the
shoot cluster can use an internal DNS to locate each other, but communication to the
Kubernetes API server running in the seed cluster must be done through an external
DNS. This means the Kubernetes API server runs as a service of type LoadBalancer.

Preparing the infrastructure
When creating a new shoot cluster, it's important to provide the necessary
infrastructure. Gardener uses Terraform for this task. It generates a Terraform
script based on the shoot cluster specification and stores it as a ConfigMap in the
seed cluster. A dedicated Terraformer component runs as a Job, performs all the
provisioning, and then writes the state into a separate ConfigMap.

Using the Machine controller manager
To provision nodes in a provider-agnostic way that can work for private clouds too,
Gardener has several custom resources such as MachineDeployment, MachineClass,
MachineSet, and Machine. They work with the Kubernetes Cluster Lifecycle group to
unify their abstractions because there is a lot of overlap. In addition, Gardener takes
advantage of the cluster auto-scaler to offload the complexity of scaling node pools
up and down.

Networking across clusters
The seed cluster and shoot clusters can run on different cloud providers. The worker
nodes in the shoot clusters are often deployed in private networks. Since the control
plane needs to interact closely with the worker nodes (mostly the kubelet), the
Gardener creates a VPN for direct communication.

Monitoring clusters
Observability is a big part of operating complex distributed systems. Gardener
provides a lot of monitoring out of the box using the best of class open source
projects like a central Prometheus (https://github.com/prometheus/prometheus)
server, which is deployed in the garden cluster that collects information about all
seed clusters.

https://github.com/prometheus/prometheus

Running Kubernetes on Multiple Clouds and Cluster Federation

[396]

In addition, each shoot cluster gets its own Prometheus instance in the seed cluster.
To collect metrics, Gardener deploys two kube-state-metrics (https://github.com/
kubernetes/kube-state-metrics) instances for each cluster (one for the control plane
in the seed and one for the worker nodes in the shoot). The node-exporter (https://
github.com/prometheus/node_exporter) is deployed too, to provide additional
information about the nodes. The Prometheus AlertManager (https://prometheus.
io/docs/alerting/alertmanager/) is used to notify the operator when something
goes wrong. Grafana (https://github.com/grafana/grafana) is used to display
dashboards with relevant data about the state of the system.

The gardenctl CLI
You can manage Gardener only using kubectl, but you will have to switch profiles
and contexts a lot as you explore different clusters. Gardener provides the gardenctl
command-line tool, which offers higher-level abstractions and can operate on
multiple clusters at the same time. Here is an example:

$ gardenctl ls shoots
projects:
- project: team-a
 shoots:
 - dev-eu1
 - prod-eu1

$ gardenctl target shoot prod-eu1
[prod-eu1]

$ gardenctl show Prometheus
NAME READY STATUS RESTARTS AGE IP NODE
prometheus-0 3/3 Running 0 106d 10.241.241.42 ip-
10-240-7-72.eu-central-1.compute.internal

URL: https://user:password@p.prod-eu1.team-a.seed.aws-eu1.example.com

One of the most prominent features of Gardener is its extensibility. It has a large
surface area and supports many environments. Let's look at how extensibility is built
into its design.

https://github.com/kubernetes/kube-state-metrics
https://github.com/kubernetes/kube-state-metrics
https://github.com/prometheus/node_exporter
https://github.com/prometheus/node_exporter
https://prometheus.io/docs/alerting/alertmanager/
https://prometheus.io/docs/alerting/alertmanager/
https://github.com/grafana/grafana

Chapter 11

[397]

Extending Gardener
Gardener supports the following environments:

•	 AWS
•	 GCP
•	 Azure
•	 AliCloud
•	 Packet
•	 OpenStack

It started like Kubernetes itself with a lot of provider-specific support in the primary
Gardener repository. Over time, it followed the Kubernetes example, which
externalized cloud providers and migrated the providers to a separate Gardener
extension. Providers can be specified using a CloudProfile CRD, such as:

apiVersion: gardener.cloud/v1alpha1
kind: CloudProfile
metadata:
 name: aws
spec:
 type: aws
caBundle: |
-----BEGIN CERTIFICATE-----
...
-----END CERTIFICATE-----
 dnsProviders:
 - type: aws-route53
 - type: unmanaged
 kubernetes:
 versions:
 - 1.12.1
 - 1.11.0
 - 1.10.5
 machineTypes:
 - name: m4.large
 cpu: "2"
 gpu: "0"
 memory: 8Gi
 # storage: 20Gi # optional (not needed in every environment, may
only be specified if no volumeTypes have been specified)

Running Kubernetes on Multiple Clouds and Cluster Federation

[398]

 ...
 volumeTypes: # optional (not needed in every environment, may
only be specified if no machineType has a 'storage' field)
 - name: gp2
 class: standard
 - name: io1
 class: premium
 providerConfig:
 apiVersion: aws.cloud.gardener.cloud/v1alpha1
 kind: CloudProfileConfig
 constraints:
 minimumVolumeSize: 20Gi
 machineImages:
 - name: coreos
 regions:
 - name: eu-west-1
 ami: ami-32d1474b
 - name: us-east-1
 ami: ami-e582d29f
 zones:
 - region: eu-west-1
 zones:
 - name: eu-west-1a
 unavailableMachineTypes: # list of machine types defined above
that are not available in this zone
 - name: m4.large
 unavailableVolumeTypes: # list of volume types defined above
that are not available in this zone
 - name: gp2
 - name: eu-west-1b
 - name: eu-west-1c

Then, a shoot cluster will choose a provider and configure it with the necessary
information:

apiVersion: gardener.cloud/v1alpha1
kind: Shoot
metadata:
 name: johndoe-aws
 namespace: garden-dev
spec:
 cloudProfileName: aws
 secretBindingName: core-aws

Chapter 11

[399]

 cloud:
 type: aws
 region: eu-west-1
 providerConfig:
 apiVersion: aws.cloud.gardener.cloud/v1alpha1
 kind: InfrastructureConfig
 networks:
 vpc: # specify either 'id' or 'cidr'
 # id: vpc-123456
 cidr: 10.250.0.0/16
 internal:
 - 10.250.112.0/22
 public:
 - 10.250.96.0/22
 workers:
 - 10.250.0.0/19
 zones:
 - eu-west-1a
 workerPools:
 - name: pool-01
 # Taints, labels, and annotations are not yet implemented. This
requires interaction with the machine-controller-manager, see
 # https://github.com/gardener/machine-controller-manager/
issues/174. It is only mentioned here as future proposal.
 # taints:
 # - key: foo
 # value: bar
 # effect: PreferNoSchedule
 # labels:
 # - key: bar
 # value: baz
 # annotations:
 # - key: foo
 # value: hugo
 machineType: m4.large
 volume: # optional, not needed in every environment, may only be
specified if the referenced CloudProfile contains the volumeTypes field
 type: gp2
 size: 20Gi
 providerConfig:
 apiVersion: aws.cloud.gardener.cloud/v1alpha1
 kind: WorkerPoolConfig

Running Kubernetes on Multiple Clouds and Cluster Federation

[400]

 machineImage:
 name: coreos
 ami: ami-d0dcef3
 zones:
 - eu-west-1a
 minimum: 2
 maximum: 2
 maxSurge: 1
 maxUnavailable: 0
 kubernetes:
 version: 1.11.0
 ...
 dns:
 provider: aws-route53
 domain: johndoe-aws.garden-dev.example.com
 maintenance:
 timeWindow:
 begin: 220000+0100
 end: 230000+0100
 autoUpdate:
 kubernetesVersion: true
 backup:
 schedule: "*/5 * * * *"
 maximum: 7
 addons:
 kube2iam:
 enabled: false
 kubernetes-dashboard:
 enabled: true
 cluster-autoscaler:
 enabled: true
 nginx-ingress:
 enabled: true
 loadBalancerSourceRanges: []
 kube-lego:
 enabled: true
 email: john.doe@example.com

Chapter 11

[401]

However, the extensibility goals of Gardener go far beyond just being provider-
agnostic. The overall process of standing up a Kubernetes cluster involves many
steps. The Gardener project aims to let the operator customize each and every step
by defining custom resources and Webhooks. Here is a general flow diagram with
the CRDs, mutating/validating admission controllers, and Webhooks associated
with each step:

Figure 11.7: General flow diagram with the CRDs, mutating/validating admission controllers, and Webhooks

Here are the CRD categories that comprise the extensibility space of Gardener:

•	 DNS providers (for example, Route53 and CloudDNS)
•	 Blob storage providers (for example, S3, GCS, and ABS)
•	 Infrastructure providers (for example, AWS, GCP, and Azure)
•	 Operating systems (for example, CoreOS Container Linux, Ubuntu, and

FlatCar Linux)
•	 Network plugins (for example, Calico, Flannel, and Cilium)
•	 Non-essential extensions (for example, the Let's Encrypt certificate service)

Gardener ring
Another novel idea is to create a cluster ring of at least three clusters, where shoot
clusters serve as seed clusters for the next cluster in the ring. Together with the
ability to migrate control planes to other clusters, the ring provides a robust solution
that can self-heal if any cluster becomes unavailable. This is especially powerful if
clusters are deployed on different cloud providers or at least in different regions.
It has the potential to protect the garden from severe situations like a total region
outage or even a complete cloud provider outage.

Running Kubernetes on Multiple Clouds and Cluster Federation

[402]

Here is how the ring is organized:

Figure 11.8: The Gardener Ring

Summary
In this chapter, we've covered the important aspects of a Kubernetes Cluster
Federation as well as the management of many Kubernetes clusters using the
Gardener project. Cluster federation is still in beta and is a little raw, but it is
already usable. There aren't a lot of deployments, and the officially supported target
platforms are currently AWS and GCE/GKE, but there is a lot of momentum behind
cloud federation. It is a very important piece for building massively scalable systems
on Kubernetes. We've discussed the motivation and use cases for the Kubernetes
Cluster Federation, the federation control plane components, and the federated
Kubernetes objects. We also looked at the less supported aspects of a federation,
such as custom scheduling, federated data access, and auto-scaling. We then looked
at how to run multiple Kubernetes clusters, which includes setting up a Kubernetes
Cluster Federation, adding and removing clusters to the federation along with load
balancing, federated failover when something goes wrong, service discovery, and
migration. Then, we dived into running federated workloads across multiple clusters
with federated services and the various challenges associated with this scenario.

Chapter 11

[403]

The Gardener project has a very interesting approach and architecture. It tackles the
problem of multiple clusters from a different angle and focuses on the large-scale
management of clusters. It is relatively new, but it is used at scale by SAP and other
partners.

At this point, you should have a clear understanding of the current state of a
federation, what it takes to utilize the existing capabilities provided by Kubernetes,
and what pieces you'll have to implement yourself to augment incomplete or
immature features. Depending on your use case, you may decide that it's still too
early or that you want to take the plunge. The developers who are working on the
Kubernetes federation are moving fast, so it's very likely that it will be much more
mature and battle-tested by the time you need to make your decision.

If you're in a position where you need to manage more than a few Kubernetes
clusters, the Gardener project may be for you.

In the next chapter, we will explore the exciting world of serverless computing
on Kubernetes. Serverless can mean two different things: when you don't have to
manage servers for your long-running workloads and when running functions on a
service. Both forms of serverless are available for Kubernetes and both are extremely
useful.

[405]

12
Serverless Computing

on Kubernetes
In this chapter, we will explore the fascinating world of serverless computing in the
cloud. The term "serverless" is getting a lot of attention, but it is a misnomer used
to describe two different paradigms. A true serverless application runs as a web
application in the user's browser or a mobile app and only interacts with external
services. The types of serverless systems we build on Kubernetes are different. We
will explain exactly what serverless means on Kubernetes and how it relates to other
serverless solutions. We will cover serverless cloud solutions, introduce Knative
– the Kubernetes foundation for functions as a service – and dive into Kubernetes
Functions as a Service (FaaS) frameworks.

Let's start by clarifying what serverless is all about.

Understanding serverless computing
OK. Let's get it out of the way. The servers are still there. The term "serverless" means
that you don't have to provision, configure, and manage the servers yourself. Public
cloud platforms were a real paradigm shift by eliminating the need for dealing with
physical hardware, data centers, and networking. But, even on the cloud it takes a lot
of work and knowhow to create and provision machine images, provision instances,
configure them, upgrade and patch operating systems, define network policies, and
manage certificates and access control. With serverless computing, large chunks of
this important but tedious work go away.

Serverless Computing on Kubernetes

[406]

The allure of serverless is multi-pronged:

•	 A whole category of problems dealing with provisioning goes away
•	 Capacity planning is a non-issue
•	 You pay only for what you use

You lose some control because you have to live with the choices made by the cloud
provider. But, there is a lot of customization you can take advantage of for critical
parts of the system. Of course, where you need total control you can still manage
your own infrastructure.

The bottom line is that the serverless approach is not just hype, but provides real
benefits. Let's examine the two flavors of serverless.

Running long-running services on
"serverless" infrastructure
Long-running services are the bread and butter of microservice based distributed
systems. These services must be always available and waiting to service requests,
and can be scaled up and down to match the volume. In the traditional cloud, you
had to provision enough capacity to handle spikes and changing volumes, which
often led to over-provisioning or increased delays in processing when requests were
waiting for under-provisioned services.

Serverless services address this issue with zero effort from developers and relatively
little effort from operators. The idea is that you just mark your service to run on
the serverless infrastructure and configure it with some parameters such as the
expected CPU, memory, and any limits for the scaling. The service appears to other
services and clients just like a traditional service you deployed on infrastructure you
provisioned yourself.

Chapter 12

[407]

Services that fall into this category have the following characteristics:

•	 They're always running (they never scale down to zero)
•	 They expose multiple endpoints (such as HTTP and gRPC)
•	 They require that you implement the request handling and routing yourself
•	 They can listen to events instead or in addition to exposing endpoints
•	 Service instances can maintain in-memory caches, long-term connections,

and sessions
•	 In Kubernetes, microservices are represented directly by the Service resource

Now, let's look at FaaS.

Running FaaS on "serverless" infrastructure
Even in the largest distributed systems, we don't have every workload handling
multiple requests per second. There are always tasks that need to run in response to
relatively infrequent events, be it on schedule or invoked in an ad hoc manner. It's
possible to have a long-running service just sitting there twiddling its virtual thumbs
and processing a request every now and then. But that's wasteful. You can try to
hitch such tasks to other long-running services, but that creates very undesirable
coupling, which goes against the philosophy of microservices.

A much better approach is to treat such tasks separately and provide different
abstractions and tooling to address them. Kubernetes has the concepts of a Job and
a CronJob object. They address some of issues that FaaS tackles, but not completely.

A FaaS solution is often much simpler to get up and running compared to a
traditional service. The developers may only need to write the code for the function.
The FaaS solution will take care of the rest:

•	 Building and packaging
•	 Exposing as an endpoint
•	 Triggers based on events
•	 Automatic provisioning and scaling
•	 Monitoring and providing logs and metrics

Serverless Computing on Kubernetes

[408]

Here are some of the characteristics of a FaaS solution:

•	 Runs on demand (that is, it can scale down to zero)
•	 Exposes a single endpoint (usually HTTP)
•	 Can be triggered by events or get an automatic endpoint
•	 Often has severe limitations on resource usage and maximum runtime
•	 Sometimes, it might have a cold start (that is, when scaling up from zero)

Serverless Kubernetes in the cloud
All the major cloud providers now supports serverless long-running services for
Kubernetes. Surprisingly, Microsoft Azure was the first to offer this. Kubernetes
interacts with nodes via the kubelet. The basic idea of serverless infrastructure is that
instead of provisioning actual nodes (be they physical or on virtual machines (VMs)),
a virtual node is created in some fashion. Different cloud providers use different
solutions to accomplish this goal.

Don't forget the cluster autoscaler
Before jumping into cloud provider-specific solutions, make sure to check out the
Kubernetes-native option of the cluster autoscaler. The cluster autoscaler scales the
nodes in your cluster and doesn't suffer from the limitations of some of the other
solutions. All the Kubernetes scheduling and control mechanisms work out of the
box with the cluster autoscaler because it just automates adding and removing
regular nodes from your cluster. No exotic or provider-specific capabilities are used.

But, you may have good reasons to prefer a more provider-integrated solution. For
example, Fargate runs inside Firecracker, which is a lightweight VM with strong
security boundaries (as a side note, Lambda functions run on Firecracker too).
Similarly, Google Cloud Run runs in gVisor.

http://Firecracker

Chapter 12

[409]

Azure AKS and Azure Container Instances
Azure has supported Azure Container Instances (ACI) for a long time. ACI is not
Kubernetes-specific. It allows the running of on-demand containers on Azure in a
managed environment. It is similar in some regards to Kubernetes, but is Azure-
specific. It even has the concept of a container group, which is similar to a pod. All
containers in a container group will be scheduled to run on the same host machine:

Figure 12.1: ACI container group

Serverless Computing on Kubernetes

[410]

The integration with Kubernetes/AKS is modeled as bursting from AKS to ACI.
The guiding principle here is that for your known workloads, you should provision
your own nodes, but if there are spikes then the extra load will burst dynamically to
ACI. This approach is considered more economical because running on ACI is more
expansive than provisioning your own nodes. AKS uses the virtual kubelet (https://
virtual-kubelet.io/) CNCF project to integrate your Kubernetes cluster with the
infinite capacity of ACI. It works by adding a virtual node to your cluster backed by
ACI that appears on the Kubernetes side as a single node with infinite resources:

Figure 12.2: Virtual node architecture in AKS

Let's see how AWS does it with EKS and Fargate.

AWS EKS and Fargate
AWS released Fargate (https://aws.amazon.com/fargate/) in 2018, which is similar
to Azure ACI and lets you run containers in a managed environment. Originally,
you could use Fargate on EC2 or ECS (AWS proprietary container orchestration). At
the big AWS conference, re:Invent 2019, Fargate became generally available on EKS
too. That means that you now have a fully managed Kubernetes solution that is truly
serverless.

https://virtual-kubelet.io/
https://virtual-kubelet.io/

Chapter 12

[411]

EKS takes care of control plane and Fargate takes care of worker nodes for you:

Figure 12.3: EKS and Fargate in practice

Use of EKS and Fargate models the interaction between your Kubernetes cluster and
Fargate differently than AKS and ACI. While on AKS, a single infinite virtual node
represents the entire capacity of ACI, on EKS each pod gets its own virtual node.
But of course, those nodes are not real nodes. Fargate has its own control plane and
data plane that support EC2 and ECS, as well as EKS. The EKS-Fargate integration
is done via a set of custom Kubernetes controllers that watch for pods that need to
be deployed to a particular namespace or have specific labels, and forwards those
pods to be scheduled by Fargate. The following diagram illustrates the integration
between EKS and Fargate:

Figure 12.4: Integration between EKS and Fargate

Serverless Computing on Kubernetes

[412]

When working with Fargate, there are several limitations you should be aware of:

•	 A maximum of 4 vCPUs and 30 GB memory per pod
•	 No support for stateful workloads that require persistent volumes or

filesystems
•	 No DaemonSets, privileged pods, or pods that use HostNetwork or HostPort
•	 You can only use the application load balancer

If those limitations are too severe for you, you can try a more direct approach and
utilize the virtual kubelet project to integrate Fargate into your cluster.

What about Google, the father of Kubernetes?

Google Cloud Run
It may come as a surprise, but Google is the Johnny-come-lately of serverless
Kubernetes. Cloud Run is Google's serverless offering. It is based on Knative, which
we will dissect in depth in the next section. The basic premise is that there are two
flavors of Cloud Run. Plain Cloud Run is similar to ACI and Fargate. It lets you run
containers in an environment fully managed by Google. Cloud for Anthos supports
GKE and On-Prem lets you run containerized workloads in your GKE cluster.

Cloud for Anthos is currently the only serverless platform to allow running on
custom machine types (including GPUs). Anthos Cloud Run services participate
in the Istio service mesh and provide a streamlined Kubernetes-native experience.

Note that while managed Cloud Run instances use gVisor isolation, Anthos Cloud
Run uses standard Kubernetes isolation (container-based).

It's time to learn more about Knative.

Chapter 12

[413]

Knative
Kubernetes doesn't have built-in support for FaaS. As a result, many solutions were
developed by the community for the ecosystem. The goal of Knative is to provide
building blocks that multiple FaaS solutions can utilize without reinventing the
wheel.

But that's not all! Knative also offers the unique capability of scaling long-running
services all the way down to zero. This is a big deal. There are many use cases where
you may prefer to have a long-running service that can handle a lot of requests
coming its way in rapid succession. In those situations, it is not the best approach
to fire a new function instance per request. But, when there is no traffic coming in,
it's great to scale the service to zero instances, pay nothing, and leave more capacity
for other services that may need more resources at that time. Knative supports other
important use cases including load balancing based on percentages, load balancing
based on metrics, blue-green deployments, canary deployments, and advanced
routing. It can even optionally do automatic TLS certificates as well as HTTP
monitoring. Finally, Knative works with both HTTP and gRPC.

There are currently two Knative components: Knative Serving and Knative
Eventing. There used to also be a Knative build component, but it was factored
out to form the foundation of Tekton (https://github.com/tektoncd/pipeline),
a Kubernetes-native CD project.

Let's start with Knative Serving.

Knative Serving
The domain of Knative Serving is running versions services on Kubernetes and
routing traffic to those services. This is above and beyond standard Kubernetes
services. A Knative service defines several CRDs to model its domain: Service,
Route, Configuration, and Revision. The Service manages a Route and a
Configuration. A Configuration can have multiple Revisions.

https://github.com/tektoncd/pipeline

Serverless Computing on Kubernetes

[414]

The Route can route service traffic to a particular revision. Here is a diagram that
illustrates the relationship between the different objects:

Figure 12.5: Relationships between Knative objects

The Knative Service object
The Knative Service object combines the Kubernetes Deployment and Service into
a single object. That makes a lot of sense because, except for the special case of
headless services (https://kubernetes.io/docs/concepts/services-networking/
service/#headless-services), there is always a deployment behind every service.

The Service automatically manages the entire life cycle of its workload. It is
responsible for creating the route and configuration and a new revision whenever
the service is updated. This is very convenient because the user just needs to deal
with the Service object.

Here is the metadata for the helloworld-go Knative service:

$ kubectl get ksvc helloworld-go -o json | jq .metadata
{
 "annotations": {
 "serving.knative.dev/creator": "minikube-user",
 "serving.knative.dev/lastModifier": "minikube-user"
 },
 "creationTimestamp": "2019-12-25T18:44:34Z",
 "generation": 1,
 "name": "helloworld-go",

https://kubernetes.io/docs/concepts/services-networking/service/#headless-services
https://kubernetes.io/docs/concepts/services-networking/service/#headless-services

Chapter 12

[415]

 "namespace": "default",
 "resourceVersion": "43258",
 "selfLink": "/apis/serving.knative.dev/v1/namespaces/default/services/
helloworld-go",
 "uid": "d1979430-464e-49d6-bf68-bb384d1ef0b3"
}

And here is the spec:

$ kubectl get ksvc helloworld-go -o json | jq .spec
{
 "template": {
 "metadata": {
 "creationTimestamp": null
 },
 "spec": {
 "containerConcurrency": 0,
 "containers": [
 {
 "env": [
 {
 "name": "TARGET",
 "value": "Yeah, it works!!!"
 }
],
 "image": "gcr.io/knative-samples/helloworld-go",
 "name": "user-container",
 "readinessProbe": {
 "successThreshold": 1,
 "tcpSocket": {
 "port": 0
 }
 },
 "resources": {}
 }
],
 "timeoutSeconds": 300
 }
 },
 "traffic": [
 {
 "latestRevision": true,
 "percent": 100
 }
]
}

Serverless Computing on Kubernetes

[416]

Note the traffic section of the spec that directs 100% of requests to the latest revision.
This is what determines the Route CRD.

The Knative Route object
The Knative Route object allows the directing of a percentage of incoming requests
to particular revisions. The default is 100% to the latest revision, but you can change
it. This allows advanced deployment scenarios such as blue-green deployments as
well as canary deployments.

For example, this is how to switch from blue to green when deploying a new version.
Start with 100% going to the current revision and 0% going to the new revision
(tagged v2):

apiVersion: serving.knative.dev/v1
kind: Route
metadata:
 name: blue-green-demo # Route name is unchanged, since we're updating
an existing Route
 namespace: default
spec:
 traffic:
 - revisionName: blue-green-demo-lcfrd
 percent: 100 # All traffic still going to the first revision
 - revisionName: blue-green-demo-m9548
 percent: 0 # 0% of traffic routed to the second revision
 tag: v2 # A named route

Then, to switch all traffic to the new version, apply the following change to the route:

apiVersion: serving.knative.dev/v1
kind: Route
metadata:
 name: blue-green-demo # Updating our existing route
 namespace: default
spec:
 traffic:
 - revisionName: blue-green-demo-lcfrd
 percent: 0
 tag: v1 # Adding a new named route for v1
 - revisionName: blue-green-demo-m9548
 percent: 100
 # Named route for v2 has been removed, since we don't need it
anymore

Chapter 12

[417]

If you want more gradual shifting of the load, you can do different percentages
as long as they add up to 100%.

The Knative Configuration object
The Configuration CRD contains the latest version of the service and the number of
generations. For example, if we update the service to version 2:

apiVersion: serving.knative.dev/v1 # Current version of Knative
kind: Service
metadata:
 name: helloworld-go # The name of the app
 namespace: default # The namespace the app will use
spec:
 template:
 spec:
 containers:
 - image: gcr.io/knative-samples/helloworld-go # The URL to the
image of the app
 env:
 - name: TARGET # The environment variable printed out by
the sample app
 value: "Yeah, it still works - version 2 !!!"

Then the configuration will contain this new version, but mark it as generation 2:

$ kubectl get configurations helloworld-go -o yaml
apiVersion: serving.knative.dev/v1
kind: Configuration
metadata:
 annotations:
 serving.knative.dev/creator: minikube-user
 serving.knative.dev/lastModifier: minikube-user
 creationTimestamp: "2019-12-25T18:44:34Z"
 generation: 2
 labels:
 serving.knative.dev/route: helloworld-go
 serving.knative.dev/service: helloworld-go
 name: helloworld-go
 namespace: default
 ownerReferences:
 - apiVersion: serving.knative.dev/v1alpha1
 blockOwnerDeletion: true

Serverless Computing on Kubernetes

[418]

 controller: true
 kind: Service
 name: helloworld-go
 uid: d1979430-464e-49d6-bf68-bb384d1ef0b3
 resourceVersion: "75459"
 selfLink: /apis/serving.knative.dev/v1/namespaces/default/configurations/
helloworld-go
 uid: c1ce42e0-e6ec-412f-9e07-4c41370e024c
spec:
 template:
 metadata:
 creationTimestamp: null
 spec:
 containerConcurrency: 0
 containers:
 - env:
 - name: TARGET
 value: Yeah, it still works - version 2 !!!
 image: gcr.io/knative-samples/helloworld-go
 name: user-container
 readinessProbe:
 successThreshold: 1
 tcpSocket:
 port: 0
 resources: {}
 timeoutSeconds: 300
status:
 conditions:
 - lastTransitionTime: "2019-12-26T03:21:45Z"
 status: "True"
 type: Ready
 latestCreatedRevisionName: helloworld-go-l58sn
 latestReadyRevisionName: helloworld-go-l58sn
 observedGeneration: 2

But note that the Route will still point to version 1:

$ kubectl get route helloworld-go -o yaml
apiVersion: serving.knative.dev/v1
kind: Route
metadata:
 annotations:
 serving.knative.dev/creator: minikube-user

Chapter 12

[419]

 serving.knative.dev/lastModifier: minikube-user
 creationTimestamp: "2019-12-25T18:44:35Z"
 generation: 1
 labels:
 serving.knative.dev/service: helloworld-go
 name: helloworld-go
 namespace: default
 ownerReferences:
 - apiVersion: serving.knative.dev/v1alpha1
 blockOwnerDeletion: true
 controller: true
 kind: Service
 name: helloworld-go
 uid: d1979430-464e-49d6-bf68-bb384d1ef0b3
 resourceVersion: "75500"
 selfLink: /apis/serving.knative.dev/v1/namespaces/default/routes/
helloworld-go
 uid: 5a22217f-7090-46d2-b009-61ca0d3b6561
spec:
 traffic:
 - configurationName: helloworld-go
 latestRevision: true
 percent: 100
status:
 address:
 url: http://helloworld-go.default.svc.cluster.local
 conditions:
 - lastTransitionTime: "2019-12-25T18:45:25Z"
 status: "True"
 type: AllTrafficAssigned
 - lastTransitionTime: "2019-12-26T03:21:51Z"
 status: "True"
 type: IngressReady
 - lastTransitionTime: "2019-12-26T03:21:51Z"
 status: "True"
 type: Ready
 observedGeneration: 1
 traffic:
 - latestRevision: true
 percent: 100
 revisionName: helloworld-go-l58sn
 url: http://helloworld-go.default.example.com

Serverless Computing on Kubernetes

[420]

The Knative Revision object
However, both the current and new versions will be captured as separate revisions:

$ kubectl get revisions
NAME CONFIG NAME K8S SERVICE NAME GENERATION
READY REASON
helloworld-go-fltxb helloworld-go helloworld-go-fltxb 1 True
helloworld-go-l58sn helloworld-go helloworld-go-l58sn 2 True

As you can see, both generations are present and that allows routing to either one of
them or dividing the traffic between them using a Route, as we saw earlier.

To summarize, Knative Serving provides better deployment and networking for
Kubernetes for long-running services and functions. Let's see what Knative Eventing
brings to the table.

Knative Eventing
Traditional services on Kubernetes or other systems expose API endpoints that
consumers can hit (often over HTTP) to send a request for processing. This pattern of
request-response is very useful and hence is so popular. However, this is not the only
pattern for invoking services or functions. Most distributed systems have some form
of loosely coupled interactions where events are published. It is desirable to invoke
some code when events occur.

Before Knative, you had to build this capability yourself or use some third-party
library that binds events to code. Knative Eventing aims to provide a standard way
to accomplish this task. It is compatible with the CNCF's CloudEvents specification
(https://github.com/cloudevents/spec/blob/master/spec.md#design-goals).

Getting familiar with Knative Eventing terminology
Before diving into the architecture, let's define some terms and concepts we will use
later.

https://github.com/cloudevents/spec/blob/master/spec.md#design-goals

Chapter 12

[421]

Event consumer
There are two types of event consumers: Addressable and Callable. Addressable
consumers can receive events over HTTP through their status.address.url field.
The Kubernetes Service object doesn't have such a field, but it is also considered
a special case of an Addressable consumer.

Callable consumers receive an event delivered over HTTP and may return another
event in the response that will be consumed just like an external event. Callable
consumers provide an effective way to transform events.

Event source
This is the originator of an event. Knative supports many common sources and
you can write your own custom event source too. Here is a list of supported event
sources (many of them are still in the early development phase):

•	 AWS SQS
•	 Apache Camel
•	 Apache CouchDB
•	 Apache Kafka
•	 BitBucket
•	 Cron Job
•	 GCP Pub/Sub
•	 GitHub
•	 GitLab
•	 Google Cloud Scheduler
•	 Kubernetes (Kubernetes Events)

There are also a few meta controllers that assist in implementing event sources, such
as the following:

•	 ContainerSource: https://github.com/knative/eventing/blob/master/pkg/
apis/sources/v1alpha1/containersource_types.go

•	 AutoContainerSource: https://github.com/Harwayne/auto-container-
source

•	 Same Source: https://github.com/grantr/sample-source

https://github.com/knative/eventing/blob/master/pkg/apis/sources/v1alpha1/containersource_types.go
https://github.com/knative/eventing/blob/master/pkg/apis/sources/v1alpha1/containersource_types.go
https://github.com/Harwayne/auto-container-source - Same Source: https://github.com/grantr/sample-source
https://github.com/Harwayne/auto-container-source - Same Source: https://github.com/grantr/sample-source
https://github.com/Harwayne/auto-container-source - Same Source: https://github.com/grantr/sample-source

Serverless Computing on Kubernetes

[422]

Broker and Trigger
A broker mediates events identified by particular attributes and matches them
with consumers via triggers. The trigger includes a filter of event attributes and
an addressable consumer. When the event arrives at the broker, it forwards it to
consumers that have triggers with matching filters to the event attributes. The
following diagram illustrates this workflow:

Figure 12.6: Broker and trigger workflow

Event types and the Event Registry
Events can have a type, which is modeled as the EventType CRD. The Event Registry
stores all the event types. Triggers can use the event type as one of their filter criteria.

Channels and subscriptions
A channel is an optional persistence layer. Different event types may be routed
to different channels with different backing stores. Some channels may store an
event in memory, while other channels may persist to disk via NATS streaming,
Kafka, or something similar. Subscribers (consumers) eventually receive and handle
the events.

The architecture of Knative Eventing
The current architecture supports two modes of event delivery:

•	 Simple delivery
•	 Fan-out delivery

Chapter 12

[423]

The simple delivery is just 1:1 source to consumer. The consumer can be a core
Kubernetes service or a Knative service. If the consumer is unreachable, the source
is responsible for handling the fact that the event can't be delivered. The source can
retry, log an error, or take any other appropriate action.

The following diagram illustrates this simple concept:

Figure 12.7: Simple delivery

Fan-out delivery supports arbitrarily complex processing, where multiple
consumers subscribe to the same event on a channel. Once an event is received by
the channel, the source is not responsible for the event anymore. This allows more
dynamic subscriptions of consumers because the source doesn't even know who the
consumers are.

The following diagram illustrates the complex processing and subscription patterns
that can arise when using channels:

Figure 12.8: Delivery with channels and subscriptions

At this point, you should have a decent understanding of the scope of Knative and
how it establishes a solid serverless foundation for Kubernetes. Let's play around
a little with Knative and see what it feels like.

Taking Knative for a ride
Knative is a not a small piece of software. It has many moving parts, it supports
many modes of operation, and it can integrate with many systems. We will just
explore a small part of it using a Minikube cluster.

Serverless Computing on Kubernetes

[424]

We will perform the following:

•	 Create a compatible Minikube cluster
•	 Install Knative using Gloo as its ingress gateway
•	 Deploy a Knative service
•	 Invoke the Knative service
•	 Verify it can scale to zero

Here we go...

Installing Knative
There are many ways to install Knative. See https://knative.dev/docs/install.
We will use the minikube installation. First, let's create a minikube cluster with the
specific parameters recommended by Knative:

$ minikube start --memory=8192 --cpus=4 \
 --vm-driver=hyperkit \
 --disk-size=30g \
 --extra-config=apiserver.enable-admission-plugins="LimitRan
ger,NamespaceExists,NamespaceLifecycle,ResourceQuota,ServiceAccount,Default
StorageClass,MutatingAdmissionWebhook"

 minikube v1.10.1 on Darwin 10.15.5

 Selecting 'hyperkit' driver from user configuration (alternates: [])

 Downloading driver docker-machine-driver-hyperkit:
 > docker-machine-driver-hyperkit.sha256: 65 B / 65 B [---] 100.00% ?
p/s 0s
 > docker-machine-driver-hyperkit: 10.81 MiB / 10.81 MiB 100.00% 8.84
MiB p

 The 'hyperkit' driver requires elevated permissions. The following
commands will be executed:

 $ sudo chown root:wheel /Users/gigi.sayfan/.minikube/bin/docker-
machine-driver-hyperkit
 $ sudo chmod u+s /Users/gigi.sayfan/.minikube/bin/docker-machine-
driver-hyperkit

Password:
 Downloading VM boot image ...

https://knative.dev/docs/install

Chapter 12

[425]

 > minikube-v1.10.1.iso.sha256: 65 B / 65 B [--------------] 100.00% ?
p/s 0s
 > minikube-v1.10.1.iso: 150.93 MiB / 150.93 MiB [] 100.00% 10.27 MiB
p/s 14s

 Creating hyperkit VM (CPUs=4, Memory=8192MB, Disk=30000MB) ...
 Preparing Kubernetes v1.18.2 on Docker '19.03.8' ...

 ▪ apiserver.enable-admission-plugins=LimitRanger,NamespaceExists,Namesp
aceLifecycle,ResourceQuota,ServiceAccount,DefaultStorageClass,MutatingAdmis
sionWebhook

 Downloading kubeadm v1.18.0
 Downloading kubelet v1.18.0
 Pulling images ...
 Launching Kubernetes ...
 Waiting for cluster to come online ...
 Done! kubectl is now configured to use "minikube"

Knative requires an ingress gateway. The current options are Istio, Ambassador, and
Gloo. Let's use Gloo as it is very lightweight:

$ curl -sL https://run.solo.io/gloo/install | sh
Attempting to download glooctl version v1.3.29
Downloading glooctl-darwin-amd64...
Download complete!, validating checksum...
Checksum valid.
Gloo was successfully installed

Add the gloo CLI to your path with:
 export PATH=$HOME/.gloo/bin:$PATH

Now run:
 glooctl install gateway # install gloo's function gateway
functionality into the 'gloo-system' namespace
 glooctl install ingress # install very basic Kubernetes Ingress
support with Gloo into namespace gloo-system
 glooctl install knative # install Knative serving with Gloo configured
as the default cluster ingress
Please see visit the Gloo Installation guides for more: https://gloo.solo.
io/installation/

Make sure glooctl is on your path (I copied $HOME/.gloo/bin/glooctl to /usr/
local/bin) then run the following command to install both Gloo and Knative:

$ glooctl install knative -g --install-knative-version="0.15.0"
installing Knative CRDs...

Serverless Computing on Kubernetes

[426]

installing Knative...
Knative successfully installed!

$ glooctl install knative --install-knative=false
Creating namespace gloo-system... Done.
Starting Gloo installation...

Gloo was successfully installed!

Deploying a Knative service
At this point, we can deploy Knative services. Here is a simple hello-world app
that returns a "Hello Yeah, it works!!!" message. Save the following YAML to
service.yaml:

apiVersion: serving.knative.dev/v1 # Current version of Knative
kind: Service
metadata:
 name: helloworld-go # The name of the app
 namespace: default # The namespace the app will use
spec:
 template:
 spec:
 containers:
 - image: gcr.io/knative-samples/helloworld-go # The URL to the
image of the app
 env:
 - name: TARGET # The environment variable printed out by
the sample app
 value: "Yeah, it works!!!"

Then deploy it:

$ kubectl create -f service.yaml
service.serving.knative.dev/helloworld-go created

Invoking a Knative service
You can view the deployed Knative service by getting the kservice (or ksvc) CRD:

$ kubectl get kservice
NAME URL LATESTCREATED
LATESTREADY READY REASON
helloworld-go http://helloworld-go.default.example.com helloworld-go-
fltxb helloworld-go-fltxb True

Chapter 12

[427]

The LATESTCREATED and LATESTREADY columns correspond to a standard Kubernetes
service of type ClusterIP that the Knative service delegates the actual work to:

$ kubectl get svc helloworld-go-fltxb
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
helloworld-go-fltxb ClusterIP 10.96.124.21 <none> 80/TCP 67m

Normally, the Gloo external proxy LoadBalancer service receives the incoming
requests and routes them to the Knative service. But minikube LoadBalancer services
have no external IP:

$ kubectl get svc knative-external-proxy -n gloo-system
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
knative-external-proxy LoadBalancer 10.96.72.13 <pending>
80:30150/TCP,443:30146/TCP 4h53m

To work around this, we need to get the URL of the proxy using glooctl proxy
url --name knative-external-proxy and use that URL to access the service while
passing the original URL as a Host header:

$ curl -H "Host: helloworld-go.default.example.com" $(glooctl proxy url
--name knative-external-proxy)
Hello Yeah, it works!!!!

Checking the scale-to-zero option in Knative
Knative is configured by default to scale to zero with a grace period of 30 seconds.
That means that after 30 seconds of inactivity (no request coming in), all the pods
will be terminated until a new request comes in. To verify this, we can wait 30
seconds and check the pods in the default namespace:

$ kubectl get po
No resources found in default namespace.

Then, we can invoke the service and immediately check the pods:

$ curl -H "Host: helloworld-go.default.example.com" $(glooctl proxy url
--name knative-external-proxy)
Hello Yeah, it works!!!!

$ kubectl get po

Serverless Computing on Kubernetes

[428]

NAME READY STATUS
RESTARTS AGE
helloworld-go-fltxb-deployment-74b5dc8665-2j7hw 2/2 Running 0
6s

Let's watch when the pods disappear by using the -w flag. Apparently, the pods start
terminating after a minute:

$ kubectl get po -w
NAME READY STATUS
RESTARTS AGE
helloworld-go-fltxb-deployment-74b5dc8665-2j7hw 2/2 Running 0
49s
helloworld-go-fltxb-deployment-74b5dc8665-2j7hw 2/2 Terminating 0
62s
helloworld-go-fltxb-deployment-74b5dc8665-2j7hw 1/2 Terminating 0
83s
helloworld-go-fltxb-deployment-74b5dc8665-2j7hw 0/2 Terminating 0
84s
helloworld-go-fltxb-deployment-74b5dc8665-2j7hw 0/2 Terminating 0
96s
helloworld-go-fltxb-deployment-74b5dc8665-2j7hw 0/2 Terminating 0
96s

At this point, we've had a little fun with Knative and can now move on to discussing
FaaS solutions on Kubernetes.

Kubernetes FaaS frameworks
Let's acknowledge the elephant in the room – FaaS. The Kubernetes Job and
CronJob are great, and having cluster autoscaling and cloud providers managing
the infrastructure is awesome. Knative, with its scale-to-zero and traffic routing
functionalities, is super cool. But what about actual FaaS? Fear not – Kubernetes
has many options here. Maybe too many options. There are more than ten FaaS
frameworks for Kubernetes:

•	 Fission
•	 Kubeless
•	 FaaS

Chapter 12

[429]

•	 OpenWhisk
•	 Riff (built on top of Knative)
•	 Nuclio
•	 Funktion
•	 BlueNimble
•	 Fn
•	 Gestalt
•	 Rainbond
•	 IronFunctions

We will look into a few of the more popular options.

Fission
Fission (https://fission.io/) is a mature and well-documented framework. It
models the FaaS world as environments, functions, and triggers. Environments
are needed to build and run your function code for the specific languages. Each
language environment contains an HTTP server and often a dynamic loader (for
dynamic languages). Functions are the objects that represent the serverless functions
and triggers determine how the functions deployed in the cluster can be invoked.
There are four kinds of triggers:

•	 HTTP trigger: Invokes a function via an HTTP endpoint
•	 Timer trigger: Invokes a function at a certain time
•	 Message queue trigger: Invokes a function when an event is pulled from

message queue (this supports Kafka, NATS, and Azure queues)
•	 Kubernetes watch trigger: Invokes a function in response to a Kubernetes

event in your cluster

It's interesting that the message queue triggers are not just fire and forget. They
support optional response and error queues. Here is a diagram that shows the flow:

https://fission.io/

Serverless Computing on Kubernetes

[430]

Figure 12.9: Message queue trigger flow

Fission is proud of its 100-millisecond cold-start. It achieves this by keeping a pool of
"warm" containers with a small dynamic loader. When a function is first called, there
is a running container ready to go and the code is sent to this container for execution.
In a sense, Fission cheats because it never starts cold. The bottom line is that Fission
doesn't scale to zero, but is very fast for first-time calls.

Fission Workflows
Fission has one other claim to fame – Fission Workflows. This feature allows you to
build sophisticated workflows made of chains of Fission functions. Here is a diagram
that describes the architecture of Fission Workflows:

Figure 12.10: Fission workflow architecture

Chapter 12

[431]

You define workflows in YAML that specify tasks (often Fission functions), inputs,
outputs, conditions, and delays:

apiVersion: 1
description: Send a message to a slack channel when the temperature
exceeds a certain threshold
output: CreateResult
Input: 'San Fransisco, CA'
tasks:
 # Fetch weather for input
 FetchWeather:
 run: wunderground-conditions
 inputs:
 default:
 apiKey: <API_KEY>
 state: "{$.Invocation.Inputs.default.substring($.Invocation.
Inputs.default.indexOf(',') + 1).trim()}"
 city: "{$.Invocation.Inputs.default.substring(0, $.Invocation.
Inputs.default.indexOf(',')).trim()}"

 ToCelsius:
 run: tempconv
 inputs:
 default:
 temperature: "{$.Tasks.FetchWeather.Output.current_observation.
temp_f}"
 format: F
 target: C
 requires:
 - FetchWeather

 # Send a slack message if the temperature threshold has been exceeded
 CheckTemperatureThreshold:
 run: if
 inputs:
 if: "{$.Tasks.ToCelsius.Output.temperature > 25}"
 then:
 run: slack-post-message
 inputs:
 default:
 message: "{'It is ' + $.Tasks.ToCelsius.Output.temperature
+ 'C in ' + $.Invocation.Inputs.default + ' :fire:'}"
 path: <HOOK_URL>

Serverless Computing on Kubernetes

[432]

 requires:
 - ToCelsius

 # Besides the potential Slack message, compose the response of this
workflow {location, celsius, fahrenheit}
 CreateResult:
 run: compose
 inputs:
 celsius: "{$.Tasks.ToCelsius.Output.temperature}"
 fahrenheit: "{$.Tasks.FetchWeather.Output.current_observation.
temp_f}"
 location: "{$.Invocation.Inputs.default}"
 sentSlackMsg: "{$.Tasks.CheckTemperatureThreshold.Output}"
 requires:
 - ToCelsius
 - CheckTemperatureThreshold

Let's give Fission a try.

Experimenting with Fission
First, let's install Fission using Helm (Helm 3):

$ kubectl create ns fission
$ helm install fission --namespace fission \
 --set serviceType=NodePort,routerServiceType=NodePort \
 https://github.com/fission/fission/releases/download/1.9.0/fission-all-
1.9.0.tgz

Here are all the CRDs it created:

$ kubectl get crd -o name | grep fission
customresourcedefinition.apiextensions.k8s.io/canaryconfigs.fission.io
customresourcedefinition.apiextensions.k8s.io/environments.fission.io
customresourcedefinition.apiextensions.k8s.io/functions.fission.io
customresourcedefinition.apiextensions.k8s.io/httptriggers.fission.io
customresourcedefinition.apiextensions.k8s.io/kuberneteswatchtriggers.
fission.io
customresourcedefinition.apiextensions.k8s.io/messagequeuetriggers.fission.io
customresourcedefinition.apiextensions.k8s.io/packages.fission.io
customresourcedefinition.apiextensions.k8s.io/timetriggers.fission.io

Chapter 12

[433]

The Fission CLI will come in handy too:

$ curl -Lo fission https://github.com/fission/fission/releases/download/1.9.0/
fission-cli-osx && chmod +x fission && sudo mv fission /usr/local/bin/

We need to create an environment to be able to build our function. Let's go with a
Python environment:

$ fission environment create --name python --image fission/python-env
environment 'python' created

With a Python environment in place, we can create a serverless function. First, save
this code to yeah.py:

def main():
 return 'Yeah, it works!!!'

Then, we create the Fission function called yeah:

$ fission function create --name yeah --env python --code yeah.py
Package 'yeah-b9d5d944-9c6e-4e67-81fb-96e047625b74' created
function 'yeah' created

We can test the function though the Fission CLI:

$ fission function test --name yeah
Yeah, it works!!!

The real deal is invoking it though an HTTP endpoint. We need to create a route for
that:

$ fission route create --method GET --url /yeah --function yeah

With the route in place, we still need to export the FISSION_ROUTER environment
variable:

$ export FISSION_ROUTER=$(minikube ip):$(kubectl -n fission get svc router
-o jsonpath='{...nodePort}')

With all the preliminaries out of the way, let's invoke our function via httpie:

$ http http://${FISSION_ROUTER}/yeah
HTTP/1.1 200 OK
Content-Length: 17
Content-Type: text/html; charset=utf-8
Date: Wed, 10 Jun 2020 01:16:51 GMT

Yeah, it works!!!

Serverless Computing on Kubernetes

[434]

Kubeless
Kubeless is another successful Kubernetes FaaS framework. It uses Kubernetes for
autoscaling, routing, monitoring, and so on. Its claim to fame is bringing the most
Kubernetes-native FaaS framework, along with its great UI. Kubeless models the
world using similar concepts to Fission. Let's explore its architecture.

Kubeless architecture
Kubeless maintains a Kubernetes deployment and service for each function.
It doesn't scale to zero, but as a result has a very fast response time. It is based
on three pillars: runtimes, functions, and triggers. Let's examine them.

Kubeless runtimes
A Kubeless runtime is basically an image for each supported language that the
Kubeless controller manager launches when a new function is created. The controller
is watching the function CRD and if it changes, it dynamically reloads the code.

Kubeless can tell us exactly what the supported runtimes are:

$ kubeless get-server-config
INFO[0000] Current Server Config:
INFO[0000] Supported Runtimes are: ballerina0.981.0, dotnetcore2.0,
dotnetcore2.1, go1.10, go1.11, go1.12, java1.8, java11, nodejs6, nodejs8,
nodejs10, nodejs12, php7.2, php7.3, python2.7, python3.4, python3.6,
python3.7, ruby2.3, ruby2.4, ruby2.5, ruby2.6, jvm1.8, nodejs_distroless8,
nodejsCE8, vertx1.8

Kubeless functions
The Kubeless function CRD actually contains the source code for dynamic languages.
When the Kubeless controller manager detects that a new function has been created,
it will create a deployment and service for the function. It will also update the
deployment if the function ever changes. The function can then be triggered via
HTTP or events.

It is also possible to pre-build function images. This offers some performance benefits
when redeploying the same function multiple times.

Chapter 12

[435]

Kubeless triggers
Kubeless functions can be triggered (invoked) in multiple ways. You can directly
invoke them from the CLI or the UI during development, which is very nice. But the
real deal is triggering the functions in production. Similar to other frameworks, you
can invoke functions via HTTP endpoints (after all, they are deployed as Kubernetes
services). You will need to expose the service to the outside world yourself though.

Kubeless also supports triggering based on event sources. Current event sources
include Kafka, NATS, and AWS Kinesis.

It's time to get hands-on with Kubeless.

Playing with Kubeless
Let's install the CLI first via brew:

$ brew install kubeless

The Helm charts for Kubeless are broken at the moment. It may be fixed by the time
you read this. We will install it directly:

$ export RELEASE=$(curl -s https://api.github.com/repos/kubeless/kubeless/
releases/latest | grep tag_name | cut -d '"' -f 4)
$ kubectl create ns kubeless
$ kubectl create -f https://github.com/kubeless/kubeless/releases/
download/$RELEASE/kubeless-$RELEASE.yaml
configmap/kubeless-config created
deployment.apps/kubeless-controller-manager created
serviceaccount/controller-acct created
clusterrole.rbac.authorization.k8s.io/kubeless-controller-deployer created
clusterrolebinding.rbac.authorization.k8s.io/kubeless-controller-deployer
created
customresourcedefinition.apiextensions.k8s.io/functions.kubeless.io created
customresourcedefinition.apiextensions.k8s.io/httptriggers.kubeless.io
created
customresourcedefinition.apiextensions.k8s.io/cronjobtriggers.kubeless.io
created

Serverless Computing on Kubernetes

[436]

We can verify whether Kubeless was installed properly by checking the kubeless-
controller-manager (which should be ready):

$ kubectl get deploy kubeless-controller-manager -n kubeless
NAME READY UP-TO-DATE AVAILABLE AGE
kubeless-controller-manager 1/1 1 1 11h

Alright, let's create a function. Here is our test Python function. Note the signature
that includes an event object and a context object. The request body is always in the
data field of the event object regardless of how the function was invoked and which
programming language was used. In Python, the type of event['data'] is bytes and
not a string. I learned it the hard way when I tried to concatenate the string 'Yeah,
' with event['data']. I changed it to a bytes type b'Yeah, ' and all was well:

def yeah(event, context):
 print(event)
 print(context)
 return b'Yeah, ' + event['data']

We can deploy it to the cluster with the kubeless function deploy command:

$ kubeless function deploy yeah --runtime python3.7 \
 --from-file yeah.py \
 --handler yeah.yeah

INFO[0000] Deploying function...
INFO[0000] Function yeah submitted for deployment
INFO[0000] Check the deployment status executing 'kubeless function ls
yeah'

After a while, the function will be ready:

$ kubeless function ls
NAME NAMESPACE HANDLER RUNTIME DEPENDENCIES STATUS
yeah default yeah.yeah python3.7 1/1 READY

Chapter 12

[437]

Now, we can invoke it from the kubeless CLI:

$ kubeless function call yeah --data 'it works!!!'
Yeah, it works!!!

We can check the logs too and see the entire event and context that we print inside
the function:

$ kubeless function logs yeah
{'data': it works!!!', 'event-id': 'cUoOtQDb5bt5V88', 'event-type':
'application/x-www-form-urlencoded', 'event-time': '2019-12-27T17:05:16Z',
'event-namespace': 'cli.kubeless.io', 'extensions': {'request':
<LocalRequest: POST http://192.168.64.3:8443/>}}
{'function-name': <function yeah at 0x7f07b3a5a7b8>, 'timeout': 180.0,
'runtime': 'python3.7', 'memory-limit': '0'}

Using the Kubeless UI
Let's check out the famous Kubeless web UI:

$ kubectl create -f https://raw.githubusercontent.com/kubeless/kubeless-ui/
master/k8s.yaml
serviceaccount/ui-acct created
clusterrole.rbac.authorization.k8s.io/kubeless-ui created
clusterrolebinding.rbac.authorization.k8s.io/kubeless-ui created
deployment.apps/ui created
service/ui created

The service was deployed in the kubeless namespace. We can use port-forward to
expose it:

$ kubectl get svc -n kubeless
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
ui NodePort 10.96.248.15 <none> 3000:32079/TCP 93s
$ k port-forward -n kubeless svc/ui 3000
Forwarding from 127.0.0.1:3000 -> 3000
Forwarding from [::1]:3000 -> 3000

Serverless Computing on Kubernetes

[438]

It is indeed a very user-friendly and convenient UI:

Figure 12.11: Kubeless web UI

You can see all your functions, run them with different parameters, and see the
responses and the logs. You can even edit and save your changes all from the
comfort of the web UI. I discovered that when passing event data through the event
UI, you must use POST and not the default GET, and also that the data arrives as a
string and not as bytes, like it did when invoking the function through the CLI. This
is inconsistent and annoying. It means that the function can't assume the type of the
event data and must handle both cases. Overall, however, the Kubeless UI definitely
lives up to its reputation.

Kubeless with the serverless framework
You can also work with Kubeless using the serverless framework. For more details,
check out the guide at https://serverless.com/framework/docs/providers/
kubeless/guide/intro/.

https://serverless.com/framework/docs/providers/kubeless/guide/intro/
https://serverless.com/framework/docs/providers/kubeless/guide/intro/

Chapter 12

[439]

Knative and riff
Riff is an open source project from Pivotal for running functions on Kubernetes. Its
recursive name stands for "riff is for functions". Riff is built on top of Knative and
enjoys all its benefits. It adds a CLI and the ability to build the function containers
for you via another open source project from Heroku and Pivotal Cloud-native
Buildpacks (https://buildpacks.io/).

Riff is used to power PKS – Pivotal's enterprise Kubernetes offering. That should
give you a lot of confidence that it is robust and battle tested.

Understanding riff runtimes
Riff supports different runtimes. A riff runtime is unlike a Kubeless runtime or
a Fission environment. It is more about the underlying implementation that riff
uses to implement its FaaS capabilities. There are three different runtimes:

•	 Core
•	 Knative
•	 Streaming

The core runtime uses vanilla Kubernetes objects to create a Deployment and a
Service. No ingress or autoscaling is provided. It doesn't provide much value, really.

The Knative runtime uses Knative (obviously) and it also depends on Istio
(so, no Knative and Gloo if you're using riff).

Installing riff with Helm 2
At the moment the riff Helm chart is not compatible with Helm 3. Let's use Helm
2 to install riff. First, we'll add the project riff charts to our repo list:

$ helm2 repo add projectriff https://projectriff.storage.googleapis.com/
charts/releases
$ helm2 repo update

Next, we'll install Istio (specifically, a version provided by project riff itself to ensure
compatibility):

$ helm2 install projectriff/istio --name istio -n istio-system --set
gateways.istio-ingressgateway.type=NodePort --wait --devel

https://buildpacks.io/

Serverless Computing on Kubernetes

[440]

Finally, let's install riff itself (make sure to first delete the knative-serving
namespace if it exists):

$ helm2 install projectriff/riff --name riff \
 --set tags.core-runtime=true \
 --set tags.knative-runtime=true \
 --set tags.streaming-runtime=false \
 --wait --devel

Now that riff is installed in our cluster, we can install the riff CLI. On macOS, we can
use homebrew:

$ brew install riff

You can find instructions for other operating systems at https://github.com/
projectriff/cli/#installation-of-the-latest-release.

We can verify the status of the riff installation with the riff doctor command:

$ riff doctor
NAMESPACE STATUS
riff-system ok

RESOURCE READ WRITE
configmaps allowed allowed
secrets allowed allowed
pods allowed n/a
pods/log allowed n/a
applications.build.projectriff.io allowed allowed
containers.build.projectriff.io allowed allowed
functions.build.projectriff.io allowed allowed
deployers.core.projectriff.io allowed allowed
processors.streaming.projectriff.io missing missing
streams.streaming.projectriff.io missing missing
adapters.knative.projectriff.io allowed allowed
deployers.knative.projectriff.io allowed allowed

The status is OK and all the components are installed, except the two streaming
components we didn't install on purpose (as they require Kafka).

Functions will be packaged as images and stored in a container registry. So, we need
to give riff credentials:

$ export DOCKER_ID=g1g1
$ riff credential apply dockerhub-creds --docker-hub $DOCKER_ID --set-
default-image-prefix

https://github.com/projectriff/cli/#installation-of-the-latest-release
https://github.com/projectriff/cli/#installation-of-the-latest-release

Chapter 12

[441]

Be sure to use your own DockerHub ID (not mine obviously). Riff will ask you for
your password.

Moving on, it's time to create the function. Riff requires a little more ceremony than
other FaaS frameworks. The function code must be in a Git repository. Let's use
a simple Node.js square function from the riff project:

module.exports = x => {
 const xx = x ** 2;
 console.log('the square of ${x} is ${xx}');
 return xx;
}

Here is how to create a function with riff:

$ riff function create square \
 --git-repo https://github.com/projectriff-samples/node-square \
 --artifact square.js \

Created function "square"

The next step is to create a deployer:

$ riff knative deployer create knative-square --function-ref square –tail
Created deployer "knative-square"

To invoke the function, we need to get the proper IP address and node port of the
Istio ingress gateway from Minikube. In a cluster that supports public IP addresses,
it will be available through a proper DNS name:

MINIKUBE_IP=$(minikube ip)
INGRESS_PORT=$(kubectl get svc istio-ingressgateway --namespace istio-
system --output 'jsonpath={.spec.ports[?(@.port==80)].nodePort}')

Now we can invoke the function:

$ curl http://$MINIKUBE_IP:$INGRESS_PORT/ -w '\n' \
-H 'Host: knative-square.default.example.com' \
-H 'Content-Type: application/json' \
-d 12

144

Serverless Computing on Kubernetes

[442]

The bottom line is that riff feels a little rough. It provides a CLI and a way to build
images from code, but you still have to configure a lot of things and go through a
GitHub repo and container registry. It doesn't feel very agile and there is definitely
no UI. For event-based triggering, you need to install the streaming runtime
separately and it supports only Kafka, which is not everyone's cup of tea.

Summary
In this chapter, we covered the hot topic of serverless computing. We explained the
two meanings of serverless – eliminating the need to manage servers, and deploying
and running FaaS. We explored in depth the aspects of serverless infrastructure in
the cloud, especially in the context of Kubernetes. We compared the built-in cluster
autoscaler as a Kubernetes-native serverless solution to the offerings of cloud
providers such as AWS EKS+Fargate, Azure AKS+ACI, and Google Cloud Run. We
switched gears and dove into the exciting and promising Knative project with its
scale-to-zero capabilities and advanced deployment options. Then, we moved to the
wild world of FaaS on Kubernetes. We mentioned the plethora of solutions out there
and examined them in detail with hands-on experiments for some of the prominent
solutions out there: Fission, Kubeless, and riff. The bottom line is that both flavors of
serverless computing bring real benefits as far as operations and cost management
are concerned. It's going to be fascinating to watch the evolution and consolidation of
these technologies in the cloud and Kubernetes.

In the next chapter, our focus will be on monitoring and observability. Complex
systems such as large Kubernetes clusters, with lots of different workloads and
continuous-delivery pipeline and configuration changes, must have excellent
monitoring in place in order to keep all the balls up in the air. Kubernetes has some
great options that we should take advantage of.

[443]

13
Monitoring Kubernetes

Clusters
In the previous chapter, we looked at serverless computing and its manifestations on
Kubernetes. A lot of innovation happens in this space and it's both super useful and
fascinating to follow the evolution.

In this chapter, we're going to talk about how to make sure your systems are up and
running, performing correctly, and how to respond to them when they aren't. In
Chapter 3, High Availability and Reliability, we discussed related topics. The focus here
is about knowing what's going on in your system and what practices and tools you
can use.

The are many aspects to monitoring, such as logging, metrics, distributed tracing,
error reporting, and alerting. Practices like auto-scaling and self-healing depend
on monitoring to detect that there is a need to scale or to heal.

The topics we will cover in this chapter include:

•	 Understanding observability
•	 Logging with Kubernetes
•	 Recording metrics with Kubernetes
•	 Distributed tracing with Jaeger
•	 Troubleshooting problems

Monitoring Kubernetes Clusters

[444]

The Kubernetes community recognizes the importance of monitoring and has put
a lot of effort into making sure Kubernetes has a solid monitoring story. The Cloud
Native Computing Foundation (CNCF) is the de facto curator of cloud native
infrastructure projects. It's graduated eight projects so far (early 2020). Kubernetes
was the first project to graduate and out of the other seven, three projects focus on
monitoring: Prometheus, Fluentd, and Jaeger. Before we dive into the ins and outs
of Kubernetes monitoring and specific projects and tools, we should get a better
understanding of what monitoring is all about. A good framework for thinking
about monitoring is how observable your system is. Indeed, observability is another
term that people flaunt about these days.

Understanding observability
Observability is a big word. What does it mean in practice? There are different
definitions out there and big debates regarding how monitoring and observability
are similar and different. I take the stance that observability is the property of the
system that defines what we can tell about the state and behavior of the system, right
now and historically. In particular, we are interested in the health of the system and
its components. Monitoring is the collection of tolls, processes, and techniques we
use to increase the observability of the system.

There are different facets of information that we need to collect, record, and
aggregate in order to get a good sense of what our system is doing. Those facets
include logs, metrics, distributed traces, and errors. The monitoring or observability
data is multi-dimensional and crosses many levels. Just collecting it doesn't help
much. We need to be able to query it, visualize it, and alert other systems when
things go wrong. Let's review the various components of observability.

Logging
Logging is a key monitoring tool. Every self-respecting long-running software
must have logs. Logs capture timestamped events. They are critical for many
applications, like business intelligence, security, compliance, audits, debugging, and
troubleshooting. It's important to understand that a complicated distributed system
will have different logs for different components, and extracting insights from logs is
not a trivial undertaking.

There are several key attributes to logs: format, storage, and aggregation.

Chapter 13

[445]

Log format
Logs may come in various formats. Plain text is very common and human-readable
but requires a lot of work to parse and merge with other logs. Structured logs are
more suitable for large systems because they can be processed at scale. Binary logs
make sense for systems that generate a lot of logs as they are more space efficient,
but they requires custom tools and processing to extract their information.

Log storage
Logs can be stored in memory, on the filesystem, in a database, in cloud storage, sent
to remote logging, or any combination of those options. In the cloud-native world,
where software runs in containers, it's important to know where logs are stored and
how to fetch them when necessary.

Questions as to durability come to mind when containers come and go. On
Kubernetes, the standard output and error of containers is automatically logged and
available, even when the pod terminates. However, issues such as having enough
space for logs and log rotation are always relevant.

Log aggregation
In the end, the best practice when sending local logs to a centralized logging service
that is designed to handle various log formats is to persist them, as necessary, and
aggregate many types of logs in a way that they can be queried and reasoned about.

Metrics
Metrics measure the same aspect of the system over time. Metrics are time series
of numerical values (typically, floating-point numbers). Each metric has a name
and often a set of labels that help later in slicing and dicing. For example, the CPU
utilization of a node or the error rate of a service are metrics.

Metrics are much more economical than logs. They require a fixed amount of space
that doesn't ebb and flow with incoming traffic like logs.

Also, since metrics are numerical in nature, they don't need parsing and
transformations and can be easily combined, analyzed using statistical methods, and
used to serve as triggers for events and alerts.

Monitoring Kubernetes Clusters

[446]

A lot of metrics at different levels (node, container, process, networks, disk) are often
collected for you automatically by the OS, cloud provider, or Kubernetes.

However, you can also create custom metrics that map to high-level concerns of your
system and can be configured with application-level policies.

Distributed tracing
Modern distributed systems often use a microservice-based architecture where an
incoming request is bounced between multiple microservices, waits in queues, and
triggers serverless functions. When you try to analyze errors, failures, data integrity
issues, or performance issues, it is critical to be able to follow the path of a request.
This is where distributed tracing comes in.

A distributed trace is a collection of spans and references. You can think of a trace
as a directed acyclic graph (DAG) that represents a request traversal though the
components of a distributed system. Each span records the time the request spent
in a given component, while references are the edges of the graph that connect one
space to the following spans.

Here is an example:

Figure 13.1: A Directed Acyclic Graph (DAG)

Chapter 13

[447]

Distributed tracing is indispensable for understanding complex distributed systems.

Application error reporting
Error and exception reporting are sometimes done as part of logging. You definitely
want to log errors and looking at logs when things go wrong is a time-honored
tradition. However, there are levels for capturing error information that go beyond
logging. When an error occurs in one of your applications, it is useful to capture
an error message, the location of the error in the code, and the stack trace. This is
pretty standard, and most programming languages can provide all this information,
although stack traces are multi-line and don't fit well with line-based logs. A very
useful additional piece of information is capturing the local state in each level of the
stack trace.

A central error reporting service such as Sentry or Rollbar provides a lot of value
specific to errors beyond logging, such as rich error information and context and user
information.

Dashboards and visualization
OK. You've done a great job of collecting logs, defining metrics, tracing your
requests, and reporting rich errors. Now, you want to figure out what your system
or parts of it are doing. What is the baseline? How does traffic fluctuate throughout
the day, week, and on holidays? When the system is under stress, what parts are the
most vulnerable?

In a complicated system that involves hundreds and thousands of services, data
stores, and integrates with external systems, you can just look at the raw log files,
metrics, and traces.

You need to be able combine a lot of information and build system health
dashboards, visualize your infrastructure, and create business-level reports and
diagrams.

You may get some of it (especially for infrastructure) automatically if you're using
cloud platforms. However, you should expect to do some serious work around
visualization and dashboards.

Monitoring Kubernetes Clusters

[448]

Alerting
Dashboards are great for humans that want to get a broad view of the system and
be able to drill down and understand how it behaves. Alerting is all about detecting
abnormal situations and triggering some action. Ideally, your system should be self-
healing and be able to recover on its own from most situations. However, you should
at least report it so humans can review what happened at their leisure and decide if
further action is needed.

Alerting can be integrated with emails, chat rooms, and on call systems. It is often
linked to metrics and when certain conditions apply, an alert is raised.

Now that we've covered the different elements involved in monitoring complex
systems, let's see how to do it with Kubernetes.

Logging with Kubernetes
We need to carefully consider our logging strategy with Kubernetes. There are
several types of logs that are relevant for monitoring purposes. Our workloads run
in containers, of course, and we care about these logs, but we also care about the logs
of Kubernetes components such as kubelets and the container runtime. In addition,
chasing logs across multiple nodes and containers is a non-starter. The best practice
is to use central logging (also known as log aggregation). There are several options
here that we will explore soon.

Container logs
Kubernetes stores the standard output and standard error of every container. They
are made available through the kubectl logs command.

Here is a pod manifest that prints the current date and time every 10 seconds:

apiVersion: v1
kind: Pod
metadata:
 name: now
spec:
 containers:
 - name: now
 image: g1g1/py-kube:0.2
 command: ["/bin/bash", "-c", "while true; do sleep 10; date;
done"]

Chapter 13

[449]

We can save it to a file called now-pod.yaml and create it:

$ kubectl apply -f now-pod.yaml
pod/now created

Wait until the pod is ready. To check out the logs, we use the kubectl logs
command:

$ kubectl logs now
Thu Jun 11 00:32:38 UTC 2020
Thu Jun 11 00:32:48 UTC 2020
Thu Jun 11 00:32:58 UTC 2020
Thu Jun 11 00:33:08 UTC 2020
Thu Jun 11 00:33:18 UTC 2020

A few points about container logs. kubectl logs expects a pod name. If the pod has
multiple containers, you need to specify the container name too:

$ kubectl logs <pod name> -c <container name>

Also, if a deployment or replica set creates multiple copies of the same pod, you still
have to query each pod independently for its logs. There is no way to get the logs of
multiple pods in a single call.

If a container crashes for some reason, you can use the kubectl logs -p command to
look at logs from the container.

Kubernetes component logs
If you run Kubernetes in a managed environment like GKE, EKS, or AKS, you
won't be able to access Kubernetes component logs, but this is expected. You're not
responsible for the Kubernetes control plane. There are Kubernetes components that
run on master nodes and there are components that run on each worker node:

Here are the master components and their log locations:

•	 API server: /var/log/kube-apiserver.log
•	 Scheduler: /var/log/kube-scheduler.log
•	 Controller manager: /var/log/kube-controller-manager.log

The worker node components and their log locations are:

•	 Kubelet: /var/log/kubelet.log
•	 Kube proxy: /var/log/kube-proxy.log

Monitoring Kubernetes Clusters

[450]

Note that on systemd-based systems, you'll need to use journalctl to view the logs.

Centralized logging
Reading container logs is fine for quick and dirty troubleshooting problems in a
single pod. To diagnose and debug system-wide issues, we need centralized logging
(also known as log aggregation). All the logs from our containers should be sent
to a central repository and made accessible for slicing and dicing using filters and
queries.

When deciding on your central logging approach, there are several important
decisions: How do we collect the logs? Where do we store the logs? And how do we
handle sensitive log information?

Choosing a log collection strategy
Logs are typically collected by agents that are running in close proximity to the
process generating the logs. They make sure to deliver them to the central logging
service.

Here are the common approaches.

Direct logging
In this approach, there is no log agent. It is the responsibility of each application
container to send logs to the remote logging service. This is typically done though
a client library. It is a high-touch approach and applications need to be aware of the
logging target, as well as being configured with proper credentials. If you ever want
to change your log collection strategy, you will need to make changes to each and
every application (at the least, bumping to a new version of the library):

Figure 13.2: Direct logging

Chapter 13

[451]

Node agent
The node agent approach is best when you control the worker nodes and you want
to abstract away the act of log aggregation from your applications. Each application
container can simply write to standard output and standard error, and the agent
running on each node will intercept the logs and deliver them to the remote logging
service.

Typically, you deploy the node agent as a DaemonSet, so as nodes are added
or removed from the cluster, the log agent will always be present, without any
additional work being needed:

Figure 13.3: Logging with a node agent

Sidecar container
The sidecar container is best when you don't have control over your cluster nodes
or if you use some serverless computing infrastructure to deploy containers, but
you don't want to use the direct logging approach. The node agent approach is out
of the question, but you can attach a sidecar container that will collect the logs and
deliver them to the central logging service. It is not as efficient as the node agent
approach because each container will need its own logging sidecar container, but it
can be done at the deployment stage without requiring code changes and application
knowledge:

Monitoring Kubernetes Clusters

[452]

Figure 13.4: Logging with a sidecar container

Now that we've covered the topic of log collection, let's consider how to store and
manage those logs centrally.

Cluster-level central logging
If your entire system is running in a single Kubernetes cluster, then cluster-level
logging may be a great choice. You can install a central logging service like Grafana
Loki, ElasticSearch, or Graylog in your cluster and enjoy a cohesive log aggregation
experience without sending your log data elsewhere.

However, for in-cluster central logging, this is not always possible or desirable.

Remote central logging
There are use cases where in-cluster central logging doesn't cut it for various reasons:

•	 Logs are used for audit purposes, so it may be necessary to log to a separate
and controlled location (for example, on AWS, it is common to log to a
separate account)

•	 Your system runs on multiple clusters and logging in each cluster is not
really central

•	 You run on a cloud provider and prefer to log into the cloud platform
logging service (for example, StackDriver on GCP or CloudWatch on AWS)

•	 You already work with a remote central logging service like SumoLogic or
Splunk and you prefer to continue using them

•	 You just don't want the hassle of collecting and storing log data

Chapter 13

[453]

Dealing with sensitive log information
OK. We can collect the logs and send them to a central logging service. If the central
logging service is remote, you might need to be selective about which information
you log.

For example, personally identifiable information (PII) and protected health
information (PHI) are two categories of information that you probably shouldn't log
without making sure access to the log is properly controlled.

At Helix, for example, we redact PII like usernames and emails.

Using Fluentd for log collection
Fluentd (https://www.fluentd.org/) is an open source CNCF graduated project. It is
considered best in class on Kubernetes and it can integrate with pretty much every
logging backend you want. If you want to set up your own centralized logging
solution, I recommend using Fluentd. The following diagram shows how Fluentd
can be deployed as a DaemonSet in a Kubernetes cluster:

Figure 13.5: Fluentd as a DaemonSet in a Kubernetes cluster

One of the most popular DIY centralized logging solutions is ELK, where E stands
for ElasticSearch, L stands for LogStash, and K stands for Kibana. On Kubernetes
EFK, where Fluentd replaces LogStash, this is very common, and there are Helm
charts and a lot of examples available for deploying and operating it on Kubernetes.

https://www.fluentd.org/

Monitoring Kubernetes Clusters

[454]

Fluentd has a plugin-based architecture, so don't feel limited to EFK. Fluentd doesn't
require a lot of resources, but if you really need a high-performance solution, Fluentbit
(https://fluentbit.io/) is a pure forwarder that uses barely 450 KB of memory.

Collecting metrics with Kubernetes
If you have some experience with Kubernetes, you may be familiar with cAdvisor
and Heapster. cAdvisor was integrated into the kube-proxy until Kubernetes 1.12
and then it was removed. Heapster was removed in Kubernetes 1.13. If you wish,
you can install them, but they are not recommended anymore as there are much
better solutions now.

One caveat is that the Kubernetes dashboard v1 still depends on Heapster. The
Kubernetes dashboard v2 is still in Beta at the time of writing. Hopefully, it will
be generally available by the time you read this.

Kubernetes now has a Metrics API. It supports node and pod metrics out of the box.
You can also define your own custom metrics.

A metric contains a timestamp, a usage field, and the time range the metric was
collected (many metrics are accumulated over a time period). Here is the API
definition for node metrics:

type NodeMetrics struct {
 metav1.TypeMeta
 metav1.ObjectMeta

 Timestamp metav1.Time
 Window metav1.Duration

 Usage corev1.ResourceList
}

// NodeMetricsList is a list of NodeMetrics.
type NodeMetricsList struct {
 metav1.TypeMeta
 // Standard list metadata.
 // More info: https://git.k8s.io/community/contributors/devel/sig-
architecture/api-conventions.md#types-kinds
 metav1.ListMeta

 // List of node metrics.
 Items []NodeMetrics
}

https://fluentbit.io/

Chapter 13

[455]

The usage field type is ResourceList, but it's actually a map of a resource name to a
quantity:

// ResourceList is a set of (resource name, quantity) pairs.
type ResourceList map[ResourceName]resource.Quantity

Quantity (https://github.com/kubernetes/kubernetes/blob/master/staging/
src/k8s.io/apimachinery/pkg/api/resource/quantity.go#L88) is a fixed-point
representation of a number. It provides convenient marshaling/unmarshaling in
JSON and YAML, as well as String() and Int64() accessors:

type Quantity struct {
 // i is the quantity in int64 scaled form, if d.Dec == nil
 i int64Amount

 // d is the quantity in inf.Dec form if d.Dec != nil
 d infDecAmount

 // s is the generated value of this quantity to avoid recalculation
 s string

 // Change Format at will. See the comment for Canonicalize for more
details.
 Format
}

Monitoring with the metrics server
The Kubernetes metrics-server implements the Kubernetes Metrics API.

You can deploy it with Helm 3:

helm install metrics-server bitnami/metrics-server --version 4.2.0 -n kube-
system

On minikube, you enable it as an add-on:

$ minikube addons enable metrics-server
 metrics-server was successfully enabled

After waiting a few minutes to let the metrics server collect some data, you can query
it using these commands for node metrics:

$ kubectl get --raw "/apis/metrics.k8s.io/v1beta1/nodes" | jq .

https://github.com/kubernetes/kubernetes/blob/master/staging/src/k8s.io/apimachinery/pkg/api/resource/quantity.go#L88
https://github.com/kubernetes/kubernetes/blob/master/staging/src/k8s.io/apimachinery/pkg/api/resource/quantity.go#L88

Monitoring Kubernetes Clusters

[456]

{
 "kind": "NodeMetricsList",
 "apiVersion": "metrics.k8s.io/v1beta1",
 "metadata": {
 "selfLink": "/apis/metrics.k8s.io/v1beta1/nodes"
 },
 "items": [
 {
 "metadata": {
 "name": "ip-192-168-13-100.ec2.internal",
 "selfLink": "/apis/metrics.k8s.io/v1beta1/nodes/ip-192-168-13-100.
ec2.internal",
 "creationTimestamp": "2020-01-07T20:05:29Z"
 },
 "timestamp": "2020-01-07T20:04:54Z",
 "window": "30s",
 "usage": {
 "cpu": "85887417n",
 "memory": "885828Ki"
 }
 }
]
}

In addition, the kubectl top command gets its information from the metrics server:

$ kubectl top nodes
NAME CPU(cores) CPU% MEMORY(bytes) MEMORY%
ip-192-168-13-100.ec2.internal 85m 4% 863Mi 11%

$ kubectl top pods
NAME CPU(cores) MEMORY(bytes)
api-gateway-795f7dcbdb-ml2tm 1m 23Mi
link-db-7445d6cbf7-2zs2m 1m 32Mi
link-manager-54968ff8cf-q94pj 0m 4Mi
nats-cluster-1 1m 3Mi
nats-operator-55dfdc6868-fj5j2 2m 11Mi
news-manager-7f447f5c9f-c4pc4 0m 1Mi
news-manager-redis-0 1m 1Mi
social-graph-db-7565b59467-dmdlw 1m 31Mi

Chapter 13

[457]

social-graph-manager-64cdf589c7-4bjcn 0m 1Mi
user-db-0 1m 32Mi
user-manager-699458447-6lwjq 1m 1Mi

The metrics server is also the source for performance information in the Kubernetes
dashboard.

Exploring your cluster with the Kubernetes
dashboard
The Kubernetes dashboard is a web application that you can install and then use
to drill down to your cluster through a nice user interface. Depending on your
Kubernetes distribution, it may or may not be installed. On minikube, you install it
as an add-on:

$ minikube addons enable dashboard
 dashboard was successfully enabled

On other distributions, you can install it yourself:

$ kubectl apply -f https://raw.githubusercontent.com/kubernetes/dashboard/
v2.0.0-beta8/aio/deploy/recommended.yaml

I'm a big fan of the dashboard because it gives a very condensed view of your entire
cluster, as well as the ability to drill down by namespace, resource type, or labels,
and even perform a general search:

Figure 13.6: the Kubernetes dashboard

Monitoring Kubernetes Clusters

[458]

The rise of Prometheus
Prometheus (https://prometheus.io/) is yet another graduated CNCF open source
project. It focuses on metrics collection and alert management. It has a simple yet
powerful data model for managing time-series data and a sophisticated query
language. It is considered best in class in the Kubernetes world. Prometheus lets you
define recording rules that are fired at regular intervals and collect data from targets.
In addition, you can define alerting rules that evaluate a condition and trigger alerts
if the condition is satisfied.

It has several unique features compared to other monitoring solutions:

•	 The collection system is pull over HTTP. Nobody has to push metrics to
Prometheus (but push is supported via a gateway).

•	 A multi-dimensional data model (each metric is a named time series with a
set of key/value pairs attached to each data point).

•	 PromQL, a powerful and flexible query language to slice and dice your
metrics.

•	 Prometheus server nodes are independent and don't rely on shared storage.
•	 Target discovery can be dynamic or done via static configuration.
•	 Built-in time series storage, but supports other backends if necessary.
•	 Built-in alert manager and ability to define alerting rules.

https://prometheus.io/

Chapter 13

[459]

The following diagram illustrates the entire system:

Figure 13.7: the Prometheus system

Monitoring Kubernetes Clusters

[460]

Installing Prometheus
Prometheus is a complex beast, as you can see. The best way to install it is using the
Prometheus operator (https://github.com/coreos/prometheus-operator).

However, before you install it, make sure to delete the knative-monitoring
namespace if you're using the same cluster that you installed knative on. Knative
quietly installs its own Prometheus-based monitoring system into your cluster.

On minikube, it takes some extra steps and configuration to get ready for
Prometheus (they should probably make it an add-on).

To prepare minikube for Prometheus, we need to start it with some extra arguments:

$ minikube start --memory=4096 \
 --bootstrapper=kubeadm \
 --extra-config=scheduler.address=0.0.0.0 \
 --extra-config=controller-manager.address=0.0.0.0

The following article dives into the details: https://medium.com/faun/trying-
prometheus-operator-with-helm-minikube-b617a2dccfa3.

There is a Helm chart that's managed by the community for the Prometheus
operator, but it is incompatible with Helm 3 (it uses the dreaded crd-install hook).
We will install it with Helm 2, which requires, as you may recall, installing Tiller too.
If you have Tiller installed already from previous chapters, you can skip this step:

$ kubectl create serviceaccount tiller --namespace kube-system
$ kubectl create clusterrolebinding tiller-role-binding \
 --clusterrole cluster-admin --serviceaccount=kube-system:tiller
$ helm2 init --service-account tiller

Now, we can install the Prometheus operator. This may take a few minutes, so don't
be alarmed if it appears to just hang there. The minikube_values.yaml file can be
found in the prometheus sub-directory of the code directory:

$ helm2 install stable/prometheus-operator \
 --version=8.5.4 \
 --name monitoring \
 --namespace monitoring \
 --values=minikube_values.yaml

https://github.com/coreos/prometheus-operator
https://medium.com/faun/trying-prometheus-operator-with-helm-minikube-b617a2dccfa3
https://medium.com/faun/trying-prometheus-operator-with-helm-minikube-b617a2dccfa3

Chapter 13

[461]

The Helm chart installs a comprehensive metric-based monitoring stack with quite a
few components:

•	 prometheus-operator

•	 prometheus

•	 alertmanager

•	 node-exporter

•	 kube-state-metrics

•	 grafana

Check out the pods installed in the monitoring namespace. It should look something
like:

$ kubectl get po -n monitoring
NAME READY STATUS
RESTARTS AGE
alertmanager-monitoring-prometheus-oper-alertmanager-0 2/2 Running
0 15m
monitoring-grafana-697fd7b5cc-2rgmq 2/2 Running
0 15m
monitoring-kube-state-metrics-574ccf8cd6-ng2mq 1/1 Running
0 15m
monitoring-prometheus-node-exporter-pgnj8 1/1 Running
0 15m
monitoring-prometheus-oper-operator-74d96f6ffb-r5zt7 2/2 Running 0
15m
prometheus-monitoring-prometheus-oper-prometheus-0 3/3 Running
1 15m

The Prometheus operator manages Prometheus and its Alertmanager through four
CRDs:

•	 Prometheus - ServiceMonitor - PrometheusRule – AlertManager
If you want a more complete and opinionated installation experience, check out
kube-prometheus (https://github.com/coreos/kube-prometheus). It installs
Prometheus and the AlertManager using a high-availability configuration, as well as
additional tools and default rules and a dashboard. It even has its own Metrics API
server, so you don't need to enable the metrics-server add-on in minikube.

Let's examine Prometheus and the other components.

https://github.com/coreos/kube-prometheus

Monitoring Kubernetes Clusters

[462]

Interacting with Prometheus
Prometheus has a basic web UI that you can use to explore its metrics. Let's do port
forwarding to localhost:

$ POD_NAME=$(kubectl get pods -n monitoring -l "app=prometheus" \
 -o jsonpath="{.items[0].metadata.name}")
$ kubectl port-forward -n monitoring $POD_NAME 9090

Then, you can browse to http://localhost:9090, where you can select different
metrics and view raw data or graphs:

Figure 13.8: Prometheus UI

Prometheus records an outstanding number of metrics (990, in my current setup).
The most relevant metrics on Kubernetes are the metrics exposed by kube-state-
metrics and node exporters.

Incorporating kube-state-metrics
The Prometheus operator already installs kube-state-metrics. It is a service that
listens to Kubernetes events and exposes them though a /metrics HTTP endpoint in
the format that Prometheus expects. So, it is a Prometheus exporter.

Chapter 13

[463]

This is very different from the Kubernetes metrics server, which is the standard
way Kubernetes exposes metrics for nodes and pods and allows you to expose your
own custom metrics too. The Kubernetes metrics server is a service that periodically
queries Kubernetes for data and stores it in memory. It exposes its data through the
Kubernetes Metrics API.

The metrics exposed by kube-state-metrics are vast. Here is the list of groups of
metrics, which is pretty massive on its own. Each group corresponds to a Kubernetes
API object and contains multiple metrics:

•	 CertificateSigningRequest metrics
•	 ConfigMap metrics
•	 CronJob metrics
•	 DaemonSet metrics
•	 Deployment metrics
•	 Endpoint metrics
•	 Horizontal Pod Autoscaler metrics
•	 Ingress metrics
•	 Job metrics
•	 LimitRange metrics
•	 MutatingWebhookConfiguration metrics
•	 Namespace metrics
•	 NetworkPolicy metrics
•	 Node metrics
•	 PersistentVolume metrics
•	 PersistentVolumeClaim metrics
•	 Pod Disruption Budget metrics
•	 Pod metrics
•	 ReplicaSet metrics
•	 ReplicationController metrics
•	 ResourceQuota metrics

Monitoring Kubernetes Clusters

[464]

•	 Secret metrics
•	 Service metrics
•	 StatefulSet metrics
•	 StorageClass metrics
•	 ValidatingWebhookConfiguration metrics
•	 VerticalPodAutoscaler metrics
•	 VolumeAttachment metrics

For example, here are the metrics collected for Kubernetes services:

•	 kube_service_info

•	 kube_service_labels

•	 kube_service_created

•	 kube_service_spec_type

•	 kube_service_spec_external_ip

•	 kube_service_status_load_balancer_ingress

Utilizing the node exporter
kube-state-metrics collects node information from the Kubernetes API server, but
this information is pretty limited. Prometheus comes with its own node exporter,
which collects tons of low-level information about the nodes. Remember that
Prometheus may be the de facto standard metrics platform on Kubernetes, but it is
not Kubernetes-specific. For other systems that use Prometheus, the node exporter
is super important. On Kubernetes, if you manage your own nodes, this information
can be invaluable too.

Chapter 13

[465]

Here is a small subset of the metrics exposed by the node exporter:

Figure 13.9: Metrics exposed by the node exporter

Monitoring Kubernetes Clusters

[466]

Incorporating custom metrics
The built-in metrics, node metrics, and Kubernetes metrics are great, but very often,
the most interesting metrics are domain-specific and need to be captured as custom-
metrics. There are two ways to do this:

•	 Write your own exporter and tell Prometheus to scrape it
•	 Use the push gateway, which allows you to push metrics into Prometheus
•	 In my book, Hands-On Microservices with Kubernetes, I provide a full-fledged

example of how to implement your own exporter from a Go service

The push gateway is more appropriate if you already have a push-based metrics
collector in place and you just want to have Prometheus record those metrics. It
provides a convenient migration path from other metrics collection systems to
Prometheus.

Alerting with Alertmanager
Collecting metrics is great, but when things go south, or ideally BEFORE things go
south, you want to get notified. In Prometheus, this is the job of the Alertmanager.
You can define rules as expressions-based metrics and when those expressions
become true, they trigger an alert.

Alerts can serve multiple purposes. They can be handled automatically by a
controller that is responsible for mitigating specific problems, they can wake up a
poor on-call engineer at 3 A.M, they can result in an email or a group chat message,
or any combination of those options.

The Alertmanager lets you group similar alerts into a single notification, inhibiting
notifications if other alerts are already firing and silencing alerts. All those features
are useful when a large-scale system is in trouble. The stakeholders are aware of
the situation, and don't need repeated alerts or multiple variations of the same alert
firing constantly while troubleshooting and trying to find the root cause.

One of the cool things about the Prometheus operator is that it manages everything
in CRDs. That includes all the rules, including the alert rules:

$ kubectl get prometheusrules -n monitoring
NAME AGE
monitoring-prometheus-oper-alertmanager.rules 2d9h
monitoring-prometheus-oper-etcd 2d9h
monitoring-prometheus-oper-general.rules 2d9h
monitoring-prometheus-oper-k8s.rules 2d9h
monitoring-prometheus-oper-kube-apiserver-error 2d9h

Chapter 13

[467]

monitoring-prometheus-oper-kube-apiserver.rules 2d9h
monitoring-prometheus-oper-kube-prometheus-node-recording.rules 2d9h
monitoring-prometheus-oper-kube-scheduler.rules 2d9h
monitoring-prometheus-oper-kubernetes-absent 2d9h
monitoring-prometheus-oper-kubernetes-apps 2d9h
monitoring-prometheus-oper-kubernetes-resources 2d9h
monitoring-prometheus-oper-kubernetes-storage 2d9h
monitoring-prometheus-oper-kubernetes-system 2d9h
monitoring-prometheus-oper-kubernetes-system-apiserver 2d9h
monitoring-prometheus-oper-kubernetes-system-controller-manager 2d9h
monitoring-prometheus-oper-kubernetes-system-kubelet 2d9h
monitoring-prometheus-oper-kubernetes-system-scheduler 2d9h
monitoring-prometheus-oper-node-exporter 2d9h
monitoring-prometheus-oper-node-exporter.rules 2d9h
monitoring-prometheus-oper-node-network 2d9h
monitoring-prometheus-oper-node-time 2d9h
monitoring-prometheus-oper-node.rules 2d9h
monitoring-prometheus-oper-prometheus 2d9h
monitoring-prometheus-oper-prometheus-operator 2d9h

Here is the node time rule, which checks every second if the node time has deviated
more than 0.05 of a second from the time of the node running the Prometheus
pod (of course, you want to make sure this node's clock is correct by having NTP
properly configured):

$ kubectl get prometheusrules monitoring-prometheus-oper-node-time -n
monitoring -o yaml
apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
 ...
spec:
 groups:
 - name: node-time
 rules:
 - alert: ClockSkewDetected
 annotations:
 message: Clock skew detected on node-exporter {{ $labels.namespace
}}/{{ $labels.pod
 }}. Ensure NTP is configured correctly on this host.
 expr: abs(node_timex_offset_seconds{job="node-exporter"}) > 0.05
 for: 2m
 labels:
 severity: warning

Monitoring Kubernetes Clusters

[468]

Alerts are very important, but there are cases where you want to visualize the overall
state of your system or drill down into specific aspects. This is where visualization
comes into play.

Visualizing your metrics with Grafana
You've already seen the Prometheus Expression browser, which can display your
metrics as a graph or in table form. However, we can do much better. Grafana
(https://grafana.com/) is an open source monitoring system that specializes in
stunningly beautiful visualizations of metrics. It doesn't store the metrics itself,
but works with many data sources, and Prometheus is one of them. Grafana has
alerting capabilities too, but when working with Prometheus, it's best to rely on
its Alertmanger.

The Prometheus operator installs Grafana and configures a large number of
useful Kubernetes dashboards. Check out this beautiful dashboard of Kubernetes
networking of pods filtered by namespace:

Figure 13.10: Pods filtered by namespace

To access Grafana, type the following commands:

$ POD_NAME=$(kubectl get pods -n monitoring -l "app=grafana" \
 -o jsonpath="{.items[0].metadata.name}")
$ kubectl port-forward -n monitoring $POD_NAME 3000

Then, you can browse to http://localhost:3000 and have some fun with Grafana.
Grafana requires a username and password. The default credentials are admin for the
user and prom-operator for the password.

https://grafana.com/

Chapter 13

[469]

Here are the dashboards that are pre-configured:

Figure 13.11: pre-configured dashboards

Monitoring Kubernetes Clusters

[470]

As you can see, the list is pretty extensive, but you can define your own dashboards
if you want. There are a lot of fancy visualizations you can create with Grafana.
I encourage you to explore it further. The Grafana dashboard is stored as config
maps. If you want to add a custom dashboard, just add a config map that contains
your dashboard spec. There is a dedicated sidecar container that watches new config
maps being added and it will make sure to add your custom dashboard.

Considering Loki
If you like Prometheus and Grafana and you haven't settled on a centralized
logging solution yet (or if you're unhappy with your current logging solution),
then you should consider Grafana Loki (https://grafana.com/oss/loki/). Loki is
an open source project for log aggregation, inspired by Prometheus. Unlike most
log aggregation systems, it doesn't index the log contents but rather a set of labels
applied to the log. That makes is very efficient. It is still relatively new (started in
2018), so you should evaluate whether it fits your needs before making the decision
to adopt it. One thing is for sure: Loki has excellent Grafana support.

There are several advantages for Loki compared to something like EFK when
Prometheus is used as the metrics platform. In particular, the set of labels you use to
tag your metrics will serve just as well to tag your logs. Also, the fact that Grafana is
used as a uniform visualization platform for both logs and metrics is useful.

We dedicated a lot of time to discussing metrics on Kubernetes. Let's talk about
distributed tracing and the Jaeger project.

Distributed tracing with Jaeger
In microservice-based systems, every request may travel between multiple
microservices calling each other, wait in queues, and trigger serverless functions.
To debug and troubleshoot such systems, you need to be able to keep track of
requests and follow them along their path.

Distributed tracing provides several capabilities that allow you, the developers,
and the operators to understand their distributed systems:

•	 Distributed transaction monitoring
•	 Performance and latency tracking
•	 Root cause analysis
•	 Service dependency analysis
•	 Distributed context propagation

https://grafana.com/oss/loki/

Chapter 13

[471]

Distributed tracing often requires participation of the applications and services
instrumenting endpoints. Since the microservices world is polyglot, multiple
programming languages may be used. It makes sense to use a shared distributed
tracing specification and framework that supports many programming languages.
Enter OpenTracing...

What is OpenTracing?
OpenTracing (https://opentracing.io/) is an API specification and a set of
frameworks and libraries in different languages. It is also an incubating CNCF
project. OpenTracing is supported by multiple products and became a de facto
standard. By using a product that complies with OpenTracing, you are not locked
in and you work with an API that may be familiar to your developers. Note that
OpenTracing recently merged with OpenCensus to form OpenTelemetry, which is a
specification and platform for collecting both metrics and distributed traces. It is still
in early development (Sandbox CNCF project), so we'll stick with OpenTracing at the
moment.

Here is a list of the tracers that support OpenTracing:

•	 Jaeger
•	 LightStep
•	 Instana
•	 Apache SkyWalking
•	 inspectIT
•	 stagemonitor
•	 Datadog
•	 Wavefront by VMware
•	 Elastic APM

Most of the mainstream programming languages are supported:

•	 Go
•	 JavaScript
•	 Java
•	 Python
•	 Ruby
•	 PHP

https://opentracing.io/

Monitoring Kubernetes Clusters

[472]

•	 Objective-C
•	 C++
•	 C#

OpenTracing concepts
The two main concepts of OpenTracing are Span and Trace.

A Span is the basic unit of work or operation. It has a name, start time, and a
duration. Spans can be nested if one operation starts another operation. Spans
propagate with a unique ID and context. A Trace is an acyclic graph of Spans that
originated from the same request and share the same context. A Trace represents the
execution path of a request throughout the system. The following diagram illustrates
the relationship between a Trace and Spans:

Figure 13.12: Trace and Spans relationship

Let's take a look at Jaeger.

Introducing Jaeger
Jaeger (https://www.jaegertracing.io/) is yet another CNCF graduated project,
just like Fluentd and Prometheus. It completes the trinity of CNCF-graduated
observability projects for Kubernetes. Jaeger was developed originally by Uber
and quickly became the forerunner distributed tracing solution for Kubernetes.

https://www.jaegertracing.io/

Chapter 13

[473]

There are other open source distributed tracing systems available, like Zipkin
(https://zipkin.io/) and AppDash (https://github.com/sourcegraph/appdash).
The inspiration for most of these systems (as well as Jaeger) is Google's Dapper
(https://research.google/pubs/pub36356/). The cloud platform provides their own
tracers, like AWS X-Ray.

There are various differences between all these systems. Jaeger's strong points are:

•	 Scalable design
•	 Multiple OpenTracing-compatible clients
•	 Light memory footprint
•	 Agents collect metrics over UDP

Jaeger architecture
Jaeger is a scalable system. It can be deployed as a single binary with all its
components and stores the data in memory, but also as a distributed system where
spans and traces are stored in persistent storage.

Jaeger has several components that collaborate to provide a word-class distributed
tracing experience. The following diagram illustrates the architecture:

Figure 13.13: Jaeger architecture

https://zipkin.io/
https://github.com/sourcegraph/appdash
https://research.google/pubs/pub36356/

Monitoring Kubernetes Clusters

[474]

Let's understand what the purpose of each component is.

Jaeger client
The Jaeger client is a library that implements the OpenTracing API in order to
instrument a service or application for distributed tracing. The client library is used
by the service or application to create spans and attach context like trace ID, span ID,
and additional payload.

A very important aspect of Jaeger instrumentation is that it uses sampling and
only 1 out of 1,000 traces are actually sampled. This is very different than logs and
metrics, which record each and every event. This makes distributed tracing relatively
lightweight, while still providing enough insight for high-volume applications.

Jaeger agent
The role of the agent is deployed locally to each node. It listens to spans over
UDP – which makes it pretty performant – batches them, and sends them in bulk
to the collector. This way, services don't need to discover collector or worry about
connecting to them. Instrumented services simply send their spans to the local agent.
The agent can also inform the client about sampling strategies.

Jaeger collector
The collector receives traces from all the agents. It is responsible for validating,
indexing, transforming, and eventually storing the traces. The storage component
can be a data store like Cassandra or Elasticsearch. However, it can also be a Kafka
instance that enables async processing of traces.

Jaeger query
The Jaeger query service is responsible for presenting a UI to query the traces and
spans the collector puts in storage.

Chapter 13

[475]

Installing Jaeger
There are Helm charts that can be used to install Jaeger and the Jaeger operator,
which is in beta at the time of writing. However, let's give it a try and see how far we
can go:

$ helm repo add jaegertracing https://jaegertracing.github.io/helm-charts
$ helm search repo jaegertracing
NAME CHART VERSION APP VERSION DESCRIPTION
jaegertracing/jaeger 0.18.3 1.16.0 A Jaeger Helm
chart for Kubernetes
jaegertracing/jaeger-operator 2.12.3 1.16.0 jaeger-operator
Helm chart for Kubernetes

Let's install Jaeger itself first, into the monitoring namespace:

$ helm install jaeger jaegertracing/jaeger -n monitoring
NAME: jaeger
LAST DEPLOYED: Fri Jun 12 20:03:24 2020
NAMESPACE: monitoring
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
You can log into the Jaeger Query UI here:

 export POD_NAME=$(kubectl get pods --namespace monitoring -l "app.
kubernetes.io/instance=jaeger,app.kubernetes.io/component=query" -o
jsonpath="{.items[0].metadata.name}")
 echo http://127.0.0.1:8080/
 kubectl port-forward --namespace monitoring $POD_NAME 8080:16686

Monitoring Kubernetes Clusters

[476]

Unfortunately, we can't use Helm 3 to install the Jaeger operator. We must resort to
Helm 2 again:

$ helm2 install jaegertracing/jaeger-operator -n jaeger-operator
--namespace monitoring
NAME: jaeger-operator
LAST DEPLOYED: Sa Jun 13 00:42:17 2020
NAMESPACE: monitoring
STATUS: DEPLOYED

RESOURCES:
==> v1/Deployment
NAME AGE
jaeger-operator 0s

==> v1/Pod(related)
NAME AGE
jaeger-operator-b7f44c755-fwmrr 0s

==> v1/Role
NAME AGE
jaeger-operator 0s

==> v1/RoleBinding
NAME AGE
jaeger-operator 0s

==> v1/Service
NAME AGE
jaeger-operator-metrics 0s

==> v1/ServiceAccount
NAME AGE
jaeger-operator 0s

NOTES:
jaeger-operator is installed.

Check the jaeger-operator logs
 export POD=$(kubectl get pods -l app.kubernetes.io/instance=jaeger-

Chapter 13

[477]

operator -lapp.kubernetes.io/name=jaeger-operator --namespace monitoring
--output name)
 kubectl logs $POD --namespace=monitoring

Let's bring up the Jaeger UI:

$ export POD_NAME=$(kubectl get pods --namespace monitoring -l "app.
kubernetes.io/instance=jaeger,app.kubernetes.io/component=query" -o
jsonpath="{.items[0].metadata.name}")
$ kubectl port-forward --namespace monitoring $POD_NAME 8080:16686

Now, we can browse to http://localhost:8080 and see the Jaeger UI:

Figure 13.14: The Jaeger UI

Monitoring Kubernetes Clusters

[478]

In the next chapter – Chapter 14, Utilizing Service Meshes – we will see more of Jaeger
and how to use it. Now, let's turn our attention to troubleshooting using all the
monitoring and observability mechanisms we've discussed.

Troubleshooting problems
Troubleshooting a complex distributed system is no picnic. Abstractions, separation
of concerns, information hiding, and encapsulation are great during development,
testing, and when making changes to the system. But when things go wrong, you
need to cross all those boundaries and layers of abstraction from the user action in
their app through the entire stack, all the way to the infrastructure, thus crossing
all the business logic, asynchronous processes, legacy systems, and third-party
integrations. This is a challenge, even with large monolithic systems, but even more
so with microservice-based distributed systems. Monitoring will assist you, but let's
talk first about preparation, processes, and best practices.

Taking advantage of staging environments
When building a large system, developers work on their local machines (ignoring
cloud development environments here) and eventually, the code is deployed to
the production environment. However, there are a few steps between those two
extremes. Complex systems operate in an environment that is not easy to duplicate
locally. You should test changes that have been made to code or configuration in an
environment that is similar to your production environment. This is your staging
environment, where you should catch most problems that can't be caught by the
developer running tests locally in their development environment.

The software delivery process should accommodate the detection of bad code and
configuration as early as possible. However, sometimes, bad changes will be detected
only in production and cause an incident. You should have an incident management
process in place as well, which typically involves reverting to the previous version of
whatever component caused the issue and then trying to find the root cause, often by
debugging in the staging environment.

But sometimes, the problem is not with your code or configuration. In the end, your
Kubernetes cluster runs on nodes (yes, even if it's managed), and those nodes can
suffer many issues.

Chapter 13

[479]

Detecting problems at the node level
In Kubernetes' conceptual model, the unit of work is the pod. However, pods
are scheduled on nodes. When it comes to monitoring and the reliability of the
infrastructure, the nodes are what require the most attention, because Kubernetes
itself (the scheduler, replica sets, and horizontal pod autoscalers) takes care of the
pods. Nodes can suffer from a variety of problems that Kubernetes is unaware of.
As a result, it will keep scheduling pods to the bad nodes, and the pods might fail to
function properly. Here are some of the problems that nodes may suffer while still
appearing functional:

•	 Bad CPU
•	 Bad memory
•	 Bad disk
•	 Kernel deadlock
•	 Corrupt filesystem
•	 Problems with the container runtime (for example, the Docker daemon)

The kubelet running on each node can't detect these problems. We need another
solution. Enter the node problem detector.

The node problem detector is a pod that runs on every node. It needs to solve
a difficult problem. It must detect various low-level problems across different
environments, different hardware, and different operating systems. It must be
reliable enough not to be affected itself (otherwise, it can't report the problem), and it
needs to have relatively low overhead to avoid spamming the master. In addition, it
needs to run on every node. The source code can be found at https://github. com/
kubernetes/node-problem-detector.

The most natural way is to deploy the node problem detector as a DaemonSet so that
every node always as a problem detector. On Google's GCE clusters, it runs as an
add-on.

Problem daemons
The problem with the node problem detector (pun intended) is that there are too
many problems that it needs to handle. Trying to cram all of them into a single
codebase can lead to a complex, bloated, and never-stabilizing codebase. The
design of the node problem detector calls for separation of the core functionality of
reporting node problems to the master from specific problem detection.

https://github. com/kubernetes/node-problem-detector
https://github. com/kubernetes/node-problem-detector

Monitoring Kubernetes Clusters

[480]

The reporting API is based on generic conditions and events. Problem detection
should be done by separate problem daemons (each in its own container).
This way, it is possible to add and evolve new problem detectors without
impacting the core node problem detector. In addition, the control plane may
have a remedy controller that can resolve some node problems automatically,
therefore implementing self-healing.

At this stage (Kubernetes 1.18), problem daemons are baked into the node problem
detector binary, and they execute as Goroutines, so you don't get the benefits of the
loosely coupled design just yet. In the future, each problem daemon will run in its
own container.

In addition to problems with nodes, the other area where things can break down is
networking. The various monitoring tools we discussed earlier can help us identify
problems across the infrastructure, in our code, or with third-party dependencies.

Let's talk about various options in our toolbox, how they compare, and how to utilize
them for maximal effect.

Dashboards versus alerts
Dashboards are purely for humans. The idea of a good dashboard is to provide,
at a glance, a lot of useful information about the state of the system or a particular
component. There are many user experience elements to designing good dashboards,
just like designing any UI. Monitoring dashboards can cover a lot of data across
many components, over long time periods, and may support drilling down into finer
and finer levels of detail.

Alerts, on the other hand, are constantly checking certain conditions (often based on
metrics) and, when triggered, can either result in automatic resolution of the cause of
the alert or eventually notify a human, who will probably start the investigation by
looking at some dashboards.

Beyond self-healing systems that handle certain alerts automatically (or ideally
resolve the issue before an alert is even raised), humans will typically be involved
in troubleshooting. Even in cases where the system automatically recovered from a
problem, at some point, a human will review the actions the system took and verify
that the current behavior, including automatic recovery from problems, is adequate.

In many cases, severe problems (incidents) discovered by humans looking at
dashboards (not scalable) or notified by alerts will require some investigation,
remediation, and, later, post-mortem. In all those stages, the next layer of monitoring
comes into play.

Chapter 13

[481]

Logs versus metrics versus error reports
Let's understand where each of these tools excel and how best to combine their
strengths to debug difficult problems. Let's assume we have good test coverage and
our business/domain logic code is by and large correct. We run into problems in the
production environment. There could be several types of problems that happen only
in production:

•	 Misconfiguration (production configuration is incorrect out of date)
•	 Infrastructure provisioning
•	 Insufficient permissions and access to data, services, or third-party

integrations
•	 Environment-specific code
•	 Software bugs that are exposed by production inputs
•	 Scalability issues

That's quite a list, and it's probably not even complete. Typically, when something
goes wrong, it is in response to some change. What kind of changes are we talking
about? Here are a few:

•	 Deployment of a new version of the code
•	 Dynamic reconfiguration of a deployed application
•	 New users or existing users changing the way they interact with the system
•	 Changes to the underlying infrastructure (for example, by cloud provider)
•	 New path in the code is utilized for the first time (for example, fallback to

another region)

Since there is such a broad spectrum of problems and causes, it is difficult to suggest
a linear path to resolution. For example, if the failure caused an error, then looking
at an error report might be the best starting point. However, if the issue is that some
action that was supposed to happen didn't happen, then there is no error to look
at. In this case, it might make sense to look at the logs and compare them to the
logs from a previous successful request. In the case of infrastructure or scalability
problems, metrics may give us the best initial insight.

The bottom line is that debugging distributed systems requires using multiple tools
together in the pursuit of the ever-elusive root cause.

Of course, in a distributed system with lots of components and microservices, it is
not even clear where to look. This is where distributed tracing shines and can help us
narrow down and identify the culprit.

Monitoring Kubernetes Clusters

[482]

Detecting performance and root cause with
distributed tracing
With distributed tracing in place, every request will generate a trace with a graph
of spans. Jaeger uses sampling of 1/1,000 by default, so once in a blue moon, issues
might escape it, but for persistent problems, we will be able to follow the path of a
request, see how long each span takes, and if the processing of a request bails out for
some reason, it will be very easy to notice. At this point, you need to go back to the
logs, metrics, and errors to hunt the root cause.

Summary
In this chapter, we covered the topics of monitoring, observability, and, in general,
day 2 operations. We started with a review of the various aspects of monitoring:
logs, metrics, error reporting, and distributed tracing. Then, we discussed how to
incorporate monitoring capabilities into your Kubernetes cluster. We looked at
several CNCF projects like Fluentd for log aggregation, Prometheus for metrics
collection and alert management, Grafana for visualization, and Jaeger for
distributed tracing. Then, we explored troubleshooting large distributed systems. We
realized how difficult it can be and why we need so many different tools to conquer
the issues.

In the next chapter, we will take things to the next level and dive into service meshes.
I'm super excited about service meshes because they take much of the complexity
related to cloud-native, microservice-based applications and externalize them
outside of the microservices. That has a lot of real-world value.

[483]

14
Utilizing Service Meshes

In the previous chapter, we looked at monitoring and observability. One of the
obstacles of a comprehensive monitoring story is that it requires a lot of changes
to the code that are orthogonal to the business logic.

In this chapter, we will learn about service meshes, which allow you to externalize
many of those cross-cutting concerns from the application code. The service mesh
is a true paradigm shift in the way you can design, evolve, and operate distributed
systems on Kubernetes. I like to think of it as aspect-oriented programming for
cloud-native distributed systems. The topics we will cover are:

•	 What is a service mesh?
•	 Choosing a service mesh
•	 Incorporating Istio into your Kubernetes cluster

Let's jump right in.

What is a service mesh?
A service mesh is an architectural pattern for large-scale cloud native applications
that are composed of many microservices. When your application is structured as
a collection of microservices, there is a lot going on in the boundary between the
microservices internally, inside your Kubernetes cluster.

Utilizing Service Meshes

[484]

This is different from traditional monolithic applications, where most of the
processing is within the same process.

Here are some of the concerns that are relevant for each microservice or interaction
between microservices:

•	 Advanced load balancing
•	 Service discovery
•	 Support canary deployments
•	 Caching
•	 Tracing a request across multiple microservices
•	 Authentication between services
•	 Throttling the number requests a service handles at a given time
•	 Automatically retrying failed requests
•	 Failing over to an alternative component when a component fails consistently
•	 Collecting metrics

All these concerns are completely orthogonal to the domain logic of the service, but
they are all very important. A naive approach is to simply code all these concerns
directly in each microservice. This obviously doesn't scale. So, a typical approach
is to package all this functionality into a big library or set of libraries and use these
libraries in each service:

Figure 14.1: The big library approach

Chapter 14

[485]

There are several problems with the big library approach:

•	 You need a library that supports all the programming languages you use
•	 If you want to update your library, you need to bump all your services
•	 It's difficult to upgrade all services at the same time

The service mesh doesn't touch your application. It injects a sidecar proxy container
into each pod and a service mesh controller. The proxies intercept all communication
between the pods and, in collaboration with the mesh controller, take care of all the
cross-cutting concerns:

Figure 14.2: Using a service mesh controller

Here are some of the attributes of the proxy injection approach:

•	 The application is unaware of the service mesh
•	 You can turn the mesh on or off per pod and update the mesh independently
•	 No need to deploy an agent on each node
•	 Different pods on the same node can have different sidecars (or versions)
•	 Each pod has its own copy of the proxy

Utilizing Service Meshes

[486]

On Kubernetes, it looks like:

Figure 14.3: Kubernetes with a service mesh controller

There is another way to implement the service mesh proxy as a node agent, where
it is not injected into each pod. This approach is less common, but in some cases
(especially in non-Kubernetes environments), it is useful:

Figure 14.4: Service mesh proxy as a node agent

Chapter 14

[487]

Control plane and data plane
In the service mesh world, there is a control plane, which is typically a set of
controllers on Kubernetes, and there is a data plane, which contains the proxies
that connect all the services in the mesh. The data plane consists of all the sidecar
containers (or node agent) that intercept all communication between services in the
mesh. The control plane is responsible for what actually happens when any traffic
between services or a service and the outside world is intercepted.

Now that we have a good idea what a service mesh is, how it works, and why it is so
useful, let's review some of the service meshes out there.

Choosing a service mesh
The service mesh concept is relatively new, but there are already many choices out
there. Here is a concise review of the current cohort of service meshes.

Envoy
Envoy (https://www.envoyproxy.io/) is yet another CNCF graduated project. It
is a very versatile and high-performance L7 proxy. It provides many service mesh
capabilities, but it is considered pretty low-level and difficult to configure. It is also
not Kubernetes-specific. Some of the Kubernetes service meshes use Envoy as the
underlying data plane and provide a Kubernetes-native control plane to configure
and interact with it. If you want to use Envoy directly on Kubernetes, then the
recommendation is to use another open source projects like Ambassador or Gloo
as an Ingress controller and/or API gateway.

Linkerd 2
Linkerd 2 (https://linkerd.io/) is a Kubernetes-specific service, as well as a
CNCF incubating project. It is developed by Buoyant (https://buoyant.io/).
Buoyant coined the term service mesh and introduced it to the world a few years
ago. They started with a Scala-based service mesh for multiple platforms, including
Kubernetes, called Linkerd. However, they decided to develop a better and more
performant service mesh targeting Kubernetes only. That's where Linkerd 2 comes
in. They implemented the data plane (proxy layer) in Rust and the control plane
in Go.

https://www.envoyproxy.io/
https://linkerd.io/
https://buoyant.io/

Utilizing Service Meshes

[488]

Kuma
Kuma (https://kuma.io/) is a service mesh powered by Envoy. It works on
Kubernetes, as well as other environments. It is developed by Kong. Its claim
to fame is that it is super easy to configure.

AWS App Mesh
AWS, of course, has its own proprietary service mesh – AWS App Mesh (https://
aws.amazon.com/app-mesh/). App Mesh also uses Envoy as its data plane. It can
run on EC2, Fargate, ECS and EKS, and plain Kubernetes. App Mesh is a bit late
to the service mesh scene, so it's not as mature as some of the other service meshes.
However, it is based on the solid Envoy, so if you're an AWS shop, it may be the
best choice due to its tight integration with AWS services.

Maesh
Maesh (https://containo.us/maesh/) was developed by the makers of Traefik
(https://containo.us/traefik/). It is interesting because it uses the node agent
approach as opposed to sidecar containers. It is based heavily on Traefik middleware
in order to implement the service mesh functionality. You can configure it by using
annotations on your services. It may be an interesting and lightweight approach to
trying service meshes if you utilize Traefik at the edge of your cluster.

Istio
Last, but not least, Istio (https://istio.io/) is the most well-known service
mesh on Kubernetes. It is built on top of Envoy and allows you to configure it in a
Kubernetes-native way via YAML manifests. Istio was started by Google, IBM, and
Lyft (the Envoy developers). It's a one-click install on Google GKE, but it is widely
used in the Kubernetes community. It is also the default ingress/API gateway
solution for Knative, which promotes its adoption even further.

Now that we've discussed the various service meshes choices, let's take Istio for
a ride.

https://kuma.io/
https://aws.amazon.com/app-mesh/
https://aws.amazon.com/app-mesh/
https://containo.us/maesh/
https://containo.us/traefik/
https://istio.io/

Chapter 14

[489]

Incorporating Istio into your Kubernetes
cluster
In this section, we will get to know Istio a little better, install it into a fresh cluster,
and explore all the service goodness it provides.

Understanding the Istio architecture
First, let's meet the main components of Istio and understand what they do and how
they relate to each other.

Istio is a large framework that provides a lot of capabilities, and it has multiple parts
that interact with each other and with Kubernetes components (mostly indirectly and
unobtrusively). It is divided into a control plane and a data plane. The data plane
is a set of proxies (one per pod). Their control plane is a set of components that are
responsible for configuring the proxies and collecting telemetry data.

The following diagram illustrates the different parts of Istio, how they are related to
each other, and what information is exchanged between them:

Figure 14.5: Istio architecture

Utilizing Service Meshes

[490]

Let's go a little deeper into each component, starting with the Envoy proxy.

Envoy
We discussed Envoy briefly when we reviewed service meshes for Kubernetes.
Here, it serves as the data plane of Istio. Envoy is implemented in C++ and is a
high-performance proxy. For each pod in the service mesh, Istio injects (either
automatically or through the istioctl CLI) an Envoy side container that does all the
heavy lifting, such as:

•	 Proxy HTTP, HTTP/2, and gRPC traffic between pods
•	 Sophisticated load balancing
•	 mTLS termination
•	 HTTP/2 and gRPC proxies
•	 Providing service health
•	 Circuit breaking for unhealthy services
•	 Percent-based traffic shaping
•	 Injecting faults for testing
•	 Detailed metrics

The Envoy proxy controls all the incoming and outgoing communication to its pod.
It is, by far, the most important component of Istio. The configuration of Envoy is not
trivial, and this is a large part of what the Istio control plane deals with.

The next component is Pilot.

Pilot
Pilot is responsible for platform-agnostic service discovery, dynamic load balancing,
and routing. It translates high-level routing rules into an Envoy configuration.
This abstraction layer allows Istio to run on multiple orchestration platforms. Pilot
takes all the platform-specific information, converts it into the Envoy data plane
configuration format, and propagates it to each Envoy proxy with the Envoy data
plane API. Pilot is stateless; in Kubernetes, all the configuration is stored as custom
resources definitions (CRDs) in etcd.

Let's move on to Mixer.

Chapter 14

[491]

Mixer
Mixer is responsible for abstracting the metrics collection, policies, and auditing.
These aspects are typically implemented in services by accessing APIs directly
for specific backends. This has the benefit of offloading this burden from service
developers and putting the control into the hands of the operators that configure
Istio. It also enables switching backends easily without code changes. Here are some
the backend types that Mixer can work with:

•	 Logging
•	 Authorization
•	 Quota
•	 Telemetry
•	 Billing

The interaction between the Envoy proxy and Mixer is straightforward – before each
request, the proxy calls Mixer for precondition checks, which might cause the request
to be rejected. After each request, the proxy reports the metrics to Mixer. Mixer has
an adapter API to facilitate extensions for arbitrary infrastructure backends. It is a
major part of its design.

The next component is Citadel.

Citadel
Citadel is responsible for certificate and key management. It is a key part of Istio
security. Citadel integrates with various platforms and aligns with their identity
mechanisms. For example, in Kubernetes, it uses service accounts; on AWS, it uses
AWS IAM; and on GCP/GKE, it can use GCP IAM. The Istio PKI is based on Citadel.
It uses X.509 certificates in SPIFEE format as a vehicle for service identity.

Here is the workflow in Kubernetes:

•	 Citadel creates certificates and key pairs for existing service accounts.
•	 Citadel watches the Kubernetes API server for new service accounts to

provision with a certificate a key pair.
•	 Citadel stores the certificates and keys as Kubernetes secrets.
•	 Kubernetes mounts the secrets into each new pod that is associated with the

service account (this is standard Kubernetes practice).
•	 Citadel automatically rotates the Kubernetes secrets when the certificates

expire.

Utilizing Service Meshes

[492]

•	 Pilot generates secure naming information that associates a service account
with an Istio service. Pilot then passes the secure naming information to the
Envoy proxy.

The final major component that we will cover is Galley.

Galley
Galley is responsible for abstracting the user configuration on different platforms.
It provides the ingested configuration to Pilot and Mixer. It is a pretty simple
component.

Now that we have broken down Istio into its major components, let's get ready to
install Istio into a Kubernetes cluster.

Preparing a minikube cluster for Istio
We will use a minikube cluster to check out Istio. Before installing Istio, we should
make sure our cluster has enough capacity to handle Istio, as well as its demo
application, Bookinfo. We will start minikube with 16 MB of memory and four
CPUs, which should be adequate:

$ minikube start --memory=16384 --cpus=4

Minikube can provide a load balancer for Istio. Let's run this command in a separate
Terminal as it will block:

$ minikube tunnel

Status:
 machine: minikube
 pid: 20463
 route: 10.96.0.0/12 -> 192.168.64.5
 minikube: Running
 services: []
 errors:
 minikube: no errors
 router: no errors
 loadbalancer emulator: no errors

Minikube sometimes doesn't clean up the tunnel network, so it's recommended to
run the following command after you stop the cluster:

$ minikube tunnel --cleanup

Chapter 14

[493]

Installing Istio
With minikube up and running, we can install Istio itself. There are multiple ways to
install Istio:

•	 Customized installation with Istioctl (the Istio CLI)
•	 Customized installation with Helm
•	 Using the Istio operator (experimental)
•	 Multicluster installation

The Helm installation will not be supported in the future, so we will go with the
recommended istioctl option:

$ curl -L https://istio.io/downloadIstio | sh -

The istioctl tool is located in /istio-1.6.3/bin (the version may be different when
you download it). Make sure it's in your PATH. The Kubernetes installation manifests
are in /istio-1.6.3/install/kubernetes and the examples are in /istio-1.6.3/
samples.

We will install the built-in demo profile, which is great for evaluating Istio:

$ istioctl manifest apply --set profile=demo
- Applying manifest for component Base...
 Finished applying manifest for component Base.

- Applying manifest for component Citadel...
- Applying manifest for component Tracing...
- Applying manifest for component IngressGateway...
- Applying manifest for component Galley...
- Applying manifest for component Kiali...
- Applying manifest for component EgressGateway...
- Applying manifest for component Prometheus...
- Applying manifest for component Pilot...
- Applying manifest for component Policy...
- Applying manifest for component Injector...
- Applying manifest for component Telemetry...
- Applying manifest for component Grafana...
 Finished applying manifest for component Citadel.
 Finished applying manifest for component Kiali.
 Finished applying manifest for component Galley.
 Finished applying manifest for component Prometheus.
 Finished applying manifest for component Injector.
 Finished applying manifest for component Tracing.

Utilizing Service Meshes

[494]

 Finished applying manifest for component Policy.
 Finished applying manifest for component Grafana.
 Finished applying manifest for component IngressGateway.
 Finished applying manifest for component Pilot.
 Finished applying manifest for component EgressGateway.
 Finished applying manifest for component Telemetry.

 Installation complete

Some familiar names like Prometheus and Grafana pop up already. Let's review our
cluster and see what is actually installed. Istio installs itself into the istio-system
namespace, which is very convenient since it installs a lot of stuff. Let's check out
what services Istio installed:

$ kubectl get svc -n istio-system -o name
service/grafana
service/istio-citadel
service/istio-egressgateway
service/istio-galley
service/istio-ingressgateway
service/istio-pilot
service/istio-policy
service/istio-sidecar-injector
service/istio-telemetry
service/jaeger-agent
service/jaeger-collector
service/jaeger-query
service/kiali
service/Prometheus
service/tracing
service/zipkin

Chapter 14

[495]

There are quite a few services with an istio- prefix and then a bunch of other
services:

•	 Prometheus
•	 Grafana
•	 Jaeger
•	 Zipkin
•	 Tracing
•	 Kiali

This means that if we use Istio in our Kubernetes cluster, we don't need to install
Prometheus, Grafana, and Jaeger. They come with Istio. Also, the fact that Istio
endorses them gives even more staying power.

OK. We've installed Istio successfully. Let's install the Bookinfo application, which
is Istio's sample application, into our cluster.

Installing Bookinfo
Bookinfo is a simple microservice-based application that displays, as the name
suggests, information on a single book such as name, description, ISBN, and even
reviews. The Bookinfo developers really embraced the polyglot lifestyle, and each
microservice is implemented in a different programming language:

•	 ProductPage service in Python
•	 Reviews service in Java
•	 Details service in Ruby
•	 Ratings service in JavaScript (Node.js)

Utilizing Service Meshes

[496]

The following diagram describes the relationships and flow of information between
the Bookinfo services:

Figure 14.6: Bookinfo service relationships

Conveniently enough, Bookinfo comes with Istio, so we already have it in the
samples sub-directory and we can install it from there:

$ cd samples/bookinfo

We're going to install it into its own bookinfo namespace. Let's create the namespace
and then enable the Istio auto injection of the sidecar proxies by adding a label to the
namespace:

$ kubectl create ns bookinfo
namespace/bookinfo created
$ kubectl label namespace bookinfo istio-injection=enabled
namespace/bookinfo labeled

Chapter 14

[497]

Installing the application itself is a simple one-liner:

$ kubectl apply -f platform/kube/bookinfo.yaml -n bookinfo
service/details created
serviceaccount/bookinfo-details created
deployment.apps/details-v1 created
service/ratings created
serviceaccount/bookinfo-ratings created
deployment.apps/ratings-v1 created
service/reviews created
serviceaccount/bookinfo-reviews created
deployment.apps/reviews-v1 created
deployment.apps/reviews-v2 created
deployment.apps/reviews-v3 created
service/productpage created
serviceaccount/bookinfo-productpage created
deployment.apps/productpage-v1 created

Alright, the application was deployed successfully, including separate service
accounts for each service. As you can see, three version of the reviews service were
deployed. This will come in handy later, when we play with upgrades and advanced
routing and deployment patterns.

Before moving on, we still need to wait for all the pods to initialize and then Istio will
inject its sidecar proxy container. When the dust settles, you should see something
like this:

$ kubectl get po -n bookinfo
NAME READY STATUS RESTARTS AGE
details-v1-78d78fbddf-sdssb 2/2 Running 0 101s
productpage-v1-596598f447-h9576 2/2 Running 0 100s
ratings-v1-6c9dbf6b45-bpqbl 2/2 Running 0 99s
reviews-v1-7bb8ffd9b6-7s6xh 2/2 Running 0 100s
reviews-v2-d7d75fff8-p5lh5 2/2 Running 0 100s
reviews-v3-68964bc4c8-4hqvr 2/2 Running 0 100s

Note that under the READY column, each pod shows 2/2, which means two containers
per pod. One is the application container and the other is the injected proxy.

Utilizing Service Meshes

[498]

Since we're going to operate in the bookinfo namespace, let's define a little alias that
will make our life simpler:

$ alias kb='kubectl -n bookinfo'

Now, armed with our little kb alias, we can verify that we can get the product page
from the ratings service:

$ kb exec -it $(kb get pod -l app=ratings -o jsonpath='{.items[0].
metadata.name}') -c ratings -- curl productpage:9080/productpage | grep -o
"<title>.*</title>"

<title>Simple Bookstore App</title>

However, the application is not accessible to the outside world yet. This is where the
Istio gateway comes in. Let's deploy it:

$ kb apply -f networking/bookinfo-gateway.yaml
gateway.networking.istio.io/bookinfo-gateway created
virtualservice.networking.istio.io/bookinfo created

On minikube, the external URL for the gateway can be constructed as:

export INGRESS_PORT=$(kubectl -n istio-system get service istio-
ingressgateway -o jsonpath='{.spec.ports[?(@.name=="http2")].nodePort}')

$ export GATEWAY_URL=$(minikube ip):${INGRESS_PORT}

Now, we can try it from the outside:

$ http http://${GATEWAY_URL}/productpage | grep -o "<title>.*</title>"
<title>Simple Bookstore App</title>

Chapter 14

[499]

You can also open the URL in your browser and see some information about
Shakespeare's The Comedy of Errors:

Figure 14.7: The Comedy of Errors

Alright. We're all set to start exploring the capabilities that Istio brings to the table.
Let's start with traffic management.

Traffic management
Istio traffic management is about routing traffic to your services according to the
destination rules you define. Istio keeps a service registry for all your services and
their endpoints. The basic traffic management allows traffic between each pair of
services and does simple round-robin load balancing between each service instance.

Utilizing Service Meshes

[500]

However, Istio can do much more. The traffic management API of Istio consists of
five resources:

•	 Virtual services
•	 Destination rules
•	 Gateways
•	 Service entries
•	 Sidecars

Let's start by applying the default destination rules for Bookinfo:

$ kubectl apply -f networking/destination-rule-all.yaml
destinationrule.networking.istio.io/productpage created
destinationrule.networking.istio.io/reviews created
destinationrule.networking.istio.io/ratings created
destinationrule.networking.istio.io/details created

Then, let's create the Istio virtual services that represent the services in the mesh:

$ kubectl apply -f networking/virtual-service-all-v1.yaml
virtualservice.networking.istio.io/productpage created
virtualservice.networking.istio.io/reviews created
virtualservice.networking.istio.io/ratings created
virtualservice.networking.istio.io/details created

We need to wait a little for the virtual service configuration to propagate. Let's then
check out the product page virtual service:

$ kubectl get virtualservices productpage -o yaml
apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 ...
 generation: 1
 name: productpage
 namespace: default
spec:
 hosts:
 - productpage
 http:
 - route:
 - destination:
 host: productpage
 subset: v1

Chapter 14

[501]

It is pretty straightforward, specifying the HTTP route and the version. The v1 subset
is important for the review service, which has multiple versions. The product page
service will hit its v1 version because that is the subset that's configured.

Let's make it a little more interesting and do routing based on the logged-in user.
Istio itself doesn't have a concept of user identity, but it routes traffic based on
headers. The Bookinfo application adds an end user header to all requests.

The following command will update the routing rules:

$ kubectl apply -f networking/virtual-service-reviews-test-v2.yaml
virtualservice.networking.istio.io/reviews configured

Let's check the new rules:

$ kubectl get virtualservice reviews -o yaml
apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 ...
spec:
 hosts:
 - reviews
 http:
 - match:
 - headers:
 end-user:
 exact: json
 route:
 - destination:
 host: reviews
 subset: v2
 - route:
 - destination:
 host: reviews
 subset: v1

As you can see, if the HTTP header end user matches "json," then the request will
routed to subset 2 of the reviews service; otherwise, to subset 1. Version 2 of the
reviews service adds a star rating to the reviews part of the page.

Utilizing Service Meshes

[502]

To test it, we can sign in as user "json" (any password will do) and get the following
page:

Figure 14.8: Reviews after signing in

There is much more Istio can do in the arena of traffic management:

•	 Fault injection for test purposes
•	 HTTP and TCP traffic shifting (gradually shift traffic from one version to the

next)
•	 Request timeouts
•	 Circuit breaking
•	 Mirroring

In addition to internal traffic management, Istio supports configuring ingress into
the cluster and egress from the cluster, including secure options with TLS and
mutual TLS.

Security
Security is a core fixture of Istio. It provides identity management, authentication
and authorization, security policies, and encryption. The security support is spread
across many layers using multiple industry-standard protocols and best-practice
security principles like defense in depth, security by default, and zero trust.

Chapter 14

[503]

Here is the big picture of the Istio security architecture:

Figure 14.9: The Istio security architecture

All these components collaborate to enable a strong security posture:

•	 Citadel manages keys and certificates
•	 Sidecar and perimeter proxies implement authenticated and authorized

communication between clients and servers
•	 Pilot distributes security policies and secure naming information to the

proxies
•	 Mixer manages auditing

Let's break it down, piece by piece.

Istio identity
Istio utilizes secure naming where service names, as defined by the service discovery
mechanism (for example, DNS), are mapped to server identities based on certificates.
The clients verify the server identities. The server may be configured to verify the
client identity. All the security policies apply to given identities. The servers decide
what access a client has, based on their identity.

The Istio identity model can utilize existing identity infrastructure on the platform it
is running on. On Kubernetes, it utilizes Kubernetes service accounts, of course.

Utilizing Service Meshes

[504]

Istio supports SPIFEE (https://spiffe.io/) — a standard for the secure identity
framework. This is convenient because it allows Istio to integrate quickly with any
SPIFEE compliant system. Specifically, Kubernetes X.509 certificates are SPIFEE-
compliant.

Istio PKI
The Istio public key infrastructure (PKI) is based on Citadel to create SPIFEE
certificates. The process on Kubernetes involves the following stages:

1.	 Citadel watches the Kubernetes API server. For each service account, it
creates a SPIFFE certificate and a key pair, which it then stores as standard
Kubernetes secrets.

2.	 Now, whenever Kubernetes creates a pod, it mounts the certificate and key
pair as a secret volume called istio-certs that matches the service account.

3.	 Citadel watches the lifetime of each certificate and automatically rotates the
certificates by rewriting the Kubernetes secrets.

4.	 Pilot generates the secure naming information, which defines what service
account or accounts can run a certain service. Pilot then passes the secure
naming information to the sidecar, Envoy.

Istio authentication
The secure identity model underlies the authentication framework of Istio.
Istio supports two modes of authentication: transport authentication and origin
authentication.

Transport authentication
Transport authentication is used for service to service authentication. The cool
thing about it is that Istio provides it with no code changes. It ensures that service
to service communication will take place only between services you configure with
authentication policies.

Here is an authentication policy for the reviews service that requires mutual TLS:

apiVersion: "authentication.istio.io/v1alpha1"
kind: "Policy"
metadata:
 name: "reviews"

https://spiffe.io/

Chapter 14

[505]

spec:
 targets:
 - name: reviews
 peers:
 - mtls: {}

Origin authentication
Origin authentication is used for end user authentication. Istio will verify that the
end user making the request is allowed to make this request. This request-level
authentication utilizes JSON Web Tokens (JWTs) and supports many OpenID
Connect backends.

Here is an example of an origin authentication policy that excludes the /health
endpoint for callers with a JWT token issued by Google:

origins:

- jwt:
 issuer: https://accounts.google.com
 jwksUri: https://www.googleapis.com/oauth2/v3/certs
 trigger_rules:
 - excluded_paths:
 - exact: /health

Once the identity of the caller has been established, the authentication framework
passes it along with other claims to the next link in the chain – the authorization
framework.

Istio authorization
Istio can authorize requests at many levels:

•	 Entire mesh
•	 Entire namespace
•	 Workload level

Utilizing Service Meshes

[506]

Here is the authorization architecture of Istio:

Figure 14.10: Istio's authorization architecture

Authorization is based on authorization polices. Each policy has a selector (what
workloads it applies to) and rules (who is allowed to access a resource and under
what conditions).

If no policy is defined on a workload, all requests are allowed. However, if a policy
is defined for a workload, only requests that are allowed by a rule in the policy are
allowed. There is no way to define exclusion rules.

Here is an AuthorizationPolicy that allows two sources (service account cluster.
local/ns/default/sa/sleep and namespace dev) to access the workloads with the
labels app: httpbin and version: v1 in the namespace foo when the request is sent
with a valid JWT token:

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: httpbin
 namespace: foo
spec:
 selector:
 matchLabels:
 app: httpbin
 version: v1

Chapter 14

[507]

 rules:
 - from:
 - source:
 principals: ["cluster.local/ns/default/sa/sleep"]
 - source:
 namespaces: ["dev"]
 to:
 - operation:
 methods: ["GET"]
 when:
 - key: request.auth.claims[iss]
 values: ["https://accounts.google.com"]

The granularity doesn't have to be at the workload level. We can limit the access
to specific endpoints and methods too. We can specify the operation using prefix
match, suffix match, or presence match, in addition to exact match. For example, the
following policy allows access to all paths that start with /test/ and all the paths
that end in /info. The allowed methods are GET and HEAD only:

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: tester
 namespace: default
spec:
 selector:
 matchLabels:
 app: products
 rules:
 - to:
 - operation:
 paths: ["/test/*", "*/info"]
 methods: ["GET", "HEAD"]

If we want to get even more fancy, we can specify conditions. For example, we can
allow only requests with a specific header. Here is a policy that requires a version
header with a value of v1 or v2:

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: httpbin
 namespace: foo

Utilizing Service Meshes

[508]

spec:
 selector:
 matchLabels:
 app: httpbin
 version: v1
 rules:
 - from:
 - source:
 principals: ["cluster.local/ns/default/sa/sleep"]
 to:
 - operation:
 methods: ["GET"]
 when:
 - key: request.headers[version]
 values: ["v1", "v2"]

For TCP services, the paths and methods fields of the operation don't apply. Istio will
simply ignore them. However, we can specify policies for specific ports:

apiVersion: "security.istio.io/v1beta1"
kind: AuthorizationPolicy
metadata:
 name: mongodb-policy
 namespace: default
spec:
 selector:
 matchLabels:
 app: mongodb
 rules:
 - from:
 - source:
 principals: ["cluster.local/ns/default/sa/bookinfo-ratings-v2"]
 to:
 - operation:
 ports: ["27017"]

It is possible to plug in other authorization mechanisms by extending Mixer, but it
is frowned upon. It's best to stick to Istio authorization, which is very powerful and
flexible.

Let's move on to the topic of custom policies.

Chapter 14

[509]

Policies
Istio is very flexible and lets us enable and define various custom policies to control
how requests are handled. Here are some of the policies we can apply:

•	 Dynamically rate limit traffic to a service
•	 Whitelisting, blacklisting, and denying access to services
•	 Rewriting headers
•	 Redirecting requests
•	 Custom authorization policies

Policies are powered by the Mixer adapter model. Mixer abstracts away
infrastructure backends such as telemetry systems, access control systems, quota
enforcements systems, billing systems, and so on. The mixer adapter operates on a
generic set of attributes that it receives from Envoy. It then feeds them to the adapter
that knows how to interact with the infrastructure backends. The operators (you and
me) can configure Mixer with policies that, based on the attribute, define behaviors
for the adapter. Here is a diagram that illustrates the interactions between the
different components:

Figure 14.11: Interactions between Mixer components

Custom policies are not trivial. You have to understand the various objects involved
and how to configure them correctly. Also, policy enforcement is disabled by default.
If we don't enable it, Istio will ignore our policies.

Utilizing Service Meshes

[510]

It is configured in the istio ConfigMap. Here is how to verify that:

$ kubectl -n istio-system get cm istio -o jsonpath="{@.data.mesh}" | grep
disablePolicyChecks
disablePolicyChecks: true

Here is an easy way to enable it:

$ istioctl manifest apply --set values.global.disablePolicyChecks=false

If this doesn't work, you can directly edit the ConfigMap:

$ kubectl edit -n istio-system cm istio

Now, we can apply some policies. For example, here is how to apply the rate limit
policy:

$ kubectl apply -f policy/mixer-rule-productpage-ratelimit.yaml

handler.config.istio.io/quotahandler created
instance.config.istio.io/requestcountquota created
quotaspec.config.istio.io/request-count created
quotaspecbinding.config.istio.io/request-count created
rule.config.istio.io/quota created

This created several objects: a handler, an instance, a quota spec, a quota spec
binding, and finally a rule that ties all of them together.

Let's take a look at these objects and see how they collaborate to implement rate
limiting. The instance is an instance of a quota template. It defines the dimensions,
which in this case are the source, destination, and destination version:

$ kubectl -n istio-system get instance requestcountquota -o yaml

apiVersion: config.istio.io/v1alpha2
kind: instance
metadata:
 generation: 1
 name: requestcountquota
spec:
 compiledTemplate: quota
 params:
 dimensions:
 destination: destination.labels["app"] | destination.service.name |
"unknown"

Chapter 14

[511]

 destinationVersion: destination.labels["version"] | "unknown"
 source: request.headers["x-forwarded-for"] | "unknown"

The handler here is a memquota adapter. For production systems, it is recommended
to use a Redis adapter.

You can retrieve the spec using the following command:

$ kubectl -n istio-system get handler quotahandler -o yaml

The spec defines multiple quota schemes. First, a default quota of 500 requests per
second:

spec:
 compiledAdapter: memquota
 params:
 quotas:
 - name: requestcountquota.instance.istio-system
 maxAmount: 500
 validDuration: 1s

Then, it defines overrides for specific services. For example, for the reviews service,
only one request is allowed every 5 seconds:

 overrides:
 - dimensions:
 destination: reviews
 maxAmount: 1
 validDuration: 5s

The productpage service allows two requests every 5 seconds:

 - dimensions:
 destination: productpage
 maxAmount: 2
 validDuration: 5s

Unless the source has IP address 10.28.11.20, in which case, it's back to 500 requests
per second:

 - dimensions:
 destination: productpage
 source: 10.28.11.20
 maxAmount: 500
 validDuration: 1s

Utilizing Service Meshes

[512]

When a request is rejected due to a rate limit, Mixer will return a RESOURCE_EXHAUSTED
message to Envoy, which will return an HTTP 429 status code to the caller.

The rule just ties together the quota instance with the handler:

$ kubectl -n istio-system get rule quota -o yaml

apiVersion: config.istio.io/v1alpha2
kind: rule
metadata:
 generation: 1
 name: quota
 namespace: istio-system
spec:
 actions:
 - handler: quotahandler
 instances:
 - requestcountquota

The policy can be applied restricted to a namespace. When the namespace is istio-
system, it applies to the entire service mesh.

Let's look at one of the areas where Istio provides tremendous value – telemetry.

Monitoring and observability
Instrumenting your application for telemetry is a thankless job. You need to log,
collect metrics, and create spans for tracing. This has several downsides:

•	 It takes time and effort to do it in the first place
•	 It takes more time and effort to ensure it is consistent across all the services in

your cluster
•	 You can easily miss some important instrumentation point or configure it

incorrectly
•	 If you want to change your log provider or distributed tracing solution, you

might need to modify all your services
•	 It litters your code with lots of stuff that obscures the business logic
•	 You might need to explicitly turn it off for testing

Chapter 14

[513]

What if all of this was taken care of automatically and never required any code
changes? That's the promise of service mesh telemetry. Of course, you may need to
do some work, especially if you want to capture custom metrics or do some specific
logging. If your system is divided into coherent microservices along boundaries
that really represent your domain and workflows, then Istio can help you get decent
instrumentation, right out of the box. The idea is that Istio can keep track of what's
going on in the seams between your services.

Logs
Istio can be configured for log collection, similar to the way we defined policies. The
following command will create a log instance and a log handler:

$ kubectl apply -f telemetry/log-entry.yaml
instance.config.istio.io/newlog created
handler.config.istio.io/newloghandler created

It uses the logentry template and the stdio built-in adapter. On Kubernetes, the logs
are collected as the container logs of the mixer. You can find them via the following
command:

$ kubectl -n istio-system logs -l istio-mixer-type=telemetry | rg newlog
{"level":"warn","time":"2020-06-14T19:27:11.752616Z","instance":"newlog.
instance.istio-system","destination":"details","latency":"1.708946ms","resp
onseCode":200,"responseSize":178,"source":"productpage","user":"unknown"}
{"level":"warn","time":"2020-06-14T19:27:11.912198Z","instance":"newlog.
instance.istio-system","destination":"details","latency":"1.756211ms","resp
onseCode":200,"responseSize":178,"source":"productpage","user":"unknown"}
{"level":"warn","time":"2020-06-14T19:27:11.918363Z","instance":"newlog.
instance.istio-system","destination":"reviews","latency":"29.029062ms","res
ponseCode":200,"responseSize":375,"source":"productpage","user":"unknown"}
{"level":"warn","time":"2020-06-14T19:27:11.758456Z","instance":"newlog.
instance.istio-system","destination":"reviews","latency":"4.624288ms","resp
onseCode":200,"responseSize":295,"source":"productpage","user":"unknown"}
{"level":"warn","time":"2020-06-14T19:27:11.918611Z","instance":"newlog.
instance.istio-system","destination":"reviews","latency":"27.833674ms","res
ponseCode":200,"responseSize":375,"source":"productpage","user":"unknown"}
istio-mixer-type=telemetry

As you can see, each log entry contains the log level, the time stamp, the source, the
destination, the response code, and the latency.

Utilizing Service Meshes

[514]

It is also possible to access the Envoy logs if necessary. Note that the Envoy logs
are disabled by default. You can enable them in the Istio ConfigMap by setting
accessLogFile to /dev/output.

Here are the Envoy logs of the productpage service:

$ kb logs -l app=productpage -c istio-proxy
[2020-06-14T19:27:11.565Z] "GET /reviews/0 HTTP/1.1" 200 - "-" "-"
0 375 19 19 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130 Safari/537.36"
"f482f9a7-2033-945f-8885-fd55038fb3ce" "reviews:9080" "172.17.0.18:9080"
outbound|9080||reviews.bookinfo.svc.cluster.local - 10.96.145.169:9080
172.17.0.24:54918 – default
[2020-06-14T19:27:11.547Z] "GET /productpage HTTP/1.1" 200 - "-" "-"
0 5282 40 40 "172.17.0.1" "Mozilla/5.0 (Macintosh; Intel Mac OS X
10_14_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130
Safari/537.36" "f482f9a7-2033-945f-8885-fd55038fb3ce" "192.168.64.6:30828"
"127.0.0.1:9080" inbound|9080|http|productpage.bookinfo.svc.cluster.local -
172.17.0.24:9080 172.17.0.1:0 – default
[2020-06-14T19:27:11.752Z] "GET /details/0 HTTP/1.1" 200 - "-" "-" 0 178 1
1 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/79.0.3945.130 Safari/537.36" "d3c13544-
fc06-9e49-8aeb-077608d70316" "details:9080" "172.17.0.27:9080"
outbound|9080||details.bookinfo.svc.cluster.local - 10.96.117.135:9080
172.17.0.24:56584 – default
[2020-06-14T19:27:11.758Z] "GET /reviews/0 HTTP/1.1" 200 - "-" "-" 0 295 5
5 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/79.0.3945.130 Safari/537.36" "d3c13544-
fc06-9e49-8aeb-077608d70316" "reviews:9080" "172.17.0.21:9080"
outbound|9080||reviews.bookinfo.svc.cluster.local - 10.96.145.169:9080
172.17.0.24:54928 – default
[2020-06-14T19:27:11.747Z] "GET /productpage HTTP/1.1" 200 - "-" "-"
0 4286 18 18 "172.17.0.1" "Mozilla/5.0 (Macintosh; Intel Mac OS X
10_14_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130
Safari/537.36" "d3c13544-fc06-9e49-8aeb-077608d70316" "192.168.64.6:30828"
"127.0.0.1:9080" inbound|9080|http|productpage.bookinfo.svc.cluster.local -
172.17.0.24:9080 172.17.0.1:0 – default
[2020-06-14T19:27:11.912Z] "GET /details/0 HTTP/1.1" 200 - "-" "-" 0 178 1
1 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/79.0.3945.130 Safari/537.36" "9f6f8d93-
fb3f-98b7-9911-1b1e74aabfbf" "details:9080" "172.17.0.27:9080"
outbound|9080||details.bookinfo.svc.cluster.local - 10.96.117.135:9080
172.17.0.24:56596 – default
[2020-06-14T19:27:11.918Z] "GET /reviews/0 HTTP/1.1" 200 - "-" "-"
0 375 29 28 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130 Safari/537.36"

Chapter 14

[515]

"9f6f8d93-fb3f-98b7-9911-1b1e74aabfbf" "reviews:9080" "172.17.0.18:9080"
outbound|9080||reviews.bookinfo.svc.cluster.local - 10.96.145.169:9080
172.17.0.24:54940 – default
[2020-06-14T19:27:11.906Z] "GET /productpage HTTP/1.1" 200 - "-" "-"
0 5282 43 43 "172.17.0.1" "Mozilla/5.0 (Macintosh; Intel Mac OS X
10_14_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130
Safari/537.36" "9f6f8d93-fb3f-98b7-9911-1b1e74aabfbf" "192.168.64.6:30828"
"127.0.0.1:9080" inbound|9080|http|productpage.bookinfo.svc.cluster.local -
172.17.0.24:9080 172.17.0.1:0 – default
[Envoy (Epoch 0)] [2020-06-14 19:36:20.012][19][warning][config] [bazel-
out/k8-opt/bin/external/envoy/source/common/config/_virtual_includes/grpc_
stream_lib/common/config/grpc_stream.h:91] gRPC config stream closed: 13,
[Envoy (Epoch 0)] [2020-06-14 20:06:38.171][19][warning][config] [bazel-
out/k8-opt/bin/external/envoy/source/common/config/_virtual_includes/grpc_
stream_lib/common/config/grpc_stream.h:91] gRPC config stream closed: 13,

The format of the Envoy logs is text, but you can configure it to be JSON, by setting
the accessLogEncoding to JSON in the ConfigMap. You can even set the format of the
logs.

On Kubernetes, you can use fluentd to send all these logs to a centralized logging
system.

Let's deploy a complete Elasticsearch, Kibana, and Fluentd (EFK) logging stack and
see how it integrates with Istio. We will run the following command (the logging-
stack.yaml file is in the code folder):

$ kubectl apply -f logging-stack.yaml
namespace/logging created
service/elasticsearch created
deployment.apps/elasticsearch created
service/fluentd-es created
deployment.apps/fluentd-es created
configmap/fluentd-es-config created
service/kibana created
deployment.apps/kibana created

The stack is deployed in its own logging namespace. We need to configure Istio to
send its logs through fluentd. As usual, this is done by going through Mixer and
defining Instance, Handler, and Rule:

$ kubectl apply -f telemetry/fluentd-istio.yaml
instance.config.istio.io/newlog created
handler.config.istio.io/handler created
rule.config.istio.io/newlogtofluentd created

Utilizing Service Meshes

[516]

It can take a few minutes for some pods to be ready. The next step is to make Kibana
– the logging UI – accessible:

$ kubectl -n logging port-forward $(kubectl -n logging get pod -l
app=kibana -o jsonpath='{.items[0].metadata.name}') 5601:5601

Now, we can browse to http://localhost:5601 and start playing with Kibana. Here
is what it looks like:

Figure 14.12: The Kibana UI

That pretty much covers logging with Istio. Let's see what Istio has to offer for
metrics.

Metrics
Istio collects three types of metrics:

•	 Proxy metrics
•	 Control plane metrics
•	 Service metrics

Chapter 14

[517]

The collected metrics cover all traffic into, from, and inside the service mesh. As
operators, we need to configure Istio. Istio follows the four golden signals doctrine
and records the latency, traffic, errors, and saturation.

Istio installs Prometheus and Grafana as its metrics collection and visualization
backend.

To set up metrics collection, let's run the following command:

$ kubectl apply -f telemetry/metrics.yaml
instance.config.istio.io/doublerequestcount created
handler.config.istio.io/doublehandler created
rule.config.istio.io/doubleprom created

Here is an example of proxy-level metrics:

envoy_cluster_internal_upstream_rq{response_code_class="2xx",cluster_
name="xds-grpc"} 7163
envoy_cluster_upstream_rq_completed{cluster_name="xds-grpc"} 7164
envoy_cluster_ssl_connection_error{cluster_name="xds-grpc"} 0
envoy_cluster_lb_subsets_removed{cluster_name="xds-grpc"} 0
envoy_cluster_internal_upstream_rq{response_code="503",cluster_name="xds-
grpc"} 1

And here is an example of a service-level metric:

istio_requests_total{
 connection_security_policy="mutual_tls",
 destination_app="details",
 destination_principal="cluster.local/ns/default/sa/default",
 destination_service="details.default.svc.cluster.local",
 destination_service_name="details",
 destination_service_namespace="default",
 destination_version="v1",
 destination_workload="details-v1",
 destination_workload_namespace="default",
 reporter="destination",

Utilizing Service Meshes

[518]

 request_protocol="http",
 response_code="200",
 response_flags="-",
 source_app="productpage",
 source_principal="cluster.local/ns/default/sa/default",
 source_version="v1",
 source_workload="productpage-v1",
 source_workload_namespace="default"
} 214

We can also collect metrics for TCP services. Let's install v2 of the ratings service,
which uses MongoDB (a TCP service):

$ kb apply -f platform/kube/bookinfo-ratings-v2.yaml
serviceaccount/bookinfo-ratings-v2 created
deployment.apps/ratings-v2 created

Next, we install MongoDB itself:

$ kb apply -f platform/kube/bookinfo-db.yaml
service/mongodb created
deployment.apps/mongodb-v1 created

Finally, we need to create virtual services for the reviews and ratings service:

$ kb apply -f networking/virtual-service-ratings-db.yaml
virtualservice.networking.istio.io/reviews configured
virtualservice.networking.istio.io/ratings configured

At this point, we can expose Prometheus:

kubectl -n istio-system port-forward \
$(kubectl -n istio-system get pod -l app=prometheus \
-o jsonpath='{.items[0].metadata.name}') 9090:9090 &

We can view the slew of new metrics available from both Istio services, the Istio
control plane, and especially Envoy. Here is a very small subset of the available
metrics:

Chapter 14

[519]

Figure 14.13: Some of the available metrics

The last pillar of observability is distributed tracing.

Distributed tracing
Istio configures the Envoy proxies to generate trace spans for the associated services.
The services themselves are responsible for forwarding the request context. Istio can
work with multiple tracing backends, such as:

•	 Gaeger
•	 Zipkin
•	 LightStep
•	 DataDog

Utilizing Service Meshes

[520]

Here are the request headers that services should propagate (only some may be
present for each request, depending on the tracing backend):

 x-request-id
 x-b3-traceid
 x-b3-spanid
 x-b3-parentspanid
 x-b3-sampled
 x-b3-flags
 x-ot-span-context
 x-cloud-trace-context
 traceparent
 grpc-trace-bin

The sampling rate of traces is controlled by an environment variable of the Pilot:
PILOT_TRACE_SAMPLING:

$ kubectl -n istio-system get deploy istio-pilot -o yaml \
| grep "name: PILOT_TRACE_SAMPLING" -A 1

 - name: PILOT_TRACE_SAMPLING
 value: "100"

The demo profile of Bookinfo samples 100% of the requests. We can change it to a
lower rate with a granularity of 0.01. The default is 1%.

Now, we can start the Jaeger UI and explore the traces:

$ istioctl dashboard jaeger
http://localhost:52466
Handling connection for 9090

Your browser will automatically open and you should see the familiar Jaeger
dashboard, where you can select a service and search for traces:

Chapter 14

[521]

Figure 14.14: Selecting a service in Jaeger

You can click von a trace to see a detailed view of the flow of the request through the
system:

Figure 14.15: Detailed flow of the request

Utilizing Service Meshes

[522]

We've seen a lot of different tools with their own UI. Let's look at dedicated service
mesh visualization.

Visualizing your service mesh with Kiali
Kiali is an open source project that ties together Prometheus, Grafana, and Jaeger to
provide an observability console to your Istio service mesh. It can answer questions
like:

•	 What microservices participate in the Istio service mesh?
•	 How are these microservices connected?
•	 How are these microservices performing?

It has various views and it really allows you to slice and dice your service mesh with
zooming in and out, filtering and selecting various properties to display. It's got
several views that you can switch between. Here is the overview page:

Figure 14.16: Kiali's overview page

However, the most interesting view is the graph view, which can show your services
and how they relate to each other. It is fully aware of versions and requests flowing
between different workloads, including percentage of requests and latency. It can
show both HTTP and TCP services and really provides a great picture of how your
service mesh behaves:

Chapter 14

[523]

Figure 14.17: Graph view in Kiali

Summary
In this chapter, we did a very comprehensive study of service meshes on Kubernetes.
Service meshes are here to stay. They are simply the right way to operate a complex
distributed system. Separating all the operations concerns out to the proxies and
having the service mesh to control them is a paradigm shift. Kubernetes, of course,
is designed primarily for complex distributed systems, so the value of the service
mesh becomes clear right away. It is also great to see that there are many options
for service meshes on Kubernetes. While most service meshes are not specific to
Kubernetes, it is one of the most important deployment platforms. In addition, we
did a thorough review of Istio – arguably the service mesh with the most momentum
– and took it through its paces. We demonstrated many of the benefits of service
meshes and how they integrate with various other systems. You should be able to
evaluate how useful a service mesh can be for your system and if you should deploy
it and start enjoying the benefits.

In the next chapter, we'll look at the myriad of ways that we can extend Kubernetes
and take advantage of its modular and flexible design. This is one of the hallmarks of
Kubernetes and why it was adopted so quickly by so many communities.

[525]

15
Extending Kubernetes

In this chapter, we will dig deep into the guts of Kubernetes. We will start with the
Kubernetes API and learn how to work with Kubernetes programmatically via direct
access to the API, the Python client, and automating Kubectl. Then, we'll look into
extending the Kubernetes API with custom resources. The last part is all about the
various plugins Kubernetes supports. Many aspects of Kubernetes operation are
modular and designed for extension. We will examine the API aggregation layer
and several types of plugins, such as custom schedulers, authorization, admission
control, custom metrics, and volumes. Finally, we'll look into extending Kubectl and
adding your own commands.

The topics covered in this chapter are as follows:

•	 Working with the Kubernetes API
•	 Extending the Kubernetes API
•	 Writing Kubernetes and Kubectl plugins
•	 Writing webhooks

Working with the Kubernetes API
The Kubernetes API is comprehensive and encompasses the entire functionality
of Kubernetes. As you may expect, it is huge. But it is designed very well using
best practices, and it is consistent. If you understand the basic principles, you can
discover everything you need to know.

Extending Kubernetes

[526]

Understanding OpenAPI
OpenAPI allows API providers to define their operations and models and enables
developers to automate their tools and generate their favorite language's client to
talk to that API server. Kubernetes has supported Swagger 1.2 (an older version of
the OpenAPI spec) for a while, but the spec was incomplete and invalid, making it
hard to generate tools/clients based on it.

In Kubernetes 1.4, alpha support was added for the OpenAPI spec (formerly known
as Swagger 2.0 before it was donated to the OpenAPI Initiative) by upgrading the
current models and operations. In Kubernetes 1.5, support for the OpenAPI spec has
been completed by auto-generating the spec directly from the Kubernetes source,
which will keep the spec and documentation completely in sync with future changes
in operations/models.

The new spec enables better API documentation and an auto-generated Python client
that we will explore later.

The spec is modular and divided by group version. This is future-proof. You can
run multiple API servers that support different versions. Applications can transition
gradually to newer versions.

The structure of the spec is explained in detail in the OpenAPI spec definition. The
Kubernetes team used the operation's tags to separate each group version and fill in
as much information as possible about paths/operations and models. For a specific
operation, all parameters, methods of call, and responses are documented. The result
is impressive.

Setting up a proxy
To simplify access, you can use Kubectl to set up a proxy:

$ kubectl proxy --port 8080

Now, you can access the API server on http://localhost:8080 and it will reach the
same Kubernetes API server that Kubectl is configured for.

Exploring the Kubernetes API directly
The Kubernetes API is highly discoverable. You can just browse to the URL of the
API server at http://localhost:8080 and get a nice JSON document that describes
all the available operations under the paths key.

Chapter 15

[527]

Here is a partial list due to space constraints:

{
 "paths": [
 "/api",
 "/api/v1",
 "/apis",
 "/apis/apps",
 "/apis/storage.k8s.io/v1",
 .
 .
 .
 "/healthz",
 "/healthz/ping",
 "/logs",
 "/metrics",
 "/swaggerapi/",
 "/ui/",
 "/version"
]
}

You can drill down any one of the paths. For example, here is the response from the
/api/v1/namespaces/default endpoint:

{
 "apiVersion": "v1",
 "kind": "Namespace",
 "metadata": {
 "creationTimestamp": "2017-12-25T10:04:26Z",
 "name": "default",
 "resourceVersion": "4",
 "selfLink": "/api/v1/namespaces/default",
 "uid": "fd497868-e95a-11e7-adce-080027c94384"
 },
 "spec": {
 "finalizers": [
 "kubernetes"
]
 },
 "status": {
 "phase": "Active"
 }
}

Extending Kubernetes

[528]

I discovered this endpoint by going first to /api, then discovered /api/v1, which told
me there is /api/v1/namespaces, which pointed me to /api/v1/namespaces/default.

Using Postman to explore the Kubernetes API
Postman (https://www.getpostman.com) is a very polished application for working
with RESTful APIs. If you lean more to the GUI side, you may find it extremely
useful.

The following screenshot shows the available endpoints in the batch V1 API group:

Figure 15.1: Available endpoints in the batch V1 API group

Postman has a lot of options and it organizes the information in a very pleasing way.
Give it a try.

https://www.getpostman.com

Chapter 15

[529]

Filtering the output with HTTPie and jq
The output from the API can be too verbose sometimes. Often, you're interested just
in one value out of a huge chunk of JSON response. For example, if you want to get
the names of all running services you can hit the /api/v1/services endpoint. The
response, however, includes a lot of additional information that is irrelevant. Here is
a very partial subset of the output:

$ http http://localhost:8080/api/v1/services
{
 "apiVersion": "v1",
 "items": [
 {
 "metadata": {
 "creationTimestamp": "2020-06-15T05:18:30Z",
 "labels": {
 "component": "apiserver",
 "provider": "kubernetes"
 },
 "name": "kubernetes",
 …
 },
 "spec": {
 …
 },
 "status": {
 "loadBalancer": {}
 }
 },
 …
],
 "kind": "ServiceList",
 "metadata": {
 "resourceVersion": "1076",
 "selfLink": "/api/v1/services"
 }
}

The complete output is 121 lines long! Let's see how to use HTTPie and jq to
gain full control over the output and show only the names of the services. I prefer
(https://httpie.org/) over cURL for interacting with REST APIs on the command
line. The jq (https://stedolan.github.io/jq/) command-line JSON processor is
great for slicing and dicing JSON.

https://httpie.org/
https://stedolan.github.io/jq/

Extending Kubernetes

[530]

Examining the full output, you can see that the service name is in the metadata
section of each item in the items array. The jq expression that will select just the
name is as follows:

.items[].metadata.name

Here is the full command and output:

$ http http://localhost:8080/api/v1/services | jq .items[].metadata.name
"kubernetes"
"kube-dns"
"kubernetes-dashboard"

Creating a pod via the Kubernetes API
The API can be used for creating, updating, and deleting resources too. Unlike
working with Kubectl, the API requires specifying the manifests in JSON and not
YAML syntax (although every JSON document is also valid YAML). Here is a JSON
pod definition (nginx-pod.json):

{
 "kind": "Pod",
 "apiVersion": "v1",
 "metadata":{
 "name": "nginx",
 "namespace": "default",
 "labels": {
 "name": "nginx"
 }
 },
 "spec": {
 "containers": [{
 "name": "nginx",
 "image": "nginx",
 "ports": [{"containerPort": 80}]
 }]
 }
}

The following command will create the pod via the API:

$ http POST http://localhost:8080/api/v1/namespaces/default/pods @nginx-
pod.json

Chapter 15

[531]

To verify it worked, let's extract the name and status of the current pods. The
endpoint is /api/v1/namespaces/default/pods.

The jq expression is items[].metadata.name,.items[].status.phase.

Here is the full command and output:

$ FILTER='.items[].metadata.name,.items[].status.phase'
$ http http://localhost:8080/api/v1/namespaces/default/pods | jq $FILTER
"nginx"
"Running"

Accessing the Kubernetes API via the Python
client
Exploring the API interactively using httpie and jq is great, but the real power
of APIs comes when you consume and integrate them with other software. The
Kubernetes incubator project provides a full-fledged and very well-documented
Python client library. It is available at https://github.com/kubernetes-incubator/
client-python.

First, make sure you have Python installed (both 2.7 and 3.5+ work) work. Then
install the Kubernetes package:

$ pip install kubernetes

To start talking to a Kubernetes cluster, you need to connect to it. Start an interactive
Python session:

$ python
Python 3.8.0 (default, Jun 15 2020, 16:12:10)
[Clang 10.0.1 (clang-1001.0.46.4)] on Darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

The Python client can read your Kubectl config:

>>> from kubernetes import client, config
>>> config.load_kube_config()

>>> v1 = client.CoreV1Api()

https://github.com/kubernetes-incubator/client-python
https://github.com/kubernetes-incubator/client-python

Extending Kubernetes

[532]

Or it can connect directly to an already running proxy:

>>> from kubernetes import client, config
>>> client.Configuration().host = 'http://localhost:8080'
>>> v1 = client.CoreV1Api()

Note that the client module provides methods to get access to different group
versions, such as CoreV1API.

Dissecting the CoreV1API group
Let's dive in and understand the CoreV1API group. The Python object has 397 public
attributes!

>>> attributes = [x for x in dir(v1) if not x.startswith('__')]
>>> len(attributes)
397

We ignore the attributes that start with double underscores because they are special
class/instance methods unrelated to Kubernetes.

Let's pick ten random methods and see what they look like:

>>> import random
>>> from pprint import pprint as pp
>>> pp(random.sample(attributes, 10))
['list_namespaced_secret',
 'connect_post_namespaced_pod_proxy',
 'patch_namespaced_replication_controller_with_http_info',
 'patch_node_status_with_http_info',
 'replace_persistent_volume',
 'read_namespaced_service_status',
 'read_namespaced_replication_controller_status',
 'list_namespaced_secret_with_http_info',
 'replace_namespaced_event_with_http_info',
 'replace_namespaced_resource_quota_with_http_info']

Very interesting. The attributes begin with a verb such as list, patch, or read. Many
of them have a notion of a namespace and many have a with_http_info suffix. To
understand better, let's count how many verbs exist and how many attributes use
each verb (where the verb is the first token before the underscore):

>>> from collections import Counter

Chapter 15

[533]

>>> verbs = [x.split('_')[0] for x in attributes]
>>> pp(dict(Counter(verbs)))
{'api': 1,
 'connect': 96,
 'create': 36,
 'delete': 56,
 'get': 2,
 'list': 56,
 'patch': 48,
 'read': 52,
 'replace': 50}

We can drill further and look at the interactive help for a specific attribute:

>>> help(v1.create_node)

Help on method create_node in module kubernetes.client.apis.core_v1_api:

create_node(body, **kwargs) method of kubernetes.client.apis.core_v1_api.
CoreV1Api instance
create a Node
This method makes a synchronous HTTP request by default. To make
an asynchronous HTTP request, please pass async_req=True:
>>> thread = api.create_node(body, async_req=True)
>>> result = thread.get()

:param async_req bool
:param V1Node body: (required)
:param str pretty: If 'true', then the output is pretty printed.
:param str dry_run: When present, indicates that modifications should not be
persisted. An invalid or unrecognized dryRun directive will result in an
error response and no further processing of the request. Valid values are:
- All: all dry run stages will be processed
:param str field_manager: fieldManager is a name associated with the actor
or entity that is making these changes. The value must be less than or
128 characters long, and only contain printable characters, as defined by
https://golang.org/pkg/unicode/#IsPrint.
:return: V1Node
 If the method is called asynchronously,
 returns the request thread.

You can poke around yourself and learn more about the API. Let's look at some
common operations, such as listing, creating, watching, and deleting objects.

Extending Kubernetes

[534]

Listing objects
You can list different kinds of object. The method names start with list_. Here is an
example listing all namespaces:

for ns in v1.list_namespace().items:
... print(ns.metadata.name)
...
default
kube-public
kube-system

Creating objects
To create an object, you need to pass a body parameter to the create method. The
body must be a Python dictionary that is equivalent to a YAML configuration file
you would use with Kubectl. The easiest way to do it is to actually use a YAML
file and then use the Python YAML module (not part of the standard library and
must be installed separately) to read the YAML file and load it into a dictionary. For
example, to create an nginx-deployment with three replicas, we can use this YAML
configuration file (nginx-deployment.yaml):

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.17.8
 ports:
 - containerPort: 80

Chapter 15

[535]

To install the YAML Python module, type this command:

$ pip install pyyaml

Then the following Python 3 program (create_nginx_deployment.py) will create the
deployment:

from os import path
import yaml from kubernetes import client, config
def main():
Configs can be set in Configuration class directly or using
helper utility. If no argument provided, the config will be
loaded from default location.
config.load_kube_config()

with open(path.join(path.dirname(__file__),
 'nginx-deployment.yaml')) as f:

 dep = yaml.safe_load(f)
 k8s = client.AppsV1Api()
 dep = k8s.create_namespaced_deployment(body=dep,
 namespace="default")
 print(f"Deployment created. status='{dep.status}'")
if __name__ == '__main__':
 main()

Watching objects
Watching objects is an advanced capability. It is implemented using a separate watch
module. Here is an example to watch for 10 namespace events and print them to the
screen (watch_demo.py):

from kubernetes import client, config, watch
Configs can be set in Configuration class directly or using helper
utility
config.load_kube_config()
v1 = client.CoreV1Api()
count = 3
w = watch.Watch()
for event in w.stream(v1.list_namespace, _request_timeout=60):
 print(f"Event: {event['type']} {event['object'].metadata.name}")
 count -= 1 if count == 0: w.stop()
print('Done.')

Extending Kubernetes

[536]

Here is the output:

$ python watch_demo.py
Event: ADDED default
Event: ADDED kube-public
Event: ADDED kube-system
Done.

Invoking Kubectl programmatically
If you're not a Python developer and don't want to deal with the REST API directly
or client libraries, you have another option. Kubectl is used mostly as an interactive
command-line tool, but nothing is stopping you from automating it and invoking
it through scripts and programs. There are some benefits to using Kubectl as your
Kubernetes API client:

•	 It's easy to find examples for any usage.
•	 It's easy to experiment on the command line to find the right combination of

commands and arguments.
•	 Kubectl supports output in JSON or YAML for quick parsing.
•	 Authentication is built in via Kubectl configuration.

Using Python subprocesses to run Kubectl
I'll use Python again, so you can compare using the official Python client versus
rolling your own. Python has a module called subprocess that can run external
processes such as Kubectl and capture the output. Here is a Python 3 example
running Kubectl on its own and displaying the beginning of the usage output:

>>> import subprocess
>>> out = subprocess.check_output('kubectl').decode('utf-8')
>>> print(out[:276])

kubectl controls the Kubernetes cluster manager.

Find more information at: https://kubernetes.io/docs/reference/kubectl/
overview/

Here are some basic Commands for beginners:
create Create a resource from a file or from stdin.
expose Take a replication controller, servic

Chapter 15

[537]

The check_checkout() function captures the output as a bytes array that needs to be
decoded to UTF-8 to display it properly. We can generalize it a little bit and create a
convenience function called k() in the k.py file. It accepts any number of arguments
it feeds to Kubectl, and then decodes the output and returns it:

from subprocess import check_output
def k(*args):
 out = check_output(['kubectl'] + list(args))
 return out.decode('utf-8')

Let's use it to list all the running pods in the default namespace:

>>> from k import k
>>> print(k('get', 'po'))
NAME READY STATUS RESTARTS AGE
nginx 1/1 Running 0 4h48m
nginx-deployment-679f9c75b-c79mv 1/1 Running 0 132m
nginx-deployment-679f9c75b-cnmvk 1/1 Running 0 132m
nginx-deployment-679f9c75b-gzfgk 1/1 Running 0 132m

This is nice for display, but Kubectl already does that. The real power comes when
you use the structured output options with the -o flag. Then the result can be
converted automatically to a Python object. Here is a modified version of the k()
function, which accepts a Boolean use_json keyword argument (default to False),
and if True, adds -o json, and then parses the JSON output to a Python object (a
dictionary):

from subprocess import check_output
import json

def k(*args, use_json=False):
 cmd = ['kubectl'] + list(args)
 if use_json:
 cmd += ['-o', 'json']
 out = check_output(cmd).decode('utf-8')
 if use_json:
 out = json.loads(out,)
return out

Extending Kubernetes

[538]

That returns a full-fledged API object, which can be navigated and drilled down just
like when accessing the REST API directly or using the official Python client:

>>> result = k('get', 'po', use_json=True)
>>> for r in result['items']:
... print(r['metadata']['name'])
...
nginx-deployment-679f9c75b-c79mv
nginx-deployment-679f9c75b-cnmvk
nginx-deployment-679f9c75b-gzfgk

Let's see how to delete the deployment and wait until all the pods are gone. The
Kubectl delete command doesn't accept the -o json option (although it has the -o
name), so let's leave out use_json:

k('delete', 'deployment', 'nginx-deployment')
while len(k('get', 'po', use_json=True)['items']) > 0:
 print('.') print('Done.')
.
.
.
.
Done.

Now that we have accessed Kubernetes programmatically via its REST API and by
controlling Kubectl, it's time to learn how to extend Kubernetes.

Extending the Kubernetes API
Kubernetes is an extremely flexible platform. It was designed from the get-go for
extensibility, and as it evolved, more parts of Kubernetes were opened up, exposed
through robust interfaces, and they can be replaced by alternative implementations.
I venture to say that the exponential adoption of Kubernetes across the board by
start - ups, large companies, infrastructure providers, and cloud providers is a direct
result of Kubernetes providing a lot of capabilities out of the box, but also allowing
easy integration with other actors. In this section, we will cover many of the available
extensions points, such as the following:

•	 User-defined types (custom resources)
•	 API access extensions
•	 Infrastructure extensions
•	 Operators
•	 Scheduler extensions

Chapter 15

[539]

Let's understand the various ways you can extend Kubernetes.

Understanding Kubernetes extension points
and patterns
Kubernetes is made of multiple components: the API server, etcd state store,
controller manager, kube-proxy, kubelet, and the container runtime. You can extend
and customize deeply each and every one of these components as well as adding
your own custom components that watch and react to events, handle new requests,
and modify everything about incoming requests.

The following diagram shows some of the available extension points and how they
are connected to various Kubernetes components:

Figure 15.2: Extension points connecting to Kubernetes components

Extending Kubernetes with plugins
Kubernetes defines several interfaces that allow it to interact with a wide variety
of plugins by infrastructure providers. We discussed some of these interfaces and
plugins in detail in previous chapters. We will just list them here for completeness:

•	 CNI: The container networking interface supports a large number of
networking solutions for connecting nodes and containers.

•	 CSI: The container storage interface supports a large number of storage
options for Kubernetes.

Extending Kubernetes

[540]

•	 Device plugins: These allow a node to discover new node resources beyond
CPU and memory (for example, GPU).

Extending Kubernetes with the cloud controller
manager
Kubernetes needs to be deployed eventually on some nodes and use some storage
and networking resources. Initially, Kubernetes supported only Google Cloud
Platform and AWS. Other cloud providers had to customize multiple Kubernetes
core components (Kubelet, Kubernetes Controller Manager, Kubernetes API server)
in order to integrate with Kubernetes. The Kubernetes developers identified it as a
problem for adoption and created the Cloud Controller Manager (CCM). The CCM
cleanly defines the interaction between Kubernetes and the infrastructure layer it
is deployed on. Now, cloud providers just provide an implementation of the CCM
tailored to their infrastructure and they can utilize upstream Kubernetes without
costly and error-prone modifications to the Kubernetes code. All the Kubernetes
components interact with the CCM via the predefined interfaces and Kubernetes is
blissfully unaware which cloud (or no cloud) it is running on. The following diagram
demonstrates the interaction between Kubernetes and a cloud provider via the CCM:

Figure 15.3: Interaction of the cloud and Kubernetes via a CCM

If you want to learn more about the CCM, check out this concise article I wrote
a couple of years ago: https://medium.com/@the.gigi/kubernetes-and-cloud-
providers-b7a6227d3198.

mailto:https://medium.com/@the.gigi/kubernetes-and-cloud-providers-b7a6227d3198
mailto:https://medium.com/@the.gigi/kubernetes-and-cloud-providers-b7a6227d3198

Chapter 15

[541]

Extending Kubernetes with webhooks
Plugins run in the cluster, but in some cases a better extensibility pattern is to
delegate a function to an out-of-cluster service. This is very common in the area of
access control, where companies and organizations may already have a centralized
solution for identity and access control. In those cases, the webhook extensibility
pattern is useful. The idea is that you can configure Kubernetes with an endpoint
(webhook). Kubernetes will call the endpoint where you can implement your own
custom functionality and Kubernetes will take action based on the response. We've
seen this pattern when we discussed authentication, authorization, and dynamic
admission control.

Kubernetes defines the expected payloads for each webhook. The webhook
implementation must adhere to them in order to successfully interact with
Kubernetes.

Extending Kubernetes with controllers and
operators
The controller pattern is where you write a program that can run inside the cluster
or outside the cluster, watch for events, and respond to them. The conceptual model
for a controller is to reconcile the current state of the cluster (the parts the controller
is interested in) with a desired state. A common practice for controllers is to read the
.spec of an object, take some actions, and update its .status. A lot of the core logic
of Kubernetes is implemented by a large set of controllers managed by the controller
manager, but there is nothing stopping us from deploying our own controllers to the
cluster or running controllers that access the API server remotely.

The operator pattern is another flavor of the controller pattern. Think of an operator
as a controller that also has its own set of custom resources that represents some
application it manages. The goal of operators is to manage the lifecycle of some
application that is deployed in the cluster. A great example is etcd-operator:
https://github.com/coreos/etcd-operator.

If you plan to build your own controllers, I recommend starting with kubebuilder
(https://github.com/kubernetes-sigs/kubebuilder). It is a project maintained by
the Kubernetes API Machinery SIG and has support for defining multiple custom
APIs using CRDs and scaffolds out the controller code to watch these resources.

For operators consider using the Operator framework (https://github.com/
operator-framework) as your starting point.

https://github.com/coreos/etcd-operator
https://github.com/kubernetes-sigs/kubebuilder
https://github.com/operator-framework
https://github.com/operator-framework

Extending Kubernetes

[542]

Extending Kubernetes scheduling
Kubernetes' job, in one sentence, is to schedule pods to nodes. Scheduling is at the
heart of what Kubernetes does and it does it well. The Kubernetes scheduler can be
configured in very advanced ways (daemon sets, taints, tolerations, and so on). But
the Kubernetes developers recognize that there may be extraordinary circumstances
where you may want to control the core scheduling algorithm. It is possible to
replace the core Kubernetes scheduler with your own scheduler or run another
scheduler alongside the built-in scheduler to control the scheduling of a subset of the
pods. We will see how to do that later in the chapter.

Extending Kubernetes with custom container
runtimes
Kubernetes originally supported only Docker as a container runtime. The Docker
support was embedded in the core Kubernetes codebase. Later, dedicated support
for rkt was added. But the Kubernetes developers saw the light and introduced the
CRI (container runtime interface), a gRPC interface, which enabled any container
runtime that implements it to communicate with the kubelet. Eventually, the hard-
coded support for Docker and rkt was phased out and now the kubelet talks to the
container runtime only through CRI:

Figure 15.4: Kubelet communicating with container runtime

Since the introduction of CRI the number of container runtimes that work with
Kubernetes exploded.

Introducing custom resources
One of the primary ways to extend Kubernetes is to define new types of resources
called custom resources. What can you do with custom resources? Plenty. You can
use them to manage resources that live outside the Kubernetes cluster, but with
which your pods communicate, through the Kubernetes API. By adding those
external resources as custom resources, you get a full picture of your system and you
benefit from many Kubernetes API features, such as the following:

Chapter 15

[543]

•	 Custom CRUD REST endpoints
•	 Versioning
•	 Watches
•	 Automatic integration with generic Kubernetes tooling

Other use cases for custom resources are metadata for custom controllers and
automation programs.

Custom resources that were introduced in Kubernetes 1.7 are a significant
improvement over the now deprecated third-party resources. Let's dive in and see
what custom resources are all about.

In order to play nice with the Kubernetes API server, custom resources must
conform to some basic requirements. Similar to built-in API objects, they must have
the following fields:

•	 apiVersion: apiextensions.k8s.io/v1
•	 metadata: Standard Kubernetes object metadata
•	 kind: CustomResourceDefinition
•	 spec: Describes how the resource appears in the API and tools
•	 status: Indicates the current status of the CRD

The spec has an internal structure that includes fields such as group, names, scope,
validation, and version. The status includes the fields acceptedNames and Conditions.
In the next section, I'll show you an example that clarifies the meaning of these fields.

Developing custom resource definitions
You develop your custom resources using Custom Resource Definitions (CRD).
The intention is for CRDs to integrate smoothly with Kubernetes and its API and
tooling, so you need to provide a lot of information. Here is an example for a custom
resource called Candy:

apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:
 # name must match the spec fields below, and be in the form:
<plural>.<group>
 name: candies.awesome.corp.com
spec:
 # group name to use for REST API: /apis/<group>/<version>

Extending Kubernetes

[544]

 group: awesome.corp.com
 # version name to use for REST API: /apis/<group>/<version>
 versions:
 - name: v1
 # Each version can be enabled/disabled by Served flag.
 served: true
 # One and only one version must be marked as the storage version.
 storage: true
 schema:
 openAPIV3Schema:
 type: object
 properties:
 spec:
 type: object
 properties:
 flavor:
 type: string
 # either Namespaced or Cluster
 scope: Namespaced
 names:
 # plural name to be used in the URL: /
apis/<group>/<version>/<plural>
 plural: candies
 # singular name to be used as an alias on the CLI and for display
 singular: candy
 # kind is normally the CamelCased singular type. Your resource
manifests use this.
 kind: Candy
 # shortNames allow shorter string to match your resource on the CLI
 shortNames:
 - cn

The Candy CRD has several interesting parts. The metadata has a fully qualified
name that should be unique since CRDs are cluster-scoped. The spec has a
versions entry, which can contain multiple versions with a schema for each
version that specifies the field of the custom resource. The schema follows the
OpenAPI v3 (https://github.com/OAI/OpenAPI-Specification/blob/master/
versions/3.0.0.md#schemaObject) specification.

The scope field could be either Namespaced or Cluster. If the scope is Namespaced then
the custom resources you create from the CRD will exist only in the namespace they
were created in; cluster-scoped custom resources are available in any namespace.

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#schemaObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#schemaObject

Chapter 15

[545]

Finally, the names section refers to the names of the custom resource (not the name
of the CRD from the metadata section). The names have plural, singular, kind, and
short name options.

Let's create the CRD:
$ kubectl create -f candy-crd.yaml
customresourcedefinition.apiextensions.k8s.io/candies.awesome.corp.com
created

Note that the metadata name is returned. It is common to use a plural name. Now,
let's verify we can access it:
$ kubectl get crd
NAME CREATED AT
candies.awesome.corp.com 2020-06-15T10:19:09Z

There is also an API endpoint for managing this new resource:
/apis/awesome.corp.com/v1/namespaces/<namespace>/candies/

Integrating custom resources
Once the CustomResourceDefinition object has been created, you can create custom
resources of that resource kind, Candy in this case (candy becomes CamelCase
Candy). Custom resources must respect the schema from the CRD. In the following
example, the flavor field is set on the Candy object with a name of chocolate. The
apiVersion field is derived from the CRD spec's group and version fields:

apiVersion: awesome.corp.com/v1
kind: Candy
metadata:
 name: chocolate
spec:
 flavor: sweeeeeeet

Let's create it:

$ k create -f chocolate.yaml

candy.awesome.corp.com/chocolate created

Note that the spec must contain the flavor field from the schema.

At this point, Kubectl can operate on Candy objects just like it works on built-in
objects. Note that resource names are case-insensitive when using Kubectl:
$ kubectl get candies

NAME AGE chocolate 2m

Extending Kubernetes

[546]

We can also view the raw JSON data using the standard -o json flag. Let's use the
short name cn this time:

$ kubectl get cn -o json
{
 "apiVersion": "v1",
 "items": [
 {
 "apiVersion": "awesome.corp.com/v1",
 "kind": "Candy",
 "metadata": {
 "creationTimestamp": "2020-06-15T10:22:25Z",
 "generation": 1,
 "name": "chocolate",
 "namespace": "default",
 "resourceVersion": "1664",
 "selfLink": "/apis/awesome.corp.com/v1/namespaces/default/
candies/chocolate",
 "uid": "1b04f5a9-9ae8-475d-bc7d-245042759304"
 },
 "spec": {
 "flavor": "sweeeeeeet"
 }
 }
],
 "kind": "List",
 "metadata": {
 "resourceVersion": "",
 "selfLink": ""
 }
}

Dealing with unknown fields
The schema in the spec was introduced with the apiextensions.k8s.io/v1 version
of CRDs that became stable in Kubernetes 1.17. With apiextensions.k8s.io/v1beta
a schema wasn't required, so arbitrary fields were the way to go. If you just try to
change the version of your CRD from v1beta to v1, you're in for a rude awakening.
Kubernetes will let you update the CRD, but when you try to create a custom
resource later with unknown fields it will fail.

Chapter 15

[547]

You must define a schema for all your CRDs. If you must deal with custom resources
that may have additional unknown fields you can turn validation off, but the
additional fields will be stripped off.

Here is a Candy resource that has an extra field texture not specified in the schema:

apiVersion: awesome.corp.com/v1
kind: Candy
metadata:
 name: gummy-bear
spec:
 flavor: delicious
 texture: rubbery

If we try to create it with validation it will fail:

$ kubectl create -f gummy-bear.yaml
error: error validating "gummy-bear.yaml": error validating data:
ValidationError(Candy.spec): unknown field "texture" in com.corp.awesome.
v1.Candy.spec; if you choose to ignore these errors, turn validation off
with --validate=false

But if we turn validation off then all is well, except that only the flavor field will be
present and the texture field will not:

$ kubectl create -f gummy-bear.yaml --validate=false
candy.awesome.corp.com/gummy-bear created

$ kubectl get cn gummy-bear -o yaml
apiVersion: awesome.corp.com/v1
kind: Candy
metadata:
 creationTimestamp: "2020-06-15T22:02:18Z"
 generation: 1
 name: gummy-bear
 namespace: default
 resourceVersion: "93551"
 selfLink: /apis/awesome.corp.com/v1/namespaces/default/candies/gummy-bear
 uid: 1900b97e-55ba-4235-8366-24f469f449e3
spec:
 flavor: delicious

If you want to add arbitrary fields, you need to turn validation off with
--validate=false.

Extending Kubernetes

[548]

Finalizing custom resources
Custom resources support finalizers just like standard API objects. A finalizer
is a mechanism where objects are not deleted immediately but have to wait for
special controllers that run in the background and watch for deletion requests. The
controller may perform any necessary cleanup options and then remove its finalizer
from the target object. There may be multiple finalizers on an object. Kubernetes
will wait until all finalizers have been removed and only then delete the object. The
finalizers in the metadata are just arbitrary strings that their corresponding controller
can identify. Kubernetes doesn't know what they mean. It just waits patiently for
all the finalizers to be removed before deleting the object. Here is an example with
a candy object that has two finalizers: eat-me and drink-me:

apiVersion: awesome.corp.com/v1
kind: Candy
metadata:
 name: chocolate
 finalizers:
 - eat-me
 - drink-me
spec:
 flavor: sweeeeeeet

Adding custom printer columns
By default, when you list custom resources with Kubectl you get only the name and
the age of the resource:

$ kubectl get cn
NAME AGE
chocolate 11h
gummy-bear 16m

But the CRD schema allows you to add your own columns. Let's add the flavor and
the age fields as printable columns to our candy objects:

apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:
 name: candies.awesome.corp.com
spec:
 group: awesome.corp.com
 versions:
 - name: v1

Chapter 15

[549]

 ...
 additionalPrinterColumns:
 - name: Flavor
 type: string
 description: The flavor of the candy
 jsonPath: .spec.flavor
 - name: Age
 type: date
 jsonPath: .metadata.creationTimestamp
 ...

Then we can create it, add our candies again, and list them:
$ kubectl create -f candy-with-flavor-crd.yaml
customresourcedefinition.apiextensions.k8s.io/candies.awesome.corp.com
created
$ kubectl create -f chocolate.yaml
candy.awesome.corp.com/chocolate created
$ kubectl create -f gummy-bear.yaml --validate=false
candy.awesome.corp.com/gummy-bear created
$ kubectl get candies
NAME FLAVOR AGE
chocolate sweeeeeeet 64s
gummy-bear delicious 59s

Understanding API server aggregation
CRDs are great when all you need is some CRUD operations on your own types. You
can just piggyback on the Kubernetes API server, which will store your objects and
provide API support and integration with tooling such as Kubectl. If you need more
power, you can run controllers that watch for your custom resources and perform
some operations when they are created, updated, or deleted. The kubebuilder
(https://github.com/kubernetes-sigs/kubebuilder) project is a great framework
for building Kubernetes APIs on top of CRDs with your own controllers.

But CRDs have limitations. If you need more advanced features and customization,
you can use API server aggregation and write your own API server that the
Kubernetes API server will delegate to. Your API server will use the same API
machinery as the Kubernetes API server itself. Some of the advanced capabilities that
are only available through the aggregation layer are:

•	 Makes your apiserver adopt different storage APIs rather than etcd v3
•	 Extends long-running subresources/endpoints such as websockets for your

own resources

https://github.com/kubernetes-sigs/kubebuilder

Extending Kubernetes

[550]

•	 Integrates your apiserver with whatever other external systems
•	 Controls the storage of your objects (custom resources are always stored in

etcd)
•	 Provides long-running resources such as websockets for your own resources
•	 Custom operations beyond CRUD (for example, exec or scale)
•	 Using protocol buffer payloads
•	 Integrates your API server with any external system

Writing an extension API server is a non-trivial effort. If you decide you need all
that power, I recommend using the API builder alpha project: https://github.com/
kubernetes-sigs/apiserver-builder-alpha.

It is a young project, but it takes care of a lot of the necessary boilerplate code.
The API builder provides the following capabilities:

•	 Bootstrap complete type definitions, controllers, and tests, as well as
documentation.

•	 The extension control plane you can run locally, inside minikube, or on an
actual remote cluster.

•	 Your generated controllers will be able to watch and update API objects.
•	 Adding resources (including sub-resources).
•	 Default values you can override if needed.

Utilizing the service catalog
The Kubernetes catalog (https://github.com/kubernetes-sigs/service-catalog)
project allows you to integrate smoothly and painlessly any external service
that supports the Open Service Broker API specification: https://github.com/
openservicebrokerapi/servicebroker.

The intention of the open service broker API is to expose external services to any
cloud environment through a standard specification with supporting documentation
and a comprehensive test suite. That lets providers implement a single specification
and support multiple cloud environments. The current environments include
Kubernetes and Cloud Foundry. The project works towards broad industry
adoption.

https://github.com/kubernetes-sigs/apiserver-builder-alpha
https://github.com/kubernetes-sigs/apiserver-builder-alpha
https://github.com/kubernetes-sigs/service-catalog
https://github.com/openservicebrokerapi/servicebroker
https://github.com/openservicebrokerapi/servicebroker

Chapter 15

[551]

The service catalog is useful in particular for integrating the services of cloud
platform providers. Here are some examples of such services:

•	 Microsoft Azure Cloud Queue
•	 Amazon Simple Queue Service
•	 Google Cloud Pub/Sub

The following diagram describes the architecture and workflow of the service
catalog, which is implemented as an API server extension using the aggregation
layer:

Figure 15.5: The service catalog

This capability is a real boon for organizations that are committed to the cloud. You
get to build your system on Kubernetes, but you don't have to deploy, manage, and
maintain every service in your cluster yourself. You can offload that to your cloud
provider, enjoy deep integration, and focus on your application.

The service catalog can potentially make your Kubernetes cluster fully autonomous
by allowing you to provision cloud resources through service brokers. We're not
there yet, but the direction is very promising.

Extending Kubernetes

[552]

This concludes our discussion of accessing and extending Kubernetes from the
outside. In the next section, we will direct our gaze inward and look into customizing
the inner workings of Kubernetes itself via plugins.

Writing Kubernetes plugins
In this section, we will dive into the guts of Kubernetes and learn to take advantage
of its famous flexibility and extensibility. We will learn about different aspects that
can be customized via plugins and how to implement such plugins and integrate
them with Kubernetes.

Writing a custom scheduler
Kubernetes is all about orchestrating containerized workloads. The most
fundamental responsibility is to schedule pods to run on cluster nodes. Before
we can write our own scheduler, we need to understand how scheduling works
in Kubernetes.

Understanding the design of the Kubernetes
scheduler
The Kubernetes scheduler has a very simple role. When a new pod needs to be
created, it assigns it to a target node. That's it. The Kubelet on the target node will
take it from there and instruct the container runtime on the node to run the pod's
container.

The Kubernetes scheduler implements the controller pattern:

•	 Watch for pending pods
•	 Select the right node for the pod
•	 Update the node's spec by setting the nodeName field

The only complicated part is selecting the target node. This process involves two
steps:

1.	 Filtering nodes
2.	 Ranking nodes

Chapter 15

[553]

The scheduler takes a tremendous amount of information and configuration into
account. Filtering removes nodes that don't satisfy one of the hard constraints from
the candidate list. Ranking nodes assigns a score for each of the remaining nodes and
chooses the best node.

Here are the factors the scheduler evaluates when filtering nodes:

•	 Checks if a node has free ports for the pod ports the pod is requesting
•	 Checks if a pod specifies a specific node by its hostname
•	 Checks if the node has enough resources (CPU, memory, and so on) to meet

the requirement of the pod
•	 Checks if the pod's node selector matches the node's labels
•	 Evaluates if the volumes that the pod requests are available on the node,

given the failure zone restrictions for that storage
•	 Checks if a pod can fit on a node due to the volumes it requests, and those

that are already mounted
•	 Decides how many CSI volumes should be attached, and whether that's over

a configured limit
•	 Checks if a node is reporting memory pressure
•	 Checks if a node is reporting that process IDs are scarce
•	 Checks if a node is reporting a filesystem is full or nearly full
•	 Checks other conditions reported by the node, like networking is unavailable

or kubelet is not ready
•	 Checks if a pod's tolerations can tolerate the node's taints
•	 Checks if a pod can fit due to the volumes it requests

Once the nodes have been filtered the scheduler will score the nodes based on the
following policies (that you can configure):

•	 Spread pods across hosts, considering pods that belong to the same service,
StatefulSet or ReplicaSet.

•	 Inter-pod affinity priority.
•	 Least requested priority – favors nodes with fewer requested resources. This

policy spreads pods across all nodes of the cluster.
•	 Most requestedPriority – favors nodes with the most requested resources.

This policy will pack the pods into the smallest set of nodes.

Extending Kubernetes

[554]

•	 Requested to capacity ratio priority – creates a requestedToCapacity based
ResourceAllocationPriority using a default resource scoring function
shape.

•	 Balanced resource allocation – favors nodes with balanced resource usage.
•	 Node prefer avoid pods priority – prioritizes nodes according to the node

annotation scheduler.alpha.kubernetes.io/preferAvoidPods. You can use
this to hint that two different pods shouldn't run on the same node.

•	 Node affinity priority – prioritizes nodes according to node affinity
scheduling preferences indicated in
PreferredDuringSchedulingIgnoredDuringExecution.

•	 Taint toleration priority – prepares the priority list for all the nodes, based
on the number of intolerable taints on the node. This policy adjusts a node's
rank taking that list into account.

•	 Image locality priority – favors nodes that already have the container images
the pod required.

•	 Service spreading priority – favors spreading the pods backing up a service
across different nodes.

•	 Pod anti-affinity.
•	 Equal priority map – all nodes get the same weight. No favorites.

As you can see, the default scheduler is very sophisticated and can be configured
in a very fine-grained way to accommodate most of your needs. But under some
circumstances, it might not be the best choice. Particularly in large clusters with
many nodes (hundreds or thousands), every time a pod is scheduled, all the nodes
need to go through this rigorous and heavyweight procedure of filtering and scoring.
Now, consider a situation where you need to schedule a large number of pods at
once (for example, training machine learning models). This can put a lot of pressure
on your cluster and lead to performance issues.

Kubernetes has recently introduced ways to make the filtering and scoring process
more lightweight by allowing you to filter and score only some of the nodes, but still
you may want better control.

Fortunately, Kubernetes allows us to influence the scheduling process in several
ways. Those ways include the following:

•	 Direct scheduling of pods to nodes
•	 Replacing the scheduler with your own scheduler
•	 Extending the scheduler with additional filters
•	 Adding another scheduler that runs alongside the default scheduler

Chapter 15

[555]

Scheduling pods manually
Guess what? We can just tell Kubernetes where to place our pod when we create it.
All it takes is to specify a node name in the pod's spec and the scheduler will ignore
it. If you think about the loosely coupled nature of the controller pattern, it all makes
sense. The scheduler is watching for pending pods that DON'T have a node name
assigned yet. If you are passing the node name yourself, then the Kubelet on the
target node, who watches for pending pods that DO have a node name, will just
go ahead and make sure to create a new pod.

Here is a pod with a pre-defined node name:

apiVersion: v1
kind: Pod
metadata:
name: some-pod-manual-scheduling
spec:
containers:
- name: some-container
image: gcr.io/google_containers/pause:2.0
nodeName: k3d-k3s-default-worker-1
schedulerName: no-such-scheduler

If we create and describe the pod, we can see that it was indeed scheduled to the
k3d-k3s-default-worker-1 node as requested:

$ kubectl describe po some-pod-manual-scheduling
Name: some-pod-manual-scheduling
Node: k3d-k3s-default-worker-1/172.19.0.4
Status: Running
 ...
Containers:
 ...
Conditions:
 Type Status
 Initialized True
 Ready True
 ContainersReady True
 PodScheduled True
Events: <none>

Direct scheduling is also useful for troubleshooting, when you want to schedule
a temporary pod to any tainted node without mucking around with adding
tolerations.

Extending Kubernetes

[556]

Let's create our own custom scheduler now.

Preparing our own scheduler
Our scheduler will be super simple. It will just schedule all pending pods that
request to be scheduled by the custom-scheduler to node k3d-k3s-default-worker-1.
Here is the Python implementation that uses the Kubernetes client package:

from kubernetes import client, config, watch

def schedule_pod(cli, name):
 target = client.V1ObjectReference()
 target.kind = 'Node'
 target.apiVersion = 'v1'
 target.name = 'k3d-k3s-default-worker-1'
 meta = client.V1ObjectMeta()
 meta.name = name
 body = client.V1Binding(metadata=meta, target=target)
 return cli.create_namespaced_binding('default', body)

def main():
 config.load_kube_config()
 cli = client.CoreV1Api()
 w = watch.Watch()
 for event in w.stream(cli.list_namespaced_pod, 'default'):
 o = event['object']
 if o.status.phase != 'Pending' or o.spec.scheduler_name !=
'custom-scheduler':
 continue

 schedule_pod(cli, o.metadata.name)

if __name__ == '__main__':
 main()

If you want to run a custom scheduler long-term then you should deploy it into the
cluster just like any other workload. But if you just want to play around with it or
you're still developing your custom scheduler logic, you can run it locally as long as
it has the correct credentials to access the cluster and have permissions to watch for
pending pods and update their node name.

Chapter 15

[557]

Assigning pods to the custom scheduler
OK. We have a custom scheduler that we can run alongside the default scheduler.
But how does Kubernetes choose which scheduler to use to schedule a pod when
there are multiple schedulers?

The answer is that Kubernetes doesn't care. The pod can specify which scheduler
it wants to schedule it. The default scheduler will schedule any pod that doesn't
specify the schedule or that specifies explicitly the default-scheduler. Other custom
schedulers should be responsible and only schedule pods that request them. If
multiple schedulers try to schedule the same pod, we will probably end up with
multiple copies or naming conflicts.

For example, our simple custom scheduler is looking for pending pods that specify
a scheduler name of custom-scheduler. All other pods will be ignored by it:

if o.status.phase != 'Pending' or o.spec.scheduler_name != 'custom-
scheduler':
 continue

Here is a pod spec that specifies the custom-scheduler in its spec:

apiVersion: v1
kind: Pod
metadata:
 name: some-pod-with-custom-scheduler
spec:
 containers:
 - name: some-container
 image: gcr.io/google_containers/pause:2.0
 schedulerName: custom-scheduler

What happens if our custom scheduler is not running and we try to create this pod?

$ kubectl create -f some-pod-with-custom-scheduler.yaml
pod/some-pod-with-custom-scheduler created

$ kubectl get po
NAME READY STATUS RESTARTS AGE
some-pod-manual-scheduling 1/1 Running 0 23h
some-pod-with-custom-scheduler 0/1 Pending 0 25s

Extending Kubernetes

[558]

The pod is created just fine (meaning the Kubernetes API server stored it in etcd), but
it is pending, which means it hasn't been scheduled yet. Since it specified an explicit
scheduler, the default scheduler ignores it.

But if we run our scheduler... it will immediately get scheduled:

$ python custom_scheduler.py
Waiting for pods to schedule
Scheduling pod some-pod-with-custom-scheduler

Now we can see that the pod was assigned to a node and it is in a running state:

$ kubectl get pod -o wide
NAME READY STATUS IP NODE
some-pod-manual-scheduling 1/1 Running 10.42.0.5 k3d-k3s-default-
worker-1
some-pod-with-custom-scheduler 1/1 Running 10.42.0.8 k3d-k3s-default-
worker-1

Verifying that the pods were scheduled using the
correct scheduler
We can look at the pod events and see that, for pods scheduled using the default
scheduler, you can expect the following events:

$ kubectl describe po some-pod | grep Events: -A 10
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled <unknown> default-scheduler
Successfully assigned default/some-pod to k3d-k3s-default-worker-0
 Normal Pulled 12m kubelet, k3d-k3s-default-worker-0
Container image "gcr.io/google_containers/pause:2.0" already present on
machine
 Normal Created 12m kubelet, k3d-k3s-default-worker-0 Created
container some-container
 Normal Started 12m kubelet, k3d-k3s-default-worker-0 Started
container some-container

But for our custom scheduler, there is no Scheduled event:

$ k describe po some-pod-with-custom-scheduler | grep Events: -A 10
Events:
 Type Reason Age From Message

Chapter 15

[559]

 ---- ------ ---- ---- -------
 Normal Pulled 22m kubelet, k3d-k3s-default-worker-1 Container image
"gcr.io/google_containers/pause:2.0" already present on machine
 Normal Created 22m kubelet, k3d-k3s-default-worker-1 Created
container some-container
 Normal Started 22m kubelet, k3d-k3s-default-worker-1 Started
container some-container

That was a deep dive into scheduling and custom schedulers. Let's check out Kubectl
plugins.

Writing Kubectl plugins
Kubectl is the workhorse of the aspiring Kubernetes developer and admin. There
are now very good visual tools, such as k9s (https://github.com/derailed/k9s),
octant (https://github.com/vmware-tanzu/octant), and of course the Kubernetes
dashboard. But Kubectl is the most complete way to work interactively with your
cluster and participate in automation workflows.

Kubectl encompasses an impressive list of capabilities, but you will often need to
string together multiple commands or a long chain of parameters to accomplish
some tasks. You may also want to run some additional tools installed in your cluster.

You can package such functionality as scripts or containers or any other way, but
then you'll run into the issue of where to place them, how to discover them, and how
to manage them. The Kubectl plugin gives you a one-stop shop for those extended
capabilities. For example, recently I needed to periodically list and move around files
on the SFTP server managed by a containerized application running on a Kubernetes
cluster. I quickly wrote a few Kubectl plugins that took advantage of my KUBECONFIG
credentials to get access to secrets in the cluster that contained the credentials to
access the SFTP server and then implemented a lot of application-specific logic for
accessing and managing those SFTP directories and files.

Understanding Kubectl plugins
Until Kubernetes 1.12, Kubectl plugins required a dedicated YAML file where you
specified various metadata and other files that implemented the functionality.
In Kubernetes 1.12, Kubectl started using the Git extension model, where any
executable on your path with the prefix kubectl- is treated as a plugin.

Kubectl provides the kubectl plugins list command to list all your current
plugins. This model was very successful with Git, and it is extremely simple now
to add your own Kubectl plugins.

https://github.com/derailed/k9s
https://github.com/vmware-tanzu/octant

Extending Kubernetes

[560]

If you added an executable called kubectl-foo, then you can run it via kubectl
foo. You can have nested commands too. Add kubectl-foo-bar to your path and
run it via kubectl foo bar. If you want to use dashes in your commands, then use
underscores in your executable. For example, the executable kubectl-do_stuff can be
run using kubectl do-stuff.

The executable itself can be implemented in any language, have its own command-
line arguments and flags, and display its own usage and help information.

Managing Kubectl plugins with Krew
The lightweight plugin model is great for writing your own plugins, but what if you
want to share your plugins with the community?

Krew (https://github.com/kubernetes-sigs/krew) is a package manager for
Kubectl plugins that lets you discover, install, and manage curated plugins.

You can install Krew with brew on Mac or follow the installation instructions for
other platforms. Krew is itself a Kubectl plugin as its executable is kubectl-krew.
This means you can either run it directly, kubectl-krew, or through kubectl krew.
If you have a k alias for kubectl you would probably prefer the latter:

$ k krew
 krew is the kubectl plugin manager.
 You can invoke krew through kubectl: "kubectl krew [command]..."

 Usage:
 krew [command]

Available Commands:
 help Help about any command
 info Show information about a kubectl plugin
 install Install kubectl plugins
 list List installed kubectl plugins
 search Discover kubectl plugins
 uninstall Uninstall plugins
 update Update the local copy of the plugin index
 upgrade Upgrade installed plugins to newer versions
 version Show krew version and diagnostics

Flags:
 -h, --help help for krew
 -v, --v Level number for the log level verbosity

Use "krew [command] --help" for more information about a command.

https://github.com/kubernetes-sigs/krew

Chapter 15

[561]

Note that the krew list command shows only Krew-managed plugins and not all
Kubectl plugins. It doesn't even show itself!

I recommend that you check out the available plugins. Some of them are very useful,
and they may give you some ideas for writing your own plugins. Let's see how easy
it is to write our own plugin.

Creating your own Kubectl plugin
I was recently handed the unpleasant job of baby-sitting a critical application
deployed in a Kubernetes cluster on GKE. The original development team wasn't
around anymore and there were higher priorities than migrating it into our
infrastructure on AWS. I noticed that some of the deployments owned multiple
replica sets, but the desired number of replicas is zero. There was nobody around
to ask why these replica sets were still around. My guess was that it was an artifact
or updates where the old replica set was scaled down to zero, while the new replica
set was scaled up, but the old replica set was left there hanging off the deployment.
Anyway, let's write a Kubectl plugin that lists stale replica sets with zero replicas.

It turns out to be super simple. Let's use Python and the excellent sh module, which
lets us run command-line commands naturally from Python. In this case, we're just
going to run Kubectl itself and get all the replica sets with a custom columns format,
then we're going to keep the replica sets that have zero replicas and display them
with their owning deployment:

#!/usr/bin/env python3
import sh

def main():
 """ """
 o = "-o custom-columns='NAME:.metadata.name,DEPLOYMENT:.metadata.
ownerReferences[0].name,REPLICAS:.spec.replicas"
 all_rs = sh.kubectl.get.rs(o.split()).stdout.decode('utf-8').
split('\n')
 all_rs = [r.split() for r in all_rs if r]
 results = ((name, deployment) for (name, deployment, replicas) in
all_rs[1:] if replicas == '0')

 for name, deployment in results:
 print(name, deployment)

if __name__ == '__main__':
 main()

Extending Kubernetes

[562]

We can name the file kubectl-show-stale_replica_sets and run it with kubectl
show stale-replica-sets. Before running it, we mustn't forget to make it executable
and copy it to the PATH:

$ chmod +x kubectl-show-stale_replica_sets
$ kubectl show stale-replica-sets
cool-app-559f7bd67c cool-app
cool-app-55dc8c5949 cool-app
mice-app-5bd847f99c nice-app

If you want to develop plugins and share them on Krew, there is a more rigorous
process there. I highly recommend developing the plugin in Go and taking
advantage of projects such as the Kubernetes cli-runtime (https://github.com/
kubernetes/cli-runtime/) and the krew-plugin-template (https://github.com/
replicatedhq/krew-plugin-template) projects.

Kubectl plugins are awesome, but there are some gotchas you should be aware of.

Kubectl plugin gotchas
I ran into some of these issues when working with Kubectl plugins.

Don't forget your shebangs!
If you don't specify a shebang for your executable you will get an obscure error
message:

$ k show stale-replica-sets
exec format error

Naming
Choosing a name for your plugin is not easy. Luckily there are some good
guidelines: https://github.com/kubernetes-sigs/krew/blob/master/docs/NAMING_
GUIDE.md.

Those naming guidelines are not just for Krew plugins, but make sense for any
Kubectl plugin.

Overriding existing Kubectl commands
I originally named the plugin kubectl-get-stale_replica_sets. In theory, Kubectl
should try to match the longest plugin name to resolve ambiguities. But, apparently,
it doesn't work with built-in commands such as kubectl get.

https://github.com/kubernetes/cli-runtime/
https://github.com/kubernetes/cli-runtime/
https://github.com/replicatedhq/krew-plugin-template
https://github.com/replicatedhq/krew-plugin-template
https://github.com/kubernetes-sigs/krew/blob/master/docs/NAMING_GUIDE.md
https://github.com/kubernetes-sigs/krew/blob/master/docs/NAMING_GUIDE.md

Chapter 15

[563]

This is the error I got:

$ kubectl get stale-replica-sets
error: the server doesn't have a resource type "stale-replica-sets"

Renaming kubectl-show-stale_replica_sets solved the problem.

Flat namespace for Krew plugins
The space of Kubectl plugins is flat. If you choose a generic plugin name such as
kubectl-login you'll have a lot of problems. Even if you qualify it with something
like kubectl-gcp-login, you might conflict with some other plugin. This is a
scalability problem. I think the solution should involve some strong naming scheme
for plugins, such as DNS, and then we should be able to define short names and
aliases for convenience.

Let's now take a look at how to extend access control with webhooks.

Employing access control webhooks
Kubernetes always provided ways for you to customize access control. In
Kubernetes, access control can be denoted as triple-A: Authentication, Authorization,
and Admission control. In early versions it was through plugins that required
Go programming, installing into your cluster, registration, and other invasive
procedures. Now, Kubernetes lets you customize authentication, authorization,
and admission control webhooks. Here is the access control workflow:

Figure 15.6: Kubernetes access control workflow

Extending Kubernetes

[564]

Using an authentication webhook
Kubernetes lets you extend the authentication process by injecting a webhook
for bearer tokens. It requires two pieces of information: how to access the remote
authentication service and the duration of the authentication decision (it defaults to
two minutes).

To provide this information and enable authentication webhooks, start the API
server with the following command-line arguments:

•	 --authentication-token-webhook-config-file=

•	 --authentication-token-webhook-cache-ttl (how long to cache auth
decisions, default to 2 minutes)

The configuration file uses the kubeconfig file format. Here is an example:

Kubernetes API version
apiVersion: v1
kind of the API object
kind: Config
clusters refers to the remote service.
clusters:
 - name: name-of-remote-authn-service
 cluster:
 certificate-authority: /path/to/ca.pem # CA for verifying
the remote service.
 server: https://authn.example.com/authenticate # URL of remote
service to query. Must use 'https'.

users refers to the API server's webhook configuration.
users:
 - name: name-of-api-server
 user:
 client-certificate: /path/to/cert.pem # cert for the webhook
plugin to use client-key: /path/to/key.pem # key
matching the cert

kubeconfig files require a context. Provide one for the API server.
current-context: webhook
contexts:
- context:
 cluster: name-of-remote-authn-service
 user: name-of-api-sever
 name: webhook

Chapter 15

[565]

Note that a client certificate and key must be provided to Kubernetes for mutual
authentication against the remote authentication service.

The cache TTL is useful because often users will make multiple consecutive requests
to Kubernetes. Having the authentication decision cached can save a lot of round
trips to the remote authentication service.

When an API HTTP request comes in, Kubernetes extracts the bearer token from its
headers and posts a TokenReview JSON request to the remote authentication service
via the webhook:

{
 "apiVersion": "authentication.k8s.io/v1beta1",
 "kind": "TokenReview",
 "spec": {
 "token": "<bearer token from original request headers>"
 }
}

The remote authentication service will respond with a decision. The status of
authentication will either be true or false. Here is an example of a successful
authentication:

{
 "apiVersion": "authentication.k8s.io/v1beta1",
 "kind": "TokenReview",
 "status": {
 "authenticated": true,
 "user": {
 "username": "gigi@gg.com",
 "uid": "42",
 "groups": [
 "developers",
],
 "extra": {
 "extrafield1": [
 "extravalue1",
 "extravalue2"
]
 }
 }
 }
}

Extending Kubernetes

[566]

A rejected response is much more concise:

{
 "apiVersion": "authentication.k8s.io/v1beta1",
 "kind": "TokenReview",
 "status": {
 "authenticated": false
 }
}

Using an authorization webhook
The authorization webhook is very similar to the authentication webhook. It requires
just a configuration file, which is in the same format as the authentication webhook
configuration file. There is no authorization caching because unlike authentication,
the same user may make lots of requests to different API endpoints with different
parameters and authorization decisions may be different, so caching is not a viable
option.

You configure the webhook by passing the following command-line argument to the
API server:

--authorization-webhook-config-file=<configuration filename>

When a request passes authentication, Kubernetes will send a SubjectAccessReview
JSON object to the remote authorization service. It will contain the requesting user
(and any user groups it belongs to) and other attributes:

•	 requested API group
•	 namespace

•	 resource

•	 verb

{
 "apiVersion": "authorization.k8s.io/v1beta1",
 "kind": "SubjectAccessReview",
 "spec": {
 "resourceAttributes": {
 "namespace": "awesome-namespace",
 "verb": "get",
 "group": "awesome.example.org",
 "resource": "pods"
 },

Chapter 15

[567]

 "user": "gigi@gg.com",
 "group": [
 "group1",
 "group2"
]
 }
}

The request may be allowed:

{
 "apiVersion": "authorization.k8s.io/v1beta1",
 "kind": "SubjectAccessReview",
 "status": {
 "allowed": true
 }
}

Or it may be denied with a reason:

{
 "apiVersion": "authorization.k8s.io/v1beta1",
 "kind": "SubjectAccessReview",
 "status": {
 "allowed": false,
 "reason": "user does not have read access to the namespace"
 }
}

A user may be authorized to access a resource, but not some non-resource attributes,
such as /api, /apis, /metrics, /resetMetrics, /logs, /debug, /healthz, /swagger-ui/,
/swaggerapi/, /ui, and /version.

Here is how to request access to the logs:

{
 "apiVersion": "authorization.k8s.io/v1beta1",
 "kind": "SubjectAccessReview",
 "spec": {
 "nonResourceAttributes": {
 "path": "/logs",
 "verb": "get"
 },
 "user": "gigi@gg.com",

Extending Kubernetes

[568]

 "group": [
 "group1",
 "group2"
]
 }
}

We can check using Kubectl if we are authorized to perform some operation using
the can-i command. For example, let's see if we can create deployments:

$ kubectl auth can-i create deployments
yes

We can also check if other users or service accounts are authorized to do something.
The default service account is NOT allowed to create deployments:

$ kubectl auth can-i create deployments --as default
no

Using an admission control webhook
Dynamic admission control supports webhooks too. It is generally available
since Kubernetes 1.16. You need to enable the MutatingAdmissionWebhook and
ValidatingAdmissionWebhook admission controllers using --enable-admission-
plugins=Mutating,ValidatingAdmissionWebhook. There are several other admission
controllers that the Kubernetes developers recommend you run (the order matters):

--admission-control=NamespaceLifecycle,LimitRanger,ServiceAccount,DefaultS
torageClass,DefaultTolerationSeconds,MutatingAdmissionWebhook,ValidatingAd
missionWebhook,ResourceQuota

Configuring a webhook admission controller on the
fly
The authentication and authorization webhooks must be configured when you start
the API server. The admission control webhooks can be configured dynamically
by creating MutatingWebhookConfiguration or ValidatingWebhookConfiguration API
objects. Here is an example:

apiVersion: admissionregistration.k8s.io/v1
kind: ValidatingWebhookConfiguration
...
webhooks:
- name: admission-webhook.example.com

Chapter 15

[569]

 rules:
 - operations: ["CREATE", "UPDATE"]
 apiGroups: ["apps"]
 apiVersions: ["v1", "v1beta1"]
 resources: ["deployments", "replicasets"]
 scope: "Namespaced"
 ...

An admission server accesses AdmissionReview requests such as:

{
 "apiVersion": "admission.k8s.io/v1",
 "kind": "AdmissionReview",
 "request": {
 "uid": "705ab4f5-6393-11e8-b7cc-42010a800002",
 "kind": {"group":"autoscaling","version":"v1","kind":"Scale"},
 "resource": {"group":"apps","version":"v1","resource":"deploymen
ts"},
 "subResource": "scale",
 "requestKind": {"group":"autoscaling","version":"v1","kind":"Sca
le"},
 "requestResource": {"group":"apps","version":"v1","resource":"deplo
yments"},
 "requestSubResource": "scale",
 "name": "cool-deployment",
 "namespace": "cool-namespace",
 "operation": "UPDATE",
 "userInfo": {
 "username": "admin",
 "uid": "014fbff9a07c",
 "groups": ["system:authenticated","my-admin-group"],
 "extra": {
 "some-key":["some-value1", "some-value2"]
 }
 },

 "object": {"apiVersion":"autoscaling/v1","kind":"Scale",...},
 "oldObject": {"apiVersion":"autoscaling/v1","kind":"Scale",...},
 "options": {"apiVersion":"meta.k8s.io/v1","kind":"UpdateOptio
ns",...},
 "dryRun": false
 }
}

Extending Kubernetes

[570]

If the request is admitted the response will be as follows:

{
 "apiVersion": "admission.k8s.io/v1",
 "kind": "AdmissionReview",
 "response": {
 "uid": "<value from request.uid>",
 "allowed": true
 }
}

If the request is not admitted, then allowed will be False. The admission server may
provide a status section too with an HTTP status code and message:

{
 "apiVersion": "admission.k8s.io/v1",
 "kind": "AdmissionReview",
 "response": {
 "uid": "<value from request.uid>",
 "allowed": false,
 "status": {
 "code": 403,
 "message": "You cannot do this because I say so!!!!"
 }
 }
}

Providing custom metrics for horizontal pod
autoscaling
Prior to Kubernetes 1.6 custom metrics were implemented as a Heapster model.
In Kubernetes 1.6 new custom metrics APIs landed and matured gradually. As of
Kubernetes 1.9 they are enabled by default. Custom metrics rely on API aggregation.
The recommended path is to start with the custom metrics API server boilerplate
available here: https://github.com/kubernetes-sigs/custom-metrics-apiserver.

Then, you implement the CustomMetricsProvider interface:

type CustomMetricsProvider interface {
 // GetMetricByName fetches a particular metric for a particular
object.
 // The namespace will be empty if the metric is root-scoped.

https://github.com/kubernetes-sigs/custom-metrics-apiserver

Chapter 15

[571]

 GetMetricByName(name types.NamespacedName,
 info CustomMetricInfo,
 metricSelector labels.Selector) (*custom_metrics.
MetricValue, error)

 // GetMetricBySelector fetches a particular metric for a set of
objects matching
 // the given label selector. The namespace will be empty if the
metric is root-scoped.
 GetMetricBySelector(namespace string, selector labels.Selector,
info CustomMetricInfo, metricSelector labels.Selector) (*custom_
metrics.MetricValueList, error)

 // ListAllMetrics provides a list of all available metrics at
 // the current time. Note that this is not allowed to return
 // an error, so it is reccomended that implementors cache and
 // periodically update this list, instead of querying every time.
 ListAllMetrics() []CustomMetricInfo
}

Extending Kubernetes with custom storage
Volume plugins are yet another type of plugin. Prior to Kubernetes 1.8 you had to
write a kubelet plugin that required registration with Kubernetes and linking with
the Kubelet. Kubernetes 1.8 introduced FlexVolume, which is much more versatile.
Kubernetes 1.9 took it to the next level with the Container Storage Interface (CSI)
that we covered in Chapter 6, Managing Storage. At this point, if you need to write
storage plugins, CSI is the way to go. Since CSI uses the gRPC protocol, the CSI
plugin must implement the following gRPC interface:

service Controller {
 rpc CreateVolume (CreateVolumeRequest)
 returns (CreateVolumeResponse) {}

 rpc DeleteVolume (DeleteVolumeRequest)
 returns (DeleteVolumeResponse) {}

 rpc ControllerPublishVolume (ControllerPublishVolumeRequest)
 returns (ControllerPublishVolumeResponse) {}

 rpc ControllerUnpublishVolume (ControllerUnpublishVolumeRequest)
 returns (ControllerUnpublishVolumeResponse) {}

Extending Kubernetes

[572]

 rpc ValidateVolumeCapabilities (ValidateVolumeCapabilitiesRequest)
 returns (ValidateVolumeCapabilitiesResponse) {}

 rpc ListVolumes (ListVolumesRequest)
 returns (ListVolumesResponse) {}

 rpc GetCapacity (GetCapacityRequest)
 returns (GetCapacityResponse) {}

 rpc ControllerGetCapabilities (ControllerGetCapabilitiesRequest)
 returns (ControllerGetCapabilitiesResponse) {}
}

This is not a trivial undertaking, and typically only storage solution providers should
implement CSI plugins.

Summary
In this chapter, we covered three major topics: working with the Kubernetes API,
extending the Kubernetes API, and writing Kubernetes plugins. The Kubernetes API
supports the OpenAPI spec and is a great example of REST API design that follows
all current best practices. It is very consistent, well organized, and well documented.
Yet it is a big API and not easy to understand. You can access the API directly via
REST over HTTP, using client libraries including the official Python client, and even
by invoking Kubectl.

Extending the Kubernetes API involves defining your own custom resources and
optionally extending the API server itself via API aggregation. Custom resources are
most effective when you combine them with additional custom plugins or controllers
when you query and update them externally.

Plugins and webhooks are the foundation of Kubernetes design. Kubernetes was
always meant to be extended by users to accommodate any need. We looked at
various plugins, such custom schedulers, Kubectl plugins, and access control
webhooks. It is very cool that Kubernetes provides such a seamless experience for
writing, registering, and integrating all those plugins.

We also looked at custom metrics and even how to extend Kubernetes with custom
storage options.

Chapter 15

[573]

At this point, you should be well aware of all the major mechanisms to extend,
customize, and control Kubernetes via API access, custom resources, controllers,
operators, and custom plugins. You are in a great position to take advantage of these
capabilities to augment the existing functionality of Kubernetes and adapt it to your
needs and your systems.

In the next chapter, which will conclude the book, we will look at the future of
Kubernetes and the road ahead. Spoiler alert – the future is very bright. Kubernetes
has established itself as the gold standard for cloud native computing. It is being
used across the board and it keeps evolving responsibly. An entire support system
has developed around Kubernetes, including training, open source projects, tools,
and products. The community is amazing and the momentum is very strong.

[575]

16
The Future of Kubernetes

In this chapter, we'll look at the future of Kubernetes from multiple angles. We'll
start with the momentum of Kubernetes since its inception, across dimensions
such as community, ecosystem, and mindshare. Spoiler alert – Kubernetes won the
container orchestration wars by a landslide. As Kubernetes grows and matures, the
battle lines shift from beating competitors to fighting against its own complexity.
Usability, tooling, and education will play a major role as container orchestration
is still new, fast-moving, and not a well-understood domain. Then, we will take
a look at some very interesting patterns and trends and finally, we will review
my predictions from the 2nd edition and make some new ones.

The topics we'll cover are as follows:

•	 The Kubernetes momentum
•	 The importance of CNCF
•	 Kubernetes extensibility
•	 Service mesh integration
•	 Serverless computing on Kubernetes
•	 Kubernetes and VMs
•	 Cluster autoscaling
•	 Ubiquitous operators

The Future of Kubernetes

[576]

The Kubernetes momentum
Kubernetes is undeniably a juggernaut. Not only did Kubernetes beat all the other
container orchestrators, but it is also the de facto solution on public clouds, utilized
in many private clouds, and even VMware – the virtual machine company – is
focused on Kubernetes solutions and integrating its products with Kubernetes.

Kubernetes works very well in multi-cloud and hybrid cloud scenarios due to its
extensible design.

In addition, Kubernetes makes inroads in the edge too, with custom distributions
that expand its broad applicability even more.

The Kubernetes project continues to release new version every 3 months like
clockwork. The community just keeps growing.

The Kubernetes GitHub repository (https://github.com/kubernetes/kubernetes)
has 64,000 stars and one of the most major drivers of this phenomenal growth is the
Cloud Native Computing Foundation (CNCF).

The importance of the CNCF
The CNCF has become a very important organization in the cloud computing scene.
While it is not Kubernetes-specific, the dominance of Kubernetes is undeniable.
Kubernetes is the first project to graduate from it, and most of the other projects lean
heavily toward Kubernetes. In particular, the CNCF offers certification and training
only for Kubernetes. The CNCF, among other roles, ensures the cloud technologies
will not suffer from vendor lock-in. Check out this crazy diagram of the entire CNCF
landscape: https://landscape.cncf.io/zoom=60.

Project curation
The CNCF (https://www.cncf.io/) assigns three maturity levels to projects:
graduated, incubating, and sandbox:

https://github.com/kubernetes/kubernetes
https://landscape.cncf.io/zoom=60
https://www.cncf.io/

Chapter 16

[577]

Figure 16.1: Project maturity levels

Projects (https://www.cncf.io/projects/) start at a certain level – sandbox or
incubating – and over time can graduate. That doesn't mean that only graduated
projects can be safely used. Many incubating and even sandbox projects are used
heavily in production. For example, etcd is the persistent state store of Kubernetes
itself and it is just an incubating project. Obviously, it is a highly trusted component.
Virtual Kubelet is a sandbox project that powers AWS Fargate and Microsoft ACI.
These are clearly enterprise-grade pieces of software.

The main benefit of the CNCF curation of projects is to help navigate the incredible
eco-system that grew around Kubernetes. When you start looking to extend your
Kubernetes solution with additional technologies and tools, the CNCF projects are
a good place to start.

Certification
When technologies start to offer certification programs, you can tell they are here to
stay. The CNCF offers several types of certifications:

•	 Certified Kubernetes (https://www.cncf.io/certification/software-
conformance/), for conforming Kubernetes distributions and installers (about
90); Kubernetes Certified Service Provider (KCSP) (https://www.cncf.io/
certification/kcsp/), for vetted service providers with deep Kubernetes
experience (134 providers); and Certified Kubernetes Administrator (CKA)
(https://www.cncf.io/certification/cka/), for administrators.

•	 Certified Kubernetes Application Developer (CKAD) (https://www.cncf.
io/certification/ckad/) for developers.

https://www.cncf.io/projects/
https://www.cncf.io/certification/software-conformance/
https://www.cncf.io/certification/software-conformance/
https://www.cncf.io/certification/kcsp/
https://www.cncf.io/certification/kcsp/
https://www.cncf.io/certification/cka/
https://www.cncf.io/certification/ckad/
https://www.cncf.io/certification/ckad/

The Future of Kubernetes

[578]

Training
The CNCF offers training (https://www.cncf.io/certification/training/) too.
There is a free introduction to the Kubernetes course and several paid courses
that align with the CKA and CKAD certification exams. In addition, the CNCF
maintains a list of Kubernetes training partners (https://landscape.cncf.io/
category=kubernetes-training-partner&format=card-mode&grouping=category).

If you're looking for free Kubernetes training, here are a couple of options:

•	 VMware Kubernetes academy (https://kube.academy/)
•	 Google Kubernetes Engine on Coursera (https://www.coursera.org/learn/

google-kubernetes-engine)

Community and education
The CNCF also organizes conferences like KubeCon, CloudNativeCon, and meetups
and maintains several communication avenues like slack channels and mailing lists.
It also publishes surveys and reports.

The numbers of attendees and participants keeps growing year over year.

Tooling
The number of tools to manage containers and clusters, the various add-ons,
extensions, and plugins just keeps growing and growing. Here is a subset of the
tools, projects, and companies that participate in the Kubernetes ecosystem:

Figure 16.2: Participants in the Kubernetes ecosystem

https://www.cncf.io/certification/training/
https://landscape.cncf.io/category=kubernetes-training-partner&format=card-mode&grouping=category
https://landscape.cncf.io/category=kubernetes-training-partner&format=card-mode&grouping=category
https://kube.academy/
https://www.coursera.org/learn/google-kubernetes-engine
https://www.coursera.org/learn/google-kubernetes-engine

Chapter 16

[579]

The rise of managed Kubernetes
platforms
Pretty much every cloud provider has a solid managed Kubernetes offering these
days. Sometimes, there are multiple flavors and ways of running Kubernetes on
a given cloud provider.

Public cloud Kubernetes platforms
Here are some of the prominent managed platforms:

•	 Google GKE (https://cloud.google.com/kubernetes-engine/)
•	 Microsoft AKS (https://azure.microsoft.com/en-us/services/kubernetes-

service/)
•	 Amazon EKS (https://aws.amazon.com/eks/)
•	 Digital Ocean (https://www.digitalocean.com/products/kubernetes/)
•	 Oracle Cloud (https://www.oracle.com/cloud/compute/container-engine-

kubernetes.html)
•	 IBM Cloud Kubernetes service (https://www.ibm.com/cloud/container-

service/)
•	 Alibaba ACK (https://www.alibabacloud.com/product/kubernetes)
•	 Tencent TKE (https://intl.cloud.tencent.com/product/tke)

Of course, you can always roll your own and use the public cloud providers just
as infrastructure providers. This is a very common use case with Kubernetes.

Bare-metal, private clouds, and Kubernetes
on the edge
Here, you can find Kubernetes distributions that are designed or configured to run
in special environments, often in your own data centers as a private cloud or in more
restricted environments like edge computing on small devices:

•	 Google Anthos for GKE (https://cloud.google.com/anthos/gke/)
•	 OpenStack (https://docs.openstack.org/openstack-helm/latest/install/

developer/kubernetes-and-common-setup.html)

https://cloud.google.com/kubernetes-engine/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://aws.amazon.com/eks/
https://www.digitalocean.com/products/kubernetes/
https://www.oracle.com/cloud/compute/container-engine-kubernetes.html
https://www.oracle.com/cloud/compute/container-engine-kubernetes.html
https://www.ibm.com/cloud/container-service/
https://www.ibm.com/cloud/container-service/
https://www.alibabacloud.com/product/kubernetes
https://intl.cloud.tencent.com/product/tke
https://cloud.google.com/anthos/gke/
https://docs.openstack.org/openstack-helm/latest/install/developer/kubernetes-and-common-setup.html
https://docs.openstack.org/openstack-helm/latest/install/developer/kubernetes-and-common-setup.html

The Future of Kubernetes

[580]

•	 Rancher k3S (https://rancher.com/docs/k3s/latest/en/)
•	 Kubernetes on Raspberry PI (https://www.shogan.co.uk/kubernetes/

building-a-raspberry-pi-kubernetes-cluster-part-1-routing/)
•	 KubeEdge (https://kubeedge.io/en/)

Kubernetes Platform as a Service (PaaS)
This category of offerings aims to abstract some of the complexity of Kubernetes and
put a simpler facade in front of it. There are many varieties here. Some of them cater
to the multi-cloud and hybrid cloud scenarios, some expose the function as a service
interface, while some just focus on a better installation and support experience:

•	 Google Cloud Run (https://cloud.google.com/run/)
•	 VMware PKS (https://tanzu.vmware.com/kubernetes-grid)
•	 Platform 9 PMK (https://platform9.com/managed-kubernetes/)
•	 Giant Swarm (https://www.giantswarm.io/)
•	 OpenShift (https://www.openshift.com/)
•	 Rancher RKE (https://rancher.com/docs/rke/latest/en/)

Upcoming trends
Let's talk about some of technological trends in Kubernetes that will be important in
the near future. Some of these trends are already there.

Security
Security is, of course, a paramount concern for large-scale systems. Kubernetes is
primarily a platform for managing containerized workloads. Those containerized
workloads are often run in a multi-tenant environment. The isolation between
tenants is super important. Containers are lightweight and efficient because
they share an OS and maintain their isolation through various mechanisms like
namespace isolation, filesystem isolation, and cgroup resource isolation. In theory,
this should be enough. In practice, the surface area is large and there were multiple
breakouts of container isolation.

To address this risk, multiple lightweight VMs were designed to add a hypervisor
(machine-level virtualization) as an additional isolation level between the container
and the OS kernel. The big cloud providers already support these technologies, and
the Kubernetes CRI interface provides a streamlined way to take advantage of these
more secure runtimes.

https://rancher.com/docs/k3s/latest/en/
https://www.shogan.co.uk/kubernetes/building-a-raspberry-pi-kubernetes-cluster-part-1-routing/
https://www.shogan.co.uk/kubernetes/building-a-raspberry-pi-kubernetes-cluster-part-1-routing/
https://kubeedge.io/en/
https://cloud.google.com/run/
https://tanzu.vmware.com/kubernetes-grid
https://platform9.com/managed-kubernetes/
https://www.giantswarm.io/
https://www.openshift.com/
https://rancher.com/docs/rke/latest/en/

Chapter 16

[581]

For example, FireCracker (https://firecracker-microvm.github.io/) is integrated
with containerd via firecracker-containerd (https://github.com/firecracker-
microvm/firecracker-containerd). Google gVisor is another sandbox technology. It
is a user space kernel that implements most of the Linux system calls and provides
a buffer between the application and the host OS. It is also available through
containerd via gvisor-containerd-shim (https://github.com/google/gvisor-
containerd-shim).

Networking
Networking is another area that is an ongoing source of innovation. The Kubernetes
CNI allows any number of innovative networking solutions to work behind a simple
interface. A major theme is incorporating eBPF – a relatively new Linux kernel
technology – into Kubernetes.

eBPF stands for extended Berkeley Packet Filter. The core of eBPF is a mini-VM
in the Linux kernel that executes special programs attached to kernel objects when
certain events occur, such as a packet being transmitted or received. Originally, only
sockets were supported, and the technology was called just BPF. Later, additional
objects were added to the mix, and that's when the "e" for "extended" came along.
eBPF's claim to fame is its performance due to the fact it runs highly-optimized,
compiled BPF programs in the kernel and doesn't require extending the kernel with
kernel modules.

There are many applications for eBPF:

•	 Dynamic network control: An iptables-based approach doesn't scale very
well in a dynamic environment like a Kubernetes cluster where replacing
iptables with BPF programs is both more performant and more manageable.
Cillium (https://github.com/cilium/cilium) is focused on routing and
filtering traffic using eBPF

•	 Monitoring connections: Creating an up-to-date map of TCP connections
between containers is possible by attaching a BPF program, kprobes, that
tracks socket-level events. WdeaveScope (https://github.com/weaveworks/
scope) utilizes this capability by running an agent on each node that
collects this information, and then sends it to a server that provides a visual
representation though a slick UI.

•	 Restricting syscalls: The Linux kernel provides more than 300 system calls.
In a security-sensitive container environment, it is highly desirable. The
original seccomp (https://en.wikipedia.org/wiki/Seccomp) facility was
pretty course-grained. In Linux 3.5, seccomp was extended to support BPF
for advanced custom filters.

https://firecracker-microvm.github.io/
https://github.com/firecracker-microvm/firecracker-containerd
https://github.com/firecracker-microvm/firecracker-containerd
https://github.com/google/gvisor-containerd-shim
https://github.com/google/gvisor-containerd-shim
https://github.com/cilium/cilium
https://github.com/weaveworks/scope
https://github.com/weaveworks/scope
https://en.wikipedia.org/wiki/Seccomp

The Future of Kubernetes

[582]

•	 Raw performance: eBPF provides significant performance benefits, and
projects like Calico (https://www.projectcalico.org/) take advantage and
implement a faster data plane that uses less resources.

Custom hardware and devices
Kubernetes manages nodes, networking, and storage at a relatively high-level.
However, there are many benefits for integrating specific hardware at a fine-
grained level; for example, GPUs, high-performance network cards, FPGAs,
InfiniBand adapters, and other compute, networking, and storage resources. This
is where the device plugin (https://github.com/kubernetes/community/blob/
master/contributors/design-proposals/resource-management/device-plugin.md)
framework comes in. It is still in Beta (since Kubernetes 1.10) and there is ongoing
innovation in this area. For example, monitoring device plugin resources is also in
beta since Kubernetes 1.15. It is very interesting to see what devices will be harnessed
with Kubernetes. The framework itself is following modern Kubernetes extensibility
practices by utilizing gRPC.

Service mesh
The service mesh is arguably the most important trend over the last couple of years.
We covered service meshes in depth in Chapter 14, Utilizing Service Meshes. The
adoption is impressive, and I predict that most Kubernetes distributions will provide
a default service mesh and allow easy integration with other service meshes. The
benefits that service meshes provide are just too valuable, and it makes sense to
provide a default platform that includes Kubernetes with an integrated service mesh.
That said, Kubernetes itself will not absorb some service mesh and expose it through
its API. This goes against the grain of keeping the core of Kubernetes small.

Google Anthos (https://cloud.google.com/anthos/) is a good example where
Kubernetes + Knative + Istio are combined to provide a unified platform that
provides an opinionated best-practices bundle. It would take an organization a lot of
time and resources to build on top of vanilla Kubernetes.

Another push in this direction is the sidecar container KEP (https://github.com/
kubernetes/enhancements/blob/master/keps/sig-apps/sidecarcontainers.md).

The sidecar container pattern has been a staple of Kubernetes from the get-go. After
all, pods can contain multiple containers. However, there was no notion of a main
container and a sidecar container. All containers in the pod has the same status. Most
service meshes use sidecar containers to intercept traffic and perform their jobs.
Formalizing sidecar containers will help those efforts and push service meshes even
further.

https://www.projectcalico.org/
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/resource-management/device-plugin.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/resource-management/device-plugin.md
https://cloud.google.com/anthos/
https://github.com/kubernetes/enhancements/blob/master/keps/sig-apps/sidecarcontainers.md
https://github.com/kubernetes/enhancements/blob/master/keps/sig-apps/sidecarcontainers.md

Chapter 16

[583]

It's not clear, at this stage, if Kubernetes and the service mesh will be hidden behind
a simpler abstraction on most platforms or if they will be front and center.

Serverless computing
Serverless computing is another trend that is here to stay. We discussed it at length
in Chapter 12, Serverless Computing on Kubernetes. Kubernetes and serverless can
be combined on multiple levels. Kubernetes can utilize serverless cloud solutions
like AWS Fargate and AKS Azure Container Instances (ACI) to save the cluster
administrator from managing nodes. This approach also caters to integrating
lightweight VMs transparently with Kubernetes, since the cloud platforms don't use
naked Linux containers for their container-as-a-service platforms.

Another avenue is to reverse the roles and expose containers as a service powered
by Kubernetes under the covers. This is exactly what Google Cloud Run (https://
cloud.google.com/run/) is doing. The lines blur here as there are multiple products
from Google to manage containers and/or Kubernetes ranging from just GKE,
through Anthos GKE (bring your own cluster to a GKE environment for your private
data center), Anthos (managed Kubernetes + service mesh), and Anthos cloud run.

Finally, there are function as a service and scale to zero projects running inside your
Kubernetes cluster. I believe Knative will become the leader here, as it is already
used by many frameworks and it is deployed heavily through various Google
products.

Kubernetes on the Edge
Kubernetes is the poster boy of cloud native computing, but with the Internet of
Things (IoT) revolution, there is more and more need to perform computation at
the edge of the network. Sending all data to the backend for processing suffers from
several drawbacks:

•	 Latency
•	 Need for enough bandwidth
•	 Cost

With edge locations collecting a lot of data via sensors, video cameras, and so on,
the amount of edge data grows and it makes more sense to perform more and more
sophisticated processing at the edge. Kubernetes grew out of Google's Borg, which
was definitely not designed to run at the edge of the network. However, Kubernetes'
design proved to be flexible enough to accommodate it.

https://cloud.google.com/run/
https://cloud.google.com/run/

The Future of Kubernetes

[584]

I expect that we will see more and more Kubernetes deployments at the edge of the
network, which will lead to very interesting systems that are composed of many
Kubernetes clusters that will need to be managed centrally.

KubeEdge (https://kubeedge.io/en/) is an open source framework that is built on
top of Kubernetes and Mosquito – an open source implementation of MQTT message
broker – to provide a foundation for networking, application deployment, and
metadata synchronization between the cloud and the edge.

Native CI/CD
For developers, one of the most important questions is the construction of a CI/
CD pipeline. There are many options available, and choosing between them can
be difficult. The CD foundation (https://cd.foundation/) is an open source
foundation that was formed to standardize concepts like pipelines and workflows, as
well as define industry specifications that will allow different tools and communities
to interoperate better. The current projects are:

•	 Jenkins (https://www.jenkins.io/)
•	 Jenkins X (https://jenkins-x.io/)
•	 Tekton (https://github.com/tektoncd/pipeline)
•	 Spinnaker (https://www.spinnaker.io/)

There is also an incubating project: Screwdriver.cd (https://screwdriver.cd/).

One of my favorite native CD projects, Argo CD (https://github.com/argoproj/
argo-cd), is not part of the CD foundation at the moment. I took action and opened
a GitHub issue (https://github.com/argoproj/argo-cd/issues/3265) asking to
submit argo-cd to the CDF.

Another project to watch is CNB – Cloud Native Buildpacks (https://buildpacks.
io/). The project takes a source and creates OCI (think Docker) images. It is
important for Function as a Service (FaaS) frameworks and native in-cluster CI.
It is also a CNCF sandbox project.

Operators
The Operator pattern emerged in 2016 from CoreOS (acquired by RedHat, acquired
by IBM) and gained a lot of success in the community. An Operator is a combination
of custom resources and a controller used to manage an application. At my current
job, I write Operators to manage various aspects of infrastructure and it is a joy.

https://kubeedge.io/en/
https://cd.foundation/
https://www.jenkins.io/
https://jenkins-x.io/
https://github.com/tektoncd/pipeline
https://www.spinnaker.io/
https://screwdriver.cd/
https://github.com/argoproj/argo-cd
https://github.com/argoproj/argo-cd
https://github.com/argoproj/argo-cd/issues/3265
https://buildpacks.io/
https://buildpacks.io/

Chapter 16

[585]

It is already the established way to distribute non-trivial applications to Kubernetes
clusters. Check out https://operatorhub.io/ for a huge list of existing operators. I
expect this trend to continue.

Summary
In this chapter, we looked at the future of Kubernetes, and it looks great! The
technical foundation, the community, the broad support, and the momentum
are all very impressive. Kubernetes is still young, but the pace of innovation and
stabilization is very encouraging. The modularization and extensibility principles
of Kubernetes let it become the universal foundation for modern cloud-native
applications.

At this point, you should have a clear idea of where Kubernetes is right now and
where it's going from here. You should be confident that Kubernetes is not just here
to stay, but that it will be the leading container orchestration platform for many years
to come. It will be able to integrate with any major offering and environment you
can possibly imagine, from planet-scale public cloud platforms, private clouds, data
centers, and edge locations and all the way down to your development laptop and
Raspberry Pi.

That's it! This is the end of this book.

Now, it's up to you to use what you've learned and build amazing things with
Kubernetes!

References
•	 Kubernetes on GitHub: https://github.com/kubernetes/kubernetes
•	 CNCF: https://cncf.io
•	 CD foundation: https://cd.foundation/
•	 FireCracker: https://firecracker-microvm.github.io/
•	 gVisor: https://github.com/google/gvisor-containerd-shim
•	 Cillium: https://github.com/cilium/cilium
•	 Calico: https://www.projectcalico.org/
•	 Google Anthos: https://cloud.google.com/anthos/
•	 Google Cloud Run: https://cloud.google.com/run/
•	 KubeEdge: https://kubeedge.io/en/
•	 OperatorHub: https://operatorhub.io/

https://operatorhub.io/
https://github.com/kubernetes/kubernetes
https://cncf.io
https://cd.foundation/
https://firecracker-microvm.github.io/
https://github.com/google/gvisor-containerd-shim
https://github.com/cilium/cilium
https://www.projectcalico.org/
https://cloud.google.com/anthos/
https://cloud.google.com/run/
https://kubeedge.io/en/
https://operatorhub.io/

[587]

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Python Automation Cookbook - Second Edition
Jaime Buelta

ISBN: 978-1-80020-708-0

	● Learn data wrangling with Python and Pandas for your data science and
AI projects

	● Automate tasks such as text classification, email filtering, and web scraping
with Python

	● Use Matplotlib to generate a variety of stunning graphs, charts, and maps
Automate a range of report generation tasks, from sending SMS and
email campaigns to creating templates, adding images in Word, and
even encrypting PDFs

https://www.packtpub.com/programming/python-automation-cookbook-second-edition

[588]

Other Books You May Enjoy

	● Master web scraping and web crawling of popular file formats and directories
with tools like Beautiful Soup

	● Build cool projects such as a Telegram bot for your marketing campaign, a reader
from a news RSS feed, and a machine learning model to classify emails to the
correct department based on their content

	● Create fire-and-forget automation tasks by writing cron jobs, log files, and
regexes with Python scripting

[589]

Other Books You May Enjoy

IoT and Edge Computing for Architects - Second Edition
Perry Lea

ISBN: 978-1-83921-480-6

	● Understand the role and scope of architecting a successful IoT deployment
	● Scan the landscape of IoT technologies, from sensors to the cloud and more
	● See the trade-offs in choices of protocols and communications in IoT

deployments
	● Become familiar with the terminology needed to work in the IoT space
	● Broaden your skills in the multiple engineering domains necessary for

the IoT architect
	● Implement best practices to ensure reliability, scalability, and security in your

IoT infrastructure

https://www.packtpub.com/iot-hardware/iot-and-edge-computing-for-architects-second-edition

[590]

Other Books You May Enjoy

Leave a review - let other readers know
what you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

[591]

Index
A
access control webhook

authentication webhook, using 564-566
authorization webhook, using 566-568
custom metrics, providing for horizontal pod

autoscaling 570
employing 563
Kubernetes, extending with custom

storage 571
adapter pattern 13
admission control webhook

using 568
advanced scheduling 150

anti-affinity 153
node affinity 153
node selector 150
pod affinity 153
taints 151, 152
tolerations 151, 152

alerting 448
AlertManager

reference link 396
alerts

versus dashboards 480
Alibaba ACK

URL 579
Alibaba Cloud 57
Alibaba container service

for Kubernetes (ACK) 57
Amazon EBS 198, 199
Amazon EFS 199, 200
Amazon EKS

URL 579
Amazon Virtual Private Cloud

(Amazon VPC) 55

Amazon Web Services (AWS) 4
ambassador pattern 13
annotations 8
Anthos

reference link 582
anti-affinity 153
API builder alpha

reference link 550
APIs

deprecating 87
API server

accessing 105
admission control plugins, using 110, 111
requests, authorizing 108, 109
users, authenticating 106, 107

AppArmor
pod security 114, 115
profiles, writing 115, 116
requisites 114
used, for protecting cluster 114

AppDash
reference link 473

Application Container Image (ACI) 27
application error reporting 447
Argo CD

URL 584
Attribute-Based Access Control (ABAC) 109
authentication webhook

using 564-566
authorization webhook

using 566-568
AutoContainerSource

reference link 421
autoscaling

used, for performing rolling updates 254-257

[592]

AWS App Mesh 488
URL 488

AWS EKS 55, 410, 411
AWS Fargate 55
AWS PrivateLink 55
Azure 56
Azure AKS 409, 410
Azure Container

Instances (ACI) 409, 410, 583
Azure data disk 202, 203
Azure file storage 203
Azure Kubernetes Service (AKS) 4, 56, 272

benefits 56

B
bane tool

reference link 115
bare-metal 579
bare-metal cluster

building, with KRIB 60
building, with Kubespray 60
building, with RKE 61
creating, considerations 59
creating, from scratch 58
creating, process 59
use cases 58
virtual private cloud infrastructure, using 60

blue-green deployments 84, 85
Bookinfo 492

installing 495-499
Bootkube 61
bridge plugin

reviewing 359, 361
bridges 325
broker 422
buildpacks

URL 439
build.sh script

exploring 232
built-in objects

embedding 311
Buoyant

URL 487

C
cAdvisor 454
Calico

reference link 582
Calico project 337
canary deployments 85, 86
Candy 543
capacity planning 77, 78
Cassandra 229

configuration file 238, 239
connecting 238
custom seed provider 239
headless service, creating 241

Cassandra cluster
executing, in Kubernetes 228
reference link 228

Cassandra Docker image 230, 231
build.sh script, exploring 231
run.sh script, exploring 233-238

cattle versus pets 5
cbr0 326
CD foundation

reference link 584
centralized logging 450

cluster-level central logging 452
remote central logging 452
sensitive log information, dealing with 453

Ceph
connecting, with CephFS 210
connecting, with RBD 208-210
using 208

CephFS
used, for connecting Ceph 210

Ceph volumes
in Kubernetes 204

Certified Kubernetes Administrator (CKA)
reference link 577

Certified Kubernetes Application Developer
(CKAD)

reference link 577
channels 422
chart dependencies 313, 314

managing 304
managing, with requirements.yaml 305
special fields, utilizing in requirements.yaml

306, 307

[593]

charts
creating 302
metadata files 304
templates and values, using 307
testing 309, 310
troubleshooting 309, 310

chart scope 313, 314
chart values 313, 314
Chart.yaml file 303

appVersion field 303
charts, deprecating 304
version field 303

CI/CD pipeline 29
deploying, for Kubernetes 30

Cillium
reference link 581

Citadel 491
workflow, in Kubernetes 491, 492

Classless Inter-Domain Routing (CIDR) 325
client IP addresses

preservation, specifying 345
preserving 345

cloud
clusters 52

cloud controller manager
used, for extending Kubernetes 540

Cloud Controller Manager (CCM) 540
URL 540

Cloud Native Buildpacks
URL 584

Cloud Native Computing Foundation (CNCF)
certification 577
community and education 578
project curation 576, 577
significance 576
training 578
URL 576

cloud-provider interface 52
cloud providers 56

Chinese Alibaba Cloud 57
Huawei 57
IBM Kubernetes Service 57
Oracle Container Service 58
Tencent 57

Cloud Run
reference link 583

cluster
exploring, with Kubernetes dashboard 457

cluster autoscaler 408
installing 78, 80

cluster autoscaler (CA) 78
cluster capacity

container-native solutions, considering 272
elastic cloud resources, benefiting 270
managing 268
multiple node configurations, using 270
node types, selecting 268
off cost and response time, trading 269, 270
scalable storage solution, selecting 269
selecting 268

cluster federation 366, 367
history, on Kubernetes 366

cluster federation, use cases 368
capacity overflow 368
Geo-distributing high availability 369
sensitive workloads 368, 369
vendor lock-in, avoiding 369

cluster-level central logging 452
cluster management commands 136
clusters 6
CNCF landscape

reference link 576
CNCFs CloudEvents specification

reference link 420
CNI plugin 329-331

skeleton, building 356-359
writing 352

compute resource quota 258
condition field 306
ConfigMap

consuming, as environment
variable 224, 225

creating 224
containerd 26
container-native solutions

considering 272
container networking

interface (CNI) 327, 539
container runtime 328
third-party plugin 328

container orchestration 3
container runtime 328
container runtime interface (CRI) 23-25

[594]

containers
benefits 3, 4
coupled connectivity, with data stores 323
coupled connectivity, with queues 323
in cloud 4
interacting 322
registration service 322
self-registration 322

ContainerSource
reference link 421

container storage
interface (CSI) 10, 216, 217, 539, 571

continuous integration and deployment 28
Contiv 332
Contiv net plugin

capabilities 332
CoreV1API group

dissecting 532, 533
CRD components

admission plugin 80
recommender 80
updater 80

CRI-O 27
cron jobs

scheduling 164, 166
cross-cluster scheduling 375
curl 46
customization commands 136
custom container runtimes

used, for extending Kubernetes 542
custom devices 582
custom hardware 582
custom metrics

providing, for horizontal pod autoscaling 570
custom metrics API server

reference link 570
custom resources 542, 543

custom printer columns, adding 548, 549
finalizing 548
integrating 545, 546
unknown fields, dealing with 546, 547

custom resources definitions (CRD) 490, 543
developing 543-545

custom scheduler
pod, assigning 557
preparing 556

custom storage

used, for extending Kubernetes 571

D
DaemonSet

using, for redundant persistent storage 226
DaemonSet pods

sharing 171
Dapper

reference link 473
dashboards

versus alerts 480
data

migrating 86
data-contract changes

managing 86
deployment

updating 143
deployment commands 136
device plugins 540
Digital Ocean

URL 579
Digital Rebar Provision (DRP) 60
directed acyclic graph (DAG) 446
direct logging approach 450
directory structure

configuring 157, 158
distributed data-intensive apps 222
distributed hash table (DHT) 205, 229
distributed system design patterns 12

adapter pattern 13
ambassador pattern 13
multi-node patterns 14
sidecar pattern 13

distributed tracing 446
used, for detecting performance 482
used, for detecting root cause 482
with Jaeger 470, 471

DNS Provider 387
DNS records

versus shared environment variables 223
Docker 25, 26
Docker networking

versus Kubernetes networking
model 320, 321

Docker networking model
versus Kubernetes networking model 321

[595]

Domain Name System (DNS) 370
durable node storage

with local volumes 180, 181
dynamic host path provisioner

reference link 293

E
eksctl

URL 55
Elastic Block Store (EBS) 198
elastic cloud resources

benefiting 270
cloud quotas 271
instance autoscaling 270
regions, managing 271

Elastic container instances (ECIs) 57
Elastic Container Service (ECS) 53
Elastic File System (EFS) 199
Elastic Kubernetes Service (EKS) 4, 53, 272
Elasticsearch, Kibana, and Fluentd (EFK) 515
emptyDir

using, for intra-pod communication 176-178
enterprise storage

integrating, into Kubernetes 212
Envoy 487, 490

URL 487
error reports

versus logs 481
versus metrics 481

etcd 19
etcd3 276

gRPC, using instead of REST 276
leases, using instead of TTLs 276
optimizations 277
state storage 276
watch implementation 276

etcd cluster
about 69
creating 72, 73
verifying 73

etcd operator
installing 70-72

etcd-operator
reference link 541

event consumer 421
event consumer, types

Addressable consumer 421
Callable consumer 421

event delivery, modes
fan-out delivery 423
simple delivery 422

event registry 422
event source 421
event types 422
extended Berkeley Packet Filter (eBPF) 581

applications 581
external data stores

accessing, via DNS 223
accessing, via environment variables 223

External DNS Controller 387
external load balancer 343, 346

client IP addresses, preserving 345
configuring 344
configuring, via kubectl command 344
configuring, via service configuration file 344
IP addresses, finding 344

external service
exposing 148, 149
separating 144

F
fan-out delivery 423
Fargate 410, 411

limitations 412
reference link 410

federation API server 372
federation controller manager 372
Fiber Channel (FC) 189
FireCracker

reference link 581
firecracker-containerd

reference link 581
Fission 429, 430

experimenting 432, 433
URL 429
workflows 430-432

Flannel 335, 336
backends 336

FlexVolume approach
advantages 216
out-of-tree volume plugins, using 215, 216

[596]

Flocker
as clustered container data volume

manager 211, 212
Fluentbit

URL 454
Fluentd

URL 453
using, for log collection 453

Frakti 28
Function as a Service (FaaS) 584

characteristics 408
executing, on serverless computing 407

functions
using 308

G
Galley 492
Gardener

extending 397-401
Gardener architecture 394

clusters, monitoring 395, 396
clusters, networking 395
cluster state, managing 394
control plane, managing 395
gardenctl CLI 396
infrastructure, preparing 395
machine controller manager, using 395

Gardener project
conceptual model 393, 394
terminology 392
URL 392

Gardener ring 401
GCE persistent disk 201, 202
generic commands 136
Giant Swarm

reference link 580
gibibyte (GiB) 183
GlusterFS

endpoints, creating 205
pods, creating 207
using 205

GlusterFS Kubernetes service
adding 206

GlusterFS volumes
in Kubernetes 204

Google Anthos for GKE

reference link 579
Google Cloud Platform (GCP) 4, 53
Google Cloud Run 412

reference link 580
Google GKE

URL 579
Google Kubernetes Engine (GKE) 53, 272
Google Kubernetes Engine (GKE), on Coursera

reference link 578
Grafana

reference link 396
URL 468

Grafana Loki
reference link 470

gvisor-containerd-shim
reference link 581

H
HAProxy

executing, in Kubernetes cluster 350
NodePort, utilizing 349
using, in load balancer provider 349

Heapster 67, 454
Helm 283

chart, creating 302
chart, customizing 296, 297
charts, finding 287, 288
charts, managing 301
installation link 70
installation options 298
installation status, checking 292-296
installing 286
package, installing on Kubernetes

cluster 290
release, deleting 299, 300
release, rolling back 298, 299
release, upgrading 298, 299
repositories, adding 288-290
repositories, working with 300, 301
use cases 284
using 285

Helm 2
Tiller server, installing 286
used, for installing riff 439-442

Helm 2 architecture 284
Helm 2 components 284

[597]

Helm client 285
Tiller server 284

Helm 3 285
Helm client

installing 286
hierarchical cluster structures

with kustomization 156
high availability 77, 78
high availability, best practices

about 66
data, protecting 73
etcd cluster 69
Kubernetes cluster, creating 67, 68
Kubernetes cluster state, protecting 69
leader election, executing with

Kubernetes 74, 75
nodes performance, creating 68, 69
staging environment, creating 75
testing 76, 77

high availability, concepts
about 64
hot swapping 64
idempotency 66
leader election 65
redundancy 64
self-healing 66
smart load balancing 65

High-Availability Proxy (HAProxy) 349
reference link 349

Higher-Order Behavior
employing 387

highly available (HA) clusters 44
horizontal pod autoscaler (HPA) 78, 248

autoscaling, with Kubectl 251-253
custom metrics 251
deploying 248-250

host cluster
configuring 379, 381
registering, with Kubernetes federation 381

HostPath
using, for intra-node communication 178-180

hot swapping 64
Httpie

installation link 46

URL 529
used, for filtering output 529, 530
using 529

Huawei 57
Hue

advanced science 173
utilizing, for education 173
utilizing, in enterprise 172

Hue components
about 131
authorizer 132
external service 132
generic actuator 132
generic sensor 132
identity 132
user graph 131
user learner 133
user profile 131

Hue microservices
about 133
data stores 134
plugins 133
queue-based interactions 134, 135
serverless functions 134
stateless microservices 134

Hue platform
designing 129
evolving, with Kubernetes 172
identity 130, 131
managing, with Kubernetes 167
notifications 130
privacy 130, 131
scope, defining 130
security 130, 131
smart reminders 130

Hue-reminders service
creating 146, 147

Hue workflows
automatic workflows 135
budget-aware workflows 135
human workflows 135
planning 135

Hyper Containers 28
Frakti 28
Stackube 28

[598]

I
IBM Cloud Kubernetes service

URL 579
IBM Kubernetes Service 57
idempotency 66
Ingress
Ingress DNS controller 387
Ingress DNS Record 387
init containers

employing, for orderly pod bring-up 169
inside-the-cluster-network components 167
internal service

deploying 145, 146
separating 144

Internet of Things (IoT) 583
intra-node communication

with HostPath 178-180
intra-pod communication

with emptyDir 176-178
IP addresses 324
IP Address Management (IPAM) 329
Istio 488

distributed tracing 519-522
incorporating, into Kubernetes cluster 489
installing 493-495
logs 513-516
metrics 516-519
minikube cluster, preparing 492
monitoring and observability 512
policies 509-511
security 502, 503
traffic management 499-502
URL 488

Istio architecture 489, 490
Citadel 491
Envoy 490
Galley 492
Mixer 491
Pilot 490

Istio authentication 504
origin authentication 505
transport authentication 504

Istio authorization 505-508
istio-certs 504
Istio identity 503
Istio PKI 504

J
Jaeger 472

distributed tracing 470, 471
installing 475-478
URL 472

Jaeger agent 474
Jaeger architecture 473, 474
Jaeger client 474
Jaeger collector 474
Jaeger Query 474
Java Management Extensions (JMX) 237
Jenkins

URL 584
Jenkins X

URL 584
jobs

cleaning up 164
executing, in parallelism 163, 164
launching 162

jq
URL 529
used, for filtering output 529, 530
using 529

jsonpatch
URL 385

JSON Web Tokens (JWTs) 505

K
k3d 48

installing 48
used, for creating cluster 49-51
used, for creating multi-node cluster 47
versus Minikube 51, 52

k3s 48
k9s tools

reference link 559
Keepalived Virtual IP (Keepalived VIP) 351
Kiali

used, for visualizing service mesh 522
KinD

about 42
echo service, deploying with 46
installing 42
used, for creating multi-node cluster 42-45
versus k3d 51
versus Minikube 51

[599]

Knative 413-439
installing 424, 425

Knative, components
Knative Eventing 413
Knative Serving 413

Knative Configuration object 417, 418
Knative Eventing 413, 420

architecture 422, 423
Knative Eventing terminology

broker 422
channel 422
defining 420
event consumer 421
event registry 422
event source 421
event types 422
subscriptions 422
trigger 422

Knative, installing
reference link 424

Knative Revision object 420
Knative Route object 416
Knative service

deploying 426
invoking 426, 427
scale-to-zero option, checking in 427, 428

Knative Service object 414, 416
Knative Serving 413
Krew

reference link 560
used, for managing Kubectl plugins 560

krew-plugin-template
reference link 562

KRIB
reference link 61
used, for building bare-metal cluster 60

kubeadm
reference link 59

kubebuilder
reference link 541, 549

Kube controller manager 19
Kubectl 32

executing, with Python
subprocesses 536-538

reference link 33
used, for autoscaling HPA 251, 253

Kubectl commands

overriding 562
Kubectl effectively

using 136
Kubectl plugins 562

creating 561, 562
implementing 559
managing, with Krew 560
namespace, for Krew plugins 563
naming 562
shebangs 562
writing 559

Kubectl programmatically
invoking 536

kubectl resource, configuration files
about 137
ApiVersion 138
container spec 138, 139
kind 138
metadata 138
spec 138

KubeEdge
reference link 580, 584

KubeFed control plane 372
federation API server 372
federation controller manager 372

kubefedctl
installing 377-379

Kubeless 434
implementing with 435, 437
working, with serverless framework 438

Kubeless architecture 434
Kubeless function 434
Kubeless runtime 434
Kubeless triggers 435

Kubeless function 434
Kubeless runtime 434
Kubeless triggers 435
Kubeless UI

using 437, 438
kubelet 22
Kubemark cluster

comparing, to real-world cluster 281
reference link 281
setting up 281

Kubemark tool 281
Kubenet 324, 326

MTU, setting 327

[600]

requisites 326, 327
kubens tool

reference link 128
kube-prometheus

reference link 461
Kubernetes 576

API objects, serializing with protocol
buffers 276

API responsiveness, measuring 277, 278
capabilities 2
centralized logging 450
Ceph volumes in 204
CI/CD pipeline, deploying for 30
cluster federation, history 366
component logs 449
configuration and deployment challenges 100
connecting 238
container logs 448, 449
cultural challenges 102
end-to-end pod startup time, measuring 279
enterprise storage, integrating 212
etcd3 276
extending, with cloud controller manager 540
extending, with controller pattern 541
extending, with custom container

runtimes 542
extending, with custom storage 571
extending, with operator pattern 541
extending, with plugins 539
features 54
Fluentd, using for log collection 453
GlusterFS in 204
image challenges 99, 100
limits 273, 274
logging with 448
monitoring, with metrics server 455, 456
network challenges 97, 98
network policies, managing 118
node challenges 96, 97
on EC2 54
organizational challenges 102
overview 103
performance and scalability, improving 274
performance and scalability, measuring 277
Platform as a Service (PaaS) 580
pod and container challenges 101
pod lifecycle event generator (PLEG) 274, 275

pods security 112
process challenges 102
reads, caching in API server 274
scheduling, extention 542
secrets, storing in 122
security challenges 96
service accounts 103, 104
service accounts, managing 105
SLOs 277
stateful applications 221
stateless applications 221
state, managing in 222
state, managing outside 222, 223
testing, at scale 280
upcoming trends 580
used, for collecting metrics 454, 455
used, for evolving Hue platform 172
used, for managing Hue platform 167
using, to build Hue platform 136

Kubernetes API 14
accessing, via Python client 531, 532
CoreV1API group, dissecting 532, 533
exploring 526, 527
exploring, with Postman 528
extending 538, 539
objects, creating 534, 535
objects, listing 534
objects, watching 535
Python subprocesses, used for executing

Kubectl 536-538
resource categories 15
used, for creating pod 530, 531
working with 525

Kubernetes API server
aggregating 549, 550

Kubernetes architecture 6, 12
distributed system design patterns 12

Kubernetes Certified Service Provider (KCSP)
reference link 577

Kubernetes cli-runtime
reference link 562

Kubernetes cluster
APIs, deprecating 87
availability requisites 88
bare-metal cluster 58
best effort 88
blue-green deployments 84, 85

[601]

canary deployments 85, 86
cost 88
creating 67, 68
data consistency 93
data-contract changes, managing 86
data, migrating 86
design trade-offs 88
HAProxy, executing in 350
Helm package, installing on 290
Istio, incorporating into 489
live updates 80
maintenance windows 89
multi-node cluster 42
overview 31
performance 88, 93
quick recovery 90
rolling updates 81, 82
single-node cluster 32
Site reliability engineering (SRE) 92
zero downtime 90

Kubernetes cluster federation
creating 379
Higher-Order Behavior, employing 387
managing 377
overrides, using 385
placement field, using to control 385, 386
propagation failures, debugging 387

Kubernetes, components
master components 18
node components 21

Kubernetes, concepts 5
annotations 8
cluster 6
labels 8
label selectors 9
master 7
names 11
namespaces 11, 12
nodes 6
pods 7
replica sets 10
replication controllers 10
secrets 11
services 9
StatefulSet 10, 11
volume 10

Kubernetes contrib

reference link 351
Kubernetes dashboard

used, for exploring cluster 457
Kubernetes extensions patterns 539
Kubernetes extensions points 539
Kubernetes FaaS frameworks 428, 429

Fission 429, 430
Knative 439
Kubeless 434
riff 439

Kubernetes federation
API types, working with 381, 382
auto-scaling 376, 377
basic concepts, defining 370
basics, learning 370
building blocks 370
data access 376
features 372
namespace 384
overview 373
resources 382, 383
resources status, checking 384
unit of work 374
used, for registering host cluster 381

Kubernetes federation, elements
policy 371
scheduling 371
status 371

Kubernetes GitHub repository
reference link 576

Kubernetes incubator project
reference link 182

Kubernetes ingress 324
Kubernetes networking model 318

external access 319
inter-pod communication (pod to pod) 318
intra-pod communication (container to

container) 318
pod to service communication 319
versus Docker networking 320, 321
versus Docker networking model 321, 322

Kubernetes networking solutions 332
bridging, on bare metal clusters 332
Calico project 337
Contiv 332, 333
Flannel 335, 336
Open vSwitch (OVS) 333-335

[602]

Romana 337-339
Weave net 340

Kubernetes network plugin 324
bridges 325
CIDRs 325
Container Networking Interface (CNI) 327
IP addresses 324
Kubenet 326
Linux networking 324
maximum transmission unit (MTU) 326
netmasks 325
network namespaces 325
pod networking 326
ports 324
routing 325
subnets 325
Virtual Ethernet (veth) devices 325

Kubernetes network policy 341
CNI plugin 341
configuring 341
design 340
implementing 342
using 340

Kubernetes on Raspberry PI
reference link 580

Kubernetes plugins
custom scheduler, writing 552
writing 552

Kubernetes runtimes 22
container runtime interface (CRI) 23, 25
CRI-O 27
Docker 25, 26
Hyper Containers 28
rkt 27

Kubernetes scheduler
design 552-554

Kubernetes services
accessing, locally though proxy 46, 47

kube scheduler 21
Kubespray 67

used, for building bare-metal cluster 60
kube-state-metrics

reference link 396
Kuma 488

URL 488
kustomization

applying 158, 159

patching 160
staging namespace, kustomizing 160, 161
using, for hierarchical cluster structures 156

kustomize
basics 156
URL 156

L
labels 8
label selectors 9
leader election 65
limit ranges

using, for default compute quotas 267, 268
Linen CNI plugin

reference link 333
Linkerd 487
Linkerd 2 487

URL 487
Linux networking 324
liveness probe

using, to ensure containers 167
using, to manage dependencies 168

load balancer provider
with HAProxy 349

load balancing options 342, 343
external load balancer 343
ingress 347

local volumes
using, for durable node storage 180, 181

location affinity 374
location affinity, requirements

loosely coupled 375
preferentially coupled 375
strictly coupled 374
strictly decoupled 375
uniformly spread 375

log aggregation 445, 448, 450
log collection strategy

direct logging approach 450
node agent approach 451
selecting 450
sidecar container 451

log format 445
logging 444

with Kubernetes 448
logs

[603]

versus error reports 481
versus metrics 481

logs, key attributes
log aggregation 445
log format 445
log storage 445

log storage 445
long-running microservices

deploying, in pods 139
long-running processes

deploying, with deployments 142
long-running services

characteristics 407
executing, on serverless computing 406

loopback plugin 352-356
reference link 353

M
macOS

single-node cluster, creating 34, 35
Maesh

URL 488
managed Kubernetes platforms 579
master 7
master components

API server 449
controller manager 449
scheduler 449

master components, Kubernetes
API server 18
cloud controller managers 19, 20
DNS 21
etcd 19
Kube controller manager 19
kube scheduler 21

maximum transmission unit (MTU) 326
MetalLB 351

reference link 351
metrics 445

collecting, with Kubernetes 454, 455
types 516
versus error reports 481
versus logs 481

Microsoft AKS
URL 579

Minikube 33

reference link 33
used, for creating single-node cluster 32
versus k3d 52
versus KinD 51

minikube cluster
preparing, for Istio 492

minions 6
misc commands 136
Mixer 491
multi-cluster Ingress DNS

utilizing 387
multi-cluster scheduling

utilizing 389-392
multi-cluster Service DNS

utilizing 388, 389
multi-container pod challenges 101
multi-node cluster

creating, with k3d 47-51
creating, with KinD 42-45

multi-node patterns 14
multiple node configurations

using 270
multi-user cluster

executing 125
namespace pitfalls, avoiding 127, 128
namespace, using for safe

multi-tenancy 126, 127
use cases 126

N
names 11
namespaces 11, 12

using, to limit access 154, 156
namespace-specific context

using 262
native CI/CD 584
Network Address Translation (NAT) 318
networking 581
network namespaces 325
network policies

cross-namespace policies 122
defining 119-121
egress network policy, limiting to external

networks 121
managing 118
networking solution, selecting 119

[604]

secrets, using 122
node affinity 153

advantages 153
node agent approach 451
node components, Kubernetes

kubelet 22
proxy 21

node-exporter
reference link 396

NodePort
utilizing 349

node-problem-detector
reference link 479

nodes 6
node selector 150
node types

selecting 268, 269
non-cluster components

inside-the-cluster-network components 167
mixing 166
outside-the-cluster-network components 166

Nuage networks VCS 335

O
object count quota 260
objects

creating 534, 535
Kubectl programmatically, invoking 536
listing 534
watching 535

observability 444
alerting 448
application error reporting 447
dashboards 447
distributed tracing 446
logging 444
metrics 445
visualization 447

octant tools
reference link 559

off cost and response time
trading 269, 270

OpenAPI 526
OpenAPI V3

reference link 544
Open Container Initiative (OCI) 26

Open Service Broker API
reference link 550

OpenShift
reference link 580

OpenStack
reference link 579

OpenTracing 471
URL 471

OpenTracing, concepts 472
Span 472
Trace 472

Open Virtualization Network (OVN) 333
Open Virtual Networking (OVN) 328

reference link 333
Open vSwitch (OVS) 328, 333

key features 334, 335
operator framework

reference link 541
operator pattern 584

used, for extending Kubernetes 541
Oracle Cloud

URL 579
Oracle Container Service 58
origin authentication 505
out-of-tree volume plugins

using, with FlexVolume 215, 216
outside-the-cluster-network components 166
overrides

using 385

P
performance

detecting, with distributed tracing 482
Persistent Volume Claim (PVC) 190
persistent volume claims

applying 226
persistent volumes

access mode 183
capacity 183
claims, creating 185, 187
claims, mounting 188
creating 182
dynamically, provisioning 182
externally, provisioning 182
mount options 185
overview 175, 176

[605]

provisioning 181
raw block volumes 189, 190
reclaim policy 184
statically, provisioning 182
storage class 184, 191
storage classes 192
storage, demonstrating end to end 192-198
volume mode 183
volume type 185

personally identifiable information (PII) 453
physical machines 3
Pilot 490
pipelines

using 308
placement field

using, to control Kubernetes cluster
federation 385, 386

Platform 9 PMK
reference link 580

Platform as a Service (PaaS) 2
plugins

used, for extending Kubernetes 539
pod affinity 153
pod lifecycle event generator (PLEG) 275
pod networking 326
pod readiness 170
pods 7

assigning, to custom scheduler 557
creating 139, 140
creating, via Kubernetes API 530, 531
decorating, with labels 141
endpoints 322
interacting 322
long-running microservices, deploying 139
scheduling 555
verifying, with correct scheduler 558

pod security
with AppArmor 114, 115

pod security policies (PSPs) 116, 117
authorizing, via RBAC 117, 118

pods security 112
cluster, protecting with AppArmor 114
ImagePullSecrets 112
private image repository, using 112
security context, specifying 113

ports 324
Postman

output, filtering with httpie and jq 529, 530
URL 528
using, to explore Kubernetes API 528

priority classes 261
private clouds 579
Prometheus 458

alertmanger 466-468
custom metrics, incorporating 466
features 458
installing 460, 461
interacting 462
kube-state-metrics, incorporating 462, 464
Loki, considering 470
metrics, visualizing with Grafana 468, 470
node exporter, utilizing 464
reference link 395
URL 458

Prometheus operator
reference link 460

propagation failures
debugging 387

protected health information (PHI) 453
proxy

setting up 526
public cloud Kubernetes platforms 579
public cloud storage, volume types 198

Amazon EBS 198, 199
Amazon EFS 199, 200
Azure data disk 202, 203
Azure file storage 204
GCE persistent disk 201, 202

public key infrastructure (PKI) 504
Python client

used, for accessing Kubernetes API 531, 532
Python client library

reference link 531
Python subprocesses

used, for executing Kubectl 536-538

Q
queues

benefits 323
downsides 323

quotas
creating 262-267
limit ranges, using for default compute

[606]

quotas 267, 268
namespace-specific context, using 262
scopes 261
working with 262

R
Rados Block Device (RBD) 208

used, for connecting Ceph 208-210
Rancher k3S

reference link 580
Rancher Kubernetes Engine (RKE)

reference link 61
used, for building bare metal cluster 61

Rancher RKE
reference link 580

raw block volumes 189
defining, with FC provider 189

readiness gates 170
ReadOnlyMany (ROX) 193
ReadWriteMany (RWX) 193
ReadWriteOnce (RWO) 193
real routable IP addresses, benefits

performance 337
scalability 337
visibility 337

reclaim policy
delete 184
recycle 184
retain 184

redundancy 64
redundant in-memory state

using 225
redundant persistent storage

DaemonSet, using 226
remote central logging 452
replica sets 10
replication controllers 10
resource categories 15

clusters 18
config and storage 17
Discovery and Load Balancing 16, 17
metadata 17
workloads API 16

resource quotas 261
enabling 258
requests and limits 262

resource quotas, types 258
compute resource quota 258
object count quota 260
storage resource quota 259

riff 439
installing, with Helm 2 439-442

riff runtimes 439
core runtime 439
Knative runtime 439
streaming runtime 439

rkt 27
app container 27

role-based access control (RBAC) 55
Role-Based Access Control (RBAC) 109
rolling updates 81, 82

complex deployments 83
performing, with autoscaling 254-257

Romana 337, 339
Rook 213, 214
root cause

detecting, with distributed tracing 482
routing 325
runC 26
run.sh script

exploring 233-237

S
scalability 77, 78
scalable storage solution

categories 269
selecting 269

scarce resources
handling, with limits and quotas 257, 258

Screwdriver.cd
URL 584

seccomp
reference link 581

secrets 11
creating 123
decoding 124
storing, in Kubernetes 122
using 122
using, in container 124, 125

security 580
self-healing 66
sensitive log information

[607]

dealing with 453
sentry chart

reference link 313
serverless computing 583

about 405, 406
FaaS, executing 407
long-running services, executing 406

serverless framework
used, for working with Kubeless 438

serverless Kubernetes
AWS EKS 410, 411
Azure AKS 409, 410
Azure Container Instances 409, 410
cluster autoscaler 408
Fargate 410, 411
Google Cloud Run 412
in cloud 408

service catalog
reference link 550
utilizing 550-552

service-level agreements (SLAs) 92
service-level indicators (SLIs) 92
service-level objectives (SLOs)
service load balancer 346
service mesh 483-582

AWS App Mesh 488
control plane 487
data plane 487
Envoy 487
Istio 488
Kuma 488
Linkerd 2 487
Maesh 488
selecting 487
visualizing, with Kiali 522

services 9
settings commands 136
shared environment variables

versus DNS records 223
sidecar container 451
sidecar container KEP

reference link 582
sidecar pattern 13
simple delivery 423
single-node cluster

checking 37, 38
creating 35, 36

creating, on macOS 34, 35
creating, on Windows 33, 34
creating, requisites 33
creating, with Minikube 32
examining, with dashboard 40, 42
running 38, 39
troubleshooting 36

single point of failure (SPOF) 323
Site reliability engineering (SRE) 92
smart load balancing 65
software-defined networking (SDN)
Span 472
SPIFEE

URL 504
Spinnaker

URL 584
Stackube 28

reference link 60
starter packs

advantage 302
stateful applications

in Kubernetes 221
StatefulSet 10, 11

components 226-228
used, to create Cassandra cluster 241
using 226
utilizing 226

StatefulSet YAML file
dissecting 241-246

stateless applications
in Kubernetes 221

Storage Area Network (SAN) 212
storage class 191, 192
storage resource quota 259
subprocess 536
subscriptions 422

T
tags field 306
taints 151, 152
Tekton

reference link 413
URL 584

templates files
pipelines and functions, using 308
writing 307, 308

[608]

Tencent 57
Tencent Kubernetes engine (TKE) 57
Tencent TKE

URL 579
Terraform 395
Tiller server

installing, for Helm 2 286
installing, in cluster 287

Time to Live (TTL) 276
Token Controller 105
tolerations 151, 152
tooling 578
top-of-rack (ToR) 338
Trace 472
Traefic 351, 352
Traefik

URL 488
transport authentication 504
trigger 422
triggers

HTTP trigger 429
Kubernetes watch trigger 429
Message queue trigger 429
Timer trigger 429

troubleshooting commands 136
troubleshooting problems 478

daemons 479, 480
detecting, at node level 479
staging environments, advantage 478

U
unique ID (UID) 7
users

authenticating 106, 107
impersonating 108

V
values

feeding, from file 312, 313
Velero 74

reference link 74
vertical pod autoscaler (VPA) 80

considering 80
limitations 80

veth0 326
VirtualBox

reference link 33
Virtual Ethernet (veth) devices 325
Virtualized Cloud Services (VCS) 335
virtual kubelet

URL 410
virtual machine (VM) 3, 76, 408
Virtual Redundancy Router Protocol

(VRRP) 351
VMware Kubernetes academy

reference link 578
VMware PKS

reference link 580
volume cloning 217, 218
volumes 10, 176

emptyDir, using for intra-pod
communication 176-178

HostPath, using for intra-node
communication 178-180

local volumes, using for durable node
storage 180

projecting 214
volume snapshots 217, 218

W
WdeaveScope

reference link 581
Weave net 340
webhook admission controller

configuring 568-570
webhook

used, for extending Kubernetes 541
Windows

single-node cluster, creating 33, 34
worker node components

Kubelet 449
Kube proxy 450

workloads API 16

Z
zero downtime

planning 91, 92
Zipkin

URL 473

	Cover
	Copyright
	Packt Page
	Contributors
	Table of Contents
	Preface
	Chapter 1: Understanding Kubernetes Architecture
	What is Kubernetes?
	What Kubernetes is not
	Understanding container orchestration
	Physical machines, virtual machines, and containers
	The benefits of containers
	Containers in the cloud
	Cattle versus pets

	Kubernetes concepts
	Clusters
	Nodes
	The master
	Pods
	Labels
	Annotations
	Label selectors
	Services
	Volume
	Replication controllers and replica sets
	StatefulSet
	Secrets
	Names
	Namespaces

	Diving into Kubernetes architecture in depth
	Distributed system design patterns
	The sidecar pattern
	The ambassador pattern
	The adapter pattern
	Multi-node patterns

	The Kubernetes APIs
	Resource categories

	Kubernetes components
	Master components
	Node components

	Kubernetes runtimes
	The container runtime interface (CRI)
	Docker
	rkt
	App container

	CRI-O
	Hyper containers
	Frakti
	Stackube

	Continuous integration and deployment
	What is a CI/CD pipeline?
	Designing a CI/CD pipeline for Kubernetes

	Summary

	Chapter 2: Creating Kubernetes Clusters
	Overview
	Creating a single-node cluster with Minikube
	Meet kubectl
	Quick introduction to Minikube
	Getting ready
	On Windows
	On macOS
	Creating the cluster
	Troubleshooting
	Checking out the cluster
	Doing work
	Examining the cluster with the dashboard

	Creating a multi-node cluster with KinD
	Quick introduction to KinD
	Installing KinD
	Creating the cluster with KinD
	Doing work with KinD
	Accessing Kubernetes services locally though a proxy

	Creating a multi-node cluster with k3d
	Quick introduction to k3s and k3d
	Installing k3d
	Creating the cluster with k3d

	Comparing Minikube, KinD, and k3d
	Creating clusters in the cloud (GCP, AWS, Azure)
	The cloud-provider interface
	GCP
	AWS
	Kubernetes on EC2
	AWS EKS
	Fargate

	Azure
	Other cloud providers
	Once upon a time in China
	IBM Kubernetes Service
	Oracle Container Service

	Creating a bare-metal cluster from scratch
	Use cases for bare metal
	When should you consider creating a bare-metal cluster?
	Understanding the process
	Using virtual private cloud infrastructure
	Building your own cluster with Kubespray
	Building your cluster with KRIB
	Building your cluster with RKE
	Bootkube

	Summary
	References

	Chapter 3: High Availability and Reliability
	High availability concepts
	Redundancy
	Hot swapping
	Leader election
	Smart load balancing
	Idempotency
	Self-healing

	High availability best practices
	Creating highly available clusters
	Making your nodes reliable
	Protecting your cluster state
	Clustering etcd
	Verifying the etcd cluster

	Protecting your data
	Running redundant API servers
	Running leader election with Kubernetes
	Making your staging environment highly available
	Testing high availability

	High availability, scalability, and capacity planning
	Installing the cluster autoscaler
	Considering the vertical pod autoscaler

	Live cluster updates
	Rolling updates
	Complex deployments

	Blue-green deployments
	Canary deployments
	Managing data-contract changes
	Migrating data
	Deprecating APIs

	Large cluster performance, cost, and design trade-offs
	Availability requirements
	Best effort
	Maintenance windows
	Quick recovery
	Zero downtime
	Site reliability engineering
	Performance and data consistency

	Summary
	References

	Chapter 4: Securing Kubernetes
	Understanding Kubernetes security challenges
	Node challenges
	Network challenges
	Image challenges
	Configuration and deployment challenges
	Pod and container challenges
	Organizational, cultural, and process challenges

	Hardening Kubernetes
	Understanding service accounts in Kubernetes
	How does Kubernetes manage service accounts?

	Accessing the API server
	Authenticating users
	Authorizing requests
	Using admission control plugins

	Securing pods
	Using a private image repository
	ImagePullSecrets
	Specifying a security context
	Protecting your cluster with AppArmor
	Pod security policies
	Authorizing pod security policies via RBAC

	Managing network policies
	Choosing a supported networking solution
	Defining a network policy
	Limiting egress to external networks
	Cross-namespace policies

	Using secrets
	Storing secrets in Kubernetes
	Configuring encryption at rest
	Creating secrets
	Decoding secrets
	Using secrets in a container

	Running a multi-user cluster
	The case for a multi-user cluster
	Using namespaces for safe multi-tenancy
	Avoiding namespace pitfalls

	Summary
	References

	Chapter 5: Using Kubernetes Resources in Practice
	Designing the Hue platform
	Defining the scope of Hue
	Smart reminders and notifications
	Security, identity, and privacy
	Hue components
	Hue microservices

	Planning workflows
	Automatic workflows
	Human workflows
	Budget-aware workflows

	Using Kubernetes to build the Hue platform
	Using kubectl effectively
	Understanding kubectl resource configuration files
	ApiVersion
	Kind
	Metadata
	Spec

	Deploying long-running microservices in pods
	Creating pods
	Decorating pods with labels
	Deploying long-running processes with deployments
	Updating a deployment

	Separating internal and external services
	Deploying an internal service
	Creating the Hue-reminders service
	Exposing a service externally
	Ingress

	Advanced scheduling
	Node selector
	Taints and tolerations
	Node affinity and anti-affinity
	Pod affinity and anti-affinity

	Using namespaces to limit access
	Using kustomization for hierarchical cluster structures
	Understanding the basics of kustomize
	Configuring the directory structure
	Applying kustomizations
	Patching
	Kustomizing the entire staging namespace

	Launching jobs
	Running jobs in parallel
	Cleaning up completed jobs
	Scheduling cron jobs

	Mixing non-cluster components
	Outside-the-cluster-network components
	Inside-the-cluster-network components
	Managing the Hue platform with Kubernetes
	Using liveness probes to ensure your containers are alive

	Using readiness probes to manage dependencies
	Employing init containers for orderly pod bring-up
	Pod readiness and readiness gates
	Sharing with DaemonSet pods

	Evolving the Hue platform with Kubernetes
	Utilizing Hue in an enterprise
	Advancing science with Hue
	Educating the kids of the future with Hue

	Summary
	References

	Chapter 6: Managing Storage
	Persistent volumes walkthrough
	Volumes
	Using emptyDir for intra-pod communication
	Using HostPath for intra-node communication
	Using local volumes for durable node storage
	Provisioning persistent volumes

	Provisioning persistent volumes externally
	Creating persistent volumes
	Capacity
	Volume mode
	Access modes
	Reclaim policy
	Storage class
	Volume type
	Mount options

	Making persistent volume claims
	Mounting claims as volumes
	Raw block volumes
	Storage classes
	Default storage class

	Demonstrating persistent volume storage end to end

	Public cloud storage volume types – GCE, AWS, and Azure
	Amazon EBS
	Amazon EFS
	GCE persistent disk
	Azure data disk
	Azure Files

	GlusterFS and Ceph volumes in Kubernetes
	Using GlusterFS
	Creating endpoints
	Adding a GlusterFS Kubernetes service
	Creating pods

	Using Ceph
	Connecting to Ceph using RBD
	Connecting to Ceph using CephFS

	Flocker as a clustered container data volume manager
	Integrating enterprise storage into Kubernetes
	Rook – the new kid on the block

	Projecting volumes
	Using out-of-tree volume plugins with FlexVolume
	The Container Storage Interface
	Volume snapshotting and cloning
	Volume snapshots
	Volume cloning

	Summary

	Chapter 7: Running Stateful Applications with Kubernetes
	Stateful versus stateless applications in Kubernetes
	Understanding the nature of distributed data-intensive apps
	Why manage state in Kubernetes?
	Why manage state outside of Kubernetes?

	Shared environment variables versus DNS records for discovery
	Accessing external data stores via DNS
	Accessing external data stores via environment variables
	Consuming a ConfigMap as an environment variable
	Using a redundant in-memory state
	Using DaemonSet for redundant persistent storage
	Applying persistent volume claims
	Utilizing StatefulSets

	Running a Cassandra cluster in Kubernetes
	Quick introduction to Cassandra
	The Cassandra Docker image
	Hooking up Kubernetes and Cassandra
	Creating a Cassandra headless service
	Using StatefulSets to create the Cassandra cluster

	Summary

	Chapter 8: Deploying and Updating Applications
	Horizontal pod autoscaling
	Declaring an HPA
	Custom metrics
	Autoscaling with Kubectl

	Performing rolling updates with autoscaling
	Handling scarce resources with limits and quotas
	Enabling resource quotas
	Resource quota types
	Compute resource quota
	Storage resource quota
	Object count quota

	Quota scopes
	Resource quotas and priority classes
	Requests and limits
	Working with quotas
	Using namespace-specific context
	Creating quotas
	Using limit ranges for default compute quotas

	Choosing and managing the cluster capacity
	Choosing your node types
	Choosing your storage solutions
	Trading off cost and response time
	Using multiple node configurations effectively
	Benefiting from elastic cloud resources
	Autoscaling instances
	Mind your cloud quotas
	Manage regions carefully

	Considering container-native solutions

	Pushing the envelope with Kubernetes
	Improving the performance and scalability of Kubernetes
	Caching reads in the API server
	The pod lifecycle event generator
	Serializing API objects with protocol buffers
	etcd3
	Other optimizations

	Measuring the performance and scalability of Kubernetes
	The Kubernetes SLOs
	Measuring API responsiveness
	Measuring end-to-end pod startup time

	Testing Kubernetes at scale
	Introducing the Kubemark tool
	Setting up a Kubemark cluster
	Comparing a Kubemark cluster to a real-world cluster

	Summary

	Chapter 9: Packaging Applications
	Understanding Helm
	The motivation for Helm
	The Helm 2 architecture
	Helm 2 components
	The Tiller server
	The Helm client

	Helm 3

	Using Helm
	Installing Helm
	Installing the Helm client
	Installing the Tiller server for Helm 2

	Finding charts
	Adding repositories

	Installing packages
	Checking the installation status
	Customizing a chart
	Additional installation options
	Upgrading and rolling back a release
	Deleting a release

	Working with repositories
	Managing charts with Helm
	Taking advantage of starter packs

	Creating your own charts
	The Chart.yaml file
	Versioning charts
	The appVersion field
	Deprecating charts

	Chart metadata files
	Managing chart dependencies
	Managing dependencies with requirements.yaml
	Utilizing special fields in requirements.yaml

	Using templates and values
	Writing template files
	Testing and troubleshooting your charts
	Embedding built-in objects
	Feeding values from a file
	Scope, dependencies, and values

	Summary

	Chapter 10: Exploring Advanced Networking
	Understanding the Kubernetes networking model
	Intra-pod communication (container to container)
	Inter-pod communication (pod to pod)
	Pod-to-service communication
	External access
	Kubernetes networking versus Docker networking
	Lookup and discovery
	Self-registration
	Services and endpoints
	Loosely coupled connectivity with queues
	Loosely coupled connectivity with data stores
	Kubernetes ingress

	Kubernetes network plugins
	Basic Linux networking
	IP addresses and ports
	Network namespaces
	Subnets, netmasks, and CIDRs
	Virtual Ethernet devices
	Bridges
	Routing
	Maximum transmission unit
	Pod networking
	Kubenet
	Container networking interface

	Kubernetes networking solutions
	Bridging on bare metal clusters
	Contiv
	Open vSwitch
	Nuage networks VCS
	Flannel
	Calico
	Romana
	Weave Net

	Using network policies effectively
	Understanding the Kubernetes network policy design
	Network policies and CNI plugins
	Configuring network policies
	Implementing network policies

	Load balancing options
	External load balancer
	Configuring an external load balancer
	Finding the load balancer IP addresses
	Preserving client IP addresses
	Understanding even external load balancing

	Service load balancing
	Ingress
	HAProxy
	MetalLB
	Keepalived VIP
	Traefic

	Writing your own CNI plugin
	First look at the loopback plugin
	Building on the CNI plugin skeleton
	Reviewing the bridge plugin

	Summary

	Chapter 11: Running Kubernetes on Multiple Clouds and Cluster Federation
	The history of cluster federation on Kubernetes
	Understanding cluster federation
	Important use cases for cluster federation
	Capacity overflow
	Sensitive workloads
	Avoiding vendor lock-in
	Geo-distributing high availability

	Learning the basics of Kubernetes federation
	Defining basic concepts
	Federation building blocks
	Federation features

	The KubeFed control plane
	The federation API server
	The federation controller manager

	The hard parts
	Federated unit of work
	Location affinity
	Cross-cluster scheduling
	Federated data access
	Federated auto-scaling

	Managing a Kubernetes Cluster Federation
	Installing kubefedctl
	Creating clusters
	Configuring the Host Cluster
	Registering clusters with the federation
	Working with federated API types
	Federating resources
	Federating an entire namespace
	Checking the status of federated resources

	Using overrides
	Using placement to control federation
	Debugging propagation failures
	Employing higher-order behavior
	Utilizing multi-cluster Ingress DNS
	Utilizing multi-cluster Service DNS
	Utilizing multi-cluster scheduling

	Introducing the Gardener project
	Understanding the terminology of Gardener
	Understanding the conceptual model of Gardener
	Diving into the Gardener architecture
	Managing cluster state
	Managing the control plane
	Preparing the infrastructure
	Using the Machine controller manager
	Networking across clusters
	Monitoring clusters
	The gardenctl CLI

	Extending Gardener
	Gardener ring

	Summary

	Chapter 12: Serverless Computing on Kubernetes
	Understanding serverless computing
	Running long-running services on "serverless" infrastructure
	Running FaaS on "serverless" infrastructure

	Serverless Kubernetes in the cloud
	Don't forget the cluster autoscaler
	Azure AKS and Azure Container Instances
	AWS EKS and Fargate
	Google Cloud Run

	Knative
	Knative Serving
	The Knative Service object
	The Knative Route object
	The Knative Configuration object
	The Knative Revision object

	Knative Eventing
	Getting familiar with Knative Eventing terminology
	The architecture of Knative Eventing

	Taking Knative for a ride
	Installing Knative
	Deploying a Knative service
	Invoking a Knative service
	Checking the scale-to-zero option in Knative

	Kubernetes FaaS frameworks
	Fission
	Fission Workflows
	Experimenting with Fission

	Kubeless
	Kubeless architecture
	Playing with Kubeless
	Using the Kubeless UI
	Kubeless with the serverless framework

	Knative and riff
	Understanding riff runtimes
	Installing riff with Helm 2

	Summary

	Chapter 13: Monitoring Kubernetes Clusters
	Understanding observability
	Logging
	Log format
	Log storage
	Log aggregation

	Metrics
	Distributed tracing
	Application error reporting
	Dashboards and visualization
	Alerting

	Logging with Kubernetes
	Container logs
	Kubernetes component logs
	Centralized logging
	Choosing a log collection strategy
	Cluster-level central logging
	Remote central logging
	Dealing with sensitive log information

	Using Fluentd for log collection

	Collecting metrics with Kubernetes
	Monitoring with the metrics server
	Exploring your cluster with the Kubernetes dashboard
	The rise of Prometheus
	Installing Prometheus
	Interacting with Prometheus
	Incorporating kube-state-metrics
	Utilizing the node exporter
	Incorporating custom metrics
	Alerting with Alertmanager
	Visualizing your metrics with Grafana
	Considering Loki

	Distributed tracing with Jaeger
	What is OpenTracing?
	OpenTracing concepts

	Introducing Jaeger
	Jaeger architecture

	Installing Jaeger

	Troubleshooting problems
	Taking advantage of staging environments
	Detecting problems at the node level
	Problem daemons

	Dashboards versus alerts
	Logs versus metrics versus error reports
	Detecting performance and root cause with distributed tracing

	Summary

	Chapter 14: Utilizing Service Meshes
	What is a service mesh?
	Control plane and data plane

	Choosing a service mesh
	Envoy
	Linkerd 2
	Kuma
	AWS App Mesh
	Maesh
	Istio

	Incorporating Istio into your Kubernetes cluster
	Understanding the Istio architecture
	Envoy
	Pilot
	Mixer
	Citadel
	Galley

	Preparing a minikube cluster for Istio
	Installing Istio
	Installing Bookinfo
	Traffic management
	Security
	Istio identity
	Istio PKI
	Istio authentication
	Istio authorization

	Policies
	Monitoring and observability
	Logs
	Metrics
	Distributed tracing
	Visualizing your service mesh with Kiali

	Summary

	Chapter 15: Extending Kubernetes
	Working with the Kubernetes API
	Understanding OpenAPI
	Setting up a proxy
	Exploring the Kubernetes API directly
	Using Postman to explore the Kubernetes API
	Filtering the output with HTTPie and jq

	Creating a pod via the Kubernetes API
	Accessing the Kubernetes API via the Python client
	Dissecting the CoreV1API group
	Listing objects
	Creating objects
	Watching objects
	Invoking Kubectl programmatically
	Using Python subprocesses to run Kubectl

	Extending the Kubernetes API
	Understanding Kubernetes extension points and patterns
	Extending Kubernetes with plugins
	Extending Kubernetes with the cloud controller manager
	Extending Kubernetes with webhooks
	Extending Kubernetes with controllers and operators
	Extending Kubernetes scheduling
	Extending Kubernetes with custom container runtimes

	Introducing custom resources
	Developing custom resource definitions
	Integrating custom resources
	Dealing with unknown fields
	Finalizing custom resources
	Adding custom printer columns

	Understanding API server aggregation
	Utilizing the service catalog

	Writing Kubernetes plugins
	Writing a custom scheduler
	Understanding the design of the Kubernetes scheduler
	Scheduling pods manually
	Preparing our own scheduler
	Assigning pods to the custom scheduler
	Verifying that the pods were scheduled using the correct scheduler

	Writing Kubectl plugins
	Understanding Kubectl plugins
	Managing Kubectl plugins with Krew
	Creating your own Kubectl plugin
	Kubectl plugin gotchas
	Don't forget your shebangs!
	Naming
	Overriding existing Kubectl commands
	Flat namespace for Krew plugins

	Employing access control webhooks
	Using an authentication webhook
	Using an authorization webhook
	Using an admission control webhook
	Configuring a webhook admission controller on the fly

	Providing custom metrics for horizontal pod autoscaling
	Extending Kubernetes with custom storage

	Summary

	Chapter 16: The Future of Kubernetes
	The Kubernetes momentum
	The importance of the CNCF
	Project curation
	Certification
	Training
	Community and education

	Tooling

	The rise of managed Kubernetes platforms
	Public cloud Kubernetes platforms
	Bare-metal, private clouds, and Kubernetes on the edge
	Kubernetes Platform as a Service (PaaS)

	Upcoming trends
	Security
	Networking
	Custom hardware and devices
	Service mesh
	Serverless computing
	Kubernetes on the Edge
	Native CI/CD
	Operators

	Summary
	References

	Other Books You May Enjoy
	Index

