
ВНУТРЕННЕЕ УСТРОЙСТВО

Дмитрий Кетов * b h v ®

УДК 004.451
ББК 32.973.26-018.2

КЗ 7

Кетов Д. В.
К37 Внутреннее устройство Linux. — 2-е изд., перераб. и доп. — СПб.:

БХВ-Петербург, 2021. — 400 с.: ил.
ISBN 978-5-9775-6630-8
Книга представляет собой введение во внутреннее устройство операционной

системы Linux. Все положения наглядно проиллюстрированы примерами, разрабо­
танными автором и проверенными им на практике. Рассмотрены основные подсис­
темы ядра и их сущности — файлы и файловые системы, виртуальная память и
отображаемые файлы, процессы, нити и средства межпроцессного взаимодействия,
каналы, сокеты и разделяемая память. Раскрыты дискреционный и мандатный
(принудительный) механизмы контроля доступа, а также привилегии процессов.
Подробно описано пользовательское окружение и интерфейс командной строки
CLI, оконные системы X Window и графический интерфейс GUI, а также сетевая
подсистема и служба SSH. Особое внимание уделено языку командного интерпре­
татора и его использованию для автоматизации задач эксплуатации операционной
системы.

Во втором издании добавлены новые главы, описывающие графическую сис­
тему Wayland, контейнеры, виртуализацию и функционирование Linux как единой
системы всех своих компонент, учтены изменения в последних версиях ОС, а так­
же пожелания и отзывы читателей.

Для студентов, пользователей, программистов
и системных администраторов Linux

УДК 004.451
ББК 32.973.26-018.2

Группа подготовки издания:

Руководитель проекта
Зав. редакцией
Компьютерная верстка
Дизайн обложки
Оформление обложки

Евгений Рыбаков
Екатерина Сависте
Ольги Сергиенко
Марины Дамбиевой
Карины Соловьевой

Подписано в печать 02.11.20.
Формат 70x1001/16. Печать офсетная. Уел. печ. л. 32,25.

Тираж 1200 экз. Заказ № 12456.
"БХВ-Петербург", 191036, Санкт-Петербург, Гончарная ул., 20.

Отпечатано с готового оригинал-макета
О О О "Принт-М", 142300, М.О., г. Чехов, ул. Полиграфистов, д. 1

ISBN 978-5-9775-6630-8 © ООО "БХВ", 2021
© Оформление. ООО "БХВ-Петербург", 2021

Оглавление

Введение... 9
О чем эта книга?.. 9
Кому адресована книга... 10
Принятые соглашения и обозначения...И
Методические рекомендации..12
Что должен знать читатель..13
Совет для начинающих... 16

Глава 1. Архитектура ОС Linux..17
1.1. Обзор внутреннего устройства... 17
1.2. Внеядерные компоненты: программы и библиотеки..19
1.3. Ядерные компоненты: подсистемы управления процессами, памятью,

вводом-выводом, файлами..19
1.4. Трассировка системных и библиотечных вызовов.. 20
1.5. Интерфейсы прикладного программирования.. 22
1.6. В заключение... 23

Глава 2. Пользовательское окружение ОС Linux...25
2.1. Командный интерфейс.. 25
2.2. Виртуальные терминалы.. 27

2.2.1. Псевдотерминалы... 29
2.3. Управляющие символы.. 31
2.4. Управляющие последовательности.. 38
2.5. Основной синтаксис командной строки...40

2.5.1. Опции командной строки.. 42
2.6. Справочные системы...43

2.6.1. Система страниц руководства.. 43
2.6.2. Справочная система G N U .. 47
2.6.3. Встроенная справка командного интерпретатора.. 47

2.7. Пользователи и группы... 48
2.7.1. Передача полномочий.. 50
2.7.2. Хранилища учетных записей... 51

2.8. Переменные окружения и конфигурационные dot-файлы... 52
2.9. В заключение... 59

https://t.me/it_boooks

4 Оглавление

Глава 3. Подсистема управления файлами и вводом-выводом....................61
3.1. Файлы и дерево каталогов...61

3.1.1. Путевые имена файлов...62
3.2. Типы файлов.. 63

3.2.1. Обычные файлы... 64
3.2.2. Каталоги... 65
3.2.3. Имена, данные, метаданные и индексные дескрипторы............................... 66
3.2.4. Ссылки... 67
3.2.5. Специальные файлы устройств..71
3.2.6. Именованные каналы и файловые сокеты..74

3.3. Файловые дескрипторы.. 75
3.4. Файловые системы..78

3.4.1. Файловые системы и процедура монтирования.. 78
3.4.2. Дисковые файловые системы... 80
3.4.3. Сетевые файловые системы.. 80
3.4.4. Специальные файловые системы...82
3.4.5. Внеядерные файловые системы..84

3.5. Дискреционное разграничение доступа............................ 87
3.5.1. Владельцы и режим доступа к файлам... 88
3.5.2. Базовые права доступа и дополнительные атрибуты.....................................90

Режим доступа новых файлов... ,...91
Семантика режима доступа разных типов файлов...................... ,................ 93
Дополнительные атрибуты... 95

3.5.3. Списки контроля доступа POSIX..99
Групповая маска...101
Права по умолчанию.. 102

3.6. Мандатное (принудительное) разграничение доступа.................. 103
3.6.1. Модуль принудительного разграничения доступа АррАгтог.......................104
3.6.2. Модуль принудительного разграничения доступа SELinux.........................107

3.7. Дополнительные свойства файлов...111
3.7.1. Расширенные атрибуты файлов.................................. 111
3.7.2. Флаги файлов..113

3.8. В заключение..114

Глава 4. Управление процессами и памятью.. 115
4.1. Программы и библиотеки... 115

4.1.1. Ядро Linux... 118
4.2. Процессы и нити... 121
4.3. Порождение процессов и нитей, запуск программ.. 125

4.3.1. Параллельные многопроцессные программы... 129
4.3.2. Параллельные многонитевые программы... 130
4.3.3. Двойственность процессов и нитей Linux.. 133

4.4. Дерево процессов.. :.....134
4.5. Атрибуты процесса.. 137

4.5.1. Маркеры доступа...................................... .'...137
4.5.2. Привилегии.. 140
4.5.3. Другие атрибуты...144

Оглавление 5

4.6. Классы и приоритеты процессов...144
4.6.1. Распределение процессора между процессами... 144
4.6.2. Распределение устройств ввода-вывода между процессами...................... 151

4.7. Память процесса... 160
4.7.1. Виртуальная память..161
4.7.2. Отображение файлов в память...163
4.7.3. Потребление памяти..167

4.8. Механизм сигналов.. 171
4.8.1. Сеансы и группы процессов: управление заданиями.......................................176

4.9. Межпроцессное взаимодействие...179
4.9.1. Неименованные каналы... 180
4.9.2. Именованные каналы.. 181
4.9.3. Неименованные локальные сокеты.. 182
4.9.4. Именованные локальные сокеты.. 184
4.9.5. Разделяемая память, семафоры и очереди сообщений................................ 185

Разделяемая память.. 185
Семафоры и очереди сообщений... 190

4.10. В заключение..191

Глава 5. Программирование на языке командного интерпретатора........193
5.1. Интерпретаторы и их сценарии...193
5.2. Встроенные и внешние команды..195
5.3. Перенаправление потоков ввода-вывода... 196
5.4. Подстановки командного интерпретатора... 202

5.4.1. Подстановки имен файлов.. 202
5.4.2. Подстановки параметров... 204

Переменные— именованные параметры...204
Позиционные параметры... 207
Специальные параметры.. 208

5.4.3. Подстановки вывода команд... 209
5.4.4. Подстановки арифметических выражений...211

5.5. Экранирование.. 214
5.6. Списки команд... 218

5.6.1. Условные списки.. 219
5.6.2. Составные списки: ветвление..221
5.6.3. Составные списки: циклы... 226
5.6.4. Функции.. 231

5.7. Сценарии на языке командного интерпретатора...234
5.8. Инструментальные средства обработки текста...237

5.8.1. Фильтр строк g rep .. 238
5.8.2. Фильтр символов и полей c u t ...240
5.8.3. Процессор текстовых таблиц awk.. 241
5.8.4. Потоковый редактор текста se d ..243

5.9. В заключение...247

6 Оглавление

Глава 6. Сетевая подсистема...249
6.1. Сетевые интерфейсы, протоколы и сетевые сокеты... 249
6.2. Конфигурирование сетевых интерфейсов и протоколов.. 253

6.2.1. Ручное конфигурирование... 253
6.2.2. Автоматическое конфигурирование... 256

6.3. Служба имен и DNS/mDNS-резолверы.. 258
6.4. Сетевые службы..262

6.4.1. Служба S S H ...262
6.4.2. Почтовые службы SMTP, PO P/IM A P.. 270
6.4.3. Служба W W W ... 272
6.4.4. Служба F T P ..274
6.4.5. Служба NFS..276

NFS-клиент...276
NFS-сервер...277

6.4.6. Служба SM B/CIFS...279
Имена NetBIOS... 279
CIFS-клиенты... 280

6.5. Средства сетевой диагностики.. 282
6.5.1. Анализаторы пакетов tcpdump и tshark..282
6.5.2. Сетевой сканер пгпар...285
6.5.3. Мониторинг сетевых соединений процессов....................................... ;.........286

6.6. В заключение... 288

Глава 7. Графическая система X Window System291
7.1. Х-сервер.. 291
7.2. Х-клиенты и Х-протокол..293
7.3. Оконные менеджеры.. 298

7.3.1. Декорирование на клиентской стороне.. 301
7.4. Настольные пользовательские окружения.. 302
7.5. Библиотеки интерфейсных элементов..305
7.6. Расширения Х-протокола.. 308

7.6.1. Расширение Composite и композитный менеджер... 310
7.6.2. GLX, DRI и ЗЭ-графика.. 311

7.7. Запуск X Window System ..313
7.7.1. Локальный запуск Х-клиентов...313
7.7.2. Дистанционный запуск Х-клиентов.. 313
7.7.3. Управление Х-дисплеями: XDMCP-менеджер и протокол........................ 317

7.8. Программный интерфейс X Window System... 318
7.8.1. Трассировка Х-библиотек и Х-протокола...318
7.8.2. ЗЭ-графика и инфраструктура прямого рендеринга DRI........................... 323

7.9. В заключение... 329

Глава 8. Графическая система Wayland... 331
8.1. Wayland-композитор...:................................ 333
8.2. Wayland-клиенты и Wayland-протокол..334
8.3. Запуск графической среды на основе Wayland..339
8.4. В заключение... 340

Оглавление 7

Глава 9. Контейнеры и виртуальные машины..343
9.1. Чрутизация.. 344
9.2. Пространства имен..348
9.3. Контейнеризация: гипс и docker.. 353
9.4. Группы управления (cgroups)... 357
9.5. В заключение... 361

Глава 10. От отдельных компонент — к системе.. 363
10.1. Как Linux загружается.. 363
10.2. Как обнаруживаются драйверы устройств..367
10.3. Как запускаются системные службы... 370
10.4. Linux своими руками... 379
10.5. В заключение... 387

Заключение.................................. ...389

Список литературы... 391
Для удовольствия.. 391
Начинающим..391
Программистам... •...391
Бесстрашным...392

Предметный указатель..393

Введение

О чем эта книга?
Книга, которую вы держите в руках, адресована начинающим пользователям1 опе­
рационной системы Linux и представляет собой иллюстрированное введение в ее
внутреннее устройство — от ядра до сетевых служб и от утилит командной
строки до графического интерфейса.

По моему скромному мнению, никакие книги не могут превратить читателя из но­
вичка в эрудированного специалиста — ни обзорные, рассказывающие «ничего обо
всем», ни узкоспециализированные, повествующие «все об одном». Без самостоя­
тельного опыта, получаемого в результате исследования происходящих процессов и
явлений, осмысление любого книжного знания практически невозможно.

Именно поэтому данная книга преследует всего одну важную цель — привить чи­
тателю навыки самостоятельного исследования постоянно эволюционирующей опе­
рационной системы Linux через умения пользоваться соответствующим инструмен­
тарием и на основе теоретических знаний о ее устройстве и философии2.

Порядок и стиль изложения материала, иллюстративные изображения и листинги,
приведенные в книге, являются результатом обобщения моего достаточно долгого
опыта преподавания технических дисциплин, посвященных операционным системам
в целом и операционной системе Linux в частности. Именно такой мне представ­
ляется картина «правильного» минимального набора знаний, умений и навыков,
необходимых для построения качественной ментальной модели современной ОС
Linux.

1 Хотя термин «пользователь» зачастую ассоциируется с этаким домашним любителем или офис­
ным работником, но никак не с IT-специалистом, книга адресована абсолютно всем, кому инте­
ресно понимать то, как устроена операционная система изнутри. Именно для ее компетентного
применения в своей профессиональной деятельности такое понимание в первую очередь нужно
программистам и системным администраторам — разработчикам и эксплуатационникам информа­
ционных систем на базе Linux.

2 W : [Философия UNIX],

10 Введение

Основная задача книги — иллюстративно изложить внутреннее устройство опера­
ционной системы Linux, связав «теорию» и «практику». В отличие от многих из­
даний, скупо и сухо излагающих теоретические аспекты построения операционной
системы или излишне концентрирующихся на деталях конкретной реализации того
или иного ее программного обеспечения, в книге рассматриваются абстрактные
концепты внутреннего устройства ОС, иллюстративно подкрепляемые примерами
анализа (а иногда и синтеза) ее конкретных компонентов и связей между ними.

Все части операционной системы рассматриваются в контексте типичных задач,
решаемых при их помощи на практике, а сама иллюстрация проводится посредст­
вом соответствующего инструментария пользователя, администратора и разработ­
чика.

Многие концепты и компоненты, инструменты и задачи будут иметь общность,
характерную для всех W : [дистрибутивов Linux]1, но их реализации могут существенно
различаться. Поэтому, преследуя цель сохранить практическую значимость и
жертвуя некоторой потерей общности излагаемого материала, повествование ведет­
ся в контексте отдельно взятой операционной системы, в качестве которой высту­
пает дистрибутив W :[Ubuntu Linux] (версии 19.10, выпущенной в октябре 2019 года).
Читатель может свободно скачать этот дистрибутив из Интернета и использовать
в абсолютно любых целях, например для проработки примеров, приведенных в книге.

Выбор в пользу дистрибутива W :[Ubuntu Linux], в частности, сделан еще и по сово­
купности присущих ему свойств, как то: большое сообщество его пользователей
(включая русскоговорящих), громадная пакетная база, регулярность обновлений и
их стабильность, дружественность к начинающим и, наконец, широкая распростра­
ненность технических решений на его основе — от бизнес-решений и до сертифи­
цированных разработок в оборонной промышленности.

Кому адресована книга
Понимание внутреннего устройства важно как в системном администрировании для
направленной диагностики проблем эксплуатации информационных систем, постро­
енных на платформе Linux, так и для разработки программного обеспечения, учи­
тывающего особенности ее внутреннего устройства.

Поэтому книга адресуется абсолютно всем, кто не любит использовать непрозрач­
ный «черный ящик», кому интересна механика всех этих шестеренок, что враща­
ются внутри Linux, ежедневно решая задачи миллионов пользователей по всему

'А зачастую и для всех операционных систем семейства W:[UNIX], к которому Linux принадле­
жит.

Введение 11

миру, a taK>Ke всем, кто в детстве разобрал не один игрушечный луноход в по­
пытке узнать, как там чувствуют себя человечки в скафандрах.

Принятые соглашения и обозначения
Наиболее полезным навыком при исследовании любой незнакомой информационной,
системы является способность оперативно получать справочную информацию непо­
средственно изнутри ее, не прибегая к внешним источникам (вроде поиска по
Google). Именно поэтому в данной книге нигде не встречаются даже частичные
цитирования содержания справочных систем.

Классическим электронным справочником UNIX являются страницы руководства
(manual pages, подробнее см. главу 2), которые сгруппированы в тематические
с'екции, а ссылки на страницу раде в секции N принято записывать как page(N),
в том числе и в этой книге. Другая полезная информация, в том числе историче­
ская, доступна из статей всемирной онлайн-энциклопедии Wikipedia, поэтому по­
лезные ссылки на статью useful article изображаются как W :[useful article].

Разнообразные значки [•"•5 ? ф *^© ...© ® ...® <> ЫЬЯ \] на полях и в теле лис­
тингов позволяют акцентировать внимание на нужном и сопровождать важное до­
полнительными комментариями в тексте повествования.

Полужирный шрифт c o m a n d в листингах идентифицирует вводимые пользователем
команды или управляющие символы и последовательности, а нажатия на клавиши
или их комбинации изображаются как

Курсив используется для выделения понятий и терминов, а полужирный курсив
выделяет ключевые слова, определяющие основное существо текста абзаца.

Значок указательного пальца г и к и вот такое «выделение маркером» укажет на
те места в листингах, куда нужно обратить внимание. Номера О...©®...® и звез­
дочка ★ позволят сослаться на конкретные места листингов в основном тексте.

Вопрос ? отметит те места листингов, которые должны вызывать недоумение вида
«А это еще что?», а знак восклицания ! укажет на места, которые должны сопро­
вождаться возгласами «Ох ты ж! ничего себе!». На особенно эмоциональные мес­
та листингов указывает значок ©, а поднятый вверх большой палец <5, как и
обычно, одобряет определенные команды листингов, которые приводят к долго­
жданному результату.

Аналогично, закрытый замок % символизирует закрытость (заблокированность) или
отсутствие доступа, а открытый замок наоборот, — открытость (разблокирован­
ное^), наличие доступа. Ключ »-• указывает на операцию открытия/закрытия чего-
либо (например, ввод пароля при аутентификации).

12 Введение

Кинжал \ предупреждает о выполнении некоторой деструктивной операции, а
значки часов ©©©© символизируют ожидание завершения достаточно длительной
операции.

Для удобства чтения листингов значки !$iAt указывают на «замещающий» вывод
(т. е. без скроллинга), круговые стрелки О обозначают очередную итерацию неко­
торого цикла, а значок © указывает на его окончание. Ну и, наконец, разнооб­
разные стрелки J*-1 ► -»«-Т связывают отдельные части листинга друг с другом.

Методические рекомендации
Многие иллюстративные листинги, приведенные в книге, нужно воспринимать не
как «дополнение» к основному тексту, а как сам основной текст, просто (пока) на
незнакомом и непонятном языке, а саму книгу — как учебник нового иностранно­
го языка.

Получение читателем собственного отклика от взаимодействия с операционной
системой представляется мне наиболее значимым результатом освоения содержи­
мого этой книги. Поэтому чтение стоит непременно сопровождать самостоятельным
выполнением команд листингов, т. к. успешное изучение нового иностранного язы­
ка никак невозможно без его непосредственного практического использования в
процессе изучения. ,

Не менее важным для построения целостных взаимоотношений с системой являет­
ся самостоятельное изучение первоисточников знаний1 — ее внутренней докумен­
тации, страниц руководства man(1).

Для выполнения команд листингов и доступа к внутренним справочникам потребу­
ется сама операционная система, что несложно получить, например инсталлировав
настольную версию Ubuntu Linux в виртуальную машину W :[VirtlialBox].

Дополнительную пользу принесет ознакомление и с дополнительными источниками
информации в Интернете, например со статьями на http://help.ubuntu.ru, а также по­
иск ответов на возникающие вопросы на http://forum.ubunu.ru, http://askubuntu.com и
даже на http://UNIX.stackexchange.com и http://stackoverflow.com.

Кроме текстовых источников информации в Интернете можно воспользоваться ус­
лугами таких очаровательных онлайн-сервисов, как http://explainshell.com для объяс­
нений конструкций и http://www.shellcheck.net для проверки проблем в конструкциях
командного интерпретатора. Для проверки примеров из книги и разработки собст­
венных сценариев командного интерпретатора незаменимую помощь может оказать
сервис http://www.tutorialspoint.com/execute_bash_online.php.

1 Это обязательно потребует знания технического английского языка, но без него вообще трудно
рассчитывать на сколько-нибудь значительные успехи в отрасли информационных технологий.

http://help.ubuntu.ru
http://forum.ubunu.ru
http://askubuntu.com
http://UNIX.stackexchange.com
http://stackoverflow.com
http://explainshell.com
http://www.shellcheck.net
http://www.tutorialspoint.com/execute_bash_online.php

Введение 13

Что должен знать читатель
В операционной системе Linux программное обеспечение поставляется в виде так
называемых пакетов (package) — специальным образом подготовленных архивов,
содержащих само программное обеспечение, его конфигурационные файлы, его
данные и управляющую информацию. Управляющая информация пакета включает
контрольные суммы устанавливаемых файлов, зависимости устанавливаемого пакета
от других пакетов, краткое описание пакета, сценарии установки, сценарии удале­
ния пакета и прочие данные, необходимые менеджеру пакетов.

В примерах, приведенных в листингах, часто встречаются программы, которые,
возможно, не будут установлены «по умолчанию», поэтому важно знать и пони­
мать, как устроены подсистема управления установкой и удалением программного
обеспечения — так называемые менеджеры пакетов и зависимостей1 2.

Менеджер пакетов производит непосредственную установку и удаление пакетов
программного обеспечения, а также ведет их учет в системе. Вспомогательная
«грязная» работа по подбору зависящих друг от друга пакетов, получению их из
репозиториев2 (например, скачивание с FTP/HTTP-серверов), выбору правильных
версий пакетов, определению правильного их порядка установки достается менед­
жеру зависимостей.

При помощи менеджера пакетов (листинг В1) всегда можно узнать имя пакета О,
в который входит та или иная установленная компонента операционной системы
(например, /bin/date), или, наоборот, узнать список компонент в , установленных
из указанного пакета (например, coreutils). ‘

Листинг В1. Пакетный менеджер dpkg

bart@ubuntu:~$ which -a date

/usr/bin/date

/bin/date

О bart@ubuntu:~$ dpkg -S /bin/date

coreutils: /bin/date

в bart@ubuntu:~$ dpkg -L coreutils

1 Условно, можно выделить две ветви операционной системы Linux — ветвь debian, к которой
относятся дистрибутивы W:[Debian] и W:[Ubuntu], и ветвь redhat, куда нужно отнести W:[RHEL],

W:[CentOS] и W:[Fedora], В debian-ветви используется пакетный менеджер dpkg и построенные над
ним менеджеры зависимостей apt, aptitude, synaptic и software-center, а в ветви redhat —
пакетный менеджер грп и основной менеджер зависимостей yum.

2 Хранилище пакетов у разработчиков дистрибутива Linux.

14 Введение

/bin/chmod

/bin/chown

/bin/ср

/ Ы п /date

/ Ы п /dd

/ Ы п /df

bart@ubuntu:~$ dpkg -s coreutils

Package: coreutils

Essential: yes

Status: install ok installed

Priority: required

Section: utils

Installed-Size: 7196

Maintained Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.core»

Architecture: amd64

Multi-Arch: foreign

Version: 8.30-3ubuntu2

Pre-Depends: libacll (>= 2.2.23), libattrl (>= 1:2.4.44), libc6 (>= 2.28), libselinuxl (>=
. 2.1.13)

Description: GNU core utilities

This package contains the basic file, shell and text manipulation

utilities which are expected to exist on every operating system.

Specifically, this package includes:

arch base64 basename cat chcon chgrp chmod chown chroot cksum comm cp

csplit cut date dd df dir dircolors dirname du echo env expand expr

Homepage: http://gnu.org/software/coreutils

Original-Maintainer: Michael Stone <mstone@debian.org>

Если при попытке выполнить ту или иную команду операционной системы Ubuntu
Linux (это одна из причин, по которой иллюстрация в книге ведется именно с ее
помощью) обнаружится, что нужный пакет с программным обеспечением не уста­
новлен, то при наличии доступа в Интернет можно тривиальным способом доуста-
новить недостающие компоненты (листинг В2).

bart@ubuntu:~$ finger

Команда «finger» не найдена, но может быть установлена с помощью:

sudo apt install finger

http://gnu.org/software/coreutils
mailto:mstone@debian.org

Введение 15

bart@ubuntu:~$ sudo apt install finger

[sucJo] password for bart:

Чтение списков пакетов... Готово

Построение дерева зависимостей

Чтение информации о состоянии... Готово

Следующие НОВЫЕ пакеты будут установлены:

finger

Обновлено 0 пакетов, установлено 1 новых пакетов, для удаления отмечено 0 пакетов,
и 11 пакетов не обновлено.

Необходимо скачать 16,9 кВ архивов.

После данной операции объём занятого дискового пространства возрастёт на 51,2 кВ.

Пол:1 http://ru.archive.ubuntu.con/ubuntu eoan/universe and64 finger amd64 0.17-17 [16,9 кВ]

Получено 16,9 кВ за 0с (200 kB/s)

Подготовка к распаковке .../finger_0.17-17_and64.deb ...

Распаковывается finger (0.17-17) ...

Настраивается пакет finger (0.17-17) ...

Обрабатываются триггеры для nan-db (2.8.7-3) ...

В редких случаях, когда нужно узнать, с каким, даже еще неустановленным, паке­
том программного обеспечения поставляется тот или иной файл, может выручить
утилита apt-file(1) (О, листинг ВЗ). В обратную сторону посмотреть список файлов,
входящих в еще неустановленный пакет, можно этой же утилитой в .

Листинг ВЗ. в ш о к пакете файл (Файлы)?
V i n f i f ' П т m i ' V i i t r f c f пЧш

О bart@ubuntu:~$ apt-file search bin/7z

Finding relevant cache files to search ...E: The cache is empty. You need to run "apt-file
update" first.

bart@ubuntu:~$ sudo apt-file update

Сущ:1 http://ru.archive.ubuntu.com/ubuntu eoan InRelease

Пол:2 http://ru.archive.ubuntu.com/ubuntu eoan-updates InRelease [97,5 kB]

Пол:3 http://ru.archive.ubuntu.com/ubuntu eoan-backports InRelease [88,8 kB]

Получено 91,9 MB за 37c (2 515 kB/s)

Чтение списков пакетов... Готово

Построение дерева зависимостей

Чтение информации о состоянии... Готово

bart@ubuntu:~$ apt-file search bin/7z

p7zip: /usr/bin/7zr

p7zip-full: /usr/bin/7z

p7zip-full: /usr/bin/7za

http://ru.archive.ubuntu.con/ubuntu
http://ru.archive.ubuntu.com/ubuntu
http://ru.archive.ubuntu.com/ubuntu
http://ru.archive.ubuntu.com/ubuntu

16 Введение

® bart@ubuntu:~$ apt-file show p7zip

p7zip: /usr/bin/7zr

p7zip: /usr/bin/p7zip

p7zip: /usr/lib/p7zip/7zr

p7zip: /usr/share/doc/p7zip/NEWS.Debian.gz

p7zip: /usr/share/doc/p7zip/README.Debian

p7zip: /usr/share/doc/p7zip/changelog.Debian.gz

p7zip: /usr/share/doc/p7zip/copyright

p7zip: /usr/share/man/manl/7zr.1.gz

p7zip: /usr/share/nan/nanl/p7zip.1.gz

Совет для начинающих
И напоследок, самый важный совет для начинающих — начните!

Глава 1
Архитектура ОС Linux

1.1. Обзор внутреннего устройства
Операционная система (ОС) в общем и W :[Linux] в частности (рис. 1.1) представ­
ляет собой набор специализированных программных средств, обеспечивающих
доступ потребителей (пользователей) к ресурсам (устройствам) и распределение
последних между потребителями наиболее удобным и эффективным способом. Под
ресурсами в первую очередь понимают аппаратные средства, такие как централь­
ные процессоры, память, устройства ввода-вывода, дисковые и прочие накопители
и другие периферийные устройства. Во вторую очередь к ресурсам относят такие
«виртуальные» сущности (на рис. 1.1 не показаны), как процессы, нити, файлы,
каналы и сокеты, семафоры и мьютексы, окна и прочие артефакты самой опера­
ционной системы, которые не существуют вне ее границ. ►
Как и во многих других операционных -системах, в Linux выделяют два главных
режима работы ее программных средств — ядерный режим (kernel mode), он же
пространство ядра (kernel space), и пользовательский, внеядерный режим (user
mode), или же пользовательское пространство (user space). Основное различие
этих двух режимов состоит в привилегиях доступа к аппаратным средствам —
памяти и устройствам ввода-вывода, к которым разрешен полный доступ из режи­
ма ядра и ограниченный доступ из режима пользователя.

Совокупность работающих в ядерном режиме программ называют ядром, которое
в Linux состоит из основы (или же остова) и присоединяемых к ней объектов —
динамически загружаемых модулей (подробнее см. разд. 4.1.1). Несмотря на компо-
нентность, W :[flflpo Linux] относят к классу монолитных в силу того, что все его
компоненты выполняются с одинаковыми (ядерными) привилегиями. В классе мик-
роядерных систем, наоборот, компоненты ядра работают с разными привилегиями:
основная компонента — микроядро (планировщик процессов/нитей и менеджер
памяти) — с наибольшими привилегиями, менеджер ввода-вывода, драйверы уст­
ройств, файловые системы, сетевые протоколы и пр. — с другими, обычно мень­
шими привилегиями (возможно даже, с привилегиями пользовательского режима).

18 Глава 1

Пользователи

r | . POSIX.2
LLI IEEE 1003.2

A D I POSIX.1
IEEE 1003.1

Vи(9

Р1Се
SATA SCSI

USB

L J

Прикладные программы

~ J _

/ t in /n a n o iin /b z ip 2

Системные утилиты

J Z H
/b in /b a s h

---------------- .

/Ы п / l s I

ь | Библиотечные вызовы |

l ib a a .s o l ib b z 2 .s o

l ib c .s o
Ш

Системные
н н а ш м я ш а м а

вызовы

в в во
— t—
Устройства

X Window г . . .
System l l U I

Рис. 1.1. Компоненты операционной системы Linux

Архитектура ОС Linux 19

1.2. Внеядерные компоненты: программы и библиотеки
Ядерные компоненты в основном обеспечивают решение задачи диспетчеризации
(распределения) ресурсов между потребителями и предоставляют им базовый ин­
терфейс доступа к ресурсам. Решение задачи обеспечения удобства доступа реали­
зуется компонентами внеядерного режима — библиотеками динамической и стати­
ческой компоновки (подробнее см. разд. 4.1).

Функции операционной системы, реализуемые ядерными компонентами, доступны
внеядерным компонентам посредством системных вызовов — специализированных
наборов обращений для получения услуг ядра. Системные вызовы выполняются
в ядре, а вызываются при помощи основной внеядерной компоненты — библиоте­
ки libc.so языка программирования W:[Cm] (так исторически сложилось в силу
того, что большая часть системных программных средств написана на этом языке).

Функции, реализуемые внеядерными компонентами, доступны посредством библио­
течных вызовов и вызываются (выполняются) в самих библиотеках (например,
алгоритмы сжатия информации в библиотеках libz.so и Hbbz2.so).

1.3. Ядерные компоненты: подсистемы управления
процессами, памятью, вводом-выводом, файлами
Одна из основных задач ядра — распределение ресурсов между потребителями —
вполне естественным образом приводит к тому, что среди .ядерных компонент вы­
деляют соответствующие (аппаратным ресурсам) менеджеры, так называемые под­
системы управления процессами, памятью, вводом-выводом й файловую подсистему.

Подсистема управления процессами распределяет время центральных процессоров
(ЦП) между выполняющимися задачами (т. е. реализует W :[многозадачность]). Она
создает и уничтожает такие сущности, как процессы и нити (см. разд. 4.2), и
организует одновременное (параллельное или псевдопараллельное) их выполнение
при помощи планировщиков (scheduler), реализующих алгоритмы распределения
процессорного времени.

Подсистема ввода-вывода распределяет доступ к устройствам ввода-вывода (УВВ)
между процессами и предоставляет им унифицированные интерфейсы блочного,
символьного (см. разд. 3.2.5) и пакетного (сетевого) устройств (см. разд. 6.1).
Для устройств внешней памяти (дисковых или твердотельных накопителей, более
медленных по сравнению с оперативной памятью) подсистема ввода-вывода орга­
низует W:[K3UJMpoBaHMe] при помощи подсистемы управления памятью.

Подсистема управления памятью (подробнее см. разд. 4.7) распределяет простран­
ство оперативного запоминающего устройства (ОЗУ) между процессами при помо­

20 Глава 1

щи механизма страничного отображения — выделяет (и высвобождает) процессам
страничные кадры физической памяти и отображает на страницы их адресного
пространства. Кроме того, эта подсистема организует W : [виртуальную память] за счет
механизма страничного обмена (W:[n0flKa4Ka страниц]) — вытесняет неиспользуе­
мые страницы процессов во внешнюю память и загружает их обратно по требо­
ванию при помощи подсистемы ввода-вывода.

Стоит отметить, что распределение ресурсов процессоров и устройств ввода-
вывода происходит «во времени», т. е. в отдельные промежутки времени эти уст­
ройства выполняют операции только одного процесса или нити. Наоборот, распре­
деление ресурсов запоминающих устройств происходит «в пространстве», т. к.
информация нескольких процессов одновременно размещается в разных их об­
ластях.

Файловая подсистема ядра (подробнее см. главу 3) предоставляет процессам уни­
фицированный интерфейс файлового доступа к внешней памяти (внешним запоми­
нающим устройствам, ВЗУ — магнитным дисковым, твердотельным накопителям и
т. п.) и распределяет между ними пространство ВЗУ при помощи файлов и фай­
ловых систем. Особенное назначение файловой подсистемы состоит еще и в том,
что при помощи ее файлового интерфейса процессам предоставляется доступ и
к другим подсистемам. Так, доступ к устройствам ввода-вывода организуется
посредством специальных файлов устройств (блочных и символьных), например
к CD/DVD-накопителю — через файл /dev/srO, а к манипулятору мыши — через
/dev/lnput/nouseO. Доступ к физической памяти и памяти ядра ОС организуется
через файлы виртуальных устройств /dev/nen и /dev/knen, а доступ процессов
к страницам памяти друг друга — через файлы /ргос/PID/men псевдофайловой сис­
темы proofs. Даже доступ к внутренним параметрам и статистике различных ком­
понент ядра операционной системы возможен через файлы разнообразных псевдо-
файловых систем, например proofs, securltyfs, debugfs и прочих, а к списку обна­
руженных ядром устройств ввода-вывода — через файлы псевдофайловой системы
sysfs.

Кроме всех вышеперечисленных задач, файловая подсистема, подсистема ввода-
вывода и подсистема управления процессами в совокупности предоставляют про­
цессам средства межпроцессного взаимодействия, такие как сигналы (см. разд. 4.8),
каналы, сокеты и разделяемая память (см. разд. 4.9).

1.4. Трассировка системных и библиотечных вызовов
Для наблюдения за обращениями программ к услугам ядерных компонент опера­
ционной системы, т. е. за системными вызовами, служит утилита strace(1), предна­
значенная для трассировки — построения трасс выполнения той или иной про­

Архитектура ОС Linux 21

граммы. В листинге 1.1 представлена трассировка программ whoami(1), hostname(1) и
pwd(1) относительно системных вызовов geteuid(2), uname(2), getcwd(2) и sethostname(2),
где оказывается, что для получения и установки значения (сетевого) ивдени систе­
мы программа hostname(1) использует разные системные вызовы uname(2) и
sethostname(2), при этом один из системных- вызовов является привилегированным и
доступен только суперпользователю root (см. разд. 2.7).

Листинг т.1. Трассировщик системных вызовов strace

bart@ubuntu:~$ whoarri.

bart

bart@ubuntu:~$ hostnane

ubuntu

bart@ubuntu:~$ pwd

/hone/bart

bart@ubuntu:~$ strace

geteuid()

bart

+++ exited with 0 +++

bart@ubuntu:~$ strace -fe unane,getcwd,geteuld,sethostnane hostnane

unane({sysnane="Linux", nodenane="ubuntu", ...}) = 0

ubuntu

+++ exited with 0 +++

bart@ubuntu:~$ strace -fe unane,getcwd,geteuld,sethostnane pwd

getcwd("/hone/bart", 4096) = 11

/hone/bart

+++ exited with 0 +++

bart@ubuntu:~$ strace -fe unane,getcwd,geteuld,sethostnane hostnane Springfield

sethostnane("sprlngfleld", 11) = -1 EPERM (Операция не позволена)

hostnane: you must be root to change the host nane

+++ exited with 1 +++

В листинге 1.2 показана трассировка программы date(1) относительно библиотечных
вызовов fwrite(2) или таких, в имени которых встречается строка tine. Оказывает­

fe unane,getcwd,geteuld,sethostnane whoarri

= 1000

22 Глава 1

ся, что эти библиотечные функции находятся в библиотеке языка Си, что весьма
ожидаемо в силу внутреннего устройства операционной системы (см. рис. 1.1).

■- - 'ЧГ - !И7Тта 1 1 ‘ V‘ ' ' ■ ■ - ' “ • • ’..... ' ' ” — V , , . v - -------------- -

Листинг 12, Трассировщик системных вызовов (trace

bart@ubuntu:~$ Itrace -х *time*+fwrite date

•" clock_getttnie@libc.so.6(0, 0x7ffc8601a300, 1, 0x56056f3b04c0) = 0

localtine_r@libc.so.6(0x7ffc8601a230, 0x7ffc8601a240, 4, 269) = 0x7ffc8601a240

•" strftine@libc.so.6(unfinished ...>

strftine_l@libc.so.6(0x7ffc86019db0, 1024, 0x7ffc86019dab, 0x7ffc8601a240) = 5

<... strftine resuned> " \320\241\320\261", 1024, " %a", 0x7ffc8601a240) = 5

fwrite@libc.so.6("\320\241\320\261", 4, 1, 0x7f3d7e8d56a0) = 1

strftine@libc.so.6(unfinished ...>

strftine_l@libc.so.6(0x7ffc86019db0, 1024, 0x7ffc86019dab, 0x7ffc8601a240) = 7

<... strftine resuned> " \320\275\320\276\321\217", 1024, " 9fl>", 0x7ffc8601a240) = 7

fwrite@libc.so.6("\320\275\320\276\321\217", 6, 1, 0x7f3d7e8d56a0) = 1

fwrite@libc.so.6("16", 2, 1, 0x7f3d7e8d56a0) = 1

fwrite@libc.so.6("20", 2, 1, 0x7f3d7e8d56a0) = 1

fwrite@libc.so.6("5", 1, 1, 0x7f3d7e8d56a0) = 1

fwrite@libc.so.6(''9", 1, 1, 0x7f3d7e8d56a0) = 1

fwrite@libc.so.6("MSK", 3, 1, 0x7f3d7e8d56a0) = 1

fwrite@libc.so.6("2019", 4, 1, 0x7f3d7e8d56a0) = 1

C6 ноя 16 20:05:09 MSK 2019

+++ exited (status 0) +++

1.5. Интерфейсы прикладного программирования
Системные и библиотечные вызовы Linux, формирующие интерфейс прикладного
программирования (API, application programming interface), соответствуют опреде­
ленным промышленным спецификациям, в частности (практически идентичным друг
другу) стандартам W : [P0SIX]1, Portable Operating System Interface и SUS, W : [Single UNIX
Specification], доставшимся «в наследство» от семейства операционных систем UNIX,
членом которого Linux и является.

Стандарт POS1X условно делится на две части: P0SIX.1, программный интерфейс
(API) операционной системы, и P0SIX.2, интерфейс командной строки (CLI) пользо­
вателя (см. главу 2) и командный интерпретатор (см. главу 5).

1 Стандарт POSIX выпускается комитетом 1003 организации W :[IEEE], поэтому имеет формальное
обозначение IEEE 1003, а части стандарта POSIX.1 и POSIX.2 формально обозначаются
IEEE 1003.1 и IEEE 1003.2 соответственно.

Архитектура ОС Linux 23

1.6. В заключение
Совершенно очевидно, что в современной медицине без понимания анатомии жи­
вых организмов невозможно представить ни их терапию, ни хирургию. В информа­
ционных технологиях абсолютно аналогичным образом разработка и эксплуатация
программного обеспечения будут успешны только на основе понимания внутренне­
го устройства операционной системы.

Рисунок 1.1 изображает эдакий «рентгеновский снимок» внутренностей операцион­
ной системы Linux, подробная анатомия которой шаг за шагом и раскрывается
в последующих главах.

Глава 2
Пользовательское окружение

ОС Linux

2.1. Командный интерфейс
Основным интерфейсом взаимодействия между ЭВМ и человеком в классической
операционной системе W :[UNIX] был единственно возможный, диктуемый аппарат­
ными устройствами ее времени1 командный интерфейс. Называемый сегодня ин­
терфейсом командной строки (Command Line Interface, W :[CLI]), он в неизменном
виде сохранил все свои элементы — понятие терминала, двусторонний поперемен­
ный диалог при помощи клавиши ЦЩщщ, управляющие символы и клавишу
для их набора.

Терминал является оконечным (англ, terminal) оборудованием, предназначенным
для организации человеко-машинного интерфейса. Обычно он состоит из устройств
вывода — принтера или дисплея, и устройств ввода — клавиатуры, манипулятора
«мышь» и пр.

Алфавитно-цифровой терминал позволяет вводить и выводить символы из неко­
торого заданного набора (например, семибитной кодировки ascii(7)) или другого на­
бора символов charsets(7), состоящего из букв алфавита, цифр, знаков препинания,
некоторых других значков, и символов специального назначения для управления
самим терминалом — управляющих символов.

Ранние, печатающие терминалы, представляли собой телетайпы W : [телетайп] (те­
лепринтеры W :[teleprinter]), которые печатали символы из фиксированного набора
на ленте или рулоне бумаги — слева направо, сверху вниз. Управляющие символы
использовались для управления перемещением печатающей головки справа налево
(символ BS), возврата головки к началу строки (символ CR), прокрутки рулона бу­
маги (символ LF) и пр.

Дисплейный терминал (видеотерминал на основе электронно-лучевой трубки)
в упрощенном своем режиме эмулирует поведение печатающего терминала: пово-

ЭВМ W:[PDP-11] и терминалы W:[Teletype Model ASR-ЗЗ].

26 Глава 2

рачивающийся рулон бумаги — при помощи скроллинга изображаемых строк сни­
зу вверх, а перемещающуюся вдоль строки печатающую головку — при помощи
курсора. В расширенном режиме видеотерминал используется как матрица симво­
лов, например в 24 строки по 80 символов в строке, и позволяет выводить сим­
волы в произвольное место матрицы, задавать символам стиль изображения, как
то: мерцание, жирность, инвертирование, подчеркивание и цвет, — и даже менять
шрифты символов терминала. Для управления курсором, его позиционирования,
смены стиля изображения символов и прочих возможностей видеотерминала при­
меняются управляющие символы (см. разд. 2.3) и управляющие последовательно­
сти (см. разд. 2.4).

Двусторонний попеременный диалог (рис. 2.1) командного интерфейса между поль­
зователем и операционной системой представляет собой процесс ввода команд .О
пользователем посредством клавиатуры и получения результата их выполнения ©
на бумаге или дисплее алфавитно-цифрового терминала.

Другие пользователи

Рис. 2.1.Терминалы и командный интерфейс

В начале сеанса работы в многопользовательской среде операционной системы
пользователь должен произвести регистрацию (logging in) себя в системе (обычно
говорят «произвести вход» в систему) при помощи предъявления имени своей
учетной записи (login) и соответствующего ему пароля (password, буквально —
пропускное pass слово w o r d) (рис. 2.2).

Процедура регистрации начинается с заставки операционной системы О и пригла­
шения к вводу имени учетной записи ©, в ответ на которое пользователь вводит
имя своей учетной записи Ф. Затем, в ответ на приглашение к вводу пароля ©,
пользователь вводит пароль ©, и при этом на алфавитно-цифровых терминалах
никакие символы не изображаются. При положительном исходе регистрации поль­
зователь получает сообщение © о последней (last) успешной регистрации, сооб­
щение дня и приглашение командного интерпретатора ©.

Передача управления от пользователя к операционной системе на каждом шаге
диалога происходит при помощи нажатия клавиши Ц щ щ , а передача управления

Пользовательское окружение ОС Linux 27

в обратную сторону — при помощи приглашений к вводу регистрационного име­
ни, пароля, командного интерпретатора и пр. Приглашение командного интерпрета­
тора исторически состояло из символа $ или символа^, а при регистрации под
учетной записью администратора — из символа #. Позднее приглашение развилось
в finn@ubuntu:~$ и состоит теперь из имени зарегистрировавшегося пользователя
finn, собственного имени компьютера ubuntu, условного имени домашнего каталога
пользователя, обозначенного символом ~, и «классического» символа приглашения $.

SXX
Жg-|2*

О U b u n t u 19.16 u b u n t u ^tyl

й

§в;
о

i u b u n t u l o g i n : f i n n Q j

Password: j” ; M M

Las t login: Sat N o v }6 2 0 : 2 9 : 4 2 M 5 K 261 9 o n tty3

W e l c o m e to U b u n t u 19,'10 (G N U / L i n u x 5 . 3 . 0 - 2 3 - g e n e r i c x 8 6 _ 6* D o c u m e n t a t i o n :

* M a n a g e m e n t :

* Support:

h t t p s : / / h e l p . u b u n t u . c o m /

h t t p s : / / l a n d s c a p e . c a n o n i c a l . c o m

h £ t p s : / / u b u n t u . c o m / a d v a n t a g e

16 о б н о в л е н и й м о г у т б ы т ь у с т а н о в л е н ы п р я м о сейчас.

6 из этих о б н о в л е н и й ^ я в л я ю т с я о б н о в л е н и я м и б е з о п а с н о с т и .

Т о see t h e s e a d d i t i o p a l u p d a t e s run: apt list - -upgradable

euserfiubuntu: ~$ date (T)
C 6 ноя 16 2 0 : 3 3 : 6 8 M S K 2619

u s e r @ u b u n t u : ~ $

Рис. 2.2. Регистрация пользователя в системе

Сеанс командного интерфейса пользователя продолжается двусторонним попере­
менным диалогом с командным интерпретатором, где пользователь вводит команды (Э
и получает результаты их выполнения ©.

2.2. Виртуальные терминалы
На текущий момент времени многопользовательские системы с настоящими физи­
ческими терминалами, подключенными посредством интерфейса RS232 и его драй­
вера ttyS(4) к большой ЭВМ, — экзотическая редкость. На персональных ЭВМ
для взаимодействия с пользователем используются стандартные клавиатура, видео­
адаптер и монитор, формирующие так называемую W : [консоль], которая использу­
ется драйвером виртуальных терминалов для эмуляции нескольких физических
терминалов (рис. 2.3).

https://help.ubuntu.com
https://landscape.canonical.com

28 Глава 2

ЭВМ

К

Виртуальный
терминал tty l

И.
/JESSS*'

Виртуальный
терминал tty2

rrf; ■I

3 ;

< «- клавиатура >

дисплей - *

Виртуальный
терминал ttyN

Рис. 2.3. Виртуальные терминалы

Узнать имя текущего терминала (а точнее — имя специального файла устройства1
терминального драйвера, см. листинг 2.1), на котором выполнен вход в систему,
позволяет команда Ку(1). а список всех терминальных входов пользователей —
команды users(1), who(1) и w(1).

Листинг 2.1. Утилиты tty, users, who и w

ftnn@ubuntu:~$ tty s'

/dev/ttyl

finn@ubuntu:~$ users

bubblegum flnn iceking jake jake

finn@ubuntu:~$ who -u

iceking pts/0 2019-11-16

bubblegum tty5 2019-11-16

marceline tty3 2019-11-16

finn ttyl 2019-11-16

marceline

10:46 (176.10.35.129)

10:46

10:47

10:46

1 Подробнее о специальных файлах устройств см. в разд. 3.2.5.

Пользовательское окружение ОС Linux 29

jake :0 2019-11-16 10:47 (:0)

jake pts/4 2019-11-16 22:09 (:0)

finn@ubuntu:~$ w * *

21:08:15 up 3:54, 6 users, load average: 0,02, 0,05, 0,01

USER TTY FROM LOGIN® IDLE JCPU PCPU WHAT

© iceking Pts/0 176.10.35.129 10:46 1:20 0.05s 0.00s -bash

bubblegu tty5 - 10:46 1:04 0.04s 0.00s -bash

marcelin tty3 - 10:47 32.00s 0.06s 0.00s -bash

о finn ttyl - 10:46 1:04 0.50s 0.44s w

jake :0 :0.0 10:47 ?xdm? 0.21s 0.00s /usr/lib/gdn3/gdm-x-s.

© jake pts/4 :0 22:09 15.00s 0.01s 0.01s bash

Драйвер виртуального терминала позволяет переключаться между эмулируемыми
терминалами при помощи сочетания клавиш Q Q Q , Q | (первые двена­
дцать терминалов из 63 возможных), Ц для переключения на предыдущий,

В для переключения на следующий виртуальный терминал. При переключе­
нии из графического виртуального терминала на другой виртуальный терминал не­
обходимо добавлять к сочетанию еще и клавишу т- к- сочетания с клавишей

востребованы самим графическим интерфейсом, например Q | закрывает
активное окно. Таким образом, для переключения из графического на третий вир­
туальный терминал используется сочетание Ш- Также драйвер виртуаль­
ных терминалов позволяет листать буфер вывода виртуального терминала при по­
мощи сочетании _________
миналов буфер пропадает).

Ct r l ! Pg U p П Ct r l ! Pg D n (к сожалению, после переключения тер-

Как и любым другим, драйвером виртуальных терминалов можно управлять при
помощи специально предназначенных команд, например, программа chvt(1) позволя­
ет переключаться на заданный терминал по его номеру, а команда программа
setfont(1) — загружать шрифты, формирующие начертания алфавитно-цифровых
знаков (см. листинг 2.12).

2.2.1. Псевдотерминалы
При работе в оконной системе X Window System (см. главу 7) используются
графические терминалы, тогда как для командного интерфейса требуется алфавит­
но-цифровой терминал. В этом случае (рис. 2.4) он эмулируется при помощи
драйвера псевдотерминала pty(4) (pseudo t ty) и приложения-посредника — эмуля­
тора терминала (например, xtern или gnone-terninal), который связывает действи­
тельный обмен ® в графическом окне с мультиплексором псевдотерминалов ©
ptmx(4) (pseudoterminal multiplexer), а тот, в свою очередь, присоединен драйвером
к подчиненному псевдотерминалу pts(4) (pseudoterminal slave) командного интерфейса.

30 Глава 2

©

Сеть
SSH-протокол

Сетевой
СИ

jH is r/s b in /s s h d

яашштшшшшфЩ

Сетевой
(алфавитно-цифровой)

терминал

CLI GUI '<............ 9

Х-протокол

GNOME
KDE

/s b tn /n in g e t ty /u s r /s b \n /g d n 3

Запуск

Обмен
приложен драйвер

^1- - - -
Сквозной
обмен

приложение • терминал

KERHJEL .
ptmx/pts driver

Ш т
Окно

(алфавит> о-цифровое)
на X (графическом)

терминалеЯ Локальный
физический

Локальный (алфавитно-цифровой)
виртуальный терминал

(алфавитно-цифровой)
терминал

Рис. 2.4. Псевдотерминалы

Аналогично, при подключении удаленного алфавитно-цифрового терминала посред­
ством протоколов удаленного доступ (например, SSH) приложение-посредник (на­
пример, демон сетевой службы sshd, см. разд. 6.4.1) связывает действительный об­
мен (Э в сетевом соединении с мультиплексором псевдотерминалов ®.

Таким образом, командный интерпретатор и запускаемые им программы работают
с воображаемым псевдотерминалом так, как будто окно графического приложения
или средства удаленного доступа являются настоящим физическим дисплеем и на­
стоящей физической клавиатурой настоящего терминала. В примере из листин­
га 2.1 пользователь finn зарегистрирован в системе О на первом виртуальном
терминале ttyl, пользователь jake зарегистрирован © на псевдотерминале pts/4

Пользовательское окружение ОС Linux 31

в эмуляторе терминала оконной системы, а пользователь icek in g зарегистрирован
© при помощи удаленного доступа на псевдотерминале pts/O.

Нужно заметить, что на этапе входа пользователя в систему посредством алфавит­
но-цифрового терминала (см. средний фрагмент под заголовком C L I на рис. 2.4)
последовательно запускаются: обработчик терминалов О, обработчик аутентифика­
ции и авторизации пользователей ©, а затем командный интерпретатор ©, напри­
мер bash(1). Именно getty(1) предъявляет пользователю (см. рис. 2.2) заставку опе­
рационной системы и приглашение к вводу имени пользователя, a login(1) — при­
глашение к вводу пароля, сообщение о последнем успешном входе и сообщение
дня.

Аналогичные процессы происходят при любом Входе пользователя в систему, на­
пример через псеводтерминалы «графического» или «сетевого» доступа (см. левый
и правый фрагменты на рис. 2.4). В любом случае после аутентификации и авто­
ризации основной программой (и первой в сеансе пользователя), интерпретирую­
щей вводимые пользователем команды, является командный интерпретатор.

2.3. Управляющие символы
При вводе с терминала управляющие символы служат командами драйверу терми­
нала и в большинстве своем генерируются при помощи сочетания клавши
(отсюда ее название control — управление) с одной из алфавитно-цифровых кла­
виш. В отдельных случаях управляющие символы генерируются специально пред­
назначенными для этого клавишами, например или ■«- Backspace

Таблица 2.1. Управляющие символы терминала

У правляю щ ий сим вол

К л авиш и К о д сим вола
Нотации

Стандартное действие
драйвера

ввод
символа

вы вод
символа

АС intr — ГВЯ1П 0x03 ЕТХ

л\ quit
X

И Ш и л и В Я Я П 0x1 с ;! FS

AZ i susp — идти 0x1 А ;!! sub!
AD eof - БО НЗ 0x04 |I EOT

А? i erase I _
i Я ? Ш 8 Я Я или ВЯЯИ или в я я п 0x7 F DEL

АН или \Ь —
i

backspace в а ш 0x08 BS

AW werase - m m 0x17 ETB

32 Глава 2

Таблица 2.1. (окончание)

У правляю щ ий сим вол

i
Нотация

Стандартное действие
 ̂ драйвера К л а ви ш и К о д сим вола

ввод
символа

вы вод
Символа T i

ли K ill — ВЯЛ III 0x15 NAK

А1 или\1 — tab Н И илиЕ Я П 0x09 НТ

АМ или\г eol cr или ВЯЛ 1П 0x0 D CR

AJ или\п eol nl в я л и ОхОА LF

AS stop - в я л и 0x13 DC3

AQ start — EBS9E] 0x11 DC1

AR rprnt — в я л п 0x12 DC2

AV Inext — в я л и 0x16 SYN

AN — so в я л и ОхОЕ SO

A0 — si ВЯЯ1Я 0x0 F SI

A[или\е esc esc 1 Я ИЛИ ВЯЛП ИЛИ 0x1 В ESC

или эквивалентное сочетание за-Так, например, нажатие клавиши Щ
писывающееся как А3, генерирует управляющий символ LF (таким же действием
обладает символ CR, АМ), который сигнализирует драйверу терминала о завершении
ввода строки (eol, end of line) и необходимости «отдать команду на выполнение»
(листинг 2.2).

. ■ : - , . ~ .. J;j,

Листинг 2.2. Управляющие сиге олы М и АМ

finn0ubuntu:~$ date «-1

Вс. февр. 1 22:39:00 MSK 2015

finn@ubuntu:~$ hostnane

ubuntu

finn@ubuntu:~$ whoami A3

finn

Нажатие клавиши ■«- Backspace или сочетания клавиш приводит к генерации
управляющего символа DEL, что заставляет драйвер выполнить управляющее дейст-

Пользовательское окружение ОС Linux 33

вие erase (А?) — удалить последний набранный символ. Аналогично, werase (AW) и
kill (AU) удаляют последнее набранное слово и всю набранную строку соответст­
венно.

Управляющие символы intr (АС) и quit (А\) — соответственно штатно и аварийно
завершают запущенную ранее и выполняющуюся сейчас программу, а символ susp

(AZ) временно приостанавливает выполняющуюся программу, что проиллюстрирова­
но в листинге 2.3.

листинг 13 Управляющие символы Ч и А\1 . . . - . .. _ . _ . --- :•------- :____;_____ _____ ____ _ . — - _ _ -

finn@ubuntu:~$ dd if=/dev/dvd of=dvd.iso

366227352+0 записей получено

6227351+0 записей отправлено

скопировано 3188403712 байт (3,2 СВ), 2,72618 с, 1,2 GB/c

finn@ubuntu:~$ dd if=/dev/cdron of=cd.iso

А\Выход (сделан дамп памяти)

Символы stop (AS) и start (^) управляют потоком вывода (и, как следствие,
скроллингом терминала), что можно использовать для временной приостановки
вывода команд с многострочным выводом. Однако случайное нажатие as может
привести начинающего пользователя в замешательство — будет казаться, что тер­
минал «завис», т. е. отсутствует реакция со стороны операционной системы на
какие-либо нажимаемые клавиши и посылаемые символы, тогда как на самом деле
отсутствует (приостановлен) лишь ее вывод — до нажатия ^ или А\.

Управляющий символ eof (*4)) используется для оповещения драйвера о заверше­
нии ввода при работе с интерактивными (ведущими с пользователем двусторонний
попеременный диалог) программами (листинг 2.4).

Листинг 2.4. Управляющий символ AD

finn@ubuntu:~$ rail dketov@gnail.con

C c : f

Subject: He забыть про Ctrl+0^

Символ AD полезен для nail, at... где еще? Щ
ш
finn@ubuntu:~$ at 21:30

warning: comands will be executed using /bin/sh

at> nplayer ~/sounds/alam. mpl - J

at> notify-send -i info 'Хватит работать' Щ

mailto:dketov@gnail.con

34 Глава 2

a t H S <ЕОТ>

job 1 at Sun Nov 17 21:30:00 2019

finn@ubuntu:~$ Iftp ftp.ubuntu.con

Iftp ftp.ubuntu.con:~> get /ubuntu/pool/nain/n/nanpages/nanpages_5.03.orig.tar.xz f?

1677908 байтов перемещено за 1 секунду (1.28 Миб/с)

Iftp ftp.ubuntu.con:/ > Щ exit

Нужно заметить, что при работе с диалоговыми программами *С или А\ завершит
выполняющуюся программу (at), не дав ей выполнить свое основное действие, или
вообще будет проигнорирован (ftp, nail). Именно символ завершения ввода (eof,
end of file) сообщит драйверу о нежелании больше вести диалог с программой
(который в свою очередь сообщит программе об отсутствии для нее вводимых
данных).

В очень редких случаях, возможно, потребуется ввести сам управляющий символ,
например *С, А\ или AD, непосредственно в выполняющуюся на терминале про­
грамму, что невозможно сделать соответствующими клавиатурными комбинациями,
потому как управляющие символы будут поглощены драйвером терминала, что
приведет к завершению программы, в которую вводятся символы. Для отмены
(экранирования) специального назначения управляющих символов в пользу его
непосредственного (литерального) значения служит управляющий символ (literal
next) Inext (AV), сигнализирующий драйверу терминала об отмене специального
назначения следующего за ним символа (листинг 2.5).

■ 1— I-----------------— 75— "■■■ ■---- -— - а 1--- I ■----■---- ■----- ц--- ■ —— в
Листинг 2.5 Управляющей символ *V

finn@ubuntu:~$ tee cc.bin

•- Ctrl-fC:B

finn@ubuntu:~$ od -ca cc.bin

? 0000000

finn@ubuntu:~$ tee cc.bin

я г \ * т я ь
Ctrl+C:

m
finn@ubuntu:~$ od -ca cc.bin

0000000 C t r l + C 003 -»\n

C t r l + C etx nl

finn@ubuntu:~$ hd cc.bin

00000000 43 74 72 6c 2b 43 3a 03 0a
00000009 b

(Ctrl+C:..|

ftp://ftp.ubuntu.con

Пользовательское окружение ОС Linux 35

Реакция драйвера терминала на получаемые управляющие символы и предприни­
маемые им управляющие действия (а точнее, наоборот — управляющие символы,
закрепленные за управляющими действиями) стандартно предопределена, но почти
все эти соответствия могут быть просмотрены и изменены командой stty(1), что
иллюстрируется в листинге 2.6.

finn@ubuntu:~$ stty -а

speed 38400 baud; rows 38; columns 136; line = 0;

intr = ЛС; quit = л\; erase = л?;*~ kill = *U eof = AD; eol = <undef>; eolZ = <undef>;
swtch = <undef>; start = AQ; stop = AS; susp = AZ;

rprnt = AR; werase = AW; lnext = AV; flush = л0; min = 1; tine = 0;

-parenb -parodd cs8 hupcl -cstopb cread -clocal -crtscts

-ignbrk brkint -ignpar -parmrk -inpck -istrip -inlcr -igncr icrnl ixon -ixoff -iuclc -ixany
imaxbel iutf8

opost -olcuc -ocrnl onlcr -onocr -onlret -ofill -ofdel nlO crO tabO bsO vtO ffo

isig icanon iexten echo echoe echok -echonl -noflsh -xcase -tostop -echoprt echoctl echoke

Кроме того, команда stty(l) позволяет получить (а также задать) и другие на­
стройки драйвера терминала:

♦ скорость приемопередатчика последовательного интерфейса терминала
(speed 38400 baud);

♦ количество изображаемых терминалом строк и столбцов (rows 33; columns 119);

♦ флаги режимов работы приемопередатчика интерфейса (-parenb... hupcl -

cstopb...-inpck);

♦ флаги режимов обработки вводимых из терминала символов (-istrip...-igncr

icrnl...iutf8);

♦ флаги режимов обработки выводимых на терминал символов (opost...-ofdel)

и пр.

Так, например, флаг icanon включает или выключает (-icanon) «канонический»
(canonical) режим обработки вводимых (input) символов, т. е. возможности редак­
тирования вводимой строки при помощи управляющих символов А? и 'HI, а также
сигнализацию завершения ввода при помощи AD.

Флаг iexten включает «расширения» канонического режима стандарта POSIX, т. е.
удаление последнего введенного слова при помощи АИ, перерисовку введенной
строки при помощи AR и ввод литеральных значений управляющих символов при
помощи AV.

36 Глава 2

Управляющие символы *С, А\ и AZ штатного или аварийного завершения и приос­
тановки выполняющейся программы активируются флагом isig (листинг 2.7), раз­
решающим или запрещающим (-isig) посылку сигналов (signal, см. разд. 4.8).

Флаг icrnl включает трансляцию вводимого символа CR в символ LF, что позволяет
запускать команды клавишей (неожиданно, правда?), потому как основной
символ для этого действия все же — LF (так уж сложилось в UNIX со времен
телетайпа ASR-33).

К счастью, большинство из этих параметров и флагов применимы только при ра­
боте с настоящими аппаратными терминалами и интерфейсами. Поэтому пояснение
их назначения1 можно опустить хотя бы просто потому, что оно требует дополни­
тельных знаний специфики соответствующей аппаратуры, что не имеет ни особой
актуальности, ни является предметом нашего рассмотрения.

Нужно также отметить, что некоторые2 диалоговые программы «игнорируют» неко­
торые настройки терминала, например флаг «канонического» режима. Точнее, они
всегда работают в «неканоническом» режиме и сами обрабатывают управляющие
символы, зачастую переопределяя некоторые из них или добавляя обработку допол­
нительных, например для командного интерпретатора bash(1) это 'Ч* (reverse-search-
history), AS (forward-search-history), AD (delete-char) AL (clear-screen), AA (beginning-
of-line), AE (end-of-line), AF (forward-char) AB (backward-char), AP (previous-history),
^ (next-history) и др.

Листинг 2.7. №стрэйки Драйзера терминала

finn@ubuntu:~$ stty

speed 38400 baud; line = 0;

iutf8

finn@ubuntu:~$ stty -isig

finn@ubuntu:~$ stty

speed 38400 baud; line = 0;

iutf8

-isig

finn@ubuntu:~$ dd if=/dev/dvd of=dvd.iso

1 Исчерпывающе описанные в termios(3), вместе с управляющими действиями и предопределенными
им управляющими символами.

2 В большинстве своем те, которые используют библиотеку readline(3) для расширенного редакти­
рования вводимой строки или библиотеку ncurses(3) для работы с расширенным режимом термина­
ла. К ним относятся командный интерпретатор bash(1), постраничный' листатель less(1), текстовые
редакторы vi(1) и папо(1), Web-браузеры links(1) и 1упх(1), ftp-клиенты lftp(1) и ncftp(1), файловый
менеджер тс(1) и пр.

Пользовательское окружение ОС Linux 37

При выводе информации на терминал управляющие символы1 (в отличие от алфа­
витно-цифровых символов, подлежащих изображению каким-либо значком) служат
для управления-терминалом (см. ascii(7), console_codes(7) и табл. 2.1). Например, сим­
вол CR (carriage return) перемещает печатающую головку или курсор терминала в
начало строки, символ LF (line feed) — в начало новой строки, символ NL (nl, new
line) — на следующую строку, символ НТ (horizontal tab) — на несколько симво­
лов вправо, а символ BS (back space) стирает один символ слева от курсора (или
просто перемещает печатающую головку на один символ влево) и т. д.

Так, символ LF, используемый в «текстовых» файлах при выводе их на экран, по­
зволяет разделять «логические» строки файла и изображать их на разных «физиче­
ских» строках терминала, а символы SO (shift out) и SI (shift in) соответственно
включают и выключают альтернативный шрифт терминала, содержащий другие
знаки вместо маленьких букв латинского алфавита. Именно поэтому при ошибоч­
ном выводе на терминал «бинарного» файла, в содержимом которого весьма веро­
ятно встретить символ SO Ф, активирующий альтернативный шрифт, возникает
ощущение «испорченности» терминала, которую легко починить выводом символа
SI, возвращающего терминал к стандартному шрифту. Для этого достаточно лите-
рально ввести символ SI О, который будет расценен командным интерпретатором
как (несуществующая) команда и выведен на экран в сообщении об ошибке ©
(листинг 2.8).

finn@ubuntu:~$ cat /etc/localttne

#<#(1#Х?|
*(8@FP 8@8@LMTMMTMSTMDSTMSKMSDMSMEETEEST

MSK|4

' i f H H H + l - N * * - ®
О : команда не найдена

finn@ubuntu:~$ tee si-and-so.txt

hahahaAVAH+hahahaAVA0

h a h a h a ^ j f p f l f

finn@ubuntu:~$

Cm. W : [управляющие символы].

38 Глава 2

2.4. Управляющие последовательности
В расширенном режиме видеотерминалов W:[VT52], W:[VT100], W:[VT220] появилась
возможность вывода символов в произвольное место экрана и использования по­
лужирного, затемненного, негативного, подчеркнутого и других начертаний симво­
лов. Возможности ввода дополнились функциональными клавишами, клавишами
перемещения курсора, дополнительной клавиатуры и пр.

Для этого потребовались дополнительные управляющие символы, которые не по­
местились в кодировку ascii(7), потому терминалы стали использовать управляющие
последовательности символов1 console_Codes(7), предваряемые управляющим символом
ESC с кодом 6x1В.

Так, например, последовательность ESC # 8 вызовет визуальный тест выравнивания
краев терминала, заполнением буквой Е всех строк и столбцов, ESC с сбросит
терминал в исходное состояние, ESC [I n включит полужирное начертание,
ESC [2 п — затемненное начертание, ESC [4 п — подчеркивание, a ESC [6 п вернет
стандартное начертание символов.

Управляющие символы и их последовательности являются обычными байтами и
при литеральном вводе О с терминала могут быть сохранены в файл (лис­
тинг 2.9), например, при помощи команды tee(1). При последующем выводе в на
терминал, например при помощи команды cat(1), будут задействованы соответст­
вующие расширенные возможности. Побайтное содержимое файла можно при этом
увидеть © на терминале посредством восьмеричного od(1) или шестнадцатеричного
дампа hexdump(1), hd(1).

Листинг 2.9.!

finn@ubuntu:~$ tee esc.txt

О [1лЬо1сУ'¥*{ [0n,^C[2ndln*¥*[[0n,*V^[[4nunderscore4Sf*([0n,*V*C [7mreverso*V*[[* t

bold, din, under score .ИШ Ь - 1"

© finn@ubuntu:~$ cat esc.txt

bold .din. underscore .|revers9
a

finn@ubuntu:~$ od -c esc.txt

© 0000000 03? [1 n b о l d 033 [0 N , 033 I 2
0000020 m d i m 033 [0 П , 033 [4 m u n d

0000040 e г s c о г e 033 [0 n , 033 [7 n

0000060 г e V e г s e ©33 [0 n \n

0000074

Cm. W : [управляющие последовательности ANSI].

Пользовательское окружение ОС Linux 39

Многие «дополнительные» клавиши современных терминалов, такие как функцио­
нальные И. . Ш клавиши управления курсором Qf l HH> скроллингом
llQQI и пр., генерируют, (листинг 2.10) управляющие последовательности,
которые обрабатываются, например, библиотекой readline(3) и используются для
редактирования командной строки.

Листинг 2.10. Уьоамх>иЦь-: мь»лрдоад’*«липРСги клавиатуры

finn@ubuntu:~$ od -а

01 Ш *
0000006 esc О Q nl

0000004

finn@ubuntu:~$ od -a

0000000 esc 0 F nl

0000004

Несмотря на стандартизацию управляющих последовательностей, разные терминалы
все же имеют различия, поэтому в операционной системе появились базы данных
с описанием свойств и управляющих последовательностей терминалов termcap(5)
и terminfo(S) (листинг 2.11). Узнать ESC-последовательности можно при помощи
команды infocmp(1), а вывести их на терминал — включить соответствующий ре­
жим — при помощи команды tput(1).

finn@ubuntu:~$ tnfocnp

Reconstructed via infocnp from file: /lib/terminfo/l/linux

linuxllinux console,

an, bee, ccc, eo, nir, nsgr, xenl, xon,

colors#8, it#8, ncv#18, pairs#64,

op=\E[39;49n, rc=\E8, rev=\E[7n **, ri=\EM, rnacs=\E[10n,

sgr©=\E[0;10n snacs=\E[lln, snan»=\E[?7h, snlr=\E[4h,

snpch=\E[lln, snso=\E[7n, smul=\E[4m tbc=\E[3g,

finn@ubuntu:~$ tput snul

finnflubuntu:~$ tout rev

f inn(gubuntu : ~$ t p u t s j rO

finn@ubuntu:~$ tput snul | od -ac

0000000 esc [4 n

033 [4 n

0000004

40 Глава 2

Примером простейшей программы, использующей управляющие последовательности
для форматирования символов при выводе на экран, является утилита просмотра
справочных страниц man(1). В качестве более изощренных программам, исполь­
зующих управление расширенными возможностями терминала, можно привести
less(1), nano(1), mc(1), многие из которых используют для этого библиотеку ncruses(3).
А самым экстремальным примером использования управляющих последовательно­
стей терминалов является W : [ASCII-графика] и W : [ANSI-графика], реализующаяся биб­
лиотеками aalib и саса, при помощи которых на алфавитно-цифровом (!) терми­
нале можно просматривать видеофильмы (листинг 2.12), например, при помощи
видеоплееров mplayer(1) или mpv(1), поддерживающего эти библиотеки.

Листинг 2.12. Просмотр кидео на алфавитно-цифровом терминале

finn@ubuntu:~$ setfont Unil-VGA8

finn@ubuntu:~$ mpv --quiet — vo=caca https://www.youtube.con/watch?v=Zo7_00W3GzA

flnn@ubuntu:~$ youtube-dl — exec ’nplayer -quiet -vo aa:din:bold:reverse’
https://m m w .youtube.con/watch?v=Zo7_00W3CzA

2.5. Основной синтаксис командной строки
Основу интерфейса командной строки UNIX составляет командный интерпретатор
(КИ), являющийся первой и главной программой, запускаемой в сеансе пользова­
теля. Двусторонний попеременный диалог с командным интерпретатором начинает­
ся с приглашения ©, в ответ на которое пользователь вводит команду, отправляя
ее на выполнение управляющим символом LF 0х0А, получает результат ее исполне­
ния на терминале и новое приглашение, сигнализирующее о готовности КИ к ис­
полнению очередной команды (рис. 2.5). Многие другие диалоговые программы,
например Iftp, так же будут придерживаться синтаксиса и соглашений, принятых
в языке командного интерпретатора.

Базовый синтаксис (подчиняющийся второй части стандарта W :[P0SIX]) языка лю­
бого1 командного интерпретатора на самом деле достаточно прост и напоминает

$ command -х [- у] - z o p ta rg { - l | - - lo n g - o p t io n } a r g l a rg 2 . . .
0 0 0 * 0 О о

Рис. 2.5. Основной синтаксис командной строки

'Диалектов языка командного интерпретатора достаточно много: Bourne shell sh, Korn shell ksh,
C shell csh и т. д.

https://www.youtube.con/watch?v=Zo7_00W3GzA
https://mmw.youtube.con/watch?v=Zo7_00W3CzA

Пользовательское окружение ОС Linux 41

язык, близкий к естественному. Например, гп -f -R Изображения Музыка переводится
на человеческий как «удалить (гп) без шума и пыли (-f) и со всеми потрохами (-R)

каталоги Изображения и Музыка». Принято говорить, что команда состоит (см. рис. 2.5)
из лексем (лексических элементов), разделенных пробельными символами — про­
белами SP 0x20 и табуляциями НТ 0x09 — в любом количестве и сочетании. Первая
лексема О — это название команды, за которой следуют ее параметры: сначала
опции (они же — ключи, они же — модификаторы) без аргументов © и О или
с аргументами ©, а в конце — аргументы © самой команды. Название коман­
ды — это глагол, указывающий, ЧТО делать; опции — это наречия и прочие час­
ти речи, объясняющие, КАК это делать; и наконец, аргументы задают то, с ЧЕМ
это делать. В разнообразной документации при описании синтаксиса команды, ее
опций и аргументов принято использовать квадратные скобки ® для указания не­
обязательности опции или аргумента, фигурные скобки © и вертикальную черту
для указания выбора из вариантов и многоточие © для указания повторяемости.

Получив команду, интерпретатор определяет, является ли она псевдонимом, встро­
енной в интерпретатор, или реализуется внешней программой, подлежащей запуску
(листинг 2.13).

Листинг 2*13. утилиты which и type

flnn@ubuntu:~$ which date

/usr/bin/date

finn@ubuntu:~$ type date

date является /usr/bin/date

finn@ubuntu:~$ type -a Is

Is - это псевдонимом для «Is -*color=auto»

Is является /usr/bin/ls

Is является /bin/ls

finn@ubuntu:~$ type -a pwd

pwd - это встроенная команда bash

pwd является /usr/bin/pwd

pwd является /bin/pwd

finn@ubuntu:~$ type which

для which вычислен хэш (/usr/bin/which)

finn@ubuntu:~$ type type

type - это встроенная команда bash

При наличии нескольких вариантов команды наивысший приоритет имеют псевдо­
нимы, наименьший — внешние команды. Подстановку псевдонимов можно увидеть,
включив трассировку выполнения команд интерпретатора при помощи команды set

(листинг 2.14).

42 Глава 2

листинг 2.14, ПидЛановка псевдончмоЕ

finn@ubuntu:~$ type Is

Is - это псевдонимом для «Is --color=auto»>

finn@ubuntu:~$ set -x

ftnn@ubuntu:~$ Is -ASs

•" + Is --color=auto -ASs

итого 36

12 examples.desktop 4 .bashrc 4 .profile 4 .lesshst

4 .cache 4 .bash_history 4 .bash_logout

2.5.1. Опции командной строки
В истории развития операционной системы UNIX программы использовали разные
способы задания своих опций:

♦ односимвольные, например Is -а -I (что эквивалентно Is -I -а или Is -al или
Is -la);

♦ многосимвольные, например find /var -xdev;

♦ длинные, например ps --help;

♦ с аргументами, например kill -n 15 1, или kill -nl5 1, или du -В И, или du -ВМ,

или find /etc -type d, или даже Is --sort=size;

♦ «нестандартные», например set +x, tar czf tar.tgz ~ или dd if=/dev/dvd of=dvd.iso.

Знак «минус», предваряющий опции, естественно, используется для того, чтобы
отличать1 их от аргументов. Среди прочих он был выбран потому, что редко
встречается как первый символ в аргументах команд (в качестве которых зачас­
тую выступают имена файлов), и еще потому, что на терминале классической2
UNIX набор более логичного знака «плюс» (что могло бы означать «включить»,

ilffl. В ре-«активировать») требовал достаточных усилий по нажатию клавиши Щ д
зультате получилось, что, например, в команде set опция х (execution trace)
в форме -х включает, а +х выключает трассировку выполнения команд.

В тех редких случаях, когда аргумент команды все же начинается с символа «ми­
нус» и тем самым похож на опцию (представим, что нужно выполнить действие
над файлом с именем -=filenane=-), специальная опция -- сигнализирует о конце
списка опций (листинг 2.15), за которым следуют лексемы, обязанные расцени­
ваться как аргументы вне зависимости от их написания.

1 В примере с командой m лексема -R означает опцию, требующую выполнить рекурсию (англ.
recursion), но не аргумент — объект, подлежащий удалению.

2 Очередной привет из прошлого от Teletype ASR-33.

Пользовательское окружение ОС Linux 43

Листинг 2.15. К О Н с ц гпися О П цИ Й
................

- - — "

fi.nn@ubuntu:~$ stat -=ftlename=-

stat: неверный ключ - «=»

По команде «stat --help» можно получить дополнительную информацию.

finn@ubuntu:~$ stat ----=ftlename=-

Файл: -=filename=-

Размер: 0 Блоков: 0 Блок В/В: 4096 пустой обычный файл

Устройство: fc00h/64512d Inod£: 26870044 Ссылки: 1

Доступ: (0600/-™.......) Uid: (1000/ finn) Ctd: (1000/ flnn)

Доступ: 2019-11-17 10:43:36.520984570 +0300

Модифицирован: 2019-11-17 10:43:36.520984570 40300

Изменён: 2019-11-17 10:43:36.520984570 40300

Создан: -

Короткие, односимвольные опции (например, -I -а) без своих аргументов издревле
можно было объединять в группы (-1а или -al), однако их в этом случае сложно
отличать от многосимвольных (-xdev) или односимвольных, склеенных со своими
аргументами (-ВМ). Поэтому позже появились длинные (в так называемом, GNU-
стиле) опции, обозначаемые двумя знаками «минус», позволяющие навести некото­
рый порядок в виде --block-size=H вместо -ВМ или, предположим, --dont-descent

вместо -xdev.

2.6. Справочные системы
Используемые в Linux электронные справочные системы (online help) являются
логичным следствием как его родства с семейством операционных систем UNIX —
страницы руководства man(1) (manual pages), так и принадлежностью к свободному
программному обеспечению под эгидой движения GNU — справочная система
info(1). Следует отметить, что понятие online в контексте справочных систем вовсе
не означает их доступность через Интернет, как это часто, но ошибочно воспри­
нимается сегодня. В рассматриваемом контексте online означает немедленную дос­
тупность справочной информации непосредственно из программного обеспечения
по сравнению со справочной информацией, доступной в печатной, offline, форме.

2.6.1. Система страниц руководства
Самой известной справочной системой, сопровождающей UNIX практически с мо­
мента ее рождения, является справочная система страниц руководства, информация
из которой доступна при помощи команд man(1), apropos(1) и whatis(1). Справочная

44 Глава 2

система man- pages(7) состоит из отдельных страниц, посвященных отдельным коман­
дам, специальным файлам устройств, конфигурационным файлам, системным и
библиотечным вызовам и другим понятиям, которые сгруппированы по восьми
(обычно, но есть исключения из правил) секциям. Каждая секция имеет заголо­
вочную страницу intro, описывающую назначение самой секции (листинг 2.16).

Листинг 2.16 Секции справа жог. системы тан(1)

flnn@ubuntu:~$ whatis intro

intro (8) - introduction to administration and privileged commands

intro (7) - introduction to overview and miscellany section

intro (3) - introduction to library functions

intro (4) - introduction to special files

intro (1) - introduction to user commands

intro (5) - introduction to file formats and filesystems

intro (6) - introduction to games

intro (2) - introduction to system calls

finn@ubuntu:~$ whatis whatis

whatis (1) - показывает однострочные описания справочных страниц

finn@ubuntu:~$ whatis apropos

apropos (1) - поиск в именах справочных страниц и кратких описаниях

finn@ubuntu:~$ whatis nan

man (1) - доступ к справочным страницам

man (7) - macros to format man pages

Естественным образом справочная система описывает сама себя, поэтому извест­
нейшей «мантрой» в операционной системе является пап пап, т. е. запрос страницы
руководства, посвященной самой команде man(1). Сами страницы руководства на­
писаны на языке разметки текста roff1 и размещаются в сжатых gz-файлах «сек­
ционных» подкаталогов nanl, nan2, ..., папв каталога /usr/share/nan (листинг 2.17).
Страницы руководства частично поставляются переведенными на различные нацио­
нальные языки, отличные от английского.

Листинг 2.17. Фермат страниц гпеазочной системы ти l - • !v /
т ж л
■ -Г^—V- _i

finn@ubuntu:~$ nan -w nan

/usr/share/man/ru/manl/man.1.gz

finn@ubuntu:~$ file /usr/share/nan/m/nanl/nan.l.gz

1 Система подготовки текстов, доставшаяся 'в наследство от классической UNIX.

Пользовательское окружение ОС Linux 45

/usr/share/man/ru/manl/man.l.gz: gzip compressed data, max compression, from Unix,
original size modulo 2Л32 65164

finn@ubuntu:~$ file -z /usr/share/man/ru/manl/man.l.gz

/usr/share/man/ru/manl/man.l.gz: troff or preprocessor input, UTF-8 Unicode text
(gzip compressed data, max compression, from Unix)

finn@ubuntu:~$ whatis file

file (1) - determine file type

Команда man(1), таким образом, ответственна за поиск указанной пользователем
страницы, распаковку ее сжатого файла при помощи распаковщика Qzip(1), форма­
тирования при помощи процессора troff(1) и (по умолчанию) вывод результата на
терминал при помощи постраничного «листателя» less(1). Именно процессор troff
умеет посредством управляющих последовательностей нужного терминала раскра­
шивать вывод страниц руководства правильным образом, а «листатель» less про­
кручивать подготовленную справку вперед и назад.

Использование языка разметки позволяет форматировать страницу одинаково
удобно для просмотра на разных терминалах с различным количеством столбцов,
которые учитывает troff, и разным количеством строк, учитываемым less. Так, на­
пример, результат одинаково хорош и на псевдотерминале в окне эмулятора тер­
минала xterm или gnome-terminal развернутого в любой размер, и на виртуальном
терминале консоли с загруженным шрифтом любого размера. Более того, исполь­
зование универсального языка разметки и соответствующий «драйвер» troff позво­
ляет преобразовывать страницы руководства в самые разные виды. Например,
в «принтерный» PostScript или PCL, пригодный для печати на принтере с высокой
разрешающей способностью, или в HTML1 для просмотра в html-браузере (лис­
тинг 2.18).

Листинг 2.18. Форматирование справочных страниц руководства для печати и для html-браузера

finn@ubuntu:~$ man -t man > man.print.1

finn@ubuntu:~$ file man.print.1
man.print.1: PostScript document text conforming DSC level 3.0

finn@ubuntu:~$ man -Tlj4 man > man.print.2

f inn@ubuntu:~$ file man.print.2

man.print.2: HP PCL printer data

finn@ubuntu:~$ man -Thtnl man > man.htnl

finn@ubuntu:~$ file man.html

man.html: HTML document, ASCII text, with very long lines

При наличии установленного пакета groff.

46 Глава 2

При просмотре страниц руководства на терминале навигация по изображаемой
справочной странице производится так, как предусмотрено используемым «листате-
лем», которым по умолчанию в большинстве случаев будет less(1), приемник клас­
сического тоге(1). Одним из самых полезных навигационных действий в справоч­
ных системах (табл. 2.2) является поиск регулярных выражений1. Собственно,
страницы руководства разбиты на разделы, заголовки которых размещаются в на­
чале строк и записываются в верхнем регистре. Например, SYNOPSIS — краткий
обзор, EXAMPLES — примеры, FILES — используемые программой (конфигурацион­
ные) файлы, ENVIRONMENT — переменные окружения и пр. Поэтому для перемеще­
ния к разделу TOPIC очень удобно использовать символ поиска / и выражение
АТ0Р1С, что буквально означает: найти в начале строки — А слово — TOPIC.

Таблица 2.2. Клавиши навигации «листателей» страниц

Навигационное действие
Управляющий

символ или
клавиша less

Управляющий
символ или клавиша

тоге

Управляющий 1
символ или клавиша \

info

Выход Q или г Q или q или ЛС Q или q или ЛС

Справка
содержимое этой таблицы

h или Н h или? h или ? или ЛН

Вниз одну строку CR или]илиQ CR В или AN

Вверх на одну строку ЛРили килиQ В или ЛР

Вниз один экран WspacTB j
ИЛ И 030 ИЛИ 0 3 0 1

Вверх один экран ь или (0 0 b гая или шн
Поиск регулярных выражений вперед / / / или S

Поиск назад

Повторить поиск п п }
Повторить поиск

в обратном направлении N {

В конец страницы (ноды) G или >
или 0 0

е или 0 0
или гая >

В начало страницы (ноды) g или<
или Ноте

b или Ноте
или ESC <

Следующая нода Неприменимо Неприменимо]
Предыдущая нода1 * Неприменимо Неприменимо [

1 Подробнее о регулярных выражениях см. разд. 5.8.

Пользовательское окружение ОС Linux 47

2.6.2. Справочная система GNU

Еще одной системой документации является система W :[GNU texinfo]. В отличие от
справочника man, выступающего, по сути, кратким руководством по командам, их
опциям и аргументам, справочник info представляет собой развернутое руково­
дство с примерами и объяснениями.

Справочная система состоит из предварительно подготовленных (гипер-)текстовых
страниц, размещенных в сжатых файлах каталога /usr/share/tnfo, оглавлением ко­
торым служит так называемый «каталог» документации. Каждая страница структу­
рирована при помощи иерархически упорядоченных, так называемых «нод», анало­
гов книжных разделов/подразделов/глав/секций.

Язык разметки texinfo, как и язык roff в системе страниц руководства, позволяет
подготавливать разные представления справочной информации из единого источни­
ка при помощи специальных1 инструментов, но в отличие от страниц руководства
man только при наличии исходных файлов документации.

2.6.3. Встроенная справка командного интерпретатора
Как было указано ранее, команды интерпретатору могут приводить к вызову
внешних программ операционной системы или исполняться непосредственно ин­
терпретатором, будучи встроенными в него. Внешние программы зачастую доку­
ментируются отдельными страницами руководства man или отдельными справочны­
ми страницами info, тогда как встроенные команды являются частью интерпретато­
ра и естественным образом описываются все вместе на справочной странице,
посвященной интерпретатору (листинг 2.19).

finn@ubuntu:~$ type cd

cd - это встроенная команда bash

finn@ubuntu:~$ nan cd

Нет справочной страницы для cd

flnn@ubuntu:~$ whatis cd

cd: ничего подходящего не найдено.

finn@ubuntu:~$ nan bash

SHELL BUILTIN COMMANDS

Unless otherwise noted, each builtin command documented In this section

as accepting options preceded by - accepts --to signify the end of the

При наличии установленного пакета texinfo и исходных файлов документации . te x i .

48 Глава 2

options. The :, true, false, and test builtins do not accept options

and do not treat -- specially. The exit, logout, break, continue, let,

•- cd [-L|[-P [-e]] [-@]]”[dir]

Change the current directory to dir. if dir is not supplied, the

value of the HOME shell variable is the default. Any additional ar

Однако обращаться каждый раз к весьма внушительной справке по командному
интерпретатору не совсем удобно, поэтому встроенная в командный интерпретатор
команда help позволяет получить краткую справку по встроенным командам интер­
претатора (листинг 2.20).

Р---- д УС ц------г ш - ж - г т — -яя?. - - - ----------
Листинг 2.20. Встроенная справка командного интерпретатора

finri@ubuntu:~$ help -d help

help - Display information about builtin commands.

finn@ubuntu:~$ help -d cd

cd - Change the shell working directory.

finn@ubuntu:~$ help cd

cd: cd [-L|[-P [-e]] [-@]] [каталог]

Change the shell working directory.

Change the current directory to DIR. The default DIR is the value of the

HOME shell variable.

2.7. Пользователи и группы
Как было указано ранее, для начала работы в многопользовательской операцион­
ной системе пользователю необходимо «зарегистрироваться», предъявляя имя своей
пользовательской учетной записи и пароль, подтверждающий право на ее исполь­
зование. В результате регистрации в системе запускается командный интерпрета­
тор — первая программа пользовательского сеанса.

Учетные записи (УЗ) служат для авторизации, т. е. для разграничения прав дос­
тупа субъектов (процессов пользователей или процессов системных служб) к объ­
ектам (файлам, другим процессам, системным вызовам пр.).

Различают пользовательские и групповые учетные записи, при этом каждая поль­
зовательская учетная запись идентифицируется уникальным числовым «пользова­
тельским идентификатором» — UID (User Identifier), а каждая групповая — таким
же уникальным числовым «групповым идентификатором» GID (Group Identifier).
Именно эти числовые идентификаторы и используются ядром операционной систе­

Пользовательское окружение ОС Linux 49

мы при определении и проверке прав доступа субъектов относительно объектов
(листинг 2.21).

Учетные записи пользователей используются для аутентификации (проверки под­
линности) их при регистрации в системе по имени и паролю, а учетные записи
групп — для классификации пользовательских УЗ (по функциям, задачам, ролям,
проектам или другими способами) и последующей раздачи прав доступа этим
♦классам» пользователей.

Листинг 2.21. Пользовательские идентификаторы UID и СЮ первичной и дополнительных групп |

finn@ubuntu:~$ id

uid=1000(finn) gid=1000(finn) rpynnw=1000(finn),4(adm),..., 130(lxd),131(sambashare)

Каждая учетная запись пользователя обязательно связана с одной групповой учет­
ной записью, так называемой «первичной» группы пользователя. Исторически сло­
жилось, что в ранней UNIX членство пользователей в группах определялось дина­
мически, т. е. после регистрации пользователя в системе ему (точнее — его про­
цессу, см. разд. 4.5.1) выдавался идентификатор (и, как следствие, права доступа)
только одной группы. Для выполнения действий в другой роли (получения других
групповых идентификаторов) нужно было «заново зарегистрироваться в группе»
при помощи команды newgrp, предъявляя имя и пароль (!)’группы. Позднее (и до
сих пор) членство в группе стало статическим, т. е. при регистрации в системе
пользователю выдают идентификаторы всех групп, в которых он состоит, при этом
первая группа носит название первичной (primary), а остальные — дополнительных
(supplementary).

Кроме этих основных свойств, каждая учетная запись характеризуется именем до­
машнего каталога и именем командного интерпретатора (запускаемого при ре­
гистрации в системе). Дополнительно, учетная запись пользователя может содер­
жать полное имя пользователя, рабочий и .домашний телефоны, рабочий адрес и
прочую информацию, которую можно посмотреть при помощи pinky(1) и finger(l)
(листинг 2.22), а изменить при помощи chfn(1).

Листинг 2.22. Свойства учетной записи пользователи

finn@ubuntu:~$ finger dvk

Login: dvk Name: Dmitry V. Ketov

Directory: /home/dvk Shell: /bin/bash

Office Phone: +7(812)703-02-02 Home Phone: ---

On since Sun Nov 17 01:51 (MSK) on :0 from :0 (messages off)

On since Sun Nov 17 10:38 (MSK) on pts/1 from 10.0.2.2

5 seconds idle

50 Глава 2

On since Sat Nov 16 20:59 (MSK) on tty3 34 minutes 19 seconds idle

(messages off)

On since Sat Nov 16 21:12 (MSK) on tty4 10 hours 3 minutes idle

(messages off)

New mail received Sun Nov 17 11:14 2019 (MSK)

Unread since Sun Nov 16 22:31 2019 (MSK)

No Plan.

Учетная запись системного администратора с привилегированными (а точнее —
неограниченными в буквальном смысле) правами доступа обычно называется root

и всегда имеет идентификатор UID=6. Учетные записи, «от лица которых» выполня­
ются процессы системных служб, называются псевдопользовательскими и иденти­
фицируются в диапазоне UID=1— 499 или UID=1— 999, а начиная с UID=500 (redhat) или
UID=1000 (debian) и далее идентифицируются учетные записи обычных пользо­
вателей.

2.7.1. Передача полномочий

Для выполнения определенных административных (привилегированных) действий,
например для установки системного времени при помощи команды date(1), нужны
права доступа к определенным системным вызовам. В классическом UNIX были
предусмотрены простые правила1 разграничения «все или ничего», т. е. все приви­
легированные действия были разрешены суперпользователю root с UID=0, и ника­
кие привилегированные — всем остальным пользователям. В этих и подобных си­
туациях для администрирования операционной системы непривилегированным поль­
зователям необходимо временно воспользоваться правами суперпользователя, что
реализуется посредством классической команды явной передачи полномочий
su(1) — switch user, или более поздней команды sudo(1) — switch user do контро­
лируемой передачи полномочий.

Основное различие между su(1) и sudo(1) заключается в том, что команда su реали­
зует «повторную регистрацию в системе», требуя указать имя и ввести пароль того
пользователя, чьи полномочия нужно получить. Напротив, команда sudo реализует
явные правила sudoers(5) передачи полномочий, указанные в файле /etc/sudoers,

и требует подтвердить передачу полномочий паролем того пользователя, который
получает передаваемые полномочия (листинг 2.23).

1 На текущий момент времени в Linux реализована система POSIX.le привилегий capabilities^),
подробнее см. разд. 4.5.2.

Пользовательское окружение ОС Linux 51

_ - ------------------- ----------- — --------------------------- — — - -------— — ----------------------Г------------------ —

Листинг 2 23. Передача полномочий

iceking@ubuntu:~$ su -l firm

Пароль: <пароль finn'a>

finn@ubuntu:~$ id

uid=1001(finn) gid=1001(finn) группы=1001(finn)

finn@ubuntu:~$ su -1 jake

Пароль: <пароль jake'a>

jake@ubuntu:~$ id

uid=1002(jake) gid=1002(jake) группы=1002(jake)

jake@ubuntu:~$ в

finn@ubuntu:~$ Щ
iceking@ubuntu: ~$ sudo -i -u finn

[sudo] пароль для iceking: <пароль iceking'a>

finn@ubuntu:~$ id

uid=1001(finn) gid=1001(finn) группы=1001(finn)

finn@ubuntu:~$ sudo -i -u jake

[sudo] пароль для finn: <пароль finn'a>

finn отсутствует в файле sudoers. Данное действие будет занесено в журнал.

Нужно заметить, что в Ubuntu Linux пароль суперпользователя root заблокирован,
что не позволяет использовать учетную запись как «обычную» для регистрации в
системе и превращает ее в «ролевую». Как следствие, привилегиями «роли» супер­
пользователя можно пользоваться лишь при помощи sudo и только непривилегиро­
ванным пользователям, явно указанным в правилах передачи sudoers(5).

2.7.2. Хранилища учетных записей
Информация об идентификаторах UID и GID, именах пользователей и групп, их
паролях и прочих свойства учетных записей размещаются (в простейшем случае)
в файловых «хранилищах» — обычных текстовых файлах каталога /etc, формируя
базы данных пользовательских /еtc/passwd, /etc/shadow и групповых /etc/group,

/etc/gshadow учетных записей. Формат и структура этих файлов хорошо документи­
рованы в руководстве passwd(5), shadow(5) и group(5), gshadow(5) и представляют собой
простейшие текстовые таблицы, где свойства каждой учетной записи представлены
набором столбцов одной строки, разделенных символом двоеточия : (листинг 2.24).

Листан. ,".24. Базь. данных пользовательских учен: записей

finn@ubuntu:~$ cat /etc/passwd

root:x:0:0:root:/root:/bin/bash

52 Глава 2

dvk:x:1000:1000:Dmitry V. Ketov,,+7(812)703-02-02,,:/home/dvk:/bin/bash

finn@ubuntu:~$ cat /etc/group

dvk:x:1000:

Ipachin:x :119:dvk,f inn

sambashare:x :131:dvk,f inn

При использовании «коммутатора службы имен» (NSS, W :[Nam e Service Switch]) име­
ется возможность хранить базы данных учетных записей в любых хранилищах,
включая сетевые службы каталогов NIS, NIS+, LDAP, активный каталог Microsoft
Windows и даже реляционные сетевые базы данных SQL — при помощи соответ­
ствующих модулей NSS (листинг 2.25) и согласно настройкам коммутатора
nsswitch.conf(5).

Листинг 2.25. Хранилища пользовательски* учетных записей п модули HSS

finn@ubuntu:~$ cat /etc/nsswitch.conf

passwd: files systemd "•

group: files systemd

shadow: files

finn@ubuntu:~$ find A W -name 'libnss_*'

/lib/x86_64-linux-gnu/libnss_systemd.so.2

/lib/x86_64-linux-gnu/libnss_files.so "•

/lib/x86_64-linux-gnu/libnss_winbind.so.2

finn@ubuntu:~$ dpkg -S Aib/x86_64-linux-gnuAibnss_winbind.so.2

libnss-winbind:amd64: /lib/x86_64-linux-gnu/libnss_winbind.so.2

finn@ubuntu:~$ dpkg -s libnss-winbind

Package: libnss-winbind

This package provides nssjwinbind, a plugin that integrates

with a local winbindd server to provide user/group name lookups to the

system; and nssjwins, which provides hostname lookups via both the NBNS and

NetBIOS broadcast protocols.

2.8. Переменные окружения и конфигурационные dot-файлы
Для одноразовой параметризации выполнения команд служат их индивидуальные
ключи, указываемые каждый раз при запуске команды, но иногда требуется уста­
новить некий параметр, который бы действовал в течение всего сеанса работы
пользователя с системой, или общий параметр, который действовал бы для всех

Пользовательское окружение ОС Linux 53

команд, запускаемых в сеансе. Таким механизмом являются окружение environ(7) и
переменные окружения, значения которых можно увидеть при помощи команды
env(1). Переменные окружения обычно документируются на странице руководства
к тем программам, на которые воздействуют, как правило, в разделе ENVIRONMENT.

Например, переменная окружения PATH содержит перечисление разделенных симво­
лом : имен каталогов, где любой командный интерпретатор ищет одноименные
запускаемым командам программы (листинг 2.26).

Листинг 2.26. Переменная окружения i АТК

ftnn@ubuntu:~$ date

Вс ноя 17 11:31:24 MSK 2019

ftnn@ubuntu:~$ help -d unset

unset - Unset values and attributes of shell variables and functions.

flnn@ubuntu:~$ unset PATH

flnn@ubuntu:~$ date

bash: date: Нет такого файла или каталога

Переменные окружения LANGUAGE и LANG содержат идентификаторы языка, на кото­
ром программы стараются общаться с пользователем (листинг 2.27); например,
man(1) ищет перевод страницы руководства. Если точнее, то переменная LANGUAGE на
самом деле определяет список языков, в порядке которого определяется язык об­
щения, т. к. далеко не все программы имеют переводы, а если и имеют, то не на
все языки. Переменная LANG определяет язык по умолчанию, если в порядке про­
смотра LANGUAGE ничего подходящего не найдено. Набор переменных окружения
LC_* определяет другие языковые особенности, отличные от языка сообщений; на­
пример, переменная LC_TIME определяет формат выводы даты и времени. Кроме
того, переводы устанавливаются в систему из специальных языковых пакетов, а
список доступных можно увидеть при помощи команды locale(1).

Листинг 2.27. Пере *ейныё окружения LANGUAGE LANG и 1С_*

flnn@ubuntu:~$ date

Вс ноя 17 12:55:36 MSK 2019

flnn@ubuntu:~$ locale

LC_TIME=ru_RU.UTF-8 "•

flnn@ubuntu:~$ locale -a

C

C.lFTF-8

POSIX

54 Глава 2

en_CB.utf8

en_US.utf8

ko_KR.utf8 -•

ru_RU.utf8

ru_UA.utf8

finn@ubuntu:~$ export LC_TIME=ko_KR. 1ПТ-8

ftnn@ubuntu:~$ date

<5 2019. 11. 17. («Ц) 13:33:12 MSK

finn@ubuntu:~$ cal

11# 2019

5L
1 2

3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

finn@ubuntu:~$ tar

tar: Необходимо указать один из параметров «-Acdtrux», «--delete» или «--test-label»

Попробуйте «tar --help» или «tar --usage» для

получения более подробного описания.

ftnn@ubuntu:~$ locale

LANGUAGE=ru:en **

ftnn@ubuntu:~$ export LANGUAGE=ko:ru:en

finn@ubuntu:~$ tar

tar: '-Acdtrux', '--delete', '--test-label' # # ^ ^ У Ч " & Ч ' ^ ^ А Ч ^ Ч Ч '

4 ^ 1?!: 'tar --help' Hi ̂7 'tar --usage'#
flnn@ubuntu:~$ $ whatis passwd

passwd (5) - 4) ^ # ^ 4 #

passwd (1) - изменяет пароль пользователя "•

passwd (lssl) - compute password hashes

Переменная окружения PAGER указывает имя программы «листателя», использующе­
гося другими программами, вывод которых не умещается на один экран. Так, на­
пример, поступает man(1) при отображении отформатированной страницы руково­
дства, mail(1) — при просмотре длинного письма, mysql(1) или p s q l(1)- при выводе
большого количества результирующих строк ответа за запрос к базе данных. Наи­
более распространенным «листателем» является less(1), используемый как замена
менее удобного «классического» more(1).

Пользовательское окружение ОС Linux 55

Переменные окружения EDITOR и VISUAL указывают имя текстового редактора, кото­
рый будет вызван другими программами при необходимости редактировать текст.
Например, crontab(1) использует указанный таким образом редактор для изменения
списка периодических заданий, mail(1) — для редактирования отправляемого сооб­
щения, mysql(1) или psql(1) - для редактирования длинных запросов к базе данных,
a l f t p (D - для редактирования списка «закладок». Очень часто в качестве редактора
используется «классический» и достаточно непривычный vi(1), который можно таким
образом заменить более удобным папо(1).

Переменная BROWSER указывает имя просмотрщика HTML (листинг 2.28), который
будет использован другими программами при необходимости показать HTML-стра­
ницу, например отформатированную таким образом страницу руководства man(1).

finn@ubuntu:~$ nan -Н Is

sh: 1: exec: www-browser: not found

nan: couldn't execute any browser fron exec www-browser

ftnn@ubuntu:~$ export BROWSER=chrorrlun-browser

finn@ubuntu:~$ nan -H Is

В текущем сеансе браузера создано новое окно.

Некоторые программы имеют специальную переменную окружения, которая содер­
жит ключи, применяемые каждый раз при вызове программы, например MANOPT для
man(1). Такие переменные для программ XXX чаще всего имеют имя ХХХОРТ или
xxx. optio ns или даже ххх, например z ip o p t для zip(1), tar_o ptio ns д л я tar(1), g z ip для
gzip(1) и less/ more для less(1) и тоге(1) соответственно.

Установив, например, MANOPT=-H (BROWSER=chromiun-browser, или BROWSER=firefox, или
BROWSER=links, или BROWSER=lynx), можно просматривать страницы руководства в (од­
ном из указанных графическом и/или текстовом) Web-браузере, а установив GZlP=-9,
можно заставить упаковщик всегда использовать девятую (самую сильную, но са­
мую медленную) степень сжатия.

Переменная окружения PS1 изменяет приглашение командного интерпретатора и
может содержать подстановки (документированные в bash(1), см. раздел PROMPTING),
например, \и — имя зарегистрированного в системе пользователя, \h — короткое
собственное имя компьютера, \w — имя текущего каталога и \$ символ приглаше­
ния $ для обычного пользователя и # для суперпользователя root, \t — время
в 24-часовом формате, \е — управляющий символ ESC и пр.

Используя подстановки PS1 и управляющие ESC-последовательности console_codes(7)
или воспользовавшись базой данных управляющих ESC-последовательностей termiflfo(5)

56 Глава 2

и командой tput(1), можно модифицировать приглашение по своему предпочтению
(листинг 2.29).

Листинг 2.29. Перемечнаь окруженья °S1

finn@ubuntu:~$ nan 5 teminfo

enter_reverse_node rev nr turn on reverse

video node

enter_dtn_node din nh turn on half-bright

node

exit_att ribute_node sgrO ne turn off all

attributes

flnn@ubuntu:~$ tput rev | od -a

0000000 esc [7 n

0000004

finn@ubuntu:~$ tput din | od -a

0000000 esc [2 n

0000004

ftnn@ubuntu:~$ tput sgrO | od -a

0000000 esc (В esc [n

0000006

ftnn@ubuntu:~$ PS1='\e[2n\t\n\e(B\e[n\u@\h \e[7n\w\e(B\e[n \$ '

13:17:25
finn@ubuntu | $ cd /etc

13:17:25
finn@ubuntu ЯВИ $

Или даже можно воспользоваться поддержкой символов unicode(7) в UTF-8(7) пред­
ставлении на терминале1 (листинг 2.30).

Лш>.,»г2.30.

finn@ubuntu:~$ stty

speed 38400 baud; line = 0;

eol = M-A?; eol2 = M-A?; swtch = M-A?;

ixany lutfQ '

1 В этом п р и м ер е эм ул я тор тер м и н ал а в гр аф и ч еск ом и н т ер ф ей се по ум ол ч ан ию и м еет н уж н ы е

ш риф ты , а на к он сол и н е о б х о д и м о за гр у зи ть п о дх о д я щ и й U n ic o d e -ш р и ф т , н ап р и м ер к ом ан дой

setfont Uni2-Terninusl6.

Пользовательское окружение ОС Linux 57

finn®ubuntu:~$ PSl='\u\342\230\273 \h:\w\$ '

fi.nnr*ubuntu:~$

Переменная окружения TERM устанавливает имя терминала, по которому программы,
использующие управляющие ESC-последовательности (например, файловый менед­
жер тс(1)), берут их значения из базы данных termiflfo(5). Для эмуляторов термина­
ла в графическом интерфейсе ее значение обычно TERM=xtern или TERM=xtern-color,

для консоли Linux TERM=linux, а для настоящего аппаратного терминала W :[VT100]
TERM=vtlOO. При неправильном значении переменной (листинг 2.31), например, могут
«перестать работать» функциональные клавиши просто потому, что программа
будет ожидать поступление определенной ESC-последовательности О, соответст­
вующей функциональной клавише, а в реальности будет поступать другая ©.

Листинг 2.31. Переменная я1|ркення TERM

finn@ubuntu:~$ env

TERM=xterm

finn®ubuntu:~$ TERhfclinux

finn@ubuntu:~$ infocnp

О kfl8=\E[32~, kfl9=\E[33~, kf2=\E[[B **, kf20=\E[34~,

finn@ubuntu:~$ od -a

*0
© 0000000 esc 0 Q ^ nl

0000004

Стоит отметить, что переменные окружения сохраняют свои установленные значе­
ния в оперативной памяти командного интерпретатора и теряют их при заверше­
нии сеанса. Для установки постоянных значений параметров программ логично
поместить их в какое-либо долгосрочное хранилище, например в файлы на диске.
Специальные файлы и каталоги, сохраняющие конфигурационные параметры, по
соглашению имеют имена, начинающиеся с точки (англ, dot — точка), располага­
ются в домашнем каталоге пользователя и носят название dot-файлов (лис­
тинг 2.32).

finn@ubuntu:~$ Is -А

.bash_history

58 Глава 2

.bash_logout

.bashrc

.profile

.Iftp

.ssh

finn@ubuntu:~$ file .profile .bashrc .Iftp .ssh

.profile: ASCII English text

.bashrc: ASCII English text

.Iftp: directory

.ssh: directory

Некоторые программы, например lftp(1), ssh(1) или ssh(1), имеют собственные конфи­
гурационные файлы и/или каталоги, тогда как простейшие less(1), tar(1) и zip(1)
предполагают, что «постоянные» параметры по-прежнему задаются при помощи
переменных окружения LESS, TAR_0PTI0NS и ZIPOPT.

В таких случаях «постоянные# значения переменных сохраняются в каком-либо
конфигурационном файле командного интерпретатора bash, например считываемом
в начале сеанса — .profile или при каждом запуске — .bashrc (листинг 2.33).

Яил*нг233.

finn@ubuntu:~$ less -/.bashrc

GZIP=-9v

PSl='\e[2m\t\e(B\e[m \u@\h \e[7m\w\e(B\e[m \$ '

Конфигурационные dot-файлы представляют собой текст на некотором языке, по­
нятном конфигурируемой программе, например язык командного интерпретатора
bash(1) используется в .profile и .bashrc.

В большинстве случаев имена dot-файлов и их язык документируются в страницах
руководства к «их» программам, обычно в разделе FILES. Нередко конфигурацион­
ному файлу посвящается отдельная страница в пятой секции, например папогс(5)
для dot-файла .папогс текстового редактора папо(1) или netrc(5) для файла .netrc

FTP-клиентов ftp(1) и lftp(1), или ssh_C0flfig(5) для .ssh/config SSH-клиента ssh(1).

В отдельных случаях, когда конфигурируется не конкретная программа, а общая
для многих программ библиотека, например readline(3)', название переменных окру- 1

1 readline(3) — б и б л и о т ек а р а сш и р ен н о го р едак ти р ован и я в води м ой к ом ан дн ой стр ок и , котор ая

и сп о л ь зу ю т ся bash(1), lftp(1), mysql(1) и пр.

Пользовательское окружение ОС Linux 59

жения, имя и язык конфигурационного файла можно получить (INPUTRC и .inputгс
для readline(B), соответственно) из страницы руководства самой библиотеки.

2.9. В заключение
Командный интерфейс Linux, каким бы «страшным» ни казался, в реальности уди­
вительно функционален для решения массы разнообразных задач, хотя он и не
решает абсолютно все задачи одинаково эффективно. Например, его невероятно
сложно и неудобно использовать для обработки графической информации, когда
при взаимодействии с пользователем требуется ввести колоссальное количество
«графических» данных, например указать обтравочный1 контур. В этом случае гра­
фический интерфейс с «непосредственным» манипулированием подойдет гораздо
лучше.

Для начинающего пользователя интерфейс командной строки действительно явля­
ется непривычным, что зачастую путают с неудобством, так толком и не разо­
бравшись со всеми его возможностями. Вся сила языка командного интерпретато­
ра в полной мере раскрывается в главе 5, до освоения которой читателю предла­
гается не делать скоропалительных выводов.

Естественные языки, которые используют люди для взаимодействия между собой,
на порядок сложнее формального командного языка операционной системы. Одна­
ко использование глаголов (команд), существительных (аргументов) и наречий (оп­
ций) родного языка мало у кого вызывает чувство неудобства. Наоборот, стран­
ным покажется тот человеческий индивидуум, который попытается в обществе ис­
пользовать непосредственное манипулирование, например указывая (щелкая)
пальцем в магазине на товары (значки) и мыча что-то нечленораздельное. Скорее
всего, мы примем его за иностранца (или это будет ребенок), еще не в полной
мере владеющего языком.

Именно командный интерфейс в современном виде — аудиоформе — больше не
является уделом художественных фантастических произведений, где капитаны меж­
галактических кораблей командуют кораблям «включить защитное поле». Теперь
мы все можем при помощи командного аудиоинтерфейса смартфона найти бли­
жайшую пиццерию или маршрут к нужному месту. Надеюсь, что и алфавитно-
цифровая форма командного интерфейса, доставшаяся «в наследство» от UNIX из
70-х годов прошлого века, вас тоже не особо испугает. Эй, Алиса? 1

1 В ы дели ть п уш и стого зв ер ь к а — п есц а , сф о т о гр а ф и р о в а н н о го си дящ и м в тр аве.

Глава 3
Подсистема управления файлами

и вводом-выводом

3.1. Файлы и дерево каталогов
Все операционные системы семейства W:[UNIX], включая Linux, базируются на од­
ной универсальной идее, заложенной в их общем предке, определившем основные
черты семейства — операционной системе UNICS. В аббревиатуре UNICS1, или
же UNiplexed Information & Computing Service, центральное место занимает идея
«итр1ех»ирования, или же односоставности (односложности) — идея решать раз­
ные задачи единым способом.

Одним из выражений этой идеи является утверждение о том, что информация
есть файл, откуда бы эта информация в систему ни поступала. При помощи фай­
лов обеспечивается доступ к информации на устройствах хранения (записанной
ранее), информации с устройств связи (принимаемой из каналов связи в реальном
времени), информации из любых других источников. Файл, таким образом, являет­
ся единицей обеспечения доступа к информации, а не единицей ее хранения, как
в других операционных системах.

Одни файлы обеспечивают доступ к информации, хранимой на разнообразных но­
сителях: магнитных дисках и дискетах, оптических CD/DVD/BD, твердотельных
«дисках» и пр. Другие файлы обеспечивают доступ к информации, поступающей
из/в устройств ввода-вывода — клавиатур, манипуляторов «мышь», тачпадов, сен­
сорных экранов, последовательных и параллельных портов, видеокамер, звуковых
карт и пр. Особенные файлы обеспечивают доступ к информации о сущностях
ядра операционной системы (процессы, нити, модули, драйвера и пр.).

Так или иначе, все файлы одинаково идентифицируются своими именами, упорядо­
ченными в форме единой и единственной иерархической структуры, называемой
деревом каталогов (рис. 3.1).

1 Б о л е е п оздн я я а б б р ев и а т у р а U N I X п р о и зн о си т ся и денти чно, но на о д н у бу к в у к ор оче.

62 Глава 3

■> etc

dev

4— ► sbin

bin

> lib

usr

4— ► var

tmp

bin

sbin

.bashrc

home
-

Finn w .prorue

bin

bin

sbin

bmo

bender

Рис. 3.1. Абсолютное О и относительное О путевые имена

3.1.1. Путевые имена файлов
Глобально уникальным идентификатором файла в пределах операционной системы
является его абсолютное путевое имя, определямое как путь от корня дерева ка­
талогов до целевого файла, включая начало и конец пути.

Необходимо акцентировать внимание на том, что имя у корневого каталога отсут­
ствует, т. е. является пустой строкой О . Таким образом, абсолютное О путевое
имя файла & р ю { (с м . рис. 3.1) записывается как разделенные символом / имена
всех каталогов пути и имя самого файла, включая концы — ABS:f'j/jhonej/

:jak^y^\r^/:bnof.

Относительное путевое имя вычисляется как остаток пути от некоторого заранее
заданного (называемого рабочим, WD — working directory) каталога, до целевого
файла, включая конец пути. Для рабочего каталога W D : /usr/local относительное
© путевое имя файла jbender записывается как разделенные символом / имена всех
каталогов остатка пути и имя самого файла — RELiiblntyibendeK

Для проверки правильности записи путевых имен всегда можно воспользоваться
проверкой ABS = W D § REL, например /usr/local/btn/bender = /usr/local § ibijre^^nder.

Подсистема управления файлами и вводом-выводом 63

Некоторые каталоги дерева (например, каталоги первого уровня) носят устоявшие­
ся в семействе операционных систем UNIX имена (см. Ыег(7)) и дифференцируют
содержание по смысловому признаку.

Например, каталог / Ы п (binary) предназначен для си ст ем н ы х программ общего
назначения, каталог /usrVbtn — для п р и к л а д н ы х (условно) программ общего на­
значения, каталог /usr/local/btn — для «локальн о»1 2 установленных прикладных
программ общего назначения, а каталоги Ы п внутри домашних каталогов пользова­
телей — для программ п ер со н а л ьн о го назначения.

Аналогично определяется назначение каталогов /sbtn, /usr/sbtn, /usr/local/sbtn

с той лишь разницей, что каталоги sbin расшифровываются как superuser’s binaries
и предназначаются для программ системного администрирования: системных, при­
кладных и «локально установленных» соответственно. Каталоги /lib, /usr/ltb и
/usr/local/lib аналогично содержат си ст ем н ы е и п р и к л а д н ы е библиотеки.

Каталог /etc содержит общесистемные конфигурационные файлы и с полным пра­
вом может3 расшифровываться как editable text configuration.

Каталог /hone является контейнером домашних каталогов пользователей (кроме
суперпользователя root). Каталог /var служит хранилищем динамических данных
(журнальные файлы /var/log, почтовые ящики /var/natl, разнообразные очереди
/var/spool и подобное), а каталог /tnp выступает хранилищем временных данных.

Каталоги /dev, /ргос и /sys содержат специальные файлы устройств4 и файлы
псевдофайловых систем ргос и sysfs.

3.2. Типы файлов
Файлы как единицы обеспечения доступа к данным различаются операционной
системой по т и пам , указывающим источник информации. О б ы ч н ы е (reg u la r) фай­
лы и к а т а л о ги (d ir e c to r y) обеспечивают сохранение информации на тех или иных
носителях. С п ец и а л ьн ы е ф айлы у с т р о й с т в (s p e c ia l d e v ic e f i l e) позволяют обмени­
ваться информацией с тем или иным аппаратным устройством ввода-вывода, а
и м ен ован н ы е к а н а л ы и ф а й л о вы е со к ет ы предназначены для обмена информацией
между процессом одной программы и процессами других программ.

1 usr — в ранней U N IX со к р а щ ен и е от u n ix s o u r c e rep ositrary , с о в р е м е н н о е со к р а щ ен и е от u n ix

sy s te m r e s o u r c e s .

2 У стан ов л ен н ы х си стем н ы м адм и н и стр атор ом из ст о р о н н и х и сточ н и к ов , т. е. не и з ди стр и бути в а

си стем ы .

3etc — в ранней U N IX со к р а щ ен и е от лат. et cetera (и том у п о д о б н о е) — со д ер ж а л ф айлы ,

которы м не н аш л ось м есто в др уги х к аталогах.

4 П о д р о б н е е см. разд. 3.2.5 и 3.4.4.

64 Глава 3

В примере из листинга 3.1 в полном (-1, long) выводе команды ls(1) проиллюстри­
рован признак типа файла. Символом - обозначается обычный файл, символом b
или с — специальные файлы блочного (block) или символьного (character) устрой­
ства, символом р — именованный канал (pipe), символом s — сокет (socket), а
символом I — символическая ссылка (link).

-------- ~ ^ , .------------ ---------- - ЧГ ' ■— =------------- * ^ '— ------------------- ----------------------

Листинг i.1. Признак типа файлов Ь
........... . ' ■■■■- ■ ■,................- _______ . . - —______ . — - _______ ___ .____'Г".

finn@ubuntu:~$ Is -l /bin/ls /dev/sda /dev/tty /sbln/halt

-rwxr-xr-x 1 root root 142144 сен 5 13:38 /bin/ls

brw-rw--- 1 root disk 8, 0 ноя 17 03:31 /dev/sda

crw-rw-rw- 1 root tty 5, 0 ноя 17 12:18 /dev/tty

Irwxrwxrwx 1 root root 14 ноя 13 00:20 /sbin/halt -> /bin/systemctl

finn@ubuntu:~$ Is -l /run/initctl /run/udev/control

prw....... 1 root root 0 ноя 17 03:30 /run/initctl

srw....... 1 root root 0 ноя 17 03:30 /run/udev/control

3.2.1. Обычные файлы
Обычные файлы содержат пользовательскую информацию: текст, изображения,
звук, видео и прочие данные в виде набора байтов (см. © на рис: 3.2, лис­
тинг 3.2). За структуру содержания и имена обычных файлов ответственны при­
кладные программы, а операционная система не накладывает никаких ограничений.

Листинг 3.2 * 16

finn@ubuntu:~$ file /usr/share/nan/nanl/file.l.gz

/usr/share/man/manl/file.1.gz: gzip compressed data, max compression, from Unix,
original size modulo 2A32 21484

finn@ubuntu:~$ file /etc/passwd

/etc/passwd: ASCII text

finn@ubuntu:~$ file /bin/ls

/bin/ls: ELF 64-bit LSB pie executable, X86-64, version 1 (SYSV), dynamically linked,
interpreter /lib64/ld-linux-x86-64.so.2,
BuildID[shal]=2fl5ad836be3339dec0e2e6a3c637e08e48aacbd, for GNU/Linux 3.2.0, stripped

finn@ubuntu:~$ file /usr/share/sounds/alsa/Noise.wav

/usr/share/sounds/alsa/Noise.wav: RIFF (little-endian) data, WAVE audio, Microsoft PCM,
16 bit, mono 48000 Hz

finn@ubuntu:~$ file /usr/share/backgrounds/Sky_Sparkles_by_3oe_Thompson.jpg

/usr/share/backgrounds/Sky_Sparkles_by_3oe_Thompson.jpg: JPEG linage data, JFIF standard 1.01,
aspect ratio, density lxl, segment length 16, progressive, precision 8, 3840x2160,
components 3

Подсистема управления файлами и вводом-выводом 65

Создать обычный файл можно при помощи любой программы, сохраняющей ин­
формацию в файл, например посредством текстовых редакторов vi(1), nano(1) или
mcedit(1). Для создания пустого обычного файла можно воспользоваться командой
touch(1) — см. листинг 3.5. Для удаления обычного файла предназначается команда
гт(1) — СМ. ЛИСТИНГ 3.6.

Metadata « 2 < Ш 7 (1

Vcrwnw ; J«K|

Metadata t2 ilH 7«4
liRriim Vales

Data
Block #34) Block #31

z x
Block «74

Туре Directory

User ftmer root

Croup Owner root

Data Blocks [38, 31, ... 74

_'//..... .. .j„:.... 'J

Type Synltnk

User Owner root

Croup Owner root

Data Blocks 874

Hant > i Mi
lJL ___iU

m

26869161

i|N file.txt 28326797

9hardlink 2 8 1 2 0 / 9 7

sywlink 26869764

Data
BlockfflO Block#22 Block#23 Block #89

Beieeieeieeieeeieieieeeneieiemeiei;
eieieieieieeeieemeeeieeieeieeieeeieee j
i eeiiiiBieeeiBiiieieeieieedi 1181 iSBieeei i
1811188818818818888188181818811181888118

Metadata #21321797
W" * V "
AttrUiti {
...••c. £

Value

Type f Regular

User Owner j root

Croup (toner] root

Data Blocks | 10, 2 2, 23 ... 89

Data
Block #874

ait /path/to/target/file
J - ©
i l t .t x f '

Рис. 3.2. Имена, метаданные и данные файлов

3.2.2. Каталоги
Файлы-каталоги, в отличие от обычных файлов, имеют служебное для операцион­
ной системы содержимое — таблицу имен (см. ® на рис. 3.2) файлов и соответ­
ствующих им номеров индексных дескрипторов (inode, index node), проиллюстри­
рованных в листинге 3.3.

бб Глава 3

Листинг 3.3. Имена и номера индексных дескрипторов файлов

finn@ubuntu:~$ Is -a t
20332580 . 20318930 .bash_logout 20320866 examples.desktop

20316161 .. 20320868 .bashrc 20320867 .profile

•- 20320797 .bash_history 20332712 .cache

Каждый индексный дескриптор содержит метаданные (см. О О О на рис. 3.2) —
список стандартных свойств файла, в том числе указывающих местоположение
данных файла (набора блоков) на файловой системе. Полный набор метаданных
(листинг 3.4) позволяет получить команда stat(1), включая размер файла О, коли­
чество занимаемых блоков на диске О, тип файла О, номер индексного дескрип­
тора О, права доступа ©, владельцев Ф и пр.

Листинг 3.4. Метаданиыгфанла ' . ̂ ;) ч

finn@ubuntu:~$ stat .profile

Файл: .profile

Размер: 807 О Блоков: 8 © Блок В/В: 4096 О обычный файл

Устройство: 802h/2050d Inode: О 393433 Ссылки: 1

® Д о о у ц (0644/-rw-r--r--) О Uid: (1001/ fin.y Gid: (1001/ firm)

Доступ: 2019-11-17 15:14:31.673047212 +0300

Модифицирован: 2019-11-13 00:25:26.723714502 +0300

Изменён: 2019-11-13 00:25:26.723714502 +0300

Создан: -

Для создания каталогов предназначена команда mkdir(1), а для удаления — rmdir(1),
при этом удалению подлежат только пустые каталоги (см. листинг 3.8).

3.2.3. Имена, данные, метаданные и индексные дескрипторы
Каждый раз, когда используется путевое (абсолютное или относительное) имя
файла, производится итеративный поиск файла в дереве путем последовательного
разбора на имя (по которому можно найти метаданные и данные) первого каталога
пути, содержащего, в свою очередь, имя второго каталога пути, который содержит
имя третьего и т. д., пока в конце поиска не будут найдены имя, метаданные
и данные указанного файла. Такая ссылочность позволяет сформировать удобную
древовидную структуру для каталогизации файлов (называемую деревом каталогов),
однако сам поиск является относительно длительной операцией.

Подсистема управления файлами и вводом-выводом 67

3.2.4. Ссылки

Каталог как файл-список имен других файлов, которым сопоставлены номера ин­
дексных дескрипторов, не запрещает иметь два разных имени файла, указывающих
на одни и те же метаданные (см. © на рис. 3.2). Такой эффект носит название
жесткой ссылки, создать которую можно при помощи команды 1п(1) (листинг 3.5).

Л и с т и н г 3 Л, Ж е е гм й ссы л ка: - ___ — . — „ . ' ______-л

finn@ubuntu:~$ touch readne

finn@ubuntu:~$ Is -li readne

20318653 -rw-r--r-- 1 finn finn 0 апр. 1 01:22 readne

finn@ubuntu:~$ In readne readne.txt

finn@ubuntu:~$ touch README

flnn@ubuntu:~$ Is -li readne readne.txt README

20318653 -rw-r--r-- 2 finn finn 0 апр. 1 01:22 readne

20319121 -rw-r--г-- 1 finn finn 0 апр. 1 01:23 README

•" 20318653 -rw-r--r-- 2 finn finn 0 апр. 1 01:22 readne.txt

Более того, оба имени являются равнозначными, и нет возможности узнать, какое
из них создано первым, из чего нужно заключить, что первое и единственное имя
файла уже является его жесткой ссылкой (на номер индексного дескриптора). При
добавлении файлу нового имени (жесткой ссылки) в его метаданных увеличивается
счетчик количества имен (см. © в листинге 3.6), а при удалении файла сначала
удаляется имя и уменьшается счетчик количества имен ©, и только при удалении
последнего имени высвобождаются метаданные и данные файла.

finn@ubuntu:~$ In readne read.ne

finn@ubuntu:~$ Is -li read*

20318653 -rw-r--r-- О 3 finn finn 0 anp. 1 01:22 readne

*- 20318653 -rw-r--r-- 3 finn finn 0 anp. 1 01:22 read.ne

20Ы863: -rw-r--r- 3 finn finn 0 anp. 1 01:22 readne.txt

finn@ubuntu:~$ m readne

finn@ubuntu:~$ Is -li read*

20318653 -rw-r--r-- © 2 finn finn 0 anp. 1 01:22 read.ne

20318653 -rw-r-r- 2 finn finn 0 anp. 1 01:22 readne.txt

finn@ubuntu:~$ rn readne.txt

finn@ubuntu:~$ Is -li read*

20318653 -rw-r--r-- © 1 finn finn 0 anp. 1 01:22 read.ne

68 Глава 3

Нужно заметить, что удаление файла — двухшаговая операция, состоящая из уда­
ления имени файла, а затем — удаления метаданных (и высвобождения блоков,
занимавшихся этим файлом). Удаление метаданных файла не выполняется вообще,
если у файла еще остались имена (жесткие ссылки), и не происходит сразу, если
файл открыт (см. разд. 3.3) каким-либо процессом. Метаданные и блоки, зани­
маемые файлом, высвобождаются только при закрытии этого файла всеми от­
крывшими его процессами, что проиллюстрировано в примере из листинга 3.7.

Команда df(D измеряет доступное (свободное, disk free) место на файловой систе­
ме указанного файла, тогда как команда du(1), наоборот, измеряет занимаемое
(disk usage) указанным файлом место на его файловой системе.

нисгинг 3.7. Удаление открытого Файла

finn@ubuntu:~$ df -h .

Файл.система Размер Использовано Дост Использовано^ Смонтировано в

/dev/mapper/ubuntu - root 455С (400G 32G** 93% /

finn@ubuntu:~$ du -sh astra-linux-l.3-special-edition-smolensk-disk3-devel.iso

2,8G astra-linux-l.3-special-edition-snolensk-disk3-devel.iso

\ finn@ubuntu:~$ m astra-linux-l.3-special-edition-snolensk-disk3-devel.iso

finn@ubuntu:~$ df -h .

Файл.система Размер Использовано Дост Использовано% Смонтировано в

? /dev/mapper/ubuntu-root 455С 400G 32G*» 93% /

finn@ubuntu:~$ Isof astra-linux-l.3-special-edition-snolensk-disk3-devel.iso

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

fuseiso 16925 finn 3r REG 252,0 2947385344 20316584 astra-linux-1.3-special-edition-
Smolensk-disk3-devel.iso

\ finn@ubuntu:~$ kill 16925

finn@ubuntu:~$ df -h .

Файл.система Размер Использовано Дост Использовано% Смонтировано в

! /dev/mapper/ubuntu-root 455G 397G 35G*» 92% /

Специальные имена текущего : . : и родительского каталогов на поверку тоже
оказываются жесткими ссылками, поэтому у любого каталога по крайней мере два
имени — свое «собственное» в родительском и специальное . в самом себе, а
у каталогов с подкаталогами еще и имена в каждом из дочерних (листинг 3.8).

Листинг 3.8. Имена каталогов

finn@ubuntu:~$ mkdir folder

finn@ubuntu:~$ Is -Idi folder

Подсистема управления файлами и вводом-выводом 69

20357139 drwxr-xr-x. 2 finn finn 4096 anp.

flnn@ubuntu:~$ cd folder

finn@ubuntu:~/folder$ Is -lai

итого 8

20357139 drwxr-xr-x 2 finn finn 4096 anp.

20332580 drwxr-xr-x 4 finn finn 4096 anp.

flnn@ubuntu:~/folder$ mkdir child

flnn@ubuntu:~/folder$ cd child

finn@ubuntu:~/folder/child$ Is -lai

итого 8

20357140 drwxr-xr-x 2 finn finn 4096 anp.

20357139 drwxr-xr-x 3 finn finn 4096 anp.

finn@ubuntu:-/folder/child$ cd

finn@ubuntu:~$ stat folder/

Файл: «folder/»

Размер: 4096 Блоков: 8 Блок

Устройство: fc00h/64512d Inode: 20357139

1 01:59 folder "•

1 01:59 . -•

1 01:59 ..

1 02:02 .
1 02:02 ». -•

B/B: 4096 каталог

Ссылки: 3

finn@ubuntu:~$ rmdir folder

rmdir: не удалось удалить «folder»: Каталог не пуст

Существенным ограничением жесткой ссылки в дереве каталогов, куда смонтиро­
вана более чем одна файловая система, является локальность жесткой ссылки в
пределах своей файловой системы в силу локальной значимости номеров индекс­
ных дескрипторов. Так как на каждой новой файловой системе номера индексных
дескрипторов начинают нумероваться с нуля, то жесткая ссылка всегда указывает
на метаданные файла в «своей» файловой системе и не может указывать на мета­
данные файла в «чужой» файловой системе общего дерева каталогов. Для преодо­
ления этого ограничения служит символическая ссылка symlink(7), являющаяся само­
стоятельным служебным типом (см. О на рис. 3.2) и содержащая путевое имя
(см. ® на рис. 3.2 и * в листинге 3.9) к целевому файлу.

I Листинг 3.9. Символическая ссылка

finn@ubuntu:~$ In -s read.me readne.lst

finn@ubuntu:~$ Is -li read*

20318653 -rw-r--г-- 1 finn finn 0 anp. 1 01:22 read.me

20319944 Irwxrwxrwx 1 finn finn 7 anp. 2 00:03 readne.lst -> read.me ★

В случае с символической ссылкой при удалении целевого файла сама ссылка бу­
дет указывать в никуда и называться «сиротой» (orhpan). Попытка прочитать (лис­

70 Глава 3

тинг 3.10) такую ссылку приводит к странным на первый взгляд результатам:
файл «существует» О для команды ls(1), но команда просмотра содержимого cat(1)
говорит об обратном ©. Ничего удивительного, если помнить, что ls(1) работает
с именами файлов, a cat(1) — с их данными (которые действительно не существуют).

In c m h i ЗЛО. Счригская ссылка

finn@ubuntu:~$ гп read.ne

finn@ubuntu:~$ Is read*

О readme.1st

ftnn@ubuntu:~$ cat readme.1st

© cat: readme.1st: Нет такого файла или каталога

finn@ubuntu:~$ Is -l read*

Irwxrwxrwx 1 finn finn 7 anp. 2 00:03 readme.1st -> read.ne

finn@ubuntu:~$ cat read.ne

cat: read.ne: Нет такого файла или каталога

Символические ссылки могут ссылаться на имена друг друга неограниченное коли­
чество раз, а при попытке использовать одну из таких ссылок будут прочитаны
данные файла, последнего в цепочке ссылок. По ошибке можно даже закольцевать
(листинг 3.11) две или более ссылок, с чем разберется операционная система при
чтении одной из ссылок.

и* Яг -ь *?. • * . , ' * ? * -А

Лиг Tii 3.11. к<ммевы» ссылки
lii.i'iii Г.̂ 1 li. 1 niViii. .̂ ifi'ifvi frir,-’LAS,-'. ^ Г| . ..'i |Л. I i.Vii.i I ,'.I..I,I Г....... n Щ Щ i Y.i.in i i'll M.r- Г Hi И ...' — - ■' I ■ ■ t S

finn@ubuntu:~$ In -s readme.1st read.ne

finn@ubuntu:~$ Is -l read*

Irwxrwxrwx 1 finn finn 10 anp. 2 00:41 read.ne -> readme.1st

Irwxrwxrwx 1 finn finn 7 anp. 2 00:03 readme.1st -> read.ne

finn@ubuntu:~$ cat read.ne

cat: read.ne: Слишком много уровней символьных ссылок

Основным назначением символических (и изначально, жестких) ссылок является
«множественная каталогизация» файлов, т. е. различные наборы разных имен одних
и тех же данных. Типичным примером использования ссылок является организация
boot(7) сценариев запуска системных служб при старте операционной системы. Са­
ми сценарии располагаются в каталоге /etc/inlt.d, а в каталогах /etc/rcS.d,

/etc/гсО.d, ..., /еtc/rc6.d размещены символические ссылки на эти сценарии, кото­
рые должны быть запущены с определенными параметрами при переключении со­
стояния системы между так называемыми «уровнями исполнения» (листинг 3.12).

Подсистема управления файлами и вводом-выводом 71

flnn@ubuntu:~$ Is -l /etc/гс?1.d

/etc/rc2.d:

Irwxrwxrwx 1 root root 20 ноя 13 00:16 /etc/rc2.d/S19postgresql -> ../init.d/postgresql

Irwxrwxrwx 1 root root 17 ноя 13 00:16 /etc/rc2.d/S20postfix -> ../init.d/postftx

/etc/rc6.d:

Irwxrwxrwx 1 root root 17 ноя 13 00:16 /etc/rc6.d/K20postfix -> ../init.d/postftx

Irwxrwxrwx 1 root root 17 ноя 13 00:16 /etc/rc6.d/K21postgresql -> ../init.d/postgresql

В этом примере сценарии postfix и postgresql имеют вторичные имена, начинаю­
щиеся с К в каталоге rce.d, и другие вторичные имена, начинающиеся с S в ката­
логе rc2.d. Это символизирует необходимость запускать (start) службы postfix и
postgresql при переключении системы на уровень исполнения № 2 и уничтожать
(kill) процессы этих служб при переключении системы на уровень исполнения
№ 6.

3.2.5. Специальные файлы устройств
Специальные файлы устройств предназначены для ввода данных с аппаратных уст­
ройств и вывода данных на них. Настоящую работу по вводу и выводу данных
проделывает драйвер устройства, а специальные файлы (листинг 3.13) играют роль
своеобразных «порталов» связи с драйверами. Различают символьные О и блочные
© специальные файлы устройств, у которых минимальной единицей обмена ин­
формацией с драйверами является блок (обычно размером 512 байт) или символ
(1 байт), соответственно.

Листинг 1 Ш

finn@ubuntu:~$ Is -l /dev/sd* /dev/input/nouse* /dev/video* /dev/snd/pcn*

О crw-rw--- 1 root input 13 ® , 32 © ноя 17 03:31 /dev/input/nouse0

crw-rw--- 1 root input 13, 33 ноя 17 03:31 /dev/input/mousel

brw-rw--- 1 root disk 8, 0 ноя 17 03:31 /dev/sda

brw-rw--- 1 root disk 8, 1 ноя 17 03:31 /dev/sdal

© jbrw-rw--- 1 root disk 8, 5 ноя 17 03:31 /dev/sda5

crw-rw--- + 1 root audio 116, 3 ноя 17 15:03 /dev/snd/panC0D0c

1 Подробнее о шаблонных символах ?, * и пр. см. разд. 5.3.

72 Глава 3

crw-rvf--- + 1 root audio 116, 2 ноя 17 16:01 /dev/snd/pcmC0D0p

crw-rw--- + 1 root audio 116, 4 ноя 17 03:31 /dev/snd/pcmC0Dlc

crw-rvf---+ 1 root video 81, 0 ноя 17 03:31 /dev/video0

Все драйверы ядра пронумерованы главными (мажорными, major) числами ®, а
аппаратные устройства, находящиеся под их управлением, — дополнительными
(минорными, minor) числами ©.

Например, все IDE-диски работают под управлением драйвера hd(4), имеющего
Зга1ог (первичный контроллер) и 22гв1ог (вторичный контроллер), и нумеруются как
®1ч1пог (мастер-диск) и 64,^^ (слэйв-диск). Аналогично, SCSI-диски работают под
управлением драйвера sd(4), имеющего 8га1ог, и нумеруются 0,^^ (первый диск),
^ п о г (ВТОРОЙ ДИСК) И Т. Д.

Основной характеристикой специальных файлов устройств является пара чисел
major, minor (иногда называемых характеристическими числами), привязывающая их
к конкретному драйверу и управляемому им устройству. Имена специальных фай­
лов и их местоположение в дереве каталогов не имеют никакого значения, но по
соглашению MAKEDEV(8) их принято располагать в каталоге /dev и именовать со­
звучно именам драйверов.

Специальными файлами дисковых устройств пользуются программы, управляющие
структурами самого носителя, например таблицами разделов Fdisk(8) и parted(8) (лис­
тинг 3.14), или механикой накопителя eject(1) (листинг 3.15), или файловыми сис­
темами разделов носителя mount(8), fsck(8), mkfs(8) и пр.

Листинг 3.14. Чтениз таблицы разделов диска

finn@ubuntu:~$ sudo fdisk -l /dev/sda

Диск /dev/sda: 500.1 Гб, 500107862016 байт

255 головок, 63 секторов/треков, 60801 цилиндров, всего 976773168 секторов

Units = секторы of 1 * 512 = 512 bytes

Размер сектора (логического/физического): 512 байт / 4096 байт

I/O size (minimum/optimal): 4096 bytes / 4096 bytes

Идентификатор диска: 0x000c8d62

Устр-во Загр Начало Конец Блоки Id Система

/dev/sdal * 2048 499711 248832 83 Linux

/dev/sda2 501758 976771071 488134657 5 Расширенный

Partition 2 does not start on physical sector boundary.

/dev/sda5 501760 976771071 488134656 8e Linux LVM

Подсистема управления файлами и вводом-выводом 73

------------------------------ — — _ _ _ _ _ _ _ — .-----,— -— - ------------------- -— -———- - -
Листинг 3.15. Открытие лотка DVD

finn@ubuntu:~$ Is -l /dev/dvd

Irwxrwxrwx 1 root root 3 марта 27 14:54 /dev/dvd -> sr0

finn@ubuntu:~$ eject /dev/dvd

Особенное место занимают драйверы терминалов1 (см. главу 2) — оконечных уст­
ройств для взаимодействия с пользователями. Аппаратные терминалы (например,
VT100), подключающиеся посредством последовательного интерфейса RS232, дос­
тупны при помощи специальных файлов /dev/ttySN драйвера приемопередатчика
последовательного порта ttyS(4). Виртуальные терминалы, реализуемые консолью
(стандартной клавиатурой и дисплеем в алфавитно-цифровом режиме — см. рис. 2.3),
доступны при помощи специальных файлов /dev/ttyN (листинг 3.16) драйверов
консоли console_ioctl(4) и tty_ioctl(4).

| :— ’ — ----------------------------- -- -— ’

Листинг 3.1 о. Специальные файлы терминалов

finn@ubuntu:~$ Is -la /dev/tty?

crw--w--- 1 root tty 4, 0 ноя 17 03:31 /dev/tty0
crw.......1 finn tty 4, 1 ноя 17 15:03 /dev/ttyl
crw.......1 jake tty 4, 2 ноя 17 13:27 /dev/tty2
crw.......1 marceline tty 4, 3 ноя 17 15:14 /dev/tty3
crw.......1 iceklng tty 4, 4 ноя 17 03:31 /dev/tty4
crw....... 1 bubblegum tty 4, 5 ноя 17 03:31 /dev/tty5

Именно эти специальные файлы терминалов используют команды write(1) и wall(i)
для отсылки сообщений пользователям, зарегистрировавшимся в системе,
setFont(1) — для смены шрифтов, chvt(1) — для переключения между терминалами, а
setleds(1)— для управления светодиодами клавиатуры (листинг 3.17).

Листинг 3.17. Включение светодиодов CAPS LOCK и SCROLL LOCK " 1

finn@ubuntu:~$ tty

/dev/ttyl

finn@uburttu:~$ setleds -L +num +scroll

Кроме специальных файлов настоящих аппаратных устройств, в арсенале Linux
имеются особые файлы псевдоустройств, такие как /dev/null, /dev/full и /dev/zero,

'См. W:[TTYабстракция].

74 Глава 3

симулирующих всегда пустое, всегда полное и бесконечно нулевое устройство,
см. null(4).

Всегда пустое устройство /dev/null широко применяется на практике в качестве
«подавляющего» стока информации при перенаправлениях1, а бесконечно нулевое
устройство /dev/zero зачастую используют в качестве источника для получения
нулевых файлов нужной величины.

Псевдоустройства /dev/randon и /dev/urandon организуют доступ к ядерному генера­
тору случайных и псевдослучайных чисел random(4), основанных на внешних собы­
тиях периферийных устройств. Потоки случайных чисел используются в качестве
источников энтропии для криптоалгоритмов, в частности библиотекой W:[0penSSL],
или служат команде shred(1) источником случайных байтов для надежного стирания
данных.

3.2.6. Именованные каналы и файловые сокеты
Именованные каналы и файловые сокеты являются простейшими средствами меж­
процессного взаимодействия (IPC, InterProcess Communication) и служат програм­
мам для обмена информацией между собой. Разные программы выполняются в
рамках различных процессов2 (изолированных друг от друга), поэтому для общения
нуждаются в специальных средствах взаимодействия. Таким средством могли бы
стать обычные файлы, но их основное назначение состоит в сохранении информа­
ции на каком-либо накопителе, что будет при обмене информацией сопряжено
с накладными расходами, например задержками записи/чтения дискового (т. е. ме­
ханического) носителя. Предоставить процессам возможность использовать файло­
вые операции для эффективного взаимодействия между собой призваны имено­
ванные каналы (named pipe) pipe(7), они же FIFO-файлы (first in first out) fifo(7) и
файловые сокеты (socket) Uflix(7). Каналы и сокеты используют для передачи дан­
ных от процесса к процессу оперативную память ядра операционной системы, а
не память накопителя, как обычные файлы.

Основное отличие (подробнее см. разд. 4.9) именованного канала от сокета состоит
в способе передачи данных. Через именованный канал организуется однонаправ­
ленная (симплексная) передача без мультиплексирования, а через сокет — двуна­
правленная (дуплексная) мультиплексированная передача.

Именованный канал обычно используют при взаимодействии процессов по схеме
«поставщик — потребитель» (producer-consumer), когда один потребитель прини­
мает информацию от одного поставщика (на самом деле от разных, но в различ­

1 О п ер ен ап р ав л ен и я х см. разд. 5.3.

2 О п р о ц е с с а х см. главу 4.

Подсистема управления файлами и вводом-выводом 75

ные моменты времени). Например, программы halt(8), shutdown(8), reboot(8), poweroFF(8)
и telinit(8) передавали ранее посредством именованного канала /dev/lnltctl команды
перезагрузки, выключения питания и другие диспетчеру init(8)1, который и выпол­
нял соответствующие действия.

Сокет используют при взаимодействии по схеме «клиент — сервер» (client-server),
т. е. один сервер принимает и отправляет информацию- от многих и ко многим
(одновременно) клиентам. Например, в целях централизованного сбора событийной
информации разнообразные службы операционной системы (в частности, служба
периодического выполнения заданий сгоп(8), служба печати cupsd(8) и даже команда
logger(1)) передают посредством файлового сокета /dev/log (в современный момент
является символической ссылкой на актуальный /run/systend/journal/dev-log) сооб­
щения о происходящих событиях службе журнализации, представленной в совре­
менных системах systemd-journald(8).

3.3. Файловые дескрипторы
Основными операциями, предоставляемыми ядром операционной системы програм­
мам (а точнее — процессам2) для работы с файлами, являются системные вызовы
open(2) read(2), write(2) и close(2). В соответствии со своими именами эти системные
вызовы предназначены для открытия и закрытия файла, для чтения из файла и
записи в файл. Дополнительный системный вызов ioctl(2) (input output control) ис­
пользуется для управления драйверами устройств и, как следствие, применяется
в основном для специальных файлов устройств.

При запросе процесса на открытие файла системным вызовом ореп(2) производится
его однократный (относительно медленный, см. разд. 3.2.2) поиск имени файла в
дереве каталогов и для запросившего процесса создается так называемый файло­
вый дескриптор (описатель, от англ, descriptor). Файловый дескриптор «содержит»
информацию, описывающую файл, например индексный дескриптор inode файла на
файловой системе, номера major и minor устройства, на котором располагается
файловая система файла, режим открытия файла и прочую служебную информа­
цию. При последующих операциях read(2) и write(2) доступ к самим данным файла
происходит с использованием файлового дескриптора (что исключает медленный
поиск файла в дереве каталогов).

Файловые дескрипторы пронумерованы и содержатся в таблице открытых процес­
сом файлов, которую можно получить (листинг 3.18) при помощи диагностической
программы lsoF(1). Наоборот, получить список процессов, открывших тот или иной

1 В сов р ем ен н ы х си ст ем а х его р ол ь в ы п олн яет systemd(1), см. главу 10.

2 П о д р о б н е е о п р о ц е с с а х см. главу 4.

76 Глава 3

файл, можно при помощи программ lsof(1) и fuser(1), что бывает полезно для иден­
тификации программ, «занявших» файловую систему, подлежащую отмонтированию
(см. ★ в листинге 3.21).

1|истинг 3.1b. Таблица Фзйлое ых дескрипторов

Ф finn@ubuntu:~$ Isof -р $$х

COMMAND PID USER FD “• TYPE DEVICE SIZE/OFF NODE NAME

bash 17975 ftnn lu О CHR 136,2 0t0 5 /dev/pts/2

© root@ubuntu:~# Is -la /dev/log

Irwxrwxrwx 1 root root 28 ноя 17 03:30 /dev/log -> /run/systemd/journal/dev-log

root@ubuntu:~# Isof /run/systend/journal/dev-log

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

systemd 1 root 35u unix 0xffff964892232400 0t0 13321 /гип/.../dev-log ...

systend-j 285 root 6u в Unix 0xffff964892232400 0t0 13321 /гип/.../dev-log ...

root@ubuntu:~# fuser /run/systend/journal/dev-log

/run/systend/journal/dev-log: 1 285 “•

root^ubuntu: ps p 285

PID TTY STAT TIME COMMAND

285 ? S<s 0:04 /lib/systemd/systemd-journald

root@ubuntu:~# Isof /var/log/syslog

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

rsyslogd 606 syslog 8w О REG 8,2 1920291 131082 /var/log/syslog

root@ubuntu:~# ps up 666

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

syslog 606 0.0 0.1 224360 4584 ? Ssl ноя17 0:00 /usr/sbin/rsyslogd -n ...

В первом ® примере из листинга 3.18 показано получение списка файловых деск­
рипторов (столбец FD) процесса, командного интерпретатора bash пользователя ftnn,

на котором файловый дескриптор О номер 1 описывает открытый, на чтение и
запись и специальный символьный CHR файл устройства /dev/pts/2. Во втором ©
примере показано получение информации о процессах, открывших файловый сокет 1

1 О п о дста н о в к а х к ом ан дн ого и нтер п р етатор а см. раэд. 5.4.2.

Подсистема управления файлами и вводом-выводом 77

unix с именем /run/systend/journal/dev-log (файловый дескриптор © номер 6 на
чтение и запись и) и обычный файл REG с именем /var/log/sysog (файловый деск­
риптор © номер 8 на запись w).

Пронаблюдать за использованием системных вызовов файлового программного ин­
терфейса в момент выполнения программам позволяет системный трассировщик
strace(1) (листинг 3.19).

finn@ubuntu:~$ date

Пн ноя 18 00:13:53 MSK ^ 2019

finn@ubuntu:~$ strace -fe open,openat,close,read,write,ioctl date

•- openat(AT_FDCWD, "/etc/localtine", O_RD0NLY|O_CLOEXEC) = 3

finn@ubuntu:~$ file /etcAocaltine

/etc/localtine: synbolic link to /usr/share/zoneinfo/Europe/Moscow

finn@ubuntu:~$ file /usr/share/zoneinfo/Europe/Moscow

/usr/share/zoneinfo/Europe/Moscow: tinezone data, version 2, 17 gnt tine flags, 17 std tine
flags, no leap seconds, 78 transition tines, 17 abbreviation chars

finn@ubuntu:~$ Is -la /dev/dvd

Irwxrwxrwx 1 root root 3 ноя 17 22:35 /dev/dvd -> sr0

finn@ubuntu:~$ strace -fe open,openat,close,read,write,ioctl eject

openat(AT_FDCWD, 7dev/sr0", O_RDWR|O_N0NBLOCK) = 3 *•

ioctl(3, CDROMEJECT, 0x01) = 0

close(3) = 0

finn@ubuntu:~$ strace -fe open,openat, read,write,close,ioctl setleds -L +nun +scroll

ioctl(0, KDGKBLED, 0x7ffclced3d27) = 0

ioctl(0, KDGETLED, 0x7ffclced3d26) = 0

ioctl(0, KDSETLED, 0x3) = 0

Предположив, что программа date(1) показывает правильное московское время, по­
тому что узнаёт заданную временную зону MSK из некоего конфигурационного
файла операционной системы, при трассировке ее работы можно установить его
точное имя — /etc/localtine (оказавшимся символической ссылкой ■ на
/usr/share/zoneinfo/Europe/Moscow). Аналогично предположив, что программа eject(1)
открывает лоток привода CD/DVD при помощи специального файла устройства,
при трассировке можно узнать имя файла — /dev/srO, номер файлового дескрип­
тора при работе с файлом — 3 и команду CDROMEJECT соответствующего устройству

Листинг 3,19. Трассировка файлового программного интерфейса

78 Глава 3

драйвера ioctl_list(2). Трассировка команды setleds(1) показывает, что она вообще не
открывает никаких файлов, но пользуется файловым дескриптором 6 так называе­
мого стандартного потока ввода (прикрепленного к текущему терминалу1 2) и коман­
дами kd ge jle d и kd se tle d драйвера консоли console_ioctl(4).

3.4. Файловые системы

3.4.1. Файловые системы и процедура монтирования
Доступ к информации организуется при помощи файлов, упорядоченных в единое
«воображаемое» дерево каталогов, тогда как «настоящими» источниками данных
являются файловые системы — структуры, решающие задачи хранения2 информа­
ции. Отображение множества файловых систем в единое дерево каталогов реали­
зуется посредством процедуры монтирования. Таким образом, все, что наблюдает­
ся в дереве каталогов, в реальности размещается на файловых системах.

Состав дерева каталогов показывает команда mount(8), равно как и присоединяет
к нему — монтирует очередную файловую систему. Отсоединяет (отмонтирует)
файловую систему от дерева каталогов команда umount(8), но только при условии,
что ни один файл на этой файловой системе не используется никакой программой
(а правильнее — никаким процессом) операционной системы.

В примере на рис. 3.3 и в листинге 3.20 иллюстрируются: файловая система
W :[ext4], располагающаяся на дисковом накопителе, идентифицирующемся файлом
устройства /dev/sda2, и смонтированная непосредственно в корень дерева каталогов
О; файловая система vfat flash-накопителя в на устройстве /dev/sdbl, смонтиро­
ванная в /nedia/flash; файловая система W: [ISO 9660] CD-диска 0 на устройстве
/dev/sr6, смонтированная в /nedia/cdron.

Кроме этого, в дерево каталогов смонтированы две псевдофайловые системы ргос
в и sysfs 0 , считывающие из оперативной памяти ядра операционной системы
информацию о процессах, обнаруженных устройствах, загруженных драйверах и
предоставляющих «файловый» доступ к ней.

Листинг 3.20. Состав дерева каталогов

finn@ubuntu:~$ nount

О /dev/sda2 on / type ext4 (rw,relative,errors=remount-ro)

в ргос on /ргос type ргос (rw,nosutd,nodev,noexec,relatlne)

1 О стандартных потоках ввода-вывода см. разд. 5.3.

2 Или извлечения информации откуда-либо (см. разд. 3.4.4 и 3.4.5).

Подсистема управления файлами и вводом-выводом 79

в sysfs on /sys type sysfs (rw,nosuld,nodev,noexec,relative)

в /dev/sdbl on /media/flash type vfat (rw,...)

в /dev/sr0 on /media/cdrom type Iso9660 (ro,...)

Рис. 3.3. Монтирование файловых систем

Несмотря на то, что в современных дистрибутивах Linux обнаружение и процеду­
ры монтирования файловых систем автоматизированы, операции монтирования/раз-
монтирования могут быть произведены вручную (листинг 3.31).

Аисги1#3.21.

finn@ubuntu:~$ mount /dev/dvd /nedta/cdron

mount: только root может сделать это

finn@ubuntu:~$ sudo mount /dev/dvd /nedta/cdron

mount: /media/cdrom: В Ш М А Ш Е : устройство защицено от записи, смонтировано только для чтения.

finn@ubuntu:~$ mount

/dev/dvd on /media/cdrom type lso9660 "• (ro,...)

finn@ubuntu:~$ cat /nedta/cdron/.disk/lnfo

Ubuntu 19.10 "Eoan Ermine" - Release amd64 (20191017)

finn@ubuntu:~$ unount /nedta/cdron

umount: /media/cdrom: umount failed: Операция не позволена.

finn@ubuntu:~$ sudo unount /nedia/cdron

finn@ubuntu:~$ cat /nedia/cdron/.dtsk/info

cat: /nedia/cdron/.disk/info: Нет такого файла или каталога

finn@ubuntu:~$ sudo unount /ргос

unount: /ргос: target is busy.

finn@ubuntu:~$ nount /dev/sdcl /nedia/flash

finn@ubuntu:~$ nount

/dev/sdcl on /nedia/flash type vfat "• (rw,...)

80 ___ Глава 3

3.4.2. Дисковые файловые системы
Разные файловые системы fs(5), как упоминалось ранее, предназначены для хране­
ния информации на внешних носителях и преследуют различные цели, например
обеспечивают надежное хранение при помощи журнала транзакций или быстрый
поиск метаданных файла (среди множества каталогов, подкаталогов и других фай­
лов) по его имени либо учитывают специфику свойств самого носителя и т. д.
В большинстве случаев до сих пор носителями информации являются магнитные
или оптические диски,- благодаря чему файловые системы, размещаемые на них,
зачастую называются «дисковыми» файловыми системами, даже если используются
на твердотельных (flash) носителях.

Для магнитных дисков, характеризуемых возможностью чтения и записи блоков
информации в произвольное место носителя (random access), в Linux на текущий
момент времени используются «родные» файловые системы W :[Ext2], W :[Ext3] и
W :[Ext4], специально разработанные W:[ReiserFS] и W:[Reiser4], а также заимствован­
ные W : [XFS] и W:[JFS].

Для оптических CD/DVD-дисков, имеющих специфику записи в виде спиральной
дорожки, применяются файловые системы W :[ISO 9660] и W :[u d f]. Для USB-flash-
накопителей в большинстве случаев используются заимствованные файловые сис­
темы W : [FAT] и W : [NTFS] в силу использования этих накопителей как мобильных
средств переноса данных между разными компьютерами с различными операцион­
ными системами.

3.4.3. Сетевые файловые системы
Сетевые файловые системы, равно как и дисковые, обеспечивают хранение ин­
формации на внешнем носителе, которым в этом случае выступает файловый сер­
вер (например, домашний NAS, Network Attached Storage), доступный по протоко­
лу NFS (Network File System, W: [Network File System]), CIFS/SMB (Common Internet File

Подсистема управления файлами и вводом-выводом 81

System или Server Message Block, W:[Server_Message_Block]) или им подобным. Одно­
именные файловые системы nfs и cifs/smb используются для монтирования файлов
сервера в дерево каталогов клиента. Таким образом, обычные (ничего не знающие
ни про какие сетевые протоколы) программы, запускаемые в операционной систе­
ме клиента, используют файлы сетевого сервера точно так, как если бы они были
размещены на локальных дисках, под управлением дисковых файловых систем.

В примере из листинга 3.22 программы avconv(1) и avprobe(l), предназначенные для
работы с «обычными» видеофайлами, используются для обработки записей сетево­
го видеорегистратора, видеофайлы которого доступны по протоколу NFS. Смонтиро­
ванные при помощи сетевой файловой системы nfs в дерево каталогов файлы се­
тевого регистратора становятся никак неотличимы от файлов локальных дисковых
файловых систем.

Листинг 3.22. Сетевая файловая система NFS * 50

finn@ubuntu:~$ nount -t nfs 182.168.1.16:/share/video /mt/nas/vldeo

finn@ubuntu:~$ nount

182.168.1.10:/share/video on /mnt/nas/video type nfs (rw,...)

finn@ubuntu:~$ cd /mt/nas/vldeo/screencasts

finn@ubuntu:~$ Is

20146523142626.mp4

finn@ubuntu:~$ file 26140523142626.np4

20140523142626.mp4: ISO Media, MPEG v4 system, version 2

finn@ubuntu:~$ avprobe 26146523142626.np4

Input#©, mov,mp4,m4a,3gp,3g2,mj2, from ' 20140523142626. mp4':

Duration: 00:00:07.94, start: 0.000000, bitrate: 11020 kb/s

Stream #0.O(eng): Video: h264 (High), yuv420p, 1920x1080 [PAR 1:1 DAR 16:9], 10843 kb/s,
50 fps, 50 tbr, 50k tbn, 100 tbc

finn@ubuntu:~$ avconv -1 26140523142626.np4 26146523142626.nkv

Output #0, matroska, to 120140523142626.nkv':

Stream #0.0(eng): Video: mpeg4, yuv420p, 1920x1080 [PAR 1:1 DAR 16:9], q=2-31, 200 kb/s,
lk tbn, 50 tbc

Stream mapping:

Stream #0:0 -> #0:0 (h264 -> mpeg4)

Stream #0:1 -> #0:1 (aac -> libvorbis)

82 Г л ав зЗ

Press ctrl-c to stop encoding

frane= 395 fps= 72 q=31.0 Lsize= 2481kB time=7.94 bitrate=2561.5kbits/s dup=0 drop=l

video:2339kB audio:128kB global headers:4kB muxing overhead 0.457686%

Аналогично, в примере из листинга 3.23 геотеги файлов изображений сетевого
видеорегистратора анализируются утилитой exiv2(1), предназначенной для работы
с «обычными» изображениями. За счет файловой системы cifs и доступности ви­
деорегистратора по протоколу CIFS его содержимое смонтировано в дерево катало­
гов так, словно сетевой регистратор является локальным дисковым накопителем.

Листинг 3.21 Сетевая файловая система CIFS/SM6

finn@ubuntu:~$ mount -t cifs -о usernane=guest //182.168.1.10/share/photos /mnt/nas/photos

Password:

finn@ubuntu:~$ mount

//182.168.1.10/share/photos on /mnt/nas/video type cifs (rw,...)

finn@ubuntu:~$ cd /mnt/nas/photos

finn@ubuntu:~$ Is

DSC_0034.JPG DSC_0043.JPG DSC_0062.JPG DSC_0074.JPG DSC_0100.JPG DSC_0189.JPG

finn@ubuntu:~$ exiv2 -p a DSC_0043.JPG

Exif.GPSInfo.GPSLatitudeRef Ascii 2 North

Exif.GPSInfo.GPSLatitude Rational 3 60deg 10' 3.479"

Exif.GPSInfo.GPSLongitudeRef Ascii 2 East

Exif.GPSInfo.GPSLongitude Rational 3 24deg 57' 23.294"

3.4.4. Специальные файловые системы
Развитие идеи файла как единицы обеспечения доступа к информации привело
к тому, что абстракцию файловой системы перенесли и на другие сущности, дос­
туп к которым стал организовываться в виде иерархии файлов. Например, инфор­
мацию о процессах, нитях и прочих сущностях ядра операционной системы и ис­
пользуемых ими ресурсах предоставляет программам виде файлов (!) псевдофайло-
вая система ргос(5). Таким же образом, информацию об аппаратных, устройствах,
обнаруженных ядром операционной системы на шинах PCI, USB, SCSI и пр.,
предоставляет псевдофайловая система sysfs.

Различные утилиты, пользующиеся ядерной информацией, например показывающие
нагрузку на операционную систему uptime(1) или списки процессов и загруженных
модулей (драйверов) ядра операционной системы — ps(1) и lsmod(8), пользуются

Подсистема управления файлами и вводом-выводом 83

псевдофайловой системой ргос, в чем позволяет убедиться трассировка системных
вызовов ореп(2) (листинг 3.24).

Листинг 3.24. П а “дофайловдл система ргос________________________ " ' |

flnn@ubuntu:~$ strace -fe open,openat uptime

openat(AT_FDCWD, "/proc/sys/kernel/osrelease", 0_RD0NLY) = 3

openat(AT_FDCWD, "/proc/uptime", O_RD0NLY) = 3

openat(AT_FDCWD, "/proc/loadavg", O_RD0NLY) = 4

15:42:32 up 12 days, 5:27, 7 users, load average: 6.18 **, 0.33, 0.32

finn@ubuntu:~$ cat /proc/uptime

1056774.23 1667210.55

finn@ubuntu:~$ cat /proc/loadavg

0.48 -• 0.33 0.32 1/623 14277

Аналогично, утилиты, показывающие список устройств на шинах PCI, USB и
SCSI — Ispci(8), lsusb(8) и Isscsi(8), пользуются псевдофайловой системой sysfs (лис­
тинг 3.25).

ЛистяН! 3.25. *
■ I ' _ I '

finn@ubuntu:~$ strace -fe open,openat Ispci -nn

openat(AT_FDCWD, "/sys/bus/pci/devices/0000:00:02.0/resource", 0_RD0NLY) = 4

openat(AT_FDCWD, 7sys/bus/pci/devices/0000:00:02.0/irq", 0_RD0NLY) = 4

openat(AT_FDCWD, "/sys/bus/pci/devices/0000:00:02.0/vendor", 0_RD0NLY) = 4

openat(AT_FDCWD, '7sys/bus/pci/devices/0000:00:02.0/devlce", 0_RD0NLY) = 4

openat(AT_FDCWD, "/sys/bus/pci/devices/0000:00:02.0/class", 0_RD0NLY) = 4

openat(AT_FDCWD, 7sys/bus/pci/devices/0000:00:02.0/config", 0_RD0NLY) = 3

00:02.0 VGA compatible controller [0300 *•]: Intel Corporation 2nd Generation Core Processor
Family Integrated Graphics Controller [8066 '•:0116 *•] (rev 09)

finn@ubuntu:~$ cat /sys/bus/pci/devices/0GGG:66:G2.G/vendor

0x8086 -•

finn@ubuntu:~$ cat /sys/bus/pci/devlces/08GG:66:G2.G/device

6xf 16

finn@ubuntu:~$ cat /sys/bus/pci/devices/0GGG:GG:G2.G/class

0x030000 -•

84 Глава 3

3.4.5. Внеядерные файловые системы

Сосуществование разных по своей сути файловых систем в едином дереве файлов
и каталогов позволяет использовать для работы с его файлами «обычные» про-
граммы, ничего не знающие ни о местоположении, ни о свойствах самих источни­
ков информации этих файлов.

Таким же «файловым» образом можно организовать доступ к файлам внутри
G Z /ZIP/...-архивов, файлам внутри ISO-образов CD/DVD-дисков, файлам зашиф­
рованных каталогов, файлам других узлов сети, медиафайлам на медиаустройствах
(плееры, смартфоны) и т. п. Файловая абстракция в определенных случаях оказы­
вается удобной даже для осуществления доступа к информации, организованной
совершенно «нефайловым» образом — к данным таблиц и представлений внутри
реляционных баз данных, к элементам и атрибутам внутри XML-файлов и пр.

Для реализации такого «файлового» доступа к произвольным источниками инфор­
мации используются так называемые «внеядерные» файловые системы W :[FUSE]
(Filesystem in USErspace), реализуемые не ядерными модулями файловых систем
(как ext4, nfs, ргос и пр.), а обычными программами1, запущенными в обычных
процессах и работающими вне ядра.

В примере из листинга 3.26 показано, как можно без распаковки смонтировать
сжатый архив исходных текстов ядра linux-4.2.3.tar.xz и прочитать отдельный
файл fuse.txt.

finn@ubuntu:~$ wget https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-5.3.9.tar.xz

finn@ubuntu:~$ file llnux-5.3.9.tar.xz

linux-5.3.9.tar.xz: XZ compressed data

finn@ubuntu:~$ archivemount ltnux-5.3.9.tar.xz ~/mnt/archive

@ @ @ О О Ф Ф 0 ® О Ф

finn@ubuntu:~$ mount

archivemount on /home/finn/mnt/archive type fuse.archivemount (rw,...)

finn@ubuntu:~$ cd ~/mnt/archive

finn@ubuntu:~/mnt/archive$ Is -l

итого 0

drwxrwxr-x 0 "• root root 0 *• ноя 6 15:09 linux-5.3.9

finn@ubuntu:~/mnt/archive$ cd linux-5.3.9/Docunentation/filesystems

'Д ля чего в ядре все-таки требуется один универсальный модуль fuse.

https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-5.3.9.tar.xz

Подсистема управления файлами и вводом-выводом 85

finn@ubuntu:~/mnt/archive/linux-5.3.9/Documentation/filesystems$ less fuse.txt

finn@ubuntu:~/mnt/archive/VLnux-5.3.9/Documentation/filesystems$ cd -

finn@ubuntu:~ $ fusemount -u ~/mnt/archive

В примере из листинга 3.27 показано, как при помощи сетевого протокола SSH
(см. разд. 6.4.1) можно смонтировать часть дерева каталогов (домашний каталог
пользователя jake) с удаленного узла jake@grex.org в каталог ~/mnt/net локального
дерева каталогов.

finn@ubuntu:~$ sshfs jake@grex.org: ~/mt/net

The authenticity of host 'grex.org (75.61.90.157)' can't be established.

ECDSA key fingerprint is SHA256:pM03fe6UTyqtqzUMq5SmTnH5tqUuN9WdvlwdpcE3hSU.

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

jake@grex.org's password: P@s$wOrd

finn@ubuntu:~$ mount

jake@grex.org: on /home/finn/mnt/net type fuse.sshfs (rw,...)

finn@ubuntu:~$ cd ~/mnt/net

finn@ubuntu:~/mnt/net$ Is -1

итого 488

-rw-rw-r-- 1 156620 131077 495604 окт. 10 20:28 OPENME.txz

-rw*r--г-- 1 156620 131077 106 OKT. 10 20:30 README.gz

finn@ubuntu:~/mnt/net$ zless README.gz

finn@ubuntu:~/mnt/net$ cd -

finn@ubuntu:~ $ fusemount -u ~/mt/net

В примере из листинга 3.28 показано, как можно смонтировать зашифровываемый
каталог /nedia/flash/secret USB-flash-накопителя (уже смонтированного в каталог
/neida/flash при помощи дисковой файловой системы vfat) в каталог ~/nnt/exposed

и скопировать туда файлы, подлежащие зашифровыванию. Теперь при утере нако­
пителя можно не беспокоиться об информации, попавшей третьим лицам.

Листинг З.с8. Ьнеядерная файловая система «hisc.er.cfs

finn@ubuntu:~ $ mount

/dev/sdcl on /media/flash type vfat (rw,...)

finn@ubuntu:~ $ encfs /media/flash/secret ~/mnt/exposed

Директория "/media/flash/secret" не существует. Создать ее? (у,п) у

Директория "/home/finn/mnt/exposed" не существует. Создать ее? (у,п) у

Листинг 3.27. Внеядепная файловая система «fuse.sshis»

® 0 @ Q Q Q 0 O @ O @

mailto:jake@grex.org
mailto:jake@grex.org
mailto:jake@grex.org

86 Глава 3

Создание нового зашифрованого раздела.

Выберите одну из следующих букв:

введите "х" для режима эксперта,

введите "р" для режима максимальной секретности,

любой другая буква для выбора стандартного режима.

?> «-1
Выбрана стандартная конфигурация.

Конфигурация завершена. Создана файловая система

со следующими свойствами:

Шифр файловой системы: "ssl/aes", версия 3:6:2

Шифр файла: "nameio/block", версия 4:6:1

Размер ключа: 192 бит

Размер блока: 1624 байт

Каждый файл содержит 8-байтный заголовок с уникальньми IV даннычи.

Файловые имена зашифрованы с использованием режима сцепления вектора инициализации.
File holes passed through to ciphertext.

Введите пароль для доступа к файловой системе.

Запомните пароль, так как в случае утери его

будет невозможно восстановить данные. Тем не менее

этот пароль можно изменить с помощью утилиты encfsctl.

Новый пароль EncFS: $ecr6t tt*

Повторите пароль EncFS: Secret ♦J

finn@ubuntu:~$ nount

encfs on /home/finn/mnt/exposed type fuse.encfs (rw,...)

finn@ubuntu:~$ cp ~/Изображения/1МС_20150801*.jpg ~/mnt/exposed

finn@ubuntu:~$ Is -l ~/mnt/exposed/

-rw-r--r-- 1 finn finn 1614468 окт. 16 19:66 IMG_26146861_123522.jpg

-rw-г--г-- 1 finn finn 1728838 окт. 16 19:66 IMG_26146861_124215.jpg

finn@ubuntu:~$ Is -l /nedia/flash/secret

-rw-rw-r-- 1 finn finn 6 ноя 18 66:57 JEG6j8acowSgiyCUeyqqAbohACIKSEM4JShALYNc6PFll6

-rw-rw-r-- 1 finn finn 6 ноя 18 66:57 znchYIQd4VPlq7u5UkH2wNqzeYhFeLzTpKDN455rflo8Tl

finn@ubuntu:~$ file ~/rait/exposed/IMG_20140801_123522. j pg

IMG_26146861_123522.jpg: JPEG inage data, EXIF standard

finn@ubuntu:~$ file /nedia/flash/secret/9WgX2n6hiWz8,ii7UIlAIPetU3qGuLb«Nyww9e*fTiml-

9WgX2n6hiNNz8,ii7UIlAIPetU3qGuLbRNyww9eHTiNNi-: data

finn@ubuntu:~$ fusemount -u /nedia/flash/secret

Подсистема управления файлами и вводом-выводом 87

В примере из листинга 3.29 показано, как можно монтировать файловые системы
fuse друг поверх друга в стек — смонтировать содержимое дерева каталогов FTP-
сервера nirror.yandex.ru, далее смонтировать содержимое ISO-образа FreeBSD-12.1-

RELEASE-and64-dvdl.iso, а затем смонтировать архив исходных текстов src.txz. При
чтении файла страницы руководства Is.l файловые системы будут прозрачно и на
лету (!) извлекать файл из архива, архив из образа и образ с сервера без пред­
варительных скачиваний и распаковываний.

Листинг 3.29. Внеядерные файловые системы «fuse.curlftpfs», «fuse.fuseiso»
и стекирование файловых систем

finn@ubuntu:~$ curlftpfs nirror.yandex.nl -/mt/net

© © © © © О © © © © ©

finn@ubuntu:~$ fiseiso -/mt/rat/firafed|/relBBSBs/ISD-]MflfE/12.VFreEBSD-32. l-FB£flfiE-ard64-cKdl.iso -/mt/ad

© © © © © © © © © © ©
finn@ubuntu:~$ archivenount ~/mt/cd/usr/freebsd-dist/src.txz ~/mt/archive

© © © © © © © © © © ©
finn@ubuntu:~$ mount

curlftpfs#ftp://mirror.yandex.ru/ on /home/finn/mnt/net type fuse (rw,...)

fuseiso on /home/finn/mnt/cd type fuse.fuseiso (rw,...)

archivenount on /home/finn/mnt/archive type fuse.archivenount (rw,...)

finn@ubuntu:~$ nan -/mnt/archive/usr/src/bin/ls/ls.l

LS(1) BSD General Commands Manual

NAME

Is - list directory contents

finn@ubuntu:~$ fusemount -u -/nnt/archive

finn@ubuntu:~$ fusemount -u ~/mnt/cd

finn@ubuntu:~$ fusemount -u -/nnt/net

3.5. Дискреционное разграничение доступа
В Linux, как и в любой многопользовательской системе, абсолютно естественным
образом возникает задача разграничения доступа субъектов — пользователей
к объектам — файлам дерева каталогов. Один из подходов к разграничению дос­
тупа — так называемый дискреционный (от англ, discretion — чье-либо усмотре­
ние) — предполагает назначение владельцев объектов, которые по собственному
усмотрению определяют права доступа субъектов (других пользователей) к объек­
там (файлам), которыми владеют.

ftp://mirror.yandex.ru/

Глава 3

Дискреционные механизмы разграничения доступа используются для разграничения
прав доступа процессов (см. разд. 4.5.1) как обычных пользователей О, так и для
ограничения прав системных программ О (например, служб операционной системы),
которые работают от лица псевдопользовательских учетных записей (см. разд. 2.7).

В примере из листинга 3.30 при помощи команды ps(1) проиллюстрированы про­
цессы операционной системы, выполняющиеся от лица разных учетных записей.

ЛИСТИНГ i и псездопользовзтмя

finn@ubuntu:~$ ps axfu

USER PID 9fiCPU 36MEM VSZ RSS TTY STAT START TIME COMMAND

root 2 0.0 0.0 0 0 ? S ноя17 0:00 [kthreadd]

root 3 0.0 0.0 0 0 ? I< ноя17 0:00 _ [rcu_gp]

root 4 0.0 0.0 0 0 ? I< ноя17 0:00 _ [rcu_par_gp]

root 1 0.0 0.2 167164 10936 ? Ss ноя17 0:06 /sbin/init splash

systemck 577 0.0 0.2 20784 9836 ? Ss ноя'17 0:01 /lib/systemd/systemd-resolved

syslog 606 0.0 0.1 224360 4584 ? Ssl ноя17 0:01 /usr/sbin/rsyslogd -n -iNONE

messaget 617 0.0 0.1 9808 6448 ? Ss ноя17 0:18 /usr/bin/dbus-daemon --system ...

avahi 628 0.0 0.0 8532 3648 ? Ss ноя17 0:00 avahi-daemon: running ...

daemon 675 0.0 0.0 3736 2232 ? Ss ноя17 0:00 /usr/sbin/atd -f

whoopsie 812 0.0 0.3 330936 15844 ? Ssi ноя17 0:00 /usr/bin/whoopsie -f

root 1145 0.0 0.1 37168 4040 ? Ss ноя17 0:00 /usr/lib/postfix/sbin/master -w

е postftXv 1150 0.0 0.1 37556 5520 ? S ноя17 0:00 _ qmgr -l -t unix -u

postfix 21924 0.0 0.1 37504 5400 ? S 00:39 0:00 _ pickup -l -t unix -u -c

root 2539 0.0 0.2 251392 9792 ? Ssl ноя17 0:00 /usr/sbin/gdm3

root 17750 0.0 0.2 316608 9932 ? SI ноя17 0:00 _ gdm-session-worker [pam/gdm-.

finn 17764 0.0 0.1 166540 6908 tty3 Ssl+ ноя17 0:00 _ /usr/lib/gdm3/gdm-x- ...

ftnn 17766 0.1 1.8 237008 75900 tty3 Sl+ ноя17 0:23 _ /usr/lib/xorg/Xorg ..

о firm 17774 0.0 0.3 194680 15940 tty3 Sl+ ноя17 0:00 _ /usr/lib/gnome-sessi.

finn 2987 0.0 0.3 21112 12356 ? Ss ноя17 0:03 /lib/systemd/systemd --user

finn 2992 0.0 0.0 168572 3124 ? S ноя17 0:00 _ (sd-pam)

о ftnn 17921 0.7 8.2 2641464 331536 ? Ssl ноя17 2:01 _ /usr/bin/gnome-shell

3.5.1. Владельцы и режим доступа к файлам
В рамках дискреционного разграничения доступа каждому файлу назначены поль­
зователь-владелец О и группа-владелец в файла (листинг 3.31).

Подсистема управления файлами и вводом-выводом 89

Листинг 3.3i. Владельцы файлов ■■''' '
....------------------ — —v "

finn@ubuntu:~$ Is -la /etc/profile .profile

-rw-r--г-- 1 О root © root 581 авг 27 21:31 /etc/proflle

-rw-r--r-- 1 finn finn 807 ноя 13 00:25 .profile

finn@ubuntu:~$ stat .profile

Доступ: (0644/-rw-r--r--) © Uid: (1000/ finn) © Gid: { 1000/ fi m)

Назначаются владельцы файлов при их создании. По умолчанию пользователем-
владельцем файла становится пользователь, создавший файл, а группой-владельцем
файла становится его первичная группа (листинг 3.32).

Листинг 3.32. Назначение владельцев файлов при создании '* |

finn@ubuntu:~$ id

uid=1000(finn) gid=1000(finn) rpynrw=1000(finn),4(adm),24(cdrom),...,131(sambashare)

finn@ubuntu:~$ nano README

finn@ubuntu:~$ Is -la README

-rw-rw-r-- 1 finn** finn** 3 ноя 18 01:20 README

Изменить (листинг 3.33) пользователя-владельца © файлов может только супер­
пользователь ® root при помощи команды chown(1), а группу-владельца — владе­
лец файла © при помощи команды chgrp(l), но только на ту © к которой он сам
принадлежит.

—— — — —— ---——~ —-------- 1—-------------- — " т —гг- хг—s------------- s
Листинг 3.33. Смена владельцев файлов . |

finn@ubuntu:~$ Is -la README

-rw-rw-r-- 1 finn finn 3 ноя 18 01:20 README

finn@ubuntu:~$ chown jake README

О chown: изменение владельца 'README': Операция не позволена

ftnn@ubuntu:~$ id

uid=1000(finn) gid=1000(finn) rpynnbt=1000(finn),4(adm),24(cdron)J...,131(sambashare)

© finn@ubuntu:~$ chgrp аскл README

finn@ubuntu:~$ Is -la README

-rw-rw-r-- 1 finn adm 3 ноя 18 01:20 README

finn@ubuntu:~$ chgrp daemon README

© chgrp: изменение группы для 'README': Операция не позволена

® finn@ubuntu:~$ sudo chown jake README

90 Глава 3

[sudo] password for user: спароль finn'a>

finn@ubuntu:~$ Is -la README

-rw-rw-r-- 1 jake adnin 3 ноя 18 01:20 README

В примере из листинга 3.16 стоит обратить внимание на владельцев специальных
файлов устройств виртуальных терминалов — ими назначены пользователи, совер­
шившие вход в систему. Специальный файл устройства терминалов, на которых
вход не осуществлен, принадлежит суперпользователю root, например как в случае
с терминалом /dev/tty9. Такие назначения естественным образом делаются при
входе пользователей в систему и для того, чтобы они могли распоряжаться права­
ми устройства терминала, через который осуществили вход (см. листинг 3.41).

3.5.2. Базовые права доступа и дополнительные атрибуты
Для разграничения действий над файлами определены три базовых права доступа
(базовые разрешения): чтение г — «read», запись w — «write» и выполнение х —

«execute», соответствующие разрешению выполнять системные вызовы read(2)',
write(2) и execve(2)z. Каждое базовое право назначается на файл тому или иному
пользователю или группе, разрешая соответствующую операцию.

В наследии классической UNIX определены только три субъекта (листинг 3.34),
которым назначаются базовые права — пользователь-владелец (owner) О, группа-
владелец (group owner) © и все остальные (others) ©. Совокупность их базовых
прав называется режимом доступа (access mode) к файлу.

Базовое право может быть назначено г, w или х или отозвано -, поэтому в мета­
данных файла представляется одним битом, а для режима доступа требуется
девять бит: по три бита прав на каждый из трех субъектов доступа. Компактно
режим доступа может быть записан соответствующим числом в восьмеричной сис­
теме счисления rw- г- - г- - = 11G1GG1GGZ = 644в.

finn@ubuntu:~$ stat .profile

Файл: «.profile»

О! 1©
Доступ: (0644/-rw- г-- г--) Uid: (1000/ finn) Cid: (1000/ finn)

О Т

1 Точнее, системному вызову ореп(2) с флагами 0_RD0NLY и 0_WR0NLY, но для простоты можно

считать г — read (2), a w — write(2).

2 Подробнее о системном вызове execve(2) см. разд. 4.3.

Подсистема управления файлами и вводом-выводом 91

finn@ubuntu:~$ Is -1- .profile

-rw-r--r-- 1 flnn finn 677 ноя 13 00:25 .profile

Проверка режима доступа (листинг 3.35) при операциях с файлами проверяется
«слева направо» до первого совпадения. Если пользователь, осуществляющий опе­
рацию с файлом, является его владельцем, тогда используются только О права
владельца. В противном случае проверяется членство пользователя, осуществляю­
щего операцию с файлом, в группе-владельцев файла, и тогда используются
только .© права группы-владельцев. В других случаях используются права для
всех остальных О, а для суперпользователя root вообще никакие проверки не
осуществляются.

Листинг 135. Использование режима доступа к файлу

finn@ubuntu:~$ id flnn

uid=1000(finn) gid=1000(finn) rpynn№=1000(finn),4(adm),24(cdrom),...,131(sambashare)

finn@ubuntu:~$ Is -l README.*

О -rw-r--г-- 1 finn adm 2471 окт. 11 01:12 README.finn

- -w-r--г-- 1 finn adm 2471 окт. 11 01:12 README.finn.locked

в -rw-r--r-- 1 jake adm 776 окт. 11 01:12 README.jake

-rw--- Г - - 1 bubblegum adm 171 окт. 11 01:12 README.bubblegum

© -rw-r--г-- 1 marceline marceline 16 OKT. 11 01:12 README.marceline

-rw-r.... 1 iceking iceking 31 окт. 11 01:12 README.iceking

finn@ubuntu:~$ wc README.*

wc: README.bubblegum: Отказано в доступе

24 177 2471 README.flnn

wc: README.finn.locked: Отказано в доступе

wc: README.1сёк1пд: Отказано в доступе

12 70 776 README.jake

1 1 16 README.marceline

37 248 3263 итого

Режим доступа новых файлов
Назначается режим доступа файлов при их создании программой, создавшей файл,
исходя из назначения файла, но с учетом пожеланий (точнее, нежеланий) пользо­
вателя. Так, например, текстовые редакторы назначают создаваемым (текстовым)
файлам права rw для всех субъектов, а компиляторы назначают создаваемым (про­
граммным) файлам права rwx для всех субъектов. Пользователь может выразить
свое нежелание назначать вновь создаваемым файлам те или иные права доступа
для тех или иных субъектов, установив так называемую реверсивную (т. е. обрат­

92 Глава 3

ную, символизирующую НЕжелание) маску доступа при помощи встроенной команды
интерпретатора umask (листинг 3.36).

Листинг3.36. Реверсивная Мааса доступа

finn@ubuntu:~$ unask

0602

finn@ubuntu:~$ unask -S

u=rwx,g=rwx,o=rx

finn@ubuntu:~$ touch connon.jnl

finn@ubuntu:~$ Is -1 comon.jnl

-rw-rw-r-- 1 ftnn finn 0 ноя 18 01:37 comon.jnl

finn@ubuntu:~$ unask g-w,o-rwx

finn@ubuntu:~$ unask

0027

finn@ubuntu:~$ unask -S

u=rwx,g=rx,o=

finn@ubuntu:~$ touch group.jnl

finn@ubuntu:~$ Is -l group.jnl

-rw-r.... 1 finn finn 0 ноя 18 01:37 group.jnl

finn@ubuntu:~$ unask g=

finn@ubuntu:~$ unask

0077

finn@ubuntu:~$ unask -S

u=rwx,g=,o=

finn@ubuntu:~$ touch private.jnl

finn@ubuntu:~$ Is -l private.jnl

-rw....... 1 finn finn 0 ноя 18 01:38 private.jnl

Изменять режима доступа разрешено непосредственному пользователю — владель­
цу файла, но не членами группы-владельцев, что иллюстрирует листинг 3.37 при
помощи команды chmod(1).

Л истинг 3.37. Изменение режима доступа к файлу

finn@ubuntu:~$ id finn

yid=1000(finn) gid=1000(finn) rpynnw=1000(finn),4(adn),24(cdron),...,131(sanbashare)

finn@ubuntu:~$ Is -l README.*

-rw-r--г-- 1 finn adn

-rw-r--г-- 1 jake adn

2471 окт. 11 01:12 README.finn

776 окт. 11 01:12 README.jake

Подсистема управления файлами и вводом-выводом 93

finn@ubuntu:~$ chnod g-r,o-r README.finn

finn@ubuntu:~$ Is -la README.finn

-rw.......1 finn admin 2471 окт. 11 01:12 README.finn

finn@ubuntu:~$ chnod g-r,o-r README.jake

chmod: изменение прав доступа для 'README.jake': Операция не позволена

Семантика режима доступа разных типов файлов
Права доступа г, w, х для‘ обычных файлов представляются чем-то интуитивно
понятным, но для других типов файлов это не совсем так. Например, каталог
(см. рис. 3.2) содержит список имен файлов, поэтому право w для каталога — это
право записи в этот список и право стирания из этого списка, что трансформиру­
ется в право удаления файлов из каталога и создания файлов в каталоге. Анало­
гично, право г для каталога — это право просмотра списка имен его файлов.
И наконец, право х для каталога является правом прохода в каталог, т. е. позво­
ляет обращаться к файлам внутри каталога по их имени (листинг 3.38).

Листинг 3.38. Права доступа к каталогу

finn@ubuntu:~$ mkdir folder

finn@ubuntu:~$ Is -lad folder/

drwxrwxr-x 2 finn finn 4096 окт. 12 00:37 folder/

finn@ubuntu:~$ cp /etc/nagic folder

finn@ubuntu:~$ chnod u-w folder

finn@ubuntu:~$ Is -lad folder/

dr-xrwxr-x 2 finn finn 4096 окт. 12 00:40 folder/

finn@ubuntu:~$ cp /etc/localtine folder/

cp: невозможно создать обычный файл «folder/localtime»: Отказано в доступе

finn@ubuntu:~$ m folder/nagic

rm: невозможно удалить «folder/nagic»: Отказано в доступе

finn@ubuntu:~$ Is -li folder/

итого 4

20318203 -rw-г--г-- 1 finn finn 111 окт. 12 00:40 magic

finn@ubuntu:~$ chnod u-г folder

finn@ubuntu:~$ Is -lad folder/

d--xrwxr-x 2 finn finn 4096 окт. 12 00:40 folder/

finn@ubuntu:~$ Is -li folder/

Is: невозможно открыть каталог folder/: Отказано в доступе

finn@ubuntu:~$ Is -li folder/nagic

! 20318203 -rw-r--r-- 1 finn finn 111 окт. 12 00:40 folder/nagic

finn@ubuntu:~$ chnod u-x folder/

94 Глава 3

finn@ubuntu:~$ Is -lad folder/

d---rwxr-x 2 finn finn 4096 окт. 12 00:40 folder/

finn@ubuntu:~$ Is -It folder/nagtc

Is: невозможно получить доступ к f older/nagic: Отказано в доступе

finn@ubuntu:~$ chnod u+rw folder/

finn@ubuntu:~$ Is -lad folder/

drw-rwxr-x 2 finn finn 4096 окт. 12 00:40 folder/

finn@ubuntu:~$ cp /etc/localtine folder/

cp: не удалось выполнить stat для «folder/localtine»: Отказано в доступе

finn@ubuntu:~$ m folder/nagtc

rn: невозможно удалить «folder/nagic»: Отказано в доступе

finn@ubuntu:~$ Is -l folder/

Is: невозможно получить доступ к folder/nagic: Отказано в доступе

итого 0

I . 7 7 7 7 7 7 7 7 7 7 7 7 7 7 p i a g i c

finn@ubuntu:~$ chnod u=rwx folder/

finn@ubuntu:~$ Is -Id folder/

drwxrwxr-x 2 finn finn 4096 окт. 12 00:40 folder/

finn@ubuntu:~$ cd folder/

finn@ubuntu:~/folder$ Is -l

итого 4

-rw-г--г-- 1 finn finn 111 окт. 12 00:40 nagic

finn@ubuntu:~/folder$ chnod a= nagic

finn@ubuntu:~/folderS Is -l nagic

.......... 1 finn finn 111 окт. 12 00:40 nagic

finn@ubuntu:-/folder$ m nagic

\ rn: удалить защищенный от записи обычньм файл «nagic»? у

finn@ubuntu:~/folder$ Is -l

! итого 0

Для жестких ссылок права доступа не существуют вовсе —; они просто являются
теми же правами, что и права целевого файла, в силу того что права доступа
хранятся в метаданных. Для символических ссылок семантика прав сохранена та­
кой же, как и у жестких ссылок, с тем лишь различием, что права символических
ссылок существуют отдельно от целевых файлов, но никогда не проверяются
(см. symlink(7)). Для изменения прав доступа самих символических ссылок даже не
существует специальной команды — при использовании chmod(l) со ссылкой всегда
будут изменяться права целевого файла (листинг 3.39).

Подсистема управления файлами и вводом-выводом 95

Листинг 339. Права доступа ссылок
J - ■ - : ■............. ^ ____________________________________ _ _________ -_______ ______ ______ - ■ ____ Л .

finn@ubuntu:~$ Is -1 README.finn

■rwxr--г-- 1 finn finn 2471 окт. 11 01:13 README.finn

finn@ubuntu:~$ In README.finn read.me

finn@ubuntu:~$ In -s README.finn readme.1st

finn@ubuntu:~$ Is -1 README.finn read.me readme.1st

-rwxr--r-- 2 finn finn 2471 окт. 11 01:13 read.me

Irwxrwxrwx 1 finn finn 11 окт. 12 01:19 readme.1st -> README.finn

-rwxr--r-- 2 finn finn 2471 окт. 11 01:13 README.finn

finn@ubuntu:~$ chmod g+w read.me

finn@ubuntu:~$ Is -1 README.finn read.me readme.1st

-rwxrw-r-- 2 finn finn 2471 окт. 11 01:13 read.me

Irwxrwxrwx 1 finn finn 11 окт. 12 01:19 readme.1st -> README.finn

-rwxrw-r-- 2 finn finn 2471 окт. 11 01:13 README.finn

finn@ubuntu:~$ chmod o-г readme.1st

finn@ubuntu:~$ Is -1 README.finn read.me readme.1st

-rwxrw--- 2 finn finn 2471 окт. 11 01:13 read.me

Irwxrwxrwx 1 finn finn 11 окт. 12 01:19 readme.1st -> README.finn

-rwxrw--- 2 finn finn 2471 окт. 11 01:13 README.finn

Для специальных файлов устройств, именованных каналов и сокетов право х не
определено, а права г и w стоит воспринимать как права ввода и вывода инфор­
мации на устройство и как права передачи и приема информации через средство
взаимодействия.

Дополнительные атрибуты
Помимо базовых прав доступа г, w и х, для решения отдельных задач разграниче­
ния доступа используют дополнительные атрибуты s, Set user/group ID (SUID Set
User ID или SGID, Set Group ID) — атрибут неявного делегирования полномочий
и t, sTicky — «липучка», атрибут ограниченного удаления.

Типичной задачей, требующей неявного делегирования полномочий, является про­
блема невозможности изменения пользователями свойств своих учетных записей,
которые хранятся в двух файлах-таблицах — passwd(5) и shadow(5), доступных на
запись О (и чтение ©) только суперпользователю root. Однако (листинг 3.40)
команды passwd(1), chsh(1) и chfn(1), будучи запущены обычным пользователем, пре­
красно изменяют (!) пароль в таблице /etc/shadow и свойства пользовательской
записи в таблице /etc/passwd за счет передачи полномочий © пользователя —
владельца программы тому пользователю, который ее запускает.

9 6 Глава 3

Листинг 3.40. Дополнительный атрибут SUIU

finn@ubuntu:~$ Is -la /etc/passwd /etc/shadow

О -rw-r--r-- 1 root root 2867 ноя 17 11:16 /etc/passwd

© -rw-r.... 1 root shadow 1617 ноя 17 11:17 /etc/shadow

finn@ubuntu:~$ passwd

Смена пароля для finn.

(текущий) пароль UNIX:

Введите новый пароль UNIX:

Повторите ввод нового пароля UNIX:

passwd: пароль успешно обновлён

finn@ubuntu:~$ Is -la /etc/passwd /etc/shadow

-rw-r--г-- 1 root root 2867 ноя 17 11:16 /etc/passwd

-rw-r.... 1 root shadow 1617 ноя 18 01:46 "• /etc/shadow

finn@ubuntu:~$ chfn

Пароль:

Изменение информации о пользователе finn

Введите новое значение или нажмите ENTER для выбора значения по умолчанию

Полное имя:

Номер комнаты []:

Рабочий телефон []: +7(812)703-02-02

Домашний телефон []:

finn@ubuntu:~$ Is -l /etc/passwd /etc/shadow

-rw-r--г-- 1 root root 2883 ноя 18 01:47 "• /etc/passwd

-rw-r.... 1 root shadow 1617 ноя 18 01:46 /etc/shadow

finn@ubuntu:~$ Is -la /usr/bin/passwd /usr/bin/chfn

© -rwsr-xr-x 1 root root 84848 авг 29 16:00 /usr/bin/chfn

-rwsr-xr-x 1 root root 67992 авг 29 16:00 /usr/bin/passwd

За счет использования атрибута S U ID получается, что пользователям, запускаю­
щим программы chfn(1), chsh(1) и passwd(1), для их исполнения временно делегируют­
ся права владельца этих программ (суперпользователя root) так, как будто сам
суперпользователь их запустил.

Листинг 3.41 Дополнительный атрибутSGID

ttyl

finn@ubuntu:~$ w

00:03:53 up 12 days, 13:53, 7 users, load average: 0,53, 0,51, 0,91

USER TTY FROM LOGIN@ IDLE 3CPU PCPU WHAT

jake tty2 00:03 9.00s 0.52s 0.43s -bash

finn ttyl 00:03 17.00s 0.51s 0.45s -bash

Подсистема управления файлами и вводом-выводом 97

finn@ubuntu:~$ Is -1 /dev/ttyl /dev/tty2

crw....... 1 finn tty 4, 1 окт. 20 00:03 /dev/ttyl

crw....... 1 jake tty 4, 2 окт. 20 00:03 /dev/tty2

finn@ubuntu:~$ write jake

write: jake has messages disabled

Сеанс jake___

jake@ubuntu:~$ mesg у

finn@ubuntu:~$ Is -l /dev/tty2

crw--w--- 1 jake tty 4, 2 окт. 20 00:07 /dev/tty2

finn@ubuntu:~$ write jake

write: write: you have write permission turned off.

Hi, buddy, wazzzup?

Л0
Сеанс jake

|jake@ubuntu:~$

jMessage from finn@ubuntu on ttyl at 00:10

Hey buddy, wazzup?

EOF

finn@ubuntu:~$ Is -Ll /usr/bin/write

-rwxr-sr-x 1 root tty 14328 мая 3 2018 /usr/bin/write

Аналогично (см. листинг 3.41) при использовании атрибута SGID, при передаче
сообщений от пользователя к пользователю командой write(1) или wall(1), запус­
кающему эти программы пользователю делегируются полномочия группы tty,

имеющей доступ на запись к терминалам (специальным файлам устройств
/dev/tty/Y), владельцы которых разрешили такой доступ.

Именно за счет механизма SUID/SGID различные команды позволяют обычным,
непривилегированным пользователям, выполнять сугубо суперпользовательские дей­
ствия. Так, например, su(1) и Sudo(1) позволяют выполнять команды одним пользо­
вателям от лица других пользователей, mount(8), umount(8) и fusermount(l) — монти­
ровать и размонтировать файловые системы, ping(8) и traceroute(l) — выполнять
диагностику сетевого взаимодействия, at(1) и crontab(1) — сохранять в «системных»
каталогах отложенные и периодические задания, и т. д.

Однако для каталогов атрибут SGID имеет совсем другой смысл. По умолчанию
владельцем файла становится © тот пользователь (и его первичная группа), кото­
рый запустил программу, создавшую файл. Но для файлов, создаваемых в «об­

98 Глава 3

щих» О для какой-то группы пользователей, каталогах, логичнее было бы назна­
чать группой-владельцем создаваемых файлов эту общую группу ©.

bubblegum@ubuntu:~$ cd /srv/kingdon

bubblegum@ubuntu:/srv$ id

uid=1005(bubblegum) gid=1005(bubblegum) rpynnw=1005(bubblegum),1007(candy)

bubblegum@ubuntu:/srv/klngdom$ Is -Id .

drwxr-xr-x 2 bubblegum bubblegum 4096 окт. 21 22:02 .

bubblegum@ubuntu:/srv/kingdom$ touch bananaguardl

bubblegum@ubuntu:/srv/klngdom$ Is -l

итого 0

-rw-rw-r-- 1 bubblegum bubblegum 0 окт. 21 22:02 bananaguardl

bubblegum@ubuntu:/srv/kingdom$ chgrp candy .

bubblegum@ubuntu:/srv/klngdom$ chmod g-ws .

bubblegum@ubuntu:/srv/kingdom$ Is -Id .

drwxrwsr-x 2 bubblegum candy 4096 окт. 21 22:02 .

finn@ubuntu:/srv/kingdom$ id

uid=1001(finn) gid=1001(finn) rpynnw=1001(finn),1007(candy)

finn@ubuntu:/srv/kingdom$ touch bananaguard2

finn@ubuntu:/srv/kingdom$ Is -l

итого 0

-rw-rw-r-- 1 bubblegum bubblegum 0 окт. 21 22:02 bananaguardl

© -rw-rW-r-- 1 finn candy 0 окт. 21 22:02 bananaguard2

В примере из листинга 3.42 за счет SGID-атрибута каталога владельцем всех
файлов, помещаемых в этот каталог, автоматически назначается группа-владелец
самого каталога, а создатель (владелец) файла может теперь назначать нужные
права доступа для всех членов этой группы к своему файлу — либо неявно при
помощи реверсивной маски доступа, либо явно при помощи команды chmod(1).

Атрибут-«липучка» t (sTicky) служит для ограничения действия базового разреше­
ния w записи в каталоге. Например, временный каталог /tmp предназначается для
хранения временных файлов любых пользователей и поэтому доступен на запись
всем пользователям. Однако право записи в каталог дает возможность не только
создавать в нем новые файлы, но и удалять любые существующие файлы (любых
пользователей), что совсем не кажется логичным. Именно атрибут t ограничивает
возможность удалять чужие файлы, т. е. файлы, не принадлежащие пользователю,
пытающемуся их удалить.

Подсистема управления файлами и вводом-выводом 99

Ли ггинг 3.43. Дополнительный атрибут sTicky для шалота
— •: ' " :>

finn@ubuntu:/srv/kingdom$ id

uid=1001(finn) gid=1001(finn) rpynnbt=1001(flnn),1007(candy)

finn@ubuntu:/srv/klngdan$ Is -la

итого 8

•" drwxrwsr-x 2 bubblegum candy 4096 окт. 23 20:57 .

drwxr-xr-x 3 root root 4096 окт. 21 21:57 ..

-rw-rw-r-- 1 bubblegum bubblegum 0 окт. 21 23:15 bananaguardl

-rw-rw-r-- 1 finn candy 0 окт. 21 23:24 bananaguard2

finn@ubuntu:/srv/kingdom$ rm bananaguardl

\ rm: удалить защищенный от записи пустой обычный файл «bananaguardl»? у

finn@ubuntu:/srv/kingdom$ Is -l

итого 0

-rw-rw-r-- 1 flnn candy 0 окт. 21 23:24 bananaguard2

6 bubblegum@ubuntu:/srv/kingdom$ chmod +t .

bubblegum@ubuntu:/srv/klngdom$ touch bananaguardl

bubblegum@ubuntu:/srv/klngdom$ Is -la

итого 8

drwxrwsr-t 2 bubblegum candy 4096 окт. 23 21:19 .

drwxr-xr-x 3 root root 4096 окт. 21 21:57 ..

-rw-rw-r-- 1 bubblegum candy 0 окт. 23 21:19 bananaguardl

-rw-rw-r-- 1 finn candy 0 окт. 23 21:19 bananaguard2

\ finn@ubuntu:/srv/kingdom$ rm bananaguardl

rm: невозможно удалить «bananaguardl»: Операция не позволена "•

3.5.3. Списки контроля доступа POSIX
Режим доступа к файлу (access mode), определяющий базовые разрешения г, w и
х только для трех субъектов доступа (владельца, группы-владельца и всех осталь­
ных), не является достаточно гибкйм и удобным инструментом разграничения дос­
тупа. Списки контроля доступа (W:[ACL], access control lists), согласно стандарту
POSIX. 1е, расширяют классический режим доступа к файлу дополнительными
записями (рис. 3.4), определяющими права доступа для явно указанных пользова­
телей и групп. Для просмотра и модификации записей в списках доступа исполь­
зуются утилиты getfacl(1) и setfacl(1), соответственно.

В примере из листинга 3.44 для всех «остальных» (не входящих в группу candy)

пользователей отзываются все права на каталог /srv/kingdom/stash, но для отдель­
ного пользователя jake (не являющегося членом группы candy) назначаются права
чтения, модификации и прохода в него rwx.

100 Глава 3

Access
Mode

_____________ JL____
f 1

Croup
Owner Owner Others

г w X г W X г W X

г

Access
ACL co ntro l ч

List
О г а

о <->

Owner
Croup Owner
Mask
Others

User

4

v_

User

Croup

username Г W X

groupname r W X

username Г W X

groupname Г W X

Рис. 3.4. Списки контроля доступа к файлам

Листинг 3.44. Списки контроля доступа

finn@ubuntu:/srv/kingdom$ Is -lad .

drwxrwsr-t 2 bubblegum candy 4096 окт. 23 21:19 .

finn@ubuntu:/srv/kingdom$ id

uid=1001(finn) gid=1001(finn) rpynnbi=1001(finn),1007(candy)

flnn@ubuntu:/srv/klngdom$ mkdir stash

finn@ubuntu:/srv/klngdom$ chmod o= stash/

finn@ubuntu:/srv/kingdom$ Is -lad stash/

drwxrws--- 2 finn candy 4096 нояб. 4 13:05 stash/

finn@ubuntu:/srv/kingdom$ id jake

? uid=1002(jake) gid=1002(jake) группы=1002(jake)

finn@ubuntu:/srv/kingdom$ setfacl -m u:jake:rwx stash/

finn@ubuntu:/srv/kingdom$ Is -lad stash/

drwxrws---+ "• 2 finn candy 4096 нояб. 4 13:05 stash/

finn@ubuntu:/srv/kingdom$ getfacl stash/

Подсистема управления файлами и вводом-выводом 101

user::rwx

•" user:jakeirwx

group::rwx

mask::rwx

•" other::---

Групповая маска
С расширением множеств субъектов, для которых определены права доступа при
помощи списков контроля доступа, возникает вопрос об их смысловой совмести­
мости с режимом доступа, в котором определены всего три множества: пользова­
тель-владелец, группа-владелец и все остальные.

Программы, работающие в соответствии с режимом доступа, считают, что если и
существует некоторое количество «выделенных» субъектов со специально опреде­
ленными правами, отличными от «всех остальных», то все эти субъекты входят в
группу владельцев. Списки контроля доступа позволяют «выделять» субъектов из
числа любых пользователей и групп и определять их права произвольным образом.
Когда программа, работающая в соответствии с режимом доступа, назначает права
группе-владельцу, она вправе считать, что все «выделенные» субъекты будут огра­
ничены этими правами. Именно поэтому в список контроля доступа добавлена
групповая маска прав, определяющая ограничения «выделенных» субъектов (назы­
ваемых групповым классом субъектов) в их индивидуальных правах.

В примере из листинга 3.45 каталогу, которому определены индивидуальные права
rwx для пользователя jake в списке контроля доступа, изменяют права группы-
владельцев © классического режима доступа. Получившийся режим доступа О
означает, что никому, кроме владельца файла, не разрешено записывать в этот
файл, что противоречит индивидуальным правам списка доступа. Противоречия
устраняются маской © списка доступа, ограничивающей эффективные права поль­
зователя jake так, чтобы это соответствовало режиму доступа по смыслу.

Листинг 3.45. Группопая маска ACL

ftnn@ubuntu:/srv/ktngdom$ Is -lad stash/
drwxrws---+ 2 finn candy 4096 нояб. 4 13:05 stash/

flnn@ubuntu:/srv/kingdom$ getfacl stash/

user::rwx

user:jake: rwx

group::rwx

mask::rwx

other::---

102 Глава 3

© flnn@ubuntu:/srv/klngdom$ chmod g-w stash/

finn@ubuntu:/srv/kingdom$ Is -lad stash/

О drwxr-s---+ 2 flnn candy 4096 нояб. 4 13:05 stash/

finn@ubuntu:/srv/kingdom$ getfacl stash/

user::rwx

! user:jake:rwx #effectlve:r-x "•

! group::rwx #effective:r-x "•

О mask::r-x

other::---

Права по умолчанию
При создании новых файлов в каталогах с индивидуальными правами пользовате­
лей в списках доступа зачастую складывается ситуация, когда пользователи
(имеющие доступ в каталоги) не получают нужных прав доступа к создаваемым
файлам в этих каталогах. В большинстве случаев это противоречит здравому
смыслу, т. к. все файлы некоторого каталога являются в определенном смысле
«общими» для множества пользователей, которым разрешен доступ в сам каталог.

В примере из листинга 3.46 в каталоге stash, куда пользователю jake предоставлен
индивидуальный доступ (см. листинг 3.45) при создании файла README, он в силу
SCID для каталога (см. листинг 3.42) передается группе candy. В группу candy поль­
зователь jake не входит (именно поэтому ему назначены индивидуальные права
в листинге 3.44), в результате чего файл ему никак не будет доступен.

Проблема решается назначением © каталогу stash прав доступа «по умолчанию»
(default), которые будут унаследованы © файлами, создающимися в этом каталоге.

Листинг $М. Права по умолчанию

finn@ubuntu:/srv/klngdom$ cd stash/

flnn@ubuntu:/srv/kingdon$ unask 0007

finn@ubuntu:/srv/ktngdom/stash$ touch README

flnn@ubuntu:/srv/kingdom/stash$ Is -la README

-rw-rw----"• 1 ftnn candy "• 0 нояб. 4 14:16 README

flnn@ubuntu:/srv/kingdon/stash$ id jake

О uid=1002(jake) gid=1002(jake) группы=1002(jake)

© finn@ubuntu:/srv/kingdopi/stash$ setfacl -n d:u:jake:rw .

finn@ubuntu:/srv/kingdoin/stash$ getfacl .

file: .

default:user::rwx

Подсистема управления файлами и вводом-выводом 103

default: user: jake: rw-

default:group::rwx

default:mask::rwx

default:other:: - - -

finn@ubuntu:/srv/klngdoni/stash$ touch README.jake

flnn@ubuntu:/srv/klngdom/stash$ Is -l README.jake

-rw-rw— 1 flnn candy 0 нояб. 4 14:17 README, jake

finn@ubuntu:/srv/kingdon/stash$ getfacl README.jake

file: README.jake

О user:jake: rw-

3.6. Мандатное (принудительное) разграничение доступа
В Linux дискреционные механизмы разграничения доступа (DAC, discretionary
access control) являются основными и всегда активны. Их использование предпо­
лагает, что владельцы объектов правильно распоряжаются правами доступа к на­
ходящимся в их владении объектам. Например, пользовательские закрытые ключи,
используемые службой W:[SSH] (см. разд. 6.4.1) в каталоге ~/.ssh или ключи
W: [СпиРС] в каталоге ~/.gnupg и прочие секретные данные (подобные ключи досту­
па в банковские информационные системы), должны быть недоступны никому,
кроме их владельца.

Запускаемые пользователем программы выполняются от лица запустившего их
пользователя и имеют доступ к файлам согласно установленным режимам или
спискам доступа. В примере из листинга 3.47 клиент ssh(1), браузер firefox(1) и ком­
муникатор skype имеют абсолютно равные возможности по чтению и модификации
(!) пользовательского закрытого ключа ~/.ssh/id_rsa, тогда как настоящим «вла­
дельцем» ключей является только sshfl).

Листинг 3.47. Неоьходимыль MAC I

flnn@ubuntu:~$ Is -l .ssh

итого 8

-rw------* 1 rlnn "• flnn 1675 нояб. 4 16:06 ld_rsa

-rw-r--r-- 1 flnn flnn 393 нояб. 4 16:06 ld_rsa.pub

flnn@ubuntu:~$ ps fux

USER PID «CPU «MEM VSZ RSS TTY STAT START TIME COMMAND

flnn 20650 0.0 0.1 13488 8576 pts/0 S 16:08 0:00 -bash

flnn 20943 0.0 0.0 6668 2284 pts/0 S+ 16:19 0:00 _ ssh jake@grex.org

mailto:jake@grex.org

104 Глава 3

finn 21094 13.1 1.5 592676 127820 pts/2 Rl+ 16:27 0:09 /usr/Ub/firefox/firefox

finn 21790 29.7 2.1 575000 172084 ? Si 16:38 0:09 skype

Абсолютно естественно предполагать, что программы firefox(1) и skype(l) не имеют
никаких намерений доступа к пользовательским ключам SSH. Можно даже дове­
рять программе firefox(1), штатно установленной из доверенного источника (дист­
рибутива), где она была изготовлена из открытых исходных текстов, подлежащих
верификации. Однако нет никаких оснований доверять закрытому skype, поставляе­
мому в бинарном виде.

Более того, предоставлять доступ программам firefox(l) и skype(1) к SSH-ключам
пользователя нет никакой необходимости, во-первых, просто потому, что это
выходит за рамки набора минимально необходимых условий их целевого функцио­
нирования. Во-вторых, практически в любой программе есть ошибки, используя
которые злоумышленник может осуществлять непреднамеренные действия в свою
пользу. Таким воздействиям особенно подвержены программы, использующие сете­
вой обмен с недоверенной внешней средой — клиенты и серверы сетевых служб
операционной системы. Тем временем дискреционный подход и механизмы служат
для разграничения доступа разных пользователей к файлам, но никак не пред­
назначены для разграничения доступа программ одного и того же пользователя
к разным файлам этого пользователя.

Для разграничения доступа субъектов — программ к объектам — файлам дерева
каталогов используют так называемый мандатный (от англ, mandatory — обяза­
тельный или принудительный) подход (MAC, mandotary access control), предпо­
лагающий следование обязательным правилам доступа к файлам, назначаемым
администраторами системы. Правила доступа строятся на основе знания о внут­
реннем устройстве программ и представляют собой описание набора минимально
необходимых условий их целевого функционирования.

Таким образом, в мандатных правилах, ограничивающих доступ к SSH-ключам
пользователя, только программе ssh(1) должен быть разрешен доступ для непосред­
ственного выполнения своих прямых функций, а программам firefox(l) и skype(1)
в доступе к SSH-ключам должно быть отказано.

3.6.1. Модуль принудительного разграничения доступа АррАгтог
В Linux мандатные механизмы разграничения являются дополнительными и акти­
вируются по желанию пользователя или дистрибьютора. Так, например, в Ubuntu
Linux по умолчанию устанавливается и активируется модуль принудительного раз­
граничения доступа аррагтог(7). Модуль W : [АррАгтог] имеет некоторое количество
готовых к употреблению наборов мандатных правил (называемых профилями) для
ограничения (confine) доступа субъектов — программ к объектам операционной

Подсистема управления файлами и вводом-выводом 105

системы — файлам, сетевым протоколам, портам TCP/UDP и пр. Правила
АррАппог идентифицируют программы и файлы на основе их полных путевых
имен. При этом каждый профиль описывает ограничения для одной определенной
запускаемой программы (а также для других, запускаемых этой программой, т. е.
«подчиненных» программ), а программы, для которых профили не определены, ни­
как не ограничиваются (uniconfined).

В примере из листинга 3.48 проиллюстрировано использование команды aa-status(8),
показывающей статус модуля принудительного контроля доступа АррАппог. В рас­
поряжении модуля имеются профиль О программы skype в режиме принуждения
(enforce) и профиль © программы firefox(l) в режиме оповещения (complain). Более
того, процесс skype с идентификатором 30173 принуждается (enforce) модулем кон­
троля к выполнению правил профиля, а процесс firefox с идентификатором 10335

только отслеживается (complain) на предмет нарушений правил.

Листинг 3.48. Модуль мандатного разграничения доступа АррАгтог
— -..... -............ L - г..1

finn@ubuntu:~$ sudo аа-status

аррагтог module is loaded.

50 profiles are loaded.

26 profiles are in enforce mode.

© /usr/bin/skype

24 profiles are in complain mode.

© /usr/lib/firefox/firefox{,*[As][Ah]}

18 processes have profiles defined.

3 processes are in enforce mode.

ft /usr/bin/skype (30173)

6 processes are in complain mode.

S' /usr/lib/firefox/firefox{,*[As][Ah]} (10335)

0 processes are unconfined but have a profile defined.

Нарушения мандатных правил процессами, находящимися в режиме оповещения
(complain), приводят только к журнализации сообщений аудита об обнаруженных
нарушениях. Попытки нарушения мандатных правил процессами, находящимися
в режиме принуждения (enforce), пресекаются модулем контроля доступа в виде
отказа в доступе к тому или иному запрашиваемому объекту.

Выполненный (листинг 3.49) при помощи команды apparmor_parser(8) анализ полного
(-р) набора правил профиля программы /usr/bin/firefox показывает, что обраще­
ния к любым файлам каталога .ssh явно запрещены указанием deny и подлежат
обязательному аудиту согласно указанию audit. При помощи команды aa-enforce(8)

106 Глава 3

профиль переводится в режим enforce, в результате чего доступ firefox(1) к ключам
пользователя оказывается запрещенным.

finn@ubuntu:~$ appamor_parser -р /etc/appamor.d/usr. bin. firefox

audit deny "• @{H0ME}/.ssh/** mrwkl.

finn@ubuntu:~$ cat ~/.ssh/id_rsa

.... BEGIN RSA PRIVATE KEY.....

.... END RSA PRIVATE KEY.....

finn@ubuntu:~$ firefox ~/.ssh/ld_rsa

•-* finn@ubuntu:~$ sudo aa-enforce firefox

© Profile for /usr/lib/firefox/firefox.sh not found, skipping

finn@ubuntu:~$ pgrep firefox

16392

finn@ubuntu:~$ ps up 16392

USER PID %CPU 9ЙМЕМ VSZ RSS TTY STAT START TIME COMMAND

finn 16392 2.4 5.9 2974256 238292 pts/2 Si 23:33 0:03 /usr/lib/firefox/firefox

•- finn@ubuntu:~$ sudo aa-enforce /usr/lib/firefox/firefox

© Назначение /usr/lib/firefox/firefox принудительного режима.

Warning: profile /usr/lib/firefox/firefox{,*[As][Ah]} represents multiple programs

finn@ubuntu:~$ pkill firefox

finn@ubuntu:~$ firefox ~/.ssh/id_rsa

Окно firefox

(D В доступе к файлу отказано

Файл /hone/finn/.ssh/id_rsa не мо ют быть прочитан.

* Возможно, что он был удалён или перемещён, или разренения на файл не дают получить к нему доступ.

Стоит отметить, что команды aa*enforce(8) и aa-status(8) выполняются от лица супер­
пользователя, единолично управляющего модулем принудительного контроля дос­

Подсистема управления файлами и вводом-выводом 107

тупа АррАгтог, но детальное рассмотрение синтаксиса правил и процедур управ­
ления модулем относится к задачам администрирования операционной системы,
которые выходят за рамки этой книги.

3.6.2. Модуль принудительного разграничения доступа SELinux
Еще одна известная реализация мандатных механизмов разграничения доступа
в RedHat/CentoOS/Fedora Linux называется W : [SELinux] (Security Enhanced Linux)
и имеет несколько моделей применения и соответствующих им наборов мандатных
правил, называемых политиками. Политики SELinux описывают ограничения дос­
тупа субъектов — программ к объектам операционной системы — файлам, сете­
вым портам протоколов TCP и UDP и пр. на основе меток безопасности.

Самая распространенная из моделей применения, похожая на АррАгтог, представ­
лена целевой (target) политикой, предполагает ограничение прав доступа только
определенных программ, тогда как остальные программы никак не ограничиваются.
Другие модели применения представлены многоуровневой (MLS, multilayer security
и ее вариантом MCS, multicategory security) и строгой (strict) политиками.

В многоуровневой политике определяются уровни (и категории) доступа, например
«не секретно», «для служебного пользования», «секретно», «совершенно секретно» и
т. д., и реализуется принцип «по read up, по write down», т. е. запрещение читать
файлы с меткой более высокого уровня и запрещение изменять файлы с меткой
более низкого уровня. В строгой политике, ограничивающей права доступа всех
процессов, запрещается все, что не разрешено явно.

В листинге 3 .5 0 при помощи команды sestatus(8) показан статус модуля принуди­
тельного контроля доступа SELinux. Аналогично АррАгтог, у модуля SELinux
имеются разрешительный (permissive) и принудительный (enforcing) режимы ©
работы. В разрешительном режиме нарушения мандатных правил процессами при­
водят только к журнализации сообщений аудита об обнаруженных нарушениях.
Попытки нарушения мандатных правил процессами, находящимися в принудитель­
ном режиме, пресекаются модулем контроля доступа в виде отказа в доступе
к тому или иному запрашиваемому объекту.

Листинг 3.50. Модуль мандатного разграничения доступа SELinux

[llch@fedora ~]$ sestatus

SELinux status:

SELlnuxfs mount:

SELinux root directory:

О Loaded policy name:

© Current mode

enabled

/sys/fs/seltnux

/etc/seltnux

targeted

enforcing

108 Глава 3

Mode froro conflg file:

Policy MLS status:

Policy deny_unknown status:

Max kernel policy version:

enforcing

enabled

allowed

29

В отличие от AppArmor, модуль SELinux оперирует не профилями отдельных про­
грамм, а общим набором правил О, называемых политикой (policy). Сами правила
политики описывают возможные отношения между процессами и файлами согласно
их меткам безопасности. Каждая метка состоит из четырех компонент
user:role:type:level, которые могут быть использованы лишь частично. Например,
в целевой политике используются только составляющая «тип» (type) и принцип
«соблюдения типов» (ТЕ, type enforcement), согласно которому доступ программы
к файлу разрешается, если они имеют «совместимые» типы.

В примере из листинга 3.51 показаны метки безопасности процессов bash и ps

сеанса пользователя lich и процесса httpd системной службы Web-сервера. В це­
левой (targeted) политике программы, запускаемые в пользовательских сеансах, и,
соответственно, их процессы никак не ограничиваются, что и обозначает тип
unconfined.t их метки безопасности. Наоборот, процессы всех системных служб и
являются собственно «целями» принудительного контроля доступа целевой полити­
ки, поэтому выполняются со своими типами, например httpd_t для службы Web-
сервера.

Листинг 3.51. Мандатные мегкь процессов

[lich@centos ~]$ ps -Z

LABEL PID TTY TIME CMD

unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.cl023 8893 pts/0 00:00:00 bash

unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.cl023 9454 pts/0 00:00:00 ps

[lich@centos ~]$ ps -ZC httpd

LABEL PID TTY TIME CMD

systen_u:systen_r:httpd_t:s0 3262 ? 00:00:00 httpd

systen_u:systen_r:httpd_t:s0 3267 ? 00:00:00 httpd

Политика содержит правила назначения меток процессам тех программ, исполняе­
мые файлы которых тоже имеют свои метки, проиллюстрированные в листин­
ге 3.52. Так, например, целевая политика содержит правила, согласно которым
процессы Web-сервера httpd получают метку с типом httpd_t, потому что выпол­
няют программы /usr/sbin/httpd с меткой httpd_exec_t.

Подсистема управления файлами и вводом-выводом 109

Листинг 3.52. Мандатные метки файлов программ

[lich@centos ~]$ Is -Z /usr/sbin/httpd

-rwxr-xr-x. root root systen_u:object_r:httpd_exee_t:s0 /usr/sbtn/httpd

Файлы с данными тоже размечаются своими метками. Например, в листинге 3.53
иллюстрируются метки файлов в домашнем каталоге пользователя Itch, где при
помощи меток дифференцированы разные пользовательские данные по смыслу.

Листинг 3.53. Мандатные метки файлов |

[lich@centos ~]$ Is -Za -

drwxr-xr-x. Itch Itch unconftned_u:object_r:user_home_t:s0 Desktop

drwxr-xr-x. Itch Itch unconftned_u:objectr:audio_home_t:s0 Mustc

drwx------. Itch Itch unconftned_u:object_r:ssh_home_t:s0 .ssh

В частности, пользовательские ключи SSH в каталоге ~/.ssh имеют метку с типом
ssh_hone_t, на основании чего и можно ограничить к ним доступ таких программ
как skype или firefox. Для этого нужно просто выполнять эти программы в процес­
сах с такими типами в их метках, доступ которых к файлам с метками, имеющими
тип ssh_hone_t, ограничен правилами политики.

В листинге 3.54 при помощи команды sesearch(1) производится поиск разрешитель­
ных (-А, allow) правил в политике безопасности, разрешающих (-р, permissions)
всем субъектам с исходным (-s, source) типом unconfined.t открывать (open) объ­
екты файлового (file) класса (-с, class), имеющие целевой (-t, target) тип
ssh_hone_t.

| Листинг 3.54. Мандатные правила типа unconfined_t

[ltch@centos ~]$ sesearch -A -s unconftned_t -t ssh_home_t -c file -p open

Found 2 semantic av rules:

allow files_unconfined_type file_type: file { toctl read ... open audit_access } ;

О allow unconftned_t user_home_type: file { toctl read write create ... rename open } ;

[lich@centos ~]$ seinfo -tssh_home_t -x

ssh_home_t

© user_home_type

[lich@centos ~]$ seinfo -auser_home_type -x

user_home_type

audio home t

110 Глава 3

О ssh_hone_t

audlo_home_t

В результате найдено правило О, разрешающее доступ субъектов с типом
unconflned_t к объектам, типы которых «обобщаются» атрибутом user_hone_type.

При помощи команды seinfo(1) уточняется, что тип (-t, type) ssh_home_t действи­
тельно обобщен атрибутом © user_hone_type, и, наоборот, атрибут user_hone_type

обобщает такие «пользовательские» типы ©, как ssh_home_t, audio_hone_t,

user_home_t и пр.

Другими словами, всем процессам пользовательского сеанса (т. к. они имеют тип
unconfined_t) разрешено обращаться к пользовательским SSH-ключам (имеющим
тип ssh_home_t) и любым другим пользовательским данным (с типами audio_hone_t,

user_home_t и пр.).

Для ограничения программ в доступе к SSH-ключам пользователей потребуется
некоторый другой тип (отличный от unconflnedjt), которому правилами политики
будет запрещено обращаться к файлам с типом ssh_home_t. Такими типами в целе­
вой политике являются несколько типов «песочниц» (sandbox), например sandbox_t

или sandbox_net_t (разрешающий сетевые соединения).

В примере из листинга 3.55 поиск О разрешающих правил показывает, что про­
цессам с типом sandbox_net_t не разрешено открытие файлов с типом ssh_home_t,

но разрешены © TCP-соединения. Таким образом, тип sandbox_net_t оказывается
подходящим кандидатом процессов тех программ, которым нужно ограничить дос­
туп к SSH-ключам и другим файлам пользователя.

0 [lich@centos ~]$ sesearch -A -s sandbox_net_t -t ssh_hone_t -c file -p open

1
© [l!ch@centos ~]$ sesearch -A -s sandbox_net_t -c tcp.socket -p connect

Found 4 semantic av rules:

allow sandbox_net_t sandbox_net_t: tcp_socket { ... read write ... connect ... shutdown } ;

[lich@centos ~]$ links -dinp ~/.ssh/ld_rsa

?BEGIN RSA PRIVATE KEY.....

.... END RSA PRIVATE KEY.....

[lich@centos ~]$ sandbox -t sandbox_net_t links -dinp ~/.ssh/ld_rsa

О ELlnks: Отказано в доступе

Запустить программу в процессе с соответствующей меткой позволяет команда
sandbox(8), специально предназначенная для формирования «песочниц» при помощи

Подсистема управления файлами и вводом-выводом 111

модуля SELinux и соответствующих sandbox_*_t-TH noB . В примере из листинга 3.55
текстовый Web-браузер links(1), выполненный в процессе с типом sandbox_net_t,
в действительности оказывается ограниченным © в доступе к SSH-ключам поль­
зователей, что и требовалось получить.

3.7. Дополнительные свойства файлов

3.7.1. Расширенные атрибуты файлов
Как было показано выше (см. листинг 3.4), базовые права доступа, дополнитель­
ные атрибуты SUID/SGID, владельцы, счетчик имен и. другие основные свойства
файлов хранятся в их метаданных. Кроме этого, файлам могут быть назначены
списки контроля доступа (см. листинг 3.44) и метки безопасности SELinux
(см. листинг 3.50), которые являются их дополнительными свойствами и хранятся
за пределами метаданных, при помощи расширенных атрибутов attr(5).

Каждый расширенный атрибут имеет имя вида namespace.attrname, при этом про­
странства имен namespace определяют назначение атрибута. Пространство имен
system используется системными (ядерными) компонентами, например, для списков
контроля доступа POSIX ACL. Пространство имен security используется системны­
ми компонентами безопасности, в частности для хранения привилегий исполняемых
программ (capabilities^), см. разд. 4.5.2) и меток модуля принудительного контроля
доступа SELinux (см. листинги 3.52 и 3.53). Пространства имен trusted и user
предназначены для атрибутов внеядерных компонент — программ, выполняющихся
привилегированным и обычными пользователями, соответственно.

Для просмотра и назначения внеядерных (пользовательских) расширенных атрибу­
тов используются утилиты getfattr(1) и setfattr(1). Читать пользовательские расши­
ренные атрибуты файла разрешено тем же субъектам, которым разрешено чтение
данных этого файла. Аналогично, устанавливать (изменять) и удалять пользова­
тельские расширенные атрибуты файла могут субъекты, допущенные к записи
данных этого файла.

Ядерные (системные) атрибуты обычно управляются специально предназначенными
командами: например, getfacl(l) и setFacl(1) предназначены для спйсков контроля
доступа, команды getcap(8) и setcap(8) — для привилегий исполняемых программ,
команды chcon(1) и ls(1)-Z — для мандатных меток. Системные атрибуты, как прави­
ло, всегда доступны для чтения, но их установка и изменение требуют определен­
ных привилегий процесса (см. разд. 4.5.2).

Листинг 3*> . Расширенные системные атриорты файлов

flnn@ubuntu:~$ getcap /usr/bin/gnome-keyring-daemon

/usr/bin/ gnome-keyring-daemon = cap_tpc_lock+ep О

112 Глава 3

finn@ubuntu:~$ getfattr -d -n - /usr/bui/gnone-keyring-daenon

getfattr: Удаление начальных '/' из абсолютных путей

file: usr/bin/gnone-keyring-daenon

finn@ubuntu:~$ cd /srv/kingdon/stash

finn0ubuntu:/srv/kingdon/stash$ Is -l README.jake

-rw-rw--- + 1 finn candy 0 нояб. 4 14:17 README, jake

finn0ubuntu:/srv/kingdon/stash$ getfacl README.jake

file: README.jake

owner: finn

group: candy

user::rw-

user:jake:rw- ©

group::rwx #effective:rw-

nask::rw-

other::---

finn@ubuntu:/srv/kingdon/stash$ getfattr -d -n - README.jake

file: README.jake

•" systen.posix_acl_access=0sAgAAAAEABgD/////AgAGAOoDAAAEAAcA/////xAABgD/////IAAAAP////8=

finn0ubuntu:/srv/kingdon/stash$ setfattr -n user.color -v orange README.jake

finn@ubuntu:/srv/kingdon/stash$ setfattr -n user.flavour -v vanilla README.jake

finn@ubuntu:/srv/kingdon/stash$ getfattr -d README.jake

file: README.jake

user.color="orange"

user. flavour="vanilla"

В примере из листинга 3.56 показано, что привилегии исполняемых программ О на
самом деле сохранены в атрибуте security.capability, списки контроля доступа
© — в атрибуте systen.posix_acl_access, а в атрибутах пространства имен user

можно разместить любые значения. Наиболее известным применением пользова­
тельских атрибутов (листинг 3.57) являются атрибуты user.xdg.origin.url и
user.xdg.referrer.url, используемые браузером chromium-browser(l) для сохранения
URL файлов, которые были загружены из Интернета.

finn@ubuntu:~/Downloads$ getfattr -d TLCL-13.07.pdf

file: TLCL-13.07.pdf

Подсистема управления файлами и вводом-выводом 113

•" user.xdg.origin.url="http://freefг.dl.sourceforge.net/ргоject/llnuxcomand/TLCL/13.07/
TLCL-13.07.pdf"

user.xdg.referrer.url="http://sourceforge.net/рго jects/llnuxcomand/f lles/TLCL/13.07/
TLCL-13.07.pdf/download"

3.7.2. Флаги файлов
Кроме «общих» расширенных атрибутов, которые используются разными компонен­
тами операционной системы, каждая файловая система зачастую имеет собствен­
ные атрибуты файлов, управляющие ее поведением и функциями при доступе
к файлам. Так, файловые системы extZ/ext3/ext4 управляются специальными атри­
бутами-флагами, например a (append only), l (immutable), s (secure deletion),
S (synchronous updates) и np.

Флаг s заставляет файловую систему при удалении файла не только высвобождать
принадлежащие ему блоки, но и обнулять их, а флаг S заставляет операции запи­
си в файл выполняться синхронно (немедленно), минуя отложенную запись с ис­
пользованием дискового кэша. Флаг I делает файл «неприкасаемым» (О, лис­
тинг 3.58) — его нельзя ни изменить в, ни удалить © никому, даже суперпользо­
вателю © root. Флаг а делает файл «накопительным», т. е. никому не дает
изменять имеющуюся в файле информацию или удалять файл, а позволяет только
добавлять данные © в его конец.

Устанавливать флаги файлов разрешено их владельцам, а установка отдельных
флагов, например а или I , требует определенных привилегий процесса
(см. разд. 4.5.2). Для просмотра флагов файлов предназначена утилита lsattr(1), а
для их изменения — утилита chattr(1), что иллюстрирует листинг 3.58 на примере
флага I.

Листинг 3.58. Флаги файлов

flnn0ubuntu:/srv/klngdopi/stash$ Isattr

............. е- ./README.jake

............. е- ./README

flnn@ubuntu: /srv/klngdorn/stash$ chattr +i README.jake

chattr: Операция не позволяется while setting flags on README.jake

flnn@ubuntu:/srv/klngdom/stash$ sudo chattr +1 README.jake

flnn@ubuntu:/srv/klngdoni/stash$ Isattr README.jake

--- 1.........e- README.jake

flnn0ubuntu:/srv/klngdopi/stash$ date >* README, jake

-bash: README.jake: Операция не позволяется 1

1 О перенаправлениях подробнее см. разд. 5.3.

http://freef%d0%b3.dl.sourceforge.net/%d1%80%d0%b3%d0%beject/llnuxcomand/TLCL/13.07/
http://sourceforge.net/%d1%80%d0%b3%d0%be

114 Глава 3

flnn@ubuntu:/srv/kingdon/stash$ m README.jake

rm: невозможно удалить «README.jake»: Операция не позволяется

finn@ubuntu:/srv/klngdoni/stash$ sudo m README.jake

rm: невозможно удалить «README.jake»: Операция не позволяется *•!

3.8. В заключение
Всестороннее рассмотрение разнообразных файлов, их свойств, атрибутов и кон­
текстов использования неизбежно должно приводить к выводу, что файл является
универсальной сущностью, позволяющей организовать однородный доступ к ин­
формации, вне зависимости от свойств ее источника. Специальные файлы уст­
ройств, именованные каналы и сокеты имеют файловую природу и могут обраба­
тываться совершенно «обычными» программами за счет идентичности их файлового
программного интерфейса, наравне с файлами «обычных» (дисковых), сетевых,
псевдофайловых и внеядерных файловых систем.

Подсистема управления процессами, о которой пойдет речь в следующей главе,
тоже не обходится без файлов и использует механизм их отображения в память
для организации виртуальной памяти и средств межпроцессного взаимодействия,
таких как разделяемая память, очереди сообщений1 и семафоры. Даже сетевые
сокеты, рассмотрение которых отложено до главы 6, тоже на поверку оказываются
файлами.

Таким образом, понимание файла как основополагающей компоненты операционной
системы дает ключ к пониманию многих других ее частей, а навыки мониторинга
файлов или трассировки файлового интерфейса позволяют заглянуть в корень
практически всех ее механизмов. 1

1 В р еал и зац и и P O S I X , н о , к со ж а л ен и ю , не в р еал и зац и и S Y S V .

Глава 4
Управление процессами и памятью

Процессы операционной системы в большинстве случаев отождествляются с вы­
полняющимися программами, что не совсем верно, точнее — совсем не верно.
В современных операционных системах, включая Linux, между программой и про­
цессом есть очевидная взаимосвязь, но далеко не такая непосредственная, как
кажется на первый взгляд.

4.1. Программы и библиотеки
Программа представляет собой алгоритм, записанный на определенном языке, по­
нятном исполнителю программы1. Различают машинный язык, понятный централь­
ному процессору, и языки более высоких уровней (алгоритмические), понятные
составителю программы — программисту.

Программы, составленные на языке высокого уровня, в любом случае перед ис­
полнением должны быть транслированы (переведены) на язык исполнителя, что
реализуется при помощи специальных средств — трансляторов. Различают два
вида трансляторов программ — компиляторы и интерпретаторы. Компилятор
транслирует в машинный код сразу целиком всю программу и не участвует в ее
исполнении. Интерпретатор, наоборот, пошагово транслирует отдельные инструкции
программы и немедленно выполняет их. Например, командный интерпретатор
при интерактивном режиме пошагово выполняет команды, вводимые пользователем,
а в пакетном режиме (см. главу 5) так же пошагово выполняет команды, записан­
ные в файле сценария.

Алгоритм, в свою очередь, есть некоторый набор инструкций, выполнение кото­
рых приводит к решению конкретной задачи. В большинстве случаев инструкции
алгоритма имеют причинно-следственные зависимости и выполняются исполнителем

1 П р огр ам м а п ол и ти ч еск ой партии и п р огр ам м а научной к он ф ер ен ц и и им ею т тот ж е см ы сл , что и

к ом п ью терн ая п р огр ам м а, но п р едн азн ач ен ы для др уги х и сп ол н и тел ей .

116 Глава 4

последовательно. Однако если выделить «независимые» поднаборы инструкций
(независимые ветви), то их можно выполнять несколькими исполнителями одно­
временно — параллельно. Поэтому различают последовательные и параллельные
алгоритмы и соответствующие им последовательные и параллельные программы.
Некоторые программы реализуют алгоритмы общего назначения, например алго­
ритмы сжатия или шифрования информации, алгоритмы сетевых протоколов и т. д.
Такие программы, востребованные не столько конечными пользователями, сколько
другими программами, называют библиотеками.

Согласно hier(7), откомпилированные до машинного языка программы размещаются
в каталогах /bin, /sbin, /usr/bin, /usr/sbin, /usr/local/Ып, /usr/local/sbin, а биб­
лиотеки — в каталогах /lib, /usr/lib, /usr/local/lib. Программы имеют специаль­
ный бинарный «запускаемый» формат W : [ELF] executable и зависят от библиотек,
что проиллюстрировано в листинге 4.1 при помощи команды ldd(1) (loader
dependencies). Каждая зависимость отображается именем библиотеки О (SONAME,
shared object nam e), найденным в системе файлом библиотеки © и адресом1 в
памяти процесса © (32- или 48-битным, в зависимости от платформы), куда биб­
лиотека будет загружена.

Листинг 4.1. Программы и библиотеки

fitz0ubuntu:~$ which Is

/usr/bin/ls

fitz0ubuntu:~$ file /usr/bin/ls

/usr/btn/ls: ELF 64-blt LSB pie executable, x86-64, version 1 (SYSV), dynamically linked.
Interpreter /llb64/ld-llnux-x86-64.so.2,
BulldID[shal]=2fl5ad836be3339dec0e2e6a3c637e08e48aacbd, for OW/Linux 3.2.0, stripped

fltz0ubuntu:~$ Idd /usr/bin/ls

linux-vdso.so.1 (0x00007ffcb529d000)

libselinux.so.l => /lib/x86_64-linux-gnu/libselinux.so.l (0x00007fb02f58d000)

О libc.so.6 => © /lib/x86_64-linux-gnu/libc.so.6 (0x00007fb02f39c000) ©

libpcre2-8.so.0 => /Iib/x86_64-linux-gnu/libpcre2-8.so.0 (0x00007fb02f317000)

libdl.so.2 => /lib/x86_64-linux-gnu/libdl.so.2 (0x00007fb02f311000)

/lib64/ld-linux-x86-64.so.2 (0x00007fb02f5fl000)

libpthread.so.0 => /lib/x86_64-linux-gnu/libpthread.so.0 (0x00007fb02f2ee000)

fitz@ubuntu:~$ file /lib/x86_64-linux-gnu/libc.so.6

© /lib/x86_64-linux-gnu/libc.so.6: symbolic link to libc-2.30.so

1 Д л я п р о ти в о дей ств и я эк сп л уатац и и у я зв и м о ст и в п р огр ам м ах а д р ес в ы би р ается случайны м о б р а ­

зо м , см . W:[ASLR].

Управление процессами и памятью 117

Нужно заметить, что файла библиотеки l in u x -v d s o .s o .l (реализующей интерфейс
системных вызовов к ядру) не существует, т. к. она является виртуальной (VDS0,
virtual dynamic shared object), т. e. предоставляется и отображается в память про­
цесса самим ядром, «как будто» является настоящей библиотекой. Кроме того,
библиотека ld - l in u x - x 86- 64 .s o .2 указана абсолютным путевым именем, поэтому по­
иск ее файла не производится.

Для большинства библиотек зависимость устанавливается при помощи S0NAME ви­
да WhNAME.so.X, где lib — стандартный префикс (library, библиотека), .so — суф­
фикс (shared object, разделяемый объект), NAME — имя «собственное», а .X — но­
мер версии ее интерфейса (листинг 4.2). По имени S0NAME в определенных (кон­
фигурацией компоновщика — см. ld.so(8) и ldconfig(8)) каталогах производится поиск
одноименного файла библиотеки, который на самом деле оказывается символиче­
ской ссылкой О на «настоящий» файл библиотеки. Например, для б-й версии ин­
терфейса динамической библиотеки языка с (ltbc.so.6) настоящий файл библиоте­
ки называется libc-2.30.so, что указывает на версию самой библиотеки как 2.30.

Листинг 4.2. Версии библиотек

fttz0ubuntu:~$ file /Iib/x86_64-linux-gnu/libpcre2-8.so.0

/Iib/x86_64-linux-gnu/llbpcre2-8.so.0: symbolic link to llbpcre2-8.so.0.7.1 *•

Аналогично, в листинге 4.2 показано, что для 0-й версии интерфейса динамической
библиотеки регулярных perl-выражений рсге2 (llbpcre2-8.so.O) настоящий файл
библиотеки называется libpcre2-8.so.0.7.1, а это указывает на версию самой биб­
лиотеки как 0.7.1.

Такой подход позволяет заменять (исправлять ошибки, улучшать - неэффективные
алгоритмы и пр.) библиотеки (при условии неизменности их интерфейсов) отдель­
но от программ, зависящих от них. При обновлении библиотеки libc-2.30.so, на­
пример, до libc-2.32.so достаточно установить символическую SONAME-ссылку
libc.so.6 на libc-2.32.so, в результате чего ее начнут использовать все программы
с зависимостями от libc.so.6. Более того, в системе может быть одновременно
установлено любое количество версий одной и той же библиотеки, реализующих
одинаковые или разные версии интерфейсов, выбор которых будет указан соответ­
ствующими SONAME-ссылками.

Листинг 4.1. библиотеки—это незалускаемые программы

fitz0ubuntu:~$ file /lib/x86_64-linux-gnu/libc-2.30.so

/lib/x86_64-linux-gnu/libc-2.30.so: ELF 64-bit LSB shared object, x86-64, version 1
(GNU/Ltnux), dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2,
BuildID[shal]=2155f455ad56bd871c8225bcca85ee25clcl97c4, for GNU/Linux 3.2.0, stripped

118 Глава 4

fttz0ubuntu:~$ file /НЬ/х86_64-11пих-дпиД1Ьрсге2-8.so.0.7.1

/llb/x86_64-llnux-gnu/llbpcre2-8.so.0.7.1: ELF 64-bit LSB shared object, x86-64, version 1
(SYSV), dynamically linked, ButldID[shal]=815elacbcc22015f05d62cl7fe982clb573125bl, stripped

fitz@ubuntu:~$ Idd /lib/x86_64-linux-gnu/libpcre2-8.so.0.7.1

linux-vdso.so.1 (0x00007ffe22093000)

libpthread.so.0 => /lib/x86_64-linux-gnu/libpthread.so.0 (0x00007f8ec2bdd000)

libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f8ec29ec000)

/lib64/ld-linux-x86-64.so.2 (0x00007f8ec2c99000)

Библиотеки имеют тот же бинарный формат W:[ELF], что и «запускаемые» про­
граммы, но не «запускаемый» executable, а «совместно используемый» shared object.
Библиотеки, являясь пусть и незапускаемыми, но программами, естественным об­
разом тоже зависят от других библиотек, что показано в листинге 4.3. Практи­
чески «запускаемость» ELF-файлов (листинг 4.4) зависит не от их типа, а от прав
доступа и осмысленности точки входа — адреса первой инструкции, которой пере­
дается управление при попытке запуска. Например, библиотеку llbc-2.30.so можно
запустить, в результате чего будет выведена статусная информация.

листинг 4.4. Запускаемые библиотеки

fitz@ubuntu:~$ Is -l /lib/x86_64-linux-gnu/libc-2.30.so

•" -rwxr-xr-x 1 root root 2025032 сен 16 17:56 /lib/x86_64-linux-gnu/libc-2.30.so

fitz@ubuntu:~$ /lib/i386-linux-gnu/libc-2.15.so

GNU C Library (Ubuntu GLIBC 2.30-0ubuntu2) stable release version 2.30.

Copyright (C) 2019 Free Software Foundation, Inc.

This is free software; see the source for copying conditions.

There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A

PARTICULAR PURPOSE.

Compiled by GNU CC version 9.2.1 20190909.

libc ABIs: UNIQUE IFUNC ABSOLUTE

For bug reporting instructions, please see:

chttps://bugs.launchpad.net/ubuntu/+source/glibc/+bugs> .

4.1.1. Ядро Linux
He стоит забывать, что самой главной программой операционной системы является
ее ядро, которое в Linux состоит из статического стартового модуля (листинг 4 .5)
в формате ELF executable и динамически пристыковываемых программных модулей
формата ELF relocatable (листинг 4 .6). Для выполнения процедуры начальной загруз­
ки стартовый модуль упакован в «самораспаковывающийся» gzip-архив формата

https://bugs.launchpad.net/ubuntu/+source/glibc/+bugs

Управление процессами и памятью 119

bzlmage (big zipped image), который состоит из программы распаковки и собствен­
но запакованного стартового модуля.

В листинге 4.5 проиллюстрирован процесс извлечения стартового модуля из архи­

ва /boot/vnlinuz-3.13.0-49-generic формата bzlmage ©, который предварительно ко­

пируется © в /tmp/vmlinuz. Д л я извлечения используется сценарий extract-vnlinux

© из пакета заголовочных файлов ядра. Распакованный © стартовый модуль

/tnp/vnlinux ожидаемо оказывается статически скомпонованной (т. е. не исполь­

зующей библиотеки ELF shared object) исполняемой ELF-программой.

Листинг 4.5. Ядро операционной системы

fttz@ubuntu:~$ unane -г

5.3.0-23-genertc

fitz0ubuntu:~$ file /boot/vnlinuz-5.3.0-23-generic

/boot/vnillnuz-5.3.0-23-generic: regular file, no read permission

fttz0ubuntu:~$ Is -l /boot/vnlinuz-5.3.0-23-generic

-rw....... 1 root root 11399928 ноя 12 11:51 /boot/vmlinuz-5.3.0-23-genertc

fltz@ubuntu:~$ sudo file /boot/vnlinuz-5.3.0-23-generic

© /boot/vmllnuz-5.3.0-23-generic: Linux kernel x86 boot executable bzlmage, version 5.3.0-23-
generic (buildd@lgw01-amd64-002) #25-Ubuntu SMP Tue Nov 12 09:22:33 1ГГС 2019, RO-rootFS,
swap_dev 0xA, Normal VGA

О fitz@ubuntu:~$ sudo cat /boot/vnlinuz-5.3.0-23-generic > /tmp/vmlinuz

© fitz@ubuntu:~$ /usr/src/linux-headers-5.3.0-23/scripts/extract-vnlinux /tmp/vmlinuz >
/tmp/vnlinux

fitz@ubuntu:~$ file /tmp/vnlinux

•" /tmp/vmllnux: ELF 64-bit LSB executable © , x86-64, version 1 (SYSV), statically linked,
ButldID[shal]=b23ff3f6790319ec538278e3269af619ba2ca642, stripped

Динамические модули загружаются в пространство ядра и пристыковываются к
стартовому модулю позднее, уже при работе операционной системы при помощи
системных утилит insmod(8) или modprobe(8). Для отстыковки и выгрузки ненужных
модулей предназначена системная утилита rmmod(8), для просмотра списка ©
(см. листинг 4.6) загруженных модулей — lsmod(8), а для идентификации свойств и
параметров © модулей — утилита modinfo(8). Загрузка и выгрузка модулей реали­
зуется специальными системными вызовами init_module(2) и delete_module(2), доступ
к списку загруженных модулей — при помощи файла /ргос/nodules псевдофайло-
вой системы ргос(5), а идентификация свойств и параметров модулей — чтением
специальных секций ELF-файлов модулей.

' Листинг 4 J. Модули ядра

© fttz@ubuntu:~$ Ismod

Module Size Used by

120 Глава 4

1915 1949696 4

btusb 57344 0

uvcvideo 98304 0

elGOGe 258048 0

© fltz0ubuntu:~$ modlnfo 1915

filename: /ltb/modules/5.3.0-23-generlc/kernel/drlvers/gpu/drm/1915/1915.ко

license: GPL and additional rights

description: Intel Graphics

fltz0ubuntu:~$ file /lib/modules/5.3.0-23-generlc/kernel/drlvers/gpu/dm/l915/l915.ко

/llb/modules/5.3.0-23-generlc/kernel/drlvers/gpu/drm/1915/1915.ko: ELF 64-blt LSB
relocatable, X86-64, version 1 (SYSV),
BulldID[shal]=49e59590cla718074b76b6541702f6f794ea7eae, not stripped

Динамические модули ядра зачастую являются драйверами устройств, что проил­
люстрировано в листинге 4.7 при помощи утилит lspci(8) и lsusb(8), которые скани­
руют посредством псевдофайловой системы sysfs списки обнаруженных ядром на
шинах PCI и USB устройств и обслуживающих их драйверов.

Пьстинг 4.7. Драйверы устройств

fltz@ubuntu:~$ Ispcl -k

00:02.0 VGA compatible controller: Intel Corporation 2nd Generation Core Process

or Family Integrated Graphics Controller (rev 09)

Subsystem: Dell 2nd Generation Core Processor Family Integrated Graphics

Controller

Kernel driver In use: 1915

Kernel modules: 1915

00:19.0 Ethernet controller: Intel Corporation 82579LM Gigabit Network Connection
(Lewisville) (rev 04)

Subsystem: Dell 82579LM Gigabit Network Connection (Lewisville)

Kernel driver In use: el000e

Kernel modules: el000e

fltz0ubuntu:~$ Isusb -t

/: Bus 01.Port 1: Dev 1, Class=root_hub, Drlver=ehcl-pcl/3p, 480M

|__ Port 1: Dev 2, If 0, Class=Hub, Drlven=hub/6p, 480M

|__ Port 4: Dev 3, If 2, Class=Vendor Specific Class, Drlver=, 12M

|__ Port 4: Dev 3, If 0, Class=Wlreless, Drlver=btusb, 12M

|__ Port 4: Dev 3, If 3, Class=Appllcatlon Specific Interface, Drlver=, 12M

|__ Port 4: Dev 3, If 1, Class=Wlreless, Drlver=btusb, 12M

|__ Port 5: Dev 4, If 0, Class=Vldeo, Drlver=uvcvldeo, 480M

|__ Port 5: Dev 4, If 1, Class=Vldeo, Drtver=uvcvtdeo, 480M

Управление процессами и памятью 121

4.2. Процессы и нити
Сущность процесса неразрывно связана с мультипрограммированием и многозадач­
ностью операционной системы. Например, в однозадачных операционных системах
программы существуют, а процессы — нет. В однозадачных операционных систе­
мах единовременно одна последовательная программа выполняется одним исполни­
телем (центральным процессором), имея возможность безраздельно использовать
зсе доступные ресурсы (память, устройства ввода-вывода и пр.).

В любой программе можно выделить перемежающиеся блоки инструкций, исполь­
зующих или центральный процессор (ЦП), или устройства ввода-вывода (УВВ).
При этом центральный процессор вынужден простаивать при выполнении програм­
мой операций ввода-вывода, например, при ожидании окончания записи (или чте­
ния) блока данных на внешний носитель, или при ожидании окончания передачи
1 или приема) сетевого кадра, или при ожидании событий с устройств человеко-
машинного взаимодействия. С другой стороны, устройства ввода-вывода тоже
вынуждены простаивать при выполнении программой вычислительных операций,
например ожидая результата, подлежащего выводу, или ожидая возникновения
> программы потребности в новых исходных данных.

Используя такую модель поведения программ, можно провести анализ потребления
ими ресурсов при выполнении. Например, компрессоры gzip(1), bzip(2) и xz(1) считы­
вают очередной блок данных исходного файла, относительно долго упаковывают
его и записывают в результирующий файл, а затем повторяют процедуру до ис-
зерпания блоков исходного файла. Количество времени, потраченного на вычисли­
тельные операции упаковки, будет много больше количества времени, потраченного
на чтение исходных данных и запись результатов, поэтому нагрузка на ЦП будет
высокой, а на УВВ — нет. Такой же анализ можно привести и для дубликатора
dd(1), копировщика rsync(1) или архиватора tar(1), которые, наоборот, почти не вы­
полняют никаких вычислений, а сосредоточены на вводе-выводе больших объемов
данных, поэтому при их использовании нагрузка на ЦП будет довольно низкой, а
на УВВ — высокой.

Для командного интерпретатора bash(1), текстовых редакторов папо(1) и vim(1) и
других интерактивных программ, взаимодействующих с пользователем, характер­
ны длительные ожидания ввода небольших команд, простая и недолгая их обра­
ботка и вывод короткого результата. В результате коэффициент полезного исполь­
зования и ЦП, и УВВ будет приближен к нулю.

Подобный анализ и желание увеличить коэффициенты полезного использования
ресурсов привели к созданию многозадачных операционных систем, основываю­
щихся на простой идее псевдоодновременного выполнения нескольких последова­
тельных программ одним исполнителем. Для этого вместо простоя в ожидании
окончания операции ввода-вывода, начатой некоторой программой, центральный

122 Глава 4

процессор переключается на выполнение другой программы, тем самым увеличивая
интегральный коэффициент его полезного использования.

С появлением мультипрограммной смеси1 каждая из ее программ больше не мо­
жет безраздельно использовать все доступные ресурсы (например, всю память —
она одновременно нужна всем программам смеси), в связи с чем операционная
система берет на себя задачи диспетчеризации (распределения) ресурсов между
ними. В Linux, как и во многих других операционных системах, программы изоли­
руются друг от друга в специальных «виртуальных» средах, обеспечивающих их
процесс выполнения. Каждая такая среда называется процессом и получает долю
доступных ресурсов — выделенный участок памяти, выделенные промежутки про­
цессорного времени. Процесс эмулирует для программы «однозадачный» режим
выполнения, словно программа выполняется в одиночку, и «безраздельное» исполь­
зование ресурсов процесса, как будто это все доступные ресурсы.

Параллельные программы, как указывалось ранее, состоят из независимых ветвей,
каждая из которых сама по себе укладывается в модель поведения последователь­
ной программы, поэтому одну параллельную программу можно выполнять в не­
скольких процессах в псевдоодновременном режиме. Процессы операционной сис­
темы, таким образом, являются контейнерами для многозадачного выполнения про­
грамм, как последовательных, так и параллельных.

В листинге 4.8 при помощи команды ps(1) показаны процессы пользователя, упоря­
доченные в дерево, построенное на основе дочерне-родительских отношений между
процессами. Уникальный идентификатор, отличающий процесс от других, выведен
в столбце PID (process identifier), а имя и аргументы программы, запущенной
в соответствующем процессе — в столбце COMMAND.

В столбце STAT показано текущее состояние процесса, например S (сон, sleep) или
R (выполнение, running, или готовность к выполнению, runnable): Процессы, ожи­
дающие завершения их операций ввода-вывода, находятся в состоянии сна, в про­
тивном случае либо выполняются, либо готовы к выполнению, т. е. ожидают,
когда текущий выполняющийся процесс заснет и процессор будет переключен на
них. В столбце TIME показано чистое потребленное процессом процессорное время
от момента запуска программы, увеличивающееся только при нахождении им в
состоянии выполнения.

Листинг 4.8. Дерево процессов пользователя

fitz@ubuntu:~$ ps fx

PID TTY STAT TIME COMMAND 1

1 Набор программ, между которыми переключается процессор.

Управление процессами н памятью 123

17764 tty3 Ssl+ 0:00 /usr/lib/gdrn3/gdpi-x-session --run-script ...

17766 tty3 Sl+ 3:09 _ /usr/lib/xorg/Xorg vt3 -displayfd 3 ...

17774 tty3 Sl+ 0:00 _ /usг/lib/gncxne- session/gncxne - session - binary ...

2987 ? Ss 0:04 /lib/systend/systend --user

2992 ? S 0:00 _ (sd-pam)

17373 ? Ssl 0:08 _ /usr/bin/pulseaudio --daemonize=no

17444 ? Ss 0:02 _ /usr/bin/dbus-daeoon --session --address=systerod: ...

17921 ? Ssl 10:04 _ /usr/bin/gnome-shell

© 30192 ? Ssl 0:00 _ /usr/libexec/gnome-terminal-server

0 30202 pts/1 -• Ss 0:00 _ bash

© 30226 pts/1 s+ 0:00 | _ nan ps

30236 pts/1 s+ 0:00 1 _ pager

0 30245 pts/3 Ss 0:00 _ bash

© 30251 pts/3 R+ 0:00 _ PS fx

© 30315 ? Sl 0:04 _ /usr/lib/firefox/firefox -new-window

30352 ? SI 0:02 _ /usr/lib/firefox/firefox -contentproc -childID 1

30396 ? Si 0:00 _ /usr/lib/firefox/firefox -contentproc -childID 2

30442 ? si 0:00 _ /usr/lib/firefox/firefox -contentproc -childID 3

Управляющий терминал процесса, показанный в столбце TTY, используется для
доставки ему интерактивных сигналов (см. разд. 4.8). при вводе управляющих сим­
волов (см. разд. 2.3) intr *С, quit А\ и пр. У части процессов ©, © управляющий
терминал отсутствует, потому что они выполняют приложения, взаимодействую­
щие с пользователем не посредством терминалов, а через графическую систему
(см. главу 7).

Процесс по своему определению изолирует свою программу от других выполняю­
щихся программ, что затрудняет использование процессов для выполнения таких
параллельных программ, ветви которых не являются полностью независимыми друг
от друга и должны обмениваться данными. Использование предназначенных для
этого средств межпроцессного взаимодействия (см. разд. 4.9) при интенсивном
обмене приводит к обременению неоправданными накладными расходами, поэтому
для эффективного выполнения таких параллельных программ используются легко­
весные процессы (LWP, light-weight processes), они же нити1 (threads). Механизм

Существует еще один (неудачный, на мой взгляд) перевод понятия thread на русский язык —
поток. Во-первых, он конфликтует с переводом понятия stream — поток, а во-вторых, в отличие
от stream, thread никуда не течет. А вот процесс (process) содержит в себе нити (thread) абсо­
лютно таким же образом, как и обычная веревка состоит из... нитей.

124 Глава 4

нитей позволяет переключать центральный процессор между параллельными ветвя­
ми одной программы, размещаемыми в одном (!) процессе. Нити никак не изоли­
рованы друг от друга, и им доступны абсолютно все ресурсы своего процесса,
поэтому задача обмена данными между нитями попросту отсутствует, т. к. все
данные являются для них общими.

В примере из листинга 4.9 показаны нити процесса в BSD-формате вывода. Выбор
процесса производится по его идентификатору PID, предварительно полученному
командой рдгер(1) по имени программы, выполняющейся в искомом процессе.
В выводе наличие нитей процесса отмечает флаг I (lwp) в столбце состояния STAT,
а каждая строчка без идентификатора PID символизирует одну нить. Так как
в многонитевой программе переключение процессора производится между нитями,
то и состояния сна S, выполнения или ожидания R приписываются отдельным нитям.

Листинг 4.S нити процессов, BSD-формат вывода

fltz@ubuntu:~$ pgrep firefox

30315

fitz@ubuntu:~$ ps np 30315

PID TTY STAT TIME COMMAND

PID TTY STAT TIME COMMAND

30315 ? - 0:05 /usr/lib/firefox/firefox -new-window

- - •- SI 0:03 -

- - SI 0:00 -

SI 0:00 -

- - SI 0:00 -

В листинге 4.10 показаны нити процесса в SYSV-формате вывода. Выбор процесса
производится по имени его программы. Общий для всех нитей идентификатор их
процесса отображается в столбце PID, уникальный идентификатор каждой нити —
в столбце LWP (иногда называемый TID, thread identifier), а имя процесса (или
собственное имя нити, если задано) — в столбце CMD.

ЛКПНГ4.10. Нити процессов, SYSV-формат вывода

fitz@ubuntu:~$ ps -LC

PID •- LWP TTY

30315 30315 ?

30315 30320 ?

30315 30321 ?

firefox

TIME CMD

00:00:04 firefox

00:00:00 grain

00:00:00 gdbus

Управление процессами и памятью 125

30315 30328 ?

30315 30332 ?

30315 30333 ?

30315 30371 ?

30315 30373 ?

00:00:00 Socket Thread

00:00:00 Cache2 I/O

00:00:00 Cookie

00:00:00 HTML5 Parser

00:00:00 DNS Resolver #3

4.3. Порождение процессов и нитей, запуск программ
Несмотря на очевидные различия, историю1 возникновения и развития, нити v
процессы объединяет общее назначение — они являются примитивами выполнена
некоторого набора последовательных инструкций.

Процессы выполняют или разные последовательные программы целиком, или ветвг
одной параллельной программы, но в изолированном окружении, со своим «част­
ным» (private) набором ресурсов. Нити, наоборот, выполняют ветви одной парал­
лельной программы в одном окружении с «общим» (shared) набором ресурсов
В многозадачном ядре Linux вообще используется универсальное понятие «задача»
которая может иметь как общие ресурсы (память, открытые файлы и т. д.) с дру­
гими задачами, так и частные ресурсы для своего собственного использования.

Порождение нового процесса (рис. 4.1, а) реализуется при помощи системногс
вызова fork(2), в результате которого ядро операционной системы создает новы!
дочерний (child) процесс РЮ2 — полную копию (COPY) процесса-родителя (parent
PID,. Вся (за небольшими исключениями) память процесса — состояние, свойства
атрибуты (кроме идентификатора PID) и даже содержимое (программа с ее библио­
теками) — наследуется дочерним процессом. Даже выполнение порожденного i
порождающего процесса продолжится с одной и той же инструкции их одинаково*
программы. Такое клонирование обычно используют параллельные программь
с ветвями (см. разд. 4.3.1), выполняющимися в дочерних процессах.

Уничтожение процесса (например, при штатном окончании программы-) производит­
ся с помощью системного вызова exit(3). При этом родительскому процесс}
доставляется сигнал SIGCHILD, оповещающий о завершении дочернего процесс;
(см. разд. 4.8). Статус завершения status, переданный дочерним процессом чере:
аргументы exit(3), будет сохраняться ядром до момента его востребования роди­
тельским процессом при помощи системного вызова wait(2), а весь этот промежу­
ток времени дочерний процесс будет находиться в состоянии Z (zombie2
(см. столбец STAT в листинге 4.8). Родительский процесс может завершиться рань-

1 Откровенно говоря, нити, в общем, появились в операционных системах раньше, чем изолиро
ванные UNIX-процессы, в которые со временем вернулись UNIX-нити...

126 Глава 4

ше своих дочерних процессов, тогда логично предположить, что все «осиротевшие»
процессы окажутся зомби по завершении, потому как просто некому будет вос­
требовать их статус завершения. На самом деле этого не происходит, потому что
«осиротевшим» процессам назначается приемный родитель, в качестве которого
выступает прародитель всех процессов in it(1)c идентификатором PID = 1.

Processi

($ >
■ Process2

Program 1 i

■

i
▼

a

Processi

Program 1

(execQ^H #
LOAD (Л ELF

executable^ J

ELF

ELF

[shared object

Program2

Рис. 4.1. Порождение процессов (а)и запуск программ (6)

Запуск новой программы (см. рис. 4.1, б) реализуется при помощи системного
вызова ехес(З), в результате которого содержимое процесса PID] полностью замеща­
ется запускаемой программой и библиотеками, от которых она зависит, а свойства
и атрибуты (включая идентификатор PID) остаются неизменными. Такое замещение
обычно используется программами, устанавливающими нужные значения свойств и
атрибутов процесса и подготавливающими ресурсы процесса к выполнению запус­
каемой программы. Например, обработчик терминального доступа getty(8) (см. гла­
ву 2) открывает заданный терминал, устанавливает режимы работы порта термина­
ла, перенаправляет на терминал стандартные потоки ввода-вывода, а затем заме­
щает себя программой аутентификации login(1).

Для запуска новой программы в новом процессе используются оба системных
вызова fork(2) и ехес(З) согласно принципу fork-and-exec «раздвоиться и запустить»,
показанного на рис. 4.2. В примере из листинга 4.8 дерево процессов сформиро­

Управление процессами н памятью 127

вано именно на основе дочерне-родительских отношений между процессами, фор­
мирующимися при использовании принципа fork-and-exec. Например, командный ин­
терпретатор bash(1) по командам ps f x или nan ps порождает дочерние процессы ©
и замещает их программами ps(1) и man(1). Тем же образом действует © графиче­
ский эмулятор терминала gnome-terminal-server — запуская новый сеанс пользователя О
на каждой из своих вкладок, он замещает свои дочерние процессы программой
интерпретатора bash(1).

Process!

Programl i Process2

Processl Process2

Рис. 4.2. Запуск программы в отдельном процессе

Листинг 4.11 иллюстрирует команду интерпретатора, запущенную в «фоновом» рё-
жиме при помощи конструкции асинхронного списка (см. разд. 5.6). Аналогично
всем предыдущим командам, интерпретатор использует fork-and-exec для запуска про­
граммы в дочернем процессе с идентификатором 23228, но не дожидается его за­
вершения при помощи системного вызова wait(2), как обычно, а немедленно О
продолжает интерактивное взаимодействие с пользователем, сообщив ему P ID по­
рожденного процесса и «номер задания» [1] команды «заднего фона» (см.
разд. 4.8.1). Оповещение о завершении своего дочернего процесса интерпретатор
получит позже, при помощи сигнала SIGCHLD, и отреагирует соответствующим со­
общением © об окончании команды «заднего фона».

Листинг 4.11. Фоновое зылолнение программ

fttz@ ubuntu:~$ dd if= /d e v /d v d o f= p la n 9 .is o 8

О [1] 23228

128 Глава 4

fitz@ubuntu:~$ ps f
PID TTY STAT

23025 pts/1 S

23228 pts/1 •- R

23230 pts/1 R+

fitz@ubuntu:~$

TIME COMMAND

0:00 -bash

1:23 _ dd if=/dev/dvd of=plan9.iso

0:00 _ ps f

fvtz@ubuntu:~$ 586896+0 записей получено “•

586896+0 записей отправлено

300490752 байт (300 МВ, 286 MiB) скопирован, 14,6916 с, 20,5 МВ/с

© [1]+ Завершён dd if=/dev/dvd of=plan9.iso

В листинге 4.12 показана конвейерная (см. разд. 5.3) конструкция интерпретатора,
при помощи которой осуществляется поиск самого большого файла с суффиксом
.htnl вниз по дереву каталогов, начиная с /usr/share/doc. Эта конструкция реали­
зуется при помощи fork-and-exec четырьмя параллельно порожденными дочерними
процессами интерпретатора, в каждом из которых запущена программа соответст­
вующей части конвейера, при этом дочерние процессы связаны неименован­
ным каналом pipe(2) — простейшим средством межпроцессного взаимодействия
(см. разд. 4.9). Встроенная команда интерпретатора wait реализует одноименный
системный вызов wait(2) и используется Для ожидания окончания всех дочерних
процессов конвейера, целиком запущенного в «фоновом» режиме.

Листинг 4.12. Параллельный запуск бзаийодшстдующих программ •

©1 ©1 ©1 ©1
fitz@Lixntu:~$ find /usr/share/doc -typs f -пате '*.htnl' | xargs -nl wc - l | sort -k 1 -nr | head -1 S

[1] 12827

fitz@ubuntu:~$ ps fj
PPID PID PGID SID TTY TPGID STAT UID TIME COMMAND

11715 11716 11716 9184 pts/0 14699 S 1006 0:01 -bash

11716 12824 12824 9184 pts/0 14699 R 1006 0:00 _ find ... -type f -папе *.htnl

11716 12825 12824 9184 pts/0 14699 R 1006 0:00 _ xargs -nl wc -l

11716 12826 12824 9184 pts/0 14699 S 1006 0:00 _ sort -k 1 -nr

11716 12827 12824 9184 pts/0 14699 S 1006 0:00 _ head -1

11716 14699 14699 9184 pts/0 14699 R+ 1006 0:00 _ ps fj
fitz@ubuntu:~$ wait

15283 /usr/share/doc/xtem/xtern.log. htnl

[1]+ Завершён find /usr/share/doc -type f -name '*.htnl' | xargs -nl wc -l | sort -k 1 -nr |
head -1

Управление процессами н памятью 129

4.3.1. Параллельные многопроцессные программы
Как указывалось ранее, параллельные программы зачастую используют процессы
для выполнения отдельных ветвей. В эту категорию часто попадают программы
сетевых служб, например сервер баз данных W :[PostgreSQL], служба удаленного
доступа W :[SSH] и подобные. Листинг 4.13 иллюстрирует программу postgres(1), вы­
полняющуюся в шести параллельных процессах, один из которых — диспетчер О,
четыре служебных © и еще один © вызван подключением пользователя fitz

к одноименной базе данных fitz. При последующих подключениях пользователей
к серверу будут порождены дополнительные дочерние процессы для обслуживания
их запросов — по одному на каждое подключение.

Листинг 4.13. Параллельные многопроцессные сервисы

0

fitz@ubuntu:~$

PID TTY

6711 ?

ps f

STAT

S

-C postgres

TIME COMMAND

0:00 /usr/lib/postgresql/ll/bin/postgres -D /var/lib/postgresql.

© 6713 ? Ss 0:00 _ postgres: 11/main: checkpointer

1 6714 ? Ss 0:00 _ postgres: 11/main: background writer

1 6715 ? Ss 0:00 _ postgres: 11/main: walwriter

1 6716 ? Ss 0:00 _ postgres: 11/main: autovacuum launcher

1 6717 ? Ss 0:00 _ postgres: 11/main: stats collector

6718 ? Ss 0:00 _ postgres: 11/main: logical replication launcher

© 9443 ? Ss 0:00 _ postgres: 11/main: fitz “• fitz [local] idle

fitz@ubuntu:~$ ssh ubuntu

fitz@ubuntu's password:

Last login: Sat Nov 21 13:29:33 2015 from localhost

fitz@ubuntu:~$ ps f -C sshd

PID TTY

Ф 655 ?

© 21975 ?

<3> 22086 ?

STAT TIME COMMAND

Ss 0:00 /usr/sbin/sshd -D

Ss 0:00 _ sshd: fitz [priv]

S 0:00 _ sshd: •" fitz@pts/l

fltz@ubuntu:~$ АОвыход

Connection to ubuntu closed.

Аналогично, при удаленном доступе по протоколу SSH программа sshd(8), работая
в качестве диспетчера ® в одном процессе, на каждое подключение порождает
один свой клон ©, который, выполнив аутентификацию и авторизацию пользовате­
ля в системе, порождает еще один свой клон ®, имперсонирующийся в пользова­
теля и обслуживающий его запросы.

130 Глава 4

4.3.2. Параллельные многонитевые программы
Для управления нитями в Linux используют стандартный POSIX-интерфейс
pthreads(7), реализующийся библиотекой W :[NPTL], которая является частью библио­
теки libc. Интерфейс предоставляет «нитевой» вызов создания нити pthread_create(3),
который является условным аналогом «процессных» fork(2) и ехес(3), вызов завер­
шения и уничтожения нити pthread_exit(3), условно аналогичный exit(2), и вызов для
получения статуса завершения нити pthreadjoin(3), условно аналогичный wait(2).

В качестве типичных примеров применения нитей можно привести сетевые серви­
сы, которые для параллельного обслуживанйя клиентских запросов используют
нити вместо процессов. Например, WEB-сервер apache(8), как показано в листин­
ге 4.14, использует два многонитевых процесса по 27 нитей в каждом, что позво­
ляет экономить память (за счет работы всех нитей процесса с общей памятью)
при обслуживании большого количества одновременных клиентских подключений.

fitz@ubuntu:~$ ps f -С apache2

PID TTY STAT TIME COMMAND

10129 ? Ss 0:00 /usr/sbin/apache2 -k start

10131 ? Si 0:00 _ /usr/sbin/apache2 -k start

10132 ? Si “• 0:00 _ /usr/sbin/apache2 -k start

fitz@ubuntu:~$ ps fo pldjnlwp^cnd -C apache2

PID NLWP CMD

10129 1 /usr/sbin/apache2 -k start

10131 27 _ /usr/sbin/apache2 -k start

10132 27 _ /usr/sbin/apache2 -k start

fltz@ubuntu:~$ ps -fLC rsyslogd

UID PID PPID LWP C NLWP STIME TTY TIME CMD

syslog 606 1 606 0 4 ноя18 ?

syslog 606 1 680 0 4 ноя18 ?

syslog 606 1 681 0 4 ноя18 ?

syslog 606 1 682 0 4 ноя18 ?

Аналогично, сервис централизованной журнализации событий rsyslogd(8) использует
нити для параллельного сбора событийной информации из разных источников, ее
обработки и журнализации. Одна нить считывает события ядра из /ргос/knsg, вто­
рая принимает события других служб из файлового сокета /run/systend/journal/

syslog (/dev/log в ранних, до system! системах), третья фильтрует поток принятых

Управление процессами н памятью 131

событий и записывает в журнальные файлы каталога /var/log/* и т. д. Параллель­
ная обработка потоков поступающих событий при помощи нитей производится
с минимально возможными накладными расходами, что позволяет достигать колос­
сальной производительности по количеству обрабатываемых сообщений в единицу
времени.

Распараллеливание используется не только для псевдоодновременного выполнения
ветвей параллельной программы, но и для их настоящего одновременного выпол­
нения несколькими центральными процессорами. В примере из листинга 4.15 пока­
зано, как сокращается время сжатия ISO-образа файла при использовании парал­
лельного упаковщика pbzip2(1) по сравнению с последовательным bzip2(1). Для изме­
рения времени упаковки применяется встроенная команда интерпретатора time, при
этом сначала измеряется время упаковки О и время распаковки © последователь­
ным упаковщиком, а затем — время упаковки ® и время распаковки © парал­
лельным упаковщиком. Команды упаковки запускаются на «заднем фоне», оценива­
ется наличие процессов и нитей паковщиков, после чего они переводятся на «пе­
редний фон» встроенной командой интерпретатора fg (foreground) и оцениваются
затраты времени.

fitz@ubuntu:~$ Is -lh plan9.iso

-rw-r--r-- 1 fitz fitz 287M нояб. 28 15:47 plan9.iso

О fitz@ubuntu:~$ tine bzipZ plan9.iso &

[1] 5545

fitz@ubuntu:~$ ps f

PID TTY STAT TIME COMMAND

4637 pts/0 S 0:00 ■-bash

5545 pts/0 S 0:00 _ -bash

5546 pts/0 R “• 0:12 1 _ bzip2 plan9.iso

5548 pts/0 R+ 0:00 _ PS f

fitz@ubuntu:~$ ps -fLp 5546

UID PID PPID LWP C NLWP STIME TTY TIME

fitz 5546 5545 5546 96 •- 1 10:50 pts/0 00:00:22

fitz@ubuntu:~$ fg

tine bzip2 plan9.iso

© 0 0 0 0 O O O G 0 ®

real 0m54,780s “•

user 0m51.772s

sys 0n0.428s

fitz@ubuntu:~$ Is -lh plan9.iso.bz2

-rw-r--r-- 1 fitz fitz 89M нояб. 28 15:47 plan9.iso.bz2

132 Глава 4

0 fitz@ubuntu:~$ time bzip2 -d plan9.lso.bz2

0 0 0 0 0 O Q O G 0 ©

real 0m2G.7G5s *•

user 0ml9.044s

sys 0ml.168s

0 fltz@ubuntu:~$ time pbzip2 plan9.iso &

[1] 5571

fitz@ubuntu:~$ ps f

PID TTY STAT TIME COMMAND

4637 pts/0 S 0:00 -bash

5571 pts/0 S 0:00 _ -bash

5572 pts/0 si -• 0:03 | _ pbzip2 plan9.iso

5580 pts/0 R+ 0:00 _ ps f

fitz@ubuntu:~$ ps -fLp 5572

UID PID PPID LWP C NLWP STIME TTY TIME CMD

fitz 5572 5571 5578 92 •- 8 10:52 pts/0 00:00:43 pbzip2

fitz 5572 5571 5579 1 8 10:52 pts/0 00:00:00 pbzip2

fltz@ubuntu:~$ fg

tine pbzlp2 plan9.1so

0 © 0 0 Q О © Q © Q 0

real 0n24.259s *•

user ln22.940s

sys 0ml.888s

fltz@ubuntu:~$ Is -lb plan9.iso.bz2

-rw-r--r-- 1 fitz fitz 89M нояб. 28 15:47 plan9.iso.bz2

© fitz@ubuntu:~$ time pbzip2 -d plan9.iso.bz2

Ф © © © © © G © © © ©

real 0m7.384s ^

user 0m25.972s

sys 0ml.396s

В результате оценки оказывается, что последовательный упаковщик bzip2(1) исполь­
зует один однонитевой процесс и затрачивает «54,7 с реального времени на упа­
ковку, из них «51,7 с проводит в пользовательском режиме user и лишь «0,4 с
в режиме ядра sys (выполняя системные вызовы, например read(2) или write(2)).
Соотношение между временем режимов говорит о вычислительном характере про­
граммы, т. е. о существенном превалировании времени вычислительных операций
упаковки над временем операций ввода-вывода для чтения исходных данных и за­
писи результатов (что подтверждает анализ разд. 4.2). Это означает, что нагрузка

Управление процессами и памятью 133

последовательного упаковщика на центральный процессор (в случае, если бы он
был единственный) близка к максимальной, и его параллельная реализация для
псевдоодновременного выполнения ветвей (которые практически никогда не спят)
лишена смысла.

Параллельный упаковщик pbzip2(1) использует один многонитевой процесс из вось­
ми нитей и затрачивает «24,4 с реального времени на упаковку, при этом
«1 мин 22,9 с (!) проводит в пользовательском режиме и «1,8 с в режиме ядра.
Прирост производительности упаковки и, как следствие, сокращение времени упа­
ковки достигаются за счет настоящего параллельного выполнения нитей на не­
скольких процессорах (разных ядрах процессора). Соотношение между реальным
временем упаковки и суммарно затраченным временем режима пользователя, кото­
рое примерно в 3 раза больше, означает использование в среднем трех процессо­
ров для параллельного выполнения бычислительных операций упаковки.

4.3.3. Двойственность процессов и нитей Linux
Как указывалось ранее, процессы и нити в ядре Linux сводятся к универсальному
понятию «задача». Задача, все ресурсы которой (память, открытые файлы и т. д.)
используются совместно с другими такими же задачами, является нитью. И наобо­
рот, процессами являются такие задачи, которые обладают набором своих частных,
индивидуальных ресурсов.

Универсальный системный вызов clone(2) позволяет указать, какие ресурсы станут
общими в порождаемой и порождающей задачах, а какие — частными. Системные
вызовы порождения POSIX-процессов fork(2) и POSIX-нитей pthread_create(3) оказыва­
ются в Linux всего лишь «обертками» над clone(2), что проиллюстрировано в лис­
тингах 4.16 и 4.17.

В примере из листинга 4.16 архиватор tar(1) PID = 11801 создает при помощи систем­
ного вызова clone(2) дочерний процесс PID = 11802, в который помещает программу
компрессора gzip(i), используя системный вызов execve(2). В результате параллель­
ной работы двух взаимодействующих процессов будет создан компрессированный
архив docs.tgz каталога /usr/share/doc.

t Листинг 4.16. Сиисмный вызов clone— порождение ко в ш процесса

fitz@ubuntu:~$ strace -fe clone,fork,execve tar czf docs.tgz /usr/share/doc

execve("/usr/bi.n/tar", ["tar", "czf", "docs.tgz", "/usr/share/doc"], ...) = 0

•- clone(child_stack=NULL, flags=CLONE_CHILD_CLEARTID|CLONE_CHILD_SETTID| ...) = 12403

tar: Удаляется начальный '/' из имен объектов

strace: Process 12403 attached

[pid 12403] execve("/bin/sh", ["/bin/sh", "-c", 'gzip"], 0x7ffd8dd597c0 ...) = 0

134 Глава 4

[pid 12403] clone(chlld_stack=NULL, flags=CLONE_CHILD_CLEARTID| ...) = 12404

strace: Process 12404 attached

[pid 12404] execve("/usr/bin/gzip", ["gzip"], 0x55e2e45bbb48 /* 35 vars */) = 0

© © © © © © © © © ©

+++ exited with 0 +++

В примере из листинга 4.17 компрессор pbzip2(1) создает при помощи системного
вызова clone(2) семь «дочерних» нитей О...© РЮ = 12514-42520, которые имеют об­
щую память CLONE_VM, общие открытые файлы CLONE_FILES и прочие общие ресурсы.

F™™''' - т - - ̂ :' w 77 'у -: - 7 " ' ' : "" ' - ь - - 5 Т : • '

Листинг Схемный j p b 'tone—порождение даевй нити

fitz@ubuntu:~$ strace -fe clone,fork,execve pbzip2 plan9.iso

execve('7usr/bin/pbzip2", ["pbzip2", "plan9.iso"], 0x7ffd28884938 /* 35 vars */) = 0

О clone(child_stack=0x7fld46d38fb0, flags=CLONE„VM|CLONE_FS|CLjONE_FILES|...) = 12514

5 X

© clone(child_stack=0x7fld46537fb0, flags=CLC.^VM|CLONE_FS|CLONE_FILES|...) = 12520

strace: Process 12520 attached

5 X

strace: Process 12514 attached

[pid 12514] +++ exited with 0 +++

5 X

[pid 12520] +++ exited with 0 +++

+++ exited with 0 +++

4.4. Дерево процессов
Процессы, попарно связанные дочерне-родительскими отношениями, формируют
дерево процессов операционной системы. Первый процесс init(1), называемый пра-

X

родителем процессов, порождается ядром операционной системы после инициали­
зации и монтирования корневой файловой системы, откуда и считывается про­
грамма /sb in /in it (в современных системах является символической ссылкой на
актуальный /lib/systend/systend). Прародитель процессов всегда имеет PID = 1, а его
основной задачей является запуск разнообразных системных служб, включая за­
пуск обработчиков (см. разд. 2.2.1) алфавитно-цифрового терминального доступа
getty(8), менеджера дисплеев (см. разд. 7.5.3) графического доступа, службы дис­
танционного доступа SSH (см. разд. 6.4.1) и прочих (см. главу 10). Кроме того,
systemd(1) назначается приемным родителем для «осиротевших» процессов, а также
отслеживает аварийные завершения запускаемых им служб и перезапускает их.

Управление процессами и памятью 135

В примере из листинга 4.18 показано дерево процессов, построенное при помощи
специальной команды pstree(1), а в листинге 4.19 — «классическое» представление
дерева процессов при помощи команды ps(1).

fitz@ubuntu:~$ pstree -cnAhT

systend-+-systend-journal

e
©

e

e

e

-systend-udevd

-systend-resolve

-rsyslogd

-gdn3---gdn-session-wor-+-gdn-sesslon-wor

|-gdn-x-session-+-Xorg

| '-gnone-session-b

-systend-+-(sd-pan)

|-gnone-terninal--+-bash---nan---pager ©

| '-bash

-postgres-+-postgres

|-postgres

|-postgres

|-postgres

|-postgres

'-postgres

-apache2-+-apache2

'-apache2

-sshd-+-sshd---sshd---bash

'-sshd---sshd---bash

-agetty

-lo g in ---b a s h ---p s tre e ©

Процессы операционной системы принято классифицировать на системные (ядер-
ные), демоны и прикладные, исходя из их назначения и свойств (см. лис­
тинг 4.19).

Прикладные процессы © выполняют обычные пользовательские программы (на­
пример, утилиту man), для чего им выделяют индивидуальную память, объем кото­
рой указан в столбце VSZ вывода команды ps(1). Такие процессы обычно интерак­
тивно взаимодействуют с пользователем посредством управляющего терминала (за
исключением графических программ), указанного в столбце TTY.

136 Глава 4

Демоны (daemons) © выполняют системные программы, реализующие те или иные
службы операционной системы. Например, сгоп(8) реализует службу периодического
выполнения заданий, atd(8) — службу отложенного выполнения заданий,
rsyslogd(8) — службу централизованной журнализации событий, sshd(8) — службу
дистанционного доступа, systemd-udevd(8) — службу «регистрации» подключаемых
устройств, и т. д. Демоны запускаются на ранних стадиях загрузки операционной
системы и взаимодействуют с пользователем не интерактивно при помощи терми­
нала, а опосредованно — при помощи своих утилит. Таким образом, отсутствие
управляющего терминала в столбце TTY отличает1 их от прикладных процессов.

Листийг 4.19. Процессы ядра, демоны, прикладные процессы

fLtz@ubuntu:~$ ps faxu
USER PID %CPU 1 VSZ RSS TTY STAT START TIME COMMAND

root 2 0.0 0.0 0 0 ? S ноя18 0:00 [kthreadd]

root 3 0.0 0.0 0 0 ? I< ноя18 0:00 _ [rcu_gp]

root 4 0.0 0.0 0 0 ? I< ноя18 0:00 _ [rcu_parjgp]

root 6 0.0 0.0 *- 0 0 ? "•© I< ноя18 0:00 _ [kworker/0:0H...]

root 8 0.0 0.0 0 0 ? I< ноя18 0:00 _ [m_percpu_wq]

root 9 0.0 0.0 0 0 ? S ноя18 0:09 _ [ksoftirqd/0]

root 1 0.0 0:2 168400 11684 ? Ss ноя18 0:12 /sbin/init splash

root 333 0.0 0.1 21844 5348 ? Ss ноя18 0:07 /lib/systend/systend-udevd

syslog 606 0.0 0.1 224360 4244 ? Ssl ноя18 0:01 /usr/sbln/rsyslogd -n -i...

root 649 0.0 0.0 20320 3036 ? -•© Ss ноя18 0:00 /usr/sbln/cron -f

daenon 675 0.0 0.0 3736 2184 ? Ss ноя18 0:00 /usr/sbin/atd -f

root 21545 0.0 0.0 5560 3420 tty4 Ss ноя18 0:00 / Ы п /login -p --

fitz 28152 0.0 0.0 2600 1784 tty4 S 01:38 0:00 _ -sh

fitz 28162 0.0 0.0 12948 3584 tty4 s+ 01:38 0:00 _ bash

finn 12989 0.2 0.0«-12092 3988 tty4-*0 S+ 13:47 0:00 _ nan ps

finn 13000 0.0 0.0 10764 2544 tty4 s+ 13:47 0:00 _ pager

Системные (ядерные) © процессы2 выполняют параллельные части ядра on
онной системы, поэтому не обладают ни индивидуальной виртуальной памятью VSZ,
ни управляющим терминалом TTY. Более того, ядерныё процессы не выполняют
отдельную программу, загружаемую из ELF-файла, поэтому их имена COMMAND яв-

1 Зачастую демоны имеют суффикс d в конце названия, например sshd — это secure shell
daemon, a rsyslogd — rocket system logging daemon, и т. д.

2 Правильнее — ядерные нити, т. к. выполняются они в общей памяти ядра операционной системы.

Управление процессами и памятью 137

ляются условными и изображаются в квадратных скобках, а кроме того, они име­
ют особое состояние i в столбце STAT.

4.5. Атрибуты процесса
Процесс в операционной системе является основным активным субъектом, взаимо­
действующим с окружающими его объектами — файлами и файловыми системами,
другими процессами, устройствами и пр. Возможности процесса выполнять те или
иные действия по отношению к другим объектам определяются его специальными
свойствами — атрибутами процесса.

4.5.1. Маркеры доступа
Возможности процесса по отношению к объектам, доступ к которым разграничи­
вается при помощи дискреционных механизмов (в частности, к файлам дерева ка­
талогов — см. разд. 3.5) определяются значениями его атрибутов, формирующих
его DAC-маркер доступа, а именно — атрибутами RUID, RCID, EUID, ECID, см.
credentials^).

Эффективные идентификаторы EUID (effective user identifier) и EGID (effective group
identifier) указывают на «эффективных» пользователя и группу, использующихся
дискреционными механизмами для определения прав доступа процесса к файлам
и другим объектам согласно назначенному им режиму или списку доступа
(см. разд. 3.5.3). Атрибуты RUID (real user identifier) и RGID (real group identifier)
указывают на «настоящих» пользователя и группу, «управляющих» процессом.

Первому процессу пользовательского сеанса (в случае регистрации в системе
с использованием алфавитно-цифрового терминала — командному интерпретатору)
назначают атрибуты RUID/EUID и RGID/EGID равными идентификаторам зарегистриро­
вавшегося пользователя и его первичной группы. Последующие процессы пользо­
вательского сеанса наследуют значения атрибутов, т. к. порождаются в результате
клонирования при помощи fork(Z). В примере из листинга 4.20 при помощи коман­
ды id(1) показаны значения EUID/EGID пользовательского сеанса и их наследование
от командного интерпретатора, что явным образом подтверждает команда ps(1).

Листинг 4.20. DAC-маркер доступа процесса— атрибуты RUID, EUID, RGID, EGID

fitz@ubuntu:~$ id
uid=1006(fitz) gid=1008(fitz) группы=1008(fitz)

fitz@ubuntu:~$ ps fo euid, ruid,egid,rgid,user,group,t t y , end
EUID RUID EGID RGID USER GROUP TT CMD

Г 1006 1006 1008 1008 fitz fitz pts/2 -bash

^ 1006 1006 1008 1008 fitz fitz pts/2 _ ps fo euid,uid,egid,...,tty,and

138 Глава 4

Изменение идентификаторов EUID/EGID процесса происходит при срабатывании ме­
ханизма неявной передачи полномочий, основанном на дополнительных атрибутах
SUID/SGID файлов программ. При запуске таких программ посредством системного
вызова ехес(З) атрибуты EUID/EGID запускающего процесса устанавливаются равными
идентификаторам UID/GID владельца запускаемой программы. В результате процесс,
в который будет загружена такая программа, будет обладать правами владельца
программы, а не правами пользователя, запустившего эту программу.

В листинге 4.21 приведен типичный пример использования механизма неявной пе­
редачи полномочий при выполнении команд passwd(1) и wall(1). При смене пароля
пользователем при помощи программы /usr/bin/passwd ее процесс получает необхо­
димое право записи ® в файл /etc/shadow (см. листинг 3.40) в результате переда­
чи полномочий О суперпользователя root (UID=G). При передаче широковещатель­
ного сообщения всем пользователям при помощи /usr/bin/wall необходимо иметь
право записи © в их файлы устройств /dev/tty*, которое появляется © в резуль­
тате передачи полномочий группы tty (GID = 5).

Листинг 4.21. Атрибут! файла bUlD^GID ц атрибуты прсдесса КУШ, 5ИС HGID, ЕШЬ

fitz@ubuntu:~$ who
fitz pts/0 2019-11-22 00:52 (:0.0)

fitz pts/1 2019-11-22 00:53 (:0.0)

fitz pts/2 2019-11-22 01:06 (:0.0)

fitz@ubuntu:~$ Is -la /etc/shadow /dev/pts/*
crw--w--- 1 fitz tty 136, 2 ноя 19 12:00 /dev/pts/1

© crw--W---1 fitz tty 136, 3 ноя 19 13:53 /dev/pts/2

c.......... 1 root root 5, 2 ноя 17 03:30 /dev/pts/ptmx

® -rw r.... 1 root shadow 1647 ноя 19 12:27 /etc/shadow

fitz@ubuntu:~$ Is - l /usr/bin/passwd /usr/bin/wall
-rwsr-xr-x 1 root root 67992 авг 29 16:00 /usr/bin/passwd

-rwxr-sr-x 1 root •" jtty 35048 авг 21 16:19 /usr/bin/wall

fitz@ubuntu:~$ Is -In /usr/bin/passwd /usr/bin/wall
-rwsr-xr-x 1 •" 0 0 67992 авг 29 16:00 /usr/bin/passwd

-rwxr-sr-x 1 0 5 35048 авг 21 16:19 /usr/bin/wall

fitz@ubuntu:~$ ps ft pts/1,pts/2 о pid,ruid,rgid,euid,egid,tty,cnd
PID RUID RCID EUID ECID И CMD

27883 1006 1008 1006 1008 pts/2 bash

Управление процессами и памятью 139

в 27937 1006 1008 1006 5 pts/2 _ wall

27124 1006 1008 1006 1008 pts/1 bash

О 27839 1006 1008 0 1008 pts/1 _ passwd

По отношению к объектам, доступ к которым ограничивается при помощи мандат­
ных механизмов (см. разд. 3.6), возможности процесса определяются значениями
его МАС-маркера доступа, а именно — атрибутом мандатной метки LABEL. Как и
RUID/EUID/RGID/EGID, атрибут LABEL назначается первому процессу сеанса пользовате­
ля явным образом, а затем наследуется при клонировании процессами-потомками
от процессов-родителей. В примере из листинга 4.22 при помощи команды id(1)
показан атрибут LABEL сеанса пользователя, а при помощи команды ps(1) — его
явное наследование от процесса-родителя. Аналогично изменениям EUID/EGID про­
цесса, происходящим при запуске SUID-Hofl/SGID-Hofl программы, изменение метки
LABEL процесса происходит (согласно мандатным правилам О) в системном вызове
ехес(З) при запуске программы, помеченной соответствующей мандатной меткой
файла. Так, например, при запуске программы /usr/sbin/dhclient с типом
dhcpc_exec_t ее мандатной метки © процесс приобретает тип dhcpc_t своей мандатной
метки О, в результате чего существенно ограничивается в правах доступа к раз­
ным объектам операционной системы.

Листинг 4.22. МлС-маркердоступа процесса— мандатная м еш sellnun

fitz@ubuntu:~$ ssh llch@fedora

lich@fedora's password:

Last login: Sat Nov 21 14:25:16 2015

[llch@centos ~]$ id -Z

staff_u:staff_r:stafFt:s0-s0:c0.cl023

[llch@centos ~]$ ps Zf

LABEL PID TTY STAT TIME COMMAND

Г staff_u:staff_r:staff_t:s0-s0:c0.cl023 31396 pts/0 Ss 0:00 -bash

^ staff_u:staf f_r:staf f_t:s0-s0:c0.cl023 31835 pts/0 R+ 0:00 _ ps Zf

staff_u:staff_r:staff_t:s0-s0:c0.cl023 31334 tty2 Ss+ 0:00 -bash

[llch@centos ~]$ sesearch -T -t dhcpc_exec_t -c process

Found 19 semantic te rules:

О type_transltlon NetworkManager_t dhcpc_exec_t : process dhcpc_t;

[llch@centos ~]$ Is -Z /usr/sbln/dhcllent

e -rwxr-xr-x. root root system_u:object_r:dhcpc_exec_t:s0 /usr/sbln/dhcllent

140 Глава 4

[lich@centos ~]$ ps -1C dhclient

LABEL PID TTY TIME CMD

© systemjj:system_r:dhcpc_t:s0 2120 ?

systemjj:systen_r:dhcpc_t:s0 4320 ?

00:00:00 dhclient

00:00:00 dhclient

4.5.2. Привилегии
Еще одним важным атрибутом процесса, определяющим его возможности по ис­
пользованию системных вызовов, являются привилегии процесса cababilities(7). На­
пример, обладание привилегией САP_SYS_PTRАСЕ разрешает процессам трассировщи­
ков strace(1) и ltrace(1), использующих системный вызов ptrace(2), трассировать про­
цессы любых пользователей (а не только «свои», EUID которых совпадает с EUID
трассировщика). Аналогично, привилегия CAP_SYS_NIСЕ разрешает изменять приори­
тет, устанавливать привязку к процессорам и назначать алгоритмы планирования
(см. разд. 4.6) процессов и нитей любых пользователей, а привилегия CAPJCILL
разрешает посылать сигналы (см. разд. 4.8) процессам любых пользователей.

Явная привилегия «владельца» CAP_FOWNER позволяет процессам изменять режим и
списки доступа (см. разд. 3.5.1), мандатную метку (см. разд. 3.6.2), расширенные
атрибуты (см. разд. 3.7.1) и флаги (см. разд. 3.7.2) любых файлов так, словно
процесс выполняется от лица владельца файла. Привилегия CAP_LINUX_IMMUTABLE
разрешает управлять флагами файлов i, immutable и a, append (см. разд. 3.7.2),
а привилегия CAP_SETFCAP — устанавливать «файловые» привилегии (см. далее) за­
пускаемых программ.

Необходимо отметить, что именно обладание полным набором привилегий делает
пользователя root (UIDsG) в Linux суперпользователем. И наоборот, обычный, не­
привилегированный пользователь (в смысле UID*G) не обладает никакими явными1
привилегиями. Назначение2 привилегий процесса происходит при запуске програм­
мы при помощи системного вызова ехес(З), исполняемый файл которого помечен
«файловыми» привилегиями.

В примере из листинга 4.23 иллюстрируется получение списка привилегий процес­
са при помощи утилиты getpcaps. Как и ожидалось, процесс postgres (PID=6711),

работающий от лица обычного (непривилегированного, в смысле UID*G) псевдо­
пользователя postgres, не имеет О никаких привилегий, а процесс apache2

(PID=1G129), работающий от лица суперпользователя root (UID=G), имеет полный ©
набор привилегий. Однако процесс NetworkManager (PID=646) выполняется от лица

1 Н ея в н о он о б л а д а е т п ривилегией в ладел ьц а для в сех св о и х о б ъ ек т о в .

2 З д е с ь д о п у щ ен о н ам ер ен н о е у п р о щ ен и е м ехан и зм а н а сл едов ан и я и н азн ач ени я привилегий при

fork(2) и ехес(З) б е з потери см ы сл а .

Управление процессами и памятью 141

'■суперпользователя», лишенного © большинства своих привилегий, т. к. ему их
умышленно уменьшили при его запуске (см. systemd(1) в главе 8) до минимально
необходимого набора, достаточного для выполнения его функций1.

»и< тннг4.23. Привилегии (capabilities; процесса

fitz@ubuntu:~$ ps fo user,pid,end -C NetworkManager,postgres,apache2

USER PID

root 10129

www-data 10131

www-data 10132

postgres 6711

postgres 6713

postgres 6714

postgres 6715

postgres 6716

postgres 6717

postgres 6718

root 646

CMD

/usr/sbin/apache2 -k start

_ /usr/sbin/apache2 -k start

_ /usr/sbin/apache2 -k start

/usr/lib/postgresql/ll/bin/postgres -D /var/lib/postgresql/ll/natn ...

_ postgres: 11/nain: checkpointer

_ postgres: 11/main: background writer

_ postgres: 11/main: walwriter

_ postgres: 11/main: autovacuum launcher

_ postgres: 11/main: stats collector

_ postgres: 11/main: logical replication launcher

/usr/sbin/NetworkManager --no-daemon

fitz@ubuntu:~$ getpeaps 6711

О Capabilities for '6711': =

© fitz@ubuntu:~$ getpeaps 10129

Capabilities for '10129': =
cap_chown,cap_dac_override,cap_dac_read_sea rch,cap_fowner,cap_fsetid,cap_kill,cap_setgid,
cap_setuid,cap_setpcap,cap_linux_immutable,cap_net_bind_service,cap_net_broadcast,cap_net_
admin, c a p n e t r a w , c a p i pclock, cap_ipc_owne г, cap_sys_module, cap_sy s_rawio, cap_sy s_ch root,
cap_sys_pt race, cap_sys_pacct, cap_sys_admin, cap_sys_boot, cap_sys_nice, capsysresource, cap_
sys_time,cap_sys_tty_config,cap_mknod,cap_lease,cap_audit_write,cap_audit_control,cap_
setfcap,cap_mac_over ride,cap_mac_admin,cap_syslog,cap_wake_alarm,cap_block_suspend,
cap_audit_read+ep

© fitz@ubuntu:~$ getpeaps 646

Capabilities for '646': =
cap_dac_override,cap_kill,cap_setgid,cap_setuid,cap_net_bind_service,cap_net_admin,
cap_net_raw,cap_sys_module,cap_sys_chroot,cap_audit_write+ep

В листинге 4.24 показан типичный пример применения отдельных привилегий там,
где классически применяется неявная передача всех полномочий суперпользователя
при помощи механизма SUID/SGID. Например, «обычная» утилита ping(1) для выпол­
нения своей работы должна создать «необработанный» raw(7) сетевой сокет, что

1 Ч то с п о с о б с т в у е т о б есп еч ен и ю за щ и щ ен н о ст и оп ер а ц и о н н о й си стем ы .

142 Глава 4

является с точки зрения ядра привилегированной операцией. В старых системах1
программа /bin/ping наделялась атрибутом SUID О и находилась во владении су­
перпользователя root, чьи права и передавались при ее запуске. С точки зрения
защищенности системы это не соответствует здравому смыслу, подсказывающему
наделять программы минимально необходимыми возможностями, достаточными для
их функционирования. Для создания «необработанных» raw(7) и пакетных pac№t(7)
сокетов достаточно только привилегии CAP_NET_RAW, а весь суперпользовательский
набор привилегий более чем избыточен.

f itz@ubuntu-1804:~$ Is -l /bin/ping

О -rw$r-xr-x 1 root root 64424 Jun 28 11:05 /bin/ping

fitz@ubuntu-1804:~$ ping ubuntu-1804

PING ubuntu-1804 (127.0.1.1) 56(84) bytes of data.

64 bytes from ubuntu-1804 (127.0.1.1): icmp_req=l ttl=64 time=0.074 ns

К
--- ubuntu ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, tine 0ns

rtt min/avg/max/mdev = 0.074/0.074/0.074/0.000 ns

О fitz@ubuntu-1804:~$ sudo chnod u-s /bin/ping

fitz@ubuntu-1804:~$ Is -l /bin/ping

-rwxr-xr-x 1 root root 64424 Jun 28 11:05 /bin/ping

fitz@ubuntu-1804:~$ ping ubuntu-1804

A ping: icmp open socket: Operation not permitted

О f itz@ubuntu-1804:~$ sudo setcap ca^_net_r^»+ $ /bin/ping

fitz@ubuntu-1804:~$ getcap /bin/ping

/bin/ping = capnetraw-ep

fitz@ubuntu-1804:~$ ping ubuntu-1804

PING ubuntu (127.0.1.1) 56(84) bytes of data.

f 64 bytes from ubuntu (127.0.1.1): icmp_req=l ttl=64 tine=0.142 ms

*C

--- ubuntu ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 0.142/0.142/0.142/0.000 ms

'Актуально для Ubuntu • до версии 18.10 включительно. Начиная с 19.04 все уже «правильно из

коробки».

Управление процессами и памятью 143

При отключении передачи полномочий в программа /bin/ping лишается возможно­
сти выполнять свои функции, а при назначении ей при помощи команды setcap(8)
«файловой» привилегии CAP_NET_RAW © функциональность возвращается в полном
объеме, т. к. приводит к установке «процессной» привилегии CAP_NET_RAW при за­
пуске этой программы. Для просмотра привилегий, делегируемых при запуске про­
грамм, используется парная команда getcap(8).

Аналогично, при использовании анализаторов сетевого трафика tshark(1) (лис­
тинг 4.25) и/или wireshark(l), вызывающих для захвата сетевых пакетов утилиту
dumpcap(1), требуется открывать как «необработанные» raw(7), так и пакетные
packet(7) сетевые сокеты, что требует той же привилегии CAP_NET_RAW. Классический
способ применения анализаторов пакетов состоит в использовании явной передачи
всех полномочий суперпользователя (при помощи su(1) или sudo(1)) при их запуске,
что опять не соответствует минимально необходимым и достаточным требованиям
к разрешенным возможностям программ.

fi.tz@ubuntu: ~$ tshark

tshark: There are no interfaces on which a capture can be done

itz@ubuntu:~$ strace -fe execve tshark

execve("/usr/bin/tshark", ["tshark"], [/* 23 vars */]) = 0

Process 8951 attached

[pid 8951] execve("/usr/bin/dunpcap", ["/usг/bin/dumpcap", "-D", "-Z", "none"],...) = 0

Process 8951 detached

--- SIGCHLD (Child exited) @ 0 (0) ---

tshark: There are no interfaces on which a capture can be done

fitz@ubuntu:~$ Is -la /usr/bin/dinpcap

-rwxr-xr-x 1 root root 104688 Sep 5 19:43 /usr/bin/dunpcap

fitz@ubuntu:~$ getcap /usr/bin/dinpcap

*-
fitz@ubuntu:~$ sudo setcap cap_net_raw+ep /usr/bin/dunpcap

fitz@ubuntu:~$ getcap /usr/bin/dunpcap

/usr/bin/dunpcap = cap_net_raw+ep

fitz@ubuntu:~$ tshark -i wlanO

Capturing on wlan0

0.307205 fe80::895d:9d7d:f0b3:a372 -> ff02::l:ff96:2df6 ICMPv6 86 Neighbor Solicitation

0.307460 SuperMic_74:0e:90 -> Spanning-tree-(for-bridges)_00 STP 60 Conf. Root =
32768/0/00:25:90:74:0e:90 Cost = 0 Port = 0x8001

Для эффективного использования анализаторов трафика непривилегированными
пользователями достаточно делегировать их процессам захвата пакетов привилегию

144 Глава 4

CAP_NET_RAW при помощи «файловых» привилегий CAP_NET_RAW для программы за­
хвата /usr/bin/dumpcap, что и проиллюстрировано1 в листинге 4.25.

4.5.3. Другие атрибуты
Переменные окружения (листинг 4.26) и текущий рабочий каталог (листинг 4.27)
на поверку тоже оказываются атрибутами процесса, которые можно получить при
помощи команд ps(1) и pwdx(1) соответственно.

Листинг 4.26. Переменные окружения процесса

fltz@ubuntu:~$ ps fe

PID TTY

21872 pts/2

22904 pts/2

STAT

S

R+

TIME COMMAND

0:00 -bash USER=fitz L(XNAME=fitz HOME=/hone/fitz PATH=/usr/...

0:00 _ ps fe LANGUAGE=ru:ko:en LC_ADDRESS=ru_RU.mT-8 ...

Листинг 4.27. Текущий рабочий каталог процесса

fitz@ubuntu:~$ ps fx
PID TTY STAT TIME COMMAND

22984 pts/0 S 0:00 -bash

23086 pts/0 s+ 0:00 _ nan ps

23097 pts/0 s+ 0:00 _ pager

21872 pts/2 s 0:00 -bash

23103 pts/2 R+ 0:00 _ ps fx

fvtz@ubuntu:~$ pwdx 23097 22984

23097: /home/fitz

22984: /hone/fitz

4.6. Классы и приоритеты процессов
4.6.1. Распределение процессора между процессами
Переключение центрального процессора между задачами (процессами и нитями)
выполняет специальная компонента подсистемы управления процессами, называе­
мая планировщиком (scheduler). Именно планировщик определенным образом

1 Необходимо заметить, что все это уже достаточно давно умеет проделывать инсталлятор при

установке пакета wireshark-comon (от которого зависят пакеты tshark и wireshark), если

утвердительно ответить на вопрос инсталлятора ‘Should non-superusers be able to capture packets?’.
Однако для более простого tcpdump(8) такой услуги не предоставлено ©.

Управление процессами и памятью 145

выбирает из множества неспящих, готовых к выполнению (runable) задач одну,
которую переводит в состояние выполнения (running). Процедуры, определяющие
способ выбора и моменты выполнения выбора, называются алгоритмами планиро­
вания. Выбор задачи, подлежащей выполнению, естественным образом происходит
в моменты времени, когда текущая выполнявшаяся задача переходит в состояние
сна (sleep) в результате выполнения операции ввода-вывода. Вытесняющие алго­
ритмы планирования, кроме всего прочего, ограничивают непрерывное время вы­
полнения задачи, принудительно прерывая ее выполнение по исчерпанию выданно­
го ей кванта времени (timeslice) и вытесняя ее во множество готовых, после чего
производят выбор новой задачи, подлежащей выполнению.

По умолчанию для пользовательских задач используется вытесняющий алгоритм
CFS (completely fair scheduler), согласно которому процессорное время распределя­
ется между неспящими задачами справедливым (fair) образом. Для каждой задачи
определяется выделяемая справедливая (в соответствии с ее относительным «при­
оритетом») доля процессорного времени, которую она должна получить при конку­
ренции за процессор. Для двух задач с любыми одинаковыми приоритетами долж­
ны быть выделены равные доли (в 50% процессорного времени), а при различии
в приоритетах . на одну ступень разница между выделяемыми долями должна
составить «10% процессорного времени (т. е. 55 и 45% соответственно). Для
удовлетворения этого требования алгоритм планирования CFS назначает каждой
ступени приоритета соответствующий1 вес задачи, а процессорное время делит ме­
жду всеми неспящими задачами пропорционально их весам. Таким образом, две
задачи с любыми одинаковыми приоритетами будут иметь равные веса
Wf = Wj = w, а доли процессорного времени составят р* = w j(w t + w}) = 1/2 и
р; = w/iWi + Wj) = 1/2. Для двух задач с приоритетами, отличающимися на одну
ступень, wt * Wj, а р, — р; = 1/10, откуда несложно получить, что w jw } = 11/9 —
правило построения шкалы2 весов, а р, = 11/20 = 0,55 и р2 = 9/20 = 0,45, что и
требовалось получить.

Для дифференциации задач используют 40 относительных POSIX-приоритетов на
шкале от —20 до +19, называемых «любезностью» задачи NICE. Относительный
приоритет буквально определяет, насколько «любезна» будет задача по отношению
к остальным готовым к выполнению задачам при конкуренции за процессорное
время освободившегося процессора. Наименее «любезным», с относительным при­
оритетом —20 (наивысшим) планировщик выделит большую долю процессорного
времени, а наиболее «любезным», с приоритетом +19 (наинизшим) — меньшую.

1 Шкала весов учитывает только требование 10% разницы в выделении времени CPU для задач
с различием в их относительных приоритетах на одну ступень.

2 Только wjwj = 11/9 = 1,2(2), тогда как в ядре Linux взято wjwj = 1,25.

146 Глава 4

При отсутствии конкуренции, когда количество готовых к выполнению задач равно
количеству свободных процессоров, приоритет не будет играть никакой роли.

В примере из листинга 4.28 при помощи команды bzip(2) запущены два процесса
сжатия ISO-образа с наилучшим качеством одновременно друг другу на «заднем
фоне». В выводе свойств рсри (percent cpu, процент потребляемого процессорного
времени), pri (priority), ni (nice) и psr (processor number) их процессов при по­
мощи ps(1) оказывается, что они потребляют практически одинаковые О доли
(проценты) процессорного времени, и это для одинаковых программ вполне соот­
ветствует интуитивным ожиданиям. После повышения любезности (понижения от­
носительного приоритета) одного из них © при помощи команды renice(1) до зна­
чения + 10 отношение потребляемых долей процессорного времени не измени­
лось ©, что означает отсутствие конкуренции за процессор, подтверждаемое как
столбцом PSR, показывающим номер процессора, выполняющего программу, так и
командами пргос(1) и lscpu(1).

| Листинг 4,28. Относительный приоритет NICE

fitz@ubuntu:~$ bzip2 --best -kf plan9.iso &

[1] 12944

fltz@ubuntu:~$ bzip2 --best -kf plan9.iso &

[2] 12945

fitz@ubuntu:~$ ps fo pid,pcpu,pri,ni,psr,cnd

PID %CPU PRI NI PSR CMD

12808 0.1 19 0 0 -bash

О 12944 94.5 19 0 2 _ bzip2 --best -kf plan9.iso

12945 96.0 19 0 1 _ bzip2 --best -kf plan9.iso

12946 0.0 19 0 3 _ ps fo pid,pcpu,pri,ni,psr,cnd

© fitz@ubuntu:~$ renice +10 12945

12945 (process ID) old priority 0, new priority 10

fitz@ubuntu:~$ ps fo pidjpcpujprijni,psr,cnd

PID %CPU PRI NI PSR CMD

12808 0.1 19 0 0 -bash

© 12944 94.8 19 0 +~2 _ bzip2 --best -kf plan9.iso
? 12945 97.0 9 10 •■0 _ bzip2 --best -kf plan9.iso

12948 0.0 19 0 1 _ ps fo pid,pcpu,pri,ni,psr,cnd

fitz@ubuntu:~$ nproc

4

fitz@ubuntu:~$ Iscpu

Архитектура: x86_64

CPU op-roode(s): 32-bit, 64-bit

Управление процессами и памятью 147

Порядок байт:

Address sizes:

CPU(s):

On-line CPU(s) list:

Little Endian

36 bits physical, 48 bits virtual

4 '•

0-3

О fitz@ubuntu:~$ taskset -p -c 3 12808

pid 12808's current affinity list: 0-3

pid 12808's new affinity list: 3

© fitz@ubuntu:~$ nice -n 5 time bzip2 --best -kf plan9.iso a

[1] 29331

© fitz@ubuntu:~$ nice -n 15 tine bzip2 — best -kf plan9.iso a

[2] 29333

fitz@ubuntu:~$ ps fo pid,pcpu,pri,ni,psr,cnd

©

■

PID %CPU PRI

28573 0.0 19

29331 0.0 9

29332 91.4-* 9

29333 0.0 4

29334 9.7"* 4 15

29336 0.0 19 0

N1 PSR CMD

0 3 -bash

3 _ tine bzip2 --best -kf plan9.iso

3 | _ bzip2 --best -kf plan9.iso

3 _ tine bzip2 --best -kf plan9.iso

3 | _ bzip2 --best -kf plan9.iso

3 _ ps fo pid,pcpu,pri,ni,psr,cnd

fitz@ubuntu:~$ wait

51.10user 0.22systen 0:55.86elapsed 90%CPU (0avgtext+0avgdata 31248naxresident)k

0inputs+180560outputs (0najor+1004ninor)pagefaults 0swaps

[1] - Завершён nice -n 5 tine bzip2 --best -kf plan9.iso

53.79user 0.20systen l:43.08elapsed 5236CPU (0avgtext+0avgdata 31520naxresident)k

0inputs+180560outputs (0najor+1515ninor)pagefaults 0swaps

[2] + Завершён nice -n 15 tine bzip2 --best -kf plan9.iso

Проиллюстрировать действие относительного приоритета NICE на многопроцессор­
ной системе можно, создав искусственную конкуренцию двух процессов за один
процессор. Для этого при помощи команды taskset(1) устанавливается привязка
(affinity) © командного интерпретатора (PID = 12808) к процессору 3 (привязка, как
и прочие свойства и атрибуты процесса, наследуется потомками). Затем при по­
мощи команды nice(1) запускаются © две программы упаковки с относительными
приоритетами 5 и 15 в режиме измерения потребления времени при помощи
команды time(1). В результате доли процессорного времени распределяются нерав­
номерно, причем их разница зависит от разницы в относительных приоритетах
(и от свойств конкурирующих процессов, но в примере они одинаковые). Дождав­
шись завершения процессов заднего фона, при помощи встроенной команды wait

148 Глава 4

можно оценить разницу в реальном времени выполнения упаковки, вызванную не­
равным распределением процессора между процессами упаковщиков.

Кроме приоритетной очереди, планировщик Linux позволяет использовать еще три
алгоритма планирования — FIFO, RR и EDF, предназначенные для задач реального
времени. Вытесняющий алгоритм RR (round robin) организует простейшее цикличе­
ское обслуживание с фиксированными квантами времени, тогда как FIFO (first in
first out) является его невытесняющей модификацией, позволяя задаче выполнять­
ся непрерывно долго, до момента ее засыпания. По сути, оба алгоритма органи­
зуют задачи в одну приоритетную очередь (PQ, priority queue) со статическими
приоритетами на шкале от 1 до 99, выбирая для выполнения всегда самую высо­
коприоритетную из множества готовых. Алгоритм EDF (Earliest Deadline First)
предназначен для обеспечения гарантий периодическим задачам реального времени,
которым важно получать периодическое обслуживание так, чтобы задача не была
вытеснена в течение определенного времени.

Перевод задачи под управление тем или алгоритмом планирования производится
при помощи назначения ей политики планирования (scheduling policy) посредством
команды chrt(1). Различают шесть политик планирования, три из которых —
SCHED_OTHER, SCHED_BATCH и SCHEDJDLE, реализуются алгоритмом CFS, политики
SCHED_FIFO, SCHED_RR — одноименными алгоритмами FIFO и RR, а политика
SCHED_DEADLINE — алгоритмом EDF. Политика SCHED_OTHER, она же SCHED_NORMAL,
применяется по умолчанию и обслуживает класс задач TS (time sharing), требую­
щих «интерактивности», а политика SCHED_BATCH предназначается для выполнения
«вычислительных» задач класса пакетной В (batch) обработки.

Разница между политиками состоит в том, что планировщик в случае необходимо­
сти всегда прерывает задачи класса В в пользу задач класса TS, но никогда на­
оборот. Политика SCHEDJDLE формирует класс задач, выполняющихся только при
«простое» (idle) центрального процессора за счет выделения им планировщиком CFS
очень небольшой доли процессорного времени. Для этого задачам IDL-класса на­
значают минимально возможный вес — меньший, чем вес самых «любезных»
(NICE = +19) задач TS -класса.

В примере из листинга 4.29 проиллюстрировано распределение процессорного вре­
мени алгоритмом планирования CFS между (конкурирующими за один процессор)
одинаковыми процессами TS-, В- и IDL-классов, назначенных им при запуске упа­
ковщиков bzip2(1) посредством команды chrt(1).

Листинг 4,29. Классы процессов

fltz@ubuntu:~$ ps f

PID TTY STAT TIME COMMAND

Управление процессами и памятью 149

•- 12058 pts/0 Ss 0:00 bash

12065 pts/0 R+ 0:00 _ ps f

fltz@ubuntu:~$ taskset -p -c 3 12058

pld 12058's current affinity list: 0-3

pid 12058's new affinity list: 3

fitz@ubuntu:~$ chrt -b 0 tine bzip2 --best -kf plan9.iso &

[1] 12410

fitz@ubuntu:~$ chrt -о 0 tine bzip2 --best -kf plan9.iso a

[2] 12412

fitz@ubuntu:~$ chrt -i 0 tine bzip2 --best -kf plan9.iso a .

[3] 12414

fitz@ubuntu:~$ ps fo pid,pcpu,class,pri,ni,psr,end

PID %CPU CLS PRI

12058 0.1 TS 19

12410 0.0 В 19

12411 50.0 В -• 19

12412 0.0 TS 19

12413 49.7 TS -• 19

12414 0.0 IDL 19

12415 0.1 IDL 19

12471 0.0 TS 19

N1 PSR CMD

0 3 -bash

3 _ tine bzip2 --best -kf plan9.iso

3 | _ bzip2 --best -kf plan9.iso

0 3 _ tine bzip2 --best -kf plan9.iso

0 3 | _ bzip2 --best -kf plan9.iso

3 _ tine bzip2 --best -kf plan9.iso

3 | _ bzip2 --best -kf plan9.iso

0 3 _ ps fo pid,pcpu,class,pri,ni,ps г,end

fitz@ubuntu:~$ wait

53.85user 0.26systen l:45.98elapsed 51%CPU (0avgtext+0avgdata 31248naxresident)k

0inputs+180560outputs (0najor+1004ninor)pagefaults 0swaps

53.96user 0.22systen l:46.04elapsed 51%CPU (0avgtext+0avgdata 31248naxresident)k

0inputs+180560outputs (0najor+1004ninor)pagefaults 0swaps

52.74user 0.27systen 2:41.54elapsed 3296CPU (0avgtext+0avgdata 31248naxresident)k

0inputs+180560outputs (0najor+1004ninor)pagefaults 0swaps

[1] Завершён chrt -b 0 tine bzip2 --best -kf plan9.iso

[2] - Завершён chrt -o 0 tine bzip2 --best -kf plan9.iso

[3] + Завершён chrt -i 0 tine bzip2 --best -kf plan9.iso

В листинге 4.30 показана конкуренция процессов под управлением RR-плани-
ровщика, использующего статические приоритеты. Так как операция назначения
политик планирования «реального времени» FIFO и RR является привилегированной,
то сначала О командный интерпретатор переводится в RR-класс (-г) с наивысшим
статическим приоритетом 99 при помощи команды chrt(1), выполняемой от лица
суперпользователя root. При последующих запусках упаковщиков класс будет
унаследован и не потребует повышенных привилегий. Два процесса упаковщиков

150 Глава 4

запускаются © командой chrt(1) с одинаковыми статическими приоритетами 1, при­
вязанные одному процессору командой taskset(1), в результате чего получают рав­
ные доли процессорного времени, что вполне соответствует интуитивным ожидани­
ям от вытесняющего циклического планировщика RR. Нужно отметить, что шкала
статических приоритетов 1->99 классов RR и FIFO, как и шкала «любезности» NICE
+19->-20 классов TS и В, отображаются на общую шкалу приоритетов PRI так, что
верхняя часть шкалы PRI:41->139 соответствует статическим приоритетам, а нижняя
часть шкалы PRI:0~>39 соответствует «любезности».

Листинг 4.30. Классы процессов реального времени

fitz@ubuntu:~$ ps f

PID TTY STAT TIME COMMAND

•- 15313 pts/0 S 0:00 -bash

15520 pts/0 R+ 0:00 _ ps f

О fltz@ubuntu:~$ sudo chrt -pr 99 15313

fitz@ubuntu:~$ ps fo pid,psr,cls,ni,pri,pcpu,conn

PID PSR CLS N1 PRI %CPU COMMAND

15313 0 RR - 139 -• 0.1 bash

15550 1 RR - 139 0.0 _ ps

в fltz@ubuntu:~$ chrt -г 1 taskset -с 2 bzip2 --best -kf plan9.iso S

[1] 15572

в fitz@ubuntu:~$ chrt -r 1 taskset -c 2 bzip2 --best -kf plan9.tso &

[2] 15573

fltz@ubuntu:~$ ps fo pid,psr,els,ni,pri,pcpu,corn

PID PSR CLS N1 PRI 96CPU COMMAND

15313 0 RR 139 0.1 bash

15572 2 -• RR - •- 41 51.8 -• _ bzlp2

15573 2 RR - •- 41 48.8 '• _ bzip2

15597 1 RR - 139 0.0 _ ps

© fitz@ubuntu:~$ chrt -r 2 taskset -c 2 bzip2 — best -kf plan9.iso &

[3] 15628

fitz@ubuntu:~$ ps fo ртх1,р5г,с15,пг,рг1,рсри,согп

PID PSR CLS N1 PRI 96CPU COMMAND

15313 0 RR - 139 0.1 bash

15572 2 RR 41 48.3 ■•? _ bzip2

★ 15573 2 RR 41 47.5 ■•? _ bzip2

15628 2 RR - •- 42 93.3 ■•! _ bzip2

15630 1 RR - 139 0.0 _ PS

Управление процессами и памятью 151

fitz@ubuntu:~$ top -b -nl -p 15572,15573,15628

top - 14:44:01 up 4:27, 2 users, load average: 5.07, 3.42, 2.50

Tasks: 3 total, 3 running, 0 sleeping, 0 stopped, 0 zombie

Cpu(s): 18.5%us, 3.496sy, 0.6Xni, 76.0Xid, 1.49iwa, 0.056hi, 0.1%si, 0.056st

МиБ Метл : 3935,6 total,, 2629,5 free, 425,1 used. 880,9 buff/cache

МиБ Swap: 448,5 total,, 448,5 free, 0,0 used. 3265,3 avail Mem

PID USER PR N1 VIRT RES SHR S 96CPU %MEM TIME+ COMMAND

15628 fitz -3 0 9536 7880 468 R 100 0.1 1:14.96 bzip2

15572 fitz -2 0 9536 7880 460 R •" 0 0.1 1:30.95 bzip2

15573 fitz ♦- -2 0 9536 7884 464 R •" 0 0.1 1:30.01 bzip2

Добавление © третьего процесса упаковщика со статическим приоритетом 2 при­
водит к резкому перекосу выделяемой доли процессорного времени в его пользу.
Это объясняется тем, что алгоритм планирования RR (равно как и FIFO) всегда
выбирает процесс с самым высоким статическим приоритетом из множества гото­
вых, поэтому процессам с более низкими приоритетами процессорное время будет
выделено только при засыпании1 всех процессов с большими приоритетами.

Странный результат ★ , изображаемый командой ps(1), объясняется «несовершенст­
вом» ее способа расчета доли процессорного времени %CPU, выделяемой процессу.
Расчет производится как отношение чистого потребленного процессорного времени
(за все время существования процесса) к промежутку реального времени, прошед­
шему с момента порождения процесса, что соответствует среднему, но не мгновен­
ному значению потребляемой доли. Гораздо более ожидаемый результат получает
команда top(1), выполняющая расчет мгновенной доли процессорного времени как
отношение чистого потребленного процессорного времени (за небольшой промежу­
ток наблюдения) к реальному времени наблюдения.

4.6.2. Распределение устройств ввода-вывода между процессами
В любой многозадачной операционной системе кроме вопроса распределения (между
ее задачами) центрального процессора, рассмотренного выше, неизбежно возника­
ют вопросы распределения и других устройств, например памяти (см. разд. 4.7) и
устройств ввода-вывода. В Linux все устройства ввода-вывода принято подразде­
лять на «поблочные» устройства (block devices), которые зачастую являются нако­
пителями, «посимвольные» устройства (character devices), — как правило, устрой­

1 А упаковщик, хоть и выполняет операции ввода-вывода, в реальности практически не засыпает
в связи с использованием дискового кэша.

152 Глава 4

ства взаимодействия с пользователями (мыши, клавиатуры, терминалы и пр.) и
«попакетные» устройства, в большинстве своем — сетевые интерфейсы.

В каждом классе устройств способы их распределения часто связаны с эффектив­
ностью их работы, т. к. решение задачи «в лоб» приводит к неприемлемым ре­
зультатам. Например, при распределении доступа к дисковым накопителям оказы­
вается, что количество считываемых данных в единицу времени (пропускная спо­
собность, throughput) существенно зависит от того, в каком порядке обслуживать
запросы отдельных процессов на чтение/запись накопителя. Такой результат в ос­
новном обусловлен свойствами самих накопителей, все еще являющихся механиче­
скими дисками. Для проведения операции чтения или записи дискового блока кон­
троллер накопителя должен потратить время на перемещение головки над нужной
дорожкой, а затем дождаться «приезда» нужного сектора этой дорожки, который
содержит данные искомого блока. На все это нужно колоссальное (с точки зрения
центрального процессора и процессов) время1, что и ограничивает количество дан­
ных, обрабатываемых в единицу времени.

Если представить себе операции линейного считывания или записи, когда обраба­
тываются дисковые блоки, находящиеся в последовательных секторах одной до­
рожки, затем последовательно в секторах соседней дорожки, то можно добиться
максимальной производительности, но это невозможно по двум причинам. Во-
первых, процессы работают с абстракциями более высокого уровня — с файлами,
данные которых могут размещаться файловыми системами в произвольных диско­
вых блоках. Даже если последовательные блоки файла размещены в последова­
тельных дисковых блоках, программы в принципе могут читать произвольные файлы
в каком угодно порядке. Во-вторых, сама мультипрограммная смесь в принципе
генерирует общий поток запросов к произвольным местам диска. При попытке
обслуживать этот поток «как есть» количество накладных расходов на хаотичный
поиск (seek time) нужных дисковых блоков будет достаточно велико, а результи­
рующая пропускная способность диска — мала. Именно эта задача приводит
к появлению в подсистеме блочных устройств ядра планировщика ввода-вывода
(I/O scheduler), т. е. специальной компоненты, обслуживающей очередь запросов
к накопителю особенным образом, изначально направленным на оптимизацию про­
пускной способности накопителя.

Подобные планировщики часто используют алгоритмы, подобные тем, что задейст­
вованы в лифтовых системах зданий для оптимизации перемещения лифтов
(elevator), и носят название лифтовых алгоритмов. Наиболее известными алгорит­
мами являются так называемые SCAN, C-SCAN, LOOK и C-L00K, см. W :[Elevator
algorithm], W :[L 0 0 K algotithm]. Принцип их действия (упрощенно) состоит в том, что

1 Что, однако, и привело в свое время к многозадачным ОС.

Управление процессами и памятью 153

начавший движение лифт всегда едет в одном направлении, подбирая новых пас­
сажиров, только направляющихся в сторону его движения, после чего, достигнув
точки назначения, ждет нового вызова.

Планировщики ввода-вывода аналогично пытаются обслуживать поступающие за­
просы к накопителю не в порядке их поступления, а в порядке их номеров блоков
(в порядке номеров этажей, лифт всегда едет снизу вверх), что естественно
уменьшает суммарное время поиска и, как следствие, увеличивает общую пропуск­
ную способность. Кроме этого, планировщики пытаются укрупнять мелкие запросы
на доступ к единичным, расположенным последовательно дисковым блокам, объе­
диняя их в меньшее количество крупных запросов на доступ к «несколькоблоч-
ным» дисковым областям. Это опять позволяет экономить время при обращении
к диску, что тоже увеличивает количество данных, обрабатываемых в единицу
времени. Две такие применяемые планировщиками операции принято называть
сортировкой (sorting) и слиянием (merging) соответственно.

Простейший планировщик в ядрах версии 2.4 организовывал общую очередь за­
просов к накопителю, отсортированную в порядке их номеров блоков, помещая
новые запросы в нужное место в середине очереди, а обслуживал запросы всегда
из головы очереди, отправляя их на обработку драйверу контроллера накопителя.
Организованная таким образом обработка, однако, должна страдать от эффекта
голодания (starvation) запросов со старшими номерами, т. к. если представить,
что новые запросы будут непрерывно и достаточно интенсивно поступать с млад­
шими номерами блоков, то запросы со старшими номерами вообще никогда не
будут обработаны. Для решения проблемы голодания этот классический плани­
ровщик использовал возрастные отметки запросов, заставляя новые запросы раз­
мещаться всегда в конце очереди, если в ней был найден хотя бы один запрос
старше определенного возраста. Такая эвристика уменьшала проблему, но в прин­
ципе не избавляла от нее, т. к. запросы, конечно, не застревали в очереди «навсе­
гда», но задержка их обработки была непредсказуемой и ожидала желать лучшего.

Более того, она никак не касалась особенного случая эффекта голодания — так
называемого голодания запросов на чтение, вызываемого запросами на запись
(writes starving reads). Этот эффект основывается на том, что при чтении в по­
давляющем большинстве случаев по тем или иным причинам программы ждут ре­
ального завершения одного запроса, прежде чем отправят другой. При записи, на­
оборот, они практически всегда генерируют кучу запросов пачкой, отчасти и пото­
му, что ядро воображаемо «завершает» для процесса операцию записи немедленно
после копирования данных запроса в свои внутренние структуры (например,
в страничный кэш). Таким образом, в очереди запросов оказывается куча запросов
на запись, обработка которых неминуемо ведет к задержкам обработки немногих
запросов на чтение. Ситуация еще больше усугубляется тем, что подобные пачки
запросов на запись обычно адресуют последовательные блоки, что, к сожалению

154 Глава 4

(для эффекта голодания), согласуется с лифтовыми алгоритмами классического
планировщика.

Одним из первых планировщиков ввода-вывода, который был направлен на реше­
ние вышеобозначенных проблем, стал появившийся в ядрах версии 2.6 так назы­
ваемый deadline, доступный и по сей день1. Принцип использования «лифтовых»
алгоритмов остался без изменения, и в планировщике также организуется общая
очередь запросов, отсортированная в порядке их номеров дисковых блоков. Одна­
ко для решения проблем голодания планировщик организует еще две отдельные
очереди — отдельную для запросов на чтение и отдельную для запросов на за­
пись, в которых запросы размещены в порядке поступления. Более того, у каж­
дой из дополнительных очередей есть определенные преследуемые «сроки» обра­
ботки, определенные в пользу запросов на чтение. По умолчанию они составляют
500 мс для чтения и 5000 мс (5 с) для запросов на запись. В основном режиме
планировщик обслуживает запросы в порядке общей очереди, что направлено на
повышение пропускной способности накопителя, но по истечении определенного
«срока» обработки запросов в одной из дополнительных очередей планировщик
переходит в режим обработки этой дополнительной очереди, тем самым пытаясь
обеспечить обозначенные «сроки». Несмотря на свою простоту, deadline-плани­
ровщик справился с эффектами голодания, обеспечив вполне предсказуемые зна­
чения задержек обработки запросов.

Однако надо заметить, что deadline-планировщик делает свою работу за счет
уменьшения общей пропускной способности, т. к. каждый раз при истечении срока
обработки запроса на чтение он прерывает обслуживание в «лифтовом» порядке и
тратит дополнительное время на поиск блока этого истекшего запроса, после чего
возвращается к обычной работе и опять тратит дополнительное время на поиск
того блока, на котором он прервался. Такие наблюдения привели к эвристике
«предвосхищающего» anticipatory-планировщика, который основывается на поведении
deadline-планировщика и предвидении запросов на чтение, последующих за обрабо­
танными запросами с истекшим «сроком». Другими словами, каждый раз, когда
anticipatory-планировщик отвлекается на запрос чтения с истекшим «сроком», по
окончании его обслуживания он не спешит возвращаться к основной очереди, а
выжидает некоторое непродолжительное время (6 мс по умолчанию) в надежде на
получение еще одного запроса на чтение с номером блока, следующим за только
что обработанным. В силу широко распространенного последовательного чтения из
файлов такое предвидение оправдывается с высокой вероятностью, что приводит
к повышению пропускной способности при сохранении предсказуемых задержек
операций чтения.

1 Претерпевший некоторые трансформации, но все же.

Управление процессами и памятью 155

Впоследствии anticipatory-планировщик был удален из ядра в пользу планировщика
CFQ (Completely Fair Queuing, совершенно справедливая очередь), который позво­
ляет получать результаты сравнимые (и даже лучше) с anticipatory-планировщиком,
но обладает еще и массой других полезных свойств. В основе CFQ-планировщика
лежит желание обеспечить справедливое распределение пропускной способности
накопителя между процессами, вне зависимости от их поведения. Для этого пла­
нировщик организует для запросов на чтение по одной очереди на процесс, плюс
общую очередь для запросов на запись, а сами запросы во всех очередях, как и
всегда, сортируются в порядке номеров их дисковых блоков. Кроме этого, подобно
deadline-планировщику, CFQ определяет максимальные «сроки» обработки запросов, а
подобно anticipatory-планировщику, после обработки запроса на чтение выжидает
некоторое время, предвосхищая появление еще одного запроса с номером блока,
следующего за только что обработанным.

Кроме этого, планировщик предусматривает возможность дифференциации процес­
сов (и, как следствие, их очередей чтения) по классам и приоритетам, позволяя
выделить долю пропускной способности для определенных процессов чуть «спра­
ведливее», чем для других. Очереди записи для всех процессов общие, но тоже
подразделяются по классам и приоритетам.

Порядок выбора очереди для обработки запросов определяется сначала ее клас­
сом, а внутри класса — при помощи специальных отметок «времени начала» об­
работки, назначаемых в зависимости от приоритета. При этом запросы в каждой
из них обрабатываются в течение времени, ограниченного сверху некоторым ин­
тервалом (slice) времени, так же определяемым приоритетом очереди.

Различают три класса обслуживания: realtime, best-effort, idle, которые задаются
процессам явно при помощи системного вызова ioprio_set(2) и утилиты ionice(1).
В случае, если для процесса явно не определен класс обслуживания (по умолча­
нию все процессы отнесены к «классу» попе), он неявно «зеркалируется» на при­
оритет планировщика центрального процессора CFS (см. разд. 4.6.1). Так, напри­
мер, процессы из CFS класса SCHEDJDLE неявно расцениваются как находящиеся
в CFQ -классе idle, а процессы из классов SCHED.FIFO, SCHED_RR и SCHED.DEADLINE —
как в классе realtime. Для остальных процессов используется класс best-effort, при
этом не заданные явно приоритеты так же неявно высчитываются пропорциональ­
но «любезности» NICE.

В классах realtime и best-effort различают по 8 приоритетов (min 7*-»0 max), от кото­
рых зависит длительность интервала времени, выделяемого очередям на обработку.
Базовый интервал времени S обычно равняется 100 мс (см. О в листинге 4.32),
который назначается «среднему» приоритету р = 4, а для остальных они масшта­
бируются от 40 мс (для приоритета 7) до 180 мс (для приоритета 0), как
Sp = S + S -k -(4 — р), где k = 1/5 — масштабный множитель шкалы приорите­

156 Глава 4

тов. Для обработки запросов на запись базовый интервал составляет всего лишь
40 мс (см. © в листинге 4.32).

Кроме того, приоритеты так же используются для определения «времени начала»
обработки запросов каждой очереди (slice offset), как SOp = (п — 1) ■ (50 — Sp),
где п — количество непустых очередей планировщика. Например, если есть три
активно читающих процесса п = 3, то для процессов с приоритетом 0 время на­
чала обработки определяется как SO0 = 0 мс, а для процессов с приоритетом 7 —
как S 0 7 = 2 ■ (180 — 40) = 360 мс соответственно.

Запросы в очередях класса realtime обрабатываются в первую очередь, и если все
запросы исчерпаны, то планировщик переходит к обработке best-effort-очередей, а
при их исчерпании — к очередям класса idle. Внутри каждого класса очереди об­
рабатываются в порядке «времени начала» обработки и в течение интервала обра­
ботки, а сами запросы — в порядке номеров их Дисковых блоков. Вместе с тем,
как было сказано раньше, CFQ-планировщик попроцессно отслеживает максимально
установленные «сроки» обработки запросов, что составляет 250 мс для запросов
записи и 125 мс для запросов чтения (см. © в листинге 4.32). При исчерпании
запросов в обрабатываемой очереди (если еще не истек ее интервал) CFQ-
планировщик выжидает 8 мс (см. © в листинге 4.32), предвидя появление нового
запроса на чтение, «продолжающего» только что обработанный.

Внутреннее устройство CFQ-планировщика, надо заметить, изначально не было на­
правлено (в отличие от «классического», dcalinc и anticipatory) на увеличение пропу­
скной способности накопителя, а преследовало несколько иные цели. Однако его
современная реализация оказалась весьма эффективной для самых разнообразных
применений, что и сделало его планировщиком по умолчанию вплоть до ядер вер­
сии 5.x (см. листинги 4.31 и 4.32), где он был заменен планировщиком BFQ
(Budget Fair Queue).

Листинг 4.31. I/O планировщики устройств (single-queue)

Ф fitz@ubuntu:~$ Isblk -S

NAME HCTL TYPE VENDOR MODEL REV TRAN

sda 0:0:0:0 disk ATA WDC WD2500BEKT-7 1A01 sata

sr0 1:0:0:0 rom TSSTcorp DVDf-RW TS-U633J D600 sata

О fitz@ubuntu:~$ cat /sys/block/{sda,sr0}/queue/scheduler

noop deadline [cfq]

noop deadline [cfq]

fitz@ubuntu:~$ uname -r

4.18.0-25-lowlatency

Управление процессами и памятью 157

© fitz@ubuntu:~$ echo deadline | sudo tee /sys/block/srO/queue/scheduler

deadline

fitz@ubuntu:~$ cat /sys/block/srO/queue/scheduler

noop [deadline] "• cfq

Листинг 4.31 показывает, что назначенный блочному устройству © планировщик
можно узнать только при помощи «прямого» чтения файловой системы sysfs О, а
выбрать иной планировщик при помощи «прямой» записи в ее файлы. Нужно от­
метить, что планировщик noop (no opeartion), как можно догадаться из названия,
(почти) ничего с поступающими запросами не делает, но именно поэтому идеально
подходит для недисковых устройств, например SSD-накопителей, задержки доступа
к данным которых никак не определяются механической составляющей, присущей
«обычным», дисковым накопителям.

fltz@ubuntu:~$ Is /sys/block/sda/queue/iosched/

back_seek_nax group_ldle_us sllce_async_us target_latency

back_seek_penalty low_latency sllce_ldle target_latency_us

flfo_explre_async quantum sllce_ldle_us

flfo_explre_sync sllce_async sllce_sync

group_ldle sllce_async_rq sllce_sync_us

О fltz@ubuntu:~$ cat /sys/block/sda/queue/iosched/slice_sync

100
0 fltz@ubuntu:~$ cat /sys/block/sda/queue/iosched/slice_async

40

© fltz@ubuntu:~$ cat /sys/block/sda/queue/losched/flfo_explre_*

250

125

О fltz@ubuntu:~$ cat /sys/block/sda/queue/iosched/slice_idle

8

Широкое распространение сверхбыстрых твердотельных накопителей, например
W :[NVMe], поставило перед разработчиками ядра Linux новые задачи, т. к. оказа­
лось, что подсистема блочных устройств в силу внутреннего строения в принципе
не способна обрабатывать большое количество запросов на чтение/запись в еди­
ницу времени W : [I0PS], что не позволяет использовать такие накопители на «пол­
ную катушку». При разработке ядер серии 4.x блочную систему перепроектировали
и изменили принцип организации запросов, поступающих к блочному устройству
на обработку. Вместо одной общей входящей очереди (single queue) к каждому уст­

158 Глава 4

ройству, за которую ранее состязались процессы, выполняющиеся на разных про­
цессорах, организовали индивидуальные очереди (multi-queue) по числу процессо­
ров, что позволило существенно повысить эффективность работы подсистемы. Это
привело к переделке драйверов устройств и планировщиков ввода-вывода к ново­
му виду, которая закончилась к началу ядер серии 5.x. Вместе с тем планировщик
deadline превратился в mq-deadline, место CFQ занял BFQ, а позднее был добавлен
планировщик kyber (листинг 4.33) для работы с высокоскоростными накопителями.

Листинг « л I/O планировщики устрийств (ш ксЦ и еМ
______________________________ iciss __________________ш__________ £_______________ 'лы и. iiir i — ,.a . щ : - aC ж_______ к______ ^

fitz@ubuntu:~$ cat /sys/block/{sda, s rO}/queue/scheduler

nq-deadline [bfq] none

[nq-deadline] bfq none

fitz@ubuntu:~$ unane -r

5.3.0-24-lowlatency

fitz@ubuntu:~$ nodinfo bfq

filename: /lib/modules/5.3.0-26-generic/kernel/block/bfq.ko

description: MQ Budget Fair Queueing I/O Scheduler

fitz@ubuntu:~$ nodinfo kyber-iosched

filename: /lib/modules/5.3.0-26-generic/kernel/block/kyber-iosched.ko

description: Kyber I/O scheduler

Планировщик BFQ изначально базировался на коде CFQ и до сих пор сохраняет
практически все его свойства, но вместо интервалов времени, отводимых на обра­
ботку запросов, использует понятие «бюджета» обработки, исчисляемого в количе­
стве (дисковых) секторов, которые будут обслужены из той или иной очереди.
Бюджет BFQ(KaK и интервалы обработки CFQ) пропорционален приоритетам процес­
сов, что делает планировщик «справедливым»1 в отношении доли пропускной спо­
собности устройства, выделяемой отдельным процессам. Кроме этого, планировщик
следит, чтобы потребление выделенного «бюджета» не занимало много времени
(например, процесс может читать секторы, далеко отстоящие друг от друга),
в противном случае очередь «наказывается» путем снятия с обработки до исчерпа­
ния своего бюджета.

В листинге 4.34 показано управление классами и приоритетами планировщиков CFQ
и BFQ, а в листинге 4.35 — пропорциональное распределение пропускной способ­
ности между конкурирующими процессами.

1 Процессам в одном классе с одинаковыми приоритетами будет выделена одинаковая доля про­
пускной способности, а процессам с разными приоритетами — разная, но пропорциональная их
приоритетам. И пусть никто не уйдет обиженным.

Управление процессами и памятью 159

Листинг 4.34. i/O классы процессов планировщиков l FQ и bHj

fltz@ubuntu:~$ ionice -p $S

none: prlo 0

fitz@ubuntu:~$ ionice -c best-effort -n 5 -p $$

fitz@ubuntu:~$ ionice -p $$

best-effort: prio 5

fitz@ubuntu:~$ sudo ionice -c realtime -n 3 -p $$

fitz@ubuntu:~$ ionice -p $$

realtime: prio 3

В листинге 4.35 проведены два опыта, в которых сравнивается распределение
пропускной способности при чтений с дискового накопителя /dev/sdc между двумя
одинаковыми процессами. Если процессы имеют одинаковый класс и приоритет ©,
то в результате и получают одинаковую долю пропускной способности диска ©, а
если разные © приоритеты, то пропорциональную ®. В принципе доля пропускной
способности должна была распределиться как 40 мс/(40 мс + 180 мс) « 0 ,1 8 и
180 мс/(40 мс + 180 мс) « 0,82 согласно длительностям интервалов обработки,
выделяемой очередям планировщиком (см. выше). Полученный результат отличает­
ся от прогнозируемого потому, что один процесс заканчивает копирование раньше
другого на целых 4 с, что составляет примерно 30% общего времени копирования,
поэтому второй заканчивает свое чтение, уже используя полную пропускную спо­
собность диска. Поэтому средние (!) скорости копирования в 1,5 и 2,2 Мбит/с и
не соотносятся как 0,18 к 0,82.

Листинг 4.35. Распределение пропускной способности планировщиками CFQ н BFQ

fitz@ubuntu:~$ findmnt -Т .

TARGET SOURCE FSTYPE OPTIONS

/ /dev/sda4 *• ext4 rw,relatime,errors=remount-ro

fitz@ubuntu:~$ cat /sys/block/sda/queue/scheduler

noop deadline [cfq]

fitz@ubuntu:~$ dd if=/dev/urandom of=bigl *• bs=16384 count=1024

1024+0 записей получено

1024+0 записей отправлено

16777216 bytes (17 MB, 16 MiB -•) copied, 0,089367 s, 188 MB/s

fitz@ubuntu:~$ dd if=/dev/urandom of=big2 bs=16384 count=1024

fitz@ubuntu:~$ sync

© fitz@ubuntu:~$ dd if=bigl of=/dev/null iflag^Kxect &

fitz@ubuntu:~$ dd if=big2 of=/dev/null iflag^Kxect &

160 Глава 4

fitz@ubuntu:~$ wait
[1] 6452

[2] 6453

32768+0 записей получено

32768+0 записей отправлено

© 16777216 bytes (17 МВ, 16 MiB) copied, 12,6594 s, 1,3 MB/s

32768+0 записей получено

32768+0 записей отправлено

® 16777216 bytes (17 МВ, 16 MiB) copied, 13,366 s, 1,3 MB/s

[1] - Завершён dd if=bigl of=/dev/null iflag=direct

[2] + Завершён dd if=big2 of=/dev/null iflag=direct

© fitz@ubuntu:~$ ionice -c best-effort -n 7 dd if=bigl of=/dev/null iflag=direct &
fitz@ubuntu:~$ ionice -c best-effort -n 0 dd if=big2 of=/dev/null iflag^Krect &
fitz@ubuntu:~$ wait

CD 16777216 bytes (17 MB, 16 MiB) copied, 7,45967 s, 2,2 MB/s

CD 16777216 bytes (17 MB, 16 MiB) copied, 11,4372 s, 1,5 MB/s

4.7. Память процесса
Еще одним ресурсом, подлежащим распределению между процессами, является
оперативная память. В Linux, как и во многих Других современных операционных
системах, для управления памятью используют механизм страничного отображе­
ния, реализуемого ядром операционной системы при помощи устройства управле­
ния памятью — W:[MMU]. При этом процессы работают с виртуальными адреса­
ми (virtual address) «воображаемой» памяти, отображаемыми устройством MMU на
физические адреса (physical address) настоящей оперативной памяти. Для отобра­
жения (рис. 4.3) вся оперативная память (RAM) условно разбивается на «грану­
лы» — страничные кадры размером 4 Кбайт, которые затем выделяются процес­
сам. Таким образом, память процесса условно состоит из страниц (page), кото­
рым в специальных таблицах страниц (page table) сопоставлены выделенные
страничные кадры (page frame). При выполнении процесса преобразование его
виртуальных адресов в физические выполняется устройством MMU «на лету» при
помощи его индивидуальной таблицы страниц.

Именно механизм страничного отображения позволяет эффективно распределять
память между процессами путем размещения страниц процессов в произвольные
свободные страничные кадры. Кроме этого, механизм страничного отображения
позволяет выделять процессам память по требованию, добавляя дополнительные
страницы и отображая их на свободные страничные кадры. Аналогично, ненужные

Управление процессами и памятью 161

процессу страницы могут быть удалены, а соответствующие страничные кадры вы­
свобождены для использования другими процессами.

4.7.1. Виртуальная память
Помимо задачи распределения памяти между процессами, механизм страничного
отображения используется ядром операционной системы и для решения задачи
нехватки оперативной памяти. При определенных обстоятельствах имеющиеся в
распоряжении свободные страничные кадры оперативной памяти могут быть ис­
черпаны. Одновременно с этим оказывается, что большую часть времени процессы
используют лишь малую часть выделенной им памяти, а находясь в состоянии сна,
не используют память вовсе.

162 Глава 4

Увеличить коэффициент полезного использования памяти позволяет еще одна про­
стая идея1 (рис. 4.4) — высвобождать О страничные кадры при помощи выгрузки ©
(page out) неиспользуемых страниц процессов во вторичную память (в специаль­
ную область «подкачки» SWAP, например, на диске), а при обращении к выгружен­
ной странице — загружать (page in) ее обратно перед использованием. За счет
такого страничного обмена2 (paging или page swapping) организуется W : [виртуаль­
ная память], т. е. видимость большего количества (оперативной) памяти для разме­
щения процессов, чем есть на самом деле.

4
с

S.
♦

Рис. 4.4. Страничный обмен

В примере из листинга 4.36 столбцах VSZ и RSS вывода команды ps(1) показано
потребление памяти процессами (в килобайтах). В столбце VSZ (virtual size) указы­
вается суммарный объем всех страниц процесса (в том числе и выгруженных), а в
столбце RSS (resident set size) — суммарный объем всех его страничных кадров
в оперативной памяти, т. е. ее реальное потребление процессом.

1 Подобная идее многозадачности (см. разд. 4.2).

2 Зачастую используют термин W : [подкачка страниц].

Управление процессами и памятью 163

fitz@ubuntu:~$ ps fux

USER PID 96CPU 9GMEM VSZ RSS TTY STAT START TIME COMMAND

jake 4257 1.4 1.2 962016 49072 ? Ssl 20:46 0:00 _ .../gnone-terminal-server

jake 4267 0.0 0.1 12948 4808 pts/0 Ss+ 20:46 0:00 1 _ bash

jake 4276 20.5 5.9 2930660 240788 p SI 20:46 0:05 _ .../firefox -new-window

jake 4378 8.6 3.5 2427016 141300 p SI 20:46 0:01 _ •../firefox ...

jake 4475 6.8 2.6 2390580 107920 7 SI 20:46 0:01 _ •../firefox ...

jake 4521 3.2 2.0 2374856 84480 7 SI 20:46 0:00 _ •../firefox ...

4.7.2. Отображение файлов в память
Страничный обмен, помимо организации виртуальной памяти, имеет еще одно важ­
нейшее применение. Именно на его основе реализуется незаменимый механизм
отображения файлов в память процесса, доступный при помощи системных вызо­
вов mmap(2)/munmap(2) (и дополнительных mlock(2), mprotect(2), msync(2), madvise(2) и др.).

Для отображения файла (рис. 4.5) в память процесса ему выделяют страницы Ф
в необходимом количестве (VSZ), но не страничные кадры (RSS). Вместо этого в
таблице страниц формируются такие записи О, как будто эти страницы уже были
выгружены ранее (!) в отображаемый файл ©. При последующем обращении (on
demand) процесса к какой-либо странице отображенной памяти под нее выделя­
ют Ф страничный кадр и заполняют О (read) соответствующим содержимым фай­
ла. Любые последующие изменения, сделанные процессом в отображенных страни­
цах, сохраняются Ф обратно (write back) в файл, если отображение выполнено
«разделяемым»1 (shared) способом. Для страниц, отображенных «частным» (private)
способом, используется принцип COW (copy-on-write) Ф, согласно которому любые
попытки их изменения (write) приводят к созданию их копий (сору), куда и попа­
дают изменения.

Таким образом, страницы отображенного файла, которые никогда не были востре­
бованы процессом, не будут вовсе занимать оперативной памяти (не попадут в
RSS). Это обстоятельство широко используется для «загрузки» в процесс его про­
граммы и библиотек. В листинге 4.37 при помощи команды ршар(1) показана карта
(отображения файлов) памяти процесса командного интерпретатора bash(1).

'Такие понятия и поведение механизма отображения выбраны не случайно, ведь файл может
быть отображен в несколько процессов одновременно.

164 Глава 4

♦

Е £OI
О
с

О

Листинг 437, Карта памяти процесса

fitz@ubuntu:~$ ps f

PID TTY STAT TIME COMMAND

26958 pts/0 Ss 0:00 bash

28540 pts/0 R+ 0:00 _ ps f

fitz@ubuntu:~$ which bash

/usr/bin/bash

fltz@ubuntu:~$ readelf -1 /usr/bin/bash

Заголовки программы:

Тип Смещ. Вирт.адр Физ.адр

Рзм.фйл Рзм.пм Флаги Выравн

Ф LOAD 0x000000000002d000 0x000000000002d000 0x000000000002d000

0x00000000000ad78d 0x00000000000ad78d R E 0x1000

Управление процессами и памятью 165

Ф LOAD 0x0000000000110cf0 0x0000000000111cf0 0x0000000000111cf0

0x000000000000b914 0x00000000000155a8 RW 0x1000

fitz@ubuntu:~$ ppiap -d 26958

26958: bash 1

Адрес Кб Mode

0000563ЬбЬ512000 180 r---

0 0000563b6b53f000 696 r-x-

0000563b6b5ed000 216 r---

0000563b6b623000 16 r---

© 0000563Ь6Ь627000 36 rw--

0000563Ь6Ь630000 40 rw--

е 0000563b6b8d6000 1168 rw--

00007f3b6267a000 148 r---

© 00007f3b6269f000 1504 r-x-

00007f3b62817000 296 r---

00007f3b62861000 12 r---
00007f3b62864000 12 rw--

00007fff05018000 132 rw--

napped: 12932K writeable/p

Device

0000000000000000 000:00000

Lvate: 1468K shared: 28K

Mapping

bash

bash

bash

bash

bash

[anon]

[anon]

libc-2.30.so

libc-2.30.so

libc-2.30.so

libc-2.30.so

libc-2.30.so

[stack]

В память процесса интерпретатора отображен исполняемый ELF-файл его програм­
мы О© и ELF-файлы всех библиотек ©, от которых она зависит. Отображение
ELF-файлов выполняется частями — сегментами (при помощи readelf(l) можно по­
лучить их список), в зависимости от их назначения. Так, например, сегмент про­
граммного кода ® отображен в страницы ©, доступные на чтение г и выполнение
х, сегмент данных © отображен в страницы ©, доступные на чтение г и запись w,
и т. д.

Более того, выделение страниц памяти по требованию (heap, куча) в процессе ра­
боты процесса © реализуется при помощи «воображаемого» отображения некото­
рого несуществующего, «анонимного файла» [anon] на страничные кадры. Необхо­
димо отметить, что механизм виртуальной памяти при освобождении неиспользуе­
мых страниц выгружает в специальную область подкачки SWAP (см. рис. 4.4)
только «анонимные» страничные кадры и «анонимизированные», полученные копи­
рованием при изменении (согласно принципу COW). Неанонимные измененные кад­
ры выгружаются непосредственно в соответствующие им файлы, а неизмененные
освобождаются вовсе без выгрузки, т. к. уже «заранее выгружены».

В примере из листинга 4.38 иллюстрируются два способа выделения памяти по
требованию: явный — при помощи системного вызова mmap(2) с аргументом

166 Глава 4

MAP.ANONYMOUS, и неявный1 — при помощи системного вызова Ьгк(2). Явный спо­
соб © позволяет выделять новые сегменты памяти процесса, тогда как неявный
способ.. © изменяет размер предопределенного «сегмента данных» процесса, позво­
ляя увеличивать и уменьшать его по желанию, перемещая так называемый
«break» — адрес конца этого сегмента.

-----ЖТЗШ Ч Г - - — 7“Ч -------------------- " Р Н Г ------ 1-------ш л ц ™ 5ГТТ” ”
. Листинг 4.38. Системные вызовы mmap/munmap и М - «уделение и высвобождение памяти Щ. ,

fitz@ubuntu:~ $ Idd /usr/bin/hostnane

linux-vdso.so.l (0x00007ffcal9a6000)

Hbc.so .6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f5cd5da6000)
'/Hb64/ld-linux-x86-64.so.2 (0x00007f5cd5fb3000)

fltz@ubuntu:~$ strace hostnane

© execve("/usr/bin/hostnane", ["hostname"], 0x7ffc63e59df0 /* 31 vars */) = 0

brk(NULL) = 0x55fb3dc7b000

I- openat(AT_FDCWD, "/etc/ld.so.cache", O_RD0NLY|O_CLOEXEC) = 3

© fstat(3, {st_mode=S_IFREC10644, st_slze=71063, ...» = 0

mmap(NULL, 71063, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f48ae3b7000 Ф

close(3) = 0

|— openat(AT_FDCWD, "/llb/x86_64-linux-gnu/llbc.so.6", 0_RDONLY|0_CLOEXEC) = 3

© read(3, "\177ELF\2\l\l\3\0\0\0\0\0\0\0\0\3\0>\0\l\0\0\0\360r\2\0\0\0\0\0"..., 832) = 832

fstat(3, {st_mode=S_IFREC10755, st_slze=2025032, ...» = 0

> map(NULL, 2032984, PROT READ, MAP_PRIVATE|..., 3, 0) = 0x7f48aelc4000

nriap(0x7f48aele9000, 1540096, PROT READ|PROTEXEC, MAP_PRIVATE|..., 3, 0x25000) = 0x7f48aele9000

|> map(0x7f48ae361000, 303104, PROT_READ, WP_PRIVATE|..., 3, 0xl9d000) = 0x7f48ae361000

map(0x7f48ae3ab000, 24576, PROT_READ|PROT_VftITE, MAP_PRIVATE|..., 3, 0xle6000) = 0x7f48ae3ab000

© nnap(0x7f48ae3bl000, 13656, PROT_READ|PROT_HttTE, MAP_PRIVATE|... IfW.A^XMtfCUS, -1, 0) = 0x7f48ae3bl000

close(3) = 0

© mprotect(0x7f 48ae3abO00, 12288, PROT_READ) = 0

mprotect(0x55fb3beeaO00, 4096, PROT_READ) = 0

© mprotect(0x7f 48ae3f5000, 4096, PROT_READ) = 0

Ф munmap(0x7f48ae3b7000, 71063) = 0 t Aib64/ld-limx-x86-64.so.2

brk(NULL) = 0x55fb3dc7b000 Г /bin/hostname

О brk(0x55fb3dc9c000) = 0x55fb3dc9c000

uname({sysname="Linux", nodename="ubuntu", ...}) = 0

1 Доставшийся в наследство от классической ОС UNIX.

Управление процессами и памятью 167

fstat(l, {st_node=S_IFOR|0620, st_rdev=nakedev(0x88, 0x1), ...}) = 0

wrlte(l, "ubuntu\n", 7) = 7

ubuntu

exit_group(0) = ?

+++ exited with 0 +++

Трасса команды hostrrame(l), показанная в листинге 4.38, поясняет работу загрузчи­
ка и компоновщика (loader, Id) динамических библиотек ld-linux(8).

Системный вызов ехес(2) Ф отображает для запуска в память процесса не только
заданный ELF-файл /bin/hostnane, но и (указанный в этом ELF-файле) загрузчик
библиотек /Hb64/ld-linux-x86-64.so.2, которому и передаются управление до самой
программы.

Загрузчик библиотек, в свою очередь, отображает О в процесс свой «конфигура­
ционный» файл /etc/ld.so.cache, а затем посегментно © отображает файлы всех
библиотек и выделяет им © требуемую дополнительную память. Загруженные биб­
лиотеки присоединяются (линкуются или же компонуются, linking) к программе
/bin/hostnane, после чего страницам их отображенных сегментов назначается ©
соответствующий режим доступа системным вызовом mprotect(2). По завершении
компоновки отображение конфигурационного файла /etc/ld.so.cache снимается ©
при помощи munmap(2), а управление передается исходной программе.

4.7.3. Потребление памяти
Суммарное распределение страниц памяти по сегментам процесса можно получить
при помощи третьего набора столбцов (активировав его клавишами f l | | а затем
добавив столбец SWAP клавишей Q) команды top(1), как показано в листинге 4.39.
В столбце VIRT (VSZ в терминах ps(1)) изображается суммарный объем (в килобай­
тах) всех страниц процесса, а в столбце RES (RSS в терминах PS(1)) — объем рези­
дентных страниц (находящихся в страничных кадрах оперативной памяти). В столб­
це SWAP указывается объем всех страниц, находящихся во вторичной памяти —
как «анонимных» страниц, выгруженных в специальную область подкачки, так и
«файловых» страниц, возможно никогда не загружавшихся в оперативную память.

Столбцы CODE и DATA показывают объемы (в килобайтах) памяти, выделенных под
сегменты кода и данных, а столбец SHR — объем резидентных страниц, которые
используется (или могут быть использованы) совместно с другими процессами.

fitz@ubuntu:~$ top -р 26958

HSitop - 22:10:12 up 1:48, 2 users, load average: 0,01, 0,02, 0,00

168 Глава 4

Tasks:

%Cpu(s):

МиБ Men :

МиБ Swap:

1 total, 0 running, 1 sleeping.
0,0 us, 0,0 sy, 0,0 ni,100,0 id,

3935,6 total, 1356,2 free,

448,5 total, 448,5 free,

0 stopped, 0 zombie
0,0 wa, 0,0 hi, 0,0 si, 0,0 st

974,9 used, 1604,4 buff/cache

0,0 used. 2679,9 avail Mem

PID %MEM VIRT SWAP

7019 0,1 13060 0

RES CODE

5108 876

DATA SHR nMaj nDRT %CPU COMMAND

1600 3600 0 0 0,0 bash

Механизм отображения считывает содержимое файла в страничные кадры только
один раз, вне зависимости от количества процессов, отображающих этот файл
в свою память. В случае отображения одного файла разными процессами
(рис. 4.6) их страницы совместно отображаются на одни и те же страничные кад­
ры, за исключением страниц, скопированных (согласно принципу COW) при изме­
нении.

Processl

Такое поведение механизма отображения позволяет эффективно расходовать опера­
тивную память за счет использования разными программами одинаковых разделяе­
мых библиотек. Так как ELF-файлы библиотек «загружаются» в память процессов

Управление процессами и памятью 1 6 9

при помощи отображения mmap(2), то в результате каждая библиотека размещается
в оперативной памяти лишь единожды, вне зависимости от количества ее «исполь­
зований».

Интегральная статистика по использованию виртуальной памяти может быть полу­
чена при помощи команды (тее(1), как показано в листинге 4.40.

Листинг 4.40. Статистика использования память

fitz@ubuntu:~$ free -nw

всего занято свободно общая буферы временные доступно

Память: 3935 975 1354 39 71 1534 2679

Подкачка: 448 0 448

fltz@ubuntu: ~$ LANGUAGE=en free -nw
total used free shared buffers cache available

Mem: 3935 975 1354 39 71 1534 2679

Swap: 448 0

Строка Mem:- содержит статистику использования оперативной памяти, а строка
Swap: — статистику специальной области подкачки. В столбце total указан суммар­
ный объем всех доступных страничных кадров, а в столбцах used (вычисляется как
used = total -free-buffers- cache) и free — суммарные объемы использованных и сво­
бодных страничных кадров соответственно.

В столбце cache указан объем страничного кэша (page cache), т. е. суммарный
объем страничных кадров оперативной памяти, использованных под отображение
файлов в память. Необходимо заметить, что именно страничный кэш является не­
ким резервом памяти, которую можно высвободить при первой необходимости, т. к.
содержимое этих страниц в реальности всегда можно считать из отображаемых
файлов заново (и то, если понадобится) — см. разд. 4.7.2.

Аналогично, в столбце buffers указывается объем буферного кэша, т. е. суммарный
объем памяти, использованной ядром для кэширования «неотображаемых» сущно­
стей: метаданных файлов, дисковых блоков при прямом вводе-выводе на устрой­
ства и пр.

В столбце available предсказывается объем доступной памяти для новых процессов,
без вытеснения страниц старых.

В листинге 4.41 показан пример потребления п.амяти процессом текстового редак­
тора vi(1) при попытке редактирования громадного файла в 1 Гбайт. Процесс за­
гружает файл целиком, в результате чего он целиком оказывается в резидентных
страницах О сегмента данных процесса, что естественным образом увеличивает

170 Глава 4

«чистый» расход оперативной памяти системы ©. После принудительного заверше­
ния процесса при помощи команды kill(1) память естественным образом высвобож­
дается. Однако, так как под процесс редактора был высвобожден страничный кэш
©, повторное его наполнение © будет происходить позже, при обращении процессов
к своим отображенным файлам (и то, если потребуется).

Лии Инг 4.41

pts/0
fitz@ubuntu:~$ dd if=/dev/urandon of=big bs=4069 count=262144

262144+0 записей получено

■262144+0 записей отправлено

1066663936 байт (1,1 СВ, 1017 М1В) скопирован, 13,3567 s, 79,9 MB/s

fitz@ubuntu:~$ Is -Ih big

-rw-rw-r-- 1 fitz fitz 1018M ноя 19 23:03 big
fitz@ubuntu:~$ free -nw

total used free shared buffers cache available

Mem: 3935 987 509 39 71 2366 2656

Swap: 448 0 448

fitz@ubuntu:~$ vl big

fitz@ubuntu:~$ ps f

PID TTY STAT TIME COMMAM)

120595 pts/1 S 0:00 -bash

21087 pts/1 R+ 0:00 _ ps f

20437 pts/0 S 0:00 -bash

21085 pts/0 Rl+ 0:08 _ vi big

© © © © © © © © © © ©
fitz@ubuntu:~$ ps up 21085

USER PID 96CPU 9GMEM VSZ RSS TTY STAT START TIME COMMAND

© fitz 21085 96.4 21.8 1816164 18072-08 "• pts/0 Sl+ 21:14 0:18 vi big

fitz@ubuntu:~$ free -nw

total used free shared buffers cache available

3935 © 2752 133 38 55 © 993 913

448 6 442

fitz@ubuntu:~$ top -b -nl -p 21085

top - 23:11:05 up 2:49, 3 users, load average: 0,00, 0,09, 0,07

Tasks: 1 total, 0 running, 1 sleeping, 0 stopped, 0 zombie

%Cpu(s): 0,0 us, 0,0 sy, 0,0 ni,100,0 id, 0,0 wa, 0,0 hi, 0,0 si, 0,0 st

Управление процессами и памятью 171

MiB Men : 3935,6 total, 133,0 free, 2753,0 used, 1049,6 buff/cache

MlB Swap: 448,5 total, 442,0 free, 6,5 used. 913,0 avail Men

PID USER

О 7680 fitz

Men:

Swap:

PR N1 VIRT RES SHR S 96CPU 9fiMEM TIME+ COMMAND

20 0 1816164 1.7g 3424 S 0,0 44,8 0 :14.90 vi

$ kill 21085

-$ free -n

total used free shared buffers cache available

3935 986 1908 -• 38 56 © 984 2679

448 6 442

4.8. Механизм сигналов
Механизм сигналов signal(7) является простейшей формой межпроцессного взаимо­
действия и предназначен для внешнего управления процессами. Каждый сигнал
имеет свой обработчик, определяющий поведение процесса при отсылке ему этого
сигнала. Этот обработчик является неким набором инструкций программы (под­
программой), которым передается управление при доставке сигнала процессу. Каж­
дому процессу назначаются обработчики «по умолчанию», в большинстве случаев
приводящие к завершению процесса.

В примере из листинга 4.42 показано применение сигнала штатного прерывания
процесса № 2 (SIGINT), отсылаемого драйвером терминала всем процессам «передне-

на этомго» фона при получении символа ЛС(ЕТХ), т. е. нажатии клавиш |
терминале. Для процессов «заднего» фона сигнал может быть отослан явно ©, при
помощи команды kill(1), предназначенной, несмотря на ее название1, для отсылки
сигналов.

Листинг 4.42. Штатное прерывание процесса (AC, infcr, SIGINT) >

fitz@ubuntu:~$ stty -a
speed 38400 baud; rows 24; columns 80; line = 0;

® intr = AC; “• quit = A\; erase = A?; kill = AU; eof = AD; eol = <undef>; ...

© isig *• icanon iexten echo echoe echok -echonl -nofish -xcase -tostop ... -extproc

fitz@ubuntu:~$ dd if=/dev/zero of=/dev/null

О AC782349+0 записей получено

1 В б о л ь ш и н ст в е сл у ч а ев о б р а б о т ч и к за в ер ш и т п р о ц е с с , о т сю д а и н азв ан и е.

172 Глава 4

782349+0 записей отправлено

скопировано 400562688 байт (401 МВ), 0,531532 с, 754 МВ/с

fitz@ubuntu:~$ dd lf=/dev/zero of=/dev/null &
[1] 23418

fitz@ubuntu:~$ *C
fitz@ubuntu:~$ *C
fitz@ubuntu:~$ jobs -1
[1]+ 23418 Запущен dd if=/dev/zero of=/dev/null &

© fitz@ubuntu:~$ k ill -Siam 23418
fitz@ubuntu:~$ 25318811+0 записей получено "•

25318810+0 записей отправлено

скопировано 12963230720 байт (13 СВ), 17,1001 с, 758 МВ/с

[1]+ Прерывание dd if=/dev/zero of=/dev/null

Нужно отметить, что настройки драйвера терминала позволяют как переопределить
® символ, получение которого приведет к выполнению действия intr (посылка сиг­
нала SIGINT), так и совсем выключить © отсылку подобных сигналов управления
процессами при получении управляющих символов.

В листинге 4.43 показано аналогичное применение сигнала аварийного завершения
процесса №3 (SIGQUIT), посылаемого процессам «переднего» фона при получении
драйвером управляющего символа Л\ (FS), генерируемого терминалом при нажатии

Обработчик сигнала не только завершит процесс, но и попытается (если
позволяют настройки) сохранить дамп памяти процесса в файл соге(5) для после­
дующей отладки.

Листинг 4.43. Аварийное пргрь анис процесса (\ quit SiGQUIT)
Л _____________________ i____________ 'L— _______________________ ‘ : ~ -• " ̂ -v " " -' - ' ___ 7 t: г • — ^ ш ЦЬшГш

fitz@ubuntu:~$ dd if=/dev/zero of=/dev/null

А\Выход (стек памяти сброшен на диск)

fitz@ubuntu:~$ dd if=/dev/zero of=/dev/null ft

[1] 23429

fitz@ubuntu:~$ kill -SIGQUIT 23429

[1]+ Выход (стек памяти сброшен на диск) dd if=/dev/zero of=/dev/null

Некоторые процессы (например, демоны, или графические приложения) не имеют
управляющего терминала, поэтому не могут быть завершены интерактивно при по­

Управление процессами и памятью 173

мощи И Я + Я или ^ ^ + Q . В этом случае используется сигнал штатного заверше­
ния № 15 (SIGTERM), что проиллюстрировано в листинге 4.44.

Листинг 4.44. Штатное завершение процесса (SIGTERM)

fitz@ubuntu:~$ dd if=/dev/zero of=/dev/null &

[1] 23444

fitz@ubuntu:~$ kill -SIGTERM 23444

fitz@ubuntu:~$

[1]+ Завершено dd if=/dev/zero of=/dev/null

Для приостановки процесса, т. е. временного исключения его из процедур распре­
деления процессорного времени планировщиком, предназначен сигнал № 19 (SIGST0P),
а для возобновления процесса — сигнал № 18 (SIGC0NT). В листинге 4.45 показано,
что приостановленный (sTopped) процесс не потребляет процессорного времени.

Листинг 4.45. Приостановка и возобновление процесса (SIGSTOP и SIGCONT)

fitz@ubuntu:~$ pbzip2 big &
[1] 1647

fitz@ubuntu:~$ top -b -nl -p 1647

PID USER PR N1 VIRT RES

1647 fitz 20 0 102m 33m

fitz@ubuntu:~$ pkill -STOP pbzip2

fitz@ubuntu: ~$ ps f

PID TTY STAT TIME COMMAND

1640 pts/2 Ss 0:00 -bash

1647 pts/2 *" Tl 0:24 _ pbzip2 big

1651 pts/2 R+ 0:00 _ ps f

fitz(3ubuntu:~$ jobs -l

[1]+ 1647 Остановлен pbzip2 big

fitz(3ubuntu:~$ top -b -nl -p 1647

PID USER PR N1 VIRT RES SHR S %CPU %MEM TIME+ COMMAND

1647 fitz 20 0 102m 34m 900 *" T *" 0,0 0,4 0:42.90 pbzip2

fitz@ubuntu:~$ kill -COMT 1647

fitz@ubuntu:~$ top -b -nl -p 1647

PID USER PR N1 VIRT RES SHR S %CPU %MEM ■ TIME+ COMMAND

1647 fitz 20 0 102m 34m 900 S *"370,0 0,4 0:51.82 pbzip2

SHR S %CPU %MEM TIME+ COMMAND

900 S *"387,0 0,4 0:25.09 pbzip2

174 Глава 4

Сигналы могут быть перехвачены, если процесс назначит собственный обработчик,
а также проигнорированы, тогда при их доставке вообще никакой обработчик не
вызывается. Исключение составляют некоторые «безусловные» сигналы, такие как
№ 9 (SIGKILL) — безусловное завершение или № 19 (SIGST0P) — безусловная приоста­
новка процесса. Игнорирование и перехват сигналов показаны в листинге 4.46 на
примере командного интерпретатора bash(1). Ни попытки «интерактивного» заверше­
ния О при помощи сигналов SIGINT и SIGQUIT, ни явная посылка © сигналов SIGINT
и SIGTERM не приводят к завершению командного интерпретатора. К желаемому
результату приводит только явная отсылка © сигнала SIGKILL.

Листинг 4.46. Игнорирование и перехват сигналов
Ы___ .____________ ______________________ik. . ___д л ё- 1 . 'i ___ а,___ _______________________ а

fitz@ubuntu:~$ ps f

PID TTY STAT TIME COMMAND

23025 pts/1 S 0:00 -bash
23771 pts/1 R+ 0:00 _ ps f

fitz@ubuntu:~$ bash

fltz@ubuntu:~$ ps f

PID TTY STAT TIME COMMAND

23025 pts/1 S 0:00 -bash
23636 pts/1 S 0:00 _ bash

23692 pts/1 R+ 0:00 _ ps

О fltz@ubuntu:~$ *C

о fitz@ubuntu:~$ A\

fitz@ubuntu:~$ ps f

PID TTY STAT TIME COMMAND

23025 pts/1 S 0:00 -bash
1 23636 pts/1 S 0:00 _ bash

23692 pts/1 R+ 0:00 _ ps

© fitz@ubuntu:~$ kill -SIGINT 23636

fitz@ubuntu:~$ ps f

PID TTY STAT TIME COMMAND

23025 pts/1 S 0:00 -bash
! 23636 pts/1 S 0:00 _ bash

23701 pts/1 R+ 0:00 _ ps

© fitz@ubuntu:~$ kill -SIGTERM 23636

fitz@ubuntu:~$ ps f

PID TTY STAT TIME COMMAND

Управление процессами и памятью 175

23025 pts/1 S 0:00 -bash

! 23636 pts/1 S 0:00 _ bash

23708 pts/1 R+ 0:00 _ PS

© fitz@ubuntu:~$ kill -SIOaLL £636
Убито

fitz@ubuntu: ~$ ps f
PID TTY STAT TIME COMMAND

23025 pts/1 S 0:00 -bash

23771 pts/1 R+ 0:00 _ PS f

Диспозицию сигналов, т. е. информацию об игнорировании (IGNORED), перехвате
(CAUGHT), временной блокировке (BLOCKED) или ожидании доставки (PENDING) сигна­
лов процессов можно получить при помощи команды ps(1), как показано в листин­
ге 4.47. Диспозиция изображается битовой маской, где каждый N-Pi бит маски
(нумерация от младших к старшим) соответствует сигналу N. Например, команд­
ный интерпретатор игнорирует сигналы, представленные (шестнадцатеричной) маской
0038400416, что в двоичном представлении составляет 11100001000000000001002 и
указывает на игнорируемые 3-й, 15-й, 20-й, 21-й и 22-й сигналы, т. е. SIGQUIT,
SIGTERM, SIGTSTP, SIGTTIN и SIGTT0U. Для перевода из шестнадцатеричного в двоичное
представление использован стековый калькулятор dc(1), которому было велено из
входной i (input) системы счисления по основанию 16 в выходную о (output) сис­
тему счисления по основанию 2 напечатать р (print) число 06384604, а для про­
смотра имен сигналов по их номерам использована встроенная команда kill.

Листинг •* *7.^псплзицпя сигналов
. _______ :__________ ш яш

fitz@ubuntu:~$ ps s
UID PID PENDING BLOCKED IGNORED CAUOTT STAT TTY

1006 23025 00000000 00010000 00380004 4b813efb Ss pts/5

1006 23773 00000000 00000000 00000000 <f3dlfef9 R+ pts/5

fitz@ubuntu:~$ dc -e 16i2o66380664p

1110000000000000000100
222128............................... 8 7 6 5 4 3 2 1

fitz@ubuntu:~$ kill -1
1) SIGHUP 2) SIGINT 3) SIGQUIT

11) SIGSEGV 12) SIGUSR2 13) SIGPIPE

16) SIGSTKFLT 17) SIGCHLD 18) SIGCONT

21) SIGTTIN 22) SIGTTOU 23) SIGURG

63) SIGRTMAX-164) SIGRTMAX

4) SIGILL

14) SIGALRM

19) SIGSTOP

24) SIGXCPU

TIME COMMAND

0:00 -bash
0:00 ps s

5) SIGTRAP

15) SIGTERM

20) SIGTSTP

25) SIGXFSZ

176 Глава 4

4.8.1. Сеансы и группы процессов: управление заданиями
Одним из основных применений сигналов при интерактивной работе пользователя
в системе является механизм управления «заданиями», которыми пользуются ко­
мандные интерпретаторы и подобные интерактивные программы, например lftp(1).

Для удобства управления процессами при помощи сигналов они объединяются
в группы и сеансы (см. credentials(7)), проиллюстрированные в листинге 4.48 при
помощи команды ps(1) атрибутами PGID (process group identifier) и SID (session
identifier). Процесс (создавший группу), чей идентификатор PID совпадает ©
с идентификатором PGID группы, носит название лидера группы. Процесс (создав­
ший сеанс), чей идентификатор PID совпадает ® с идентификатором SID сеанса,
называется лидером сеанса. Нужно отметить, что лидер сеанса в столбце STAT от­
мечается флагом s, а процессы группы переднего фона — флагом +. Только одна
группа сеанса, называемая «терминальной» TGPID, является группой «переднего»
(foreground) фона, остальные группы сеанса являются группами «заднего»
(background) фона.

Командный интерпретатор формирует свои задания «заднего» О или «переднего»
фона ©, помещая процессы заданий в соответствующие группы. Механизм управ­
ления заданиями всегда посылает «терминальные» сигналы ЛС SIGINT, л\ SIGQUIT всем
процессам текущей «терминальной» группы. Для смены терминальной группы ис­
пользуется сигнал № 20 SIGTSTP (terminal stop signal), также отсылаемый всем про­
цессам «терминальной» группы при получении драйвером терминала управляющего

Я 0 Обработчик сигнала SIGTSTPсимвола ЛZ (SUB), генерируемого клавишами |
по умолчанию приостанавливает процессы, и управление возвращается к команд­
ному интерпретатору ©, группа которого становится «терминальной». При помощи
встроенных команд fg (foreground), bg (background) можно продолжить (SIGCGNT)
выполнение указанного задания (всех процессов его группы) на «переднем» или
«заднем» фоне, а при помощи команды jobs -1 получить список всех заданий вме­
сте с номерами их групп процессов.

Листинг -iM. Сеансы группы процессов— заданна интерпретатора

О fitz@ubuntu:~$ dd if=/dev/zero of=/dev/null &

[1] 3181

© fitz@ubuntu:~$ ps jf

PPID PID PGID SID TTY TPGID STAT UID TIME COMMAND

Ф 3094 3099**3099**3099 pts/0 3159 Ss 1000 0:00 bash
© 3099 3181**3181 3099 pts/0 3182 R 1000 0:08 _ dd if=/dev/zero of=

© 3099 3182**3182 3099 pts/0 3182 R+ "• 1000 0:00 _ ps jf

Управление процессами и памятью 177

fitz@ubuntu:~$ nan dd

И Я

© [2]+ Остановлен nan dd

fltz@ubuntu:~$ jobs -1
[1] - 3181 Запущен dd if=/dev/zero of=/dev/null &

[2] + 3193 Остановлено nan dd

fitz@ubuntu:~$ ps jf

PPID PID PGID SID TTY TPGID STAT UID TIME COMMAND

3094 3099 3099 3099i pts/0 3310 Ss 1000 0:00 bash

3099 3181 3181 3099| pts/0 3310 R “• 1000 4:48 _ dd if=/dev/zero of=

3099 3193 3193! 3099| pts/0 3310 т -• 1000 0:00 _ nan dd

3193 3203 3193J 3099| pts/0 3310 T 1000 0:00 1 _ pager -s

3099 3310 3310 3099J pts/0 3310 R+ 1000 0:00 _ ps jf

fitz@ubuntu:~$ fg XI

dd if=/dev/zero of=/dev/null

AZ

[1]+ Остановлен dd if=/dev/zero of=/dev/null

fitz@ubuntu:~$ ps f

PID TTY STAT TIME COMMAND

3099 pts/0 Ss 0:00 bash
3181 pts/0 T -• 26:44 _ dd if=/dev/zero of=/dev/null

3193 pts/0 T 0:00 _ nan dd

3203 pts/0 T 0:00 | _ pager -s

3937 pts/0 R+ 0:00 _ ps f

fitz@ubuntu:~$ bg 1
[1]+ dd if=/dev/zero of=/dev/null &
fitz@ubuntu:~$ fg X2

................. в
nan dd

fitz@ubuntu:~$ jobs

[1]+ Запущен dd if=/dev/zero of=/dev/null &

fltz@ubuntu:~$ fg

dd if=/dev/zero of=/dev/null

ЛС11771330744+0 записей получено

11771330743+0 записей отправлено

скопировано 6026921340416 байт (6,0 ТВ), 8400,83 с, 717 МВ/с

Кроме переключения группы «переднего» фона, механизм управления заданиями
координирует «совместный» доступ процессов к управляющему терминалу. При

178 Глава 4

«одновременном» вводе информации с одного терминала несколькими процессами
результат оказывается непредсказуем, т. к. нет возможности предугадать порядок и
объемы считываемой информации. Поэтому ввод (input) разрешен только процес­
сам группы «переднего» фона, а группа формируется так, что только один из них
в реальности будет производить чтение. Процессам группы «заднего» фона ввод
запрещен, а любые попытки подавляются при помощи сигнала SIGTTIN (terminal
stop on input signal), доставка которого приводит к приостановке процесса.

В примере из листинга 4.49 при составлении текста письма посредством команды
mail(1) ее процесс был временно приостановлен О при помощи AZ и SIGTSTP для
получения доступа к командному интерпретатору. Попытка продолжить © выпол­
нение задания mail на «заднем» фоне не увенчалась успехом, т. к. была подавлена
© за чтение терминала. Продолжение задания на «переднем» фоне © дает воз­
можность закончить ввод текста письма и завершить ввод управляющим символом
AZ (EOT).

;■ Листинг 4.49. Приосгановк при вводе ыз задпегс фона (SIGTTIH)

fitz@ubuntu:~$ nail dketov@gnail.con

Subject: schedtool(l) вместо taskset, chrt и nice/renice

AZ

О [2]+ Остановлен nail dketov@gnail.con

fitz@ubuntu:~$ which schedtool

/usr/bin/schedtool

fitz(<kjbuntu:~$ dpkg -S /usr/bin/schedtool

schedtool: /usr/bin/schedtool

© fitz@ubuntu:~$ bg

? [1]+ nail dketov@gnail.con &
? (continue)

? fitz@ubuntu:~$ jobs -1

© [1]+ 12025 Остановлено (вывод на терминал) nail dketov@gnail.con

fitz@ubuntu: ~$ ps f

PID TTY STAT TIME COMMAND

8992 pts/2 Ss 0:00 bash
12025 pts/2 T -• 0:00 _ nail dketov@gnail.con

12063 pts/2 R+ 0:00 _ ps f

8897 pts/0 Ss+ 0:00 bash
© fitz@ubuntu:-$ fg

nail dketov@gnail.con

(continue)

mailto:dketov@gnail.con
mailto:dketov@gnail.con
mailto:dketov@gnail.con
mailto:dketov@gnail.con
mailto:dketov@gnail.con
mailto:dketov@gnail.con

Управление процессами и памятью 179

Утилита schedtool(l) из одноименного пакета schedtool заменяет "стандарнтные"

taskset/nice/renice/chrtH

*0
О.:-*"»
fitz@ubuntu:~$

При «одновременном» выводе информации на один терминал несколькими процес­
сами результат точно так же непредсказуем, как и при вводе. В итоге будет полу­
чена смесь перемежающихся строчек разных процессов, однако по умолчанию вы­
вод (output) разрешен как процессам группы «переднего» фона, так и процессам
всех групп «заднего» фона. Настроечный флаг драйвера терминала tostop (terminal
output stop) позволяет запретить вывод из заднего фона так же, как и ввод. При
запрещенном выводе из заднего фона все попытки будут подавляться сигналом
SIGTTOU (terminal stop on output signal), приостанавливающим процесс. В листин­
ге 4.50 проиллюстрировано действие сигнала SIGTTOU при включении настроечного
флага tostop посредством команды stty(1).

fitz@ubuntu:~$ find / -type f -size 0 & "•
I ? A \ -* AZ *•

© © © © © © © © © © Ф
fitz@ubuntu:~$ stty -a

speed 38400 baud; rows 24; columns 80; line = 0;

isig icanon iexten echo ... -echonl -nofish -xcase -tostop -echoprt echoctl echoke

fitz@ubuntu:~$ stty tostop

f itz@ubuntu:~$ find / -type f -size 0 &

[1] 356

fitz@ubuntu:~$ jobs -l

[1]+ 356 Остановлено (вывод на терминал) find / -type f -size 0

fltz@ubuntu:~$ ps f

PID TTY STAT TIME COMMAND

32535 pts/1 S 0:00 -bash

356 pts/1 T -• 0:00 _ find / -type f -size 0
360 pts/1 R+ 0:00 _ ps f

4.9. Межпроцессное взаимодействие
Кроме сигналов, которые могут использоваться как простейшие средства межпро­
цессного взаимодействия (1РС, inter-process communication), для эффективного
обмена информацией между процессами применяются каналы, сокеты, очереди со­

180 Глава 4

общений и разделяемая память, а для синхронизации действий процессов над со­
вместно используемыми объектами — семафоры.

4.9.1. Неименованные каналы
Самое простое средство обмена информацией между родственными процессами
(родитель и любые его потомки) — неименованные каналы. Канал является «дву­
сторонним однонаправленным безымянным файлом», с одного конца в который
можно только записывать информацию, а с другого конца — только считывать.
В отличие от «обычного» файла, при открытии которого создается только один
файловый дескриптор (и для чтения, и для записи файла), при создании канала
создаются сразу два дескриптора — один для передачи (записи) в канал, а дру­
гой — для приема (чтения) из канала. При порождении дочерних процессов фай­
ловые дескрипторы наследуются, что и позволяет им взаимодействовать как с ро­
дительским процессом, так и между собой.

Использование неименованных каналов в системе широко распространено. Напри­
мер, командный интерпретатор применяет их для организации конвейерной обра­
ботки (см. разд. 5.3). Архиватор tar(1) аналогичным способом — для упаковки ар­
хивов «на лету» при помощи «внешних» упаковщиков. В примере из листинга 4.51
посредством трассировщика strace(1) отслеживается системный вызов pipe(2), при
помощи которого tar(1) создает неименованный канал для связи с упаковщиком
xz(1) в дочернем процессе. Вся группа процессов архиватора tar(1) приостановлена
сигналом AZ SIGTSTP, после чего при помощи команды lsof(1) показаны файловые де­
скрипторы открытых файлов обоих процессов.

Листинг 4.51. Неименованные каналы

fitz@ut>untu:~$ strace -fe pipe,execve tar cDf /tnp/docs.tgz /usr/share/doc

execve("/usr/bin/tar", ["tar", "cJf", "/tnp/docs.tgz", "/usr/share/doc"], ...) =0
Pi-Pe([3, 4]) = 0

strace: Process 9274 attached

tar: Удаляется начальньм '/' ив имен объектов

[pid 9274] execve("/bin/sh", ["/bin/sh", "-c", "xz"], 0x7fff7fd6d060 ...) = 0

strace: Process 9275 attached

[pid 9275] execve("/usr/bin/xz", ["xz"], 0x5557bddfdb48 /* 31 vars */) = 0

[pid 9275] pipe([3, 4]) = 0

AZ
[1]+ Остановлен strace -fe pipe,execve tar cJf /tnp/docs.tgz /usr/share/doc

fltz@ubuntu:~$ ps f

8547 pts/1 Ss 0:00 -bash

Управление процессами и памятью 181

9270 pts/1 Т 0:03 _ strace -fe pipe,execve tar cJf /tmp/docs.tgz /usr

9273 pts/1 t 0:03 | _ tar c3f /tmp/docs.tgz /usr/share/doc

9274 pts/1 t 0:00 | _. /bin/sh -c xz

9275 pts/1 t 0:27 | _ xz "•

9321 pts/1 R+ 0:00 _. ps f

fitz@ubuntu:~$ Isof -p 9273

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

tar 9273 fitz cwd DIR 8,2 4096 417609 /home/fitz

tar 9273 fitz rtd DIR 8,2 4096 2 /
tar 9273 fitz txt REG 8,2 452048 397186 /usr/bin/tar

tar 9273 fitz 0U OF 136,1 0t0 4 /dev/pts/1

tar 9273 fitz lu OF 136,1 0t0 4 /dev/pts/1

tar 9273 fitz 2u OF 136,1 0t0 4 /dev/pts/1

tar 9273 fitz 3r DIR 8,2 69632 409070 /usr/share/doc

tar 9273 fitz 4w FIFO “• 0,13 0t0 75234 pipe

fitz@ubuntu:~$ Isof -p 9275

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

xz 9275 fitz cwd DIR 8,2 4096 417609 /home/fitz

xz 9275 fitz rtd DIR 8,2 4096 2 /
xz 9275 fitz txt REG 8,2 80224 397427 /usr/bin/xz

xz 9275 fitz +- ©r FIFO “• 0,13 0t0 75234 pipe

xz 9275 fitz lw REG 8,2 19365888 394591 /tmp/docs.tgz

xz 9275 fitz 2u OF 136,1 0t0 4 /dev/pts/1

xz 9275 fitz 3r FIFO 0,13 0t0 75937 pipe

xz 9275 fitz 4w FIFO 0,13 0t0 75937 pipe

Нужно отметить, что в процессе архиватора PID = 9273 файловый дескриптор пере­
дающей части канала сохранил свой номер, а в дочернем процессе упаковщика
PID = 9375 файловый дескриптор принимающей части канала был перенаправлен на
STDIN, как того и ожидает упаковщик xz(1).

4.9.2. Именованные каналы
Именованные каналы повторяют поведение неименованных каналов, но предназна­
чены для обмена информацией между неродственными процессами. Любые две
запущенные программы могут организовать однонаправленный канал передачи пу­
тем открытия файла канала по заранее согласованному имени на запись «с одной
стороны» и на чтение «с другой». Файл канала должен быть предварительно соз­
дан в дереве каталогов при помощи специального системного вызова mkfifo(3), а

182 Глава 4

его последующее открытие осуществляется «обычным» системным вызовом ореп(2).
Именованные каналы сейчас используются крайне редко и практически вытеснены
именованными локальными сокетами, но в некоторых редких случаях все еще
являются вполне достаточным средством взаимодействия.

В качестве примера на листинге 4.52 показан именованный канал /ru n /in itc tl (ра­
нее размещался в /dev/in itctl), через который systemd(1) все еще для совместимо­
сти принимает устаревшие (legacy) команды устаревшего init(8) для переключения
«уровней исполнения» системы (run-level), см. boot(7).

Листинг ч,52. Именованные каналы

fitz@ubuntu:~$ Is - l /run/initctl /dev/initctl
Irwxrwxrwx 1 root root 12 ноя 22 22:01 /dev/initctl -> /run/initctl
prw.......1 root root 0 ноя 22 19:24 /run/initctl

fitz@ubuntu:~$ sudo Isof /run/initctl
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

systend 1 root 26u FIFO 0,23 0t0 276 /run/initctl

4.9.3. Неименованные локальные сокеты
Каналы являются однонаправленными средствами взаимодействия процессов, по­
этому слабо подходят для двунаправленного обмена, например для организации
обратной связи между процессами. В большинстве случаев именованные каналы
позволяют эффективно реализовать только простейшую модель взаимодействия
«поставщик -* потребитель», тогда как для реализации модели «клиент сервер»
используют специальное средство взаимодействия, называемое сокетом'. Неимено­
ванные локальные (файловые) сокеты, как и неименованные каналы, являются «бе­
зымянными файлами», только двунаправленными, и так же предназначены для
взаимодействия родственных процессов. Для создания пары соединенных сокетов
используется системный вызов socketpair(2), создающий пару файловых дескрипто­
ров, каждый из которых используется одновременно и для приема (чтения), и для
передачи (записи) информации. Применение неименованных файловых сокетов
проиллюстрировано в листинге 4.53 на примере синхронизирующего копировщика
rsync(1). Копировщик оказывается параллельной программой, использующей соке­
ты для взаимодействия своих параллельных ветвей, первая из которых работает
с исходными файлами, а вторая — с результирующими. При этом сокет использу­
ется как для обмена информацией о свойствах файлов для детектирования разни-

1 Сокет — устоявшаяся русская калька с англ, socket, буквально означающая «разъем», напри­
мер, 220В розетку и вилку, или сетевую розетку и вилку RJ-45, или 3,5 мм гнездо для наушни­
ков и соответствующий штекер.

Управление процессами и памятью 183

цы между ними, так и для последующей передачи самих данных различающихся
файлов.

Листинг 4.53. Неименованные локальны, (фЗЙЛОВьре) шкеты
5 j -зв

fitz@ubuntu:~$ strace -fe socketpair,execve rsync -a /usr/share/doc /trip/

execve("/usr/bin/rsync", ["rsync", "-a", "/usr/share/doc", "/tmp/"], . . .) = 0
•- socketpair(AF_UNIX, SOCK_STREAM, 0, [3, 4]) = 0

•- socketpair(AF_UNIX, SOCK_STREAM, 0, [5, 6]) = 0
strace: Process 5268 attached

•- [pid 5268] socketpair(AF_UNIX, SOCK_STREAM, 0, [3, 4]) = 0

strace: Process 5269 attached

AZ

[1]+ Остановлен strace -fe socketpair,execve rsync -a /usr/share/doc /tmp/

fitz@ubuntu:~ $ ps f

PID TTY STAT TIME COMMAND

4838 pts/5 Ss 0:00 bash
5266 pts/5 T 0:00 _ strace -fe socketpair execve rsync -a /usr/share/

5267 pts/5 t 0:00 | _ rsync -a /usr/share/doc /tmp/

5268 pts/5 t 0:00 | _ rsync -a /usr/share/doc /tmp/

5269 pts/5 t 0:00 | _ rsync -a /usr/share/doc /tmp/

5301 pts/5 R+ 0:00 _ ps f

fitz@ubuntu:~-$ Isof -p 5269

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

rsync 5269 fitz cwd DIR 252,0 139264 26869761 /tmp

rsync 5269 fitz 0u Unix 0X0000000000000000 0t0 1752340 type=STREAM -•

rsync 5269 fitz 4u Unix 0X0000000000000000 0t0 1751443 type=STREAM -•

fitz@ubuntu:--$ Isof -p 5268

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

rsync 5268 fitz cwd DIR 252,0 139264 26869761 /tmp

rsync 5268 fitz lu Unix 0X0000000000000000 0t0 1752343 type=STREAM -•

rsync 5268 fitz 3u Unix 0X0000000000000000 0t0 1751442 type=STREAM -•

fltz@ubuntu:~$ Isof -p 5267
COMMAND PID USER FD TYPE

rsync 5267 fitz cwd DIR

DEVICE SIZE/OFF NODE NAME

252,0 20480 3801093 /usr/share

184 Глава 4

rsync 5267 fitz 4u unix 0x0000000000000000 0t0 1752341 type=STREAM "•

гsync 5267 fitz 5u Unix 0x0000000000000000 0t0 1752342 type=STREAM -•

4.9.4. Именованные локальные сокеты
Именованные локальные сокеты, как и именованные каналы, предназначаются для
взаимодействия неродственных процессов и широко распространены в системе.

В примере из листинга 4 .5 4 показан терминальный мультиплексор W :[СNU screen],
который использует именованные сокеты для взаимодействия между своими от­
ключенным О (detached) и повторно подключающимся (reattach, -г) в экземпля­
рами.

Терминальные мультиплексоры screen(1) и tmux(1) позволяют запускать несколько
пользовательских «вторичных» сеансов одновременно, переключаться между ними,
отсоединяться от них и снова присоединяться к ним из «первичного» сеанса. На­
пример, запустив терминальный мультиплексор в сеансе алфавитно-цифрового вир­
туального терминала и отключившись от него, можно подключиться к нему и про­
должить работу уже из графического эмулятора терминала или по сети с исполь­
зованием службы удаленного доступа SSH (см. разд. 6.4.1).

Листинг 4.54.1

Первичнм сеанс_________
|fitz@ubuntu:~$ tty

jttyl

fltz@ubuntu:~$ screen

ВЬоричлй сеанс 0H
fitz@ubuntu:~$ tty

/dev/pts/2
fitz@ubuntu:~$ youtube-dl https://www.y<xjtube.con/watch?v=l<bEKbnpZKzo

[download] Destination: Основы Linux - командная строка-kbEKbmpZKzo.f248.webm

[download] 3.8% of ~81.04MiB at 3.52MiB/s ETA 04:08

Виоричмм сеанс K2
|fitz@ubuntu:~$ tty

i/dev/pts/4

|fitz@ubuntu:~$

О [detached from 22261.pts-14.ubuntu]

fitz@ubuntu:~$ tty

ttyl

fitz@ubuntu:~$ ps fp 22261 t pts/2,pts/4

PID TTY STAT TIME COMMAND

https://www.y%3cxjtube.con/watch?v=l%3cbEKbnpZKzo

Управление процессами и памятью 185

22261 ? Ss 0:00 SCREEN

22262 pts/2 Ss+ 0:00 _ /bin/bash

■22263 pts/2 S+ 0:10 _ /usr/bin/python3

|28020 pts/4 Ss+ 0:00 _ /bin/bash

|fitz@ubuntu: ~$ logout -•

Первичлй сеанс___
|fitz@somewhere:~$ ssh ubuntu "•

iNo nail.

■Last login: Sat Nov 23 01:01:04 2019 fron 10.0.2.2

lfitz@ubuntu:~$ screen -Is

There is a screen on:

22261.pts-14.ubuntu (23.11.2019 01:01:06) (Detached)

1 Socket in /run/screen/S-fitz.

fitz@ubuntu:~$ Is -l /run/screen/S-fitz

итого 0
srwx..... 1 fitz fitz 0 ноя 20 00:40 22261.pts-14.ubuntu

© fitz@ubuntu:~$ screen -r

t t y l

впюричшй сеанс KS
|fitz@ubuntu:~$ tty

!/dev/pts/4

|fitz@ubuntu:~$ *D

pts /4

Продолжаем вморичмм сеанс tt pts /2
[download] 100% of 219.30MIB in 06:28

[dashsegments] Total fragnents: 246

[download] Destination: Основы Linux - командная строка-kbEKbnpZKzo.f251.webn

[download] 100% of 26.45MIB in 00:19

[ffmpeg] Merging formats into "Основы Linux - командная строка-kbEKbnpZKzo.webn"

Deleting original file Основы Linux - командная строка-kbEKbnpZKzo.f248.webn (pass -k to
keep)

Deleting original file Основы Linux - командная строка-kbEKbnpZKzo.f251.webn (pass -k to
keep)

fitz@ubuntu:~$ tty

/dev/pts/2
fitz@ubuntu:~$ *D___

[screen is terminating]

4.9.5. Разделяемая память, семафоры и очереди сообщений

Разделяемая память
Каналы и сокеты являются удобными средствами обмена информацией между про­
цессами, но их использование при интенсивном обмене или обмене объемными

186 Глава 4

данными приводит к значительным накладным расходам. Разделяемая память яв­
ляется специализированным средством взаимодействия, имеющим минимальные
издержки использования.

В листинге 4.55 при помощи команды ipcs(1) показаны созданные в системе сег­
менты разделяемой памяти, массивы семафоров и очереди сообщений — средства
межпроцессного взаимодействия svipc(7), «унаследованные» Linux от W:[UNIX System V].
Экземпляры средств System VIPC идентифицируются при помощи глобально уни­
кальных ключей О, или локальных1 идентификаторов в shnid (shared memory
identifier), senid (semaphore identifier) и msqid (message queue identifier), и сродни
файлам имеют владельцев и права доступа.

Листинг 4.55.

fitz@ubuntu:~$ ipcs

..... Очереди сообщений

ключ msqid владелец права исп. байты сообщения

Сегменты совм. исп. памяти

ключ О shmid О владелец права байты nattch состояние

0х0052е2с1 0 postgres 600 56 6

0X00000000 11567105 fitz 600 393216 2 назначение

0X00000000 10944514 fitz 700 1694000 2 назначение

0X00000000 11206666 fitz 600 393216 2 назначение

...... Массивы семафоров

ключ semid владелец права nsems

Разделяемая память System VIPC реализуется ядром на основе механизма странично­
го отображения при помощи совместного использования страничных кадров стра­
ницами разных процессов (см. рис. 4.6). При помощи системного вызова shmget(2)
один из взаимодействующих процессов создает сегмент памяти, состоящий из
страничных кадров без отображения на какой-либо файл. Впоследствии кадры
этого сегмента при помощи системного вызова shmat(2) (shared memory attach)
отображаются на страницы всех взаимодействующих процессов, за счет чего эти
процессы и используют выделенную память совместно.

Иллюстрация применения разделяемой памяти приведена в листинге 4.56, где сег­
менты разделяемой памяти с идентификаторами 181в и 121е были созданы (cpid, 1

1 Идентификаторы IPC (сродни индексным и файловым дескрипторам файлов) изменяются при
пересоздании/переоткрытии экземпляра, а ключи IPC (подобно именам файлов) — нет.

Управление процессами и памятью 187

creator pid) процессом pid = 3828 программы Х-клиента gnome-shell, а последнее
обращение к нему (lpid, last operation pid) осуществлялось процессом PID = 3450

программы Х-сервера Хогд(1). В данном конкретном случае Х-клиент и Х-сервер
(см. разд. 7.1) для эффективного обмена значительными объемами растровых изо­
бражений используют расширение Х-протокола W : [MIT-SHM] (см. разд. 7.6), осно­
ванное на применении разделяемой памяти.

Лисгиш 4.56. Разделяемая намкгь (System VIPQ

fitz@ubuntu:~$ ipcs -n -p

...... Shared Memory Creator/Last-op PIDs

shnd владелец cpid lpid

23 fitz 3887 5007

26 fitz 3887 5007

О 38 fitz 3887 3541

40 fitz 3887 3541

fitz@ubuntu:~$ dc ■-e 16ol0i38p

fitz@ubuntu:~$ dc -e 16ol0i40p

*- 28
fitz@ubuntu:~$ ps up 3887,3541,5007

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

fitz 3541 0.0 1.7 376008 68532 tty2 Sl+ 15:12 0:04 /usr/lib/xorg/Xorg .,

fitz 3887 0.4 7.9 2646616 322356 ? Ssl 15:12 0:50 /usr/bin/gnone-shell

fitz 5007 0.2 7.1 3072068 286592 ? SI 15:16 0:26 /usr/lib/.../firefox

fitz@ubuntu:~$ pnap 3887

3887: /usr/bin/gnome-shell

00007ff280123000

О 00007ff2alld7000

00007ff2al57f000

00007ff2c413e000

3952K rw-s-

3744K rw-s-

512K rw-s-

16K rw-s-

[shmid=0xla]
[shnid=0x28]

[shmid=0x26]

[shmid=0xl7]

fitz@ubuntu:~$ pnap 3541

3541: /usr/lib/xorg/Xorg vt2 -dlsplayfd 3 -auth /run/user/1000/gdrn/Xauthority ...

© 00007f70a7c58000 3744K rw-s- [shnld=0x28]

00007f70b4591000 512K rw-s- [shmid=0x26]

00007f70bbe32000 3952K rw-s- [shnid=0xla]

188 Глава 4

Анализ карт памяти взаимодействующих процессов при помощи команды ртар(1)
подтверждает, что страничные кадры сегмента разделяемой s памяти 261е (1Ав) и
401в (2816) были отображены на страницы обоих взаимодействующих процессов по
разным виртуальным адресам О и в.
Еще один вариант реализации разделяемой памяти, пришедший в Linux из
W : [BSD], основывается на «разделяемом» (shared) отображении одного и того же
файла в память разных процессов при помощи «штатного» механизма mmap(2).
В листинге 4.57 показан типичный пример применения совместного отображения
файла /var/cache/nscd/hosts в память процесса nscd (name service cache daemon) и
многих других процессов, пользующихся его услугами.

Служба имен (name service) предназначена для извлечения свойств различных ка­
талогизируемых сущностей по их имени. Например, по имени интернет-узла из
каталога системы доменных имен DNS служба имен извлекает IP-адрес этого
узла, и наоборот, по IP-адресу — имя. При большом количестве повторяющихся
запросов к службе имен в течение промежутка времени, в который изменения за­
прашиваемой информации в соответствующем каталоге объектов не происходит,
«бесполезные» повторные запросы к каталогу могут быть сокращены при помощи
сохранения и использования предыдущих ответов (кэширования), чем и занимается
демон nscd(8).

В частности, ответы из D N S , сохраняются процессом nscd в страничных кадрах
памяти отображенного файла /var/cache/nscd/hosts О, а остальные процессы со­
вместно их используют, отображая тот же файл в страницы своей памяти в.

Листинг 4.57. Рзздеяяемая пе*‘.ять (BSD)
.-JSSS__ а . . .___

fitz@ubuntu:~ $ sudo fuser -v /var/cache/nscd/hosts

П0/Ъ3-/Ъ

/var/cache/nscd/hosts:

root

syslog

root

root

root

whoopsie

root

root

postgres

postgres

root

PID ДОСТУП КОМАНДА

668 .. .m NetworkManager

680 .. .pi rsyslogd

683 .. .m snapd

712 F. .pi nscd "•

784 .. .pi cups-browsed

903 .. .pi whoopsie

919 .. .pi apache2

1103 .. .pi sshd

1144 .. .pi postgres

1149 .. .pi postgres

1280 __ m master

h':.

Управление процессами и памятью 189

fitz 3 1 2 9 ___ m sshd

root 3 1 7 0 ___ m sudo

fLtz@ubuntu:~$ sudo pnap -p 712

712: /usr/sbin/nscd

О 00007fe044f94000 32768K rw-s- "• /var/cache/nscd/hosts

fitz@ubuntu:~$ sudo pnap -p 919

919: /usr/sbin/apache2 -k start

© 00007fb0e2f36000 212K r--s- "• /var/cache/nscd/hosts

Организация межпроцессного взаимодействия при помощи разделяемой памяти на
основе «штатного» механизма отображения файлов (в общем случае размещаемых
на внешней, дисковой памяти) в память процессов имеет один значительный не­
достаток. Так как изменяемые страничные кадры такого общего сегмента памяти
требуют сохранения в дисковый файл (что, к счастью, выполняется ядром не не­
медленно при их изменении), то в общем смысле на производительность такой
разделяемой памяти влияют задержки операций дискового ввода-вывода (!), а не
только скорость работы оперативной памяти.

В примере с демоном nscd(8) этого вполне достаточно, тем более что создаваемый
им кэш все равно должен сохраняться при перезагрузках. В случаях, когда взаи­
модействие процессов требует максимальной производительности, разделяемая • па­
мять на основе отображения дисковых файлов в память является не лучшим ме­
ханизмом. Элегантное решение данной проблемы используется в Linux-реализации
разделяемой памяти стандарта POSIX1, что проиллюстрировано в листинге 4.58.
Псевдофайловая система tmpfs специально придумана для «временного» размещения
файлов непосредственно в оперативной памяти, что в совокупности со «штатным»
механизмом их отображения в память взаимодействующих процессов и дает же­
лаемые характеристики производительности.

Листинг 4.58. Разделяемая память (POSIX)

fitz@ubuntu:~$ findnnt /dev/shn

TARGET SOURCE FSTYPE OPTIONS

/dev/shn tmpfs rw,nosuid,nodev

fitz@ubuntu:~$ sudo fuser -v /dev/shn/*

П07ЪЗ-/Ъ PID ДОСТУП КОМАЦЦА

1 См. shm_overview(7), а также POSIX-семафоры sem_overview(7) и POSIX-очереди сообщений
mq_overview(7).

190 Глава 4

/dev/shn/PostgreSQL.1587464325:

postgres 1023m postgres

postgres 1144 __ m postgres

postgres 1145 __ m postgres

postgres 1146m postgres

postgres 1 1 4 7 _____m postgres

postgres 1 1 4 9 _____m postgres

fitz@ubuntu:~$ ps p 1023,1144,1145,1146,1147,1149

PID TTY

1023 ?

STAT

S

TIME COMMAND

0:00 /usr/lib/postgresql/ll/bin/postgres ...
1144 ? Ss 0:00 postgres: 11/nain: checkpointer
1145 ? Ss 0:01 postgres: 11/nain: background writer
1146 7 Ss 0:01 postgres: 11/nain: walwriter
1147 7 Ss 0:00 postgres: 11/nain: autovacuun launcher
1149 7 Ss 0:00 postgres: 11/nain: logical replication launcher

fitz@ubuntu:~$ sudo pnap -p 1623

1023: /usr/lib/postgresql/ll/bin/postgres -D /var/lib/postgresql/ll/nain ...

00007feafa398000 8K rw-s- -• /dev/shm/PostgreSQi,.1587464325

fitz@ubuntu:~$ sudo pnap -p 1145

1145: postgres: 11/nain: background writer

00007 i'eafa3980O0 8K rw-s- "• /dev/shn/PostgreSQL.1587464325

В примере из листинга 4.58 показано, как разделяемую память P0SIX использует
SQL-сервер postgres(1) для взаимодействия между своими параллельными процессами.

Семафоры и очереди сообщений
Разделяемая память требует синхронизации действий процессов из-за эффекта
гонки (race), возникающего между конкурентными, выполняющимися параллельно
процессами. Для синхронизации процессов при совместном доступе к разделяемой
памяти и прочим разделяемым ресурсам предназначено еще одно специализирован­
ное средство их взаимодействия — семафоры. В большинстве случаев семафорами
System V или P0SIX пользуются многопроцессные сервисы, использующие разделяе­
мую память, такие как, например, postgres(1), проиллюстрированный выше.

Очереди сообщений являются средством взаимодействия между процессами, реали­
зующим еще один интерфейс передачи сообщений (message passing inerface), по­
добно каналам и сокетам. По своей природе они похожи на дейтаграммный
SOCK_DGRAM режим передачи поверх именованных локальных сокетов unix(7). Основ­
ное отличие очередей сообщений от сокетов заключается в том, что время их
жизни не ограничивается временем существования процессов, которые их создали.

Управление процессами и памятью_____________________________________ ______________________ 191

На практике семафоры и очереди сообщений являются настолько малораспростра­
ненными, что их иллюстрация (листинги 4.59 и 4.60) на среднестатистической ин­
сталляции Linux практически невозможна.

Листинг 4.59 Семафоры и очереди сообщений (System VIPQ

fitz@ubuntu:~$ ipcs -q
..... Очереди сообщений

ключ msqid владелец права исп. байты сообщения

fitz@ubuntu:~$ ipcs -s
...... Массивы семафоров

ключ senid владелец права nsens

t Листинг 4.60. Семафоры и очереди сообщений (POSIX)

fitz@ubuntu:~$ findnnt /dev/nqueue
TARGET SOURCE FSTYPE OPTIONS

/dev/nqueue nqueue i-iqueue rw,nosuid,nodev,noexec,relatime

fitz@ubuntu:~$ Is - l /dev/nqueue
© итого 0

fitz@ubuntu:~$ Is - l /dev/shn/sen.*
© Is: невозможно получить доступ к '/dev/shn/sen.*': Нет такого файла или каталога

4.10. В заключение
Выполняющиеся программы являются основными активными сущностями, инструк­
ции которых при помощи механизма системных вызовов потребляют ресурсы, на­
ходящиеся под управлением операционной системы. Распределением этих ресурсов
и занимаются подсистемы управления процессами, управления памятью и ввода-
вывода, в достаточно детальной мере рассмотренные в этой главе. Основной зада­
чей этих подсистем является организация эффективного распределения ресурсов
между массой их потребителей — процессами и нитями.

Фактическая эффективность их работы при прочих равных будет во многом зави­
сеть от понимания пользователем их внутренних алгоритмов и значений конфигу­
рационных параметров этих алгоритмов, в зависимости от характеристик самих
потребителей и желаемых результатов. Например, эффективность распределения
процессорного времени будет напрямую зависеть от свойств процессов и нитей, их
приоритетов, их классов и процессорных привязок.

192 Глава 4

Кроме того, понимание алгоритмов работы подсистем может ответить на многие
вопросы о количестве потребляемых ресурсов и дать ответ об их достаточности
или недостатке. Например, важно понимать, что недостаток ресурса оперативной
памяти вовсе не определяется суммарными размерами виртуальной памяти, по­
требленной процессами, а напрямую связан с суммарными размерами их резидент­
ной памяти.

Навыки мониторинга и трассировки потребления ресурсов процессами помогут
сделать массу полезнейших выводов о свойствах выполняющихся в них программ,
что чрезвычайно полезно при разработке качественного программного обеспечения.
Нелишними эти навыки будут и при выборе качественного программного обеспе­
чения для эксплуатации в заданных условиях и с требуемыми характеристиками.

Глава 5
Программирование

на языке командного интерпретатора

Командный интерпретатор является основой интерфейса командной строки, первой
и главной программой, запускающейся в интерактивном сеансе пользователя.
Кроме этого, он широко используется и в пакетном режиме работы, когда коман­
ды записываются в файл сценария «пьесы» и «проигрываются по ролям» при его
запуске. В этом случае сценарий является простейшей интерпретируемой програм­
мой на языке соответствующего командного интерпретатора.

5.1. Интерпретаторы и их сценарии
В настоящее время существует достаточное количество диалектов языка командно­
го интерпретатора: POSIX-совместимые ash(1) и dash(1), авторские диалекты
W :[Korn shell] ksh(1) и W :[Bourne shell] bash(1), диалекты с синтаксисом, подобным языку
программирования Си, — csh(1) и tcsh(1) и прочие1.

Кроме языка командного интерпретатора, языки ,W:[Perl], W :[Python] или W :[Tcl] так
же имеют свои интерпретаторы и практически всегда применяются в пакетном ре­
жиме обработки своих сценариев.

Для запуска нужного интерпретатора используют универсальный комментарий
W:[shebang], записываемый в первую строчку сценария (листинг 5.1) и указываю­
щий полный путь к программе интерпретатора, которая вызывается для интерпре­
тации запускаемого сценария.

Листинг 5,1. Интерпретаторы и sha-bang

bender@ubuntu:$ file / Ы п /which

/ Ы п /which: POSIX shell script, ASCII text executable

Ультрасовременные zsh(1) или fish(1) хороши для интерактивной работы в системе, но для пакет
ной обработки команд не имеют особенного смысла.

194 Глава 5

bender@ubuntu:$ head -1 /bin/which

#! /bin/sh

bender@ubuntu:~$ file /bin/gunzip

/bin/gunzip: Bourne-Again shell script, ASCII text executable

bender@ubuntu:~$ head -1 /bin/gunzip

#!/bin/bash

bender@ubuntu:~$ file /usr/sbin/iotop

/usr/sbin/iotop: Python script, ASCII text executable

bender@ubuntu:~$ head -1 /usr/sbin/iotop

#! /usr/bin/python3

bender@ubuntu:~$ file /usr/bin/lsdev

/usr/bin/lsdev: Perl script text executable

bender@ubuntu:~$ head -1 /usr/bin/lsdev

#!/usr/bin/perl

bender@ubuntu:~$ file /usr/bin/netMag

/usr/bin/netwag: a /usr/bin/wish script, ASCII text executable, with very long lines,
with CRLF, LF line terminators, with overstriking

bender@ubuntu:~$ head -1 /usr/bin/netwag

#!/usr/bin/wish

Сами сценарии представляют собой обычные текстовые файлы, подготавливаемые
в любом текстовом редакторе, однако размещаются в каталогах и имеют права
(см. О и ©, листинг 5.2) подобно «обычным»- исполняемым W:[ELF]-nporpaMMaM.

Листинг 5.2. Сценарии интерпретаторов

t t y l
bender@ubuntu:~$ cat hello.sh

#!/bin/sh

echo "Hello, World!"

bender@ubuntu:~$ hello.sh

hello.sh: команда не найдена

bender@ubuntu:~$ printenv PATH

/usr/local/sbin: /usr/local/Ьтп: /usr/sbin: /usr/fetfi: /sbin: /bin:...:/snap/fcin

bender@ubuntu:~$ pwd

;/home/bender

bender@ubuntu:~$ nkdir /home/bender/bin

bender@ubuntu:~$ logout

Программирование на языке командного интерпретатора 195

t t y l
|bender@ubuntu:~$ printenv PATH

! *ЪШ № ; ̂ bendfejr/bl П : /usr/local/sbin: /usr/local/bin: /usr / sbin: /usr/bin: /sbin: /bin:... :/snap/bin

О bender@ubuntu:~$ nv hello.sh /hone/bender/bin

bender@ubuntu:~$ hello.sh

bash: /hone/bender/bin/hello.sh: Отказано в доступе

bender@ubuntu:~$ Is -la bin/hello.sh

-rw-rw-r-- 1 bender bender 32 янв. 17 15:23 bin/hello.sh

© bender@ubuntu:~$ chnod a*x bin/hello.sh

bender@ubuntu:~$ Is -la bin/hello.sh

-rwxrwxr-x 1 bender bender 32 янв. 17 15:23 bin/hello.sh

bender@ubuntu:~$ hello.sh

Hello, World!

Основное назначение любого командного интерпретатора в интерактивном или па­
кетном режиме — запускать команды, которые приводят или к запуску программы,
«внешней» по отношению к самому интерпретатору, или к выполнению каких-либо
«встроенных» действий самим командным интерпретатором (листинг 5.3). Напри­
мер, команда cd, изменяющая текущий каталог, является встроенной (и по-другому
реализована быть не может, потому что должна изменить атрибут CWD процесса
самого интерпретатора). Команда pwd, наоборот, может быть внешней (и показы­
вать при запуске атрибут CWD своего процесса, унаследованного в момент запуска
от командного интерпретатора), но для интерпретаторов Bourne/Korn shell зачас­
тую имеет и встроенную реализацию.

? bender@ubuntu:~$ which -a cd

bender@ubuntu:~$ type -a cd

cd - это встроенная команда bash

bender@ubuntu:~$ which -a pwd

/usr/bin/pwd

/bin/pwd

bender@ubuntu:~$ type -a pwd

pwd - это встроенная команда bash

pwd является /usr/bin/pwd

pwd является /bin/pwd

5.2. Встроенные и внешние команды

196 Глава 5

5.3. Перенаправление потоков ввода-вывода
Для программирования сценариев на языке командного интерпретатора одной из
важнейших его способностей является возможность организации сохранения ре­
зультатов в файлы и возможность считывания исходных данных из файлов при
выполнении команд.

Командный интерпретатор организует перенаправления потоков ввода-вывода
внешних и встроенных команд при помощи конструкций [n]>file или [n]» f ile и
[n]<file (рис. 5.1). Символы < и > естественным образом идентифицируют направ­
ление выполняемых перенаправлений — ввода или вывода, а необязательное чис­
ло п уточняет номер перенаправляемого потока (при умалчивании п перенаправля­
ется стандартный поток вывода № 1, stdout(3) при выводе и стандартный поток
ввода № О, stdin(3) при вводе). Перенаправление вывода > выполняется с усечени­
ем старого содержимого, а перенаправление » — с добавлением к старому со­
держимому файла file .

command command

STDIN STDOUT STDERR STDIN
Консоль

STDERR STDOUT
Консоль

□ ! .. j f
Рис. 5.1. Стандартные потоки ввода-вывода и перенаправление потока вывода STDOUT

Для перенаправления заданного потока N некоторой запускаемой команды command в
файл f ile командный интерпретатор порождает дочерний процесс при помощи
системного вызова fork(2), затем в новом процессе открывает файл f i le при помо­
щи системного вызова ореп(2), перенаправляет поток N в открытый файл посредст­
вом системного вызова dup2(2) и, наконец, запускает в этом процессе программу
command при помощи системного вызова execve(2).

В примере из листинга 5.4 при помощи «разрезателя» текста cut(1) вырезается по
разделителю (-d) : (двоеточие) 1-е поле (-f) файла passwd(5), содержащего свойства
учетных записей пользователей, зарегистрированные в системе, а результат со­
храняется в файле users при помощи перенаправления потока STDOUT. Затем при
помощи потокового редактора файлов sed(1) выводятся (5,8р) только (-п) с 5-й по
8-ю строки полученного файла, что дает логины с 5-го по 8-й пользователя.

Программирование на языке командного интерпретатора 197

Листинг 5А Перенаправление стандартного потока выпада

bender@ubuntu:~$ sed -п 5,8р /etc/passwd

sync: х : 4:65534: sync: /bin: / Ы п /sync

games:x:5:60:games:/usr/games:/bin/sh

man:x :6:12:man:/var/cache/man:/bin/sh

Ip:x:7:7:Ip:/var/spool/lpd:/bin/sh

bender@ubuntu:~$ cut -f 1 -d : /etc/passwd 1> users
bender@ubuntu:~$ sed -n 5,8p users

sync

games

man

Ip

При выполнении некоторых команд, например как в листинге 5.5, при поиске
файлов посредством find(1) может выводиться достаточное количество сообщений
об «ошибках» доступа в тот или иной каталог, которые мешают анализировать
результаты поиска. В этом случае их удобно убрать с терминала путем перена­
правления потока № 2, Stderr(3), например в файл eaccess. В результате на терми­
нале будут отражены только имена (-папе) файлов, соответствующие критерию
имени *.xml, найденные в каталоге /etc и всех его подкаталогах.

Листинг 5.5. Перенаправление стандартного потока ошиЬок

bender@ubuntu:~$ find /etc -name
/etc/cupshelpers/preferreddrivers.xml

? find: ‘/etc/cups/ssl*: Отказано в доступе

find: ‘/etc/polkit-l/localauthority*: Отказано в доступе

find: Vetc/ssl/private*: Отказано в доступе

/etc/thermald/thermal-cpu-cdev-order.xml

bender@ubuntu:~$ find /etc -name '*.xml' 2>eaccess
/etc/cupshelpers/preferreddrivers.xml

/etc/ImageMagick-6/log.xml
/etc/thermald/thermal-cpu-cdev-order.xml

На практике часто оказывается, что мешающий вывод сообщений об «ошибках»
доступа, как в листинге 5.6, оказывается ненужным вовсе, тогда его подавляют
при помощи перенаправления потока STDERR в файл /dev/null специального всепо­
жирающего псевдоустройства null(4). Подсчитав количество строк (-1) в результи­
рующем файле empty и зная, что одна строка в нем соответствует одному найден-

198 Глава 5

ному ранее командой find(1) имени файла, размер (-size) которого равен 0 байт,
можно получить количество «пустых» файлов в системе.

bender@ubuntu:~$ find / -size 0 l>enpty 2>/dev/null

bender@ubuntu:~$ wc -l empty

97602 empty

В случаях, когда необходимо использовать содержимое файла в качестве исходных
данных для выполнения программ, вместо ввода этих данных с терминала, как
в примере из листинга 5.7, применяют перенаправление потока STDIN (рис. 5.2).
Таким образом, например, сохраненный в файл весьма внушительный список уста­
новленных в системе пакетов (полученный командой dpkg(1)) можно отправить по
почте командой mail(1) в качестве текста сообщения.

bender@ubuntu:~$ dpkg -1 > installed-pacakges
bender@ubuntu:~$ mail dketov@gmail.com 0< installed-pacakges

bender@ubuntu:~$ m -f installed-pacakges

STDIN

command
J '

STDOUT STDERR

Рис. 5.2. Перенаправление потока ввода STDIN

Однако чаще на практике необходимо использовать результат выполнения одной
команды в качестве исходных данных другой команды, не сохраняя эти данные в
промежуточный (ненужный) файл. В этом случае используют конструкцию command!
| command2 | . . . , называемую конвейерной1 обработкой (рис. 5.3). Нужно заметить,
конструкцией конвейерной обработки можно сцеплять более чем две команды,
причем все они будут выполняться параллельно в дочерних процессах командного
интерпретатора. При этом стандартные потоки ввода и вывода пар процессов бу­
дут связаны простейшим средством IPC, реализуемым ядром ОС — неименован-

1 Или просто конвейером, или каналом (pipe), или даже трубой.

mailto:dketov@gmail.com

Программирование на языке командного интерпретатора 199

STDOUT STDIN
--*• commandl j- -«я к *■ command2

STDIN STDERR STDOUT STDERR

Рис. 5.3. Конвейерная обработка

ным каналом, создаваемым системным вызовом pipe(2), куда и будут перенаправле­
ны потоки команд при помощи системного вызова dup2(2).

При использовании конвейерной обработки в примере из листинга 5.8 отправка
списка пакетов, установленных в системе почтовым сообщением, происходит без
промежуточного файла, ровно как и подсчет количества файлов, размер которых
равен 0 байт (листинг 5.9).

bender@ubuntu:~$ dpkg -1] nail dket0v@tp4ail.con

Листинг 5.9. конвейерная обработка: подсчет количества пустых файлов

bender@ubuntu:~$ find / -size 0 2>/dev/null | wc -1

98940

bender@ubuntu:~$ getent passwd | cut -f 1 -d : } head -8 1 tail -5

sys

sync

games

nan

IP

В примере из листинга 5.10 конвейерная обработка используется для последова­
тельного получения строкового представления свойств всех доступных1 пользова­

1 У ч етн ы е за п и си п о л ь зо в а т ел ей , за р еги стр и р о в а н н ы х н е п о с р е д с т в е н н о в с и с т е м е (л о к а л ь н о), х р а ­

нятся в ф а й л е /etc/passwd, см . passwd(5). В с е д о ст у п н ы е в с и с т е м е у ч етн ы е за п и си , в том ч и сл е,

н ап р и м ер , ц ен тр а л и зо в а н н ы е в (с е т е в ы х) L D A P -к а т а л о га х ор га н и за ц и и , м огут бы ть получены при

п ом ощ и ком анды getent(1) бл а го д а р я с л у ж б е имен.

mailto:dket0v@tp4ail.con

2 0 0 Глава 5

тельских учетных записей при помощи getent(1), затем вырезания из этих строк
при помощи cut(1) 1-го поля (- f) посредством разделителя : (-d) , далее выбора
8 первых строк командой head(1), а затем выбора 5 последних строк предыдущего
результата командой tail(1).

Листинг 5.11. Конвейерная обработка: генерация трех случайных восьмизначных паролей

bender@ubuntu:~$ tr -dc a-zA-Z0-9 </dev/urandon | fold -w 8 | head -3

Ta3SuOvJ

lvK7H7Fw

Vs7FK8md

В листинге 5.11 конвейерная обработка в совокупности с перенаправлением потока
STDIN применяется для генерации трех случайных строк, которые могут использо­
ваться, например, в качестве начальных паролей пользовательских учетных запи­
сей. Для этого из специального файла псевдоустройства urandom(4), генерирующего
случайную последовательность байтов, отбираются командой транслитерации tr(1)
только строчные и прописные (заглавные) буквы латинского алфавита и цифры
a-zA-ZO-9 путем удаления (-d) из выходного потока символов, не (-с) попавших в
заданный набор. Затем команда fold(1) разбивает свой входной поток по 8 симво­
лов в строке выходного потока, после чего команда head(1) выбирает только
3 первые строки.

Листинг 5.12. Конвейе&ная обработка: удаление пустых файлов

bender@ubuntu:~$ find /trp -user bender -size 0 -print© 2>/dev/null | xargs -0 m -f

В листинге 5 .1 2 конвейерная обработка вместе с командой xargs(1) используется
для того, чтобы во временном каталоге /trip удалить все файлы, принадлежащие
(-user) пользователю bender, размер (-size) которых равен нулю. Сначала при по­
мощи команды find(1) производится поиск файлов согласно указанным критериям и
вывод списка их имен с разделением имен нулевым символом (-printo). Затем
команда xargs(1) последовательно «применяет» команду гт (1) безусловного (- f) уда­
ления файла для каждого имени из списка. Следует отметить, что такая конструк­
ция работает с абсолютно любыми именами файлов, включая файлы с пробелами,
табуляциями, переводами строк и другими управляющими символами в имени, т. к.
имена файлов в списке разделяются нулевым символом, а он единственный за­
прещен к использованию в именах файлов.

Аналогично, в листинге 5.13, используя конвейер, при помощи команды groups(1)
можно вывести групповое членство всех пользователей, доступных в системе.

Программирование на языке командного интерпретатора 201

Листинг 5.13. Конвейерная обработка: просмотр группового членства пользователей системы И

bender@ubuntu:~$ getent passwd | cut -f 1 -d : | xargs groups

ftnn : ftnn candy

jake : jake

bubblegum : bubblegum candy

fltz : fitz sudo

skillet : skillet

bender : bender

С помощью конвейеров и универсального спискового «применятеля» команд xargs(1)
можно организовать (листинг 5.14) параллельный запуск (-Р) упаковки целого спи­
ска отобранных командой find(1) файлов, использовав параллельный упаковщик
pbzip2(1), в несколько упаковочных нитей (-р) на каждый файл. В результате полу­
чим запускаемые парами процессы по две активные нити на каждый, что эффек­
тивно загружает четырехъядерный процессор в течение упаковки всего списка
файлов.

Листинг 5.14. Конвейерная обработка: параллельная упаковка ISO-образов

bender@ubuntu:~$ find . -name '*.lso' | xargs -P 2 pbzlp2 -p2 &

bender@ubuntu:~$ ps f

PID TTY STAT TIME COMMAND

4723 pts/1 S 0:00 -bash

4903 pts/1 S 0:00 _ xargs -P 2 -nl pbztp2 -p2

4904 pts/1 SI 0:08 | _ pbztp2 -p2 ./dvd.iso

4905 pts/1 SI 0:08 | _ pbztp2 -p2 ./plan9.tso

4856 pts/1 R+ 0:00 _ Ps f
bender@ubuntu:- $ ps -■fL

UID PID PPID LWP C NLWP STIME TTY TIME CMD

bender 4723 4722 4723 0 1 01:18 pts/1 00:00:00 -bash

bender 4903 4723 4903 0 1 01:21 pts/1 00:00:00 xargs -P 2 -nl pbzip2

bender 4904 4903 4910 99 6 01:21 pts/1 00:00:01 pbzip2 -p2 ./dvd.tso

bender 4904 4903 4913 99 6 01:21 pts/1 00:00:01 pbzlp2 -p2 ./dvd.iso

bender 4904 4903 4914 0 6 01:21 pts/1 00:00:00 pbzip2 -p2 ./dvd.iso

bender 4905 4903 4911 99 -• 6 01:21 pts/1 00:00:01 pbzlp2 -p2 ,/plan9.ls

bender 4905 4903 4912 99 6 01:21 pts/1 00:00:01 pbzlp2 -p2 ./plan9.ls

bender 4905 4903 4915 0 6 01:21 pts/1 00:00:00 pbzlp2 -p2 ./plan9.ls

bender 4916 4723 4916 0 1 01:21 pts/1 00:00:00 ps -fL

2 0 2 Глава 5

5.4. Подстановки командного интерпретатора
Еще одной важной способностью командного интерпретатора, необходимой для
разработки сценариев, является возможность подставлять различные вычисляемые
значения в качестве аргументов запускаемых команд.

5.4.1. Подстановки имен файлов
Простейшими значениями, вычисляемыми командным интерпретатором, являются
имена файлов, соответствующие некоторым шаблонам. Язык шаблонных выраже­
ний крайне прост и основывается на понятии метасимволов, т. е. символов со
специальными значениями (табл. 5.1).

Таблица 5.1. Шаблонные метасимволы

Метасимвол Значение

? Один любой символ

* Любое количество любых других символов

[ab...z] Любой символ из набора а, Ь,..., z

[!ab— z]
или

[*ab...z]
Любой символ не из набора а, Ь,.... z

~ Домашний каталог пользователя

Использование метасимволов в команде интерпретатора заставляет его искать
файлы, чьи имена соответствуют составленному шаблонному выражению, и под­
ставлять их вместо самих шаблонных выражений.

В примере из листинга 5.15 шаблонное выражение у* используется для подстанов­
ки имен файлов, начинающихся с буквы у, за которой следует любое количество
любых символов. Выражение ???.* означает имена файлов, которые содержат три
любых символа, потом символ . (точка), за которым следует любое количество
любых символов. Сама работа подстановок интерпретатора может быть отслежена
в режиме трассировки, который включается Ф командой set -х (а выключается,
как ни странно, командой set +х). В этом режиме интерпретатора видно, что
выражение [0-9]*, означающее имена файлов, начинающиеся с цифры, сначала
вычисляется О до соответствующего списка имен, который подставляется вместо
самого шаблонного выражения, и только потом выполняется команда ls(1), в аргу­
ментах которой оно было использовано. Аналогично, вычисляется Ф и подставля­
ется шаблонное выражение [!a-z0-9]*, означающее имена файлов, начинающиеся

Программирование на языке командного интерпретатора 20В

с символов, не являющихся ни буквой, ни цифрой. Таким образом, ни одна
команда самостоятельно не вычисляет подстановки имен файлов, а пользуется
результатами вычислений так, как будто они были заданы непосредственно в каче­
стве ее аргументов.

Листинг 5.15.П

bender@ubuntu:~$ cd /usr/share/nan/nanl

bender@ubuntu:/usr/share/nan/nanl$ Is у*
ybmtopbm.l.gz yes.l.gz ypdonainname.l.gz yuvtoppm.l.gz

yelp.l.gz youtube-dl.l.gz yuvsplittoppn.1.gz

bender@ubuntu:/usr/share/roan/roanl$ Is ???.*
'[.l.gz1 dsa.lssl.gz ico.l.gz rcp.I.gz

apg.l.gz dwp.l.gz Icf.l.gz red.l.gz

dir.l.gz gtf.l.gz pwd.l.gz tbl.l.gz

bender@ubuntu:/usr/share/nan/nanl$ set -x ©

bender@ubuntu:/usr/share/man/manl$ Is -l [0-9]*

•* + Is --color=auto © -l 2to3-2.7.1.gz 411toppn.l.gz ©

-rw-г--r-- 1 root root 563 окт 10 13:26 2to3-2.7.1.gz

-rw-r--г-- 1 root root 592 anp 23 2016 411toppn.l.gz

bender@ubuntu:/usr/share/nan/nanl$ Is [!a-z0-9]*j
•* + Is --color=auto ’[.l.gz1 CA.pl.lssl.gz CET.lp.gz HEAD.lp.gz InageMagick-im6.ql6.l.gz

POST.lp.gz Xephyr.l.gz Xnark.l.gz Xorg.l.gz Xorg.wrap.l.gz Xserver.l.gz ©

'[.l.gz1 HEAD.lp.gz Xephyr.l.gz Xorg.wrap.l.gz

CA.pl.lssl.gz IroageMagick-in6.ql6.l.gz Xnark.l.gz Xserver.l.gz

CET.lp.gz POST.lp.gz Xorg.l.gz

В режиме трассировки командного интерпретатора видна еще и подстановка псев­
донимов Ф , которая заменяет «псевдоним» команды пользователя, например Is

(листинг 5.16), ее «настоящим значением».

tee.l.gz

tgz.l.gz

zip.l.gz

Листинг 5.H. йсзвдог'имы кемандньт a„ie

bender@ubuntu:~$ alias

alias egrep='egrep --color=auto'

alias fgrep='fgrep --color=auto'

alias grep='grep --colon=auto'

alias l='ls -CF'

alias la=1Is -A'

alias 11='Is -alF'

alias ls='Is - -color=auto'

204 Глава 5

5.4.2. Подстановки параметров

Более важным видом подстановок командного интерпретатора являются подстанов­
ки значений параметров — специальных сущностей, имеющих эти самые значе­
ния. Различают три типа параметров: переменные, позиционные параметры и спе­
циальные параметры. Значения переменных могут быть изменены в любой момент
времени при помощи операции присваивания, тогда как значения позиционных па­
раметров задаются один раз при их инициализации, а значения специальных пара­
метров вычисляются предопределенным образом в зависимости от окружающей
среды и обстоятельств.

Переменные — именованные параметры
Самый простой тип параметров — это переменные командного интерпретатора,
и их «глобальное» подмножество — переменные окружения. Переменные окруже­
ния (см. главу 2) параметризируют пользовательский сеанс работы в системе и
видны абсолютно всем командам сеанса, тогда как переменные командного ин­
терпретатора видны только ему.

В примере из листинга 5.17 командами env(1) и set показано количество перемен­
ных окружения и переменных командного интерпретатора соответственно. При по­
мощи операции присваивания VARlABLE=value вводится новая переменная интерпре­
татора О, а посредством команды export ® эта переменная «экспортируется»
в переменные окружения, что видно во флагах объявления переменных на выводе
команды typeset. Стоит отметить, что команда set интерпретатора bash(1) по умолча­
нию выводит не только объявленные переменные, но и объявленные функции, что
отключается Ф установкой POSIX-совместимого режима работы.

Листинг SilT. Переменные интерпретатора и переменные окружения

Ф bender@ubuntu:~$ set -о postx

bender@ubuntu:~$ env | wc -l; set | wc -l; typeset -p VARIABLE

34

80

-bash: typeset: VARIABLE: не найден

О bender@ubuntu:~$ VARIABLEsvalue

bender@ubuntu:~$ env | wc -l; set | wc -l; typeset -p VARIABLE

34

•- 81

declare -- VARIABLE="value"

© bender@ubuntu:~$ export VARIABLE

bender@ubuntu:~$ env | wc -l; set | wc -l; typeset -p VARIABLE

Программирование на языке командного интерпретатора 205

•- 35

81

declare -х VARIABLE="value"

bender@ubuntu:~$ set +о posix

Присваивание значения «новой» переменной, как показано в листинге 5.18, уста­
навливает именно переменную командного интерпретатора, которая не видна
«глобально» в сеансе пользователя и требует экспортирования для работы в каче­
стве переменной окружения.

Листинг S.18, Присвоение значений переменным

bender@ubuntu:~$ LC_TIME=ko_KR.utf8

bender@ubuntu:~$ date

! 2019. 11. 23. (£) 13:09:29 MSK

bender@ubuntu:~$ TZ=Europe/Stockholn

bender@ubuntu:~$ date

? 2019. 11. 23. (£) 13:11:49 MSK

bender@ubuntu:~$ declare -p LANG TZ

declare -x LANG="ko_KR.utf8"
declare -- TZ="Europe/Stockholm"

bender@ubuntu:~$ export TZ

! 2019. 11. 23. (£) 11:12:39 CET -•

Так как имена и значения переменных располагаются в оперативной памяти про­
цесса командного интерпретатора, то их время жизни и область видимости огра­
ничиваются процессом их интерпретатора. Это означает, что переменные теряют
свои значения при завершении интерпретатора, в котором были установлены, а
переменные, установленные в одном интерпретаторе, не видны в других интерпре­
таторах. Только установленные переменные окружения экспортируются (копируют­
ся) процессам других команд при запуске, но любые их последующие изменения
происходят отдельно и локально в каждом процессе.

Для разового экспорта переменных окружения предназначается утилита env(1), хотя
в большинстве диалектов языка командного интерпретатора используется просто
оператор присвоения значения переменным перед запускаемой командой (лис­
тинг 5.19).

Листинг 5.19. Временное присвоение значений переменным окружения

bender@ubuntu:~$ env LC_TIME=be_BY.utf8 TZ=Europe/Minsk Is -l

итого 222976

206 Глава 5

-rw-r--r-- 1 bender bender 114650029 •" лгс 23 10:36 dvd.iso.gz

-rw-r--r-- 1 bender bender 113666114 лгс 23 00:02 plan9.iso.gz

bender@ubuntu:~$ LC, TXHf fi.ri.4Hi TZ=Europe/Helsinki Is -l

итого 222976

-Г Х- Г- -Г -- 1 bender bender 114650029 •" narras 23 09:36 "•dvd.iso.gz

-rw-r--r-- 1 bender bender 113666114 narras 22 23:02 plan9.iso.gz

bender@ubuntu:~$ typeset -p LCJIME TZ

declare -x LC_TIME="ru_RU.UTF-8"
-bash: typeset: TZ: не найден

bender@ubuntu:~$ Is -l

итого 222976

-rw-r--r-- 1 bender bender 114650029 •" ноя 23 10:36 dvd.iso.gz

-rw-r--r-- 1 bender bender 113666114 ной 23 00:02 plan9.iso.gz

Д л я подстановки значения параметров при выполнении команд используется кон­

струкция $paraneter, где символ $ является требованием подстановки, a paraneter —

идентификатором параметра, например и м ен ем переменной, н о м е р о м позиционного

параметра или си м в о л о м специального параметра.

В режиме трассировки команд интерпретатора из листинга 5.20 видно, что команд­

ный интерпретатор вместо указанной переменной подставляет ее значение до в ы ­

полнения команды, после чего команда выполняется так, как будто ее аргументы

были заданы непосредственно подставленными значениями.

bender@ubuntu:/tnp$ env

SSH_AGENT_PID=3260

SHELL=/bin/bash

USER=bender

USERNAME=bender

MAIL=/var/nail/bender

PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

PWD=/tmp

LANG=ru_RU.UTF-8

HOME=/hone/bender

LOGNAME=bender

bender@ubuntu:/tnp$ set -x

bender@ubuntu:/tnp$ file SSHELL

Программирование на языке командного интерпретатора 207

•"+ file /bin/bash
/ Ы п /bash: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), dynamically linked (uses
shared libs), for GNU/Linux 2.6.24, BuildID[shal]=0xfl99a4a89ac968c2e0e99f2410600b9d7e995187,
stripped

bender@ubuntu:/tmp$ ps p $SSHJt££NT_PXD

•" + ps p 3260

PID TTY STAT TIME COMMAND

3260 ? Ss 0:00 /usr/bin/ssh-agent /usr/bin/im-launch env GNOME_SHELL
bender@ubuntu:/tmp$ cd $HOME

•* + cd /home/bender

bender@ubuntu:~$

Позиционные параметры
Позиционные параметры используются сценариями командного интерпретатора для
передачи их фактических параметров и идентифицируются номерами, нумерующими
аргументы сценария, указанные при его запуске. Например, в листинге 5.21 пока­
зан достаточно простой сценарий tgz(i), применяемый для создания .tgz-архивов.
В тексте сценария используются подстановки $1 и $0, символизирующие первый
формальный аргумент Ф, переданный в сценарий при его запуске, и нулевой фор­
мальный аргумент ® — имя самого сценария. При последующем запуске сценария
в режиме трассировки (явно указывая интерпретатор sh с опцией -х) ему переда­
ются фактические аргументы Ф и О, которые соответствующим образом подстав­
ляются в командах, выполняемых интерпретатором согласно тексту сценария.

bender@ubuntu:~$ which tgz

/usr/bin/tgz

bender@ubuntu:~$ file /usr/bin/tgz

/usr/bin/gunzip: POSIX shell script, ASCII text executable

bender@ubuntu:~$ less /usr/bin/gunzip

#!/bin/sh

Error ()

{ echo "Error: $0: ${@-}." >&2 Ф

exit 1

}

if [$# = 0]; then

else

dest=$' О

208

shift

src="${<a-}

Глава 5

fi

elif [-f "$dest"]; then

Error "Destination \"$dest\" already exists as a file"

©1 ©1
bender@ubuntu:~$ sh -x /usr/bin/tgz ~/bin.tgz -/bin

$GJ $1J

+ dest=/home/bender/bin.tgz ©

tar: Удаляется начальный '/' из имен объектов

/home/bender/bin/

Всего записано байт: 10240 (10KiB, 5,9MiB/s)

99.0%

+ Is -1 /hone/bender/bin.tgz
-rw-rw-r-- 1 bender bender 118 ноя 23 13:52 /home/bender/bin.tgz

+ exit 0
©1 O l

bender@ubuntu:~$ sh -x /usr/bin/tgz ~/bin.tgz -/bin

$01 $1J

+ dest=/hone/bender/bin.tgz ©

+ [-f /home/bender/bin.tgz]

+ Error Destination "/home/bender/bin.tgz" already exists as a file

+ echo Error: /usr/bin/tgz © : Destination "/home/bender/bin.tgz" already exists as a file.

Error: /usr/bin/tgz: Destination "/home/bender/bin.tgz" already exists as a file.

+ exit 1

Специальные параметры
Специальные параметры идентифицируются символами # , ? , ! , @, $ и вычисляются
в зависимости от окружения и обстоятельств выполнения сценария в заранее пре­
допределенные значения. Так, например, в листинге 5.22 показана подстановка
параметра $, вычисляющегося в идентификатор процесса самого командного ин­
терпретатора, а в листинге 5.23 — подстановка параметра !, вычисляющегося в
идентификатор процесса последнего асинхронного (параллельного с самим иденти­
фикатором) дочернего процесса. В режиме трассировки команд видно, что, как и
любые другие подстановки, они выполняются до запуска команд, в которых были
использованы. В результате сами команды выполняются так, словно параметры их
были заданы непосредственным образом.

Программирование на языке командного интерпретатора 209

Листинг S.22. HD текущего пропса■ ■■ -• ..•..------____" -___ ̂ • - - ■____ ■ « • -■ -- - -* • ■ • - - - .. :■ : . • .4 ' ■
bender@ubuntu:~$ set -х

bender@ubuntu:~$ ps up $$
+ ps up 32649

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

bender 32649 0.1 0.1 13536 8604 pts/1 Ss 10:28 0:00 -bash

Листинг 5.23. PID последнего дочернего асинхронного процесса .

bender@ubuntu: ~$ set -х

bender@ubuntu:~$ dd if=/dev/dvd of=dvd.tso &

[1] 399

+ dd tf=/dev/dvd of=dvd.iso

bender@ubuntu:~$ ps up $!

+ ps up 399

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

bender 39914.0 0.0 5604 588 pts/1 D 10:36 0:00 dd tf=/dev/dvd ...

Используя специальный параметр ?, можно узнать статус завершения (код возвра­
та) программы, выполнившейся последней. При этом нулевой статус завершения
символизирует успешное ее выполнение, а любое другое, отличное от нулевого,
значение есть «номер» ошибки. В листинге 5.24 команда which(1) завершилась
с успехом при поиске программы, запускающейся по внешней команде Is, и неуда­
чей — при поиске программы, соответствующей встроенной команде cd.

Листинг 5.24. Статус завершения процесса/программы

bender@ubuntu:~$ which Is
/usr/bin/ls

bender@ubuntu:~$ echo $?
•- 0

bender@ubuntu:~$ which cd
bender@ubuntu:~$ echo $?
1

5.4.3. Подстановки вывода команд
Еще одним видом подстановок, выполняемых командным интерпретатором, являют­
ся подстановки вывода команд. Конструкции вида $(conriand) (или ее более старая
форма 'command') используются для подстановки результата вывода команды
command на поток STDOUT в место ее использования.

2 1 0 Глава 5

STDIN
-*• command2 у

STDERR

Рис. 5.4. Подстановка вывода команд

На рис. 5.4 показана широко распространенная подстановка результата работы
команды comnand2 в качестве аргументов1 команды command!, используемая в виде
command! $(command2). Так, например, можно, зная полный путь (который можно по­
лучить при помощи which(1)) к определенной утилите, выяснить при помощи dpkg(l)
пакет программного обеспечения, которому он принадлежит, что показано в при­
мере из листинга 5.25 в режиме трассировки.

Листинг 5.25. в каком пакете утята?

bender@ubuntu:~$ which Ispci

/usr/bin/lspci
bender@ubuntu:~$ set -x

О bender@ubuntu:~$ dpkg -S 'which Ispci'

++ which Ispci

+ dpkg -S /usr/bin/lspci

pciutils: /usr/bin/lspci

© bender@ubuntu:~$ dpkg -S $(which Ispci) | cut -f 1 -d : | xargs dpkg -s

+ xargs dpkg -s

+ cut -f 1 -d :

++ which Ispci

+ dpkg -S /usr/bin/lspci

Package: pciutils

Description: PCI utilities

This package contains various utilities for inspecting and setting of

devices connected to the PCI bus.

'Д ля сравнения: при конвейерной обработке результаты выполнения одной команды передаются
в качестве исходных данных другой программе.

Программирование на языке командного интерпретатора 211

Стоит заметить, что команда хаrgs(1) выполняет подобную работу, что и подстанов­
ка вывода команд, т. е. передает в качестве аргументов одной команды результа­
ты вывода другой. В примере в из листинга 5.25 используются оба варианта, где
подстановка вывода which(1) выполняется командным интерпретатором, а вывод
первой команды dpkg(l) подставляется при помощи xargs(1), будучи предварительно
отфильтрованным при помощи cut(1).

Подстановка вида $(connand), в отличие от 'command', может без особых ухищрений
многократно вкладываться сама в себя. В примере из листинга 5.26 имя текущего
пользователя Ф, полученное при помощи команды id(1), подставляется в качестве
аргумента команды поиска find(1) для поиска его пустых файлов ©, список кото­
рых подставляется в качестве аргумента команды гт(1) для их удаления.

листинг 121 Удаление пустых файлов пользователя

bender@ubuntu:~$ set -х

ФЪ

bender@ubuntu:~$ rm -f $(find /tnp -user $(td -un) -size 0)

©1
+++ id -un

О ++ find /tmp -user bender -size 0

find: '/tmp/.org.chromium.Chromium.N29MCV: Отказано в доступе

find: '/tmp/.wine-1000': Отказано в доступе

© + rm -f /tnp/wireshark_eth0_20151204134033_OMZ6wa /tmp/wireshark_eth0_20151204134033_.••

Важно понимать, что подстановки заменяются их вычисляемыми значениями в лю­
бом месте команды, как, например, в листинге 5.27 — в части имени архива, по­
лучаемого при помощи команды tar(1) из файлов каталога -/.config.

Листинг 5.27. Архив е датой создания h имени ■ ’ V ,

bender@ubuntu:~$ set -х

bender@ubuntu:~$ tar cjf dotconfig-$(date +XF).tbz2 -/.config

+ tar cjf dotconfig-2015-12-13.tbz2 /home/bender/.config

tar: Удаляется начальный '/' из имен объектов

5.4.4. Подстановки арифметических выражений
Подстановки вывода команд и параметров являются для программирования на
языке командного интерпретатора практически самыми важными конструкциями.
Например, используя операцию присвоения, подстановку вывода и внешнюю

2 1 2 Глава 5

команду ехрг(1), предназначенную для вычисления арифметических выражений,
можно вычислять значения одних переменных на основе других, как показано в
примере О из листинга 5.28. Нужно отметить, что аргументы команды ехрг(1) отде­
ляются пробелами, как и у любой другой команды, например find(1), а специаль­
ные символы, например *, подлежат экранированию (см. разд. 5.5).

Запуск внешних команд влечет за собой накладные расходы в виде системных
вывозов fork(2) и execve(2), поэтому во многих диалектах языка командного интер­
претатора реализованы аналогичная встроенная команда арифметических вычисле­
ний let и арифметическая подстановка в виде стандартной POSIX-конструкции
$((expression)), а в некоторых еще и в нестандартном виде $[expression]. Исполь­
зование команды let в примере © из листинга 5.28, наоборот, исключает пробелы
в арифметическом выражении, т. к. оно целиком является одним ее аргументом.
В случае использования арифметической подстановки в примере © пробельные
символы могут быть расставлены произвольным образом.

Листинг 5.28. Арифметические действии командного интерпретатора

bender@ubuntu:~$ set -х

bender@ubuntu:~$ RADIUS=10

О bender@ubuntu:~$ CERCLEs'expr 2 * $RADIUS * 355 / 113‘

++ ехрг 2 10 355 / И З

+ CIRCLE=62

© bender@ubuntu:~$ let CERCLE=2*RADIUS*355/113; echo $CIRCLE

+ let 1CIRCLE=2*RADIUS*355/1131
+ echo 62

62

© bender@ubuntu:~$ CIRCLE=$((2 * RADIUS * 355/113))

+ CIRCLE=62

Подстановки арифметических выражений полезно применять для пересчета значе­
ний в аргументах разных команд, использующих «неудобные» единицы измерения.
Так, например, в листинге 5.29 при поиске библиотек больше 10 Мбайт нужно
задавать количество байтов (символов), которое и составит искомые десять кило­
байт килобайтов.

Листинг 5.29. Библиотеки больше 10 Мбайт

bender@ubuntu:~$ set -х

bender@ubuntu:~$ find Д г Ь /usr/lib -папе '*.so.*' -size +$((1024*1024*10))с

+ find /lib /usr/lib -папе '*.so.*' -size +10485760C

/usr/llb/x86_64-llnux-gnu/llblcudata.so.63.2

/us r/llb/x86_64 - Itnux -gnu/HbQt5WebKlt. so. 5.212.0

Программирование на языке командного интерпретатора 213

Пример из листинга 5 .3 0 содержит две вложенные друг в друга подстановки —
подстановку вывода команды date(1) в арифметическую подстановку. Команда find(1)
при поиске модифицированных (-mtime, modification time) файлов использует еди­
ницы измерения «дней назад», и при поиске файлов в каталоге /var/lib/dpkg/info1,
изменившихся в период с 1 9 .11 .2 019 по 2 2 .1 1 .2 0 1 9 , приходится рассчитывать ко­
личество «дней назад» до этих дат. Для расчета используются команды date(1) и
W:[UNIX-BpeMfl], вычисляющая как целое количество секунд, прошедших от
0 1 .0 1 .1 9 7 0 0 0 :0 0 UTC до нужного момента, и арифметическая подстановка, вычис­
ляющая количество «дней назад». Сначала вычисляется количество «секунд назад»
как разница между текущим UNIX-временем и UNIX-временем указанной даты,
после чего вычисляется количество «дней назад» путем деления на 60 секунд
в минуте, 60 минут в часе и 24 часа в сутках. При помощи команды Stat(1) под­
тверждается правильность поиска путем анализа даты модификации найденных
файлов.

Листинг 5.30. Пакеты программного обеспечения, установленные в определенный период

bender@ubuntu:~$ set -х

bender@ubuntu:~$ find /varAib/dpkg/info -папе '*.1181' \ 4-1
> -ntine +$[(I
> -ntine -$[(

|) / (24*66*60)] \ «-1

|) / (24*60*60)] | «-1

+ xargs stat -c %y:%n

++ date +%s

++ date -d 2019-11-22 +%s
++ date +%s

++ date -d 2019-11-19 +%s
+ find /var/llb/dpkg/tnfo -папе '*.llst' -ntine +1 "• -ntine -4 "•

•- 2019-11-19 19:10:05.219764913 +0300:/var/lib/dpkg/info/tshark.list

2019-11-20 19:59:56.743180406 +0300:/var/lib/dpkg/info/libjql:and64.list

2019-11-20 00:54:46.292860010 +0300:/var/lib/dpkg/info/nscd.list

В этом примере строка первой команды конвейера для удобства ввода разбивается
на три экранные строки посредством экранирования (см. ниже) управляющего
символа перевода строки 4-1 при помощи метасимвола одиночного экранирования \.
В этом случае командный интерпретатор каждую последующую экранную строку

1 Это база данных пакетного менеджера dpkg(1) об установленных в систему пакетах программно­
го обеспечения.

214 Глава 5

предваряет «вторичным» приглашением PS2, а не «первичным» приглашением PS1.

Символ перевода строки после символа конвейера | экранирования не требует,
т. к. командному интерпретатору очевидна необходимость ввода второй команды
конвейера.

Перед запуском введенной команды интерпретатор анализирует ее на наличие так
называемых метасимволов, т. е. символов, имеющих специальное значение. Так,
например, пробел отделяет аргументы команды друг от друга, шаблонные выраже­
ния на основе ?, *, и [] вычисляются в имена файлов, доллар $ активирует под­
становку команд, параметров или арифметических выражений, а символы <, >, | —
перенаправления потоков. В определенных командах требуется использовать лите­
ральное (буквальное) значение метасимволов, как, например, в листинге 5.31 для
манипулирования файлами, в именах которых содержатся пробелы. Для отмены
специального значения метасимволов используется их экранирование при помощи
конструкций \п, ’n iiiw .iV и "pijpyv.Пн", «отменяющих» метасимволы п, г»!, ..., гц.

О bender@ubuntu:~$ file Рабочий стол

? Рабочий: cannot open 'Рабочий' (No such file or directory)

? стол: cannot open 'стол' (No such file or directory)

© bender@ubuntu:~$ file Рабочий\ стол

Рабочий стол: directory

© bender@ubuntu:~ $ file "Рабочий стол"

Рабочий стол: directory

О bender@ubuntu:~$ file 'Рабочий стол'

Рабочий стол: directory

В примере из листинга 5.31 показано экранирование символа пробела в имени
файла, который привел © к разбиению имени файла на два аргумента команды
file(1), ни один из которых, естественно, не является именем какого-либо файла.
В примере © используется одиночное экранирование пробела при помощи \п, а в
примерах © и © — множественное экранирование всех символов в кавычках ' '
и включая пробел.

5.5. Экранирование

bender@ubuntu:~$ Is -1
итого 454292

drwxr-xr-x 2 bender bender 4096 ноя 16 15:08 'Рабочий стол'

Программирование на языке командного интерпретатора 215

В менее тривиальных случаях, как в примере О из листинга 5.32, попытка выпол­
нения команды find(1) с вполне валидными аргументами приводит к неожиданным и
странным результатам. В режиме трассировки команд интерпретатора становится
очевидно, что шаблонное выражение *.gz, предназначавшееся самой команде поис­
ка файлов, было подставлено интерпретатором до запуска команды, что привело
ее в недоумение. Для правильной передачи шаблонных выражений самим командам
их следует экранировать, как в примере ©.

Яич инг 5.32. Экранирование шаблонных выражений

О bender@ubuntu:~$ find . -папе *.gz

find: paths must precede expression: 'plan9.iso.gz'

find: possible unquoted pattern after predicate '-папе'?

bender@ubuntu:~$ set -x

bender@ubuntu:~$ find . -папе *.gz ©

•" + find . -папе dvd.iso.gz plan9.tso.gz

©J ?J
find: paths ® must precede expression © : 'plan9.iso.gz'

find: possible unquoted © pattern after predicate '-папе'?

© bender@ubuntu:~$ find . -папе "*.gz"

+ find . -папе '*.gz'

./dvd.iso.gz

./plan9.iso.gz

Аналогично, в примере © из листинга 5.33 при попытке скачивания с Web-сер­
вера ресурса со сложным W :[URL] при помощи команды wget(1) командный интер­
претатор постарался разбить команду на список заданий, встретив метасимвол &,
формирующий асинхронные задания (см. разд. 4.8.1). Для правильной передачи
строк, содержащих метасимволы, их следует экранировать, как в примере ©.

I
Я&Я1Й* "& Щ ^ д г -------------------

Листинг 5.33. Экранирование символов списка'команд & B i s

b e n d e r @ u b u n t u : ~ $ y o u t u b e - d l -g h t t p s : / / w w w . y o u t u b e . c o n / w a t c h ? v = n l F _ M f L R l X 0

https://r4---sn- n3toxu - axqe. googlevldeo. con/ vldeoplayback?explre=15745326398ei=vyHZXfo3kp33BfWbqzg8tf)=93.190.207.82Sid=o - AB
ldbr46QqdVsKX_53HJb4sbFnPU66Ki_oStnK0vfARv&itag=136&aitags=133X2C134X2C135X2C136X2C16e!l(2C242JQQ439QQ44X2C2479QC278&source
=ycxJtubeSrequiressl=yes&m=31352C29&nn=sn-n3toxu-axqe*2Csn-axq7sn7sAns=aifK2Crduanv=narvl=34pl=23anh=J62CIgpwcjAyLnx'LZDAzKgkxM
jcuMC4wLjE&initcwndbps=163eeee&nriine=vldeOX2Fi>p4Agir=yes&clen=38e699e33&dur=5496.290&bt=154ee7669919061iapit=15745ie962&fvlp
=4&keepalive=yesafexp=238426304beids=9466585&c^EBetxfp=5432432&sparans=expire5GCet?i2Cip562CldSCCaitags9QCsource5GCrequlressl
X2CmneK2Cgir*2Cclei«2Cdur*2aj4tesig=ALgxI2wwRgIhAI[»EEOHhkBBZZoFPqTEUWrbzgQQ-7BRedfzBSl9Tws2AiEAnF6e0aatR2L2YcBZRICACeUno
Vu85cPlSo-l6t3HGUX30&lspararis=4T6S20Ti%2CinsX2CnivX2CniviX2Cp'l5(2CnhX2CinitCMndbps&lsig=AHy'lnl4wRQIhAPjk5c57desCzTSVx4QPsOtAsg6w
tY2ShvGeCPMojthUAiA8fkeGc76lPA-USegzGJCzc4qwLUMF763xlu5yXSVxQX30%30&ratebypass=yes

О b e n d e r @ u b u n t u : ~ $ wget https: //r4- - -sn-n3toxu-axqe.googlevideo. con/vtdeoplayback?expire=1574532639ael=vyHZXfo3kp33Bf
Hbqzg&lp=93.106.207.82&td^>-ABldbr46QqdVsKX_53H3b4sbFn|)U60Ki_oSti«0vFARv«ltag=136&attags=133X2C13«2C135X2C136X2C1609SC242X
2C243X2C24^C2C247X2C278&soorce=youtube&requtressl=yesa(T^=31X2C29em=sn-n3toxii-ax(}eX2Csn-axq7sn7s8ns=au42Crdua#TV=naiwb=3&pl=

https://www.youtube.con/watch?v=nlF_MfLRlX0
https://r4---sn-

2 1 6 Глава 5

23&nh=X2agpwcjAyUixlZDAzKgkxHja*C4wLjE&lnit s*ndbps= It r^es*cle№380099O33edur=5496.29G&lfit=154G0
7669910061Urt=1574510962&fvip=4ekeepalive=yes&fexp=23842630ftbeids=9466585&c=*CB4t3cp=5432432&sparans=explre*2CeiX2CipX2CidX
2Caitags9QCsource№Crequlresslj2C>rtfle№Cgir1^cleiM2Cdurk^C\Mftslg=ALgxLbMng]M^]eEE{>M(LBZZoFPi]TBMrbzgQQ-7BR0dfzBSl9Tws2
AiEAnF6eeaCTtfi2L2YcBZRIGAC4UnoVu85cPlSo-l6UHaK3Dailsparans4rKZCnnKZCntf(ZCnv92CnvUCZCplXZCnM2CtnltCMndbpsei'lsig^AHy'lnl4wRQ
IhAPJ k5c57desGzTSVx4QPsOtAsg6wtY2ShvGeOMojtnUAiA8fkeGc76lPA-USegzCXzc4qwUHr763xluSyXSVxQX30X30&ratebypass=yes

-0 r e v o l u t i o n - o s .mp4

[1] 1263

? [31] 12663

HTTP-запрос отправлен. Ожидание ответа... 403 Forbidden

2015-12-26 19:00:05 ОЬИБКА 403: Forbidden.

© b e n d e r @ u b u n t u : ~ $ w g e t * 1 https: //г4---sn-n3tuxu-«xqe. googlevideo. con/videopl*yback?explr^l574532639aei=vyHZXfоЗкрЗЛ
fUbqzg&ip=93.160.207.82fti(t«-ABUbr46QqdVsKX_53tOb4sbFn|)U6eKi_oStiiKOvfARvftltag=1360altags=133X2C13«QC135X2C136X2C160K2C242
X2C243X2C24eaC247X2Q780source^O4tuba>r«qulressl=ycsafw=31X2C29aHngsn-n3tBiai-axq<K2Csn-axq7sn7s8nsrau!ieCrduaHw^efivU3apl
=234nb4BQgp»«jAyLnKlZI)AzKgkxMja*1C4wLjE&lirttCHixfjps*!* 3eeee*Mrt>=vl4«№fflp4*glr=y*s4cleffs380099e33edur=5496.29G4lnt=1540
0766991O06118nbslS74510962lf/\4MekeepaUv»=y*iSf«>?=23lM263eAbrWs=44645A5Ao4#MrT»j>»S432432Asperanss«xplr*9CCeiX2Clp(CCid
X2Caltag^2CsourceX2Crequiress<lX2Cnlna№CgirX2CclM02CiK/K2Clntftsl94ALgxr3Ml)gThAIieEEiiMhi(r3ZZeFPqTGMrbzgQQ -7BR0dfzBS19Tns
2AlEAnF6e0aatfi2L2YcfiZRIGACeUiK)Vu8Sd>lSo-l6UHGWQMlsparaRS4i«aO4rtCCFB»Cns42CiwU(24lX2CnlM2aiiltCMndbpsalslgaAHylnl4MR

QlhAPjk5c57d*sCzTSVx4(]Ps0tAs9tMtY2ShvCaCpMD jtnUAlA8fkaGc76lM-USegzG3Czc4qvvUJ№763xlu5yXSV)(QK30X30Aratebypass^es1

-0 r e v o l u t i o n - o s .mp4

Распознаётся r4---sn-axq7sn7s.googlevideo.coni (r4---sn-axq7sn7s.googlevideo.com)...
173.194.2.22, 2a00:1450:4012:2::16

Подключение к r4---sn-axq7sn7s.googlevideo.com (r4---sn-
axq7sn7s.googlevideo.com)|173.194.2.22|:443... соединение установлено.

HTTP-запрос отправлен. Ожидание ответа... 200 ОК

Длина: 380099033 (362М) [video/rp4]

Сохранение в: «revolution-os.mp4»

revolution-os.mp4 0X[] 2,02M l,69MB/s

В листингах 5.32 и 5.33 использованы разные способы множественного экраниро­
вания ' ' и хотя в этих примерах между ними нет разницы. Экранирование
метасимволов в двойных кавычках "" носит название слабого экранирования, по­
тому что не распространяется на метасимволы подстановки $ и ** и метасимвол
одиночного экранирования \. Экранирование метасимволов в одинарных кавычках
" носит название сильного экранирования, потому как распространяется на абсо­
лютно любые метасимволы.

Листинг 5.34. Сильное и шабое экранирование I

bender@ubuntu:~$ cal

Ноября 2019

Вс Пн Вт Ср Чт Пт Сб

1 2
3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 g

24 25 26 27 28 29 30

Программирование на языке командного интерпретатора 217

О bender@ubmtu:~$ notify-send $ (d a te) $ (c a l)

Invalid number of options.

bender@ubuntu:~$ s e t -x
© bender(aubLrtu:~$ notify-send $ (d a te) $ (c a l)

++ date

++ cal

Ф1©"ШЛ ©1 ... 1

+ notify-send C6 ноя 23 15:20:23 MSK 2019 Ноября 2019 Вс Пн Вт Cp Чт Пт Сб 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 $'_\Ь2_\ЬЗ' 24 25 26 27 28 29 30
Invalid number of options.

© bender<aJxntu:~$ notify-send '$ (d a te) ' '$ (c a l) '
+ notify-send '$(date)' '$(cal)'

© bender<<Mxntu:~$ notify-send "$ (d a te)n "$ (c a l)"
++ date

++ cal Ф 1

+ notify-send 'Сб ноя 23 15:22:12 MSK 2019' ' Ноября 2019

Вс Пн Вт Cp Чт Пт Сб

1 2
3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

В примерах из листинга 5.34 необходимо текущее время и календарь на текущий
месяц отправить пользователю в качестве уведомления в сеансе графического ин­
терфейса. При помощи команды notify-send(l) можно послать уведомление, заголо­
вок которого передается первым ее параметром, а текст уведомления — вторым.
Прямое решение О с подстановками вывода команд date(1) и cal(1) не срабатывает
и завершается со странным результатом. В режиме трассировки команд интерпре­
татора © видно, что пробелы Ф©@... в выводе команд date(1) и cal(1) были есте­
ственным образом подставлены как аргументы команды notify-send(l), что привело к
передаче более чем двух ожидаемых аргументов. Решение с сильным экранирова­
нием © посылает уведомление с литеральным написанием подстановок, без их вы­
полнения, что тоже не является ожидаемым результатом. Слабое экранирование ©
работает, как ожидается, с выполнением подстановок и экранированием пробелов
после выполнения подстановки, в результате чего формируются два правильных
аргумента команды notify-send(l).

218 Глава 5

5.6. Списки команд
Перенаправления и подстановки командного интерпретатора позволяют производить
различные вычисления, но не разрешают управлять ходом вычислений — выпол­
нять различные действия в зависимости от результата вычислений или циклически
повторять вычисления. Для управления ходом выполнения сценариев на языке
командного интерпретатора служат списки команд.

Простейшие списки формирует пользователь при интерактивной работе с команд­
ным интерпретатором, последовательно запуская команды при помощи управляю­
щего символа перевода строки «-1 или параллельно запуская задания (см. разд. 4.8.1)
посредством метасимвола & запуска задач в «фоновом» режиме.

В пакетном режиме работы такие списки называются простыми и формируются
конструкциями command! ; command2 ; . . . и command! & command2 & . . . , называемыми
простым синхронным (листинг 5.35) и простым асинхронным (листинг 5.36) спи­
сками соответственно.

bender@ubuntu: ~ $ (D dd if=/dev/dvd of=dvd.iso 4-1

© © © © © © © © © © ©
150772+0 записей получено

150772+0 записей отправлено

77195264 байт (77 МВ, 74 МгВ) скопирован, 1,83868 s, 42,0 MB/s

•" bender@ubuntu:~$ © Is -lh dvd.tso

-rw-rw-r-- 1 bender bender 74M ноя 23 15:27 dvd.tso

(D 1 © 1
bender@ubuntu:~$ bzip2 -v dvd.tso ; Is -lh dvd.iso.bz2

О dvd.tso: 1.271:1, 6.293 blts/byte, 21.34% saved, 77195264 In, 607210% out.

e -rw-rw-r-- 1 bender bender 58M ноя 23 15:27 dvd.lso.bz2

Интерактивный режим взаимодействия ®@ с командным интерпретатором застав­
ляет пользователя дожидаться завершения текущей выполняющейся программы и
появления приглашения командного интерпретатора для того, чтобы запустить по­
следующую команду. Последовательный список позволяет организовать подобное
последовательное выполнение посредством командного интерпретатора.

©1 ©1
bender@ubuntu:~$ tine xz — best -k plart.iso -S .b.xz & time xz — fast -k ptarS.iso -S .f.xz & ps f

Программирование на языке командного интерпретатора 219

[1] 11978

[2] 11979

PID TTY STAT TIME COMMAND

11716 pts/0 Ss 0:00 -bash

11978 pts/0 S 0:00 _ -bash

О 11981 pts/0 R 0:00 1 _xz --best -k plan9.iso -S .b.xz

11979 pts/0 S 0:00 _ -bash

е 11982 pts/0 R 0:00 1 _ x z --fast -k plan9.iso -S .f.xz

11980 pts/0 R+ 0:00 _ PS f

binder@ubuntu:~$ wait ; Is -lh plan9.*

© © © © © © © © © © ©
© real 0n37.791s

user 0n37.476s

sys 0m0.264s

© © © © © © © © © © ©
© real 3^7.409s

user 3pi6.656s

sys 0m0.472s

[1] - Готово tine xz --best -k plan9.1so -S b.xz

[2] + Готово tine xz --fast -k plan9.iso -S f.xz

-rw-r--г-- 1 binder bender 287M нояб. 28 15:47 plan9.iso

© -rw-r--г-- 1 binder binder 61M "• нояб. 28 15:47 plan9.iso.b.xz

© -rw-r--г-- 1 binder binder 89M "• нояб. 28 15:47 plan9.iso.f.xz

При помощи асинхронного списка (см. листинг 5.36), наоборот, организуется за­
пуск сразу нескольких процессов в «фоновом» режиме, дождаться завершения
которых позволяет встроенная команда интерпретатора wait.

5.6.1. Условные списки
Условные списки команд представляют собой компактные, но достаточно вырази­
тельные конструкции, управляющие ходом выполнения сценария. Как указывалось
выше (см. специальный параметр ? в разд. 5.4.2), каждая команда имеет статус
завершения — нулевой при успешном выполнении и отличный от нуля при неуспеш­
ном. Условный список «И» формируется конструкцией вида connand! && c omand2 SS . . .

и выполняет команды последовательно, запуская очередную команду, только если
предыдущая закончилась успешно (заканчивая свое выполнение после первой
неуспешной команды). Условный список «ИЛИ» вида connand! | | connand2 | | ...,

наоборот, очередную команду запускает только в случае неуспеха предыдущей (за­
канчивая свое выполнение после первой успешно выполнившейся команды).

2 2 0 Глава 5

В примере из листинга 5.37 безусловная попытка О смонтировать ISO-образ дис­
ка неуспешна, потому что эта операция уже была выполнена ранее. Условный
список «ИЛИ» © организует проверку «смонтированности» файловой системы
в указанный каталог. Если первая команда списка findmnt(1) завершится неуспехом
(если никакая файловая система в указанный каталог не смонтирована), то в этом
случае будет запущена команда монтирования fuseiso(1). В противном случае ре­
зультатом успешно выполнившейся команды findmnt(1) будет вывод информации
о файловой системе, уже смонтированной в целевой каталог.

Листинг 5.37. Список «ИЛИ»

bender@ubuntu:~$ fuseiso dvd.iso ~/.dvd

О bender@ubuntu:~$ fuseiso dvd.iso ~/.dvd

fuse: mountpoint Is not empty

fuse: If you are sure this Is safe, use the 'nonerpty' rant option

© bender@ubuntu:~$ set -x

bender@ubuntu:~$ frndmnt ~/.dvd || fuseiso dvd.iso ~/.dvd

+ flndmnt /home/bender/.dvd

TARGET SOLRCE FSTYPE CPTTCNS

/hcme/bender/.chd fuseiso fuse.fuseiso rw.nosuld.nods/,relative,userJjd=1008,gro^_ld=101fl

Условный список «И» в примере из листинга 5.38, наоборот, пытается размонти­
ровать файловую систему, только если она была смонтирована ранее.

Листинг 5.38. список «И»

bender@ubuntu:~$ fusemount -и -/.dvd

fusemount: entry for /home/bender/. dvd not found In /etc/mtab

bender@ubuntu:~$ set -x

bender@ubuntu:~$ flndnnt ~/.dvd && fusemount -u ~/.dvd

+ flndmnt /home/bender/.dvd

Условные списки можно комбинировать, например, в виде
command! && command2 11 command3 . . . или command! 11 command2 88 command}. Сначала будет
выполнена первая команда, и начнется анализ ее статуса завершения по условиям
списка. Если после команды указано условие «И» &&, то при ее успешном завер­
шении будет выполнена следующая команда, а при неуспешном анализ продол­
жится на следующем условии и т. д. И наоборот, если после команды указано
условие «ИЛИ», то при ее неуспешном завершении будет выполнена следующая
команда, а при успешном анализ продолжится на следующем условии. Как только

Программирование на языке командного интерпретатора 221

будет найдена очередная команда для выполнения, она будет выполнена и начнет­
ся анализ ее статуса выполнения по условиям списка, следующим за ней.

Так, например, в листинге 5.39 комбинированный список «ИЛИ-И» всегда приво­
дит к выводу списка файлов из каталога, куда смонтирован ISO-образ, вне зави­
симости от того, был ли он туда смонтирован до запуска списка или был смонти­
рован командами при его выполнении.

Листинг 5.39. Комбинация списков «И» и «ИЛИ»

bender@ubuntu:~$ set -х

bender@ubuntu:~$ findmt ~/.dvd || fuseiso dvd.iso ~/.dvd 88 Is -a ~/.dvd

О + flndnnt /hone/bender/.dvd

© + fuseiso dvd.iso /hone/bender/.dvd

© + Is --color=auto -a /hone/bender/.dvd

acne bootdisk.ing env LICENSE.afpi nips pbsraw spare

adn cfg fd LICENSE.gpl nnt power sys

386 amd64 cron lib ip n power64 tnp

9load arn dist LICENSE nail NOTICE re usr

bender@ubuntu:~$ flndnnt ~/.dvd || fuseiso dvd.iso ~/.dvd 88 Is -a ~/.dvd

© + findnnt /hone/bender/.dvd

TARGET SOURCE FSTYPE OPTIONS

/hone/bender/.dvd fuseiso fuse.fuseiso rw,nosuid,nodev,relatlne,user_id=1008,...

© + Is --color=auto -a /hone/bender/.dvd

acne bootdisk.ing env LICENSE.afpi nips pbsraw spare

adn cfg fd LICENSE.gpl nnt power sys

386 amd64 cron lib ip n power64 tnp

9load arn dist LICENSE nail NOTICE re usr

5.6.2. Составные списки: ветвление

Условные списки «И» и «ИЛИ» являются простейшей формой ветвления хода вы­
полнения сценария в зависимости от успеха или неудачи выполнения той или иной
команды. При помощи специальной команды1 test(1), позволяющей выполнять про­
верки логических выражений, можно осуществлять ветвление сценария, например,
в зависимости от определенных условий или значений тех или иных параметров.

1 Аналогично специальной команде ехрг(1), предназначенной для вычисления арифметических вы­
ражений.

2 2 2 Глава 5

В листинге 5.40 показано, что команда test(1) и ее «красивая» форма [изначально
являются внешними командами, что также влечет за собой накладные расходы на
системные вызовы fork(2) и execve(2). Поэтому в большинстве интерпретаторов обе
формы команды test(1) реализованы еще и как встроенные команды.

•:---------- 7 ----------------------*“ ' щ --------------- Т Ш — Г " --- --- !■ "W: S -------------Ш ? ---------------------------------------'-------------

Листинг ь.4и. Команды ЕCSL и [

bender@ubuntu:~$ which test

/usr/bin/test

bender@ubuntu:~$ which.[

/usr/bin/[

bender@ubuntu:~$ type -a test

test - это встроенная команда bash

test является /usr/bin/test

test является /bin/test

bender@ubuntu:~$ type -a [

[- это встроенная команда bash

[является /usr/bin/[

[является /bin/[

bender@ubuntu:~$ test -f /etc/passwd

bender@ubuntu:~$ echo $?

0

bender@ubuntu:~$ [-w /etc/passwd

-bash: [: отсутствует символ «]»

bender@ubuntu:~$ [-w /etc/passwd] "•

bender@ubuntu:~$ echo $?

1

Команда test(1) выполняет проверку логических выражений и заканчивается успе­
хом, если проверяемое выражение истинно, и неуспехом, если проверяемое выра­
жение ложно. Именно это ее свойство используется для реализации ветвления.
Например, во втором примере из листинга 5.41 проверятся наличие блочного (-Ь)
файла устройства /dev/cdron и при наличии запускается команда eject(l), предписы­
вающая драйверу устройства открыть лоток привода CD/DVD.

| Листинг 141. ветвление яри помощи условных списков

bender@ubuntu:~$ which clear && clear || tput clear

bender@ubuntu:~$ [-b /dev/cdron] && eject /dev/cdron

Программирование на языке командного интерпретатора 223

Условные списки удобно использовать для ветвления, если в каждой ветви выпол­
няется по одной команде, как в первом примере из листинга 5.41, где посредст­
вом which(1) проверяется наличие команды clear(1), которая при наличии и вызыва­
ется для очистки терминала. В противном случае терминал очищается при помощи
управляющей последовательности, которую выводит команда tput(l).

При необходимости выполнить в каждой ветви сценария несколько команд исполь­
зуется конструкция ветвления «ЕСЛИ» вида

if [!] list; then list; Г elif [!] list; then list;] ... Гelse list;] fi,

являющаяся сост авн ы м сп и ском и использующая к л ю ч ев ы е сл о ва языка командно­
го интерпретатора: if, then, elif, else, fi. Стоит заметить, что в самой конструк­
ции л о ги ч ес к и е вы раж ен и я отсутствуют, а ветвление основано на статусах завер­
шения списков команд, указывающихся после ключевых слов if и elif. В листин­
ге 5.42 из ISO-образа извлекается каталог sys/src, но двумя разными способами.
Если установлен архиватор 7z(1) и обнаружен командой which(1), то выполняется
«успешная ветвь» ® с его использованием, иначе выполняется «неуспешная» ветвь
с использованием монтирования/размонтирования ISO-образа при помощи
fuseiso(1).

: у 1 -ут ;у >"*31 А1И..ДЦ I < * В И 1 У И ||И И И И И Я Я И Я И Д Я И И И И Д |Д Е 5 3 д ^

Листинг S.4Z. простое ветвление по результату выполнения команд
__________________________ "_______ _ __!_Я_1__И_I__ !______ НИИ_

0 bender@ubuntu:~$ if which 7z

> then *J

I ® > 7z x plan9.iso sys/src ♦~J

> else ̂

i ® > fuseiso dvd.iso ~/.dvd «-1

1 > cp -a ~/dvd/sys/src . ♦J

l > fuse mount -u ~/.dvd «-1

> ^

© bender@ubuntu:~$ if ! findmnt ~/.dvd «-1

> then «-1

> fuseiso dvd.iso ~/.dvd *-J

> ft*-1

© bender@ubuntu:~$ if test -b /dev/cdron; then eject /dev/cdron; fi

В примере © из листинга 5.42 используется признак отрицания !, который за­
ставляет if действовать «наоборот», т. е. запускать ветвь then, если список после

224 Глава 5

i f закончился неуспешно, и ветвь else в противном случае. В примере © стоит
обратить внимание на то, что списки, использующиеся в конструкции if , могут
отделяться символом ;, а не символом перевода строки «-1, как в примерах О и ©.

В листинге 5.43 приведен маленький сценарий на языке командного интерпретато­
ра, исполняющийся интерактивно в режиме трассировки команд. В нем использу­
ются практически все конструкции командного интерпретатора: перенаправление
потоков, конвейер, подстановки команд, параметров, арифметических выражений,
экранирование и составной список ветвления.

'......>........... &..........' | ! E g " ” ’Г ’ S ; ' ^ Т< ” х~.;

Листинг 5.4В. Простое ветвление по результату проверки условий

bender@ubuntu:~$ set -х

О bender@ubuntu:~$ load=$(awk '{prlntf "Xd", $1*160 + $2*10 + $3}' < /ргос/loadavg)

++ awk '{printf "Xd", $1*100 + $2*10 + $3}'

+ load=86

© bender@ubuntu:~$ power=$(($(nproc)*100))

++ nproc

+ power=400

© bender@ubuntu:~$ tenp=$(($(cat /sys/class/themal/themal_zone0/tenp)/1060))

++ cat /sys/class/thermal/thernal_zone0/temp

+ temp=55

О bender@ubuntu:~$ if [$load -ge $power -a $tenp -gt 80]

> then ♦J

> notify-send "Обнаружена перегрузка: t=$tenp C" "$(top -bnl | head -5)"

> fx*-1
© + '[' 86 -ge 400 -a 55 -gt 80']'

Сначала © вычисляется «интегральная» нагрузка на систему load путем «взвешива­
ния» с весами 100, 10 и 1 статистики за последние 1, 5 и 15 мин о среднем ко­
личестве процессов, стоящих в очереди на получение процессорного времени или
доступа к устройству ввода-вывода. Измеряемая ядром статистика считывается из
трех столбцов одной строки файла /ргос/loadavg псевдофайловой системы ргос(5).
Взвешивание выполняется при помощи процессора текстовых таблиц W :[AW K] (см.
разд. 5.8.3), основное назначение которого состоит в разбиении строк на столбцы
и построчном выполнении указанных действий над ними. В данном случае awk(1)
выводит в формате (printf) целого числа (Xd) результат взвешивания на основе
значений статистики из первого (S1), второго ($2) и третьего (S3) столбцов.

Затем © вычисляется «мощность» вычислительной системы power путем умножения
100 (процентов) на количество ядер процессора. Следующим шагом © вычисляет-

Программирование на языке командного интерпретатора 225

ся температура tenp процессора в градусах °С, рассчитываемая путем деления на­
цело измеряемой ядром (из псевдофайловой системы sysfs) температуры на 1000
(миллиградусов).

Завершает сценарий составной список ветвления i f О, проверяющий при помощи
«красивой» формы [команды test(1) логическое выражение |нагрузка ^ мощ­
ность И температура > 80°С| на истинность и уведомляющий при помощи
nodtify-send(l) пользователя о перегрузке, в сообщении которого будет приведена
текущая статистика потребления ресурсов из первых 5 строк вывода команды
top(l).

Еще один вид составного списка, предназначенного для организации множествен­
ного ветвления, реализуется конструкцией

case word in [[(] pattern! [| pattern2] . . .) l i s t i i i] . . . esac

с ключевыми словами case, in, esac и признаком окончания ветви При множе­
ственном ветвлении используются не логические1, а шаблонные выражения, заим­
ствованные у подстановок имен файлов. Для определения ветви исполнения слово
word проверяют на соответствие шаблонам pattern! слева направо (сверху вниз),
при совпадении с одним из которых выполняется соответствующий список команд
listj, и дальше никакие проверки не производятся.

В примере из листинга 5.44 сильно заэкранированный текст небольшого сценария
командного интерпретатора присваивается переменной PROMPT.COMMAND, выполнение
команд которой происходит каждый раз перед выводом первичного приглашения
PS1. В роли такой команды выступает составной список множественного ветвления
case, который анализирует статус завершения последней выполненной интерпрета­
тором команды при помощи подстановки значения специального параметра $?.

Если статус завершения равен 0 (успех) или 127 (команда не найдена), то вспомо­
гательной «выдуманной» переменной PR0MPT_C0L0R присваивается управляющая по­
следовательность (см. разд. 2.4) «нормального» (sgrO) режима вывода на терминал.
Если статус завершения равен 130 (штатное завершение по сигналу SIGINT, напри­
мер, при нажатии на *С) или 131 (аварийное завершение по сигналу SIGQUIT, на­
пример, при нажатии на А\), то используется управляющая последовательность
«негативного» (rev) вывода О. Если же команда завершилась со статусом 1 или
с любым другим ошибочным статусом, то будет использована управляющая после­
довательность «жирного» (bold) начертания ©.

' При «обычном» ветвлении i f - th e n - e ls e для определения ветви исполнения тоже используются
не логические выражения, а статусы завершения списков.

2 2 6 Глава 5

Пистинг5.44 Множественное ветвление

bender@ubuntu:~$ PROMPT_COMMAND=

> case $? in *J

> 0|127) PROMPT_COLOR='tput sgre'n «-1

> 13[01]) PROMPT_COLOR='tput rev'n W

> 1) PROMPT_COLOR='tput bold'n и

> *) echo "exit code = $?"; PROMPT_COLOR='tput bold'n V

> esac,+J

bender@ubuntu:~$ PSl='echo $PROMPT_COLOR'\u@\h \w\S ‘tput sgrO'1

bender@ubuntu ~$ dd

*C0+0 записей получено

0+0 записей отправлено
скопировано 0 байт (0 В), 0,900673 с, 0,0 кВ/с

1Я̂ «1ЯШЯВЯИЕ

О Д М Ш Ж date

Сб ноя 23 15:55:19 MSK 2019

bender@ubuntu ~$

bender@ubuntu ~$ grep bender /etc/shadow

дгер: /etc/shadow: Отказано в доступе

exit code = 2
в bender@ubuntu ~$

5.6.3. Составные списки: циклы
Последний важный вид составных списков предназначен для многократного цикли­
ческого выполнения команд в сценариях командного интерпретатора. Различают
цикл с параметром, реализуемый конструкцией

for name in [words ...]; do list; done.

и циклы с условием «ПОКА»
while [!] list; do list; done

и «ДО»
unitl [!] list do list; done

с ключевыми словами for, in, while, until, do, done соответственно.

В примере из листинга 5.45 цикл с параметром используется для создания галереи
миниатюр фотографий при помощи составного списка for и подстановки вывода

Программирование на языке командного интерпретатора 227

команд. В режиме трассировки команд интерпретатора видно, что команда convert(1)
в теле цикла выполняется столько раз, сколько слов (найденных имен файлов)
было подставлено из вывода команды find(1). При этом переменная file на каждой
итерации цикла О принимает очередное значение из подставленного списка.
В результате последовательных подстановок разных значений переменной Sfile

были выполнены одинаковые преобразования разных файлов изображений.

Листинг 5.4J Цикл с параметр*

bender@ubuntu:?-$ set -х

bender@ubuntu:~$ for file in $(find D O M -папе '*.jpg')

> do-"

> convert Sfile -resize 106x $(basenane Sfile .jpg).nini.jpg 4-J

> done *-*

О ++ find DCIM -inane '*-jpg1
О + for file in '$(find DCIM -папе '\ ''*.j p g ' V ')'

++ basenane DCIM/DSC_0067.jpg .jpg

+ convert DCIM/DSC_0067.jpg -resize 100x DSC_0067.nini.jpg

О + for file in '$(find DCIM -папе ' V * . j p g ' V ')'

++ basenane DCIM/DSCJ0189.jpg .jpg

+ convert DCIM/DSC_0189.jpg -resize 100x DSC_0189.nini.jpg

О + for file in '$(find DCIM -inane ' V '*.j p g ' V ')'

++ basenane DCIM/DSC_0062.jpg .jpg

+ convert DCIM/DSC_0062.jpg -resize 100x DSC_0062.nini.jpg

О

В этом примере для формирования результирующих имен файлов используется
подстановка вывода команды basename(1) для отрезания «расширений» .jpg от имен
файлов, к которым затем приклеиваются новые «расширения» .nini.jpg.

В примере из листинга 5.46 составной список for используется вместе с подста­
новкой команды seq(1), формирующей список чисел 1, ..., 254, очередные значения
из которого принимает переменная node. На каждой итерации цикла О использу­
ется подстановка значения Snode для формирования IP-адреса очередного узла ло­
кальной сети, доступность которого проверяется при помощи команды ping(1).

11!

bender@ubuntu:~$ for node in $(seq 1 254) *-J

> d o ^

228 Глава S

>■ ping -с 1 -W 1 192.168.1.$node «-1

> c ♦J
++ seq 1 254

() + for node in '$(seq 1 254)'

+ ping -с 1 -W 1 192.168.1.1

PING 192.168.1.1 (192.168.1.1) 56(84) bytes of data.

--- 192.168.1.1 ping statistics ---

1 packets transmitted, 0 received, 100% packet loss, time 0ms

() + for node in '$(seq 1 254)'

+ ping -с 1 -W 1 192.168.1.45

PING 192.168.16.45 (192.168.16.45) 56(84) bytes of data.

64 bytes from 192.168.16.45: icmp_req=l ttl=62 time=5.25 ms

--- 192.168.16.45 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 5.257/5.257/5.257/0.000 ms

() + for node in '$(seq 1 254)'

+ ping -с 1 -W 1 192.168.1.254

PING 192.168.1.1 (192.168.1.254) 56(84) bytes of data.

--- 192.168.1.254 ping statistics ---

1 packets transmitted, 0 received, 100% packet loss, time 0ms
0

В примере из листинга 5.47 на основе составного списка while организован «инди­
катор прогресса» процесса фонового сжатия ISO-образа диска при помощи опроса
его состояния. Цикл выполняется, пока успешна команда ps(1), опрашивающая
процесс, PID которого передан при помощи подстановки специального параметра
$!. При каждой итерации цикла О команда ls(1) выводит размер выходного файла
dvd.iso.bz2, а команда sleep(1) приостанавливает выполнение на 1 секунду.

Листинг 5.47. Цикл «ПОКА»: ожидание завершения процесса

bender@ubuntu:~$ bzip2 -kf dvd.iso &

[1] 5773

bender@ubuntu:~$ set -x

bender@ubuntu:~$ while ps p $! ; do Is -Ih dvd.iso.bz2; sleep 1 ; done

О + ps p 5773

PID TTY STAT TIME COMMAND

Программирование на языке командного интерпретатора 229

5773 pts/0 R 0:05 bzip2 -kf dvd.lso

+ Is --color=auto -Ih dvd.iso.bz2
-rw....... 1 bender bender 9,6M "• дек. 12 13:38 dvd.iso.bz2

+ sleep 1
О + ps p 5773

PID TTY STAT TIME COMMAND

5773 pts/0 R 0:58 bzip2 -kf dvd.iso

+ Is --color=auto -Ih dvd.iso.bz2
-rw.......1 bender bender 87M "• дек. 12 13:39 dvd.iso.bz2
[1]+ Готово bzip2 -kf dvd.iso

+ sleep 1
Q + ps p 4523

*■ PID TTY STAT TIME COMMAND

В примере из листинга 5.48 составной список while используется в качестве гене­
ратора пар имен файлов для массового параллельного переименования. Для этого
стандартный поток ввода построчно считывается в цикле при помощи встроенной
команды интерпретатора read, причем на каждой итерации цикла переменная FN

принимает значение очередной строки, а команда read завершается успешно до ис­
черпания строк. В результате выполнения встроенной команды echo и при помощи
подстановки значения переменной $FN и подстановок вывода команд dirname(1) и
basename(l) на стандартном потоке вывода составного списка формируются пары
имен файла — исходное считанное путевое имя и синтезированное путевое имя
с измененным «расширением файла». Исходный поток имен формируется командой
find(1), а результирующий поток передается команде xargs(1), которая в свою оче­
редь передает пары имен (-п2) командам nv(l), запускаемым параллельно в коли­
честве ядер процессора, которое было получено командой пргос(1).

Лисшг 5.48. Цикл «ПОКА»: массово» параллельно переименование файлов

bender@ubuntu:~$ find DOM -папе '*.jpg' |

> while read FN ; do echo $FN $(dirnane $FN)/$(basenane $FN .jpg).jpeg ; done | +■*

> xargs -n2 -P $(nproc) nv «-•

Аналогично, в примере из листинга 5.49 составной список while используется в
качестве генератора О классификатора файлов по их контрольным М05-суммам.
При помощи команд find(1), xargs(1) и md5sum(1) формируется поток строк, в первом
столбце которых будет выведена контрольная сумма W :[M D 5] файла, а во втором
столбце — его имя. Полученный поток построчно считывается в цикле при помо­

230 Глава 5

щи встроенной команды интерпретатора read, причем на каждой итерации перемен­
ные sun и file принимают значения соответственно первого и второго столбцов
строки, при этом во временном каталоге создаются файлы классификатора, имено­
ванные значениями $ s u n , в содержимое которых добавляются имена Sfile. Если
контрольные суммы нескольких обрабатываемых файлов одинаковые, то их имена
будут добавлены в разные строки одного и тот же файла классификатора. Остает­
ся только найти те файлы классификатора, которые содержат более одной строки,
они и будут содержать имена дубликатов. Для поиска по классификатору © ис­
пользуется аналогичная связка find(1), xargs(1) и wc(1), формирующая на потоке вы­
вода текстовую таблицу по два столбца в строке, в первом из которых указано
количество строк в файле классификатора, а во втором — его имя. Затем при
помощи процессора текстовых таблиц awk(1) на стандартный поток вывода печата­
ются только те имена файлов классификатора из второго столбца строк таблицы
(print $2), в первом столбце которых содержится число, большее единицы ($1 > 1).

Полученный поток имен файлов отправляется на xargs(1) для вывода имен (-t) и
содержимого при помощи cat(1). Необходимо заметить, что сам классификатор раз­
мещен в каталоге файловой Системы W :[tm pfs], использующей для хранения опера­
тивную память, и имеет случайное имя, сгенерированное при помощи mktemp(1).

Листинг 5.49. Цикл . ПОКА»: поиск дублирующихся фотографик

bender@ubuntu:~$ df -h /гип/shn

Файл.система Размер Использовано Дост Использовано X Смонтировано в

none' 4,0G 26М 3,9С IX /run/shn

kotoff@ubuntu: ~$ findmt /run/shn

TARGET SOURCE FSTYPE OPTIONS

/run/shn tmpfs rw,nosuid,nodev,relatin

bender@ubuntu:~$ T=$(mktemp -d /run/shn/XXXXXX)

bender@ubuntu:~$ find D O M -type f -prints | xargs -0 -nl nd5sun [«-1
© > while read Sun file ; do echo Sfile » $T/$si“ ; doner1

© bender@ubuntu:~$ find $T -type f | xargs -nl wc -1 I*-1
> awk '$1 > 1 { print $2 }' | xargs -nl -t cat

+- cat /dev/shn/fjYfn/4f7bal91573ded309bc0f04e08309d8a

DCIM/Canera/IMG_20140731_212625+.jpg

DCIM/Canera/IMG_20140731_212625.jpg

cat /dev/shn/fjYfn/4329ae8006b6935d0c7fd66b57e07c0c

DCIM/DSC_0046+.JPG

DCIM/DSC_0046.JPG

В листинге 5.50 проиллюстрирована вторая форма цикла с условием — составной
список until, который применяется для ожидания доступности подключения к Ин­

Программирование на языке командного интерпретатора 231

тернету путем опроса наличия связи с узлом 8.8.8.8 (публичный DNS-сервер ком­
пании Google) при помощи команды ping(1). Нужно отметить, что использование
until list do done может быть заменено эквивалентным while ! list do done

с указанием признака отрицания !.

Листинг 5,50. Цикл «ДО»: ожидание дииунждли подключения к Интернету

bender@ubuntu:~$ set -х

bender@ubuntu:~$ until ping -cl -wl S.8.8.8 ; do sleep l;date ; done

О + ping -cl -wl 8.8.8.8
connect: Network is unreachable

+ sleep 1
+ date

C6. дек. 19 09:11:32 MSK 2015

() + ping -cl -wl 8.8.8.8
•" connect: Network is unreachable

+ sleep 1
+ date

C6. дек. 19 09:11:39 MSK 2015
0 + ping -cl -wl 8.8.8.8

PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp_req=l ttl=56 time=11.6 ns

--- 8.8.8.8 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, tine 0ns
rtt min/avg/max/mdev = 11.670/11.670/11.670/0.000 ns

5.6.4. Функции
Как и во многих языках программирования, командный интерпретатор имеет сред­
ства структуризации сценариев при помощи функций. Составной именованный
список команд, называемый функцией, объявляется при помощи (Bourne- и
POSIX-диалекты) конструкций
n a n e O compound-list

или (Korn-диалект)

function name compound-list

с использованием ключевого слова function, где compound-list — это составной
список, например if, case, for или while. Сформировать составной список из кон­
вейера, простого или условного списка можно при помощи конструкций { list; },

232 Глава 5

или (list), позволяющих выполнить list в том же или в отдельном дочернем про­
цессе интерпретатора.

После объявления функция может быть неоднократно вызвана (как и любая дру­
гая внешняя или встроенная команда) с разными фактическими параметрами, зна­
чения которых в самой функции доступны при помощи подстановки позиционных
параметров (см. разд. 5.4.2).

В примере из листинга 5.51 объявляется, а затем вызывается без параметров
функция, выполняющая вывод идентификаторов пользовательских учетных записей,
доступных в системе (по аналогии с листингом 5.13).

Листинг 5.51. Список пользователей, зарегистрированных в операционной системе

bender@ubuntu:~$ function getusers^

> £-
> getent passwd | cut -f 1 -d : | xargs -nl id1-1

> y-1
bender@ubuntu:~$ type -a getusers

getusers - это функция

getusers ()

{
getent passwd) cut -f 1 -d : | xargs -nl id

}
bender@ubuntu:~$ getusers

uid=0(root) gid=0(root) rpynnw=0(root)

uid=10Ol(finn) gid=10Ol(finn) rpynnbt=10O7(candy),10Ol(finn)

uid=10O2(jake) gid=10O2(jake) группы=10О2(jake)

uid=10O3(iceking) gid=1003(iceking) rpynnbt=10O3(iceking)

uid=1004(narceline) gid=1004(narceline) rpynnbt=10O4(marceline)

uid=1005(bubblegum) gid=1005(bubblegum) rpynnbt=10O7(candy),10O5(bubblegum)

uid=1006(fitz) gid=10O8(fitz) rpynnbt=27(sudo),10O8(fitz)

uid=1007(skillet) gid=1009(skillet) группа1009(skillet)

uid=1008(bender) gid=1010(bender) группы=1010(bender)

В листинге 5.52 объявляется функция, являющаяся универсальным экстрактором
«архивов». Сначала О при помощи «красивой» формы [команды test(1) определя­
ется наличие файла (- f), путевое имя которого будет передано первым фактиче­
ским параметром при вызове функции. Затем ©, если заданный файл найден, при
помощи множественного ветвления и шаблонов, «примеряемых» к имени заданного

Программирование на языке командного интерпретатора 233

файла, определяется и выполняется в соответствующей ветви команда распаковки
tar(1), gunzip(1), bunzip2(1), гаг(1), unzip(1), uncompress(l) или 7z(1). При запуске функции
в режиме трассировки видно, как работает передача аргументов в функцию, как
выполняются списки ветвления и множественного ветвления.

Листинг 5.52. Универсальный экстрактор архивов

bender@ubuntu:~$ extract Q 4-1

О > if [-f $1] «-■

> then 4-J

© > case $1 in *J

> *.tar) tar xf $1;; ♦J

> *.tar.bz2|*.tbz2) tar xjf $1;; «-1

> *.tar.gz|*.tgz) tar xzf $1;; +-1

> *.gz) gunzip $1;; ^

> *.bz2) bunzip2 $1;; +-1

> *.гаг) rar x $1;; ♦J

> *.zip) unzip $1;; 4-1

> *.Z) uncompress $1;; ^

> *.7z|*.iso) 7z x $1;; +-1

> *) echo "Неизвестен распаковщик для 'Si'"; return l;j ♦J

> esac

> else *J

> echo "'Si' не является файлом”; return l 4-1

> f i
bender@ubuntu:~$ type -a extract

extract является функцией

extract ()

{

}
bender@ubuntu:~$ set -x

bender@ubuntu:~$ extract dvd.iso

+ extract dvd.iso

•- + '[' -f dvd.iso ']'

+ case $1 in
+ 7z x dvd.iso

7-Zip [64] 16.02 : Copyright (c) 1999-2016 Igor Pavlov : 2016-05-21

p7zip Version 16.02 (locale=ru_RU.UTF-8,Utfl6=on,HugeFiles=on,64 bits,...,ASM,AES-NI)

234 Глава 5

Processing archive: dvd.iso

bender@ubuntu:~$ extract /tnp

+ extract /tnp

•- + '[' -f /tnp ']'

+ echo ' '/tnp'V' не является файлом1
'/tnp' не является файлом

+ return 1

bender@ubuntu:~$ extract lynx_2.8.8dev.9-2ubuntuG.12.04.l_all.deb

+ extract lynx_2.8.8dev.9-2ubuntu0.12.04.1_aYl.deb

+ '[' -f lynx_2.8.8dev.9-2ubuntu0.12.04.1_all.deb '] '
•" + case $1 in

+ echo 'Неизвестен распаковщик для '\"lynx_2.8.8dev.9-2ubuntu0.12.04.l_all.deb'\''1

Неизвестен распаковщик для ,lynx_2.8.8dev.9-2ubuntu0.12.04.1_aYl.deb’

+ return 1

Объявленные функции, как и переменные, располагаются в оперативной памяти
процесса командного интерпретатора, в силу чего их время жизни и область ви­
димости так же ограничиваются процессом их интерпретатора. В этом смысле
объявленные функции практически неотличимы от встроенных команд интерпрета­
тора и могут расцениваться как его «расширения».

Сохранить объявленные функции и присвоенные переменные нельзя, но можно их
повторно объявить и присвоить, воспользовавшись инициализационными dot-
файлами (см. разд. 2.8) интерпретатора, например сценариями .bashrc или .profile.

5.7. Сценарии на языке командного интерпретатора
Сценарий на языке командного интерпретатора представляет собой текстовый файл
со списком команд, подлежащих выполнению в пакетном режиме. Достаточное ко­
личество программного обеспечения в системе написано на языке командного ин­
терпретатора и представлено сценариями в каталогах /usr/bin и /bin. Сценарии
неотличимы от любых других программ и доступны пользователями как внешние
команды, формируя таким образом «расширения» операционной системы.

Пользователи, расширяющие таким образом операционную систему за счет собст­
венных сценариев, располагают их обычно в каталоге -/bin и наделяют правом
исполнения (см. О и © в листинге 5.2). Аналогично, «локальные» расширения,
выполняемые системными администраторами для всех пользователей операционной
системы, располагаются в /usr/local/bin (см. листинг 5.68).

Программирование на языке командного интерпретатора 235

В листинге 5.53 приведен сценарий Idr (loader requirements), обратный утилите
ldd(1) (loader dependencies). Если при помощи ldd(1) можно увидеть библиотеки, от
которых зависит заданная программа, то сценарий Idr, наоборот, показывает про­
грамму, использующую заданную библиотеку (листинг 5.54).

В сценарии объявлена О функция usage, формирующая сообщение пользователю
о правильных параметрах запуска сценария и использующаяся при некорректно
заданных параметрах © и ©-©. В соответствии с соглашениями о выводе сооб­
щение об «ошибке» перенаправлено О-Ф на поток stderr при помощи перенаправ­
ления потока stdin конструкцией [п]>&п. По соглашению о статусе завершения
с «ошибкой» встроенная команда exit возвращает ненулевое значение О-© . Кор­
ректность параметра $1 — имени искомой библиотеки — проверяется на «пустоту» ©
при помощи «красивой» формы [команды test(l).

Сам сценарий выполняется следующим образом: сначала © переменной Idpath

присваивается список имен каталогов, используемых динамическим компоновщиком
ld.so(8) для поиска библиотек. Для этого из конфигурационных файлов компонов­
щика /etc/ld.so.conf.d/*.conf фильтруются (см. листинг 5.57) строки, незакоммен-
тированные символом #. Затем ©, в зависимости от формы задания имени целевой
библиотеки, переменной what присваивается имя ее файла. Если библиотека была
сразу задана абсолютным путевым именем своего файла, соответствующим шаб­
лонному выражению /*/lab*.so.[0-9], то оно используется непосредственно. Если
библиотека была задана «предметным» именем NAME, то при помощи команды find(1)
организуется поиск абсолютного путевого имени файла библиотеки по шаблону
lib/iM/f£.so.[Q-9] в каталогах компоновщика ld.so(8), перечисленных в переменной
Sldpath, а найденные имена присваиваются переменной what. Корректность резуль­
тата «вычисления» имен файлов библиотеки проверяется © при помощи «краси­
вой» формы [команды test(1) на предмет непустоты (-z) результатов поиска. На
очередном шаге сценария © переменной where присваивается список каталогов
(перечаленных в переменной окружения PATH), содержащих «доступные» пользова­
телю исполняемые файлы программ. Для этого при помощи транслитератора tr (l)
символы-разделители РАТН-списка — двоеточия — заменяются требуемыми сим­
волами-разделителями — пробелами.

bender@ubuntu:~$ cd bin
bender@ubuntu:~/bin$ c a t Id r
#!/bin/sh

О usage() {

|® echo "Usage: $(basenatne $0) nane | /.../Iibnane.so.0" >82 "•

|® exit 1

u }

2 3 6 Глава 5

© [-z "$1"] && usage

© ldpath=$(grep -h ,Л[Л#]' /etc/ld.so.conf.d/*.conf)

© case $1 in

I® /*/lib*.so.[0-9]) what=$l;;

I® *) what=$(find $ldpath -name "lib$l.so.[0-9]" 2>/dev/null);;

L* esac

© if [-z "$what"]

| then

| echo "Library $1 is not found in $LDPATH"

| ® usage

■- fi

© where=$(printenv PATH | tr ':' ' ')

© for lib in $what

find $where -type f |

xargs file -L |

grep ':.*ELF' |
cut -f 1 -d : |

while read exe

Idd $exe | grep -q $lib && echo $exe

do

©Ш)
I®
I®
I®
I®
| do

I®
L* done

done

Целевая работа сценария выполняется одним конвейером в , в котором при по­
мощи find(1) ищутся ® регулярные файлы (-type f) в каталогах $where, список
имен которых при помощи xargs(1) передается ® для классификации file(1). Постро­
енный классификатор имя: класс фильтруется © при помощи дгер(1), из которого
затем отделяются имена ® посредством cut(1). Последняя команда конвейера —
составной список while циклично перебирает © имена файлов, считывая их встро­
енной командой read в переменную ехе, где на каждой итерации цикла проверятся
зависимость исполняемого файла $ехе от заданной библиотеки. Зависимость уста­
навливается © по факту успешного завершения дгер(1), определяющего только на­
личие (-q) в выводе ldd(1) строки с именем путевого файла библиотеки $lib.

Программирование на языке командного интерпретатора 237

Кроме того, конвейер в вложен в цикл f o r ©, который пробегает переменной l i b

по всем найденным ранее ®© именам файлов библиотек, сохраненных в перемен­
ной S w h a t.

Листинг 5.54. Утилита ldd(i) и сценарий Иг

bender@ubuntu:~$ Idr gtk-3
/usг/bin/еод

/us г/bin/evince

/us г/bin/gnome-disk - image - mounter

bender@ubuntu:~$ Idd /usr/bin/eog
linux-vdso.so.1 (0x00007ffd211bf000)

•" libgtk-3.so.0 => /lib/x86_64-linux-gnu/libgtk-3.so.0 (0x00007ff9735e3000)

bender@ubuntu:~$ Idr pthread | wc -1
© © © © © © © © © © ©
617

5.8. Инструментальные средства обработки текста
Данные, которые генерируют, обрабатывают и потребляют внешние и встроенные
команды и конструкции интерпретатора, представляют собой текстовые потоки
с произвольной структурой. Чаще всего в потоке можно выделить строки, отде­
ляемые друг от друга управляющим символом перевода строки \n (CR, AJ с кодом
ОхОА). Иногда в каждой строке выделяют поля, отделяемые друг от друга пробель­
ными символами — управляющим символом горизонтальной табуляции \ t (НТ, Л1
с кодом 0x09) или символом пробела (SPC с кодом 0x20) либо каким-то другим
символом, зачастую символом двоеточия : или символом вертикальной черты |.

Для манипуляции текстовыми данными используют \У:[регулярные выражения] —
формальный язык поиска подстрок, удовлетворяющих определенным правилам
(табл. 5.2). Регулярные выражения подобны шаблонным выражениям, которые
применяются в подстановках имен файлов (см. раэд. 5.4.1) и в команде Find(l) при
поиске файлов по критерию имени (-name).

Регулярные выражения (RE, Regular Expressions) учитывают строковую структуру
обрабатываемых данных (табл. 5.3) и по сравнению с шаблонными выражениями
вводят два дополнительных метасимвола — А и $, обозначающих начало и конец
строки соответственно. Различают традиционные для UNIX, базовые1 (BRE, Basic

1 В о в сех и ллю страти вны х л и сти н гах и сп о л ь зу ю т ся BRE, а и зу ч ен и е ERE и PCRE в ы ходит за рамки
этой книги.

238 Глава 5

RE), расширенные1 (ERE, Extended RE) и Perl-совместимые регулярные выраже­
ния (PCRE, Perl Compatible RE).

Таблица 5.2. Базовые регулярные выражения

Метасимвол Значение

• Любой одиночный символ

с* Любое количество символов с

Любое количество любых символов

[a b . . . z] Любой символ из набора а, Ь,..., z '

[Aa b .. .z] Любой символ НЕ из набора а, Ь,..., z

Л Начало строки

$ Конец строки

Таблица 5.3. Регулярные выражения в сравнении с шаблонными выражениями

Шаблонные
выражения

Регулярные
выражения Значение

7 • Любой одиночный символ

* в * Любое количество любых символов

Основной набор инструментальных средств, используемых для обработки тексто­
вых потоков, включает в себя фильтр строк дгер(1), транслитератор tr(1), фильтр
символов и полей cut(1), склейщик строк и полей paste(1), процессор таблиц awk(1)
и потоковый редактор sed(1).

5.8.1. Фильтр строк дгер
Имя команды дгер(1) восходит к команде g древнейшего текстового редактора ed(1),
которая использовала регулярные выражения ге для глобального поиска строк и
применения других команд редактора к ним, например команды печати р. В целом
встроенная команда редактора ed(1) записывалась как g/ге/р, что затем и дало на­
звание эквивалентной внешней команде дгер(1), фильтрующей (и печатающей на
поток вывода) строки, соответствующие заданному регулярному выражению
(рис. 5.5). 1

1 В стандарте W:[POSIX],

Рис. 5.5. Фильтр строк дгер(1)

В примерах из листингов 5 .55 и 5 .5 6 Fgгер(1) и дгер(1) используются для фильтра­
ции строк, содержащих (-F) фиксированные слова, что быстрее, чем обработка
полных регулярных выражений.

bender@ubuntu:~ $ file -Li /*Ып/* /usr/*bin/* | fgrep shellscri.pt

/ Ы п /bzcinp: text/x-shellscript; charset=us-ascii

/bin/setupcon: text/x-shellscript; charset=utf-8

/sbin/dkms: text/x-shellscript; charset=us-ascii

bender@ubuntu:~$ ps axo rss,com | grep -F chrone

137812 chrome

45872 chrome

13068 chrome

104368 chrome

72052 chrome

97244 chrome

50984 chrome

19936 chrome

В примере из листинга 5.57 отфильтровываются строки конфигурационного файла
команды wget(1), закомментированные символом # в их начале. Для этого выбира­
ются строки, соответструющие регулярному выражению А[А#], которое требует
в начале строки А наличия символа, не А входящего в набор [#].

240 Глава 5

Листинг 5.57. Выборка строк: фильтрация к(мменториеь

bender@ubuntu:/etc$ wc -l /etc/wgetrc

138 /etc/wgetrc

bender@ubuntu:/etc$ grep 'A[A#]1 /etc/wgetrc

passive_ftp = on

В листинге 5.58 при помощи регулярного выражения [А0-9][0-9][0-9][А0-9] выби­
раются строки с двузначными числами — содержащие два символа подряд из на­
бора [0-9] (цифры), непосредственно перед которыми и после которых находятся
символы не А из набора [0-9] (не цифры).

Листинг 5.58. Выборка строк с двузначными числами

bender@ubuntu:/etc$ grep [А0-9][0-9][0-9][А0-9] /etc/services

systat И /tcp users

daytime 13/tcp

z3950 210/tcp wais # NISO Z39.50 database

#> Ports are used in the TCP [45,106] to name the ends of logical

rtcm-scl04 2101/tcp # RTCM SC-104 IANA 1/29/99

xll 6000/tcp xll-0 # X Window System

xll 6000/udp xll-0
xll-1 6001/tcp

The following is probably Kerberos v5 --- ajt@debian.org (11/02/2000)

5.8.2. Фильтр символов и полей cut

Команда cut(1) применяется для «вырезания» указанных (порядковым номером)
символов или полей (по заданному разделителю) каждой строки (рис. 5.6). Не­
смотря на название команды, с содержимым файла никаких действий не произво­
дится, а символы и поля «выделяются» на поток вывода, что позволяет считать
команду фильтром полей, аналогичным фильтру строк дгер(1).

В примере из листинга 5.59 при помощи cut(1) отфильтровывается первое поле
(-f 1 -d :) тех строк классификатора файлов file(1), которые были предварительно
отфильтрованы по наличию слова shellscript. В результате на поток stdout будут
выведены только имена файлов, классифицированных как сценарии командного
интерпретатора.

mailto:ajt@debian.org

Программирование на языке командного интерпретатора 241

Листинг ь.59. выборка строк и полей с помощью дгер и cut список имен сценариев интерпретатора

bender@ubuntu:~ $ file -Li /*Ып/* /usr/*bin/* | дгер shellscript | cut -f 1 -d :

/ Ы п /bzcmp

/ Ы п /setupcon

/sbin/dkms

Аналогично, в примере из листинга 5.60 из вывода команды ps(1) отбираются
строки свойств процессов с именем chroniun, затем выделяются символы с 1-го по
8-й каждой строки (содержащие суммарное количество резидентной памяти про­
цесса rss, помещенное в первые :8 символов). Отобранные статистические данные
склеиваются командой paste(1) в одну строку (-s) посредством символа + в качестве
разделителя (-d), и полученное таким образом арифметическое выражение отправ­
ляется на калькулятор bed) для подсчета. В результате будет получено суммарное
потребление физической памяти всеми процессами Web-браузера chromium.

Листинг 5.60. Выборка столбцов и склейка волей: суммарная й&ламять процессов браузера chromium

bender@ubuntu:~$ ps ахо rss:8,c o m | grep chrone | cut -с 1-8 | paste -s -d + | be
580040

5.8.3. Процессор текстовых таблиц awk
Команда awk(1) предназначается для обработки текстовых таблиц, столбцы которых
разделяются пробельными символами, а строки — символом перевода строки
(рис. 5.7). Язык процессора W :[AWK]1 использует регулярные выражения RE для

1 Имя процессора образовано от заглавных букв фамилий его разработчиков — Aho, Weinberger
и Kernighan.

242 Глава 5

выделения строк, подлежащих обработке, и подстановочные выражения $1, $2,
$N для выделения столбцов. Каждая инструкция языка AWK записывается как
/RE/{ ACTION $i...} и заставляет процессор выполнить действие ACTION со столбцами
Si каждой строки, соответствующей регулярному выражению RE.

Так, например, в листинге 5.61 при помощи awk(l) вместо дгер(1) и cut(l) выделя­
ются имена классифицированных командой file (l) файлов, являющихся сценариями
командного интерпретатора.

Листинг 5.61. Выборка строк и полей с помощью awk: список имен сценариев интерпретатора Н]

bender@ubuntu:~$ file -Li /*bin/* /usr/*bin/* | awk -F: '/shellscript/ { print $1 }'

/bin/bzcmp

/bin/setupcon

/sbin/dkns

В примере из листинга 5.62 при помощи awk(1) подсчитывается суммарное потреб­
ление RSS-памяти процессами chroniun при помощи простейшей AWK-программы
с тремя инструкциями. Инструкция BEGIN { sun = 0 } выполняется до анализа
строк, инструкция END { print sun } — после анализа всех строк, а инструкция
/chroniun/ { sun += $1 } выполняется при анализе строк и прибавляет к значению
переменной sun целочисленное значение первого столбца $1 тех строк, в содержи­
мом которых будет найдена строка chroniun.

: Листинг 5.62. Суммирование по строкам и полям:

bender@ubuntu:~$ ps ахо rss,com | «-1
> awk 'BEGIN { sun = 0 } /chrone/ { sun += $1 } END { print sun }'

580108

Программирование на языке командного интерпретатора 243

5.8.4. Потоковый редактор текста sed

Потоковый редактор sed(1) (stream editor) применяется для пакетного (неинтерак­
тивного) редактирования текстовых файлов, имеющих строчную структуру
(рис. 5.8). Инструкции языка W:[SED] используют регулярные выражения RE для
выделения строк, подлежащих редактированию при помощи команд CMD: вставки
и добавления строк i (insert) и a (append), замены строк с (change), удаления
строк d (delete), замены подстрок s (substitute) и др.

Рис. 5.8. Потоковый редактор sed(1)

В примере из листинга 5.63 при помощи редактора sed(l) эмулируется поведение
дгер(1) путем удаления (команда d) тех строк потока, которые не (отрицание регу­
лярного выражения !) содержат подстроку chroniun.

листин! ъм. выоорха арок удаление лишних ::: -W - ' . О - ^
j

bender@ubuntu:~$ ps ахо rss,comm | sed '/chrone/id'
171820 chronie

45872 chronie

51124 chrome
. . .

19936 chrome

Аналогично, в листинге 5.64 фильтруются строки файла /etc/wgetrc путем удаления
из вывода строк, не соответствующих регулярному выражению А[А#] (в
строки содержащих знак, не похожий на знак комментария #).

начале

Листинг 3,64. Выборка а рок: фильтрация комментариев ШШШЫ1■1,, !
bender@ubuntu:~$ sed '/*[*#]/!d' /etc/wgetrc

passive_ftp = on

244 Глава 5

Кроме выбора отдельных строк инструкциями вида /RE/CMD, sed(1) позволяет адре­
совать блоки строк, подлежащих редактированию. При помощи инструкций вида
/RE1/./RE2/CMD команда редактирования применяется ко всем строкам, начиная
с той, которая соответствует выражению RE1, заканчивая той, которая соответству­
ет выражению RE2.

Так, например, в листинге 5.65 из потока вывода команды lspci(8) выделяется блок
текста, начиная со строки, содержащей слово Ethernet, вплоть до следующей пус­
той строки (А$ между началом и концом которой не содержится ни одного символа).

Лис. лиг 5.65, Выбор» блоков текста

bender@ubuntu:~$ Ispci -v | sed '/Ethernet/,/А$/!d '

00:19.0 Ethernet controller: Intel Corporation 82579LM Gigabit Network Connection
(Lewisville) (rev 04)

Subsystem: Dell 82579LM Gigabit Network Connection (Lewisville)

Kernel driver in use: el000e

Kernel modules: el000e

В листинге 5.66 показан типичный пример самого распространенного варианта ис­
пользования sed(1) с командой s — замены одних подстрок другими. При помощи
трех нехитрых подстановок отсортированный командой sort(1) вывод команды find(1)
превращается в дерево файлов и каталогов, аналогичное тому, что строит команда
tree(1). Команда подстановки подстрок имеет форму /RE/s/FND/RPL/F, при этом во
всех строках, соответствующих RE, будут найдены подстроки, соответствующие FND,
и заменены на RPL согласно флагам замены F. Регулярное выражение RE может
отсутствовать, тогда замены производятся во всех строчках, а регулярные выраже­
ния FND. и RPL могут быть ограничены любым другим символом, например : вместо
/. Флаги уточняют место замены. Например, флаг g (global) требует пройзвести
столько замен, сколько будет найдено слева направо соответствий выражению FND,
а флаг i (case insensitive) указывает на нечувствительность выражения FND к ре­
гистру букв.

Таким образом, подстановка s:A. . : : выполняет удаление А.. двух любых симво­
лов в начале строки (замену на «ничто»). Это отрежет ненужные префиксы . / от­
носительных путевых имен, выводимых как результат find(l). Подстановка

ft: заменяет подстроки, состоящие из любого символа, кроме
слеша и точки [А/ .] , и следующих за ним любого количества * любых, кроме
слеша [А/], символов вплоть до конца строки $ на тоже самое значение &, перед
которым поставлены символы Такое действие изобразит имена найденных
find(l) файлов и каталогов как +-- f i l e . Последняя подстановка s:EA/]* / : | :д

Программирование на языке командного интерпретатора 245

глобально заменит подстроки из любого количества * символов, кроме слеша [А/],
заканчивающиеся слешем /, на вертикальную черту с тремя пробелами НШ что
заменит элементы путевого имени найденных файлов в нужное количество уровней
иерархии дерева в выводе.

Листинг 5.66. Замена подстрок: дерево файлов и каталогов

bender@ubuntu: ~$ cd /lib/teminfo

bender@ubuntu:/lib/teminfo$ find . | sort -f |

> sed -e -e 's:[A/.]CA/3*$:+-» -e 's:[A/]*/j| :g*

+— a

| +-- ansi

+-- c

| +-- cons25

+-- v

| +-- vtlOO

| +-- vtl02
| +-- vt220

| +-- vt52

+-- x

| +-- x t e m

| +-- xtem-vt220

| +— xtem-xfree86

Еще один типичный пример применения потокового редактора sed(1) проиллюстри­
рован в листинге 5.67, где во всех модулях некоторой программы на языке
W : [python] имя модуля nodule нужно заменить его новым именем Module. Найденные
командой find(1) имена модулей *.ру проверяются командой дгер(1) на предмет нали­
чия в их тексте слова (-w) nodule, затем их имена (-1) отправляются потоковому
редактору, который выполняет замену подстрок, замещая (-1) содержимое непо­
средственно обрабатываемого файла. Замены производятся в строках, содержащих
слово inport, при этом только подстроки nodule, слева \< и справа \> от которых
находятся границы слов, т. е. только слова nodule, заменяются на Module.

Листинг S.67. Массовая замена подстрок в файлах

bender@ubuntu:~$ find . -папе '*.ру' | xargs grep -wl nodule |

> xargs sed -i '/import/ s:\<nodule\>:Module:g'

246 Глава 5

В очень большом количестве случаев sed(1) применяется для редактирования кон­
фигурационных файлов системы, например в сценариях установки и удаления па­
кетов программного обеспечения. В примере из листинга 5.68 показан небольшой
сценарий интерпретатора, позволяющий «включать»/«выключать» параметры в кон­
фигурационном файле /etc/sysctl.conf, используя удаление/установку символа ком­
ментария # в начало строк при помощи sed(1). Для этого в трех инструкциях sed(1)
используются две команды подстановки s и команда ветвления t (test). Первая
подстановка s/ А# // удаляет комментарий из начала строки, а вторая подстановка
s/-/#/ добавляет его в начало. Команда t тестирует результат выполнения первой
инструкции подстановки и в случае успеха передает управление на конец списка
инструкций. В результате выполнения инструкций либо комментарий удаляется из
начала строки первой инструкцией, если он там присутствует (на чем список ин­
струкций завершается), либо комментарий добавляется в начало строки второй
инструкцией.

Листинг 5.68. Редактирование конфигурационных файлов j

bender@ubuntu:~$ grep net.ipv4.ip_f orward /etc/sysctl.conf

#net.ipv4.ip_f orward=l

bender@ubuntu:~$ sudo sed -i '/net.ipv4.ip_f orward/ s/*#//' /etc/sysctl.conf

bender@ubuntu:~$ grep net.ipv4.ip_forward /etc/sysctl.conf

net.ipv4.ip_forward=l

bender@ubuntu:~$ cat /usr/local/bln/toggle-coment

#!/bin/sh

[-n "$1 " -a -f "$2"] &&
sed -l -e "/$1/ s/*#//" -e t -e 7 $ 1/ s/7 #/" $2 11
echo "Usage: toggle-conment RE file"

bender@ubuntu:~$ sudo toggle-coment net.ipv4.ip_forward /etc/sysctl.conf

bender@ubuntu:~$ grep net.ipv4.ip_f orward /etc/sysctl.conf

#net.ipv4.ip_forward=l

Несмотря на простоту инструментальных средств обработки текста, таких как
awk(1) и sed(1), энтузиасты реализуют с их помощью (вкупе с управляющими ESC-
последовательностями терминала и символами кодировки utf-8) даже простые игры,
такие как крестики-нолики (tic-tac-toe), тетрис (tetris), sokoban, arkanoid, 2048 и да­
же (!) шахматы1.

1 См. h ttps://habrahabr.ru/post/l91006/.

https://habrahabr.ru/post/l91006/

Программирование на языке командного интерпретатора 247

Более подробное изложение концепций и практик применения регулярных выраже­
ний, sed(1) и awk(1), можно найти в книгах ISBN:[1-56592-225-5], ISBN:[5-93286-121-5], а
полноценный курс программирования на языке командного интерпретатора —
в ISBN:[5-7315-0114-9] и ISBN:[5-93286-029-4].

5.9. В заключение
Командный интерпретатор вместе с утилитами обработки текста формирует среду,
позволяющую практически без ограничений решать разнообразные задачи автома­
тизации, что и находит широкое применение в виде соответствующих сценариев
в операционной системе. Сценарии применяются практически повсеместно — при
запуске и остановке служб операционной системы, при постинсталляционном кон­
фигурировании установленных пакетов программного обеспечения, при компиляции
и компоновке программ и т. д.

Располагая таким могучим инструментом, командный интерфейс перестает быть
для пользователя просто интерактивным способом взаимодействия с операционной
системой, а превращается в полноценное средство разработки решений его произ­
вольных задач. Вместе с освоением языка командного интерпретатора сам пользо­
ватель шаг за шагом превращается из чужака и пришельца в нативного обитателя
этой экосистемы, аборигена цифровых джунглей Linux. Для такого пользователя
командный интерфейс больше не представляется рудиментом и тяжким наследием
прошлого, а дополняет графический интерфейс до единого гармоничного целого.

Основной вид профессиональной деятельности такого пользователя не имеет осо­
бого значения. Фотографы и дизайнеры, аудио- и видеоинженеры, ЗО-моделеры и
инженеры САПР, типографские работники и прочие профессионалы находят свою
прелесть в написании и использовании сценариев пакетной обработки своих фото­
графий, аудио- и видеоматериалов, моделей, чертежей и массы другой информа­
ции. Вручив ежедневную рутину командному интерпретатору, они переходят на
следующий уровень развития, где в полную силу посвящают себя решению твор­
ческих задач.

Не желаете присоединиться?

Глава б
Сетевая подсистема

Сетевая подсистема Linux организует сетевой обмен пользовательских приложений
и, как следствие, сетевое взаимодействие самих пользователей. Часть сетевой под­
системы, выполняющаяся в режиме ядра, естественным образом ответственна за
управление сетевыми устройствами ввода-вывода, но, кроме этого, на нее также
возложены задачи маршрутизации и транспортировки пересылаемых данных, кото­
рые решаются при помощи соответствующих сетевых протоколов. Таким образом,
именно ядерная часть сетевой подсистемы обеспечивает процессы средствами
сетевого межпроцессного взаимодействия (network IPC).

Внеядерная часть сетевой подсистемы отвечает за реализацию сетевых служб, пре­
доставляющих пользователям прикладные сетевые услуги, такие как передача фай­
лов, обмен почтовыми сообщениями, удаленный доступ и т. д.

6.1. Сетевые интерфейсы, протоколы и сетевые сокеты
Непосредственное, физическое взаимодействие сетевых узлов через каналы связи
между ними реализуется аппаратурой сетевых адаптеров. Сетевые адаптеры, как и
любые другие устройства ввода-вывода, управляются соответствующими драйвера­
ми (листинг 6.1), реализуемыми в большинстве случаев в виде динамических моду­
лей ядра.

Листинг 6.1. Драйвера сетевых устройств v |

lunpy@ubuntu:~$ Ispci

02:00.0 Network controller: Intel Corporation Centrino Advanced-N 6205 [Taylor Peak] (rev 34)

00:19.0 Ethernet controller: Intel Corporation 82579LM Gigabit Network Connection
(Lewisville) (rev 04)

lumpy@ubuntu:~$ Ispci -ks 62:60.0

02:00.0 Network controller: Intel Corporation Centrino Advanced-N 6205 [Taylor Peak] (rev 34)

Subsystem: Intel Corporation Centrino Advanced-N 6205 AGN

250 Глава б

Kernel driver in use: iwlwifi

Kernel nodules: iwlwifi "•

lunpy@ubuntu:~$ Ispci -ks 02:60.0

00:19.0 Ethernet controller: Intel Corporation 82579LM Gigabit Network Connection
(Lewisville) (rev 04)

Subsystem: Dell 82579LM Gigabit Network Connection (Lewisville)

Kernel driver in use: el000e

Kernel modules: el000e "•

lumpy@ubuntu:~$ modinfo iwlwifi elOOOe | grep ''description

description: Intel(R) Wireless WiFi driver for Linux

description: Intel(R) PRO/1000 Network Driver

В отличие от несетевых устройств, большинство которых имеют специальный файл
в каталоге /dev, сетевые устройства представляются в системе своими интерфей­
сами. Список доступных интерфейсов, их параметры и статистику можно получить
при помощи «классической» UNIX-команды ifconfig(8) или специфичной для Linux
команды ip(8) (листинги 6 .2 и 6 .3).

lumpy@ubuntu:~$ ifconfig -а

wlp2s0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST» mtu 1500

inet 192.168.0.101 netmask 255.255.255.0 broadcast 192.168.0.255

inet6 fe80::Sf2d:68c3:2c09:9al8 prefixlen 64 scopeid 0x20<link>

ether 08:11:96:29:19:70 txqueuelen 1000 (Ethernet)

lo: flags=73<UP,LOOPBACK, RUWING> mtu 65536

inet 127.0.0.1 netmask 255.0.0.0

inet6 : :1 prefixlen 128 scopeid 0xl0<host>

enol: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500

ether 5c:26:0a:85:a9:la txqueuelen 1000 (Ethernet)

lumpy@ubuntu:~$ ip link show

1: lb: <L00PBACK,UP,L0WER_UP> mtu 65536 qdisc noqueue state LfIKNOWN ... qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: enol: <N0-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc ... state DOWN ... qlen 1000

link/ether 5c:26:0a:85:a9:la brd ff:ff:ff:ff:ff:ff

Сетевая подсистема 251

3: wlpZsO: BROADCAST,MULTICAST,UP,LOWER_UP> ntu 1500 qdisc nq state UP ... qlen 1000

link/ether 08:11:96:29:19:70 brd ff:ff:ff:ff:ff:ff

lunpy@ubuntu:~$ ip addr show dev wlp2s0

3: wlp2s0: BROADCAST,MULTICAST,UP,LOWER_UP> ntu 1500 qdisc nq state UP group default qlen
1000

Itnk/ether 08:11:96:29:19:70 brd ff:ff:ff:ff:ff:ff

•" inet 192.168.0.101/24 brd 192.168.0.255 scope global dynanic noprefixroute wlp2s0

valid_lft 7121sec preferred_lft 7121sec

inet6 fe80::5f2d:68c3:2c09:9al8/64 scope link noprefixroute
valid_lft forever preferred_lft forever

За логическое взаимодействие (адресацию, маршрутизацию, обеспечение надеждой
доставки и пр.) отвечают сетевые протоколы, тоже в большинстве случаев реали­
зуемые соответствующими модулями ядра. Нужно отметить, что в примере из лис­
тинга 6.4 показан список динамически загруженных модулей, среди которых при­
сутствует «нестандартный» TCP vegas, но нет IP, TCP, UDP и прочих «стандарт­
ных» протоколов стека TCP/IP. На текущий момент времени сложно вообразить
применение Linux без подключения к IP-сети, поэтому модули стандартных прото­
колов TCP/IP стека скомпонованы в ядро статически и являются частью «стар­
тового» (см. разд. 4.1.1) модуля.

Листинг 6.4. Драйве а сетевых протоколов

lunpy@ubuntu:~$ Isnod

Module Size Used by

iwldvn 229376 0
nac80211 786432 1 iwldvn
iwlwifi 290816 1 iwldvn
cfg80211 622592 3 iwldvn,iwlwifi,nac80211

elGOOe 249856 0
ptp 20480 1 el000e

lunpy@ubuntu:~$ nodinfo tcp_vegas bnep nac80211 | grep ^description

description: PTP clocks support

description: Intel(R) Wireless WiFi Link AGN driver for Linux

description: IEEE 802.11 subsysten

Доступ процессов к услугам ядерной части сетевой подсистемы реализует интер­
фейс сетевых сокетов S0Cket(7), являющихся основным (и единственным) средством
сетевого взаимодействия процессов в Linux.

252 Глава б

Разные семейства (address family) сокетов соответствуют различным стекам сете­
вых протоколов. Например, стек TCP/IP v4 представлен семейством AFJNET,
см. ip(7), стек TCP/IP v6 — семейством AFJNET6, см. ipv6(7), и даже локальные
(файловые) сокеты имеют собственное семейство — AF_LOCAL, см. unix(7).

Для просмотра статистики по использованию сетевых сокетов используют «класси­
ческую» UNIX-команду netstat(8) или специфичную для Linux команду ss(8). В лис­
тингах 6.5 и 6.6 иллюстрируется использование этих команд для вывода информа­
ции обо всех (-a, all) сокетах протоколов (-и, udp) UDP и (-t, tcp) TCP стека
TCP/IP v4 (-4), порты и адреса которых выведены в числовом (-n, numeric) виде,
а также изображены процессы (-р, process), их открывшие.

. листинг 6.5, Сетевые сокеты (UNIX netsiat(8))

lurpy@ubuntu:~$ sudo netstat -4autpn

Активные соединения с Интернетом (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Progran name

tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 864/sshd

tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN 697/cupsd

tcp 0 0 127.0.0.1:5432 0.0.0.0:* LISTEN 1039/postgres

tcp 0 0 0.0.0.0:25 0.0.0.0:* LISTEN 1250/master

tcp 0 0 127.0.0.53:53 0.0.0.0:* LISTEN 638/systend-resolve

tcp 0 0 192.168.0.101:22 192.168.0.103:57622 ESTABLISHED 6152/sshd: lurpy [pr

udp 0 0 127.0.0.53:53 0.0.0.0:* 638/systend- resolve

udp 0 0 192.168.0.101:68 0.0.0.0:* 684/NetworkManager

Сетевые сокеты идентифицируются парой адресов (собственным, local, и чужим1,
foreign), принятыми в их семействе. Например, для семейства TCP/IP адрес соке­
та состоит из (сетевого) IP-адреса и (транспортного) номера порта, причем нули
имеют специальное — «неопределенное» значение. Так, для прослушивающего2
(LISTEN) сокета 0 .0 .0 .0 в собственном IP-адресе означает, что он принимает соеди­
нения, направленные на любой адрес любого сетевого интерфейса, а 0.0.0.0 в чу­
жом адресе указывает на то, что взаимодействие еще не установлено. Для сокетов
с установленным (ESTABLISHED) взаимодействием оба адреса имеют конкретные зна­
чения, определяющие участников взаимодействия, например 192.168.100.105:22 и
192.168.100.103: 57622.

1 Адрес удаленного приложения, с которым установлено соединение.

2 Прослушивающие сокеты используются «серверными» приложениями, пассивно ожидающими
входящие соединения с ними.

Сетевая подсистема 253

Листинг 6.6. сетевые сокеты (Linux ss(8))
• Ъ ' x t: ' 75- '

lunipy@ubuntu:~$ sudo ss -4atupn
Netid State Recv-Q Send-Q Local Address:Bort Peer Address:Rort

udp LNGOMJ 0 0 127.0.0.53%lo:53 0.0.0.O:* users:(("systm^ resolve" ,рпД=638,№12))

udp UNQDM1 0 0 192.168.0.101% wlp2s0:68 0.0.0.O:* users:(("Networltflanager", pl*<84, № 1 9))

txp LISTEN 0 " 128 0.0.0.0:22 0.0.0.O:* users: (("sshd" ,pii«64,№3))

txp LISTEN 0 S 0.0.0.1:631 0.0.0.O:* users:(("ajpsd",pl*07,№7))

tq) LISTEN 0 128 127.0.0.1:5432 0.0.0.O:* users:((,,postgres,,Jp № l 0 3 9 , № 3))

tq) LISTEN 0 100 0.0.0.0:25 0.0.0.O:* users: (("master",pid=12S0,№ 1 3))

tq) LISTEN 0 128 127.0.0.53%lo:53 0.0.0.O:* users: (("sjystemd-resolve" tpi4<38,№l3))

tq) ESTAB 0 0 192.168.0.101:22 192.168.0.103:57622
users: (("sshd" ,pid=6234,№4), ("sshd" ,p№6 1 5 2 , № 4))

Из примеров листингов 6.5 и 6.6. видны 5 «слушающих» (LISTEN) сокетов TCP и
2 «несоединенных» (UNCONN) сокета UDP, открытых разными службами операцион­
ной системы. Например, 22-й порт TCP открыл сервер sshd, PID = 864 службы уда­
ленного доступа W:[SSH], а 5432-й порт TCP — сервер postgres, PID = 1039 службы
реляционной СУБД W : [SQL].

6.2. Конфигурирование сетевых интерфейсов и протоколов

6.2.1. Ручное конфигурирование
Для функционирования разных стеков протоколов сетевым интерфейсам должны
быть предварительно назначены корректные сетевые адреса и сконфигурированы
прочие параметры, что может быть выполнено вручную администратором или ав­
томатически специальными службами этих стеков.

Ручное назначение сетевых адресов стека TCP/IP выполняется при помощи коман­
ды ifconfig(8) или ip(8), а простейшая диагностика — при помощи команды ping(l),
как проиллюстрировано в листинге 6.7.

г--' ”■■■: :— —Г777—, о - , д " , Т , ... ■ * — гут ™ " „.Т г ;-v.^ Щ — ---------- -----: .

1 Листинг 6.7. Ручное конфигурирование сетевых интерфейсов 1
1__ __________________________________ _______ ________ — - -- д— ^ % _ •> _. . =У_ >•

lupipy@ubuntu:~$ sudo ifconfig enol 10.0.0.10 up
lumpy@ubuntu:~$ sudo ifconfig enol
enol: flags=4163<UP,BROADCAST,RUNNING.MULTICAST> mtu 1500

inet 10.0.0.10 netmask 255.0.0.0 broadcast 10.255.255.255

inet6 fe80::66f6:6415:7455:6a0f prefixlen 64 scopeid 0x20<link>

ether 08:00:27:c0:67:8f txqueuelen 1000 (Ethernet)

RX packets 0 bytes 0 (0.0 B)

254 Глава б

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 94 bytes 14932 (14.9 KB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lumpy@ubuntu:~$ ping -с 1 10.0.0.10

PING 10.0.0.10 (10.0.0.10) 56(84) bytes of data.

64 bytes from 10.0.0.10: icmp_seq=l ttl=64 time=0.032 ms

--- 10.0.0.10 ping statistics ---

1 packets transmitted, 1 received, ©X packet loss, time 0ms
rtt min/avg/max/mdev = 0.032/0.032/0.032/0.000 ms

lumpy@ubuntu:~$ sudo ip address add 172.16.16.172/16 dev enol

lumpy@ubuntu:~$ ip address show dev enol

3: enol: <BRQADCAST,MULTICAST,UP,L0WER_UP> mtu 1500 qdisc fq_codel state UP group default
qlen 1000

link/ether 08:00:27:c0:67:8f brd ff:ff:ff:ff:ff:ff

inet 10.0.0.10/8 brd 10.255.255.255 scope global enol

valid_lft forever preferred_lft forever

inet 172.16.16.172/16 scope global enol

valid_lft forever preferred_lft forever

lumpy@ubuntu:~$ ping -с 1 172.16.16.172

PING 172.16.16.172 (172.16.16.172) 56(84) bytes of data.

64 bytes from 172.16.16.172: icmp_seq=l ttl=64 time=1.27 ms

--- 172.16.16.172 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 1.270/1.270/1.270/0.000 ms

Просмотр таблиц маршрутизации и ручное конфигурирование IP-маршрутов вы­
полняется посредством команды route(8) или ip(8), а простейшая диагностика — при
помощи команды traceroute(l). В примере из листинга 6.8 показана процедура руч­
ного добавления маршрута «по умолчанию» О через интернет-шлюз 1G.G.0.1 ©
с последующей диагностикой © доступности узлов за ним О.

Листинг 6.8. Ручное конфигурирование таблицы маршрутизации

lumpy@ubuntu:~$ sudo ip routs add G.0.G.G/G О via 1G.G.6.1 ©

lumpy@ubuntu:~$ route -n

Сетевая подсистема 255

Таблица маршрутизации ядра протокола IP

Destination Gateway Genmask Flags Metric Ref Use Iface

0.0.0.0 О 10.0.0.1 © 0.0.0.0 UG 0 0 0 enol
10.0.0.0 O.0.0.0 255.0.0.0 U 0 0 0 enol
169.254.0.0 O.0.0.0 255.255.0.0 U 1000 0 0 enol
172.16.0.0 O.0.0.0 255.255.0.0 U 0 0 0 enol

lumpy@ubuntu:~$ ip route show

default О via 10.0.0.1 © dev enol proto static

10.0. 0.0/8 dev enol proto kernel scope link src 10.0.0.1

172.16.0. 0/16 dev enol proto kernel scope link src 172.16.0.1

169.254.0. 0/16 dev enol scope link metric 1000

©

©

lumpy@ubuntu:~$ traceroute -m 50 bad.horse

traceroute to bad.horse (162.252.205.157), 30 hops max, 60 byte packets

1 10.0.0.1 (10.0.0.1) 1.025 ms 1.080 ms 1.236 ms

22 bad.horse (162.252.205.130) 191.988 ms 191.997 ms 178.848 ms

23 bad.horse (162.252.205.131) 190.805 ms 195.160 ms 194.807 ms

24 bad.horse (162.252.205.132) 199.199 ms 187.907 ms 201.063 ms

25 bad.horse (162.252.205.133) 209.814 ms 203.633 ms 199.866 ms

26 he.rides.across.the.nation (162.252.205.134) 209.300 ms 204.059 ms 211.089 ms

27 the.thoroughbred.of.sin (162.252.205.135) 211.454 ms 208.207 ms 212.280 ms

28 he.got.the.application (162.252.205.136) 208.660 ms 222.452 ms 210.522 ms

29 that.you.just.sent.in (162.252.205.137) 215.037 ms 223.553 ms 223.043 ms

30 it.needs.evaluation (162.252.205.138) 229.889 ms 231.036 ms 234.139 ms

31 so.let.the.games.begin (162.252.205.139) 226.369 ms 230.170 ms 223.952 ms

32 a.heinous.crime (162.252.205.140) 232.431 ms 231.814 ms 240.990 ms

33 a.show.of.force (162.252.205.141) 241.706 ms 233.070 ms 272.973 ms

34 a.murder.would.be.nice.of.course (162.252.205.142) 264.821 ms 239.704 ms 247.930 ms

35 bad.horse (162.252.205.143) 250.081 ms 244.279 ms 254.147 ms

36 bad.horse (162.252.205.144) 247.903 ms 258.675 ms 257.366 ms

37 bad.horse (162.252.205.145) 261.103 ms 253.861 ms 261.307 ms

38 he-s.bad (162.252.205.146) 267.135 ms 266.860 ms 258.031 ms

39 the.evil.league.of.evil (162.252.205.147) 262.974 ms 262.773 ms 275.656 ms

40 is.watching.so.beware (162.252.205.148) 278.567 ms 276.382 ms 277.577 ms

41 the.grade.that.you.receive (162.252.205.149) 276.158 ms 283.299 ms 284.268 ms

42 will.be.your.last.we.swear (162.252.205.150) 286.575 ms 286.470 ms 278.213 ms

43 so.make.the.bad.horse.gleeful (162.252.205.151) 283.040 ms 292.280 ms 290.042 ms

44 or.he-ll.make.you.his.mare (162.252.205.152) 300.872 ms 299.806 ms 289.688 ms

45 o_o (162.252.205.153) 294.548 ms 295.458 ms 295.030 ms

256 Глава 6

46 you-re.saddled.up (162.252.205.154) 310.332 ms 308.226 ms 307.612 ms

47 there-s.no.recourse (162.252.205.155) 316.779 ms 315.848 ms 311.799 ms

48 it-s.hi-ho.silver (162.252.205.156) 320.175 ms 311.570 ms 319.072 ms

49 signed.bad.horse (162.252.205.157) 313.125 ms 311.095 ms 321.902 ms

6.2.2. Автоматическое конфигурирование
За автоматическое конфигурирование сетевых интерфейсов отвечает менеджер се­
тевых подключений — системная служба networkmanager(8), отслеживающая физиче­
скую активацию сетевых адаптеров (подключение сетевого кабеля Ethernet или
подключения к сети Wi-Fi) и взаимодействующая1 с другими службами, например
со службой wpa_supplicant(8) (для ассоциации с Wi-Fi точками доступа и аутентифи­
кации) или с локальной службой W :[DNS] systemd-resolved(l) (см. разд. 6.3). Кроме
этого, менеджер сетевых подключений может запускать «подчиненные» службы,
например Ш:[ОНСР]-клиента dhclient(8) или dhcpcd(8) для автоматического получения
IP-адреса, простейший локальный DNS-сервер dnsmasq(8) и т. д.

Для взаимодействия с менеджером сетевых подключений предназначены команда
nmcli(1) (см. также nmcli-examples(7)), TUI-приложения nmtui(1), nmtui-edit(l), nmtui-
connect(1) и GUI-приложения nm-applet(l), nm-connection-editor(l), позволяющие опраши­
вать его состояние и управлять его действиями.

Листинг 6.9. Конфигурирование сетевых интерфейсов (автоматически)

lumpy@ubuntu:~$ nmcli dev

DEVICE TYPE STATE CONNECTION

wlp2s0 wifi подключено 474+

enol ethernet отключено

lo loopback не настроенно --

lumpy@ubuntu:~$ nmcli dev show enol

GENERAL.DEVICE:

GENERAL. TYPE:

GENERAL.HWADDR:

GENERAL.MTU:

GENERAL.STATE:

GENERAL.CONNECTION:

GENERAL.CON-PATH:

WIRED-PROPERTIES.CARRIER:

enol

ethernet

08:00:27:C0:67:8F

1500

30 (отключено)

ВКЛ.

1 При помощи механизмов службы W:[D-Bus], требующей отдельного разговора, выходящего за
рамки этой книги.

Сетевая подсистема 257

lupipy@ubuntu:~$ rmcli conn

NAME UUID TYPE DEVICE

464+ 57cd20ce-098e-3b31-acd6-f50fd2e4db41 wifi wlp2s0

lumpy@ubuntu:~$ sudo rmcli conn add type ethernet ifname enol

Соединение «ethernet-enol» (eadac6e2-eb71-43ee-9b34-86c2910a382c) добавлено.

lutnpy@ubuntu:~$ rmcli conn

NAME UUID TYPE

464+ 57cd20ce-098e-3b31-acd6-f50fd2e4db41 wifi

ethernet-enol eadac6e2-eb71-43ee-9b34-86c2910a382c ethernet

DEVICE

wlp2s0

enol

lumpy@ubuntu:~$ sudo rmcli conn up ethernet-enol

Соединение успешно активировано (адрес действующего D-Bus:
/org/freedesktop/NetworkManager/ActiveConnection/б)

lumpy@ubuntu:~$ rmcli dev show enol

GENERAL.DEVICE:

GENERAL. TYPE:

GENERAL.HWADDR:

IP4.ADDRESS[1]:

IP4.GATEWAY:

IP4.R0UTE[1]:

IP4.R0UTE[2]:

IP4.DNS[1]:

enol

e t h e r n e t

08:00:27:C0:67:8F

10 .0 . 2 .4 /24 О

10.0 . 2.1 ©

d s t = O.0.0.0/0, nh = 10.0.2.1, m t = 101

d s t = 10 .0 .2 .0 /24 , nh = 0 .0 .0 .0 , P it = 10

10.0.2.1

lumpy@ubuntu:~$ ip a show dev enol

® 3: enol: <BROADCAST,MULTICAST,UP,LOWER_UP> pitu 1500 qdisc fq_codel state UP ... qlen 1000

link/ether 08:00:27:c0:67:8f brd ff:ff:ff:ff:ff:ff

inet 10.0.2.4/24 © brd 10.0.2.255 scope global dynamic noprefixroute enol

valid_lft 954sec preferred_lft 954sec

inet6 fe80::9eca:df0a:5401:d34f/64 scope link noprefixroute

valid_lft forever preferred_lft forever

lupipy@ubuntu:~$ ip route show

© default via 10.0.2.1 © dev enp0s8 proto dhcp metric 101

10.0. 2.0/24 dev enp0s8 proto kernel scope link src 10.0.2.4 metric 101

169.254.0. 0/16 dev enp0s3 scope link metric 1000

В листинге 6.9 проиллюстрирован результат работы менеджера подключений при
подключении сетевого интерфейса enol. Полученные при помощи DHCP-клиента

258 Глава 6

конфигурационные параметры были активированы автоматически: IP-адреса и мас­
ка О назначены на интерфейс ®, а шлюз «по умолчанию» © задан в соответст­
вующем маршруте ©.

6.3. Служба имен и DNS/mDNS-резолверы
Основными идентификаторами сетевого взаимодействия в стеке протоколов
TCP/IP являются числа — IP-адреса узлов и номера портов TCP/UDP, «челове­
ческое» использование которых довольно неудобно1. Использование строковых
имен для узлов и портов приводит к необходимости отображать «человеческие»
имена в «протокольные» числа и обратно, что возложено на службу имен (name
service). Как указывалось ранее, служба имен вообще предназначается для органи­
зации доступа приложений к свойствам каталогизируемых сущностей по их имени:
к UID пользователя по имени его учетной записи, к IP-адресу по имени узла,
к номеру порта TCP/UDP по имени сетевой службы, использующей его, и т. д.

Отображение имен сущностей на их свойства зачастую выполняется различными
способами в разных каталогах, что определяется конфигурацией коммутатора
службы имен nsswitch.C0nf(5) (name service switch configuration) и наличием ее соот­
ветствующих модулей libnss_*.so.?.

В листинге 6.10 иллюстрируется такая конфигурация отображения имен узлов hosts
®, которая использует сначала файловую таблицу ® /etc/hosts — см. hosts(5), а
затем — службы W:[mDNS] © и W:[DNS] ®.

Аналогично, номера портов сетевых служб services отображаются сначала с ис­
пользованием файла индексированной базы данных (соответствующий модуль
libnss_db.so.2 оказался не установлен), а затем с использованием файловой табли­
цы /etc/services — см. services(5).

lumpy@ubuntu:~$ 9гер hosts /etc/nsswitch.conf
® ©1 ©1
hosts: files ndns4_nininal [N0TF0UM>=return] dns

lumpy@ubuntu:~$ 9rep services /etc/nsswitch.conf
services: db files

lumpy@ubuntu:~$ find A i b / -nane 'libnss_*'

1 Если с 32-битным IPv4-адресом еще можно было совладать, то 128-битный адрес IPv6 не остав­
ляет человеку практически никаких шансов.

Сетевая подсистема 259

© /lib/x86_64-linux-gnu/libnss_dns.so.2
О /lib/x86_64-linux-gnu/libnss_files.so.2

© /lib/x86_64-linux-gnu/libnss jndns4 jninimbl. so. 2

Файловые таблицы имен /etc/hosts и /etc/services имеют тривиальный формат
о е , сопоставляющий имена узлов и сервисов — их IP-адресам и портам прото­
колов TCP и UDP, что проиллюстрировано в листинге 6.11. Утилита службы имен
getent(1), позволяющая выбирать указанную сущность по ее типу и имени, исполь­
зуется в качестве диагностики © коммутатора службы имен и его модулей.

lunipy@ubuntu:~$ cat /etc/hosts

О 127.0.0.1 localhost

127.0.1.1 ubuntu

The following lines are desirable for IPv6 capable hosts

::1 ip6-localhost ip6-loopback

fe00::0 ip6-localnet

ff00::0 ip6-mcastprefix

ff02::l ip6-allnodes

ff02::2 ip6-allrouters

lumpy@ubuntu:~$ grep http /etc/services

Updated from https://www.iana.org/assignments/service-names-port-nunfcers/service-names-
port-numbers.xhtml .

© http 80/tcp WWW # WorldWideWeb HTTP
https 443/tcp # http protocol over TLS/SSL

http-alt 8080/tcp webcache # WWW caching service

http-alt 8080/udp

G lumpy@ubuntu:~$ getent hosts ubuntu

127.0.1.1 ubuntu

lunpy@ubuntu:~$ getent services 53/udp

domain 53/tcp

Соответствия IP-адресов именам «серверных» узлов, например публичных Web-,
почтовых и прочих серверов, обычно регистрируются их администраторами в «таб­
лицах» на ответственных1 (authoritative) серверах службы DNS. Для доступа

1 Подробнее о том, как устроена система DNS, можно узнать здесь: https://tiny.C(/niwqgz.

https://www.iana.org/assignments/service-names-port-nunfcers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-nunfcers/service-names-port-numbers.xhtml
https://tiny.C(/niwqgz

260 Глава 6

к ним соответствующий модуль службы имен (см.©, листинг 6.10) использует стан­
дартный DNS-клиент (он же resolver(3), DNS-резолвер), в конфигурационном файле
resolv.Conf(5) которого при статических настройках указываются IP-адреса ближай­
ших кэширующих DNS-серверов, например серверов провайдера услуг Интернета.

Однако в примере из листинга 6.12 показано, что в качестве кэширующего DNS-
сервера указан адрес 1 2 7 . 0 . 0 .5 3 некоторой локальной службы DNS. Такой подход
позволяет динамически управлять настройками (не меняя каждый раз файл
resolv.COnf(5)) при реконфигурировании сетевых подключений, например при присое­
динении к другой W i-Fi-сети. В этом случае именно менеджер сетевых подключе­
ний (см.разд. 6.2.2) сообщает новые DNS-параметры нового активированного под­
ключения этой самой локальной службе DNS (которой на проверку оказывается
systemd-resolved(l)).

Для диагностики DNS-модуля службы имен (равно как и любого другого ее моду­
ля) используется команда getent(8), а для непосредственной диагностики DNS-сер­
веров — команда host(1).

Листинг 6.12. DNS-клиент

lunpy@ubuntu:~$ cat /etc/resolv.conf
This file is managed by man:systemd-resolved(8). Do not edit.

See man:systemd-resolved.service(8) for details about the supported modes of

operation for /etc/resolv.conf.

nameserver 127.0.0.53

options edns0

lumpy@ubuntu:~$ sudo ss -4autpn sport = 53
Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port

udp UNCONN 0 0 127.0.0.53%lo:53 0.0.0.0:* users:(("systemd-resolve",pid=5932,...))

tcp LISTEN 0 128 127.0.0.53%lo:53 0.0.0.0:* users:(("systemd-resolve",pid=5932,...))

lumpy@ubuntu:~$ getent hosts bhv.ru

•- 91.244.162.162 bhv.ru

lumpy@ubuntu:~$ host bhv.ru

bhv.ru has address 91.244.162.162 "•

bhv.ru mail is handled by 50 relay2.peterlink.ru.

bhv.ru mail is handled by 30 relayl.peterlink.ru.

lumpy@ubuntu:~$ host 8.8.8.8

8.8.8.8.in-addr.arpa domain name pointer dns.google.

Сетевая подсистема 261

Сетевые устройства (принтеры, камеры, видеорегистраторы и пр.) и «клиентские»
узлы локальных сетей, динамически получающие случайные IP-адреса при помощи
DHCP, на ответственных серверах DNS почти никогда не регистрируются, а ис­
пользование их имен в локальной сети (в «домене» .local) становится возможным
благодаря службе W :[mDNS].

Серверы mDNS запускаются на каждом «клиентском» узле и регистрируют у себя
соответствия собственных IP-адресов своему имени, а затем используют многоад­
ресную (multicast) рассылку стандартных запросов DNS для получения информа­
ции друг у друга. Сервером mDNS, как показано в примере из листинга 6.13, яв­
ляется avahi-daemon(8), реализующий еще и службу W:[DNS-SD] (DNS service
discovery), которая позволяет узлам локальной сети обнаруживать (discovery) услу­
ги (service), предоставляемые другими узлами. При помощи avahi-browse(l) проиллю­
стрирован список всех (-a, all) имен О и типов © услуг, объявленных узлами се­
ти и сохраненных в локальном кэше (-с, cache), а также результаты (-г, resolve)
запросов на получение информации об услугах.

Л“стинг6.13. mONS/DNS-SD-клиент

lumpy@ubuntu:~$ sudo ss -4autpn sport = :ndns

sudo ss -4autpn sport = :ndns

Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port

udp UNCONN 0 0 0.0.0.0:5353 0.0.0.0:* users:((,,avahi-daenon",pid=678J...))

lumpy@ubuntu:~$ avahi-browse -arcl

+ eth0 IPv4 HP LaserJet 700 M712 [4C6BF5] '•O ©*- UNIX Printer local

+ eth0 IPv4 AXIS 211M - 00408C81D401 RTSP Realtime Streaming Server local

+ eth0 IPv4 NVR(SMB) Microsoft Windows Network local

+ eth0 IPv4 NVR(NFS) Network File System local

= eth0 IPv4 HP LaserJet 700 M712 [4C6BF5] UNIX Printer local

hostname = [NPI4C6BF5.local]

address = [192.168.17.68]

port = [515]

txt = ["Scan=F" "UUID=56ff35dd-1065-4e5e-9385-3c26b8946b79" "Color=F" "Duplex=T" "Binary:
"Transparent=T" "note=" "adminurl=http://NPI4C6BF5.local." "priority=40" "usb_MDL=+IP LaserJet
700 M712" "usb_MFG=Hewlett-Packard" "product=(HP LaserJet 700 М712)" "ty=HP LaserJet 700 M712"
"иРР^.^СРЭЭ^БбОО.МП-г-З-Б-^Ив.РО^КгО-гх-гг-гЗ.ОМ^ОВГ "pdl^pplication/postscript"
"rp=BINPS" "qtotal=4" "txtvers=l"]

= eth0 IPv4 AXIS 211M - 00408C81D401 RTSP Realtime Streaming Server local

hostname = [axis-00408c81d401.local]

address = [192.168.17.142]

http://NPI4C6BF5.local

262 Глава б

port = [554]

txt = ["path=mpeg4/l/media. amp"]

= eth0 IPv4 NVR(SMB) Microsoft Windows Network local

hostname = [NVR.local]

address = [192.168.17.90]

port = [445]

txt = []

= eth0 IPv4 NVR(NFS) Network File System local

hostname = [NVR.local]

address = [192.168.17.90]

port = [2049]

txt = []

lunpy@ubuntu:~$ avahi-resolve — name NVR.local № ,I4C6BF5.local axis-60408c81d401.local

NVR.local 192.168.17.90

NPI4C6BF5.local 192.168.17.68

axis-00408c81d401.local 192.168.17.142

lunpy@ubuntu:~$ getent hosts NVR.local № ,I4C6BF5.local axis-00408c81d4Gl.local

192.168.17.90 NVR.local

192.168.17.68 NPI4C6BF5.local

192.168.17.142 axis-00408c81d401.local

Для диагностики mDNS-модуля службы имен неизменно используется команда
getent(8), а для непосредственной диагностики mDNS-сервера avahi-daemon(8) — спе­
циальная команда avahi-resolve(l).

6.4. Сетевые службы

6.4.1. Служба SSH

Служба W :[SSH] предназначена1 для организации безопасного (secure) доступа к
сеансу командного интерпретатора (shell) удаленных сетевых узлов. Изначально
разрабатывалась как замена небезопасным R-утилитам W :[Rlogin], W :[Rsh] и прото­
колу сетевого алфавитно-цифрового терминала W :[te lnet].

' О S S H п р о то к о л е с картинкам и м ож н о у зн а т ь зд е с ь : https://tiny.cc/ocxqgz.

https://tiny.cc/ocxqgz

Сетевая подсистема 263

При сетевом взаимодействии в «открытой» публичной сети, такой как Интернет,
«безопасность» обычно понимают как конфиденциальность (плюс целостность)
передаваемых данных и аутентичность (подлинность) взаимодействующих сторон.

Конфиденциальность данных, т. е. их недоступность некоторой третьей стороне, не
участвующей во взаимодействии, обеспечивается в протоколе SSH при помощи
симметричного шифрования с помощью общего сеансового ключа. Симметричные
алгоритмы шифрования используют для зашифровки и расшифровки информации
один и тот же ключ, поэтому конфиденциальность целиком и полностью сводится
к секретности ключа, т. е. его недоступности третьей стороне.

Сеансовый ключ устанавливается обеими взаимодействующими сторонами при по­
мощи асимметричного алгоритма открытого согласования ключей (W: [протокол
Диффи —Хеллмана]), использующёго две пары дополнительных ключей. Обе стороны
взаимодействия случайным образом выбирают закрытые ключи и на их основе
вычисляют парные открытые ключи, которыми публично обмениваются. Общий
(сеансовый) ключ вычисляется каждой стороной на основе своего закрытого клю­
ча и чужого открытого ключа, что не может повторить третья сторона, т. к.
может подслушать только передачу открытых ключей и не владеет1 закрытыми
ключами участников взаимодействия.

При активном вмешательстве третьей стороны во взаимодействие путем перехвата
и подмены сообщений согласования ключей злоумышленник может выдавать себя
за другую сторону каждому из участников взаимодействия, став посредником, —
см. W:[MITM] (man in the middle). В этом случае взаимодействующие стороны со­
гласуют свои сеансовые ключи со злоумышленником (!), предполагая, что согласо­
вали их с подлинным участником взаимодействия. Как следствие, все передавае­
мые данные «естественным» образом станут доступными злоумышленнику, причем
наличие посредника никак не будет обнаружено.

Обеспечение подлинности (аутентичности) взаимодействующих сторон в протоколе
SSH основывается на аутентификации сервера клиентом при помощи асиммет­
ричных алгоритмов цифровой подписи с использованием закрытого и открытого
ключей сервера. Закрытый ключ используется для подписывания сообщений, а
парный ему открытый ключ — для проверки подписи, корректность которой удо­
стоверяет в том, что сообщение было сгенерировано подлинным владельцем за­
крытого ключа.

В сообщение протокола Диффи — Хеллмана сервер добавляет свой открытый
ключ цифровой подписи (так называемый host key), а само сообщение подписы­
вает закрытым ключом. Клиент извлекает этот открытый ключ из сообщения и

1 О б р а т н а я за д а ч а вы числения зак ры ты х клю чей на о с н о в е откры ты х клю чей п ракти ческ и н е р е ­

ш аем а, на чем и о сн о в ы в а ет ся в ся аси м м етр и ч н ая к р и п тогр аф и я.

264 Глава 6

с помощью проверки корректности его цифровой подписи удостоверяется в под­
линности владельца вложенного ключа. Остается только убедиться, что владельцем
вложенного ключа и является целевой сервер.

В примере из листинга 6.14 иллюстрируется первое присоединение к SSH-серверу
grex.org (162.202.67.158), в результате чего был получен открытый ключ алгоритма
W : [ECDSA], который, возможно, действительно принадлежит этому серверу, а не
злоумышленнику посередине соединения. Единственный способ это проверить —
заранее знать действительный открытый ключ SSH-сервера grex.org и побитно
сверить его с присланным ключом, что довольно затруднительно сделать человеку.
Поэтому на практике сверяют короткие хэш-суммы действительного и присланного
ключей, называемые «отпечатками пальца» (fingerprint), совпадение которых гаран­
тирует совпадение' ключей. Хэш-суммы открытых ключей SSH -серверов заранее
известны и открыто публикуются, например для grex.org — на Web-странице
http://grex.cyberspace.org/faq.xhtnl#sshfinger. После ручной сверки ключа О при
первом подключении он сохраняется в файле ~ /.ssh/known_hosts для автоматической
сверки при последующих подключениях.

Листинг 6.14. Первое присоединение к SSH-серверу

lumpy@ubuntu:~$ ssh jake@grex.org

The authenticity of host 'grex.org (75.61.90.157)' can't be established.

ECDSA key fingerprint Is SHA256:pM03fe6UTyqtqzUMq5SmTnH5tqUuN9WdvlwdpcEJhSU.

Are Are you sure you want to continue connecting (yes/no/[flngerprlnt])7 yes ♦J О

Warning: Permanently added 'grex.org,75.61.90.157' (ECDSA) to the list of known hosts.

•-* jake@grex.org's password: P@s$wOrd 0

grex$ uname -а «-1

OpenBSD grex.org 6.3 GENERIC#9 1386

grex$ whoarri. «-*

jake

grex$ w «-1

8:44PM up 41 days, 3:15, 8 users, load averages: 1.44, 1.46, 1.60

USER TTY FROM

cross p0 166.84.136.80

mcd pi ЗУ.59.109.123

fernan pa 24.78.62.91

cross pi 166.84.136.80

LOGIN® IDLE WHAT

01Novl9 2days -bash

12Novl9 9days -zsh

HNovl911days -ksh

Tue04PM 2days -bash

'При этом подобрать другой ключ с такой же хэш-суммой практически невозможно.

http://grex.cyberspace.org/faq.xhtnl%23sshfinger
mailto:jake@grex.org

Сетевая подсистема 265

mattias pq 81.233.210.67 180ctl9 0 /suld/bln/party

pbbl ps 24.59.50.208 7:17PM 41 alpine

jake ®«-pB 93.100.207.82"*© 8:44PM 0 w

lerxst pG 47.50.84.206 03Novl920days screen -RDD

grex$ tty

/dev/ttypB ©

grex$ logout «-1

Connection to grex.org closed.

lumpy@ubuntu:~$

После успешного установления соединения SSH пользовательский сеанс аутенти­
фицируется одним из способов, например с помощью пароля ©, а затем в интер­
активном режиме запускается начальный командный интерпретатор аутентифициро­
ванного пользователя. При этом на стороне сервера используется псевдотерминал
© и эмулируется терминальный вход в систему (см. разд. 2.2.1), считающийся
сетевым ©.

Листинг 6,15. Выполнение отдельной команды

lumpy@ubuntu:~$ ssh jake@grex.org uptime

jake@grex.org's password: P @ s . S f «-1

8:47PM up 41 days, 3:17, 7 users, load averages: 2.34, 1.65, 1.64

•" lumpy(Lubuntu:~$

Кроме интерактивного сетевого входа, SSH позволяет удаленно выполнять отдель­
ные команды (см. листинг 6.15), при этом псевдотерминал не используется, а тер­
минальный вход не эмулируется. Вместо этого стандартные потоки ввода-вывода
STDIN, STDOUT и STDERR выполняемой команды просто перенаправляются через сете­
вое соединение ssh-клиенту. Это зачастую используется для удаленного копирова­
ния файлов. Например, в листинге 6.16 при помощи архиватора tar(l) создается
сжатый архив каталога /usr/src/sys на удаленном узле grex.org, а результат пере­
направляется в локальный файл openbsd-kernel-source.tgz.

Листинг 6.16. Копирование при помощи ssh

lumpy@ubuntu:~$ ssh jake@grex.org tar czf - /usr/src/sys > openbsd-kernel-source.tgz

•-» jake@grex.org's password: P@s$H6r «-1

tar: Removing leading / from absolute path names In the archive

© © © © © ® © © © © © ®
lumpy@ubuntu:~$

mailto:jake@grex.org
mailto:jake@grex.org

2 6 6 Глава 6

Аутентификация пользовательского сеанса по паролю имеет некоторое неудобст­
во — необходимость вводить пароль заново при каждом новом соединении SSH.
Кроме того, пароль передается внутри соединения SSH, поэтому существует угро­
за подбора пароля злоумышленником. Более прогрессивный способ аутентифика­
ции пользователя основан на использовании асимметричных алгоритмов цифровой
подписи (аналогично аутентификации сервера в протоколе Диффи — Хелмана) и
ключей пользователя. Для этого открытый ключ пользователя единожды регистри­
руется на сервере, а при аутентификации подписывается его закрытым ключом и
высылается серверу повторно. Сервер в свою очередь проверяет цифровую под­
пись присланного ключа и удостоверяется в подлинности его владельца, а побит­
ное сравнение с заранее зарегистрированным ключом пользователя указывает на
то, что владелец присланного ключа и есть целевой пользователь.

В листинге 6.17 иллюстрируется процедура применения ключей аутентификации
пользователя. Сначала при помощи команды ssh-keygen(l) генерируется закрытый
(private) W:[RSA]-^K)4 в локальном файле ~ /.ssh /id _ r sa и парный ему открытый
(public) ключ в локальном файле ~ /.ssh /id _rsa .p u b . Закрытый ключ защищается
(шифруется) от несанкционированного использования парольной фразой (pass-
phrase) ®, которая в отличие от пароля никогда по сети не передается, а лишь
обеспечивает доступ к самому ключу. Нужно заметить, что использование пустой
парольной фразы (как в примере) потенциально небезопасно, т. к. в случае кражи
или разглашения ключей ими может воспользоваться любая третья сторона.

Затем при помощи команды sstl-copy-id(l) открытый ключ регистрируются на уделен­
ном сервере grex.org в файле ~/.ssh /authorized_keys, что происходит с предъявле­
нием пароля ®. Последующие SSH-соединения © аутентифицируются парой клю­
чей, в результате отпадает необходимость вводить пароль1.

О lumpy@ubuntu:~$ ssh-keygen

Generating public/prlvate rsa key pair.

Enter file In which to save the key (/home/lumpy/.ssh/ld_rsa): *-

Enter passphrase (empty for no passphrase): H @

Enter same passphrase again: «■* ®

Your Identification has been saved In /home/lumpy/.ssh/ld_rsa.

Your public key has been saved In /home/lumpy/.ssh/ld_rsa.pub.

The key fingerprint Is:

SHA256:ztlK3kUagoDuY4sUxqFMSZFnqVxQQhP0Q4yBtDMov6w lumpy@ubuntu

1 П о я в л я ется н ео б х о д и м о ст ь в води ть п ар ольн ую ф р а зу , но в п р и м ер е он а (н еп о зв о л и т ел ь н о) п у с ­

тая.

Сетевая подсистема 267

О lumpy@ubuntu:~$ ssh-copy-id jake9grex.org

/usr/bin/ssh-copy-id: INFO: Source of key(s) to be installed: "/home/lumpy/.ssh/id_rsa.pub"

/usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to filter out any that
are already installed

/usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if you are prompted now it is
to install the new keys

•-» jake@grex.org's password: Rgs^tord*-1

Number of key(s) added: 1

Now try logging into the machine, with: "ssh 'jake@grex.org'"

and check to make sure that only the key(s) you wanted were added.

© lumpy@ubuntu:~$ ssh jake@grex.org Is

! OPENME.txz

README.gz

© lumpy@ubuntu:~$ ssh jake@grex.org zcat README.gz

А в файле OPENME.txz находится кое-что полезное ;)

О lumpy@ubuntu:~$ ssh jake@grex.org file OPENME.txz

OPENME.txz: XZ compressed data

Использовать зашифрованные парольными фразами ключи и одновременно не вво­
дить парольную фразу при каждом подключении позволяет SSH-агент ssh*agent(1),
который удерживает в оперативной памяти расшифрованные единожды закрытые
ключи пользователя и генерирует с их помощью цифровые подписи по запросу.
Листинг 6.18 иллюстрирует аутентификацию пользователя по ключу, защищенному
парольной фразой О, а затем передачу этого расшифрованного ключа агенту при
помощи команды ssh-add(1), что позволяет избавиться от необходимости ввода па­
рольной фразы ключа все время, пока запущен процесс ssh-agent (обычно — до
окончания сеанса). Наличие SSH-агента, запущенного в сеансе пользователя, об­
наруживают две переменные окружения — SSH_AGENT_PID и SSH_AUTH_SOCK, содержа­
щие соответственно PID агента и имя локального сокета для связи с ним.

iWCTitHf 6,18.534 m e m ". , *' Vv. ' - ' •- V v jfc «я
, , '% ... ̂ TWHII1"̂ Ч'Т'ЧЦМ1 ̂

6 lumpy@ubuntu:~$ ssh jake@grex.org file /usr/bin/ssh

•-» Enter passphrase for key '/home/lumpy/.ssh/id_rsa': О

/usr/bin/ssh: ELF 32-bit LSB shared object, Intel 80386, version 1

lumpy@ubuntu:~$ ssh-add О

•-» Enter passphrase for /home/lumpy/.ssh/id_rsa: . f i

Identity added: /home/lumpy/.ssh/id_rsa (/home/lumpy/.ssh/id_rsa)

mailto:jake@grex.org
mailto:jake@grex.org
mailto:jake@grex.org
mailto:jake@grex.org

268 Глава 6

f lumpy@ubuntu:~$ ssh jake@grex.org Idd /usr/bin/ssh

/usr/bin/ssh:

Start End Type Open Ref GrpRef Name

17645000 37681000 exe 1 0 0 /usr/bin/ssh

0b348000 2b3c5000 rllb 0 1 0 /usr/lib/libcrypto.so.43.1

06757000 2675C000 rllb 0 1 0 /usr/lib/libutil.so.13.0

00799000 207al000 rllb 0 1 0 /usr/lib/libz.so.5.0

0f 668000 2f698000 rllb 0 1 0 /usr/lib/libc.so.92.3

0ab98000 0ab98000 Id.so 0 1 0 /usr/llbexec/ld.so

lumpy@ubuntu:~$ env | grep SSH

SSH_AGENT_PID=21655

SSH_AUTH_SOCK=/tnp/ssh-Eehhsbx21654/agent.21654

lumpy@ubuntu:~$ Is -1 /tnp/ssh-Eehhsbx21654/agent.21654
•" srw....... 1 lunpy lunpy 0 марта 28 23:07 /tnp/ssh-Eehhsbx21654/agent.21654

Протокол SSH получил широкое распространение далеко за рамками своего изна­
чального предназначения. Кроме непосредственного удаленного доступа, он исполь­
зуется другими командами для своих нужд. Например (см. листинг 6.19), команды
scp(1) И sftp(1) используют ssh(1) для безопасного сетевого копирования файлов О®,
а команда rsync(l) — для сетевой синхронизации (копирование изменившихся) фай­
лов ©.

Все эти (и другие, подобные им) команды используют ssh(1) для запуска некоторой
«серверной» программы на удаленном узле (в частности, scp и rsync запускают сами
себя, а sftp запускает sftp-server(8)), с которой и взаимодействуют через защищенное
соединение.

Лагтинг 6.19. Копирование файлов нов pxSSH

О

е

lunpy@ubuntu:~$ scp *.pdf jake@grex.org:

tcpdunp.pdf

Wireshark_Display_Filters.pdf

lunpy@ubuntu:~$ sftp jake@grex.org

Connected to grex.org.

sftp> Is

OPENME.txz

Wireshark_Display_Filters.pdf

tcpdunp.pdf

sftp> exit

100% 37KB 37.3KB/S

100% 38KB 38.0KB/S

README.gz

linuxperftools.png

00:00
00:00

mailto:jake@grex.org
mailto:jake@grex.org
mailto:jake@grex.org

Сетевая подсистема 2 6 9

© lunpy@ubuntu:~$ rsync -avrz jake@grex.org:/usr/share/nan/nanl .

receiving incremental file list

manl/

manl/acme-client.1

nanl/addr2line.1

nanl/1386/fdformat.1

nanl/sparc64/

nanl/sparc64/fdforRat.1

Ranl/sparc64/mksuncd.1

sent 9,529 bytes received 4,180,838 bytes 239,449.54 bytes/sec

total size is 12,970,760 speedup is 3.10

Как оказывается на практике, использование «файловой» надстройки sftp-server(l)
для безопасного доступа к дереву каталогов удаленных узлов имеет достаточно
широкое распространение. В частности, терминальный файловый менеджер тс(1),
W:[MidnightCommander], тоже является SSHisftp-клиентом, что иллюстрирует лис­
тинг 6.20. Более того, при помощи FUSE-файловых систем sshfs(1) (см. листинг 3.29)
или gvfs файлы SSH:sftp-cepBepoB могут быть смонтированы в дерево каталогов
так, что вообще любые программы смогут ими воспользоваться.

Листинг 6.20, Файловый менеджер тс(1) клиент SSH (sftp)

i s
Левая панель Файл

Список файлов
Быстрый просмотр
Информация
Дерево

Формат с п и с к а .. .
Порядок сортировки.
Ф ильтр.. .
Выбор кодир овки .. .

Панелизация

Пересмотреть

С -х q
С -х i

М -е

С -г

— .[-]>!
правки
8 12:56
15 2014
3 12:27
1 18:24

11 2013
11 2013
31 21:04
3 2015

11 2013
9 18:37

29 01:03
1 17:24

11 2013
22 10:17
11 2013

/sh://jake@grex.org "•
'и Имя
/••
/.qt
/а
/afs
/altroot
~bbs
/bin
/с
/cyberspace
/dev
/etc
/hone
/mnt
/root
/sbin

Размер
-BBEPX-

512
512
512
512
20

1024
512
512

39936
4096
512
512
512

2048

Время правки
марта 28 2 1 :5 0

янв. 6 2012
21
6

17
8

22
21
21

янв.
марта
авг.
июня
янв.
янв.
янв.

2012
2010
2011
2015
2012
2012
2012

марта 31 19:07
3 03:04

17 2011
21 2012
2 23:20

22 2012

апр.
авг.
янв.
д е к.
янв.

-ВВЕРХ- -ВВЕРХ-
75C/454G (16%) - 1

Совет: Макросы % работают даже в командной строке.
lunpy@ubuntu:~$UnpyjaUb -ИШИМ- _ _ , . _____

гТтав» зТЯНИ? 4ffsy$? 522 53 б’Ж&У» 71ТЖ« 9?IT*»«ioT

mailto:jake@grex.org

270 Глава 6

6.4.2. Почтовые службы SMTP, POP/IMAP
Электронная почта, пожалуй, является самым ранним приложением сетевой под­
системы операционных систем семейства UNIX. Изначально электронные письма
пересылались непосредственно между конечными сетевыми узлами при помощи
службы W:[sendmail] с использованием протокола W : [SMTP], а для отправки или
чтения писем применялась утилита mail(1).

Вместо sendmail может быть использована абсолютно любая реализация агента пе­
ресылки почты (W :[m a il transport agent], МТА1), например W :[postfix] или W :[exim], но
обычно его функцию делегируют почтовым серверам провайдера услуг Интернета
или серверам публичных сервисов типа yandex.ru или gmail.com.

Листинг 6.21 иллюстрирует «классическую» схему электронной почты с «локаль­
ным» М Т А , использующую команду mail(1) для составления исходящих О и чтения
входящих е писем и команду mailq(1) для просмотра очередей обработки почты ©.

О lumpy@ubuntu:~$ n ail -s Тест dketov@gnatl.con

Сс: 1~

Это тест ;)

Ч>
© lunpy@ubuntu:~$ nallq

Mall queue Is empty

© lumpy@ubuntu:~$ n ail

Mall version 8.1.2 01/15/2001. Type ? for help.

"/var/m^il/lumpy" 1 message 1 new

>N 1 MAILER-DAEMON@ubu Thu Jan 7 15:09 77/2653 Undelivered Mall Returned t

•- & 1+*
Message 1:

From MAILER-DAEMON Thu Jan 7 15:09:35 2016

X-Orlglnal-To: lumpy@ubuntu

Date: Thu, 7 Jan 2016 15:09:35 +0300 (MSK)

From: MAILER-DAEMON@ubuntu (Mall Delivery System)

Subject: Undelivered Mall Returned to Sender

To: lumpy@ubuntu

This Is the mall system at host lixintu.-*

1 О всех этих М Т А , M D A и M R A см. подробнее здесь: https://tiny.cc/n1yqgz.

mailto:dketov@gnatl.con
https://tiny.cc/n1yqgz

Сетевая подсистема 271

I'm sorry to have to inform you that your message could not

be delivered to one or more recipients. It's attached below.

★ <dketov@gmail.com> : host gmail-smtp-in.1.google.com[74.125.205.27] said:

| 550-5.7.1 [95.55.94.237] The IP you're using to send mail is not

| Authorized to 550-5.7.1 send email directly to our servers. Please use the

| •" SffTP relay at your 550-5.7.1 service provider "• instead. Learn more at 550

| 5.7.1 https://support.google.com/mail/answer/10336 tw4si41552991lbb.77 -

L gsmtp (in reply to end of DATA command)

& о «-»
Saved 1 message in /twme/lumpy/mbox "•

О lumpy@ubuntu:~$ nail handy@happytreefriends.ru

Cc: J

Subject: Cm . hands(4) ...♦J

... про /dev/hands ;) «J

*0

О lumpy@ubuntu:~$ nailq

-Queue ID- --Size.......Arrival Time......Sender/Recipient.......

8B85027304* 341 Sun Nov 24 00:38:27 lumpy@ubuntu

handy@happytreefriends.ru

- - 0 Kbytes in 1 Request.

Современные требования к условиям корректной пересылки почтовых сообщений
(например, ★ в листинге 6.21) зачастую оказываются чересчур строгими, а содер­
жание собственной локальной почтовой системы — неоправданно сложным.
В большинстве случаев конечные пользователи пользуются услугами «внешних»
почтовых серверов, организующих полный цикл обработки почты — от приема
исходящих сообщений до обслуживания почтовых ящиков. Исходящие сообщения
отправляются таким серверам с помощью протокола W :[SMTP], а доступ к почто­
вым ящикам — при помощи протоколов W : [POP3] или W : [1МАР].

В примере из листинга 6.22 показан терминальный клиент современных почтовых
систем mutt(1), поддерживающий «защищенные» протоколы электронной почты
SMTPs, IMAPs и POPs, использующие протокол W : [SSL]1 для криптозащиты сетевых
соединений.

1 Использующий весьма похожие на SSH способы обеспечения конфиденциальности данных и
аутентичности взаимодействующих сторон.

mailto:dketov@gmail.com
https://support.google.com/mail/answer/10336
mailto:handy@happytreefriends.ru
mailto:handy@happytreefriends.ru

272 Глава б

Для отправки О сообщений используются учетная запись пользователя lumpy.noose

и сервер «исходящих» сообщений sntp.yandex.ru, принимающий почту по протоколу
SMTPs ®, а для чтения © писем из почтового ящика пользователя lumpy.noose мо­
гут быть использованы протоколы IMAPS © или POPs ® и серверы «входящих» со­
общений inap.yandex.ru и pop.yandex.ru, соответственно.

Листинг 6.22. Обработка почты публичной почтовой службой

О lumpy@ubuntu:~$ mutt -s Тест dketov@gnail.con

lumpy@ubuntu:~$ cat -/.muttrc

set from=lumpy.moose@yandex.ru

set smtp_url=smtps://lumpy.moose@smtp.yandex.ru

®6
© lumpy@ubuntu:~$ mutt -f inaps://lumpy.noose@lnap.yandex.ru

©6
!$i Определяется адрес сервера imap.yandex.ru...

it Устанавливается соединение с imap.yandex.ru...

% SSL/TLS-соединение с использованием TLS1.3 (ECDHE-RSA/AES-256-GCM/AEAD)

it Пароль для lumpy.moose@imap.yandex.ru:4-1

q:Выход d:Удалить и:Восстановить s:Сохранить т:Создать г:Ответить д:Всем

1 Jan 07 Яндекс (9,9К) Соберите всю почту в этот яцик

2 Jan 07 Команда Яндекс. (15К) Как читать почту с мобильного

в lumpy@ubuntu:~$ mutt -f pops://lunpy.moose@pop.yandex.ru

©б

6.4.3. Служба WWW

Служба W :[W W W] знакома каждому современному пользователю и в комментариях
особо не нуждается. Одной ее заметной особенностью в Linux, пожалуй, является
существование терминальных Web-браузеров links(1), lynx(1), e(inks(1) и w3m(1), по­
зволяющих работать с «текстовой» частью гипертекстовых Web-ресурсов, что про­
иллюстрировано с помощью 1упх(1) в примере из листинга 6.23.

mailto:dketov@gnail.con
mailto:lumpy.moose@yandex.ru
mailto:lumpy.moose@smtp.yandex.ru
mailto:lumpy.noose@lnap.yandex.ru
mailto:lumpy.moose@imap.yandex.ru
mailto:lunpy.moose@pop.yandex.ru

Сетевая подсистема 273

Листинг 6.23. Терминальные браузеры fynx, links и w 3it.

lumpy@ubuntu:~$ lynx http://www.kernel.org

The L im e Kernel Archives (p i o f 4)
#The L im e Kernel A rch ies A tm Feed Latest L im e Kernel Releases

The L im e Kernel A rch ies

* About
* Contact us
* F0Q
* Releases
* Signatures
* Site news

Protocol Location
HTTP https: //v i m . kemel.org/pib/
GTT https://glt.kemel.org/
RSrtC rsyic: //rs y ic .ke m el.o rg /p L b /

Latest Stable Kernel:
Download 5.3.12

mainline:
stable:
longterm
longterm
longterm
tongtem

5.4-rcS
5.3.12
4.19.85
4.14.155
4.9. 102
4.4.202

2ЕП9-11-17 [tarball]
2ЕП9-11-20 [tarball]
2ЕП9-11-20 [tarball]
2ЕП9-11-20 [tarball]
2ЕП9-11-16 [tarball]
2ЕП9-11-16 [tarball]- ^ g t

[patch] [in c . patch] [view d lf f] [b ra c e]
[pgp] [patch] [in c . patch] [view d lf f] [b ra c e]
[pgp] [patch] [in c . patch] [view d lf f] [b ra c e]
[pgp] [patch] [in c . patch] [view d lf f] [b ra c e]
[pgp] [patch] [in c . patch] [view d lf f] [b ra c e]
[pm] [m t-h] fin e , p a th] fv ie w d lff] fb ra c e]

Стрегки: ВВерк, Вша - пераиар-ие. ЕГраво - переезд га аыпее; Влево - воавраг.
H)elp O)ptions P)rint G)o М)Рвв экран Q)ult /=псиск [delete]=cm xK истории

[changelcg]
[changelcg]
[changelog]
[changelog]
[rharviAoy]

Кроме Web-браузеров, предназначенных для интерактивной работы пользователей,
в сценариях на языке командного интерпретатора зачастую используются неинтер­
активные пользовательские агенты wget(1) и curl(1), позволяющие автоматизировать
Web-взаимодействие. Так, например, в листинге 6.24 при помощи wget(1) показано
скачивание файла в режиме «с докачкой» (-с, continue), а сиг1(1) применяется для
обращения к Google Geocoding API.

Листинг 6,24. Пс "' зог телыжир агенты wget и curt

lumpy@ubuntu:~$ wget -с http://www.brendangregg.con/Perf/linuxperftools.png

-2019-11-24 00:54:08— http://wAW.brmdangregg.raVf̂ rfAinuxperftools.png

Распознаётся www.brendangregg.ccm(www.brendangregg.ccm)... 184.168.188.1

Пэдокнеже к www.breidangregg.ccm (www.brendangregg.ccm)|184.168.188.1|:80... соед н̂еже установлено.

НПР-загрос оправлен. Оаздаже ответа... 200 СК

Дгив: 523561 (511К) [image/png]

Сохранение в: «llnuxperftools.png»

42% [=] 224 157 -.-K/s за 11s

http://www.kernel.org
https://glt.kemel.org/
http://www.brendangregg.con/Perf/linuxperftools.png
http://wAW.brmdangregg.raVf%5erfAinuxperftools.png
http://www.brendangregg.ccm
http://www.breidangregg.ccm

274 Глава б

2019-11-24 60:54:19 (19,5 Ю /s) - (Дибка чте-ия, поэн^я 224157/523561 (Время аадамя соедиенгя истекло).
Грсдолиеже погыток.

--2019-11-24 00:54:20-- (погытка: 2) http: //v*w. brendarigregg. соУ I^TAinuxperftools. png

Пэдикнеше к w^w.brendangregg.ccn (v*w.brendanyegg.ccn)|184.168.1B8.1| :80... соедиа-ие установлено.

НГТР-загрос оправлен. Олад»*® ответа... 206 Partial Gonbent

Дона: 523561 (511К), 2994CW (292К) осталось [irage/png]

Сохранэ-ие в: «linuxperftools.png»

160%[i I и I и 11111111 и I n 11 m 1111 ----- >] 523 561 213K/s за 1,4s
Ь

2019-11-24 00:54:22 (747 №/s) - «linuxperftools.png» сохранён [523561/523561]

knpyaubLrtu:~$ curl -I http: //гип7. org/tlpi/ck>«load/TlJ4-24-Proaess_CrBation. pdf

НПР/1.1 200 OK

Date: Sat, 23 New 2019 22:08:17 СМГ

Server: Apache

Last-Modified: Thu, 21 Ncv 2019 14:26:50 СМГ

ETag: "m-31f5f5-597dcl6857e00"

Accept-Ranges: bytes

Garrtent-Length: 3274229

Connection: close

Content-Type: application/pdf

6.4.4. Служба FTP

Протокол W:[FTP] является «ископаемым1» даже по сравнению с W:[SMTP], однако
все еще широко используется для организации доступа к обширным файловым
хранилищам. Основная особенность протокола — отделение потока команд от по­
токов данных, что позволяет организовать параллельную передачу нескольких фай­
лов одновременно. За счет этой особенности появляется возможность (практически
не используемая, как небезопасная) передачи файлов не между файловым серве­
ром и клиентом (как «обычно»), а между двумя (!) файловыми серверами,
см. W:[FXP].

В листинге 6.25 иллюстрируется lftp(1) — один из самых распространенных терми­
нальных FTP-клиентов, имеющий массу полезных возможностей, как то: «задачи»
заднего фона ©, зеркалирование файловых поддеревьев (включая FXP) ©, неинтер­
активная работа © и т. д.

'Первая публикация спецификации протокола (R F C 1 4 1) датируется 1971 годом, см. https://
tools.ietf.org/html/rfc114.

Сетевая подсистема 275

lumpy@ubuntu $ Iftp cdlnage.debian.org

Iftp cdimage.debian.org:~> cd /cdinage/ports/latest/hurd-i386/current «-1

cd ok, KaTanor=/cdinage/ports/latest/hurd-i386/current

Iftp cdimage.debian.org:/.../hurd-i386/current> Is *.iso +-1

-г-- 1 ftp ftp 670121984 Feb 20 2019 debian-sid-hurd-i386-CD-l.iso

- Г - - 1 ftp ftp 1764358144 Feb 20 2019 debian-sid-hurd-i386-[M)-l.iso

- Г - - 1 ftp ftp 174952448 Feb 20 2019 debian-sid-hurd-1386-NETINST-1.iso

- Г - - 1 ftp ftp 30199808 Feb 20 2019 nini.iso

Iftp cdimage.debian.org:/.../hurd-i386/current> get debian-sid-hurd-1386-DVD-l.iso в**1

OJ
[0] get debian-sid-hurd-i386-DVD-l.iso &

'debian-sid-hurd-i386-DVD-l.iso' в позиции 0

Iftp cdinage.debian.org:/.../hurd-i386/current> get nini.iso 8 «-1

t ©
[1] get nini.iso &

'nini.iso' в позиции 0

Iftp cdimage.debian.org:/.../hurd-i386/current> jobs

[1] get nini.iso -- 907.5 Киб/с

'nini.iso1 в позиции 1573976 (5%) 907.5Кб/с овп:31с [Получение данных]

[0] get debian-sid-hurd-i386-DVD-l.iso -- 2.95 Миб/с

'debian-sid-hurd-i386-DVD-l.iso' в позиции 18610948 (IX) 2.95Мб/с овп:9м [Получение
данных]

Iftp cdinage.debian.org:/.../hurd-i386/current> quit ♦J

© [12334] Переход в фоновый режим для завершения работы заданий...

lunpy@ubuntu $ iftp -с attach 12334

[12334] Присоединился к терминалу.

Iftp cdimage.debian.org:/cdinage/ports/latest/hurd-i386/current> jobs

[0] get debian-sid-hurd-i386-DVD-l.iso -- 498.6 Киб/с

'debian-sid-hurd-1386-DVD-l.iso' в позиции 718802944 (40X) овп:6м [Получение данных]

Iftp cdimage.debian.org:/cdinage/ports/latest/hurd-i386/current> quit 4-1 *

[12334] Переход в фоновый режим для завершения работы заданий...

Кроме массы специализированных FTP-клиентов ftp(1), lftp(1), ncftp(1), gftp(1), прото­
кол FTP поддерживается и другими программными средствами, скажем различны­
ми файловыми менеджерами, что иллюстрирует листинг 6.26 на примере тс(1).

276 Глава 6

Листинг 6.Z6J клиент FTP

ш
лееэя панель Файл К

Список файлов
Быстрый просмотр
Информация
Дерево

С-х q
С-х i

Формат списка...
Порядок сортировки.
Фильтр...
Выбор кодировки... М-е

FTP-соединение..
Shell-соединение.,
Панелизация

Пересмотреть С-г

— .[-]>! г=- /ftp://mirror.yandex.ru "•
правки 'и Имя Размер Время правки
2 05:02 /•• -ВВЕРХ- марта 28 21:50

18 21:00 /•ping 4096 марта 31 2014
30 14:08 /altlinux 4096 апр. 2 05:02
31 21:00 /altlinux-beta 4096 марта 18 21:00
2 13:33 /altlinu-ightly 4096 марта 30 14:08
12 13:36 /altlinu-erkits 4096 марта 31 21:00
18 21:00 /archlinux 4096 апр. 2 13:33
17 2007 /archlinux-arm 4096 окт. 12 13:36
15 20:51 /archserver 4096 марта 18 21:00
2 02:34 /asplinux-tigro 4096 сент. 17 2007
2 12:06 /astra 4096 марта 15 20:51
2 13:18 /calculate 4096 апр. 2 02:34

13 09:26 /centos 4096 апр. 2 12:06
2 09:36 /debian 4096 апр. 2 13:18
2 01:20 /debian— kports 4096 марта 13 09:26

-ВВЕРХ-/archlinux

Совет: Внешний просмотрцик можно выбрать с помощью переменной оболочки PAGER.

ljiSmP 2^|5Я зИВЯЯЯ 41ВШЗ? 5ПЯЯЯВ1 бИЯВВВ 7 Ц ® sSSBfSnfl 9Ш!!Я181б1Ш1!ЙВ

Кроме всего прочего, клиентами FTP являются еще и внеядерные FUSE-файловые
системы curlftpfs (см. листинг 3.29) или gvfs, позволяющие монтировать файлы
FTP-серверов в дерево каталогов для их использования вообще любыми програм­
мами.

6.4.5. Служба NFS

Служба W : [Network File System] изначально разрабатывалась для прозрачного сетевого
использования файловых систем сервера так, как будто они были непосредственно
примонтированы в дерево каталогов клиента. В отличие от рТргап5!ег-протокола,
предназначенного для скачивания (transfer) файлов, протокол NFS является
ретранслятором системных вызовов open(2), close(2), read(2), write(2), seek(2) и прочих
с клиента на сервер. Это позволяет клиенту выполнять операции чтения/записи
с любой частью файла, без его передачи целиком.

NFS-клиент
Клиент протокола NFS непосредственно реализован в ядре Linux при помощи мо­
дулей nfs, nfsv2/nfsv3/nfsv4 и используется с помощью штатной операции монти­
рования mount(8), тем самым делая доступными серверные файлы любым клиент­
ским программам.

В примере из листинга 6.27 показана процедура монтирования файловой системы
/Qmultinedia NFS-сервера NVR.local © в каталог /mnt/network/nvr/Qmm при помощи

ftp://mirror.yandex

Сетевая подсистема 277

протокола NFS v3 (-t nfs -о vers=3). Для получения списка экспортируемых
(-е, export) сервером файловых систем О вызывается команда showmount(8), кото­
рая также является специализированным NFS-клиентом.

Листинг 6.27. Монтирование NFS

О lumpy@ubuntu:~$ shownount -е NVR.local

Export list for NVR.local:

/Qweb *

/Qusb *

/Qrecordings *

/Qnultinedia *

/Qdownload *

/Public *

/Network Recycle Bin 1 *

lumpy@ubuntu:~$ sudo nkdir -p /nnt/network/nvr/Qm

© lumpy@ubuntu:~$ sudo nount -t nfs -o vers=3 NVR.local:/Qnultinedia /nnt/network/nvr/Qm

lunpy@ubuntu:~$ findmt -t nfs

TARGET SOURCE STYPE OPTIONS

/nnt/network/nvr/Qm NVR.local:/Qnultinedia nfs rw,relatine,vers=3,...

lunpy@ubuntu:~$ Is /nnt/network/nvr/Qm

© -rw-r--r-- 1 toothy *• users "* 678696 авг. 20 2014 IMG_20140719_125651.jpg

-rw-r--r-- 1 toothy users 649685 авг. 20 2014 IMG_20140719_125713.jpg

-rw-r--r-- 1 toothy users 814607 авг. 20 2014 IMG_20140820_111355.jpg

lunpy@ubuntu:~$ id toothy

uid=1010(toothy) gid=1012(toothy) rpynnbri.012(toothy)

Необходимо отметить, что права доступа и идентификаторы UID/GID владельцев
файлов © передаются NFS-протоколом в неизменном виде, поэтому базы пользо­
вательских учетных записей всех клиентов (и сервера) должны быть согласованы,
например, при помощи их централизованного хранения в каталоге LDAP.

NFS-сервер
Функционирование NFS-сервера имеет свою специфику, связанную с использова­
нием NFS-протоколом принципа RPC (remote procedure call, удаленного вызова
процедур) в реализации W:[SUNRPC]. Серверы, использующие SUN RPC, не имеют
«зафиксированного»1 номера порта TCP/UDP, а используют произвольный, случай­

1 Как, например, порт 22 закреплен за службой SSH, порт 25 — за SMTP, а порт 80 — за
HTTP протоколом службы WWW.

278 Глава б

но выбираемый порт. Вместо этого в SUN RPC закрепляются номера «программ»
(program), предоставляющих определенные «услуги» (service), а соответствующий
порт регистрируется в служебной RPC-программе portmapper1, что проиллюстриро­
вано в листинге 6.28 при помощи утилиты rpcinfo(8).

.. ~ ■■■ ■ ■'■ - -.... . - "
Листинг 6.28. Удаленный вызов прицедур RFC динамические номера портов и portmapper

- й -Li______L У- J a t __________ sL. k k o a iS k k i j M 3 8 » » . Ш ■ • 1 В ■ " PJ'V;

lumpy@ubuntu:~$ rpcinfo -р NVR.local

program vers proto port service

100000 3 tcp 111 portmapper

100000 3 udp 111 portmapper

100003 3 tcp 2049 nfs

100003 3 udp .2049 nfs

100005 3 udp •* 53964 mountd

100005 3 tcp •" 39835 mountd

При помощи portmapper организуется обнаружение NFS-серверов в локальной сети
посредством широковещательного (-b, broadcast) поиска О зарегистрированных
RPC-программ NFS v3 (листинг 6.29). Кроме этого, некоторые серверы NFS (на­
пример, сетевые устройства хранения данных W:[NAS] или сетевые видеорегистра­
торы W:[NVR]) регистрируются в службе mDNS/DNS-SD, что обнаруживается ©
при помощи avahi-browse(l).

Листинг «i.29. |

О lumpy@ubuntu:~$ rpcinfo -b nfs 3

192.168.17.90.8.1 NVR.local

в lumpy@ubuntu:~$ avahi-browse -rcl _nfs._tcp

+ eth0 IPv4 NVR(NFS) •* Network File System

= eth0 IPv4 NVR(NFS) Network File System

hostname = [NVR.local]

address = [192.168.17.90]

port = [2049]

txt = []

local

local

1 Порт самой RPC-программы portmapper все же закреплен за номером 111 TCP/UDP, что позво­
ляет клиентам обращаться portmapper сервера и находить порты других RPC-программ по их но­
мерам.

Сетевая подсистема 279

Сервер NFS предоставляет клиентам некоторое количество RPC-услуг (-s, services),
показанных в.листинге 6.30, при помощи rpcinfo(8). Выделяют базовые RPC-npo-
граммы nountd © и nfs ®, позволяющие монтировать файловые системы NFS и
обращаться к их файлам, и дополнительные RPC-программы1 nlockmgr ® и status

®, реализующие механизм блокировки файлов.

lumpy@ubuntu:~$ rpcinfo -s NVR.local

program version(s) netld(s) service owner

100000 4.3,2 tcp6,tcp,udp,udp6 portmapper superuser

100003 4,3,2 udp6,tcp6,udp,tcp nfs superuser

100005 3,2,1 tcp6,udp6,tcp,udp © mountd superuser

100021 4,3,2,1 tcp6,udp6,tcp,udp © nlockmgr superuser

100024 1 tcp6,udp6,tcp,udp © status superuser

6.4.6. Служба SMB/CIFS

Служба W:[CIFS] (common internet file system), заимствованная из семейства опе­
рационных систем Windows, предназначена (аналогично «родной» NFS) для совме­
стного использования файлов. Основным протоколом службы CIFS является прото­
кол SMB (server message blocks), который аналогично NFS ретранслирует систем-/
ные вызовы к файлам.

Имена NetBIOS
Отличительной особенностью протокола SMB, доставшейся ему в наследство от
транспорта W: [NetBIOS], является возможность использования еще одного вида
имен узлов (в дополнение к DNS- и mDNS-именам, см. разд. 6.3) — так назы­
ваемых «имен NetBIOS» — и собственной службы NBNS2 (netbios name service),
отображающей имена NetBIOS на IP-адреса.

lumpy@ubuntu:~$ mblookup WINXP

querying WINXP on 192.168.100.255

192.168.1003 WINXP<00>

'C m. W :[NLM], network lock manager и W:[NSM], network status monitor.

2 Служба NBNS похожа на DNS и mDNS одновременно, но несовместима с ними.

280 Глава б

В листинге 6.31 иллюстрируется использование утилиты nmblookup(l), предназначен­
ной для диагностики службы NBNS, при помощи которой «плоское» имя NetBIOS
HINXP отображается на соответствующий ему IP-адрес. Именно при помощи служ­
бы NBNS и широковещательного поиска специальных «групповых» имен NetBIOS
реализуется основной способ обнаружения CIFS-серверов локальной сети, что вы­
полняет утилита smbtree(1), иллюстрируемая О в листинге 6.32.

В редких отдельных случаях серверы CIFS обнаруживаются © зарегистрирован­
ными в службе mDNS/DNS-SD, что характерно (как и в случае серверов NFS)
для сетевых устройств хранения данных W:[NAS] или сетевых видеорегистраторов
W:[NVR].

О lumpy@ubuntu:~$ snbtree -N

WORKGROUP

\\WINXP

\\WINXP\C$ Стандартный общий ресурс

\\WINXP\ADMIN$ Удаленный Admin

\\WINXP\medla Фото, видео, и т. д.

\\WINXP\D$ Стандартный общий ресурс

\\WINXP\IPC$

\\NVR

\\NVR\Qrecordlngs

\\NVR\Qmultlmedla

\\NVR\Qdownload

\\NVR\IPC$

Удаленный IPC

© lumpy@ubuntu:~$ avahi-browse -rcl _smb._tcp

+ eth0 IPv4 NVR(SMB)

= ethG IPv4 NVR(SMB)

hostname = [NVR.local]

address = [192.168.17.90]

port = [445]

txt = []

CIFS-клиенты
Различают две разные реализации клиента CIFS — внеядерную smbclient(l) (анало­
гичную «интерактивным» FTP-клиентам) и ядерную (аналогичную NFS-клиенту),
реализуемую модулем ядра clfs. Использование ядерного модуля позволяет монти­

Microsoft Windows Network local

Microsoft Windows Network local

Сетевая подсистема 281

ровать общие файловые ресурсы (share) серверов CIFS непосредственно в дерево
каталогов клиента, что дает возможность любым его программам использовать
серверные файлы.

В примерах из листинга 6.33 показано использование CIFS-клиента smbclient(l) для
получения списка (-L, list) разделяемых ресурсов О (share) узла WINXP, равно как
и для подключения © к его публичному (-N, по password) разделяемому ресурсу
media с последующим скачиванием файлов целиком.

Листинг 6 J3. Клиент SMB/CIFS

О lumpy@ubuntu:~$ smbclient -NL //WINXP

Domain=[WINXP] OS=[Windows 5.1] Server=[Windows 2000 LAN Manager]

Sharename Type

с$ Disk

D$ Disk

ADMIN$ Disk

IPC$ IPC

media Disk

Comment

Стандартный общий ресурс

Стандартный общий ресурс

Удаленный Admin

IPC Service

Фото, видео, и т. д.

© lumpy@ubuntu:~$ smbclient -N //WINXP/media

Domain=[WINXP] 0S=[Windows 5.1] Server=[Windows 2000 LAN Manager]

smb: \> cd Ю М \ «-1

smb: \DCIM\> dir ♦J

D 0 Thu Jan 7 20:57:36 2016

.. D 0 Thu Jan 7 20:57:36 2016

Dd595.jpg A 4494092 Sun Feb 13 16:24:04 2011

Dd596.jpg A 3842680 Sun Feb 13 16:14:56 2011

Dd680.jpg A 4087313 Sun Feb 13 03:10:45 2011

Dd681.jpg A 4108278 Sun Feb 13 15:58:38 2011

61192 blocks of size 1048576. 10915 blocks available

smb: \DCIM\> get Dd680.jpg ♦J

getting file \DCIM\Dd680.jpg of size 4087313 as Dd680.jpg (72572,9 KiloBytes/sec)
(average 72573,0 KiloBytes/sec)

smb: \DCIM\> quit ♦J

Листинг 6.34 иллюстрирует использование ядерного модуля cifs для монтирования
публичного (-о guest) ресурса media с узла WINXP в каталог /mnt/network/winxp/media.

282 Глава б

Клиент smbclientfl) имеет встроенный механизм NBNS, поэтому без проблем под­
ключается к узлу MINXP, а при монтировании cifs механизм NBNS недоступен О,
что требует подсказки © в виде IP-адреса сервера.

ЛИСТИНГ 634. ШШ

lunpy@ubuntu:~$ sudo nkdir -р /mnt/network/winxp/nedia

lunpy@ubuntu:~$ sudo mount -t cifs -o guest //WINXP/media /mnt/network/winxp/media

О mount error: could not resolve address for WINXP: Unknown error

lumpy@ubuntu:~$ nmblookup WINXP

querying WINXP on 192.168.100.255

192,168.100.3 WINXP<00>
© lumpy@ubuntu:~$ sudo rant -t cifs -o guest,ip=d92.1£8.160.3 //WDttP/recfia Ant/netMorKAdiwp/hedia

lumpy@ubuntu:~$ findmnt -t cifs

TARGET SOURCE FSTYPE OPTIONS

/mnt/network/winxp/media //WINXP/media cifs rw,relatime,vers=1.0,cache=strict,...

lumpy@ubuntu:~$ Is -l /mrrt/network/winxp/nedia/DCIM/

итого 346228

-rwxr-xr-x 1 root “• root “• 4494092 февр. 13 2011 Dd595.jpg

-rwxr-xr-x 1 root root 4108278 февр. 13 2011 Dd681.jpg

6.5. Средства сетевой диагностики
Диагностика сетевого обмена существенно облегчает решение разнообразных задач,
связанных с эксплуатацией или разработкой сетевых приложений. К сетевым диаг­
ностическим специальным средствам относят анализаторы пакетов и сетевые ска­
неры, которые применяются самостоятельно или вместе с трассировщиками сис­
темных и библиотечных вызовов.

6.5.1. Анализаторы пакетов tcpdump и (shark
Анализаторы пакетов предназначены для перехвата данных, поступающих из сети
на сетевые интерфейсы или отправляющиеся в сеть с сетевых интерфейсов. Со­
временные анализаторы пакетов, кроме собственно захвата пакетов, осуществляют
их детальный протокольный разбор, а также позволяют отфильтровывать подле­
жащие анализу пакеты по ряду критериев.

В листинге 6.35 показан пример использования наиболее распространенного,
«классического» анализатора пакетов tcpdump(1), анализирующего пакеты на интер­
фейсе (-г, interface) wlp2sG, адресованные порту port 53.

Сетевая подсистема 283

Листинг 6.35. Анализатор пакетов ttpUump

p t s / l

lL r p ^ L ix n tu :~ $ tq x k r p - 1 w lp 2 s G p o rt 53

tqpdurp: verbose output suppressed, use -v or - w fbr full protocol decode

listening on wlp2s0, link-type EN16№ (Ethernet), capture size 65535 bytes

p ts /2

lunpy@ubuntu:~$ host 2x2tv.ru

2x2tv.ru © has address 146.158.12.222 ©

2x2tv.ru nail is handled by 10 fn.tnt-tv.ru.

p t s / ’l

15:11:32.139394 IP Ubmtu.local.40694 > 192.168.100.1 .donain: 2656f [lau] A? 2x2tv’.’ru. (37)

15:11:32.144674 IP 192.168.100.1.donain > ubmtu.local.40694: 2656 1/0/1 A 146.158.12.222 (53)

15:11:32.145260 IP Ubuitu.local.22022 > 192.168.100.1.dcrain: 63760f [lau] MX? 2x2tv.ru. (37)

15:11:32.147959 IP 192.168.m i.dcrain > Ubuitu.local.48132: 63760 1/0/1 fK fn .tn t- tv .ru . 10 (63)

*C
4 packets captured

4 packets received by filter

0 packets dropped by kernel

Анализу подвергается работа DNS-клиента host(1), отображающего имя домена
2x2tv.ru на IP-адрес и имена его почтовых адресов (MX-записи DNS). В резуль­
тате анализа захваченных пакетов наблюдаются запросы и ответы DNS-протокола
к локальному кэширующему серверу 192.168.106.1, который на запрос ® А? адреса
IPv4, соответствующего имени 2x2tv.ru, отвечает © адресом А 146.158.12.222.

Терминальный1 анализатор пакетов tshark(1), позволяющий проводить детальный
анализ прикладных протоколов, таких как SSH, HTTP, FTP, NFS и пр., проиллю­
стрирован в листинге 6.36. Здесь анализируется работа пользовательского агента
сиг!(1), запрашивающего Web-pecypc по адресу h ttp ://ip in fo .io /c ity . В результате
захвата пакетов на интерфейсе (-i, interface) wlp2sG, адресованных порту port 80,

просматриваются (-R, read filter) пакеты, содержащие http-запросы, при этом де­
тальному анализу (-V, view) подвергается только (-0, only) их http-содержимое.

В результате анализа, например, можно сделать вывод ★ о программном обеспече­
нии Web-сервера, обслуживающего сайт h ttp ://ip in f i.io .

Гораздо удобнее, конечно, использовать его графический вариант — wireshark(l).

http://ipinfo.io/city
http://ipinfi.io

284 Глава б

Листинг 6.36. Анализатор пакетов wireshark

p t s / l

lumpy@ubuntu:~$ tshark -i wlp2s0 -V -0 http,data-text-lines -Y http port 80

Capturing on wlp2s0

p ts /2

lunpy@ubuntu:~$ curl http://ipinfo.io/city

| Saint PetersburgI
p ts / l

Frame 4: 131 bytes on wire (1048 bits), 131 bytes captured (1048 bits) on interface 0

Ethernet II, Src: PcsGcnpu_a9:78:36 (08:00:27:a0:78:36), Dst: RealtekU_12:35:02 (52:54:00:12:35:02)

Internet Protocol Version 4, Src: 10.0.2.15, Dst: 216.239.36.21

Transmission Control Protocol, Src Port: 38534, Dst Port: 80, Seq: 1, Ado 1, Len: 77

Ttypertext Transfer Protocol

(ЕГ /city HTTP/l.l\r\n

[Expert Info (Chat/Sequenoe): GET /city HTTP/l.l\r\n]

[GET /city HTTP/l.l\r\n]

[Severity level: Chat]

[Group: Sequence]

Request Method: СЕГ

Request LRI: /city

Request Version: НПР/1.1

Host: ipinfo.io\r\n

User-Agent: curl/7.65.3\r\n

Accept: */*\r\n

\r\n

[Full request LRI: http://ipinfo.io/city]

[HTTP request 1/1]

Frane 6: 441 bytes on wire (3528 bits), 441 bytes captured (3528 bits) on interface 0

Ethernet II, Src: RealtekU_12:35:02 (52:54:00:12:35:02), Dst: PcsGcnpu_a0:78:36 (08:00:27:a0:78:36)

Internet Protocol Version 4, Src: 216.239.36.21, Dst: 10.0.2.15

Transmission Control Protocol, Src Port: 80, Dst Port: 38534, Seq: 1, Ado 78, Len: 387

Hypertext Transfer Protocol

НПР/1.1 200 CK\r\n

[Expert Info (Chat/Sequenoe): НПР/1.1 200 CK\r\n]

[НПР/1.1 200 CK\r\n]

[Severity level: Chat]

[Grap: Sequence]

Response Version: НПР/1.1

Status Gode: 200

[Status Gode Description: OK]

Response Phrase: OK

Date: Sat, 23 Nov 2019 23:27:18 CMT\r\n

Content-Type: text/html; charset=utf-8\r\n

Content-Length: 7\r\n

[Content length: 7]

http://ipinfo.io/city
http://ipinfo.io/city

Сетевая подсистема 285

x-cloud-trace-context: 8f;**l5d63cft)«6Sifcd36652cac^^

/tcess-Control-Allow-Orlgln: *\r\n

X-Frame-Cptions: DBW\r\n

X-XSS-Protectton: 1; mode=block\r\n

X-Gontent-Type-Opttons: nosniff\r\n

Referrer-Policy: stnjct-origio-viien-cross-origin\r\n

Via: 1.1 google\r\n

\r\n

[HTTP response 1/1]

[Tine since request: 0.145039000 seconds]

[Request in frame: 4]

[Request URI: http://ip in fo.iD /city]

File Data: 7 bytes

Line-based text data: text/html (1 lines)

Saint Petersburg\n "•

*C2 packets captured

6.5.2. Сетевой сканер nmap

Сетевой сканер W:[nmap] предназначен для поиска служб по их открытым портам
на указанных узлах сети. В примере из листинга 6.37 показан процесс и результа­
ты сканирования узла 192.168.0.1 (беспроводной маршрутизатор, арендованный
у провайдера Интернета).

Сканирование выполнялось способом TCP connect scan О, т. е. предпринималась
попытка установить соединение TCP с каждым из 1000 «популярных» портов.
В результате оказывается, что на узле открыты 4 порта, доступные © для присое­
динения.

...... ■
I #1йст|инг »vCTvBvfi ttoHcp wnep

'-5 i. .* 1

lumpy@ubuntu:~$ m a p -n - v w — reason 192.168.G.1

Starting Nmap 7.80 (https://nmap.org) at 2019-11-24 11:46 MSK

Initiating Ping Scan at 11:46

Scanning 192.168.0.1 [2 ports]

Completed Ping Scan at 11:46, 0.01s elapsed (1 total hosts)

© Initiating Connect Scan at 11:46

Scanning 192.168.0.1 [1000 ports]

Discovered open port 80/tcp on 192.168.0.1

Discovered open port 22/tcp on 192.168.0.1

Discovered open port 1900/tcp on 192.168.0.1

Discovered open port 49152/tcp on 192.168.0.1

Completed Connect Scan at 11:46, 0.57s elapsed (1000 total ports)

http://ipinfo.iD/city
https://nmap.org

Nnap scan report for 192.168.0.1

Host is up, received syn-ack (0.054s latency).

Scanned at 2019-11-24 11:46:18 MSK for Is

Not shown: 996 closed ports

Reason: 996 conn-refused

в PORT STATE SERVICE REASON

22/tcp open ssh syn-ack

80/tcp open http syn-ack

1900/tcp open upnp syn-ack

49152/tcp open unknown syn-ack

6.5.3. Мониторинг сетевых соединений процессов
Интерфейс сокетов в целом является продолжением идеи «файлов», специально
предназначенных для межпроцессного взаимодействия, некоторым развитием «фай­
ловой» природы простейших именованных и неименованных каналов.

Таким образом, сокеты сетевых семейств ip(7), ipv6(7) и прочие обладают «файло­
выми» свойствами точно так же, как и локальные сокеты unix(7). Например, каж­
дый сетевой сокет идентифицируется при помощи файлового (!) дескриптора
в таблице открытых файлов процесса, что проиллюстрировано в листинге 6.38 при
помощи lsof(1) и ss(8).

Листинг 638. Файловые дескрипторы сетевых с о к е т

lumpy@ubuntu:~$ pgrep Iftp

6056

lurnpy@ubuntu: ~$ Isof -i 4 -a -p 6056

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

Iftp 6056 lirpy 4u IPv4 88150 0t0 TCP iixnbJ.lxal:43578->napoleon.ftp.acc.urnu.se:ftp (ESTABLISHED)

lumpy@ubuntu:~$ ss -p d^ort = :ftp

Netid State Rbcv-Q Send-Q Local Address:Rrt Fteer Adfress:Port

trp ESTAB 0 0 192.168.0.101:43578 194.n.ll.l73:ftp users: ((4ftp\pid=6056,ftW-*))

Более детально проследить за жизненным циклом сетевого сокета позволяет трас­
сировка «сокетных» системных вызовов socket(2), connect(2), bind(2), listen(2), accept(2),
send(2) и recv(3).

В примере из листинга 6.39 показана трассировка «клиентского» сокета пользо­
вательского агента сиг1(1), загружающего Web-pecypc http://www.gnu.org/graphics/

agnuheadtern-xtern.txt.

http://www.gnu.org/graphics/

Сетевая подсистема 287

Системный вызов socket(2) О создает потоковый сокет семейства ip(7), которому
назначается первый свободный файловый дескриптор FD = 3, после чего системный
вызов connect(2) инициирует установку соединения © этого сокета с портом 80 узла
209.51.188.148, После установки соединения системный вызов sendto(2) отсылает
Web-серверу команду W:[HTTP] протокола GET на получение запрашиваемого ресур­
са, а несколько системных вызовов recvfrom(2) получают запрошенный ресурс.

Листинг £ 39. Сетевой клиен!. Системные еызоьы socket®,

lirp!/<Mxjntu:~$ strata -fa traowatwork curl http://w^.gTu.cr^graphi£s/agmhaadtem-xtErTn.txt

О socket(AF_UCT, S0CKS1REAM, JPFRJTOTCP) = 3 ^

setsockopt(3, SOL_TCP, TCP_NODELAY, [1], 4) = 0

© connect(3, {sa_family=AF_INET, sin_port=htons(80), sin_addr=inet_addr("209.51.188.148")}, 16) = -1
EINPROGRESS (Операция выполняется в данньй момент)

© sendto(3, "GET /graphics/agnuheadtem-xtem"..., 106, MSG_NOSIGNAL, NULL, 0) = 106

© recvfrom(3, "HTTP/1.1 200 OK\r\nDate: Sun, 24 N"..., 102400, 0, NULL, NULL) = 1382

recvfrom(3, "249n\342\226\204\33[38;5;246n\342\226"..., 17588, 0, NULL, NULL) = 12438

Жизненный цикл «серверных» сокетов чуть более сложен и предполагает исполь­
зование одного «слушающего» сокета для клиентских подключений и по одному
«обслуживающему» сокету на каждого подключенного клиента.

В примере из листинга 6.40 показана трассировка простейшего Web-сервера, реа­
лизованного модулем SinpleHTTPServer языка программирования W:[python], Web-
сервер запускается из «рабочего» каталога /usr/share/doc и предоставляет Web-
доступ ко всем файлам этого каталога, используя «нестандартный» порт 8000.

Для начала при помощи socket(2) создается О потоковый сокет семейства ip(7), ко­
торому назначается первый свободный файловый дескриптор FD = 3. Этот сокет и
будет выступать в роли «слушающего», т. е. принимающего клиентские соединения,
поэтому ему «привязывается» © адрес 0.0.0.0 и порт 8000 (куда и будут поступать
клиентские соединения) при помощи системного вызова bind(2), а сам сокет пере­
водится в слушающее состояние © системным вызовом listen(2). Все входящие
клиентские соединения ставятся в очередь «слушающего» сокета и изымаются из
нее системным вызовом accept(2), который создает для каждого клиентского соеди­
нения собственный сокет (клонируя слушающий). При поступлении клиентского
соединения © был создан новый «обслуживающий» сокет с файловым дескрипто­
ром FD = 4, используя который при помощи recv(2) была получена W:[HTTP]-KOMaHfla
GET на доступ к «корневому» ресурсу сервера, а с помощью нескольких системных
вызовов send (2) в ответ был направлен сформированный HTML-список файлов в
каталоге /usr/share/doc.

http://w%5e.gTu.cr%5egraphi%c2%a3s/agmhaadtem-xtErTn.txt

288 Глава б

Листинг 6.40. Сетевой сервер: системные вызовы socket#), bind{2), listen(Z), accept#), sendP) и recv#]

p ts / l

lunpy@ ubuntu:~$ cd /usr/share/doc
lumpy @ubuntu: /usr/share/doc$ straoe -fie trao&retwork python -n SirpUHTIPSerar

О socket(AFJI€T, S0CK_SIPBW, IPPFOTDJP) = 3

setsockopt(3, SOLJSOCKET, SORBJSEKTR, [1], 4) = 0

© blnd(3, {sa_faprily^AF_I>ET, sinjorb=htcns(8000), svn_addr^inet_addr(,,0.0.0.0H)}, 16) = 0

© listen(3 , 5) =0

Serving HTTP on 0.O.0.0 port 8000 ...

© accept(3, {sa_fanUy^AF_II€r, sinjx>rfc=htjons(55094), sin_a±lp4netjaddr("127.0.0.1")}, [16]) = 4 "•

© recvfrom (4 "GET / H TTP/l.l\r\nH ost: l o c a l h o s t : , 8192, 0, NULL, NULL) = 78

127.0.0.1 - - [24/Ncv/2019 12:14:54] "GET / НПР/1.1" 200 -

© sendto(4 "НПР/1.0 200 CK\r\n", 17, 0, NULL, 0) = 17

sendto(4, "Server: SirpleHTIP/0.6 Python/2."..., 41, 0, NULL, 0) = 41

sendto(4, "Date: Sm, 24 Nov 2019 09:14:54 " .. . , 37, 0, MILL, 0) = 37

sendto(4, "Gontent-type: text/html; charset"..., 40, 0, NJLL, 0) = 40

sendto(4, "Content-Length: 86602\r\n", 23, 0, NJLL, 0) = 23

sendto(4, "\r\n", 2, 0, NULL, 0) =2

sendto(4, "<!DOCTYPE htril FIBLIC \"-//W3C//D"..., 8192, 0, NULL, 0) = 8192

shutdcvr(4, SHUTJfl) = 0*C
p ts /2

I lumpy@ubuntu:~$ wget http://ubuntu:8000 |

j --2019-11-24 12:18:05-- h ttp://ubuntu:8000/ |

j Распознаётся ubuntu (ubuntu)... 127.0.1.1 j

Подключение к ubuntu (ubuntu)|127.0 .1 .1|:8000... соединение установлено.

HTTP-запрос отправлен. Ожидание ответа... 200 OK

Длина: 86602 (85К) [text/h tm l]

Сохранение в: «index.htm l»

10О%[- — >] 84,57К - - . -K/s за 0,002s

2019-11-24 12:18:05 (54,6 MB/s) - «index.htm l» сохранён [86602/86602]

6.6. В заключение
Сетевая подсистема ОС Linux чрезвычайно развита на всех ее уровнях — от се­
тевых интерфейсов и протоколов и до прикладных сетевых служб. На сегодняш­
ний день колоссальное количество сетевых устройств работают под управлением

Сетевая подсистема 289

Linux — маршрутизаторы, сетевые хранилища, медиаплееры, TV-боксы, планшеты,
смартфоны и прочие «встраиваемые» и мобильные устройства.

К сожалению, рассмотреть весь пласт сетевых возможностей в рамках этой книги
не представляется возможным, т. к. потребует от читателя серьезного понимания
устройства и функционирования самих сетевых протоколов стека TCP/IP, что не
является предметом настоящего рассмотрения.

Основополагающим результатом текущей главы должно стать понимание принци­
пов организации сетевого взаимодействия в Linux, необходимое и достаточное
в качестве базы для последующего самостоятельного расширенного и углубленного
изучения. Не менее полезными в практике администратора и программиста будут
навыки использования инструментов трассировки и мониторинга сетевых сокетов, а.
в особенно «непонятных» ситуациях — навыки применения анализаторов пакетов.

Исключительное место (эдакий «швейцарский нож») среди прочих сетевых инстру­
ментов Linux займет служба SSH, применение которой найдется уже в следующей
главе, при распределенном использовании оконной системы X Window System,
являющейся основой современного графического интерфейса пользователя.

Глава 7
Графическая система

X Window System

Графическая система W : [X Window System] предоставляет приложениям операционной
системы возможность представления графической информации на графических уст­
ройствах вывода, в большинстве случаев — на дисплеях растровых видеотерми­
налов.

Основной принцип графической системы Х(7) позволяет множеству графических
приложений осуществлять «одновременный» графический вывод за счет окон, со­
вместно отображаемых на дисплеях. Содержимое окон определяется их владельца­
ми — графическими приложениями, а управление окнами (их создание, уничтоже­
ние, отображение на дисплеях, перекрытие другими окнами, перемещение, измене­
ние размеров и пр.) возложено на оконную систему.

Действительной особенностью оконной системы Х(7) является ее сетевая прозрач­
ность, т. е. возможность различным компонентам выполняться в виде отдельных
процессов на разных узлах сети и взаимодействовать при помощи соответствую­
щих средств, в большинстве случаев — с использованием сетевых сокетов се­
мейств ip(7) и ipv6(7). При выполнении компонент оконной системы на одном узле
в целях повышения производительности используют локальные (файловые) сокеты
unix(7) и даже разделяемую память (см. разд. 4.9.5 или 7.6).

Как любая другая сетевая служба, оконная система Х(7) состоит из Х-сервера и
Х-клиентов, взаимодействующих между собой посредством W :[X протокола].

Первичной компонентой оконной системы Х(7) является Х-сервер, основная задача
которого заключается в управлении оборудованием графического вывода и ввода.
Под управлением Х-сервера находятся графические дисплеи (видеоадаптеры и
подключенные к ним мониторы), устройства «графического» интерфейса с пользо­
вателем (манипуляторы «мышь», трекболы, тачпады, графические планшеты и пр.),
а кроме того, устройства «символьного» взаимодействия с пользователем — кла­
виатуры.

7.1. Х-сервер

2 9 2 Глава 7

Именно Х-сервер принимает подключения от Х-клиентов и согласно их запросам
создает окна, изменяет их размер, отображает или скрывает окна на дисплеях,
сообщает положение курсора, рисует текст, линии, точки, прямоугольники, дуги,
полигоны и пр. В обратную сторону Х-сервер отправляет Х-клиентам информацию
о событиях (events) нажатия клавиш, кнопок мыши и планшетов, оповещает
о движении курсора и т. д.

Листинг 7.11 Аппаратный Х-сервер

homer@ubuntu:~$ pgrep -1 Xorg

6892 Xorg

homer@ubuntu:~$ ps о pid,tty,cmd p 6892

PID TT CMD

6892 tty3 /usr/lib/xorg/Xorg vt3 -displayfd 3 -auth /гип/user/1000/gdpi/Xauthority ...

О homer@ubuntu:~$ Isof -p 6892 -a /dev

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

Xorg 6892 homer mem CHR 226,0 439 /dev/dri/cardO

Xorg 6892 homer 0u CHR 4,3 0t0 24 /dev/tty3

Xorg 6892 homer llu CHR 4,3 0t0 24 /dev/tty3 @

Xorg 6892 homer 12u Q-F 226,0 0t0 439 /dev/drl/card0

Xorg 6892 homer 16u CHR 226,0 0t0 439 /dev/drl/card0

Xorg 6892 homer 24u CHR 13,64 0t0 149 /dev/tnput/event0

Xorg 6892 homer 32u CHR 13,68 0t0 336 /dev/input/event4

© homer@ubuntu:~$ Isof -p 6892 -a -U

COMMAND PID USER FD TYPE DEVICE

Xorg 6892 homer lu unix 0x0006060666666660

Xorg 6892 homer 2u unix 0x6600666666660660

Xorg 6892 homer 3u unix 0x6066666666666666

Xorg 6892 homer 6u unix 0x6666666666666066

Xorg 6892 homer 7u unix 0x6066666666666666

Xorg 6892 homer 47u unix 0x6066666666666666

SIZE/OFF NODE NAME

0t0 118649 type=STREAM

0t0 119748 type=STREAM

0t0 119927 @/tmp/.Xll-unlx/X0 type=STREAM

0t0 118653 @/tmp/.Xll-unlx/X0 type=5TREAM

0t0 118654 /tmp / .X l l - U n i x / X 0 ® type=STREAM

0t0 124222 @/tmp/.Xll-unlx/X0 type=STREAM

© homer@ubuntu:~$ Isof -p 6892 -a -i

j +-

Листинг 7.1 иллюстрирует сервер Xorg(1), использующий специальные файлы О
устройств видеоускорителя /dev/dri/cardO и устройств пользовательского ввода

Графическая система X Window System 293

/dev/input/* для организации на виртуальном терминале /dev/tty3 графического
дисплея ®.

Для взаимодействия с Х-клиентами сервер создает © локальный (файловый) сокет
® /tmp/.Xll-unix/XO, но не создает по умолчанию сетевой сокет ©, поэтому под­
ключение Х-клиентов по сети к такому серверу невозможно.

Основные свойства Х-сервера и управляемых им графических дисплеев можно по­
лучить при помощи утилиты xdpyinfo(1), см. листинг 7.2 .

homer@ubuntu:~$ xdpyinfo | grep -А 4 screen

default screen number: 0

nurtber of screens: 1

screen #0:

dimensions: 1600x900 pixels (423x238 millimeters)

resolution: 96x96 dots per inch

depths (7): 24, 1, 4, 8, 15, 16, 32

root window id: 0x17c

7.2. Х-клиенты и Х-протокол
Второй важной компонентой оконной системы Х(7) являются Х-клиенты — прило­
жения, получающие в свое распоряжение окна и отображающие в них графиче­
скую информацию. Точнее, Х-клиенты всего лишь взаимодействуют с сервером
при помощи Х-протокол а и могут вовсе не создавать окон, как это делают «про­
стейшие» xdpyinfo(1), xrandr(l) и glxinfo(l), xlsclients(l), xwininfo(l), хргор(1), но «полновес­
ные» Х-клиенты — всегда создают хотя бы одно окно.

Список созданных окон (упорядоченный в дерево1) и системные атрибуты каждо­
го из них можно запросить у Х-сервера при помощи xwininfo(1). В листинге 7.3
построено полное дерево окон (начиная с «корневого» окна самого Х-сервера),
среди которых отобраны окна с именем gnome-terminal (предположительно принад­
лежащие gnome-terminal(l), узнать явно нет возможности). При этом оказывается,
что только одно окно изображается © Х-сервером на дисплее, а еще одно нахо­
дится в скрытом состоянии О.

1 Окна в X Window System связаны дочерне-родительскими отношениями, определяемыми при
создании окна. Суть этих отношений состоит в том, что координаты окон всегда определяют их
положение относительно родительского окна, при этом изображаются только части окон, видимые
в пределах своего родительского окна.

294 Глава 7

Листинг 73. Дерево окон /серверам их атрибуты!

homer@ubuntu:~$ xwlninfo -tree -root | grep gncre-terminal

0x2a0000a "honer@ubuntu: ("gnore-teminal-server" "Gncre-terminal") 786x527+74+134 +74+134

0x2a00001 "Терминал": ("gnore-teminal-server" "Gnore-teminal-server") 10xl0fl0fl0 +10fl0

honer@ubuntu:~$ xwurinfb -Id Ox2aO6O01 | grep Map
Map State: IslInMapped О

homer@ubuntu:~$ xw lninfo - id Qx2aQG0Qa | egrep 'Map|Width|Height'
Width: 786

Height: 527

Map State: IsViewable 0

Кроме системных атрибутов, каждое окно наделяется свойствами (properties), ши­
роко используемыми для взаимодействия между Х-клиентами (см. W : [ICCCM]), осо­
бенно между «обычными» клиентами и оконным менеджером (window manager),
см. разд. 7.3. Оконный менеджер является «особенным» Х-клиентом, обрабаты­
вающим события создания окон «обычных» Х-клиентов. Именно он добавляет
к «чужим» создаваемым окнам «свои» декорирующие элементы: заголовок {title)
окна — для его перемещения, бордюр (border) — для изменения его размеров и
т. д. Делает он это одним незамысловатым способом — создает собственное окно
с декором, и делает его родительским для декорируемого окна.

В листинге 7.4 показаны некоторые свойства окна, установленные программой-
владельцем окна для оконного менеджера. Например, свойство WM_NAME использу­
ется оконным менеджером для текста заголовка (отображаемых) окон, свойство
WM_LOCALE_NAME указывает на язык и кодировку текста, содержащегося в WM_NAME,
свойство WM_CLIENT_MACHINE содержит имя сетевого узла Х-клиента, а свойство
WM_COMMAND — команду, при помощи которой был запущен клиент.

Листинг 7.4. Свойства окон /-сервера

horer@ubuntu:~$ хргор -id 0х2а00001 | grep АШ _

WM_CLASS(STRING) = "gnome-terminal-server", "Gnome-terminal-server"

WM_COMMAND(STRING) = { "gnome-terminal-server" }

WM_CLIENT_LEADER(WINDOW): window id # 0x2800001

WM_LOCALE_NAME(STRING) = "ru_RU.UTF-8"

WM_CLIENT_MACHINE(STRING) = "ubuntu"

WM_NORMAL_HINTS(WM_SIZE_HINTS):

WM_PROTOCOLS(ATOM): protocols WM DELETE WINDOW, WM_TAKE_FOCUS, _NET_WM_PING

WM_ICON_NAME(COMPOUND_TEXT) = "Терминал"

WM_NAME(COMPOUND_TEXT) = "Терминал"

Графическая система X Window System 295

Свойства окон Х-клиентов могут использоваться не только оконным менеджером,
но и другими клиентами, например xlsclients(l), который опрашивает Х-сервер
(листинг 7.5) и выводит список «клиентов». На самом деле он отображает список
окон только со свойствами WM_CLIENT_MACHINE и WM_COMMAND, которые в действи­
тельности устанавливаются (и то не всегда) Х-клиентами для своих «основных»
окон.

■
Листинг 7.5, Слисок клиентов Х-сервера

homer@ubuntu:~$ xlsclients -1 | grep -С 3 gnome-terminal

Window 0х2а00001:

Machine: ubuntu

Name: cunknown type COMPOUND_TEXT (502) or format 8>

Icon Name: <unknown type COMPOUND_TEXT (502) or format 8>

Command: gnome-terminal-server

Instance/Class: gnome-terminal-server/Gnome-terminal-server

Взаимодействие Х-клиентов и Х-сервера происходит при помощи локальных или
сетевых сокетов в зависимости от их взаимного месторасположения и согласно
адресу подключения, указываемому на стороне Х-клиентов при помощи перемен­
ной окружения DISPLAY в формате host:number.

Адрес подключения состоит из имени (или IP-адреса) узла Х-сервера host и номе­
ра его дисплея number (например, DISPLAY=ubuntu.local:0 или 192.168.0.5:0). В каче­
стве host может выступать любое имя, для которого можно получить 1Р-адрес,
используя службу имен (см. разд. 6.3), а в случае локального взаимодействия host

не указывается вовсе (т. е. DISPLAY=:0).

Номер дисплея указывает на экземпляр Х-сервера, запущенного на узле host для
управления некоторым набором оборудования (графическими дисплеями — видео­
картами и мониторами, клавиатурами и пр.).

Проиллюстрировать разные виды Х-взаимодействия проще всего при помощи
«виртуальных» Х-серверов Xnest(1) и Xephyr(1). В отличие от «аппаратного» Х-сер­
вера, организующего доступ Х-клиентов к аппаратному дисплею, эти серверы ор­
ганизуют доступ своих клиентов к виртуальному «дисплею», в качестве которого
выступает их собственное окно аппаратного сервера.

В листинге 7.6 показан запуск Х-сервера Xnest(1) с номером дисплея :1 (т. к. дис­
плей :0 обычно занят О аппаратным Х-сервером), который создает сокет © се­
мейства ip(7) для подключения сетевых клиентов и сокет © семейства unix(7) для
локальных.

2 9 6 Глава 7

Листинг 7.6. Виртуальный Хп.ерь«?р Xnest

homer@ubuntu:~$ Xnest :0 &

_XSERVTransSocketUNIXCreateListener: ...SocketCreateListener() failed

_XSERVTransMakeAllCOTSServerListeners: server already running

(EE)

Fatal server error:

О (EE) Cannot establish any listening sockets - Make sure an X server isn't already running(EE)

honer@ubuntu:~$ Xnest :1 -listen tcp &

[1] 10950

homer@ubuntu:~$ Isof -p 10950 -a -i

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

© Xnest 10950 homer 4u IPv6 146673 0t0 TCP *:xll-l (LISTEN) -•

Xnest 10950 homer 5u IPv4 146674 0t0 TCP *:xll-l (LISTEN)

homer@ubuntu:-$ Isof -p 10950 -a -U

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

Xnest 10950 homer 6u unix 0x0000000000000000 0t0 146675 @/tmp/.Xll-unix/Xl type=STREAM

© Xnest 10950 homer 7u Unix 0x0000000000000000 0t0 146676 /tmp/.Xll-unix/Xl "• type=STREAM

Xnest 10950 homer 9u Unix 0x0000000000000000 0t0 146679 type=STREAM

В примере из листинга 7.7 показана трассировка демонстрационного Х-клиента
xeyes(1), иллюстрирующая использование клиентом локального О и сетевого © со­
кетов в зависимости от значения переменной окружения DISPLAY.

Листинг 7.7. Сетевые и локальные подключения клиента Х-сервера

homer@ubuntu:~$ DISPLAY=:1 strace -fe connect xeyes

© connect(3, {sa_family=AFJJNIX, sun_path=^"/tmp/ .Xll-unix/XI" "•}, 20) = 0

homer@ubuntu:~$ DISPLAY=ubuntu.local:1 strace -fe connect xeyes

© connect(3, {sa_family=AF_INET, sin_port=htons(6001), sin_addr=inet_addr("192.168.0.105")}, 16) = 0

*C

При работе в оконной системе переменную DISPLAY обычно устанавливают в начале
сеанса, а затем при запуске Х-клиентов их вывод будет попадать на нужный Х-сер-
вер, как это показано на примере1 сервера Xnest(1) и клиентов xterm(1), xcalc(1) и
xeyes(1) в листинге 7.8 и на рис. 7.1.

1 Все иллюстрации дальше сделаны именно при помощи «виртуальных» Х-серверов Xnest(1) или
Xephyr(1) и могут быть без проблем воспроизведены пользователем, уже работающим в оконной
системе.

Графическая система X Window System 297

Рис. 7.1. Х-клиенты на дисплее Х-сервера: Х-сеанс пользователя

Впоследствии при запуске одними Х-клиентами других Х-клиентов (например, пс
команде пользователя из эмулятора терминала xterm(1), см. листинг 7 .8) переменная
окружения наследуется (см. разд. 4.5.3) порожденными процессами, и вывод за­
пускаемых клиентов «интуитивным» (так же, как и стандартные потоки ввода-
вывода) образом попадает на тот же Х-сервер.

... — --------‘ -1Г-" Д1Ш Г"3 “*
листинг 7.8. х-*-ан< подносителя .* 3 ^ , ;

honer@ubuntu:~$ export DISPLAY=:1

honer@ubuntu:~$ x t e m & xcalc & xeyes &

[3] 2803

[3] 2804

[4] 2805

Нужно заметить, что все окна по умолчанию открываются в левом верхнем угл?
(координата +0+0) экрана, а возможность управлять их размером и местоположе­
нием отсутствует. Каждый Х-клиент может самостоятельно управлять размером i
местоположением своих окон, и даже многие из них запоминают при выходе эт1

параметры в своих dot-файлах (см. разд. 2.8), а при последующем запуске вос­
станавливают окна в прежних размерах и местах, но интерактивным перемещение!^
окон и изменением их размера занимается оконный менеджер.

298 Глава 7

7.3. Оконные менеджеры
Третья важная составляющая оконной системы, позволяющая пользователю интер­
активно манипулировать окнами, — это оконный менеджер. Одним из самых ран­
них1 оконных менеджеров является W :[tw m], проиллюстрированный на рис. 7 .2 и в
листинге 7.9 .

Листинг 7.9. Оконный менеджер twm

honer@ubuntu:~$ twn &

[5] 2880

Рис. 7.2. Оконный менеджер twm (Tab Window Manager)

Кроме возможности интерактивного перемещения, изменения размеров окон, сво­
рачивания их в значок на «рабочем столе» и разворачивания2, оконный менеджер
twm(1) имеет «главное меню» (вызываемое нажатием левой кнопки мыши непосред­
ственно на «рабочем столе»), позволяющее запускать графические приложения.

Другим, не менее древним, оконным менеджером является W :[olw m], доставшийся
в наследство от настольного окружения W:[OpenWindows] из операционной системы

1 В Ubuntu ® 19.10 за р а б о т а л тол ь к о п о с л е устан овк и п акета д р ев н и х р астр ов ы х ш р и ф тов xfonts-75dpi.

2 А н ал огом привы чной панели задач в twm(1) я вл я ю тся п р и л ож ен и я , св ер н у т ы е в зн ач к и , к отор ы е

р а сп о л а га ю т ся н еп о с р е д с т в ен н о на «р абоч ем ст о л е» , т. е . к ор н ев ом ок н е Х -с е р в е р а .

Графическая система X Window System 2 9 9

W :[SunOS]. Начиная c Ubuntu Linux 18.04 olwm(1) (что ожидаемо), больше не доступен
(листинг 7.10), но можно взглянуть на его W :EN:[look and Feel] на рис. 7.3.

Листинг 7.1b. Оконный менеджер olwm

honer@ubuntu:~$ olwm

© Команда "olvm” не найдена. Возможно, вы имели в виду:

copmand 'olan' from snap olam (0fgit.c66238a)

copmand 'Iwi' from deb lvm2 (2.03.02-2ubuntu6)

conriand ' rlwT from deb rlvm (0.14-3buildl)

See 'snap info <snapname>' for additional versions.

honer@ubuntu:~$ apt search oImpi

© Сортировка... Готово

Полнотекстовый поиск... Готово

homer@ubuntu:~$ apt-file search bin/olwn

©

Рис. 7.3. Оконный менеджер olwm (OpenLook Window Manager)

Еще один оконный менеджер «из прошлого», W : [Motif Window Manager], mwm(1), яв­
лявшийся частью настольного окружения W :[CDE], проиллюстрирован в листин­
ге 7.11 и на рис. 7.4. Как и twm(1) и olwm(1), окна приложений под управлением
mwm(1) при минимизации сворачиваются в значки на «рабочем столе», а главное
меню вызывается правой кнопкой мыши.

300 Глава 7

Листинг 7.11. Оконный менеджер iiiwn» ШЩЩШШ

honer@ubuntu:~$ kill Xtwm

[5]+ Завершён twn

honer@ubuntu:~$ пип &

[5] 14090

Рис. 7.4. Оконный менеджер m w m (Motif Window Manager)

Более поздние оконные менеджеры, как, например, W:[lceWM], представленный в
листинге 7.12 и на рис. 7.5, зачастую имеют «панель задач» снизу, кнопку «Пуск»
с главным меню слева панели задач, область уведомлений («трей») справа панели
задач и прочие «современные» элементы пользовательского интерфейса.

Листинг 7.12,

honer@ubuntu:~$ kill -9 Xnwn

[5]+ Убито пип

honer@ubuntu:~$ icewn-session &

[5] 15315

honer@ubuntu:~$ pstree 15315

★ icewm - session— гЧсеип
M-cewnbg

Графическая система X Window System 301

J hqrrtrr giuburtu
! h n . r 4 u b u n tu : ' ’$ U

^Terminal
Ŝ xterm

Gimp
QAppIiCdtlCiia
Cli System
pUtitlties
QToolbar

3 Программы
Окна
Справка
Настройки
Вшшд..,

С Ж *

1 P C a k u l d t o r □ X

г)E G

| | 1 / х х г V 1 С Е /С A C |

d IN V sin cos 1 tan DR G |

в ЕЕ l o g 1 I n
“ 4

1 - ■ I I ' +

►

► :l 4 5 I 6
4 1

► JM 2 1 3
* 1

►
<с 0 II * / -

ОВидео
О Графика
О Научные
О Оболочки
О Офисные

О Программы просмотра
D Работа со ,луком
■О Работа с текстом
■ О Редакторы
ВиСеть
" о Системные

ОСпецие-ьн! ie возможности
"й р Игры
: > Э О конны - менеджеры

«-«гаи ;*sm вша -ОУправление данными ̂ Приложения I --
> О Справка г О Управление файлами

рУтил, ггы
____________________ р Эмуляторы
1 2 1 3 | 4 [^ homer@ubun Р эмуляторы терминалов

► Data Display D iuogger
ff eric

► GOB
» ...Ceany
* 4eid

♦ Г MySQL Workbench
► pida
» ^ Руте т (v2.7)
► Python (^ .2)
► S t Dei igrrer
► Ruby {irbl.8)
► Tcfsh8,5
► TkWish8.5
► xcolors

Рис. 7.5. Оконный менеджер icewm (ICE Window Manager)

Нужно заметить ★ , что сеанс icewm(1) запускается командой icewm-session(l) и со­
стоит из двух компонент: самого оконного менеджера icewm(1) и «подчиненного»
icewmbg(1), управляющего фоном рабочего стола.

7.3.1. Декорирование на клиентской стороне
Оконный менеджер является классической компонентой X Window System, являю­
щейся ее неотъемлемой частью с самого начала развития. Однако в последнее
время наблюдается постепенный переход от «серверного» декорирования окон
к «клиентскому» декорированию (CSD, W:[Client-Side Decoration]). Эти два способа
различаются тем, кто изображает весь декор окна приложения (заголовок для пе­
ретаскивания, бордюр для изменения размера, кнопки сворачивания, разворачива­
ния и закрытия) — оконный менеджер «централизовано» или каждый отдельный
Х-клиент самостоятельно.

Клиентский способ декорирования позволяет приложениям соответствовать прин­
ципам дизайна (на основе) взаимодействия с пользователем (UX, W :[User experience
design]). Проще говоря, декор окна (например, ранее пустовавший заголовок, зря
съедавший свободное место экрана) становится частью приложения и играет ак­
тивную роль в его жизненном цикле, выполняя не только функции «рукоятки» для
перетаскивания.

На текущий момент времени в настольном окружении GNOME «клиентское» декори­
рование является основным, а функции оконного менеджера сохранены только для

302 Глава 7

«классических» Х-клиентов (рис. 7.6). Окна «классических» Х-клиентов xedit(1) и
xcalc(1) в отсутствие оконного менеджера размещаются в левом верхнем углу экра­
на, а перетаскивание и изменение размера невозможно, тогда как gedit(1) и gnome-
calculator(l) имеют заголовок, в котором размещены их главное меню (!) и кнопки
сворачивания, разворачивания и закрытия. К тому же они самостоятельно обраба­
тывают события перетаскивания и изменения размеров, без перекладывания этой
задачи на «серверный» оконный менеджер.

Xephyr on "1,0 (ctrUshift grabs mouse and keyboard)

Рис. 7.6. Декорирование на клиентской стороне

7.4. Настольные пользовательские окружения
Современные графические пользовательские среды1, такие как W: [GNOME], W:[KDE],
W:[XFCE] и W:[LXDE], с точки зрения оконной системы Х(1) являются всего лишь
набором Х-клиентов, таким же как и набор из листингов 7.8 и 7.9 — xterm(1),
xcalcfl), xeyes(1) и оконный менеджер, например twm(1).

1 Зачастую используют метафору «рабочего стола», за что именуются «настольным окружением»,
W : [Desktop Environment].

Графическая система X Window System 3 0 3

Существенное отличие состоит в том, что приложения пользовательских сред мно­
го взаимодействуют между собой (и другими компонентами операционной систе­
мы) по некоторым законам1 и запускаются в определенном порядке менеджером
сеансов.

На рис. 7.7 и в листинге 7.13 проиллюстрирована среда GNOME, запущенная ме­
неджером сеансов О gnome-session(1), состоящая из достаточно большого © количе­
ства компонент, включая композитный (подробнее см.разд. 7.6.1) оконный менед­
жер © gnome-shell(l).

Обзор

Л
Jake

Файлы

ш
Корзина

7

О

Вс 24 ноября 20 16 А 4 6 -

Рис. 7.7. Настольное окружение Ubuntu GNOME

Листинг 7.13. Настольное окружение GNOME

honer@ubuntu:~$ DISPLAY=:0 Xephyr :1 -listen tcp &

[1] 24417

1 В современных средах практически безальтернативно используется W:[D-Bus], но в более ранних
версиях использовались W:[DCOP] в KDE и W:[CORBA] в GNOME. Нужно признаться, что ранние
Х-клиенты тоже взаимодействовали между собой, и особенно — с оконным менеджером при по­
мощи некоторых механизмов, например W:[ICCCM] и W:[EWMH].

304 Глава 7

honer@ubuntu:~$ DISPLAY=:1 dbus-launch

[2] 26024

homer@ubuntu:~$ pstree -Tp 26624

-exit-wlth-session gnone-session 6

О gnone-session-b(26024) i-evolution-alam(26347)
© -gnone-shell(26662)— r4bus-daenon(26172)— pibus-dconf(26178)

|-4bus-engine- sin(26309)

-gsd-ally-settin(26220)
-gsd-color(26229)

■4|sd-xsettings(26*2’26)
— tracker-extract(26349)
— tracker-roiner-f (26361)

L lkit-agent-he(26469)
M-bus-extension- (26179)

Стоит отметить, что в листинге 7.13 менеджер сеансов gnome-session(1) запускается
через посредника — dbus-launch(l), который запустит новую шину для взаимодейст­
вия компонент сеанса так, чтобы предыдущий сеанс, работающий с «аппаратным»
Х-сервером, не пересекался с новым сеансом, запускаемым для «виртуального»
Xephyr(1).

Среда KDE, представленная в листинге 7.14 и на рис. 7.8, запускается при помощи
специального сценария startkde(1) и тоже состоит из отдельных компонент О, среди
которых неизменно присутствуют менеджер сеансов ksmserver © и композитный
(см.разд. 7.6.1) оконный менеджер kwin ©.

/Ь 'Т И и 7 .1 4 . н а с т и л ь н о . о кр у ж е н и е K D E * 21

honer@ubuntu:~$ DISPLAY=:0 Xephyr :1 -listen tcp 6

[1] 6215

honer@ubuntu:~$ DISPLAY=:1 startkde >& /dev/null

[1] 6236

honer@ubuntu:~$ pstree -Tp 6236

? startkde(6236)---kwrapper5(6291)

honer@ubuntu:~$ pgrep -l ''kde*

21 kdevtnpfs

6270 kdeinit5

О 6274 kded5

© 6345 kdeconnectd

honer@ubuntu:~$ pstree -Tp 6276
kdeinit5(6270)— p-file.so(6618)

-kaccess(6289)
— kded5(6274)

© -klauncher(6271)
-korgac(6358)

© 4<snserver(6293)— kwin_xll(6311) ©

Графическая система X Window System 305

Рис. 7.8. Настольное окружение KDE plasma

7.5. Библиотеки интерфейсных элементов
Возможности Х-протокола позволяют прорисовывать лишь простейшие графиче­
ские примитивы: линии, точки, прямоугольники, дуги, полигоны, растровые изо­
бражения и текст — при помощи растровых или векторных шрифтов, поддержи­
ваемых Х-сервером. Все интерфейсные элементы управления приложениями, такие
как кнопки, полосы прокрутки, закладки, меню, списки и прочее, должны быть
самостоятельно составлены Х-клиентами из простейших примитивов. Для решения
этой задачи Х-клиенты используют специальные библиотеки интерфейсных эле­
ментов1 (виджетов, widget), такие как W :[Xaw], Xview, W :[M o tif], W :|Tk], W :[Q t],
W :[G tk] и др.2

Самими «простыми» (доставшимися в наследство от UNIX) библиотеками виджетов
являются библиотеки Xaw и Motif, разработанные на основе базовой Xt, W : [X Toolkit:
Intrinsics], а также «альтернативная»3 XView4.

Более «современным» видом виджетов обладают наиболее распространенные на
сегодняшний день библиотеки Qt и Gtk, на основе которых разрабатываются поль­
зовательские среды KDE и GNOME.

1 Так же называемые тулкитами от англ, widget toolkit или GUI toolkit.

2 См. W:[wxWidgets], W :[FLTK].

3См. W:[OpenLook]

4 Отсутствующая в ® 19.10 вместе c OpenLook Window Manager.

3 0 6 Глава 7

В примере из листинга 7.15 иллюстрируется использование различных Х-библио-
тек, среди которых библиотека самого Х-протокола О W :[X lib], библиотеки видже­
тов Xt и Xaw © и библиотеки расширений Х-протокола ©, например W : [XRender].

Листинг 7.15. Библиотеки Xlib и Xt и Xaw

honer@ubuntu:~$ Idd $(which xeyes) | grep -i libX

libXext.so.6 => /lib/x86_64-linux-gnu/libXext.so.6 (0x00007f9f16776000)

libXmu.so.6 => /lib/x86_64-linux-gnu/libXmu.so.6 (0x00007f9fl675a000)

© libXt.so.6 => /lib/x86_64-linux-gnu/libXt.so.6 (0x00007f9fl64fl000)

© libXll.so.6 => /lib/x86_64-linux-gnu/libXll.so.6 (0x00007f9fl63b3000)

© libXrender.so.l => /lib/x86_64-linux-gnu/libXrender.so.l (0x00007f9fl61a9000)

libxcb.so.l => /lib/x86_64-linux-gnu/libxcb.so.l (0x00007f9fl5el5000)

libXau.so.6 => /lib/x86_64-linux-gnu/libXau.so.6 (0x00007f9fl5de4000)

libXdncp.so.6 => /lib/x86_64-linux-gnu/libXdpicp.so.6 (0x00007f9fl5ddc000)

honer@ubuntu:~$ Idd $(which xcalc) | grep -i Xaw

© libXaw.so.7 => /lib/x86_64-linux-gnu/libXaw.so.7 (0x00007fbd4f743000)

Аналогично, в листинге 7.16 показан Х-клиент, использующий библиотеку видже­
тов Motif, а в листинге 7.17 — Х-клиенты, использующие Tk, Qt и Gtk.

Листинг 7.1 б. Библиотек декорирования Motif

homer@ubuntu:~$ Idd $(which пмп) | grep -i libXn

libXn.so.4 => /lib/x86_64-linux-gnu/libXm.so.4 (0x00007fdd8686a000)

libXmu.so.6 => /lib/x86_64-linux-gnu/libXr(MJ.so.6 (0x00007fdd862al000)

Листинг 7.17. Библиотеки декорирования 7k, Gtk и Qt

honer@ubuntu:~$ Idd $(which wish) | grep -i libTk

libtk8.6.so => /lib/x86_64-linux-gnu/libtk8.6.so (0x00007fa8a09eb000)

homer@ubuntu:~$ Idd $(which gnone-shell) | grep -i libGtk

libgtk-3.so.0 => /lib/x86_64-linux-gnu/libgtk-3.so.0 (0x00007f7b3e3de000)

homer@ubuntu:~$ Idd $(which kcalc) | grep -i libQt.Gui

libQt5Gui.so.5 => /lib/x86_64-linux-gnu/libQt5Gui.so.5 (0x00007f69b75cf000)

В соответствии с идеями, заложенными в X Window System, первые тулкиты, такие
как Xaw, Motif или Tk, пользовались иерархией окон для формирования своих вид­
жетов, т. е. каждый элемент управления как минимум являлся Х-окном (и мог со­
держать дочерние окна). Впоследствии в Qt и Gtk отказались от такого подхода,

Графическая система X Window System 307

потому что он приводил к «фликерингу* 1 * * * * * 7» при отрисовке в силу независимости
окон и неодновременности их обработки.

В современных тулкитах (листинг 7.18) в большинстве случаев приложение имеет
всего лишь одно серверное Х-окно, а элементы управления отрисовываются цели­
ком в его пределах только тулкитом Х-клиента, без участия Х-сервера.

Лианн* 7.18. ОкнаХ-клиентов

homer@ubuntu:~$ xcalc & gnome-calculator &

[1] 1668

[2] 1669

homer@ubuntu:~$ xwininfo -tree -root

0x400005b "Calculator": ("xcalc" "XCalc") 226x308+10+38 +50+107

1 child:

0x400005c (has no name): () 226x308+0+0 +504-107

41 children:

0x40000d9 (has no name): () 214x48+4+4 +54+111

1 child:

0x40000da (has no name): () 204x38+4+4 +59+116

7 children:

0x40000el (has no name): () 10x15+4+2 +64+119

0x4000061 (has no name): () 40x26+180+276 +230+383

0x4200007 "Калькулятор": ("gnome-calculator" "Gnome-calculator") 448x467+70f62 +70f62

1 child:

0x4200008 (has no name): () lxl+-l+-l +69+61

0x4200001 "gnome-calculator": ("gnome-calculator" "Gnome-calculator") 10x10+10+10 +10+10

5x

0x40000db (has no name): () 18x15+127+21 +187+138

0x40000d6 (has no name): () 40x26+4+66 +54+173

0x40000d3 (has no name): () 40x26+48+66 +98+173

37x

308 Глава 7

7.6. Расширения Х-протокола
Оконная система Х(1) и ее Х-протокол на текущий момент времени обросли мас­
сой расширений, одним из которых является расширение W:[MIT-SHM], широко ис­
пользуемое современными библиотеками виджетов для организации наиболее эф­
фективного обмена растровыми изображениями между Х-клиентами и Х-сервером.
Ранние тулкиты, например Xaw и Motif, практически полностью полагались на при­
митивы векторной графики Х-протокола, тогда как современные Gtk или Qt в го­
раздо большей степени используют растровые изображения (для визуальных эф­
фектов типа выпуклых кнопок, градиентной заливки и т. д.), подготавливаемые
целиком на Х-клиенте и затем пересылаемые Х-серверу для вывода.

Очевидно, что пересылка большого количества растровых изображений с исполь­
зованием «последовательных» средств межпроцессного взаимодействия, таких как
сокеты1, заставляет жертвовать либо визуальными эффектами, либо производитель­
ностью оконной системы. Однако если заметить, что в большинстве «настольных»
применений оконной системы Х-клиенты и Х-сервера в реальности выполняются
на одном и том же узле, то очевидно, что разделяемая память является наиболее
эффективным средством IPC. Вместе с тем необходимо констатировать факт утери
пресловутой «сетевой прозрачности» в угоду приемлемой производительности визу­
альных эффектов.

Л и с г ш 7 .1 Г Ш ш р е м и м л -€ Ь у и .:р в .‘ M IT -S H M

homer@ubuntu:~$ xdpyinfo | grep -i shn

MIT-SHM

homer@ubuntu:~$ ipcs -np

..... Shared Memory Creator/Last-op PIDs

shmid owner cpid Ipid

15 homer 9190 8498

20 homer 8588 8498

27 -• homer 9514 8498 ^

31 homer 9661 8498

homer@ubuntu:~$ ps up 8498,9190,8588,9514,9661

USER PID 96CPU 9dMEM VSZ RSS TTY STAT START TIME COMMAND

homer 8498^ 0.0 1.4 256652 53136 tty2 Sl+ 06:07 0:28 /usr/lib/xorg/Xorg vt2

homer 8588 0.1 6.0 2775368 222432 ? Ssl 06:07 1:10 /usr/bin/gnome-shell

1 Даже при использовании файловых сокетов, не говоря уже о сетевых.

Графическая система X Window System 309

homer 9190 0.0 4.3 1031120 158448 ? SLl 06:08 0:08 /usr/bin/gnome-software

homer 9514^ 0.2 1.4 822552 52580 pts/0 SI 16:07 0:00 gedit

homer 9661 0.4 1.1 590088 42332 pts/0 SI 16:08 0:01 gnome-disks

homer@ubuntu:~$ prap 8498 | grep shmid

00007f3b3d792000 512K rw-s- [shmid=0xl4]

00007f3b3d93c000 512K rw-s- [shmid=0xlf]

00007f3b3d9bc000 512K rw-s- [shmid=0xlb]

00007f3b3da3c000 512K rw-s- [shmid=0xl7]

00007f3b3dabc000 512K rw-s- [shmid=0xf]

00007f3b3db3c000 512K rw-s- [shmid=0xl8]

homer@ubuntu:~$ prap 9514 | grep shnid

00007f09bcl96000 512K rw-s- [shmid=0xlb]

В листинге 7.19 показано, что практически все современные Х-клиенты имеют для
взаимодействия с Х-сервером помимо файлового сокета (см. листинг 7.7) еще и
сегмент разделяемой памяти System VIPC.

Расширение W:[RANDR] (Resize AND Rotate) позволят управлять сменой графическо­
го разрешения, ориентацией, подключением и отключением видеовыходов дисплея
Х-сервера и т. д. В примере из листинга 7.20 иллюстрируется утилита xrandr(1),
реализующая расширение RANDR, которая может использоваться как для запроса О
списка видеовыходов (и поддерживаемых ими видеорежимов работы), так и для
переключения © заданного видеовыхода в тот или иной видеорежим и смены ори­
ентации изображения.

Листинг Расширения Х-сервера: RArfDft 8
8 В -3S-W.:... _• -.________ ________ S____ 1----------------------------:_

honer@ubuntu:~$ xdpyinfo | grep -1 randr

RANDR

О honer@ubuntu:~$ xrandr

Screen 0: mininum l x l , current 1600 x 900, maximum 8192 x 8192

LVDS1 connected 1600x900+0+0 (normal left inverted right x axis у axis) 423mm x 238mm

1600x900 60.00*+

1440x900 59.89

800x600 60.32

640x480 59.94

VGAl disconnected (normal left inverted right x axis у axis)

HDMI1 disconnected (normal left inverted right x axis у axis)

DPI disconnected (normal left inverted right x axis у axis)

310 Глава 7

© honer@ubuntu:~$ xrandr — output LVDS1 --node 1024x768 --rotate left

Расширение W : [Render] (листинг 7.21) широко используется современными тулкитами,
такими как Gtk или Qt, для отрисовки полупрозрачных фигур и сглаживания кон­
туров (anti-aliasing), а также библиотекой отрисовки векторных шрифтов W :[X ft])
для их сглаживания.

ЛИС1ИНГ 7.21. Расширения X сервера: RENDER

homer@ubuntu:~$ xdpyinfo | grep -i render

RENDER

honer@ubuntu:~$ Idd /lib/x86_64-linux-gnu/libgtk-3.so.O | grep -i xrender

libXrender.so.l => /lib/x86_64-linux-gnu/libXrender.so.l (0x00007fd07a6c000)

honer@ubuntu:~$ Idd /usr/lib/x86_64-linux-gnuAibXft.so.2 | grep Xrender

libXrender.so.l => /lib/x86_64-linux-gnu/libXrender.so.l (0x00007fe48a4ca000)

7.6.1. Расширение Composite и композитный менеджер
Расширение Composite (листинг 7.22) заслуживает отдельного внимания. Изначально
оконная система была устроена так1, что любые команды рисования в окне непо­
средственно изменяли содержимое в том месте экранного буфера2 {frame buffer, он
же front buffer), который соответствует этому окну. Для окон, перекрытых другими
окнами, команды рисования выполнялись Х-сервером только в открытых их час­
тях, и не существовало никакой возможности узнать полное содержимое окна, по­
скольку оно попросту отсутствовало и в памяти Х-клиента, и в памяти Х-сервера.
Однако с развитием настольных окружений и простых оконных менеджеров поя­
вился запрос на визуальные эффекты, такие как полупрозрачность окон при пере­
крытии, размытие, вращение, проявления или растворения окон при их появлении
или сокрытии, анимация, масштабирование и пр. Все эти эффекты требуют посто­
янного знания полных содержимых всех окон, из которых затем можно скомбини­
ровать (composite) любую визуальную сцену. Именно расширение Composite позво­
ляет попросить Х-сервер отрисовывать окна во внеэкранных буферах3 (off screen
buffer), которые затем доступны композитному менеджеру (compositing manager)
для составления результирующей визуальной сцены. Простейшим композитным
менеджером является xcompmgr(1), иллюстрирующий как само расширение Composite,
так и принцип композитинга в целом.

1 В первую очередь в силу ограниченности ресурса оперативной памяти.
2 Буфер, который немедленно изображается видеокартой на дисплее.
3 Естественно, за счет потребления индивидуальной памяти под каждое окно, но память больше
не является сверхдорогим ресурсом.

Графическая система X Window System 311

Важно понимать, что композитный менеджер — такая же отдельная компонента
оконной системы, как и оконный менеджер (см. разд. 7.3). Однако очень часто
функции оконного и композитного менеджеров совмещаются в композитных
оконных менеджерах W:[Compositing window manager], таких как kwin из настольного
окружения KDE или gnome-shell(l) из настольного окружения GNOME (см. разд. 7.4).

Листинг 122 .Расширения Х-сервера: Composite

homer@ubuntu:~$ xdpyinfo | grep -i composite

Composite

homer@ubuntu:~$ Idd /usr/bin/gnone-shell | grep -i composite

libXcomposite.so.l => /lib/x86_64-linux-gnu/libXcomposite.so.l (0x00007f21b3b55000)

Кроме того, широко распространено заблуждение, что композитные менеджеры
обязательно нуждаются в поддержке OpenGL в общем и в аппаратно-ускоренном
ЗО-рендеринге в частности, что совсем не соответствует действительности. Приме­
ром тому служит все тот же xcompmgr(1), полагающийся только на расширение
RENDER при составлении результирующей визуальной сцены. Несомненно, если
композитный менеджер реализует визуальные ЗО-эффекты, как это делает
W:[Compiz], то поддержка OpenGL будет необходимым условием, но это не имеет
никакого отношения к самому принципу композитинга.

7.6.2. GLXf DRI и 3 D-графика

Расширение W:[GLX], получившее свое название по имени специального программ­
ного интерфейса GLX1, предназначено для передачи «команд» OpenGL внутри Х-про-
токола. Программный интерфейс OpenGL используется приложениями, интенсивно
работающими с ЗО-графикой (а иногда и 2D, в большинстве случаев2 — играми,
системами моделирования и визуализации) и нацеленными на аппаратно-ускорен­
ный рендеринг «команд» OpenGL.

Утилита glxinfo(1), показанная в листинге 7.23, предназначена для запроса свойств
GLX-расширения и свойств самого OpenGL-рендерера.

1 GLX (OpenGL for X Window System) сопрягает W:[OpenGL] с оконной системой Х(1), т. к. специ­
фикации OpenGL касаются только предмета ЗО-рендеринга, но никак не затрагивают вопросы
непосредственного отображения результата, например в окно X Window System).
2 Хотя на сегодняшний день даже «обычные» пользовательские окружения GNOME и KDE интенсив­
но используют OpenGL для спецэффектов.

312 Глава 7

homer@ubuntu:~$ xdpyinfo | grep GLX

GLX

homer@ubuntu:~$ glxinfo | grep -E "render(er|ing)|version"

direct rendering: Yes "•

server glx version string: 1.4

client glx version string: 1.4

GLX version: 1.4

OpenGL Tenderer string: Mesa DftI Intel(R) Sandybrldge Mobile^

OpenGL version string: 2.1 Mesa 19.2.1

OpenGL shading language version string: 1.20

OpenGL ES profile version string: OpenGL ES 2.0 Mesa 19.2.1

OpenGL ES profile shading language version string: OpenGL ES GLSL ES 1.0.16

Различают два режима работы GLX — косвенный (indirect rendering) и прямой
(direct rendering). Косвенный режим действительно предполагает передачу команд
OpenGL от Х-клиента через GLX-расширение Х-протокола к Х-серверу, который,
в свою очередь, отрисует ЗО-сцену. Сам отрисовка (рендеринг) будет выполнена
либо с использованием графического процессора (GPU, Graphics Processing Unit),
либо программно, что потребует значительных ресурсов центрального процессора
(CPU, Central Processing Unit). Такой режим все еще сохраняет свойство сетевой
прозрачности, т. е. позволяет Х-клиенту и Х-серверу работать на разных узлах
сети, но крайне неэффективен1 при значительных объемах данных (текстуры, мас­
сивы вершин и пр.), которые клиент должен передать на сервер для запуска рен­
деринга.

Режим прямой отрисовки предполагает, что Х-клиенты и Х-сервер имеют прямой
(непосредственный) доступ к одному и тому же GPU, что позволяет существенно
увеличить производительность отрисовки, за счет уменьшения накладных расходов
на работу GLX-расширения и на передачу команд от клиентов к серверу. В таком
случае даже результат отрисовки клиента не требует передачи серверу, т. к. на­
прямую доступен ему для отображения из GPU. Однако в очередной раз возника­
ет побочная задача разделения устройства между потребителями, а именно GPU
видеоускорителя и его памяти между Х-сервером и некоторым количеством Х-клиен-
тов. Вместе с тем, надо заметить, исчезает и сетевая прозрачность, т. к. теперь
Х-клиенты и Х-серверы вынуждены работать на одном и том же узле в угоду
производительности.

1 С развитием возможностей ЗО-графики, OpenGL и аппаратных видеоускорителей стало очевид­
но, что Х-протокол крайне неэффективен в трансляции OpenGL-команд.

Графическая система X Window System 313

Задачу разделения GPU и памяти видеоускорителей между любыми программами
операционной системы (не только между Х-клиентами и Х-сервером) решает спе­
циальная компонента ядра Linux, называемая менеджером прямой отрисовки —
W :[DRM] (Direct Renedering Manager). Для согласования взаимодействия между
Х-клиентами и Х-сервером при доступе к ресурсам DRM понадобилось еще одно
расширение Х-протокола, называемое W : [DRI] (Direct Renedering Infrastructure).

Листинг 7.24. Расширения л-и?овера: DRI

honer@ubuntu:~$ xdpyinfo | grep DRI

DRI2

DRI3

honer@ubuntu:~$ xdriinfo

Screen 0: 1965

В листинге 7 .2 4 показано, что при помощи xdpyinfo(1) можно узнать, поддерживает
ли Х-сервер расширение DRI и каких версий, a xdriinfo(1) демонстрирует, какие ви­
деоускорители доступны Х-серверу и идентификаторы их DRI-драйверов, исполь­
зуемые программным интерфейсом GLX при прямой отрисовке.

Стоит заметить, что все вышеперечисленные утилиты — xdpyinfo(1), xrandr(1),
glxinfo(1) и даже xdriinfo(1)— также являются Х-клиентами и используют Х-протокол
для опроса Х-сервера.

7.7. Запуск X Window System

7.7.1. Локальный запуск Х-клиентов
Изначально в UNIX-системах, в том числе в Linux, основным интерфейсом поль­
зователя был командный, на алфавитно-цифровом терминале, а графический ин­
терфейс запускался после входа пользователя в систему при помощи xinit(1) и/или
startx(1), что совсем утратило свою актуальность на сегодняшний день. Основным
интерфейсом пользователя стал GUI, запускающийся менеджерами Х-дисплеев
(см. разд. 7.7.3) вместе со стартом операционной системы (см. листинг 10.3.1).

7.7.2. Дистанционный запуск Х-клиентов
Оконная система X изначально проектировалась для распределенной работы ее
компонент на различных узлах сети, что достаточно широко используется на прак­
тике, когда нужно запускать графические приложения на удаленном узле, их окна
отображать на локальном дисплее.

314 Глава 7

В большинстве случаев для дистанционного запуска используется ssh(1), что проил­
люстрировано в листинге 7.25. Попытка О «прямого» запуска xeyes(1) на узле
centos от лица пользователя llch не увенчалась успехом потому, что в большинст­
ве инсталляций аппаратный Х-сервер на дисплее :0 не принимает сетевые соеди­
нения (см. листинг 7.25). Попытка © запуска локального виртуального сервера
Xnest(1) на дисплее :1 с перенаправлением ему вывода дистанционного xeyes(1) тоже
оказалась неудачной, но уже по другим причинам (см. далее).

г г ? - ч и - ч а н г a s r - г я » т а д - - jr . " a r - - - « S T ------------------ _ ■ р з г я г ш р „

Листинг 7.25 ЗапушдйстаиционишиХ клиента

О honer@ubuntu:~$ ssh -f lich@centos "DISPLAY=ubuntu.local:0 xeyes"

Error: Can't open display: ubuntu.local:0

© honer@ubuntu:~$ Xnest ;1 &

honer@ubuntu:~$ ssh -f lich@centos "DISPLAY=ubuntu.local:1 xeyes"

•" No protocol specified

Error: Can't open display: ubuntu.local:1

При сетевом взаимодействии Х-клиентов и Х-сервера для аутентификации клиент­
ских подключений используется механизм, основанный на предъявлении общего
(известного обеим сторонам) «секрета», называемого «волшебной печенькой» (см.
W : [magic cookie]), использование которой проиллюстрировано в примере из листин­
га 7.26.

На стороне сервера «печеньки» всех клиентов, которым разрешено подключение,
размещаются при помощи утилиты xauth(l) в «банке с печеньками» (jar) О, откуда
извлекаются сервером для проверки при подключении клиента. На стороне клиента
«печеньки» при помощи той же утилиты xauth(l) размещаются © в «банке»
-/•^authority, откуда извлекаются библиотекой Xlib для предъявления серверу при
соединении с ним.

Листинг 7.26. Аутентификация дистанционного X-mtetm

homer@ubuntu:~$ ncookie
8f36c9O4dc0c9934c5O6c21ea7860eb2

О homer@ubuntu:~$ xauth -f cookie-jar *•

xauth: file cookie-jar does not exist

Using authority file cookie-jar

xauth> add ubuntu:! MIT-MAGIC-COOKIE-1 «- 8f36c904dc0c9934c506c21ea7860eb2

xauth> exit?-1

Writing authority file cookie-jar

Графическая система X Window System 315

honer@ubuntu:~$ Xnest :1 -auth cookie-jar "• &

honer@ubuntu:~$ ssh lich@centos

lich@ centa

Last login: Fri ban 8 17:43:04 2016 from ubuntu

[lich@centos ~]$ xauth

© xauth: file /home/lich/.Xauthorlty does not exist

Using authority file /home/lich/.Xauthorlty

xauth> add ubuntu.local:1 MTT-MAGIC-C00KIE-1 «- 8f36c9O4dc0c9934c506c21ea786Oeb2 ̂

xauth> exitH

Writing authority file /hone/lich/.Xauthority

[lich@centos ~]$ logout

Connection to centos closed.

6 homer@ubuntu:~$ ssh -f lich@centos "DISPLAY=ubuntu.local:l xeyes"

Необходимость установки общего секрета, переменной окружения DISPLAY и запус­
ка дополнительного виртуального Х-сервера (или активации приема сетевых соеди­
нений аппаратным сервером) делают «ручной» запуск дистанционных Х-клиентов
неудобным «чуть более чем полностью». Вместе с этим передача «волшебных пе-
ченек» (как и любых других сообщений Х-протокола) от Х-клиента к Х-серверу
по сети происходит незащищенным образом, что может быть легко использовано
злоумышленником. Именно поэтому на практике используют туннелирующие воз­
можности протокола S.SH, позволяющие удобным автоматизированным способом
решить все вышеперечисленные задачи и проблемы.

В примере из листинга 7.27 показано поведение SSH-сервера при туннелировании
Х-протокола. По запросу (-Х) от SSH-клиента SSH-сервер начинает эмулировать
© поведение Х-сервера, устанавливает О переменную окружения DISPLAY, указы­
вающую на «дисплей» :10 на «том же» узле localhost, и создает © «волшебную
печеньку» для этого дисплея.

При последующем запуске © Х-клиента xeyes(1) им будет установлено соединение
с «SSH-эмулятором» Х-сервера на localhost:l6, а SSH-сервер перенаправит (тун­
нелирует) это соединение Х-протокола обратно SSH-клиенту внутри зашифрован­
ного соединения SSH.

Листинг 7.27. SSH-туннелирование Х-протокола (SSH-сервер)

homer@ubuntu:~$ ssh -X lich@centos

Last login: Fri Jan 8 17:48:34 2016 fron ubuntu

[lich@centos ~]$ echo $DISPLAY

© localhost:10.0

316 Глава 7

[lich@centos ~]$ xauth list

© centos/unix:10 MIT-MAGIC-C00KIE-1 80c749073282be2001c33bd43e577aa4

©■- [lich@centos ~]$ strace -fe connect xeyes

connect(3, {sa_family=AF_INET, sin_port=htons(6010), sin_addr=inet_addr("127.0.0.1")}, 16) = 0

+++ exited with 0 +++

[lich@centos ~]$ sudo Isof -nP 4:6010

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

© sshd 14221 lich 10u IPv4 44578 0t0 TCP 127.0.0.1:6010 (LISTEN)

[lich@centos ~]$ logout

Connection to centos closed.

Листинг 7.28 иллюстрирует поведение SSH-клиента в режиме (-Х) Х-туннели-
рования, при котором он эмулирует «Х-клиента» и соединяется с аппаратным (!)
Х-сервером через локальный сокет /tnp/.Xll-unix/X0. При получении от SSH-cep-
вера перенаправленных соединений Х-протокола они ретранслируются SSH-эмуля-
тором «Х-клиента» локальному Х-серверу, тем самым вывод дистанционных
Х-клиентов изображается в окнах локального Х-сервера.

Листинг 7.28. $$Н>1уннелирование X-лротоксла (SSH-кяиент)

homer@ubuntu:~$ strace -fe connect ssh -f -X lich@centos xeyes

connect(3, {sa_family=AF_INET, sin_port=htons(22), sin_addr=inet_addr("10.0.0.99")}, 16) = 0

3 connect(7, {sa_fanily=AF_FILE, path="/tmp/.Xll-unix/X0""•}, 110) = 0

Так как SSH-туннелирование Х-протокола позволяет перенаправлять любое коли­
чество Х-соединений внутри одного SSH-соединения, то дистанционно можно за­
пускать целые сеансы пользовательских сред, таких как GNOME (листинг 7.29),
с использованием xinit(1) и виртуального Х-сервера Xnest(1).

Листинг 7Ж Запуск дистанционного сеанса GNOME с отображением на локальном сервере Xnesl

homer@ubuntu:~$ xinit /usr/bin/ssh -X lich@centos gnone-session -- /usr/bin/Xnest :4 &

honer@ubuntu:~$ ps f

PID TTY STAT TIME COMMAND

27759 pts/0 Ss 0:00 bash

27829 pts/0 S 0:00 _ xinit /usr/bin/ssh -X lich@centos gnones-session --

27830 pts/0 SI 0:00 | _ /usr/bin/Xnest :4

27837 pts/0 S 0:00 | _ /usr/bin/ssh -X lich@centos gnorte-session

27928 pts/0 R+ 0:00 _ PS f

Графическая система X Window System 317

7.7.3. Управление Х-дисплеями: XDMCP-менеджер и протокол
В большинстве современных инсталляций Linux работа пользователей в системе
осуществляется сразу с использованием оконной системы X и какой-либо пользо­
вательской среды, например GNOME. Если при работе в (автоматически запущен­
ной) оконной системе (листинг 7.30) проследить дерево процессов от аппаратного
Х-сервера Хогд(1) до прародителя процессов init(1), то обнаружится менеджер дис­
плеев О (например, gdm3(1)), осуществивший запуск © Х-сервера. Более того,
пользовательский сеанс 0 (gnome-session(l)) тоже окажется запущенным этим ме­
неджером.

homer@ubuntu:~$ pgrep Xorg

21261

homer@ubuntu:~$ pstree -sTp 21261

systemd(l)— gdm3(742)— gdm-session-wor (21227)— gdm-x-session(21259)— Xorg(21261)

О - ©
homer@ubuntu:~$ pstree -Tp 742
gdm3(742)— gdn-session-wor(21227)— gdm-x-session(21259)— r-Xorg(21261)

gnone-session-b(21267)
О ©

honer@ubuntu:~$ ps fp 742,21227,21259,21261,21267

PID TTY STAT TIME COMMAND

742 ? Ssl 0:00 /usr/sbin/gdn3

21227 ? Si 0:00 _ gdn-session-worker [pan/gdn-password] ©

21259 tty7 Ssl+ 0:00 _ /usr/lib/gdn3/gdn-x-session ...

21261 tty7 Sl+ 0:00 _ /usr/lib/xorg/Xorg vt7 -displayfd 3 ... ©

21267 tty7 Sl+ 0:00 _ /usr/lib/gnome-session/gnome-session-binary

homer@ubuntu:~$ pgrep -1 gnone-shell

21604 gnome-shell

21655 gnone-shell-cal

homer@ubuntu:~$ pstree -sTp 21604
systemd(l)-systend(5527)-gnome-shell(21604)-ibus-daenon(21707)-ribus-dconf(21714)

|— ibus-...-sim(21922)
4.bus-...-(21716)

Менеджер дисплеев является специальной компонентой оконной системы, управ­
ляющей автоматическим запуском ее Х-серверов и Х-сеансов. Именно он запуска­
ет аппаратные Х-серверы для обслуживания дисплеев в указанном количестве (по

318 Глава 7

умолчанию один дисплей Ф), «графическим» образом производит аутентификацию
© (см. разд. 2.2.1, рис. 2.4) пользователя в системе и запускает менеджер сеансов
© пользовательской среды.

Кроме этого, менеджер дисплеев предназначался ранее и для «автоматического»
запуска дистанционных (см. разд. 7.7.2) пользовательских Х-сеансов при помощи
специального протокола W:[XDMCP], а не посредством протокола SSH, как при
«ручном» дистанционном их запуске.

Надо заметить, что при использовании дистанционного XDMCP-запуска данные
XDMCP- и Х-протоколов (включая согласование «волшебной печеньки» и пароля
пользователя) при передаче в публичной сети оказываются никак не защищены.
Поэтому в современной практике безальтернативно используют ручной SSH-запуск
дистанционных сеансов с SSH-туннелированием Х-протокола, отключая поддержку
XDMCP насовсем.

7.8. Программный интерфейс X Window System

7.8.1. Трассировка Х-библиотек и Х-протокола
Программный интерфейс оконной системы X, являющейся обычной сетевой служ­
бой, представлен библиотеками и соответствующими (библиотечными) вызовами
к ним. Естественным образом, при наблюдении за работой разнообразных компо­
нент утилита strace(1) трассировки системных вызовов (к ядру) оказывается далеко
не лучшим инструментом, а ее место занимает утилита трассировки библиотечных
вызовов ltrace(1).

В примере из листинга 7.31 показан пример трассировки библиотечных вызовов
библиотек Xt, Xlib и Xrender при работе простейшего демо-клиента xeyes(1).

Листинг 7.31

homer@ubuntu:~$ Idd $(which xeyes) | grep libX

llbXext.so.6 => /lib/x86_64-linux-gnu/llbXext.so.6 (0x0O007f2c63c4e000)

libXnu.so.6 => /llb/x86_64-llnux-gnu/libXnu.so.6 (0x00007f2c63c32000)

libXt.so.6 => /Hb/x86_64-llnux-gnu/libXt.so.6 (0x00007f2c639c9000)

libXll.so.6 => /llb/x86_64-llnux-gnu/libXll.so.6 (0x00007f2c6388b000)

libXrender.so.l => /llb/x86_64-linux-gnu/libXrender.so.l (0x00007f2c63681000)

UbXau.so.6 => /lib/x86_64-llnux-gnu/llbXau.so.6 (0x00007f2c632bc000)

llbXdmcp.so.6 => /llb/x86_64-llnux-gnu/llbXdpicp.so.6 (0x00007f2c632b4000)

homer@ubuntu:~$ Itrace -x \

> XOpenDisplay+XCreateUindowfXQueryPolnter+XFillRectangle+XRenderConpositeDoublePoly \

> xeyes

Графическая система X Window System 319

XOpenDisplay@li.bXll.so.6(nil) = 0x558cb64e8a70

© XCreateWindow@libXll.so.6(0x558cb64e8a70, 380, 0, 0) = 0xe0000a

XCreateWindow@libXll.so.6(0x558cb64e8a70, 0xe0000a, 0, 0) = 0xe0000b

XFillRectangle@libXll.so.6(0x558cb64e8a70, 0xe0000c, 0x558cb65087a0, 0) = 1

XRenderConpositeDoublePoly@libXrender.so.l(0x558cb64e8a70, 3, 0xe00008, 0xe0000e) = 0

© XQueryPointer@libXll.so.6(0x558cb64e8a70, 0xe0000b, 0x7fffd96f4fb0, 0x7fffd96f4fb8) = 1

| XFillRectangle@libXll.so.6(0x558cb64e8a70, 0xe0000b, 0x558cb6505ee0, 45) = 1

|•- XRenderConpositeDoublePoly@UbXrender.so.I(0x558cb64e8a70, 3, 0xe00009, 0xe0000e) = 0

| XFillRectangle@libXll.so.6(0x558cb64e8a70, 0xe0000b, 0x558cb6505ee0, 124) = 1

XRenderConpositeDoublePoly@libXrender.so.l(0x558cb64e8a70, 3, 0xe00009, 0xe0000e) = 0

© XQueryPointer@libXll.so.6(0x558cb64e8a70, 0xe0000b, 0x7fffd96f4fb0, 0x7fffd96f4fb8) = 1

| XFillRectangle@libXll.so.6(0x558cb64e8a70, 0xe0000b, 0x558cb6505ee0, 43) = 1

| XRenderConpositeDoublePoly@libXrender.so.l(0x558cb64e8a70, 3, 0xe00009, 0xe0000e) = 0

| XFillRectangle@libXll.so.6(0x558cb64e8a70, 0xe0000b, 0x558cb6505ee0, 122) = 1

XRenderConpositeDoublePoly@libXrender.so.I(0x558cb64e8a70, 3, 0xe00009, 0xe0000e) = 0

Зная назначение библиотечных вызовов XQueryPointer(3), XFillRecangle(3) и
XRenderCompositeDoublePoly(3), можно составить модель функционирования Х-клиента,
в котором легко увидеть создание окна ©, цикл О опроса положения курсора при
помощи XQueryPointer(3) и цикл © перерисовки глаз стиранием их старого изобра­
жения при помощи XFillRectangle(3) и отрисовки нового положения посредством
XRenderCompositeDoublePoly(3). Можно даже предположить, что две пары XFill/XRender
используются на каждой итерации, потому что перерисовываются два глаза.

Еще одним инструментом, разрешающим трассировать сообщения самого Х-про-
токола, является xtrace(1), позволяющая увидеть обмен между Х-клиентом и Х-сер-
вером (листинг 7.32).

Листинг 7.32. Трассировка Х-протокола

homer@ubuntu:~$ xtrace -n xeyes | grep -E 'QueryPointer|FillRectangle|RENDER'

000:<:003c: 8: Request(38): QueryPointer window=0x02e0000b

000:>:003c:32: Reply to QueryPointer: sane-screen=true(0x01) root=0x0000017c
child=None(0xOOO00000) root-x=913 root-y=l win-x=813 win-y=-638 nask=0

000:<:0053: 20: Request(70): PolyFillRectangle drawable=0x02e0000b gc=Ox02e00006
rectangles={x=42 y=28 w=13 h=18};

000:<:0054:304: RENDER-Request(140,10): Trapezoids op=Over(0x03) src=Ox02e00009 xSrc=© ySrc=©
dst=©x02e0000e naskFornat=Ox00000024 trapezoids={..

Кроме xtrace(1), для анализа сообщений Х-протокола при передаче по сети можно
использовать анализатор сетевых пакетов wrieshark(l) ровно таким же образом, как
и для анализа сетевых сообщений любых других сетевых служб.

320 Глава 7

Большинство современных Х-клиентов не прибегают напрямую к помощи низко­
уровневых библиотек, таких как Xlib и Xrender, а используют высокоуровневые биб­
лиотеки виджетов, отрисовывающие их при помощи сообщений Х-протокола.
В примере из листинга 7.33 показана простейшая программа на языке программи­
рования С, использующая библиотеку виджетов Gtk, а в листинге 7.34 приведены
ее компиляция1 и трассировка ее библиотечных вызовов к libgtk-xll-2.0.so.0.

Листинг 7.33. Язык С и библиотека виджетов Gtk

homer@ubuntu:~$ cat hello.с

#include <gtk/gtk.h>

static void terminate(GtkWidget *widget, gpointer data) {

© gtk_piain_quit();

}

int niain(int argc, char *argv[]) {

GtkWidget *window, *buttonJ *label, *vbox;

© gtk_init (&argc, &argv);

© window = gtk_window_new(GTK_WINDOW_TOPLEVEL);

© vbox = gtk_vbox_new(TRUE, 0);

® gtk_container_add(CTK_CONTAINER (window), vbox);

© label = gtk_label_new("Hello, world!");

© gtk_container_add(GTK_CONTAINER (vbox), label);

© button = gtk_button_new_with_label("Quit");

© gtk_container_add(GTK_CONTAINER (vbox), button);

© g_signal_connect(button, "clicked", G_CALLBACK (terminate), NULL);

© gtk_widget_show_all (window);

© gtk_main ();

return 0;

}

При работе программы сначала инициализируется библиотека виджетов О, которая
инициирует соединение с Х-сервером и аутентифицирует клиента при помощи
«волшебной печеньки».

1 При наличии установленного пакета Iibgtk2.0-dev.

Графическая система X Window System 321

Интерфейс программы выстраивается из виджетов окна (window) © и вертикаль­
ного контейнера (vbox) Ф, который добавляется в это окно ®. В контейнер по­
следовательно добавляются ® и © виджеты текстовой метки (label) в и кнопки
(button) ©, сигнал нажатия (clicked) на которую связывается © с обработчи­
ком — функцией terminate.

По запросу отображения окна Ф библиотека прорисовывает виджеты при помощи
Х-протокола, после чего запускается главный цикл © обработки поступающих со­
бытий Х-протокола (щелчки кнопкой мыши, нажатия клавиш и т. д.), который
прекращается Ф при срабатывании обработчика сигнала нажатия (clicked) на вид­
жет кнопки.

homer@ubuntu:~$ gcc hello.с -о hello $(pkg-config — cflags --libs gtk+-2.0)

homer@ubuntu:~$ Iddtree hello | grep libgtk

libgtk-xll-2.0.so.0 => /lib/x86_64-linux-gnu/libgtk-xll-2.0.so.0

homer@ubuntu:~$ Itrace -n2 -l libgtk-xll-2.0.so.0 ./hello

О gtkinit(0xbfc98440, 0xbfc98444, 0x8049ff4, 0x80488b!, -1) = 1

© gtkjwindow_new(0, 0xbfc98444, 0x8049ff4, 0Х80488Ы, -1) = 0x8302000

© gtk_vbox_new(l, 0, 0x8049ff4, 0Х80488Ы, -1) = 0x82ab858

© gtk_container_get_type(l, 0, 0x8049ff4, 0x80488bl, -1) = 0x82e29b0

© gtk_contalner_add(0x8302000, 0x82ab858, 0x8049ff4, 0x80488bl, -1) = 0

© gtk_label_new(0x8048960, 0x82ab858, 0x8049ff4, 0x80488bl, -1) = 0xb5b06608

© gtk_container_get_type(0x8O48960, 0x82ab858, 0x8049ff4, 0x80488bl, -1) = 0x82e29b0

© gtk_container_add(0x82ab858, 0xb5b06608, 0x8049ff4, 0Х80488Ы, -1) = 0

© gtk_button_new_with_label(0x8O4896e, 0xb5b06608, 0x8049ff4, 0x80488bl, -1) = 0x830a010

© gtk_container_get_type(0x804896e, 0xb5b06608, 0x8049ff4, 0Х80488Ы, -1) = 0x82e29b0

© gtk_container_add(0x82ab858, 0x830a010, 0x8049ff4, 0Х80488Ы, -1) = 0

© gtkjwidget_show_all(0x8302000, 0x8048973, 0x8048764, 0, 0) = 2

© gtk_main(0x8302000, 0x8048973, 0x8048764, 0, 0 «unfinished ...>

© gtk_nain_quit(0x82ab858, 0xb73d0f30, 0xb72e5160, 0xb72e5243, 0x830a010) = 0

«... gtk_nain resumed>) = 0

+++ exited (status 0) +++

Аналогичным образом выглядят и работают программы, использующие Gtk и на
других языках программирования, например на Python1, что проиллюстрировано
в листинге 7.35.

1 При наличии установленного пакета python-gtk2.

322 Глава 7

homer@ubuntu:~$ cat gtk-hello.py
#!/usr/bin/python

import gtk

w = gtk.Window()
box = gtk.VBox()
w.add(box)

l = gtk.Label("Hello, world!")
box.add(l)

b = gtk.Button("Quit")
box.add(b)

def terminate(o):
gtk.main_quit()

b.connect("clicked", terminate)
w.show_all()
gtk.main()

Каждая библиотека виджетов при ее использовании для построения пользователь­
ского интерфейса обладает своей спецификой, но в целом имеет много общего
с другими библиотеками интерфейсных элементов. Для сравнения в листинге 7.36
приведена программа на языке Python, использующая библиотеку Qt1, в которой
можно найти много общего с программой из листинга 7.35, написанной на том же
языке, но использующей библиотеку Gtk.

homer@ubuntu:~$ cat qt-hello.py

#!/usr/bin/python

import sys
from PyQt4 import QtGui, Qt

a = QtGui.QApplication(sys.argv)

w = QtGui.QWidget()
box = QtGui. QVBoxLayoutO
w.setLayout(box)

1 Требует установленного пакета python-qt4.

Графическая система X Window System 323

l = QtGui.QLabel("Hello, world!")
w. layout().addWidget(l)

b = QtGui.QPushButton("Quit")
w.layout().addWldget(b)

def termnate():
a.quit()

w.show()
a.connect(b, Qt.SIGNAL("clicked()"), terminate)
a.exec_()

Библиотека виджетов W :[Tk] среди прочих других библиотек занимает, пожалуй,
особенное место за счет языка W :[Tcl], в качестве расширения которого специаль­
но и разрабатывалась. В отличие от языков С и Python, приведенных выше,
и многих других «настоящих» систем программирования, Tel (Tool Command
Language) является инструментальным языком, родственным семейству языков ко­
мандного интерпретатора bash(1), ksh(1), csh(l), zsh(l) и пр.

Tel-интерпретатор имеет «обычную» оболочку tclsh(l) (T e l shell) и «оконную» обо­
лочку wish(1), windowing shell, со встроенными командами к библиотеке виджетов
Тк1. Среди прочих вариантов Х-клиента с использованием различных языков про­
граммирования и библиотек виджетов пример из листинга 7.37 имеет самый про­
стой и очевидный синтаксис, похожий на синтаксис языка командного интерпрета­
тора.

honer@ubuntu:~$ cat hello.tel

#!/usr/bin/wish

label .1 -text "Hello, world!"
button .b -text Quit -cormand exit

pack .1 .b

7.8.2. ЗР-графика и инфраструктура прямого рендеринга DRI
Как показывает практика, современные графические приложения все чаще прибе­
гают к использованию программного интерфейса OpenGL как для аппаратно­
ускоренной отрисовки непосредственно ЗО-графики, так и для получения аппарат­
ного ускорения при решении других графических задач, например композитинга
(см. разд. 7.6.1).

1 Интерпретатор wish можно найти в пакете tk.

324 Глава 7

Как было проиллюстрировано выше, для эффективной работы приложений с GPU
и памятью аппаратных ускорителей им необходимо обеспечить прямой доступ
к этим устройствам, что реализуется менеджером прямого отрисовки — W:[DRM], а
для согласования взаимодействия между Х-клиентами и Х-сервером при доступе
к DRM используется инфраструктура прямой отрисовки (рендеринга) W:[DRI].

Кроме того, необходимы компоненты, реализующие расширение Х-протокола GLX,
сам программный интерфейс OpenGL и драйверы, умеющие транслировать
OpenGL-команды в обращения к GPU и видеопамяти, специфические для того
или иного видеоускорителя. Эти роли обычно выполняют проприетарные библио­
теки от производителей самих видеоускорителей или библиотеки проекта W:[Mesa],
изначально задуманного только как программный рендерер OpenGL (и расширение
GLX), но впоследствии интегрировавшего в себя свободные DRI-драйверы аппа­
ратного рендеринга для видеоускорителей Intel, AMD и NVIDIA.

honer@ubuntu:~$ Iddtree 'which glxdeno'

glxdemo => /usr/bin/glxdemo (interpreter => /lib64/ld-linux-x86-64.so.2)

libGL.so.l => /lib/x86_64-linux-gnu/libGL.so.l

libGLX.so.0 => /lib/x86_64-linux-gnu/libGLX.so.0

llbXll.so.6 => /lib/x86_64-linux-gnu/libXll.so.6

homer@ubuntu:~$ Itrace -n4 -x diopen -e gl*@MAINfX*@HAIN -s 256 glxdeno

О glxdemo - >XOpenDisplay (nil) = 0x55a43bc9bd40

в glxdemo->glXChoose\/isual(0x55a43bc9bd40, 0, 0x7ffea01b4700, 0 «unfinished ...>

dlopen@libdl.so.2("libGLX_rnesa.so.0", 1) = 0x55a43bca9890

О

О

e

о
о
о

dlopen@libdl.so.2("/usr/lib/x86_64-linux-gnu/dri/i965_dri.so", 258)

<... glXChooseVisual resumed»)

glxdemo->XCreateWindow(0x55a43bc9bd40, 380, 0, 0)

glxdemo->glXCreateContext(0x55a43bc9bd40, 0x55a43bcb7830, 0, 1)

glxdemo->glXMakeCurrent(0x55a43bc9bd40, 0xe60092, 0x55a43bcb7d90, 0)

glxdemo->XMapWindow(0x55a43bc9bd40, 0xe60092)

glxdemo->XNextEvent(0x564f 9b53cd40, ..., 0x564f 9b60a58c)

Redraw event

glxdemo->glClear(0x4000, 0x55a43bcb4760, 0, 0x7ff3e5e88317)

glxdemo->glColor3f(0, 0, 1, 0)

glxdemo->glRectf(12, 4, 5460, 0)

= 0x55a43bcb6ec0

= 0x55a43bcb7830

= Gxeee662

= Gx55a43bcb7d9G

= 1

= 1

= 0

= 0
= 0x55a43bdea424

= 1

Графическая система X Window System 325

О glxdeno->glXSwapBuffers(0x55a43bc9bd40, 0X866602, 519, 4) = 0

glxdeno->XNextEvent(0x55a43bc9bd40, 0x7ffea01b4700, 3, 0*C <no return ...»

--- SIGINT (Interrupt) ---

+++ killed by SIGINT +++

В листинге 7 .3 8 показана работа простейшего Х-клиента glxdemo(l), использующего
библиотеки libGL, libGLX и И Ь Х И . Как и любой другой Х-клиент, он для начала
подключается О к Х-серверу, затем при выборе режима изображения © «оберточ­
ной» библиотекой libGLX загружается «настоящая»1 OpenGL/GLX-библиотека
UbGLXjnesa.so.e, которая, в свою очередь, © загружает DRI-драйверы (выполнен­
ные как разделяемые библиотеки), в данном случае — для видеоускорителя на
чипе Intel 1965. После инициализации создается обычное окно © , которое затем
прикрепляется © к контексту вывода и изображается © на экране. При получе­
нии события на перерисовку содержимого окна © начинается собственно OpenGL-
рендеринг ©, который завершается отправкой результата рендеринга Ф в окно.
В glxdemo(l), как и большинстве OpenGL-приложений, используется контекст выво­
да с двойной буферизацией, т. е. рендеринг происходит во внеэкранный буфер
(back buffer), изображается всегда экранный (front buffer), а по завершении ренде­
ринга они быстро меняются местами (swap buffers), что позволяет изображать
только полностью отрисованные сцены.

Тем не менее из результата трассировки в листинге 7.38 не очевидно, что был
использован GLX-режим прямой отрисовки (direct rendering), что можно явно
увидеть при совместной трассировке библиотечных вызовов и команд Х-протокола
(листинг 7.39),

homer@ubuntu:~$ xtrace -n Itrace -n4 -x dlopan -e gl*@HAIH+X*@MAIN -s 256 glxdeno

О glxdeno->XOpenDisplay(nil
ввв:<: an Isb-first want 11:6 authorising with '' of length 6
666:>: Success, version is 11:6 vendor='The X.Org Foundation' ... roots={root-0x00000137 ...};

в glxdeno->glXChooseVisual(0x55c68d75dcd0, 0, 0x7ffe0507cc90, «unfinished ...»

Ф 666:<:6667: 12: Request(98): QueryExtension nane='CLX'
666:>:6667:32: Reply to QueryExtension: present=true(6x61) ...

© 666:<:6669: 12: CLX-Request(lSS,19): glXQueryServerString ...
666:>:6669:46: Reply to glXQueryServerString: string= 'nesa'

dlopen@libdl.so.2("libGLX_mesa.so.0", 1) = 0x55c68d76ac30

1 В этом м е ст е м огла бы за гр у ж а ть ся п р оп р и етар н ая б и б л и о т ек а G L /G L X .

326 Глава 7

© 000:<:000d: 12: Request(98): QueryExtension nane='DRI3'
000:>:000d:32: Reply to QueryExtension: present=true(6x01) ...
двв:<:ввве: 16: Request(98): QueryExtension папе-'Present'
9вв:>:ввве:32: Reply to QueryExtension: present=true(6x01) ...

® m:<:Q61a: 12: DRI3-Request(149,1): Open drawable=ex000e0137 provider=0xee000000
000:>:001a:32: Reply to Open: nfd=l

© d lo p e n @ U b d l.s o .2 (" /u s r/lib /x 8 6 _ 6 4 -lin u x -g n u /d ri/i9 6 5 _ d ri.s o ", 258) = 0x55c68d77b480

< . . . glXChooseVtsual resuned>) = 0x55c68d774dd0

О glxdemo->XCreateWlndow(0x55c68d75dcd0, 311, 0 , . . .) = 0x3600002
000:<:061d: 48: Request(1): CreateUindou depth=8xl8 ыгпскя*=6хвЗбв0062 parent=ex0660ei37 ...

glxdeno- >glXCreateContext(0x55c68d75dcdO, 0x55c68d774dd0, 0 , . . .
d00:<:061e: 24: GLX-Request(155,3): glXCreateContext context=exe3666683 ...
Q0Q:<:661f: 8: GLX-Request(15S,6): glXIsDirect context=8x6368eee3
686:>:Q61f:32: Reply to glXIsDirect: is_direct=l

) = 0x55c68d775330
© glxdemo- >glXMakeCurrent(0x55c68d75dcd0, 0x3600002, 0x55c68d775330,

© 000:<:0026: 24: DRI3-Request(149,2): PixnapFronBuffer pixnap=GxQ36G3006 drawabie=GxQ36000G2 ...
© 0@0:<:6027: 16: DRI3-Request(149,4): FenceFronFD drawable=Gx03600006 fence=OxG36O0007 ...

) = 1

© glxdero->XMapWindow(0x55c68d75dcd0, 0x3600002
6ввв:<:вв28: 8: Request(8): MapUindou тпдоы=вхв3606в02
000: >:0628: Event MapNotify(19) event=0xO366eee2 ьЛгккм=Охв36Веев2 ...

) = 1

000:>:0028: Event Expose(12) windou=ex03600002 x=0 y=0 uidth=300 height=300 count=exOOOO

© glxdemo- >XNextEvent(0x55b3b9d62cd0, 0x7fffa3e90a00, 0 x7 fffa3 e9 08 f0 , 0x55b3ba01919c) = 0

© glxdeno->glC lear(0x4000, 0x6520776172646552, 0x7fee08ecl8c0, 0x746e657665207761
© 000:<:008f: 24: DRI3-Request(149,2): PixmapFronBuffer ргхгор=вх636000в8 drawable=6X636B66e2 ...

© 000:<:0090: 16: DRI3-Request(149,4): FenceFronFD drawable=0x0360006e fence=Qxfl36i9QQP9 ...

000:<:0098: 28: Request(62): CopyArea src-drawable=0x03600006 dst-drawable=tik69686066 ...

000:<:0099 : 8V SYNC-Request(134,15): TriggerFence f\d=0x03600009

000:<:009a: 8: Request(54): FreePixnap dгawable=0x03600066

000:<:009b: 8: SYNC-Request(134,17): DestroyFence Пд=вхв360вв07

) = 0
© glxdem o->glC olor3f(0x7fee04f53c5b, 2 , 0x7fee04f6bed8, 0) = 0x55c68da5ad04
© glxdem o->glR ectf(0, 0 , 5126, 2) = 1
Ф glxdemo- >glXSwapBuff e rs (0x55c68d75dcd0, 0x3600002, 519, 4

© 000:<:002a: 72: Present-Request(148,l): Pixnap windou=0xQ3G00062 pixmp=0x0360eee8
idle_fence=ex03600009 ...

) = 1

® 0000:>:008e: Event Generic(35) Present(148) IdleNotify(2) ei/ent=0x03600005 windou=Ox036OOOO2 serial=19
pixnap=0xQ36O6OO8 idle_fence=ex03600009

® 000:>:009c: Event Generic(35) Present(148) CanpleteNotify(l) kind=Pixnap(Ox0O) node=Copy(0x00)
event=6x03600005 uindon=0x03600002 ...

Графическая система X Window System 327

glxdeno->XNextEvent(0x55c68d75dcd0, 0x7ffe0507cc90, 0x55c68da6c880, 0 . . .*C <no re tu rn . . . »
- - - SIGINT (In te rru p t) - - -
+++ k ille d by SIGINT +++

Анализ трассы показывает, что при выборе режима изображения в Х-сервер при
помощи GLX-расширения Х-протокола ® сообщает идентификатор «настоящей»
OpenGL/GLX-библиотеки mesa © , а затем при помощи DRI-расширения Х-про­
токола © производится подключение к DRM © и загружается DRI-драйвер видео­
ускорителя 1965.

Каждый раз при получении Х-клиентом события на перерисовку содержимого его
окна в создаются объект pixmap (Ю и некий примитив W :[m em ory fence] ® для син­
хронизации доступа к этому pixmap.

Как и ожидалось, при выполнении операций OpenGL-рендеринга О Х-протокол
никак не задействован, т. е. задействован режим прямой отрисовки. По окончании
рендеринга Ф полученные результаты «презентуются» Х-серверу (при помощи со­
ответствующего расширения Х-протокола Present) ©, которые в конце концов по­
мещаются им в окно Х-клиента. При этом сам Х-клиент оповещается о событиях
высвобождения объекта pixmap © и об окончании отображения pixmap в его окно ®.

Сама OpenGL-отрисовка при помощи загруженного DRI-драйвера, выделение
DRM-буфера под рендеринг в памяти видеоускорителя и его связь с pixmap естест­
венным образом остаются за рамками Х-протокола, т. к. прямой рендеринг и разраба­
тывался для вынесения процедур OpenGL-отрисовки за его рамки (см. разд. 7.6.2).
Несложно предположить, что прямое взаимодействие Х-клиента и DRM можно
наблюдать на интерфейсе системных вызовов (листинг 7.40).

Г- * 6

honer@ubuntu:~$ x tra ce s trace -е socket,connect,sendnsg,recvnsg,openat,ioctl glxdeno

g lX C h o o s e V is u a l()
вев:<:6669: 12: CLX-Request(lSS,19): glXQueryServerString ...

0вв:>:0в09:4в: Reply to glXQueryServerString: string= 'nesa'

openat(AT_FDCWD, 7usr/lib /x86_64-U nux-gnu /U bG LX _m esa.so .0", 0_RD0NLY|0_CL0EXEC) = 5 . . .

000:<:001a:12: DRI3-Request(149,1): Open <1ганаЫе=ОхОвввв137 provider^0x00000000

О ОО0:>:ОО1а:32: Reply to Open: nfd=l
L-> recvmsg(4, { . . . n s g _ c o n tro l= [{.. . , cnsg_type=SCM_RIQfTS, cm sg_data=[5]}], 0) = 32

6 io c t l(5 , DRM_IOCTL_VERSION, 0x555930e37770) = 0
© openat(AT_FDCWD, " /u s r/lib /x 8 6 _ 6 4 -lin u x -g n u /d ri/i9 6 5 _ d ri.s o " , 0_RD0NLY|0_CL0EXEC) = 6

О io c t l(5 , DRM_IOCTL_I915_GEM_CREATE, 0x7ffe4afc40c0) = 0

© io c t l(5 , DRM_ICXm_I915_GEM_MMAP, 0x7ffe4afc40d0) = 0

328 Глава 7

glXMakeCurrentQ
О toctl(5, DRM_IOCTL_I915_CEM_CREATE, 0x7ffe4afc4460) = 0

© toctl(5, DRM_IOCTL_PRIME_HAH)LE_TO_FD, 0x7ffe4afc462c) = 0

О sendnsg(4, {... msg_control=[{... cinsg_type=SCH_RIQ{TS, ansg_data=[7, 6]}], ...}, 0) = 4 0

ввв:<:9626:24: DRI3-Request(149,2): PixnapFronBuffer рЬачар=вхв36вввв6 drauab 1е=6хв36в0662

glClearQ
О loctl(5, DRM_IOCTL_I915_GEM_CREATE, 0x7ffe4afc4580) = 0

© loctl(5, DRM_IOCTL_PRIME_HANDLE_TO_FD, 0x7ffe4afc474c) = 0

О sendmsg(4, {... rnsg_control=[{... cnsg_type=SCM_RICHTS, cnsg_data=[7, 6]}], ...}

L-> Q0e:<:QQ8f: 24: DRI3-Request(149,2): PixnapFronBuffer р\хпар=вхв36вввв8 dramblе=вхв3666662 ...

glColor3f() -* glRectf() -* glXSwapBuffers()
© toctl(5, DRM_I0CTL_I915_CEM_EXECBUFFER2, 0x7fff9c009060) = 0

loctl(5, DRM_IOCTL_I915_CEM_MAIT or DRM_IOCTL_RADEON_GEM_OP, 0x7fff9c008ff0) = 0

ioctl(5, DRM_I0aL_I915_GEM_BUSY, 0x7fff9c008eb0) = 0

ввв:<:вв2а: 72: Present-Request(148,l): Pixnap тпск)и=вх636ввв62 р1хпар=9хв366вдвв ...

Из трассы в листинге 7.40 видно, что для обращений к менеджеру DRM и DRM-
драйверу видеоускорителя используются системные вызовы ioctl(2), как и всегда для
взаимодействия с любыми драйверами устройств (см.разд.3.3 и листинг 3.19).
Кроме того, интересным оказывается тот факт, что файловый дескриптор для ра­
боты Х-клиента f t видеоускорителем дисплея Х-сервера возвращается сразу в «го­
товом» виде, при ответе О на запрос подключения этого клиента к DRI-
инфраструктуре. Для этого задействуется механизм передачи файловых дескрипто­
ров через специальные служебные (ancillary) сообщения SCM_RIGHTS файловых соке­
тов (см. cmsg(3) и unix(7)). Идентификатор нужного DRI-драйвера © выясняется
специальным запросом непосредственно к DRM, после чего соответствующий
драйвер загружается © для выполнения последующего рендеринга. Перед началом
рендеринга у DRM запрашивается несколько буферов (буфер команд GPU, z-бу-
фер, stencil-буфер и пр.) в памяти видеоускорителя ©, которые отображаются
в память процесса Х-клиента © (листинг 7.41).

Идентификатор буфера, в который непосредственно будет рендерится изображение,
запрашивается у DRM Ф в виде файлового дескриптора, который так же при по­
мощи служебного сообщения SCM_RIGHTS отправляется © Х-серверу. В результате
сервер создаст объект pixmap, который затем будет использоваться в качестве ис­
точника изображения окна клиента. В результате получается, что клиент и сервер

Графическая система X Window System 329

напрямую работают с изображением в общей памяти видеоускорителя, накладные
расходы сведены к нулю, а производительность OpenGL отрисовки максимальна.

Рисующие вызовы OpenGL-библиотеки (например, glRectf(3) и glColor3f(3)) превра­
щаются DRI-драйвером в набор команд, понятных GPU видеоадаптера, и упако­
вываются в буфер команд, который потом отправляется на исполнение О.

Для полноты картины в листинге 7.41 показаны ресурсы, используемые демонст­
рационным Х-клиентом glxgears(l) при прямом рендеринге, а именно: локальный
сокет О для взаимодействия с Х-сервером, файловый дескриптор © для доступа
к DRM-менеджеру, а также отображения DRM-буферов © в память процесса.

''Ж*

homer@ubuntu:~$ glxgears &

[1] 31456

honer@ubuntu:~$ pnap 31456

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

glxgears 31456 hater cwd DIR 8,4 53248 786434 /hate/hater
glxgears 31456 honer rtd DIR 8,4 4096 2/
glxgears 31456 hater txt REG 8,4 22616 8259843 /usr/bin/glx

glxgears 31456 hater DEL REG 0,45 453 /1915 *•> ©

glxgears 31456 hater DEL REG 0,45 522 /i915 *•

glxgears 31456 hater DEL REG 0,45 253 /1915 *•

glxgears 31456 hater DEL REG 0,45 386 /1915 *•

glxgears 31456 hater DEL REG 0,45 370 /1915 *•

glxgears 31456 hater DEL REG 0,45 247 /1915 *•

glxgears 31456 hater Ou CHR 136,2 0t0 5 /dev/pts/2
glxgears 31456 hater lu CHR 136,2 0t0 5 /dev/pts/2

glxgears 31456 hater 2u c m 136,2 0t0 5 /dev/pts/2

glxgears 31456 hater *- 3u unix 0x00001 Gt0 1444944 type=STREAM

glxgears 31456 hater 4u c m 226,0 0t0 442 /dev/drl/саг

7.9. В заключение
Резюмируя современное состояние оконной системы X, нужно признать, что со
временем, в силу возникших новых условий или требований, она претерпела зна­
чительные изменения и на текущий момент очень далека от исходной архитектуры.

Современные тулкиты практические не пользуются иерархией окон и их дочерне­
родительскими отношениями (см. листинг 7.18). Для отрисовки «по-современному»
выглядящих виджетов с тенями и градиентами широко используются растровые

330 Глава 7

изображения вместо векторных примитивов Х-протокола. Вместе с тем с целью
сохранения производительности при работе с растровой графикой востребовано
использование разделяемой памяти (см. листинг 7.19) для обмена изображениями
между Х-клиентами и Х-сервером, что свело к нулю изначально заложенное свой­
ство сетевой прозрачности оконной системы.

Для визуальных эффектов просвечивающих окон при перекрытии, проявления или
растворения окон, масштабирования и анимации и прочего потребовалась новая
компонента системы в виде композитного менеджера (см. разд. 7.6.1), тогда как
классическая компонента оконного менеджера, наоборот, потеряла свою актуаль­
ность (см. рис.7.6) из-за популяризации дизайна (на основе) взаимодействия
с пользователем и «клиентского» декорирования.

Наконец, приложения, требующие доступа к процессору и памяти видеоускорите­
лей для аппаратно ускоренного ЗО-рендеринга или аппаратно ускоренного (д е -ко ­
дирования сжатого видео (см. разд. 7.8.2) вообще перестали использовать Х-про-
токол для какой-либо отрисовки содержимого окон.

Все это привело к тому, что Х-протокол превратился из основного, предметного,
протокола системы во вспомогательное средство взаимодействия (IPC) Х-клиен-
тов и Х-сервера. При всем этом далеко не самое удобное и адекватное совре­
менным реалиям средство взаимодействия, т. к. при развитии оконной системы X
требовалось сохранить обратную совместимость со всеми старыми версиями и
компонентами.

Именно такое положение вещей побудило разработчиков X Window System к соз­
данию новой графической системы, которая бы унаследовала все современные за­
воевания оконной системы X, безжалостно распрощавшись с ее неактуальным
наследием.

И имя этой новой графической системе — W :[Wayland].

Глава 8
Графическая система

Wayland

На самом деле W : [Wayland] — это протокол взаимодействия между графическими
приложениями, Wayland-клиентами и так называемым Wayland-композитором, т. е.
дисплейным сервером (он же Wayland-сервер).

Wayland-сервер (как и любой другой дисплейный сервер, включая Х-сервер), ре­
шает задачу разделения устройств вывода (дисплеев) и ввода (клавиатуры, манипу­
ляторы «мышь», сенсорные панели и пр.) между одновременно выполняющимися
графическими приложениями. Вместе с тем архитектура и внутреннее устройство
Wayland-протокола и сервера основывается на современных достижениях
X Window System, отбросив все их недостатки и сохранив преимущества.

Вторая задача, решение которой возложено на Wayland-композитор, — это, соб­
ственно, композитинг (аналогично композитному менеджеру X), т. е. составление
конечной визуальной сцены, изображаемой на дисплее пользователя из содержимо­
го окон клиентов, которые принято называть поверхностями (surface).

Протокол Wayland не предоставляет клиентам никаких возможностей рисования
векторных примитивов, как это делал Х-протокол, вместо чего за основу протоко­
ла взята пересылка от клиентов к композитору растровых изображений. Пересы­
лаемые изображения содержат образ окна целиком или образ изменившейся части
окна и доставляются при помощи буферов в разделяемой памяти или через DRM-
буферы видеоускорителей, задействуя инфраструктуру DRI.

Сам протокол спроектирован так, чтобы произвольно расширяться без потери со­
вместимости, для чего вводят понятие интерфейсов, каждый из которых является
некоторым набором предоставляемых услуг. Каждый интерфейс имеет набор мето­
дов, которые приложение может вызвать, и событий, на которые приложение мо­
жет подписываться и реагировать.

На листинге 8.1 показан вывод1 утилиты weston-info(l), которая, будучи простейшим
Wayland-клиентом, подключается к композитору посредством Wayland-протокола и

1 Все примеры в этой главе работают, только если войти в систему с использованием Ubuntu on
wayland сеанса при входе в систему.

332 Глава 8

выводит список глобальных объектов композитора, предоставляющих соответст­
вующие интерфейсы.

homer@ubuntu:~$ weston-info

Interface: 'wljdrm', version: 2 , папе: 1

interface: 'wl_compositor', version: 4, name: 2

interface: 'wl̂ shm', version: 1 , name: 3

formats: XRGB8888 ARGB8888

interface: 'zxdg_shell_v6', version: 1 , name: 10

interface: 'wl_shell', version: 1 , name: 11

interface: 'gtk_shelll', version: 3, name: 12

interface: 'wl_seat', version: 5, name: 16

name: seatO

capabilities: pointer keyboard

keyboard repeat rate: 33

keyboard repeat delay: 500

interface: 1zwp_linux_dmabuf_vl', version: 3, name: 20

Интерфейс wl_conpositor является основой протокола, позволяющей клиентам соз­
давать окна (surfaces), в которые они при помощи буферов в разделяемой памяти
и специального интерфейса wl_shm отправляют изображения, подлежащие компози-
тингу. Интерфейсы wl_drn и/или zwp_linux_dR»buf_vl используются при прямом
OpenGL-рендеринге и обеспечивают поддержку DRI для доставки результата рен­
деринга от клиента к композитору при помощи DRM-буферов в памяти видео­
адаптера. Кроме того, интерфейс zwp_ltnux_dnabuf_vl (как и расширение Х-прото-
кола DRI3, проиллюстрированное в разд. 7.8.2) позволяет доставлять от клиента
к композитору DMA-BUF-буферы, которые широко используются драйверами уст­
ройств, например видеокамер. Это позволяет с минимальными накладными расхо­
дами изображать видео, например захватываемое с веб-камеры.

Интерфейс wl_seat доставляет клиентам события указателя (мыши), нажатия кла­
виш и события тачскрина, если такие устройства обнаружены композитором, а
shell-интерфейсы wl_shell, zxdg_shell_v6 и gtk_shelll организуют управление место­
положением и размерами окон на экране. Другими словами, реализуют функции
оконного менеджера X Window System, за исключением декорирования окон, кото­
рое в Wayland возложено на самих-клиентов (см. CSD, W:[Client-Side Decoration]).

Графическая система Wayland 333

8.1. Wayland-композитор
Как уже сказано выше, основной компонентой Wayland является композитор. Од­
нако, в отличие от оконной системы X, спецификации Wayland не накладывают
вообще никаких ограничений на внутреннее устройство композитора. Вместо этого
стандартизуется всего лишь протокол взаимодействия и функции, предоставляемые
клиентам при помощи тех или иных интерфейсов.

Для тестирования жизнеспособности и уточнения концепции разработчики Wayland-
протокола и спецификаций поддерживают клиентскую и серверную библиотеки
основного (core) протокола (куда как раз входят интерфейсы wl_conposttor, wl_shn

и пр.) и прототип (reference) композитора под названием W:[W eston]. Кроме этого,
коллегиально стандартизуются расширения протокола (наборы интерфейсов), пред­
ложенные другими заинтересованными разработчиками, которые на основе этого
«конструктора» и создают законченные решения, такие как W : [Mutter (software)],
являющиеся основой для gnome-shell(l)) из настольного окружения GNOME, kwin из
настольного окружения KDE (листинг 8.2) и пр.

Листинг 8.2 J

homer@ubuntu:~$ Idd $(which weston) | grep wayland
libwayland-server.so.0 => /Ilb/x86j64-llnux-gnu/llbwayland-server.so.0 (0x00007f9d4ee4e000)

homer@ubuntu:~$ Idd $(which gnone-shell) | grep wayland
libwayland-server.so.0 => /llb/x86_64-llnux-gnu/libwayland-server.so.0 (0x00007f8c30150000)

libwayland-cursor.so.0 => /llb/x86_64-linux-gnu/llbwayland-cursor.so.0 (0x00007f8c2dfal000)

libwayland-egl.so.1 => /llb/x86_64-llnux-gnu/llbwayland-egl.so.l (0x00007f8c2df9c000)

libwayland-client.so.0 => /llb/x86_64-llnux-gnu/llbwayland-cllent.so.0 (0x00007f8c2df8b000)

honer@ubuntu:~$ Idd $(whlch kwlnjwayland) | grep wayland
libwayland-client, so.0 => /llb/x86_64-llnux-gnu/llbwayland-cllent.so.0 (0x00007fldc6c52000)

llbwayland-server.so.0 => /llb/x86_64-llnux-gnu/llbwayland-server.so.0 (0x00007fldc6c3d000)

В листинге 8.3 показано, что при запуске Wayland-композитора он действует ров­
но так же, как и Х-сервер (для сравнения см. листинг 7.1), т. е. инициализирует
устройства ввода (видеоадаптер) О , устройства ввода (мышь и пр.) © и открывает
локальный сокет для взаимодействия с клиентами ©.

Листинг 8.3. Wayland-ввнпозитор ̂ ^ ^ ■. ■..........| < ^

honer@ubuntu:~$ pgrep -l gnone-shell

5628 gnone-shell

5672 gnone-shell-cal

334 Глава 8

homer@ubuntu:~$ Isof -p 5628 -a /dev

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
gnome-she 5628 homer men CHR 226,0 398 /dev/dri/cardO

gnome-she 5628 homer Or CHR 1,3 0t0 6 /dev/null

gnome-she 5628 homer 10u CHR 226,0 0t0 398 /dev/dri/cardO О

gnome-she 5628 homer 20u CHR 13,64 0t0 149 /dev/input/eventO в

gnome-she 5628 homer 26u CHR 13,68 0t0 336 /dev/input/event4

homer§ubuntu:~$ Isof -p 5628 -a 4)

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

gnome-she 5628 homer 29u Unix 0x000000...00000000 OtO 54619 /run/user/1000/wayland-0 О type=STREAM

8.2. Wayland-клиенты и Wayland-протокол
Как было сказано выше, Wayland-протокол по сравнению с Х-протоколом весьма
прост, т. к. большинство задач возложено на самого клиента или клиентские биб­
лиотеки виджетов, в качестве которых выступают все те же Gtk+ и Qt. В стеке
тулкита Gtk (gimp toolkit) изначально присутствовала библиотека рисования W:[gdk]

(gimp drawing kit), абстрагирующая саму Gtk от оконной системы. Кроме этого,
современная gdk базируется на библиотеке 20-рендеринга W: [cairo (graphics)], что
вместе составляет достаточную базу для работы поверх Wayland, т. к. позволяет
получать именно растровые изображения окна клиентского приложения, отправляе­
мые Wayland-композитору.

Более того, сами приложения совсем (!) не нуждаются в адаптации для работы
в графической системе Wayland. Однако таким свойством Gtk обладает, только
начиная с версии 3, поэтому запустить откомпилированный ранее пример из лис­
тинга 7.33 не получится1. А вот пересобрать тот же пример с библиотекой libgtk-3
можно так, как, показано в листинге 8.4, причем получившаяся программа за счет
свойств Gtk/Gdk сможет выполняться как в X, так и в Wayland.

homer@ubuntu:~$ gcc hello.с -о hello $(pkg-config — cflags — libs gtk+-3.0)

hello.c: In function 'main':

hello.c:13:6: warning: *gtk_vbox_new' is deprecated: Use ,gtk_box_new' instead [-Wdeprecated-declarations]

vbox = gtk_vbox_new(TRUE, 0);

1 Если быть точнее, то получится, но только в режиме совместимости, т. к. практически любой
Wayland-композитор имеет в своем составе Xwayland — Х-сервер, конвертирующий Х-окна
в Wayland-поверхности (surfaces).

Графическая система Wayland 335

In file included from /usr/include/gtk-3.0/gtk/gtk.h:282: 0,
from hello.c:l:

/usr/include/gtk-3.0/gtk/deprecated/gtkvbox.h:61:13: note: declared here
GtkWidget * gtk_vbox_new (gboolean homogeneous,

Л________

homer@ubuntu:~$ Iddtree hello
hello => ./hello (Interpreter => /Hb64/ld-llnux-x86-64.so.2)

llbgtk-3.so.0 => /usr/llb/x86_64-llnux-gnu/llbgtk-3.so.0
llbgdk-3.so.0 => /usr/llb/x86_64-llnux-gnu/llbgdk-3.so.0

libXrandr.so.2 => /usr/llb/x86_64-llnux-gnu/llbXrandr.so.2
libXrender.so.l => /usr/llb/x86_64-llnux-gnu/llbXrender.so.l

libwayland-cursor.so.0 => /usr/llb/x86_64-llnux-gnu/llbwayland-cursor.so.0
libwayland-egl.so.1 => /usr/llb/x86_64-linux-gnu/llbwayland-egl.so.1
llbwayland-cllent.so.0 => /usr/lib/x86_64-llnux-gnu/libwayland-client.so.0

HbXll.so.6 => /usr/lib/x86_64-llnux-gnu/llbXll.so.6

Для наблюдения за работой программы можно было бы воспользоваться трасси­
ровкой библиотечных вызовов так же, как это ранее было показано в листинге
7.34, однако llbwayland-cllent.so.0 устроена, (в угоду эффективности) так, что ре­
зультат практически невозможно будет трактовать. К счастью, сама библиотека
предоставляет великолепные возможности трассировки (активируемые переменной
окружения NAYLAND.DEBUG), показанные в листинге 8.5.

homer@ubuntu:~$ WAYLAND_DEBUG=1 Itrace -n2 -1 llbgtk-3.so.0./hello
hello->gtk_init(0x7fffda3942ac, 0x7fffda3942a0, 0x7fffda3942a0, 0
О [1406864,197] -> wl_display01.get_registry(new id wl_registry02)

® [1406874,203] wl_registry02.global(2, "wl_compositor", 4)
L-* [1406874,248] -> wl_registry02.bind(2, "wl_compositor", 3, new id [unknown]04)
© [1406874,404] wl_registry@2.global(3, "wl_shm", 1)
L-* [1406874,418] -> wl_registry02.bind(3, "wl_shm", 1, new id [unknown]05)

© [1406891,543] wl_registry@2.global(15, "wl_seat", 5)
L+ [1406891,556] -> wl_registry@2.bind(15, "wl_seat", 5, new id [unknown]@15)

® [1406894,912] -> wl_display@l.sync(new id wl_callback@21)

© [1406895,627] wl_seat@15.capabilities(3)
| [1406895,632] -> wl_seat015.get_pointer(new id wl_pointer@8)

L+ [1406895,680] -> wl_seat015.get_keyboard(new id wl keyboard026)

© [1406895,713] wl_callback021.done(106554)
© [1406895,721] -> wl_registry02.bind(9, "xdg_wm_base", 1, new id [unknown]021)

)=1

336 Глава 8

hello->gtk_windownew(0, 0x7f294f2493a0, 0, 0x7f294f2493a0) = 0x55d553e24520
hello->gtk_vbox_new(l, 0, 1, 0) = 0x55dSS3faal80

hello->gtk_contalnerjget_type(0x55d553f07f20, 1, 0x55d553f07f20, 0) = 0x55d553e4d8a0

hello->gtk_container_add(0x55d553e24520, 0x55d553faal80, 0x55d553e24520, 3) = 0xS5d5S3e6b0aO
hello->gtk_label_new(0xS5d55301cc84, 0x55d553faal80, 1, 0) = 0x55d5540d0210
hello->gtk_container_get_type(0x55d5540d0220, 80, 1, 0) = 0x55d553e4d8a0
hello->gtk_container_add(0x55d553faal80, 0x55d5540d0210, 0x55d553faal80, 3) = 0x55d553e6b0a0
hello->gtk_button_new_wlth_label(0x55d55301cc92, 0x55d5540d0210, 1, 0) = 0x55d5540dll80
hello->gtk_containerjget_type(0x55d553f22bb0, 0x55d553ddd010, 0x55d553f22bb0, 0) = 0x55d553e4d8a0
hello->gtk_container_add(0x55d553faal80, 0x55d5540dll80, 0x55d553faal80, 3) = 0x55d553e6b0a0
hello->gtk_wldget_show_all(0x55d553e24520, 1, 212, 0

© [1406978,365] -> wl_compositor@4.create_surf ace(new id wl_surface@27)

[1406978,599] -> wl_surface@27.set_buffer_scale(l)

© [1406979,800] -> xdg_wpi_base@21.get_xdg_surface(new id xdg_surface@28, wl_surface@27)

© [1406979,881] -> wl_surface@27.comtt()

) = 2

hello->gtk jnain(0x55d553e24530, 80, 1, 0

® [1406997,924] xdg_surface@28.conftgure(106556)

[1406997,959] -> xdg_surface@28.ack_configure(106556)

© [1407014,540] -> wl_shm@5.create_pool(new id wl_shn_pool@31, fd 13, 272800)

© [1407014,580] -> wl_shn_pool@31.create_buffer(new id wl_buffer@32, 0, 275, 248, 1100, 0)

© [1407018,097] -> wl_surface@27.attach(wl_buffer@32, 0, 0)

[1407018,131] -> wl_surface@27.set_buffer_scale(l)

[1407018,140] -> wl_surface@27.danage(0, 0, 275, 248)

[1407018,293] -> wl_surface@27.frane(new id wl_callback@35)

© [1407018,303] -> wl_surface@27.comit()

«unfinished ...»

hello->gtk_nain_quit(0x55d5540dll80, 0, 0, 0) =0

<... gtkjnain resuned>) = 0x55d553dde280

+++ exited (status 0) +++

Wayland-взаимодействие с композитором начинается с подключения к нему и по­
лучения «дисплея» wl_display (на трассе не показано). Затем при помощи его мето­
да get_registry() извлекается реестр глобальных интерфейсов О, в котором зареги­
стрированы интерфейсы wl_compositor Ф, wl_shm®, wl_seat © и др. На события всех
этих интерфейсов производится подписка при помощи метода bind() реестра, а за­
тем у дисплея запрашивается © доставка события «синхронизация», которое дос­
тавляется в момент, когда нет больше других событий в очереди доставки.

Графическая система Wayland 337

При получении события «возможности» (capabilities) © интерфейса wl_seat, при
помощи его методов get_pointer() и get_keyboard() извлекаются интерфейсы wl_pointer
и wl_keyboard, на события которых производится подписка (на трассе не показано)
для получения информации о движении указателя мыши и нажатия клавиш на по­
верхностях (surface), созданных приложением.

По окончании «синхронизации» © производится подписка © еще на один глобаль­
ный интерфейс xdg_wm_base, предназначенный для базового управления окнами
(window management), а затем создается объект «поверхности» приложения © ме­
тодом create_surface() интерфейса wl_composltor. Эта поверхность «превращается»
в «xdg-окно» © при помощи метода get_xdg_surface() интерфейса xdg_wm_base, т. е.
пользователь сможет изменять ее размер или местоположение на экране. Послед­
ним шагом все сделанные изменения применяются © при помощи метода comitO

интерфейса wl_surface. Надо заметить, что все вышеперечисленные интерфейсы на
самом деле реализуются объектами, начиная с объектов «дисплея» и реестра гло­
бальных объектов и заканчивая объектами поверхностей. И вообще, Wayland-про­
токол и его программный интерфейс спроектированы в объектно-ориентированном
стиле, несмотря на то что их базовая реализация выполнена для необъекто­
ориентированного языка С.

Последняя часть трассы листинга показывает, как на самом деле растровые изо­
бражения из клиента доставляются в композитор. При получении события конфи­
гурирования xdg-окна © приложение посредством wl_shm интерфейса создает пул ©
разделяемой (между процессами клиента и композитора) памяти на основе ото­
бражения файла с файловым дескриптором fd = 13 и размером 272 8G0 байт. Такой
дескриптор зачастую получают либо1 при помощи shm_open(3) в семантике разде­
ляемой памяти POS1X (см. разд. 4.9.5 и листинг 4.58), либо при помощи Linux-
специфичного системного вызова memfd_create(2). Затем в пуле создается wl_buffer

буфер © размером 245x278 пиксела (по 4 байта каждый), который присоединяется
к «поверхности» Ф в качестве «заднего» (back buffer), а затем все сделанные из­
менения приводятся к исполнению ©, т. е. буфер становится передним (front
buffer) и начинает изображаться на экране композитором. Между шагами © и ©
производится отображение файла с fd = 13 в память клиента и наверняка произво­
дится рендеринг изображения окна приложения, что заметно по задержке между
ними.

При анализе файлов, отображенных в память процесса, видно, что llbgdk действи­
тельно использует memfd_create(2) для создания временного файла в оперативной
памяти, который затем разделяемым образом отображается в память процессов
клиента и композитора (листинг 8.6).

1 Так и поступит llbgdk на другой платформе, например FreeBSD.

338 Глава 8

homer@ubuntu:~$./hello &

[1] 28237

homer@ubuntu:~$ pgrep -l gnone-shell

5628 gnome-shell

homer@ubuntu:~$ Isof -p 28237 | grep memfd

hello 28237 homer DEL REG 0,5 387481 /memfd:gdk-wayland

homer@ubuntu:~$ pnap 28237 | grep nemfd

00007f3068202000 268K rw-s- memfd:gdk-wayland (deleted)

homer@ubuntu:~$ Isof -p 5628 | grep 387481

gnome-she 5628 homer DEL REG 0,5 •* 387481 /memfd:gdk-wayland

homer@ubuntu:~$ pnap 5628 | grep 268K
00007f2974fde000 268K rw-s- memfd:gdk-wayland (deleted)

Практически идентичным образом работают и «продвинутые» Wayland-клиенты,
задействующие OpenGL-рендеринг, для которого, однако, в Wayland в принципе
нет специального протокольного расширения, подобного GLX. Вместо этого есть
интерфейсы, позволяющие доставлять композитору DRM-буферы (в виде файловых
дескрипторов DMA-BUF примерно так же, как ему доставляются «обычные» бу­
феры в виде файловых дескрипторов разделяемой памяти). Такой подход позволя­
ет в принципе охватить целый класс приложений, работающих с растровыми изо­
бражениями, получаемыми аппаратным образом, будь то результат рендеринга ЗО-
сцены GPU видеоускорителя, аппаратно декодированный кадр W: [H.264]/W:[Н.265]
видео или видеокадр, полученный видеокамерой. В листинге 8.7 показана работа
демонстрационного Wayland-клиента weston-simple-egl, который использует программ­
ный интерфейс W :[EGL (API)] (аналог GLX) для OpenGL-рендеринга и zwp_l!nux_
dmabuf_vl интерфейс Wayland для отправки результата отрисовки композитору.

homer@ubuntu:~$ WAYLAND_DEBUG=1 strace -fe ioctl /usrAib/weston/weston-simple-egl

О [2890473.319] -> wl_display@l.get_registry(new id wl_registry@3)

© [2890474.242] wl_registry@3.global(l, "wl_drm", 2)
^ [2890474.417] -> wl_registry@3.bind(l, "wl_drm", 2, new id [unknown]@10)

© [2890479.041] wl_registry@3.global(20, "zwp_llnux_dmabuf_vl", 3)
L-* [2890479.284] -> wl_registry@3.bind(20, "zwp_linux_dmabuf_vl", 3, new id [unknown]@ll)

Графическая система Wayland 339

(3) [2890482.729] wl_dm@10.device("/dev/dri/card0")
© ioctl(5, DRM_IOCTL_GET_MAGIC, 0x7ffe85f71eb4) = 0
^ [2890483.635] -> wl_dm@10. authenticated)

ioctl(5, DRM_IOCTL_VERSION, 0x55acc6ed9a20) = 0
ioctl(5, DRM_IOCTL_VERSION, 0x55acc6ed9a20) = 0
strace: Process 13734 attached

© [pid 13733] ioctl(5, DRM_I0CTL_I915_GEM_CREATE, 0x7ffe85f71a40) = 0

© [pid 13733] ioctl(5, DRM_IOCTL_I915_GEM_MMAP, 0x7ffe85f71a80) = 0

© [2890542.462] -> wl_compositor@4.create surface(new id wl_surface@9)

[2890572.504] -> zwpj.inux_dmabuf_vl@ll.create_parans(new id zwp_linux_buffer_params_vl@18)
© [pid 13733] ioctl(5, DRM_IOCTL_PRIME_HANDLE_TO_FD, 0x7ffe85f7223c) = 0

[2890572.853] -> zwp_linux_buffer_parans_vl@18.add(fd 8, 0, 0, 1024, 16777216, 2)
© [2890573.500] -> zwp_linux_buffer_params_vl@18.create_imed(new id wl_buffer@19, 250, 250, ..., 0)

[2890573.928] -> zwp_linux_buffer_parans_vl@18.destroy()
© [2890574.009] -> wl_surface@9.attach(wl_buffer@19, 0, 0)

[2890574.299] -> wl_surface@9.damage(0, 0, 2147483647, 2147483647)
© [pid 13733] ioctl(5, DRM_IOCTL_I915_GEM_EXECBUFFER2, 0x7ffe85f722a0) = 0

[pid 13733] ioctl(5, DRM_IOCTL_I915_GEM_WAIT or DRM_IOCTL_RADEON_GEM_OP, 0x7ffe85f72230) = 0

[pid 13733] ioctl(5, DRM_IOCTL_I915_GEM_BUSY, 0x7ffe85f720f0) = 0

© [2890575.166] -> wl_surface@9.comit()

После обычного разбора реестра глобальных интерфейсов О и подписки на нуж­
ные интерфейсы Ф и ® , при получении события ® доступности файла «устройст­
ва» DRM производится подключение © к нему. Затем при помощи уже известного
(по листингу 7.40) ioctl-интерфейса к DRM © создаются буферы в памяти видео­
ускорителя и отображаются в память процесса Wayland-клиента. После чего соз­
дается «поверхность» © для отображения, DRM-буфер с результатом будущего
рендеринга © превращается в файловый дескриптор fd = 8, на основе которого
создается wl_buffer © и уже известным способом присоединяется к «поверхности» в .
На последнем этапе при помощи DRM задействуется © GPU видеоускорителя, а
затем полученный результат отрисовки поступает композитору на отображение ©.

8.3. Запуск графической среды на основе Wayland
За долгое время развития оконной системы X сложилась устоявшаяся инфраструк­
тура запуска ее компонент и обеспечения графического входа пользователей
в систему на основе так называемого менеджера дисплеев (см.разд. 7.3.3). Вместе
с тем, как было показано выше, Wayland-композитор является всего лишь совре­

340 Глава 8

менной реинкарнаций дисплейного сервера и композитного менеджера окон, тесно
интегрированных друг с другом в одной компоненте.

В этом смысле запуск графической среды на основе Wayland мало чем отличается
от среды на основе X Window System. В листинге 8.8 показан сеанс работы поль­
зователя, запущенный менеджером gdm3(1).

Листинг 8.8. 1 рафичсиий ссанг WDytar»G J

honer@ubuntu:~$ pgrep gdn3

742

homer@ubuntu:~$ pstree -Tp 742

gdm3(742)— gdm-session-wor(20003)— gdm-wayland-ses(20042)-gnor)e-session-b(20046)

homer@ubuntu:~$ ps fp 742,20003,20042,20046

PID TTY STAT TIME COMMAND

742 ? Ssl 0:00 /usr/sbin/gdn3
20003 ? Si 0:00 _ gdm-sesslon-worker [pam/gdm-launch-environnent]
20042 ttyl Ssl+ 0:00 /usr/llb/gdn3/gdn-wayland-session ...
20046 ttyl Sl+ 0:00 _ /usr/llb/gnorte-session/gnome-session-binary --systend ...

homer@ubuntu:~$ pgrep -l gnone-shell

5628 gnoroe-shell

5672 gnonie-shell-cal

honer@ubuntu:~$ pstree -sTp 5628
systemd(l)-systepid(5527)-gnot4e-shell(5628)jXwayland(5641)

L-ibus-daemon(5721)-rlbus -dconf (5726)
H-bus-... -slm(5892)
4.bus-...-(5727)

Основное наблюдается в том, что в сессии отсутствует дисплейный сервер
(Хогд(1)),т. к. его роль выполняет композитор gnome-shell(l), а остальные процессы остались
практически без изменения.

8.4. В заключение
Графический интерфейс, с которого начинается первое «визуальное» знакомство
любого начинающего пользователя с современной операционной системой Linux,
на поверку оказывается самой «сложной» ее подсистемой.

Оконные системы X Window System и Wayland и используют в своей работе
практически все1 рассмотренные сущности операционной системы — программы и

1 Даже выход первой версии ядра Linux быд практически «приурочен» к моменту успешного за­
пуска и стабильной работы оконной системы X.

Графическая система Wayland 341

библиотеки, процессы и нити, драйверы устройств и их специальные файлы, ло­
кальные (файловые) сокеты, сетевую подсистему и сетевые сокеты, разделяемую
память, отображение файлов в память, и даже службу SSH. Не менее изощрен­
ными (а может быть, и более) в использовании услуг, предоставляемых приложе­
ниям разнообразными компонентами операционной системы, являются графические
среды пользователей, такие как GNOME или KDE.

Таким образом, понимание происходящих в недрах Linux процессов, стоящих за
графическим интерфейсом, пожалуй, сможет служить хорошей мерой проникнове­
ния в предмет внутреннего устройства этой замечательной операционной системы.

Глава 9
Контейнеры

и виртуальные машины

Как уже неоднократно упоминалось в предыдущих главах, кроме задач по управ­
лению ресурсами центрального процессора, памяти, устройств ввода-вывода и про­
чих, любая операционная система, включая Linux, решает задачи по распределе­
нию их между потребителями и разграничению доступа к ним. Одним из видов
разграничения доступа, помимо рассмотренных в разд. 3.5 и 3.6, является изоля­
ция, т. е. создание, определенных сред исполнения, называемых контейнерами,
в которых потребители ресурсов «заключаются»1 для лишения свобод обращения
к полному набору ресурсов, доступных в операционной системе.

На практике контейнеры используются для разных целей, например для обеспече­
ния безопасности. Так, «заключенная» сетевая служба, подвергшаяся атаке
W:[Denial-of-service attack], сможет употребить только ограниченное количество време­
ни центрального процессора и ограниченное количество памяти, оставив системе
в целом возможность для функционирования и способность обнаружения подобных
ситуаций и противодействия им. Точно в том же смысле, потенциально уязвимая
к атакам повышения привилегий программа (например, Web-сервер или даже Web-
браузер) может быть «заключена» в контейнер для исключения ситуаций полного
захвата системы злоумышленником, использовавшим уязвимости этой программы.

Кроме этого, контейнеры могут быть использованы просто для разделения вычис­
лительных ресурсов между группами абсолютно несвязанных потребителей, напри­
мер для организации совместного размещения (виртуального хостинга серверов,
W :[VPS]) слабо- или средненагруженных информационных систем заказчиков на
сверхмощных серверах провайдера. Помимо этого, т. к. контейнеры позволяют
организовывать почти произвольные2 среды исполнения, они являются удобным
средством одновременного размещения программ, требующих для своей работы

1 Как заключенные в местах ограничения свободы, недаром один из BSD-механизмов носит на­
звание «тюрьма» (jai:/), см. W:[FreeBSDjail].

2 Кроме ядра ОС, которое предоставляется контейнеру хост-системой.

344 Глава 9

несовместимого набора программных средств (библиотек и пр.), другими словами,
дают возможность одновременно на одной системе исполнять программы, жестко
привязанные к очень разным версиям операционной системы или к версиям ОС
от разных поставщиков (дистрибутивам).

9.1. Чрутизация
Самым древним средством изоляции, известным со времен классического UNIX,
является системный вызов chroot(2), позволяющий назначать процессам корень дерева
каталогов, от которого вычисляются все абсолютные путевые имена (см. разд. 3.1.1).
Другими словами, каждый процесс, помимо атрибута cwd (current working directory,
см. разд. 4.5.3), относительно которого вычисляются относительные путевые имена,
имеет еще и атрибут rtd (root directory), относительно которого вычисляются аб­
солютные путевые имена, т. е. корень дерева каталогов оказывается абсолютом
только для ядра ОС1, а для процессов это вполне установленный каталог, выше
которого процесс не имеет доступа, иными словами, изолирован в части настоя­
щего дерева каталогов.

rick@ubuntu:~$ pgrep -l avahl-daonon

587 avahi-daemon

663 avahi-daemon

rick@ubuntu:~$ Isof -p 587 | grep rtd

avahi-dae 587 avahi rtd DIR 8,2 4096 262180 /etc/avahi

В листинге 9.1 показано типичное применение так называемой чрутизации, т. е.
добровольного заключения сетевыми службами себя в некоторый каталог (напри­
мер, в каталог с конфигурационными файлами или в их специальный каталог
«времени исполнения»). В случае, если злоумышленник воспользуется уязвимостью
такой службы, он не сможет заставить ее выдать ему содержимое файл<?в систе­
мы, находящихся за пределами этого каталога.

Чрутизация реализуется как раз посредством chroot(2), когда сетевая служба, за­
кончившая свою инициализацию, назначает своим новым корневым каталогом не­
который каталог, все дерево выше которого должно быть ей (и потенциальному
злоумышленнику) недоступно.

1 Да и то, если честно, это не так. Ядро может даже для себя определять каталог, который яв­
ляется корнем в данный определенный момент времени.

Контейнеры и виртуальные машины 345

Используя чрутизацию, уже можно организовать протоконтейнеры при помощи
одноименной утилиты chroot(1), которая при запуске назначает своему процессу
указанный корневой каталог, а затем замещает себя при помощи системного вы­
зова ехес(2) на указанную программу. В результате программа оказывается изоли­
рованной в определенной части дерева каталогов. Естественно, при таком поведе­
нии утилиты chroot(1) в изолированном окружении можно запускать только про­
граммы, сами там расположенные. Более того, не стоит забывать, что программы
при запуске компонуются с библиотеками, от которых зависят, поэтому и библио­
теки, и сам компоновщик тоже должны располагаться в том же окружении.

В листинге 9.2 показано создание протоконтейнера с-137, в который помещаются
командный интерпретатор sh и все необходимые компоненты для его работы, а
затем он запускается в этом изолированном окружении.

rick@ubuntu:~$ nkdir с-137

rick@ubuntu:~$ chroot с-137 sh

chroot: cannot change root directory to 'c-137': Operation not permitted

rick@ubuntu:~$ sudo chroot c-137 sh

? chroot: failed to run command ‘sh*: No such file or directory

rick@ubuntu:~$ sudo strace -fe chroot,chdir,execve chroot c-137 sh

execve("/usr/sbin/chroot", ["chroot", "c-137", "sh"], . . .) = 0

chroot("c-137") = 0

chdir('7") = 0

execve("/usr/bin/sh", ["sh"], ...) = -1 ENOENT (No such file or directory)

execve("/sbin/sh", ["sh"], ...) = -1 ENOENT (No such file or directory)

execve("/bin/sh", ["sh"], ...) = -1 ENOENT (No such file or directory)

chroot: failed to run command *sh#: No such file or directory

+++ exited with 127 +++

rick@ubuntu:~$ nkdir с-137/bin

rick@ubuntu:~$ cp /bin/sh c-137/bin

rick@ubuntu:~$ sudo chroot c-137 sh

? chroot: failed to run command 'sh': No such file or directory

rick@ubuntu:~$ Idd /bin/sh '

linux-vdso.so.1 (0x00007ffe64cdd000)

libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007fb508897000)

/lib64/ld-linux-x86-64.so.2 (0x00007fb508abf000)

_«исгинг9.£. Про

rick@ubuntu:~$ tar ch /lib/x86_64-linux-gnu/libc.so.6 /lib64/ld-ltnux-x86-64.so.2 | «-1

> tar x -C c-137

tar: Removing leading ' / ' from member names

346 Глава 9

tar: Removing leading '/' from hard link targets

rick@ubuntu:~$ find c-137 -Is

12312 4 drwxrwxr-x 5 rick rick 4096 ЯНВ 11 14:11 с-137/

12315 4 drwxrwxr-x 3 rick rick 4096 ЯНВ 11 14:11 с-137/lib

12316 4 drwxrwxr-x 2 rick rick 4096 ЯНВ 11 14:17 c-137/lib/x86_64-linux-gnu

12317 1980 -rwxr-xr-x 1 rick rick 2025032 сен 16 17:56 с-137/lib/x86_64-linux-gnu/libc.so.6

12318 4 drwxrwxr-x 2 rick rick 4096 ЯНВ 11 14:17 c-137/lib64

12319 184 -rwxr-xr-x 1 rick rick 187376 сен 16 17:56 с-137/lib64/ld-linux-х86-64.so.2

12313 4 drwxrwxr-x 2 rick rick 4096 ЯНВ 11 14:11 с-137/bin

12314 128 -rwxr-xr-x 1 rick rick 129816 ЯНВ 11 14:11 с-137/bin/sh

rick@ubuntu:~$ sudo chroot c-137 sh

pwd

/
Is
sh: 7: Is: not found

Как и ожидалось, в новом окружении ни одна внешняя команда интерпретатора не
доступна, а само окружение не очень пригодно для интерактивной работы, поэтому
зачастую вместо обычного командного интерпретатора в подобных окружениях ис­
пользуют интерпретатор из проекта W:[busybox], который реализует массу полезных
P0SIX.1 команд встроенным образом (листинг 9.3).

rick@ubuntu:~$ which busybox

/usr/bin/busybox

rick@ubuntu:~$ cp /usr/bin/busybox с-137/btn

rick@ubuntu:~$ sudo chroot c-137/ busybox sh

BusyBox vl.30.1 (Ubuntu l:1.30.1-4ubuntu4) built-in shell (ash)

Enter 'help' for a list of built-in commands.

/ # Is
bin lib lib64

/ # help

Built-in comands:

. : [[[alias bg break cd chdir command continue echo eval exec

exit export false fg getopts hash help history jobs kill let

logname logread losetup Is Isnod Isscsi Izcat Izma Izop md5sum

Контейнеры и виртуальные машины 347

nktenp nodinfo nodprobe more mount mt mv nameif nc netstat nl

paste patch pldof ping ping6 pivot_root poweroff printf ps pwd

whoami xargs xxd xz xzcat yes zcat

/ # ps

PID USER COMMAND

ps: can't open '/proc': No such file or directory

/ # Isnod

Ismod: /ргос/modules: No such file or directory

Module Size Used by Not tainted

/ # Isscsi

Isscsi: can't change directory to '/sys/bus/scsi/devices': No such file or directory

Однако многие утилиты, например ps(1), отказываются работать в таком изолиро­
ванном окружении в силу изоляции от той части дерева каталогов (каталоги /ргос
и /sys), где при помощи псевдофайловой системы ргос или sysfs (см. разд. 3.4.4)
ядром экспортируется информация о процессах и устройствах. Это в принципе и
есть ожидаемый результат изоляции в случаях, когда она используется для пре­
дотвращения утечки информации третьим лицам, однако для организации работы
хостинга это не тот результат, который требуется получить. Естественным решени­
ем в таком случае является повторное монтирование файловых систем ргос и/или
sysfs внутрь окружения.

Листинг 9.4. Иротоконтейнер,

rick@ubuntu:~$ sudo chroot с-137/ busybox sh

/ # ps

PID USER COMMAND

ps: can't open '/proc': No such file or directory

/ # mount

? sh: mount: not found

! / # In -s /bin/busybox /bin/nount

/ # mount

mount: no /proc/mounts

/ # mkdir /ргос

О / # mount -t proc none /ргос

© / # mount

® none on /ргос type proc (rw,relatlme)

© / # ps

© PID USER COMMAND

1 0 {systemd} /sbin/init splash

348 Глава 9

9743 0 {ps} busybox sh

/ # exit

rick@ubuntu:~$ mount -t proc

proc on /proc type proc (rw,nosuld,nodev,noexec,relatine)

© none on /hop)e/rick/c-137/proc type proc (rw,relatune)

В листинге 9.4 показано монтирование О файловой системы /ргос внутри прото­
контейнера, после чего утилиты ps(1) © и mount(8) © начинают исправно функцио­
нировать. Однако нужно заметить, что если внутри контейнера видны только фай­
ловые системы, смонтированные ниже его корневого каталога ®, то в самой сис­
теме видны абсолютно все смонтированные в ее дерево файловые системы,
включая те, которые смонтированы внутри и для контейнеров ©, что доставляет
некоторые неудобства. Более того, в протоконтейнере видны абсолютно все про­
цессы операционной системы ®, что в принципе ожидаемо, т. к. механизм чрути-
зации изначально предназначался для изоляции в пространстве дерева каталогов
и никакого отношения к пространству процессов не имеет.

Еще одно замечание по поводу busybox в листинге 9.4 касается того, что далеко не
все команды реализуются им как «встроенные» в его интерпретатор. Многие из
них, например mount или cat и подобные, вызываются напрямую другими програм­
мами и, как следствие, должны быть «внешними» в окружении, как это обычно
бывает в «нормальных» случаях. Именно поэтому они должны иметь имена в ката­
логах /bin или /sbin, которые просто линкуются на сам busybox, который, как и
в случае со встроенными командами, их и реализует.

9.2. Пространства имен
Для «настоящей» контейнеризации, т. е. изоляции в других пространствах, отлич­
ных от дерева каталогов, в Linux появились так называемые пространства имен
(namespaces), которые на деле оказываются достаточно простым механизмом, не
многим сложнее chroot(2).

Например, пространства имен процессов (PID namespaces, нужно заметить, что
процессы «именуются» своими идентификаторами) позволяют изолировать процессы
так, что они «видят» друг друга, только если находятся в одном пространстве. Бо­
лее того, в каждом пространстве нумерация процессов начинается с единицы, а
идентификаторы разных процессов из разных пространств могут совпадать.

Точно так же, пространства монтирований (mount namespaces) позволяют процес­
сам видеть только файловые системы, смонтированные в их пространстве. Анало­
гично, сетевые пространства (net namespaces) изолируют сетевые интерфейсы и
сокеты, пространства средств межпроцессного взаимодействия (7PC namespaces)

Контейнеры и виртуальные машины 349

изолируют разделяемую память, очереди сообщений и семафоры (см. разд. 4.9.5),
а пространства пользователей (user namespaces) изолируют пользовательские
идентификаторы, которые могут в каждом пространстве начинаться с 0 (!), т. е.
обеспечивать контейнерам собственного «виртуального» пользователя root. На те­
кущий момент различают 8 различных типов пространств, подробную информацию
о которых можно найти в странице руководства namespaces(7).

По умолчанию все процессы выполняются в одних и тех же пространствах и, как
следствие, совместно используют (share) ресурсы, но при порождении процесса
системным вызовом с1опе(2)’ или позднее при работе процесса при помощи систем­
ного вызова unshare(2) можно создать новое пространство, в которое и будет пере­
мещен процесс. А по умолчанию, согласно традициям UNIX, процессы просто
унаследуют пространства своих родителей при порождении, т. е. продолжат выпол­
няться в одних и тех же пространствах.

Как и большинство сущностей в Linux, пространства имен являются файлами в
некоторой псевдофайловой системе О, однако, в отличие от «нормальных» файлов,
они не имеют имен и идентифицируются только номерами в их индексных деск­
рипторов inode. Показать номера пространств процессов может утилита ps(1), по­
скольку она получает любую информацию о процессах (в том числе идентифика­
торы их пространств) через псевдофайловую систему /ргос (листинг 9.5).

rick@ubuntu:~$ ps up $$

USER PID XCPU %MEM VSZ RSS TTY STAT START TIME COMMAND

rick 2314 0.0 0.2 19844 5788 pts/0 Ss 13:07 0:01 -bash

rick@ubuntu:~$ Is -la /proc/$$/ns

total 0

dr-x--x--x 2 rick rick 0 янв 11 16:25 .

dr-xr-xr-x 9 rick rick 0 янв 11 13:07 ..

Irwxrwxrwx 1 rick rick 0 янв 11 16:25 m t -> 'mnt:[4026531840]'

Irwxrwxrwx 1 rick rick 0 янв 11 16:25 net -> 'net:[4026531992]' "•

Irwxrwxrwx 1 rick rick 0 янв 11 16:25 pid -> 'pid:[4026531836]'

rick@ubuntu:~$ ps о pid,netns,nntns,pidns,com p $$

PID NETNS MNTNS PIDNS COMMAND

10149 4026531992 -• 4026531840 4026531836 bash

1 Который определяет, будут ли совместно использованы память, файловые дескрипторы и другие
ресурсы между порождающим и порожденным процессами.

350 Глава 9

rick@ubuntu:~$ stat -L /proc/$$/ns/net

File: /ргос/10149/ns/net

Size: 0 Blocks: 0 10 Block: 4096 regular empty file

Device: 4h/4d О Inode: 4026531992 © Links: 1

С возникновением системного вызова unshare(2) появилась и одноименная утилита
unshare(1), позволяющая воспользоваться механизмом пространств для организации
«настоящих» контейнеров. Подобно утилите chroot(1), она создает заданные новые
пространства (-mnp), затем порождает процесс (-f) и выполняет в нем заданную
программу (листинг 9.6).

rick@ubuntu:~$ ps о pid,netns,mntns,pidns,corn р $$

PID NETNS MNTNS PIDNS COMMAND

О 10149 4026531992 4026531840 4026531836 bash

rick@ubuntu:~$ sudo unshare -mnp -f -R c-137 --mount-proc busybox sh

unshare: unshare failed: Operation not permitted

rick@ubuntu:~$ sudo unshare -mnp -f -R c-137 --mount-proc busybox sh

/ # Is -l /proc/$$/ns

Irwxrwxrwx 1 0 0 0 Jan 11 14:08 mnt -> mnt:[4026532251]

Irwxrwxrwx 1 0 0 0 Jan 11 14:08 net -> net:[4026532254]

Irwxrwxrwx 1 0 0 0 Jan 11 14:08 pid -> pid:[4026532252]

/ # ps afx

PID USER COMMAND

1 0 busybox sh

2 0 {ps} busybox sh

/ # ip l

1: lo: <L00PBACK> mtu 65536 qdisc noop state DOWN mode DEFAULT group default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

/ # exit

rick@ubuntu:~$ ip l

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN ... qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

© 2: enp0s3: ^ROADCAS^MULTICAST^LOWERJJP» mtu 1500 qdisc fq_codel ... qlen 1000

link/ether 08:00:27:a9:78:36 brd ff:ff:ff:ff:ff:ff

© rick@ubuntu:~$ mount -t proc

proc on /proc type proc (rwJnosuidJnodevJnoexecJrelatime)

Контейнеры и виртуальные машины 351

Ожидаемым результатом создания новых пространств (процессов -р, монтирования
-т и сети -п) стала недоступность информации о процессах других пространств О
кроме своего собственного в , недоступность © в нем сетевых интерфейсов других
пространств © (за исключением одноименного, но собственного экземпляра
loopback интерфейса) и недоступность другим пространствам смонтированных файло­
вых систем © (сравните с © в листинге 9.4). Особенным комментарием к листинг
у 9.6 нужно отметить, что утилита unshare(2) умеет самостоятельно использовать
системный вызов chroot(1) для изоляции дерева каталогов (-R) и монтировать фай­
ловую систему /ргос внутри контейнера, что очень удобно.

Получаемые таким образом контейнеры почти полностью1 изолированы от основ­
ной операционной системы (и друг от друга), что позволяет использовать подоб­
ный подход для изолированного запуска сетевых служб или организации виртуаль­
ного хостинга. Однако вместе с тем возникает обратная задача организации связи
этих изолированных окружений с внешним миром. Например, для сетевого взаимо­
действия контейнеру должны быть так или иначе доступны сетевые интерфей­
сы. Для связи с основной ОС2 или другими контейнерами зачастую удобно ис­
пользовать общие каталоги и файлы, в том числе файлы локальных сокетов
(см. разд. 4.9.4). Кроме того, возникает необходимость и просто выполнять те или
иные программы в уже существующих пространствах, где работают изолирован­
ные программы.

В листинге 9.7 показано обеспечение сетевой связи между изолированным контей­
нером с-137 и хост-системой при помощи создания виртуального Ethernet-коммута-
тора © (type veth) с двумя виртуальными интерфейсами net0 © и d37net0 ® для
контейнера и хост-системы соответственно. Затем интерфейс net0 был помещен ©
в то сетевое пространство имен, которое было создано при запуске первой програм­
мы контейнера Ф и которому впоследствии было назначено имя anotherdimension О .

Интерфейсы контейнера и хост-системы конфигурируются обычным способом
(см. разд. 6.2.1), им назначаются IP-адреса © и ©, мастер-интерфейс активирует­
ся ©, после чего проверяется работоспособность соединения © и ©.

rick@ubuntu:~$ sudo unshare -npn -f -R c-137 --nount-proc busybox sh ©

/ # Ip link

1: lo: <LOOPBACK> mtu 65536 qdisc noop qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

1 Осталось еще несколько пространств, подлежащих изоляции, которые таким же образом можно
создать при запуске изолируемой программы утилитой unshare(1).

2 Называемой зачастую «хост»-системой, другими словами, «ведущей» системой.

352 Глава 9

pt s -'2

r ic k @ u b u n tu :~ $ pgrep busybox

1 2 0 8 9

r ic k @ u b u n tu :~ $ sudo ip netns attach anotherdinension 12089

r ic k @ u b u n tu :~ $ ip netns list

a n o t h e r d in e n s io n О
1 Ф 1 ©

r ic k @ u b u n tu :~ $ sudo ip link add cl37net0 type veth peer nane net0 О
r ic k @ u b u n tu :~ $ sudo ip link show

4 : n e t 0 @ c l3 7 n e t 0 : B R O A D C A S T,M U LT IC A S T ,M -D O W N > n t u 1 5 0 0 q d i s c n o o p s t a t e DOWN . . . q l e n 1 0 0 0

l i n k / e t h e r a 6 : 7 1 : 6 5 : 4 5 : f d : c 2 b r d

5 : c l3 7 n e t0 @ n e t 0 : <B R O A D C A ST,M ULTIC A ST,M -D 0W N > n t u 1 5 0 0 q d i s c n o o p s t a t e DOWN . . . q l e n 1 0 0 0

l i n k / e t h e r e 2 : b d : 8 1 : e e : f e : b f b r d

r ic k @ u b u n tu :~ $ sudo ip link set net0 netns anotherdinension О

p t ^ . i

| / # ip link show

| 4 : n e t 0 @ i f 2 0 : «B R O ADCAST,M ULTICAST,M -DO W N> n t u 1 5 0 0 q d i s c n o o p q l e n 1 0 0 0

j l i n k / e t h e r a 6 : 7 1 : 6 5 : 4 5 : f d : c 2 b r d

!/ # ip addr add 10.0.0.137/24 dev net0 •

I/ # ip addr show dev net0

;4 : n e t 0 @ i f 2 0 : «B R O ADCAST,M ULTICAST,M -DO W N> n t u 1 5 0 0 q d i s c n o o p q l e n 1 0 0 0

■ l i n k / e t h e r a 6 : 7 1 : 6 5 : 4 5 : f d : c 2 b r d

! i n e t 1 0 . 0 . 0 . 1 3 7 / 2 4 s c o p e g l o b a l n e t 0

v a l i d _ l f t f o r e v e r p r e f e r r e d _ l f t f o r e v e r

r ic k @ U b u n tu :~ $ ip link show dev cl37net0

5 : c l 3 7 n e t 0 @ i f l 9 : «BROADCAST, M U LTIC A S T> n t u 1 5 0 0 q d is c n o o p s t a t e DOWN . . . q l e n 1 0 0 0

l i n k / e t h e r e 2 : b d : 8 1 : e e : f e : b f b r d f f : f f : f f : f f : f f : f f l i n k - n e t n s a n o t h e r d in e n s io n

r ic k @ u b u n tu :~ $ sudo ip addr add 10.0.0.1/24 dev cl37net0 •

r ic k @ u b u n tu :~ $ ip link set dev cl37net0 up •

r ic k @ u b u n tu :~ $ ip addr show dev cl37net0

2 0 : C l 3 7 n e t 0 @ i f l 9 : «BROADCAST, M U LT IC A S T , U P , LOWER_UP> n t u 1 5 0 0 q d i s c n o o p s t a t e UP . . .

l i n k / e t h e r e 2 : b d : 8 1 : e e : f e : b f b r d f f : f f : f f : f f : f f : f f l i n k - n e t n s a n o t h e r d in e n s io n

i n e t 1 0 . 0 . 0 . 1 / 2 4 s c o p e g l o b a l c l 3 7 n e t 0

v a l i d j l f t f o r e v e r p r e f e r r e d _ l f t f o r e v e r

r ic k @ u b u n tu :~ $ ping 10.0.0.137

P IN G 1 0 . 0 . 0 . 1 3 7 (1 0 . 0 . 0 . 1 3 7) 5 6 (8 4) b y t e s o f d a t a .

6 4 b y t e s f r o n 1 0 . 0 . 0 . 1 3 7 : i c n p _ s e q = l t t l = 6 4 t i n e = 0 . 0 8 5 n s ©

6 4 b y t e s f r o n 1 0 . 0 . 0 . 1 3 7 : ic n p _ s e q = 2 t t l = 6 4 t i n e = 0 . 1 1 6 n s

ЛС

Контейнеры и виртуальные машины 353

--- 10.0.0.137 ping statistics ---

2 packets transmitted, 2 received, 0X packet loss, time 1007ms

rtt min/avg/max/mdev = 0.085/0.100/0.116/0.015 ms

/ # ping 10.0.0.1

PING 10.0.0.1 (10.0.0.1): 56 data bytes

64 bytes from 10.0.0.1: seq=0 ttl=64 time=0.165 ms Ф

64 bytes from 10.0.0.1: seq=l ttl=64 time=0.195 ms

ЛС

— 10.0.0.1 ping statistics ---

2 packets transmitted, 2 packets received, 0X packet loss

round-trip min/avg/max = 0.165/0.180/0.195 ms

В листинге 9.8 в контейнере исполняется интерактивный командный интерпретатор,
что позволяет запускать команды конфигурирования «изнутри». На практике же
в контейнере сразу запускают определенную системную службу, а конфигурацион­
ные команды — в интерпретаторе хост-системы, перемещая их в нужное про­
странство имен нужного контейнера при помощи утилиты nsenter(1), которая ис­
пользует для этой цели системный вызов setns(2).

rick@ubuntu:~$ pgrep busybox

12089

rick@ubuntu:~$ ip link

5: cl37net0@ifl9: «BROADCAST,MULTICAST,UP,LOWERJJP> mtu 1500 ... state UP ... qlen 1000

link/ether e2:bd:81:ee:fe:bf brd link-netns anotherdimension

rick@ubuntu:~$ sudo nsenter -t 12089 -n ip link

4: net0@if20: «BROADCAST,MULTICAST,UP,L0WER_UP> mtu 1500 ... state UP ... qlen 1000

link/ether a6:71:65:45:fd:c2 brd link-netnsid 0

9.3. Контейнеризация: rune и docker
Изолированные окружения для выполнения программ, создаваемые при помощи
механизмов изоляции процессов операционной системы, принято называть кон­
тейнерами. Сам принцип такого предоставления ресурсов ОС приложениям при­
нято называть контейнеризацией и считать одним из видов виртуализации1. Одна­

1 С м . W : [Virtualization] для отличия ап пар атн ой в и р туал и зац и и , п ар ав и р туал и зац и и и вир туали зац и и

на у р о в н е О С (к о н т ей н ер и за ц и и).

354 Глава 9

ко прямое использование механизмов и базовых утилит, как это иллюстрируется
в предыдущем разделе, требует выполнения колоссального количества типовых
действий для организации каждого контейнера, что и привело к созданию специа­
лизированных систем управления контейнерами, таких как W :[Docker (software)] или
W : [LXC] (в том числе W :[0penVZ], хотя она использует свои механизмы изоляции и
поэтому требует специально модифицированного ядра).

Более того, изначальная разрозненность систем контейнеризации привела в конце
концов к созданию инициативы OCI (W:[Open Container Initiative]), под эгидой которой
была согласована спецификация «исполнителя» контейнеров (runtime) и специфи­
кация формата образов (image) контейнеров, которые должен понимать это «ис­
полнитель». В Linux обе OCI-спецификации реализуются утилитой гипс(8), которая,
в свою очередь, основывается на сервисах ядра Linux, включая механизмы изоля­
ции, рассмотренные выше. Сами же системы контейнеризации, например Docker,
используют утилиту гипс(8) для непосредственного запуска контейнеров.

Ли зинг 9.9.00 и*, олнитеяь шчг и задуй OCi даите̂ нер..

О rick@ubuntu:~$ rune spec

rick@ubuntu:~$ Is

conflg.json

rick@ubuntu:~$ sed -n '/root.*{/,/}/p' conflg.json

"root": {
О "path": "rootfs", ^

"readonly": true

},
О rick@ubuntu:~$ sudo debootstrap --variant=rrinbase xenial rootfs

I: Retrieving InRelease
I: Checking Release signature
I: Valid Release signature (key id 79OBC7277767219C42C86F933B4FE6ACC0B21F32)
I: Retrieving Packages
I: Validating Packages

© © © © (D O © © ©
I: Base system installed successfully.

rick@ubuntu:~$ ps о pidjnetnSjmtnSjpidnSjCom p $$

PID NETNS MNTNS PIDNS COMMAND

@ 10149 4026531992 4026531840 4026531836 bash

О rick@ubuntu:~ $ sudo rune run c-132

ps о pid,netnsJm t n s JpidnsJc o m p $$

PID NETNS MNTNS PIDNS COMMAND

© 1 4026532375 4026532251 4026532373 sh

ps axf

PID TTY STAT TIME COMMAND

Контейнеры и виртуальные машины 355

•* 1 pts/0 Ss 0:00 sh

9 pts/0 R+ 0:00 ps axf

ip 1

© 1: Id : <LOOPBACK,UP,LOWER_UP> ntu 65536 qdisc noqueue state UNKNOWN node ... qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

В листинге 9.9 показано, насколько утилита гипс(1) облегчает запуск контейнера. На
первом шаге О создается шаблонная OCI-конфигурация образа контейнеров в
файле config.json, которая по умолчанию предполагает наличие (ch)root-каталога в
с именем rootfs. Совокупность конфигурационного файла и корневого каталога
контейнера (упрощая) и есть его образ (image).

На втором шаге © при помощи штатной Ubuntu/Debian-утилиты debootstrap(8) в ката­
лог rootfs инсталлируется минимальный набор пакетов Ununtu 16.04 (xenial), вклю­
чающий командный интерпретатор, базовые утилиты и все необходимые им биб­
лиотеки. Кроме того, инсталлируется дополнительный пакет iproute2, поставляющий
утилиту ip(8) для конфигурирования сетевых интерфейсов. На последнем, завер­
шающем, шаге на основе полученного образа собственно запускается © один
экземпляр контейнера с именем с-132, первым процессом в котором запускается
командный интерпретатор sh (согласно конфигурации по умолчанию).

Как и ожидалось, процессы внутри контейнера выполняются в своих пространст­
вах имен ©, а в сетевое пространство не добавлен ни один интерфейс. Конфигу­
рированием самого контейнера, например созданием сетевых интерфейсов и поме­
щением их в соответствующее сетевое пространство имен утилита гипс(1) не зани­
мается, т. к. ее основное назначение согласно спецификации «исполнять»
контейнер, а не конфигурировать. Именно системы контейнеризации, подобные
Docker, являются законченным набором инструментов для создания, конфигурирова­
ния, запуска, останова и удаления контейнеров, а также манипулирования их об­
разами.

Льсти;* 9.10.3anyti:Uod.!i-контейнера

rick@ubuntu:~ $ docker inage Is

Cot pernission denied while trying to connect to the Docker daenon socket at
unix:///var/run/docker.sock: Get http://%2Fvari£2Frun%2Fdocker.sock/vl.40/inages/json:
dial unix /var/run/docker.sock: connect: pernission denied

rick@ubuntu:~ $ Is -l /var/run/docker.sock

О srw-rw--- 1 root docker 0 янв 11 11:11 /var/run/docker.sock=

rick@ubuntu:~ $ id

? uid=1000(rick) gid=1000(rick) groups=1000(rick),4(adn),...,27(sudo),...,131(sanbashare)

© rick@ubuntu:~ $ sudo gpasswd -a rick docker

rick@ubuntu:~ $ logout

http://%2Fvari%c2%a32Frun%2Fdocker.sock/vl.40/inages/json

356 Глава 9

rick@ubuntu:~ $ idк
? uid=1000(rick) gid=1000(rick) groups=1000(rick),4(adn)*•■•,27(sudo),...,132(docker)

G rick@ubuntu:~ $ docker inage Is

? REPOSITORY TAG IMAGE ID CREATED SIZE

О rick@ubuntu:~ $ docker inage pull ubuntu:16.04

16.04: Pulling from library/ubuntu

3386e6af03b0: Downloading [----- . . . ■ ■ — >] 41.38MB/44.12MB

49ac0bbe6c8e: Download conplete

dl983a67el04: Download conplete

Ia0f3a523f04: Download conplete

Digest: sha256:181800dada370557133a502977d0e3f7abda0c25b9bbb035f199f5eb6082all4

Status: Downloaded newer inage for ubuntu:16.04

docker.io/library/ubuntu:16.04

rick@ubuntu:~ $ docker inage Is

REPOSITORY TAG IMAGE ID CREATED SIZE

ubuntu 16.04 c6a43cd4801e 3 weeks ago 123MB

G rick@ubuntu:~ $ docker run -ti -h c-123 -n c-123 ubuntu:16.04

root@c-123:/#

В листинге 9.10 показана процедура запуска Docker-контейнера при помощи утили­
ты docker(1). В реальности эта утилита является всего лишь пользовательским ин­
терфейсом к Docker-службе dockerd, которая использует, в свою очередь, службу
управления контейнерам containerd, запускающую контейнеры при помощи все той
же гипс(1), эксплуатирующей механизмы изоляции ядра1.

Обращаться к службе dockerd посредством файлового сокета /var/run/docker.sock,

оказывается, можно только членам группы docker О , поэтому после добавления
пользователя rick в эту группу в у непривилегированного пользователя появляется
право © управлять контейнерами. Для запуска контейнера, как обычно, требуется
иметь его образ, но при использовании Docker его можно скачать О из централизо­
ванного «хаба» docker.io, куда публикуются как официальные образы от поставщи­
ков программного обеспечения, так и образы контейнеров, от всех желающих по­
делиться. Запуск контейнера производится одной командой ©, но сам контейнер
гораздо более подготовлен к конечному использованию (листинг 9.11).

r o o t @ c - 1 2 3 : / # ps о pid,netns,mtns,pidns,c o m p $$
PID NETNS MNTNS PIDNS COMMAND

1 В д о м е , которы й п остр ои л Д ж е к . Н у , в см ы сл е в я д р е , к о т о р о е н аписал W : [Linus Torvalds].

Контейнеры и виртуальные машины 357

© 1 4026532378 4026532373 4026532376 bash .

root@c-123:/# apt update

root@c-123:/# apt install iproute2

» root@c-123:/# ip link

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN ... qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

© 26: eth0@if27: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP .,

link/ether 02:42:ac:ll:00:02 brd link-netnsid 0

О root@c-123:/# S S Q 2 З З Е Ё

rick@ubuntu:~ $ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

d54bd8ab3100 ubuntu:16.04 "/bin/bash" 4 minutes ago Up 4 minutes c-123

rick@ubuntu:~ $ ps о pid)netns)mntns)pidns)c o m p $$

PID NETNS MNTNS PIDNS COMMAND

© 21357 4026531992 4026531840 4026531836 bash

rick@ubuntu:~ $ ip link

© 27: veth72908b6@if26: <BROADCAST,MULTICAST,UP,L0WER_UP> ... master docker© state UP ...

link/ether 2a:4a:c7:0b:9d:lf brd link-netnsid 1

в rick@ubuntu:~ $ docker attach c-123

root@c-132:/#

Анализ Docker-контейнера в листинге 9.11 в очередной раз показывает, что в его
основе лежат базовые механизмы изоляции на основе пространств имен (D и Ф,
только сетевое пространство имен контейнера и хост-системы оказываются © ©
предварительно сконфигурироваными. В них помещены парные интерфейсы
veth72908b6 и eth0 виртуального Ethernet-коммутатора, обеспечивающие связь между
виртуальной машиной и хост-системой по сценарию, похожему на изложенный ра­
нее в листинге 9.6. Кроме того, Docker предоставляет удобный способ отключиться
от интерактивной консоли контейнера О, а затем подключиться к ней обратно в .

9.4. Группы управления (cgroups)
Вместе с появлением в операционной системе новых сущностей — контейнеров,
между которыми разделяются ее ресурсы, неизбежно возникает запрос на управле­
ние количественным распределением ресурсов центрального процессора, памяти и
устройств ввода-вывода между ними. Контейнеры — по сути, это группы процес­
сов, выполняющиеся в отдельных пространствах имен (и с отдельными корневыми
каталогами). Именно для количественного распределения ресурсов между группами

358 Глава 9

процессов и был разработан механизм групп управления (control groups, они же
cgroups, см. cgroups(7)), который нашел Применение как для ограничения в ресурсах
группы процессов, выполняющихся в контейнере, так и для ограничения других
групп, например групп процессов, принадлежащих тому или иному сервису или
пользовательскому сеансу (см. разд. 10.3).

По умолчанию все процессы находятся в одной, так называемой «корневой» груп­
пе, но механизм позволяет произвольно создавать подгруппы в любых группах,
образуя иерархию групп и перемещать туда индивидуальные процессы (на самом
деле задачи, т. е. ядерные нити процессов, см. разд. 4.2). Затем на группы этой
иерархии накладываются ресурсные ограничения, зависящие от так называемого
«контроллера» (controller), назначенного этой иерархии1.

На текущий момент различают чёртову дюжину различных контроллеров: сри, на­
кладывающий ограничения на справедливую долю (cpu share) процессорного вре­
мени; cpuacct, просто подсчитывающий потребленные ресурсы ЦП; cpuset, привязы­
вающий процессы к конкретным процессорам; memory, ограничивающий потреб­
ление памяти; devices, ограничивающий доступ к файлам устройств; freezer,
позволяющий приостанавливать и возобновлять работу групп процессов; net_cls и
net_prio, назначающий сетевому трафику процессов класс и приоритет обработки
для использования сетевыми фильтрами и планировщиками; blkio, ограничивающий
количество запросов к блочным (дисковым) устройствам при помощи планировщи­
ка CFQ (см. разд. 4.6.2)\ pids, накладывающий ограничение на количество процес­
сов в группе. Кроме вышеперечисленных контроллеров, имеется еще несколько
экзотических и наименее распространенных на практике: perf_event, huge_tlb и rdma
(см. cgroups(7)).

Интерфейс, при помощи которого иерархию групп управления можно создавать,
модифицировать и накладывать конкретные значения ограничений, выполнен при
помощи очередной псевдофайловой системы сдгоир, подобной ргос и sysfs, а ее
анализ использования системой контейнеризации Docker показан в листинге 9 .12 .

rick@ubuntu:~ $ mount -t сдгоир

l © l i ©
сдгоир on /sys/fs/сдгоир/сри, cpuacct type сдгоир (rw, nosuid, nodev, noexec, relative, cpu, cpuacct)

1 Р азл и ч аю т д в е в ер си и м ехан и зм а cgroups(7): v l , в к отор ой с о зд а ю т с я н езав и си м ы е и ер ар хии

групп задач (п р о ц е с с о в и н итей) п о к аж дом у и з к о н тр ол л ер ов в о т д ел ь н о ст и , и v 2 , где г о р а зд о

б о л е е уд о б н ы м о б р а зо м (н о м ен ее ги б к и м) с о зд а е т с я о д н а и ер ар хи я групп п р о ц е с с о в (н о не ни­

т ей), а затем у ж е к аж дой груп п е н азн ач аю т н а б о р к он тр ол л ер ов .

Контейнеры и виртуальные машины 359

1 Ф
cgroup on /sys/fs/cgroup/nenory type сдгоир (rw, nosuid, nodev, noexec, relatine, memory)
cgroup on /sys/fs/cgroup/freezer type cgroup (rw,nosuid,nodev,noexec,relatine,freezer)
cgroup on /sys/fs/cgroup/devices type cgroup (rw,nosuid,nodev,noexec,relatine,devices)

cgroup on /sys/fs/cgroup/pids type cgroup (rw,nosuid,nodev,noexec,relatine,pids)
cgroup on /sys/fs/cgroup/blkio type cgroup (rw,nosuid,nodev,noexec,relatine,blkio)
cgroup on /sys/fs/cgroup/cpuset type cgroup (rw,nosuid,nodev,noexec,relatine,cpuset)
rick@ubuntu:~ $ Is /sys/fs/cgroup

cgroup.clone_children nenory.linit_in_bytes

О docker
• init.scope

nenory.oon_control
nenory.pressure_level

nenory.knen.tcp.linit_in_bytes systen.slice •
nenory.knen.t c p. max_usage_in_bytes tasks

nenory.knen.tcp.usage_in_bytes user.slice 0
nenory.knen.usage_in_bytes

rick@ubuntu:~ $ find /sys/fs/cgroup/docker -type d

/sys/fs/cgroup/nenory/docker/
0 /Sys/fs/cgroup/memory/docker/d54bd8ab3100ca63041fe5780bc7095e2a0f6729df5e71d7c6474ac685bf5bc7

rick@ubuntu:~ $ docker ps

COHTADCR ID IMAGE COMMAND CREATED STATUS PORTS NAMES

d54bdSab3130 uburrtu:16.04 "/bin/bash" 13 hours ago Up 13 hours c-123

rick@ubuntu:~ $ cd /sys/fs/cgroup/nenory/docker/d54bd8ab3166ca6304...d7c6474ac685bf5bc7

rick@ubuntu:/sys/fs/. . . /d 5 4 b .. . 5bc7$ Is
cgroup.clone_children nenory.linit_in_bytes ®
cgroup.event_control nenory.nax_usage_in_bytes

nenory.knen.linit_in_bytes nenory.soft_linit_in_bytes ®

nenory.knen.slabinfо
nenory.knen.tcp.failcnt

nenory.knen.tcp.linit_in_bytes
nenory. knen. tcp. nax_usage_in_bytes
nenory.knen.tcp.usage_in_bytes

nenory.knen.usage_in_bytes

nenory. swappiness
nenory.usage_in_bytes ©
nenory.use_hierarchy
notify_on_release
tasks ©

rick@ubuntu:/sys/fs/.../d54b...5bc7$ cat tasks

22358
rick@ubuntu:/sys/fs/.. ./d54b.. .5bc7$ cat nenory.lim t_in_bytes nenory. soft_lin it_in _b ytes
9223372036854771712
9223372036854771712
rick@ubuntu:/sys/fs/.../d54b...5bc7$ cat nenory.usage_ln_bytes

33243136

Из листинга видно, что в системе определены 11 иерархий групп процессов, каж­
дой из которых назначено по одному ©, реже по два ® контроллера. Подключе­
ние иерархии производится просто путем монтирования файловой системы cgroup ®

в какое-либо место дерева каталогов (по соглашению, в подкаталоги каталога
/sys/fs/cgroup).

В самих иерархиях, например в /sys/fs/cgroup/nenory, созданы группы с названиями
docker О, init.scope © , systen.slice © и Inlt.slice ©. Группа docker и ее подгруппы

360 Глава 9

создаются и управляются службой Docker для ограничения контейнеров в доступ­
ных им ресурсах (в данной иерархии — для ограничения в использовании опера­
тивной памяти). Остальные группы в тех же целях созданы службой systend, заве­
дующей запуском и остановом всех служб операционной системы и пользователь­
ских сеансов (см. разд. 10.3). В группе docker создана всего одна подгруппа ©,
совпадающая с UUID контейнера, создание которого иллюстрировалось в листин­
ге 9.11, а в самой группе находится © всего один процесс PID = 22358, при этом
группе не назначены1 ни мягкое, ни жесткое ограничения © по памяти, при этом
группа потребила © порядка 31 Мб памяти.

О rick@ubuntu:~ $ ps о pid,cgroup:512,cnd р $$

PID CGROUP CMD

23746 . . . ,3 :cp u ,cp u acc t:/u se r.s lice ,. . . -bash

© rick@ubuntu:~ $ sudo nkdir /sys/fs/cgroup/cpu,cpuacct/nygroup

О rick@ubuntu:~ $ echo $$ | sudo tee /sys/fs/cgroup/cpu,cpuacct/nygroup/tasks

rick@ubuntu:~ $ cat /sys/fs/cgroup/cpu,cpuacct/nygroup/tasks

•- 23746

★ 25110

rick@ubuntu:~ $ ps о pid,cgroup:512,cnd p $$

PID CGROUP CMD

23746 . ..,3 :cpu ,cpuacc t:/nygroup ,... -bash

rick@ubuntu:~ $ Is /sys/fs/cgroup/cpu,cpuacct/nygroup/cpu.*

/sys/fs/cgroup/cpu,cpuacct/nygroup/cpu.cfs_period_us

/sys/fs/cgroup/cpu,cpuacct/nygroup/cpu.shares

/sys/fs/cgroup/cpu,cpuacct/nygroup/cpu.cfs_quota_us

/sys/fs/cgroup/cpu,cpuacct/nygroup/cpu.s ta t

rick@ubuntu:~ $ cat /sys/fs/cgroup/cpu,cpuacct/nygroup/cpu.shares

1024

О rick@ubuntu:~ $ echo 256 | sudo tee /sys/fs/cgroup/cpu,cpuacct/nygroup/cpu.shares

В листинге 9.13 проиллюстрирована процедура создания группы, помещения в нее
процесса и накладывания ограничений на использование центрального процессора.
Утилита ps(1) умеет О показывать членство процессов в группах управления, хотя
и делает это не очень удобным образом. Оказывается, что по умолчанию systemd(1)
(и его напарник systemd-logind(8)) размещают интерактивные пользовательские про­
цессы в группах с названием u se r.s lice , что, например, удобно использовать для

1 На самом деле они «как бы» назначены, но кого сможет ограничить 8 Эиб (экзабайт, 260)?

Контейнеры и виртуальные машины 361

ограничения всех пользовательских процессов. Однако, если необходимо диффе­
ренцировать отдельные процессы в определенную группу, то ее для начала нужно
создать в , затем поместить туда нужные процесс ©, а впоследствии определить
количественные значения нужных ограничений О. В данном примере все процессы
группы не смогут потребить больше 256/1024 = 1/4 процессорного времени.
Этими процессами являются явно помещенный в группу командный интерпретатор
с PID = 23746 и любые его потомки, например процесс команды cat ★ , выполняв­
шийся после помещения командного интерпретатора в группу.

9.5. В заключение
Реализация принципа контейнеризации в Linux, как может показаться на первый
взгляд, является не таким уж сложным и запутанным делом. Вокруг достаточно
простых механизмов изоляции, группировки и ограничения изолированных групп
процессов, в ресурсах построены современные и чрезвычайно удобные системы,
такие как Docker и ему подобные. Эти системы широко используются на практи­
ке — от организации виртуального хостинга серверов до систем сборки и тестиро­
вания программного обеспечения.

Кроме этих, очевидных на первый взгляд приложений, контейнеризация находит
неявное применение даже на обычных настольных системах обычных пользовате­
лей. Так, например, в современном © Ununtu Linux она используется системой уста­
новки дистрибутиво-независимого программного обеспечения W :[Snappy]1, где каж­
дый пакет программного обеспечения по сути представляет собой контейнер с би­
нарным образом необходимых компонент (библиотек и пр.), программы которого
запускаются в изолированном окружении.

Таким образом, контейнеризация становится неотъемлемой частью современного
Linux, а понимание принципов ее работы — неотъемлемым знанием современного
технического специалиста.

1 Рассмотрение самого Snappy выходит за рамки книги хотя бы потому, что его распространен­
ность на текущий день ограничена только Ubuntu Linux, а будущее сомнительно в силу постоянной
и к тому же заслуженной критики.

Глава 10

От отдельных компонент—
к системе

В предыдущих главах рассматривались отдельные компоненты операционной сис­
темы и некоторые «теоретические» принципы их функционирования, понимание
чего имеет и самостоятельную ценность. Однако гораздо более глубокое проник­
новение в предмет обычно проявляется при выстраивании тех или иных связей
между отдельными сущностями. Ответы на многие «практические» вопросы об этих
связях (которые неминуемо обязаны были возникать у внимательного читателя при
осваивании предыдущего материала) содержатся в настоящей главе, подводящей
итоги под всем экскурсом во внутреннее устройство операционной системы Linux.

Процесс загрузки абсолютно любой операционной системы начинается с той ком­
поненты, которая собственно операционной системой1 и является — с ядра. Все
остальные, внеядерные ее компоненты в принципе нужны не всем и не всегда.
Например, в случае применения Linux для рабочей станции набор компонент будет
слегка отличаться от серверного применения и существенно отличаться от набора
компонент в применениях для встраиваемых систем: маршрутизаторов, холодиль­
ников и мобильных телефонов.

Таким образом, первоочередной задачей при загрузке является размещение самой
главной программы ОС — ядра в опер!ативной памяти и передача ей управления.
Такую задачу всегда решает загрузчик операционной системы, который в принципе
не является ее частью (т. к. зачастую умеет и используется для загрузки разных
операционных систем), а скорее является частью аппаратной платформы, на кото­
рой выполняется ОС. Загрузчик очень сильно зависит от аппаратной платформы и
услуг, которые она предоставляет, а также вынужден соответствовать ее специфи­
кациям, таким как способы разделения носителей на разделы, собственное разме­

1 В узком смысле, конечно, но тем не менее.

10.1. Как Linux загружается

364 Глава 10

щение на этих носителях, порядок передачи ему управления при старте платформы
и т. д.

Платформа персонального компьютера (она же W :[IB M PC compatible]), для которой
изначально разрабатывался Linux, предоставляла W : [BIOS] — набор базовых услуг
(в виде подпрограмм или же функций) для работы программ поверх «голого желе­
за», например загрузчиков ОС. Согласно BIOS носители должны содержать таблицу
разделов определенного вида в своем первом блоке (W : [boot sector]), так называе­
мой основой, загрузочной записи W :[M BR], Именно подпрограмма, называемая
«аппаратный загрузчик» W :[BIOS], получала управление первой (после подпрограмм
инициализации и обнаружения и тестирования оборудования), затем считывала
MBR, анализировала таблицу разделов, выбирала «активный» раздел, считывала
его PBR в память (он же VBR, см. W : [volume boot record]) и передавала ему управ­
ление. Установленная на этот «активный» раздел операционная система обычно
размещала свой загрузчик (в большинстве случаев всего лишь его малую часть)
в PBR, который и выполнял дальнейшую загрузку себя (своих модулей, не помес­
тившихся в PBR) и ядра операционной системы.

С развитием платформы W:[BIOS] превратился в W :[EFI] (позднее W :[UEFI]), MBR-
таблица разделов превратилась в W :[GUID Partition Table], а процедура загрузки те­
перь предполагает наличие специального «системного раздела» ESP (см.
W :[EFI System Partition]), содержащего файловую систему FAT (W : [File Allocation Table]),
на которой в виде файлов размещаются загрузчики установленных операционных
систем. Один из этих загрузчиков является для «аппаратного загрузчика» (он же
EFI boot manager) «текущим» (current), по аналогии с «активным» разделом MBR,
и именно ему при старте передается управление по умолчанию (листинг 10.1).

При любом типе загрузки, будь то W :[B I0S] или W :[UEFI], загрузчик, получив
управление, умеет правильно считать в оперативную память ядро ОС и передать
ему управление. Самым распространенным загрузчиком ядра Linux на платформе
PC является загрузчик W:[GRUB], используемый в большинстве дистрибутивов.

&ШШ 1«.1.
ЪЙЖРи * у-,:

morty@ubuntu:~$ efibootngr

BootCurrent: 0003

Timeout: 1 seconds

BootOrder: 0003,0000,0004,0001,0002,0007,0000

Boot0000* Diskette Drive BBS(Floppy,,0x0)

Boot0001* CD/DVD/CD-RW Drive BBS(CDROM,,0x0)Pl: TSSTcorp DVD+/-RW TS-U633J.

Boot0002* Internal HDD BBS(HD,,0x0)P0: WDC WD2500BEKT-75PVMT0

От отдельных компонент— к системе 365

Boot0003* ubuntu

Boot0004* Onboard NIC

Boot0007* USB Storage Device

Boot000D* UEFI: INT13(,0x80)

HD(1,GPT,... ,0 x 2 2 ,0x3d06f) /F ile (\EFI\ubuntu\grubx64.e f i)

BBS(Network,,0x0)

BBS(USB,,0x0)USB Storage Device.

PciRoot(0x0)/P c t(0x19,0x0)/VenHw(. . .)/H)(l,GPT,. . . ,0 x 2 2 , . . .)

В современных инсталляциях Linux этот ESP раздел смонтирован в каталог
/boot/efi (см. листинг 10.2, в котором показан стартовый файл загрузчика GRUB).

morty@ubuntu:~$ sudo find /boot/efi -inane '*.efi'

/boot/efi/EFI/ubuntu/grubx64.efi "•

/boot/efi/EFI/ВООТ/В00ТХ64.EFI

Остальные компоненты (модули *.nod и конфигурационный файл grub.cfg) загрузчи­
ка размещаются уже внутри операционной системы на корневой файловой системе
(хотя для пущей надежности иногда для каталога /boot применяют и отдельную
файловую систему) в каталоге /boot/grub, как показано в листинге 10.3.

morty@ubuntu:~$ find /boot/grub/

/boot/grub/

/boot/grub/grub.cfg

/boot/grub/x86_64-efi/lspci.nod

/boot/grub/x86_64-efi/gfxtern_nenu.nod

Получив управление, загрузчик GRUB считывает свой конфигурационный файл и
выполняет его директивы. В современных инсталляциях (в угоду пользователям)
в силу директив конфигурационного файла загрузчика изображается красивая, за­
частую анимированная заставка самого процесса загрузки, в то время как сам
загрузчик производит загрузку ядра «по умолчанию», указанного теми же директи­
вами. Сами ядра располагаются в каталоге /toot и обычно состоят из двух частей
(см. разд. 4.1.1) — основной части vnlinuz (остова) и архива модулей initrd.ing
(листинг 10.4). Загрузчик на самом деле загружает обе части, а затем передает
управление остову ядра вместе с параметрами ядра (см. bootparam(7)), которые по­
том будут использованы разными подсистемами ядра, модулями и драйверами.

366 Глава 10

morty@ubuntu:~$ I s /boot

initrd .im g
in i t r d .img-5.3.0-18-generic

in i t r d .img-5 .3 .0 -24-generic

in itrd .im g.o ld

System.nap-5 .3 .0-24-generic

vmlinuz

vmlinuz-5.3.0-18-generic "•

vnlinuz-5.3.0-24-generic

Ядро (если точнее, то его остов, т. е. vmlinuz), получив управление от загрузчика,
должно выполнить два простейших, но очень важных действия: смонтировать кор­
невую файловую систему и запустить первую программу, по традиции /s b in / in i t в
процессе с PID = 1. В силу модульности ядра и того факта, что большинство драй­
веров устройств (включая дисковые накопители) являются его модулями, а остов
не содержит ни одного модуля, смонтировать корневую файловую систему невоз­
можно, т. к. на этом этапе загрузки ядру недоступны ни драйверы накопителей, где
она размещается, ни сам драйвер файловой системы. Поэтому остов ядра распа­
ковывает архив модулей in itrd .im g и «загружает» оттуда нужные модули — драйве­
ры накопителей корневой файловой системы и самой файловой системы.

На самом деле все происходит немного не так. Образ «временной» корневой фай­
ловой системы in itrd .im g — это не просто пассивный «архив модулей»
(см. W : [initial ramdisk]), а микроверсия операционной системы, содержащая набор
утилит и компонент (листинг 10.5), достаточных для обнаружения дисковых уст­
ройств, загрузки их драйверов, инициализации (если нужно) программных массивов
дисков, поиска «настоящей» корневой файловой системы, загрузки драйвера этой
ФС, инициализации драйвера ее расшифровки (если зашифрована) и, наконец, ее
монтирования. После монтирования образа «временной» корневой ФС ядро находит
на ней и запускает «временный» / in i t , задача которого и состоит в исполнении
всех вышеперечисленных действий, приводящих к монтированию «настоящей» кор­
невой ФС, после чего «временный» / i n i t подменяет себя настоящим /s b in /in it
с «настоящей» корневой ФС. Кроме всего, эта микроверсия ОС содержит команд­
ный интерпретатор и набор утилит (обычно на основе busybox, см. листинг 9.3) на
случай аварийного останова на одном из этапов монтирования «настоящей» корне­
вой ФС, перечисленных выше.

Лисом* ю .5 .1

morty@ubuntu:~$ Isin itram fs /b o o t/ in itrd . img-5.3 .0- 18-generic | grep .ko$ | wc - l
1122

morty@ubuntu:~$ Isin itram fs /b o o t/ in itrd .img-5 .3 .0 -18-generic | grep b in /

От отдельных компонент— к системе 367

usr/bin/busybox

usr/bin/sh

usr/bin/nodinfo

us г/sbin/nodprobe

usr/sbin/rnmod

usr/bin/udevadn

В листинге 10.5 показано, что для просмотра содержимого inltrd.ling использу­
ется утилита lsinitramfs(8), тогда как для распаковки и запаковки образа предназна­
чаются утилиты mkinitramfs(8) и unmkinitramfs(8).

10.2. Как обнаруживаются драйверы устройств
Как уже упоминалось в разд. 4.1.1, большинство драйверов устройств выполнено
в виде динамически загружаемых модулей ядра, которые могут пристыковываться
к ядру и отстыковываться от него в любой момент времени исполнения. Однако
открытым остается вопрос о том, каким образом нужные модули загружаются при
обнаружении того или иного устройства.

Когда-то очень давно (когда динамически загружаемых драйверов еще не сущест­
вовало) для добавления каждого нового устройства необходимо было пересозда­
вать новый бинарный образ ядра (из исходного кода), куда бы вошел нужный
драйвер. Практиковался также вариант с бинарным образом ядра, поддерживаю­
щим все (ну или почти все) возможные драйверы, жертвуя размером бинарного
образа и потреблением памяти. В те времена ядро при загрузке пробовало про-
инициализировать все включенные в него драйверы в надежде обнаружить соот­
ветствующие устройства. При добавлении новых устройств все равно приходилось
перезагружать операционную систему, потому что для их добавления обычно обес­
точивали аппаратные средства.

С появлением динамически загружаемых модулей и драйверов стало возможным
создать бинарный образ ядра (точнее, его остова) и все его модулей единожды, а
затем загружать драйверы по мере необходимости. Необходимость в перезагрузке
существенно уменьшилась с появлением все большего количества устройств с «го­
рячим» подключением — на шинах PCMCIA, USB, SATA и даже PCI. Вместе
с тем перестал себя оправдывать подход с загрузкой всех драйверов подряд,
а с устройствами «горячего» подключения он вообще не работоспособен как
с точки зрения здравого смысла, так и просто в силу количества модулей
(Ф в листинге 10.6), являющихся драйверами устройств.

368 Глава 10

Листинг 10.6. Модул «драйверов устройств

morty@ubuntu:~$ 'find Aib/nodules/'unane - г' /kernel/drivers/ -папе '*.ко' | мс -1

Ф 4268

norty@ubuntu:~$ Ispci -d ::О401 -к

00:05.0 Multimedia audio controller: Intel Corporation 82801AA AC'97 Audio Controller (rev 01)

Subsystem: Dell 82801AA AC'97 Audio Controller

Kernel driver in use: snd_intel8x0

Kernel modules: snd_intel8x0

morty@ubuntu:~$ Ispci -d ::O401 -n

<3)i © 1

О 00:05.0 0401: 8086:2415 (rev 01)

morty@ubuntu:~$ modinfo snd_intel8x0 | grep alias

alias: pci:v00008086d00002445sv*sd*bc*sc*i*

alias: pci:v00008086d00002425sv*sd*bc*sc*i*

В реальности проблема имеет простое и элегантное решение, основанное на том,
что практически все устройства на современных шинах идентифицируют себя как
минимум при помощи идентификатора вендора устройства (vendor) и идентифика­
тора модели устройства (device). Драйвера шины сканируют устройства и сообща­
ют о событиях устройств (присоединении и отсоединении и пр.) всем желающим
при помощи специального сокета «связи с ядром» netlink(7), а кроме того, экспор­
тируют информацию о текущем состоянии шин при помощи псевдофайловой сис­
темы sysfs(5).

Утилиты lspci(8), Iscsi(8), lsusb(8) и им подобные умеют считывать с sysfs(S) информа­
цию (см. О в листинге 10.6) об идентификаторах ®© устройств, подключенных к
шинам в текущий момент времени, а затем, используя таблицу расшифровки иден­
тификаторов /usr/share/piisc/pci.ids, показывают эту информацию в удобоваримом
®@ виде. События устройств, присылаемые драйверами шин из ядра, отслежива­
ются специальной службой udev(7), которая получает в каждом событии идентифи­
каторы ®© устройства, с которым это событие связано и, собственно, выполняет
загрузку драйверов при подключении устройств и выгрузку при их отключении.

Для сопоставления идентификаторов устройств и имен модулей драйверов по­
следние содержат в себе псевдонимы (alias) устройств, которые они поддерживают ©.

®; ©

©i
О alias: pel:v00008086d00002415sv*sd*bc*sc*i*

От отдельных компонент— к системе 369

Так, например, модуль snd_intel8x0 поддерживает много конкретных РС1-устройств
от Intel (v00008086), включая АС 97 Audio Controller (d000024l5), причем остальные
идентификаторы устройств (sv, subvendor, sd — subdevice и пр.) не имеют значе­
ния (*).

Информация о псевдонимах извлекается из модулей драйверов при их инсталляции
и помещается в файлы /lib/nodules/'unane -г'/modules.alias и /lib/modules/'unane -

г'/«nodules, alias, bin для дальнейшего использования утилитой modprobe(8) и службой
udev(7).

В листинге 10.7 показан мониторинг событий, которые доставляются из ядра в
udev(7) при подключении накопителя USB-флэш.

morty@ubuntu:~$ udevafa nonltor -k

monitor will print the received events for:
KERNEL - the kernel uevent

KERNEL[20373.565718] add
Ф KERNEL[20373.572489] add

KERNEL[20373.573204] bind
О KERNEL[20373.599217] add

/devices/pci0000:00/6000:00:0b.0/usbl/l-1 (usb)
/devices/pci0000:00/6000:00:0b.0/usbl/l-1/1-1:1.0 (usb)
/devices/pci0000:00/6000:00:0b.O/usbl/l-l (usb)

/nodule/usb_storage (nodule)

KERNEL[20373.601776] add /bus/usb/drivers/usb-storage (drivers)

• KERNEL[20373.604020] add /nodule/uas (nodule)
KERNEL[20373.604112] add /bus/usb/drivers/uas (drivers)

norty@ubuntu:~$ nount -t sysfs

sysfs on /sys type sysfs (rw,nosuid,nodev,noexec,relative)

morty@ubuntu:~$ cat /sys/d«vlces/pcl6666:60/6660:60:6b.0/usbl/l-l/l-l:l.e/uevefit

DEVTYPE=usb_lnterface

DRIVER=usb-storage

PR0DUCT=58f/6387/100

TYPE=0/0/0

INTERFACE=8/6/80

+- M0DALIAS=usb:v058Fp6387d0100dc00dsc00dp00lc08isc06lp50ln00

norty@ubuntu:~$ grap -l v058Fp6387 Alb/nodules/'unane -r'/nodules.*

• /lib/nodules/5.3.0-24-generic/nodules.alias:alias usb:v058Fp6387d0141dc*dsc*dp*... (D usb_storage

norty@ubuntu:~$ grap -l Ic08lsc66lp56Alb/nodules/'unane -r'/nodules.*

• /lib/nodules/5.3.0-24-generic/nodules.alias:alias usb:v*p*d*dc*dsc*dp*ic08isc06ip50in* uas ©
/lib/nodules/5.3.0-24-generic/nodules.alias:alias usb:v*p*d*dc*dsc*dp*ic08isc06ip50in* usb_storage

370 Глава 10

Нужно заметить, что абсолютно все сущности (как сами устройства, так и модули
ядра) иерархически идентифицируются путевыми файлами в псевдофайловой сис­
теме sysfs(5), которая по соглашению монтируется в каталог /sys. Сами события
«сохраняется» в файле uevent в каталоге этой сущности, отведенном ему на sysfs, а
псевдоним устройства может определять сразу несколько драйверов © ©, подле­
жащих загрузке. Так, в приведенном примере по событию подключения Ф udev(7)
узнает псевдоним устройства и определяет модули, подлежащие загрузке ®@, т. е.
драйвер самого устройства usb_storage (v, производитель 058F и р, продукт 6387) и
драйвер uas, т. к. устройство поддерживает универсальный интерфейс 8/6/80 (класс,
подкласс, протокол ic08isc06ip50), т. е. W : [USB Attached SCSI]. Успешная загрузка моду­
лей драйверов тоже приводит к доставке событий О и © (подобных событиям
физических устройств), которые используются udev(7) как сигнал для создания спе­
циальных файлов устройств в каталоге /dev.

Кроме «горячего» подключения устройств, проиллюстрированного в листинге 10.7,
служба udev(7) ответственна также за их «холодное» подключение. Поскольку ядро
стартует первым и задолго до самой службы udev(7)\ то для устройств, обнаружен­
ных на ранних стадиях инициализации ядра, будет некому загрузить из драйвера.
«Холодное» подключение устройств и загрузка их драйверов начинаются при стар­
те самой службы, которая обходит файловую систему sysfs в поисках uevent файлов
и «проигрывает» их абсолютно так же, как если бы устройства подключались «го­
рячим» образом.

10.3. Как запускаются системные службы
После того как ядро загружено, а корневая файловая система смонтирована,
управление передается процессу init (PID = 1), в который помещается программа
/sbin/tnit, выполняющая несколько функций. Первоочередная задача, стоящая пе­
ред in it ,— это обработка всех осиротевших процессов (см. разд. 4.3), для которых
он назначается приемным родителем. Вторая его немаловажная задача состоит в
инициализации операционной системы и последующем запуске ее служб, которые
в большинстве своем работают в классе процессов-демонов (см. разд. 4.4). При
инициализации ОС обычно выполняется несколько нехитрых подготовительных
действий: монтирование всех оставшихся файловых систем в дерево каталогов (за
исключением корневой, которая уже смонтирована ядром), конфигурирование сете­
вых интерфейсов и маршрутов и прочие сопутствующие действия, прежде чем
можно будет запускать1 2 службы.

1 Честно говоря, ее облегченный аналог включен даже в образ «временной» корневой файловой
системы initrd.irig.

2 Поскольку сетевым службам нужны проинициализированные сетевые интерфейсы, службы С У Б Д

могут размещать свои базы данных на отдельных файловых системах и т. д.

От отдельных компонент— к системе 371

Последняя задача, возложенная на init, — это управление остановом и перезагруз­
кой системы.

За время развития UNIX W : [init] претерпел несколько реинкарнаций. Классический
и BSD init были устроены чрезвычайно просто и использовали большие («моно­
литные») сценарии на языке командного интерпретатора (так называемые гсг-сце-
нарии), один из которых был «главным» (зачастую /sbin/гс или /etc/гс) и запускал­
ся самим init, а несколько «подчиненных» сценариев, например гс.local, запуска­
лись главным сценарием или друг другом. В АТ&Т-версиях init (сначала UNIX
System III, а позднее и в UNIX System V) добавили понятие «уровней исполне­
ния» системы, так называемых runlevels. При этом службы получили «модульные»
сценарии запуска (индивидуальные для каждой службы), размещаемые в специаль­
ном каталоге /etc/inlt.d* 2, а каталоги /etc/rc/V.d, где N — номер уровня исполнения
(О—6) стали определять набор сценариев служб, запускаемых на том или ином
уровне исполнения, и порядок их последовательного запуска.

Ранние дистрибутивы Linux использовали BSD init и «монолитные» сценарии за­
пуска служб, позднее практически везде распространились System V init и «мо­
дульные» сценарии, но при дальнейшем увеличении количества служб последова­
тельный их запуск стал занимать большое время3, хотя многие из них можно
запускать параллельно. Это привело к созданию нескольких специфичных систем
запуска со своей реализацией init и системы сценариев, например W:[upstart],

W : [OpenRC] и пр. Все эти системы пытались так или иначе учесть зависимости
(причинно-следственные связи) между самими сценариями запуска служб и вы­
страивать дерево зависимостей, позволяющее запускать службы параллельно на­
столько, насколько это возможно.

Передовой технологией запуска служб при старте операционной системы на теку­
щий момент развития является система W:[systemd], исповедующая принцип интен­
сивной параллелизации запуска. Основная идея systemd(1) состоит в разделении
работы на довольно мелкие единицы, так называемые юниты (unit, см.
systemd.unit(5)), которые существенно мельче, чем ранние сценарии System V или
upstart. Между юнитами, несомненно, существуют зависимости, но в целом, в силу
использующегося подхода, гораздо больше действий можно выполнить параллель­
но. Например, в ситуации, когда одна служба при запуске обращается к другой

'Аббревиатура R C восходит к предшественнику UNIX, операционной системе W:[CTSS], в которой

списки команд (предшественники сценариев) выполнялись программой-предшественником совре­

менных интерпретаторов, называемой R U N C O M (run commands).

2 Этот рудимент можно наблюдать и поныне для тех служб, которые в полной мере не адаптиро­

ваны к современному способу запуска в systemd(1) стиле.

3 Большее, чем хотелось, и что самое главное — большее, чем можно было получить.

372 Глава 10

(при помощи сетевых сокетов) и отказывается работать, если обращение было
неудачным. При использовании классических «модульных» сценариев приходилось
сначала запускать первую, затем дожидаться', пока она откроет свой (серверный)
сокет, и только потом запускать вторую. В этом случае systemd берет задачу по
одновременному открытию сокетов служб на себя, а затем одновременно запускает
обе службы, вручая каждой из них ее уже открытый сокет (в результате службы
даже становятся проще). Даже если вторая служба немедленно обратится к сокету
первой и сразу отправит запрос, то ей придется всего лишь подождать1 2, пока
первая не будет готова его обработать. Важно отметить: несмотря на то что
службы в данном примере будут зависеть от открытости сокетов (первая служба
зависит только от своего сокета, а вторая еще и от чужого), сами службы стано­
вятся независимыми друг от друга, что и позволяет запускать их одновременно..

Несмотря на то что в примере выше службы должны быть адаптированы к ис­
пользованию такого systemd-подхода, он хорошо иллюстрирует разделение работы на
мелкие единицы — в данном случае работа по открытию сокета (см. systemd.socket(5))
и работа по запуску (см. systemd.ехес(5)) собственно службы (см. systemd.service(5)) раз­
делены в угоду эффективности общего процесса. Кроме того, такое разделение
еще и позволяет организовать так называемую сокет-активацию служб, когда они
запускаются только при поступлении подключений на этот сокет, а в их отсутст­
вие остановлены, тем самым экономя ресурсы операционной системы.

Еще одна иллюстрация эффективности разбиения работы по запуску операционной
системы на небольшие единицы и их параллелизации может быть проведена отно­
сительно инициализации системы, проводимой перед стартом служб. Как уже упо­
миналось, типичными действиями на этом этапе являются формирование дерева
каталогов путем монтирования туда файловых систем, упомянутых в fstab(5), или
конфигурирование сетевых интерфейсов. При классическом подходе все файловые
системы монтировались в дерево последовательно, и если что-то шло не так, то
инициализация останавливалась, приглашая администратора к ручному исправлению
проблем посредством спасательного (rescue) командного интерпретатора. В systemd

монтирование каждой файловой системы — это отдельный юнит (автоматически
создаваемый чтением fstab(5), см. systemd.mount(5) и systemd-fstab-generator(8)), а зависят
от нее только те другие юниты, которым она на самом деле нужна, а не судьба
инициализации целиком. Поскольку для монтирования файловых систем необходи­
мо иметь созданные файлы устройств (и загруженные драйвера устройств), а эту
работу асинхронно выполняет udev(7), то systemd считает файлы устройств отдель­
ными юнитами (см. systemd.device(5)), от которых, в свою очередь, зависят юниты

1 Об ы ч н о путем циклического опроса, что достаточно неэффективно.

2 Пр и этом будут работать эффективные событийные механизмы ядра по работе с сокетами, а не
циклический опрос.

От отдельных компонент— к системе 373

файловых систем. В результате такой трактовки файловые системы (да и вся
«инициализация») монтируются по мере доступности, а вся работа над юнитами
происходит событийно и максимально параллельно.

В листинге 10.8 показано «дерево юнитов» активированных systemd при старте О С и
находящихся в выполняющемся (running) состоянии. Нужно заметить, что оно да­
леко не всегда повторяет дерево процессов, т. к. процессы зачастую теряют дочер­
не-родительские отношения при своей работе. Для группировки юнитов systemd ис­
пользует иерархию групп управления О (см. разд.9.4), позволяющую ему группи­
ровать процессы «по смыслу». Все процессы пользователей размещаются в группе
управления user.slice О, а процессы системных служб — в группе system.slice © .

Важно заметить, что сами user.slice и system.slice естественно являются юнитами
(см. systemd.slice(5)), т. к. systemd манипулирует только юнитами и ничем, кроме юни­
тов, и под каждый из них создает свою группу управления.

Каждая проиллюстрированная1 системная служба О выполняется в своей индиви­
дуальной группе управления, что естественным образом позволяет легко и удобно
ограничить ее в ресурсах (изменив или дополнив конфигурацию systemd). Процессы
интерактивных пользовательских сеансов О помещаются в «динамически создавае­
мые» группы (см. systemd.scope(S)), в данном случае в так называемые сеансовые
группы, чем заведует служба-компаньон systemd-logind(8). В листинге 10.8 можно
наблюдать группу процессов графического сеанса session-7.scope и группу процес­
сов сеанса удаленного доступа SSH session-25.scope.

morty@ubuntu:~$ systenctl status

Ф ubuntu
State: running
Dobs: 6 queued

Failed: в units
Since: Sun 2626-61-12 18:14:57 MSK; 1 day 6b ago

О CGroup: /

О |-user.slice

Ф | [-gnone-terminal-server.service
| | |-3587 /usr/libexec/gnone-terminal-server
I I *—3597 bash
| |— init. scope

(Ф | | |— 1756 /lib/systemd/systemd --user
| | *— 1754 (sd-pan)

1 Все эти службы описывались ранее, см. containerd и dockerd в главе 9, NetworkManager и avahi-
daemon в главе 6, gdm в главах 8 и 7.

—| |Щ Л т -г -

о
'-user-1666.slice

|-user@1666.service

374 Глава 10

1 ф 1 |-gnone- shell-xll. service
1 1 | j—2227 /usr/bin/gnone-shell

1 1 | 4-2525 /usr/lib/ibus/ibus-engine-sinp4e

1 © 1 |-dbus. service
1 1 | j—1787 /usr/bin/dbus-daenon --session --address=systend: --nofork ...
1 1 j (—2205 /usr/lib/dconf/dconf-service
1 1 | j-2252 /usr/lib/gnone-shell/gnone-shell-calendar-server
1 ® 1 | j—2295 /usr/lib/gnone-online-accounts/goa-daenon
1 ® 1 | j—2305 /usr/lib/gnone-online-accounts/goa-identity-service
1 1 | '—2346 /usr/lib/ibus/ibus-portal

© 1 |—session-25.scope
1 1 j- 7810 sshd: rick [priv]
1 1 j- 7923 sshd: rick@pts/l
1 1 L- 7926 -bash

© 1 '—session-7.scope
1 |— 1992 gdn-session-worker [pan/gdm-password]
1 j— 2010 /usr/bin/gnone-keyring-daenon --daenonize --login
1 j— 2014 /usr/lib/gdn3/gdn-x-session ...
1 j— 2017 /usr/lib/xorg/Xorg vt2 -displayfd 3 -auth ...
1 j— 2024 /usr/lib/gnone-session/gnone-session-binary --systend ...
1 j— 2094 /usr/bin/ssh-agent /usr/bin/in-launch ...
1 j—16191 gdn-session-worker [pan/gdn-password]
1 '—16375 gdn-session-worker [pan/gdn-password]
j-init. scope
| •—1 /sbin/init splash

® *-sy sten.slice

® |-containerd. service
| •—709 /usr/bin/containerd

® j-systend-udevd.senri.ee
| ^ 333 /lib/systend/systend-udevd

® |—docker. senn.ee
| '—16520 /usr/bin/dockerd -H fd:// ...

© j-NetworkManager.senn.ee
| '-586 /usr/sbin/NetworkManager --no-daenon

© |-gdn. service
| •—731 /usr/sbin/gdn3

® j—avahi-daenon. service
| |—597 avahi-daenon: running [ubuntu-2.local]
| '-650 avahi-daenon: chroot helper

'-systend’-’logind. service
'-593 /lib/systend/systend-logind

Кроме управления инициализацией и запуском служб операционной системы,
systemd позволяет в полной мере воспользоваться всеми своими возможностями в
рамках отдельного пользователя ©, т. е. управлять пользовательскими службами.
Это свойство широко используется в современном настольном окружении GNOME
Ф©®. Управлением пользовательскими службами занимается отдельный «пользова­

От отдельных компонент— к системе 375

тельский» экземпляр1 systemd <Ф, запускаемый «системным» systemd каждому пользо­
вателю при его входе в систему.

Несмотря на то что рассмотрение задач администрирования systemd выходит за
рамки данной книги, листинги 10.9—10.13 прекрасно иллюстрируют его возможно­
сти и назначение. На практике чрезвычайно часто возникает задача мгновенно
«поделиться» файлами в «случайной» сети, например с участниками конференции,
с партнерами на встрече или заказчиками на воркшопе и в прочих подобных си­
туациях. Никогда не известно, какую операционную систему и на каких устройст­
вах они (заказчики) используют — ноутбуки, планшеты, смартфоны, iOS, Android,
Windows. Безотказно работает HTTP и MDNS (см. главу 6) в публичной W i-Fi-
сети, однако использование в этой ситуации полнофункционального НТТР-сервера,
например W:[Apache HTTP Server] или W:[nginx], абсолютно лишено всякого смысла.
В целом задача не нова, и даже существует определенное количество решений,
например woof2 (web offer one file), но systemd позволяет решить эту задачу в два
счета и на языке командного интерпретатора.

morty@ubuntu:~$ cat ~/bin/pe*rweb

#!/bin/bash

document root=$l

О read method uri ver

® If [-f $documentroot/$uri]

then

echo "HTTP/1.0 200 Ok"

© echo "Content-Type: 'file -bi $documentroot/$uri'"

О echo "Content-Size: 'stat -c %s $documentroot/$uri'"
echo

© cat $documentroot/$urt

else

echo "HTTP/1.0 404 Not found"

echo

ft

1 Звучит запутанно, но в понятиях systemd все так и есть. Пользовательский экземпляр systemd,
управляющий пользовательскими службами, сам является системной службой с названием

user@.service.

2 См. http://www.home.unix-ag.org/sinion/woof.

http://www.home.unix-ag.org/sinion/woof

376 Глава 10

В качестве службы Web-сервера, который может обрабатывать только GET-за-
просы1, будет выступать сценарий на языке командного интерпретатора (см. лис­
тинг 10.9). Он считывает три лексемы протокольного запроса О, проверяет нали­
чие запрошенного файла, имя которого было передано во второй лексеме (uri) ©,
и возвращает его содержимое ©, предваряя двумя протокольными заголовками
о типе © и размере © файла. Сценарий предполагает, что запросы протокола
поступают на стандартный поток ввода, а ответы отправляются на стандартный
поток вывода, и ни с какими сетевыми сокетами работать не умеет. Всю работу
по открытию и обслуживанию сетевых сокетов, а также запуску сценария, возьмет
на себя systemd.

Для вручения systemd новых юнитов работы необходимо разместить конфигурацион­
ные файлы определенного содержания (systemd.socket(5) и systemd.service(5)) в предо­
пределенных каталогах. В листинге 10.10 показано, как можно попросить об этом
команду systemctl(l), указав, что нужно изменять «пользовательскую» --user конфигу­
рацию.

morty@ubuntu:~$ EDIT0R=nano systmctl — user edit — full peerweb. socket — force

[Socket]
О ListenStrean=0.0.0.0:8080
© Accept=yes

morty@ubuntu:~$ EDIT0R=nano systmctl — user edit — full peerweb@. service — force

[Service]
© ExecStart=/home/morty/bin/peerweb /home/morty/Public
О StandardInput=socket

Сокет-юнит peerweb.socket заставит systemd слушать О потоковый (TCP) сетевой со­
кет на порту 8080 и принимать подключения ©, после чего они будут переданы
одноименной «шаблонной» службе peerweb@.service, которая и будет обслуживать
каждое подключение. Для этого служба должна запускать © сценарий ~/bin/peerweb
и передавать ему в качестве параметра путь к каталогу -/Public2 и сокет принятого
подключения в качестве стандартных потоков © ввода-вывода. В результате
HTTP-запрос будет отправлен на stdin сценария, а его stdout будет возвращен в
сетевой сокет в качестве НТТР-ответа.

1 https://www.youtube.com/watch7vs6ziuDdudUkl.

2 Который по соглашению и так используется для публикации файлов, например, настольным ок­

ружением G N O M E .

https://www.youtube.com/watch7vs6ziuDdudUkl

От отдельных компонент — к системе 377

© morty@ubuntu:~$ systenctl — user start peerweb. socket

О morty@ubuntu:~$ systenctl --user status peerweb.socket

• peerweb.socket
® Loaded: loaded (/home/morty/.config/systemd/user/peerweb.socket; static; ...)

Active: active (listening) since Tue 2020-01-14 03:28:47 MSK; 8s ago
Listen: 0.0.0.0:8080 (Stream)

Accepted: 0; Connected: 0;
CGroup: /user.slice/user-1000.slice/user@1000.service/peerweb.socket

© янв 14 03:28:47 ubuntu systemd[18739]: Listening on peerweb.socket.

После запуска © сокет-юнита в работу (листинг 10.11) можно узнать его состоя­
ние Ф и расположение самих юнит-файлов ® и журнальные записи © о послед­
них событиях. Работу службы можно протестировать, разместив в каталоге -/Public
какой-либо файл и запросив1 его получение при помощи Web-браузера или про­
стейшего Web-клиента сиг1(1), как проиллюстрировано в листинге 10.12.

ТГТ̂ -—

Листинг"

morty@ubuntu:~$ cat -/Public/README
О
morty@ubuntu:~$ curl -v http://ubuntu.local:8080/README
* Trying 172.17.0.1:8080...
* TCP_NODELAY set
* Connected to ubuntu-2.local (172.17.0.1) port 8080 (#0)
> GET /README HTTP/1.1
> Host: ubuntu-2.local:8080
> User-Agent: curl/7.65.3
> Accept: */*
>
* Mark bundle as not supporting multiuse
* HTTP 1.0, assume close after body
< HTTP/1.0 200 Ok
< Content-Type: text/plain; charset=us-ascii
< Content-Size: 3
<

1 Необходимо убедиться, что служба MDN S (см. avahi в главе 6) исправно функционирует, иначе
придется воспользоваться IP-адресами вместо имен в домене .local.

http://ubuntu.local:8080/README

378 Глава 10

•" :)
* Recv failure: Connection reset by peer

* Closing connection 0

curl: (56) Recv failure: Connection reset by peer

Листинг 10.13 иллюстрирует, что «шаблонные» сервис-юниты не имеют собствен­
ных состояний 0 , но порождают при запуске свои конкретные Ф экземпляры, что
отмечается © в журнале О событий.

О morty@ubuntu:~$ systenctl —user status peerweb@.service
? Failed to get properties: Unit папе peerweb@.service is neither a valid invocation ID nor unit nane.

О morty@ubuntu:~$ journalctl —user -e

янв 14 63:50:44 (ixntu systerd[18739]: Started 192.168.6.103:40936. 1

G> янв 14 63:50:44 lixntu systH*d[18739]: peerwet«27-172.17.6.1:8086-192.168.6.163:40936.servlce: Succeeded.

Ф norty@ubuntu:~$ systenctl — user status peerwab@*.service

• peerweb@27-172.17.6.1:8686-192.168.6.163:46936.service - 192.168.6.163:46936

Loaded: loaded (/home/morty/.config/systend/user/peerwebe.service; static; ...)

Active: active (running) since Tue 2626-61-14 63:53:66 MSK; 16s ago

Main PID: 26563 (peerweb)

CCroup: /user.slice/user-1666.sltce/user@1000.service

/peerweb.slice/peerweb@27-172.17.6.1:8686-192.168.6.163:46936.service

*—26563 /bin/bash /hone/norty/bin/peerweb /hone/norty/Public

янв 14 63:53:66 ubuntu systend[18739]: Started 192.168.6.163:46936.

Остается только привязать CD активацию сокет-юнита к входу пользователя в сис­
тему (листинг 10.14), иначе каждый раз придется активировать его вручную (см. ©
в листинге 10.11).

norty@ubuntu:~$ systenctl —user list-dependencies
default.target

• |— pulseaudio.service

• 1— ubuntu-report.path

• 1— basic.target

• |— paths.target

• |— sockets, target

• | |— dbus. socket

• | |— pulseaudio.socket

• | 1— snapd.session-agent.socket

• 1— timers, target

От отдельных компонент— к системе 379

© morty@ubuntu:~$ systenctl --user add-wants sockets.target peerweb.socket
Created symlink /home/morty/.conf ig/systemd/user/sockets.target.wants/peerweb.socket —►
/home/morty/.config/systemd/user/peerweb.socket.
morty@ubuntu:~$ systenctl —user list-dependencies
default.target

• 1— basic. target

• |— sockets, target

• | |— peerweb. socket

10.4. Linux своими руками
Теперь, когда в принципе становится ясно, какие компоненты составляют систему
и участвуют в процессе ее запуска от включения питания и до получения доступа
в ее командную строку, графический интерфейс или к ее сетевым сервисам, оста­
ется только один вопрос: где, каким образом и каким способом все эти компо­
ненты системы размещаются, прежде чем они смогут начать последовательно за­
гружаться и выполняться, выстраиваясь в систему?

Как правило, на эти вопросы отвечает программа-инсталлятор, которая, выполня­
ясь в операционной системе, загруженной с одного (инсталляционного) носителя,
например DVD-диска, устанавливает эту же операционную систему на другой (це­
левой) носитель, постоянный дисковый или SSD-накопитель. Вооружившись зна­
ниями об ОС и набором нехитрых инструментов, эту же процедуру можно повто­
рить и вручную, без специализированного инсталлятора. В примерах из листингов
10.15—10.22 проиллюстрирован процесс инсталляции Linux на внешний накопитель
USB-флэш, который можно затем использовать для самых разнообразных целей:
от «носимой ОС», которая вместе с любимым инструментарием «всегда с собой»,
до «спасательной флэшки» на черный день.

Первым делом необходимо определить специальный файл устройства накопителя
(О в листинге 10.15), что можно сделать как командой lsblk(8), так и Isscsi(8), по­
скольку современные драйверы всех W:[SATA], W:[SAS], W:[USBMSC]- и W:[UAS]-
накопителей работают поверх SCSI-подсистемы ядра. Следующим шагом © создает­
ся таблица разделов © формата W:[GUID Partition Table], в которой определяются два
раздела: один размером 100 Мбайт © для загрузчика и второй © на все остав­
шееся пространство для корневой файловой системы. Раздел для размещения за­
грузчика помечается ® согласно спецификации W :[UEFI] как W:[ESP].

О morty@ubuntu:~$ Isscsi

[6:0:6:61 disk АТА WDC WD2560BEKT-7 1А01 /dev/sda

380 Глава 10

[1:0:0:0] cd/dvd TSSTcorp DVDf-RW TS-U6333 D600 /dev/srt)

[4:0:0:0] disk JetFlash Transcend 2GB 8.07 /dev/sdc "•

Ф norty@ubuntu:~$ sudo parted /dev/sdc

GNU Parted 3.2

Using /dev/sdc

Welcome to GNU Parted! Type 'help' to view a list of commands.

© (parted) mklabel gpt

Warning: The existing disk label on /dev/sdc will be destroyed and all data on

this disk will be lost. Do you want to continue?

Yes/No? Yes

О (parted) mkpart loaders fat16 6 128n

Warning: The resulting partition is not properly aligned for best performance.

Ignore/Cancel? Ignore

© (parted) mkpart rootfs ext4 128m 1604

Warning: The resulting partition is not properly aligned for best performance.

Ignore/Cancel? Ignore

(parted) print

Model: JetFlash Transcend 2GB (scsi)

Disk /dev/sdc: 2020MB

Sector size (logical/physical): 512B/512B

Partition Table: gpt

Disk Flags:

Number Start End Size File system Name Flags

1 17,4kB 128MB 128MB fatl6 loaders

2 128MB 2020MB 1892MB ext4 rootfs

Ф (parted) set 1 esp on

(parted) print

Number Start End Size File system Name Flags

1 17,4kB 128MB 128MB fatl6 loaders boot, esp -•

2 128MB 2020MB 1892MB ext4 rootfs

(parted) quit

Information: You may need to update /etc/fstab.

После создания эти разделы «форматируются» (листинг 10.16), т. е. на них созда­
ются файловые системы: О FAT для ESP и в ЕХТ4 для корневой ФС. Нужно отме­
тить, что конкретные экземпляры файловых систем в Linux идентифицируются или
универсально-уникальными идентификаторами W :[UU ID], или просто уникальным
Volume ID. Эти идентификаторы позволяют найти файловую систему вне зависимо­

От отдельных компонент— к системе 381

сти от порядковых номеров устройства и раздела, на котором она расположена,
что крайне полезно при использовании на съемном накопителе, таком как USB-
флэш.

О norty@ubuntu:~$ sudo nkfs -t vfat -v /dev/sdcl

mkfs.fat 4.1 (2017-01-24)

Volume ID is 08c8bdb9 no volume label.

О morty@ubuntu:~$ sudo nkfs -t ext4 /dev/sdc2

mke2fs 1.45.3 (14-3ul-2019)

Creating filesystem with 461801 4k blocks and 115680 inodes

Filesystem UUID: 71002c88-0b02-4ac0-8cd4-65c4eb0e454b ^

Superblock backups stored on blocks:

32768, 98304, 163840, 229376, 294912

Allocating group tables: done

Writing inode tables: done

Creating journal (8192 blocks): done

Writing superblocks and filesystem accounting information: done

Следующим логичным шагом является, собственно, помещение компонент ОС
в корневую файловую систему, что можно сделать вручную, дублируя их програм­
мы, библиотеки, конфигурационные файлы и данные из исходной системы (напри­
мер, как было показано в листинге 9.2). При необходимости выборочного копиро­
вания компонент ручной подход чрезвычайно трудоемок, поэтому на данном этапе
используют разнообразные автоматизированные средства, например (уже знакомый
по главе 9) debootstrap(9), что проиллюстрировано О © в листинге 10.17.

Кроме инсталляции минимального набора компонент будущей системы ее необхо­
димо минимально сконфигурировать, а именно — указать © в таблице файловых
систем fstab(S) то, какая ФС является «настоящей» корневой ®, т. е. должна мон­
тироваться в корень дерева каталогов. Точно так же поступают и с файловой сис­
темой © ESP-раздела, который по соглашению монтируют в каталог /boot/efi.

Листинг 10.17.
■ Р Ж I

‘«i Jial

'• ..

О morty@ubuntu:~$ sudo mount /dev/sdc2 /mnt

© morty@ubuntu:~$ sudo debootstrap — 1variant=minbase --include=lsb-release eoan /mnt

I: Retrieving InRelease
I: Checking Release signature

382 Глава 10

I: Valid Release signature (key Id F6ECB3762474EDA9D21B7G22871926D1991BC93C)
I: Retrieving Packages
I: Validating Packages
I: Resolving dependencies of required packages...
I: Resolving dependencies of base packages...

© O © © © © © ©
I: Base system Installed successfully.

morty@ubuntu:~$ sudo chroot /mnt
root@ubuntu:/# apt update

Hlt:l http://archlve.ubuntu.com/ubuntu eoan InRelease
Cet:2 http://archlve.ubuntu.com/ubuntu eoan/maln Translation-en [505 кВ]
Fetched 505 кВ In 2s (306 kB/s)
Reading package lists... Done
Building dependency tree... Done
All packages are up to date.

root@ubuntu:/# apt in s ta ll nano

© root@ubuntu:/# nano /e tc /fsta b

<D /dev/dtsk/by-uutd/71002c88-0b02-4ac0-8cd4-65c4eb0e454b / ext4 defaults 0 0

@ /dev/dtsk/by-uutd/08C8-BDB9 /boot/efl vfat defaults 0 0

© root@ubuntu:/# useradd -m -s /Ып/bash morty

root@ubuntu:/# passwd morty

New password: plumbus

Retype new password: plumbus

passwd: password updated successfully

root@ubuntu:/# apt in s ta ll sudo

root@ubuntu:/# gpasswd -a morty sudo
Adding user morty to group sudo

root@ubuntu:/# ex it

Необходимо отметить, что на разделы носителей, содержащие нужные файловые
системы, лучше всегда ссылаться не при помощи специальных файлов устройств
/dev/sdcl и /dev/sdc2, а посредством их псевдонимов ® и © т. е. их символических
ссылок из каталога /dev/disk/by-uuid, которые там создает служба udev(7). Так как
заранее неизвестно, к какому USB-разъему (контроллеру, каналу) и в каком аппа­
ратном окружении будет подключен этот накопитель для загрузки, и, как следст­
вие, неизвестно, в каком порядке он будет опрошен и обнаружен, то и имя специ­
ального файла его устройства заранее определить невозможно. Несмотря на такую
неопределенность, идентификаторы файловых систем останутся неизменными,
и, как следствие, псевдонимы их разделов тоже.

Завершает минимальную конфигурацию О процесс создания первой пользователь­
ской учетной записи, назначения ей пароля и добавления ее в группу sudo для ис­
пользования sudo(1) в устанавливаемой системе.

http://archlve.ubuntu.com/ubuntu
http://archlve.ubuntu.com/ubuntu

От отдельных компонент— к системе 383

После того как корневая ФС наполнена требуемым содержимым, нужно припом­
нить, что согласно процессу загрузки (см. разд. 10.1) корневая файловая система
монтируется в дерево каталогов после загрузки ядра, ядро загружается загрузчи­
ком, а он, в свою очередь, получает управление от UEFI. Таким образом, необхо­
димо инсталлировать загрузчик и ядро ОС, что проиллюстрировано в листингах
10.18 и 10.19 соответственно.

Инсталляция загрузчика начинается с формирования дерева каталогов инсталли­
руемой ОС так, как оно будет сформировано в процессе ее работы. Для этого
ниже точки монтирования ее корневой ФС (каталог /mnt, см. О в листинге 10.17)
монтируется ESP-раздел О в /mt/boot/efi, а затем псевдофайловые системы О
ргос, sysfs и специальные файлы устройств /dev. При этом они попросту «заимству­
ются» из исходной ОС путем «связующего» --bind монтирования. Другими словами,
каталоги /sys, /ргос и /dev просто отображаются в еще одно место дерева, а имен­
но ниже каталога /mnt. Для инсталляции загрузчика осуществляется чрутизация
(см. разд. 9.1) в сформированное окружение, где сначала устанавливается © пакет
с компонентами загрузчика в систему, а затем сам загрузчик © на ESP-раздел.

morty@ubuntu:~$ sudo nkdir /m t/b o o t/e fi
О morty@ubuntu:~$ sudo mount /d ev/sdcl /m t/b o o t/e fi
© morty@ubuntu:~$ sudo mount —bind /dev /m t/d ev

© morty@ubuntu:~$ sudo mount —bind /ргос /m t/ргос

© morty@ubuntu:~$ sudo mount --bind /sy s /m t/sy s

morty@ubuntu:~$ sudo chroot /m t
© root@ubuntu:/# apt in s ta ll grub-efi

© root@ubuntu:/# gru b -in stall —removable —no-uefi-secure-boot -v

Installing for x86_64-efi platform.

Ф grub-install: info: copying '/.../grub/x86_64-efi/ext2.nod' -> '/boot/grub/x86_64-efi/ext2.nod'.

Ф grub-install: info: copying '/.../grub/x86_64-efi/part_jgpt.nod' -> '/boot/arub/x86 64-efi/part apt.nod'.

Ф grub-install: info: copying '/.. ./grub/x86_64-efi/efi_gop.nod' -> '/boot/grub/x86_64-efi/efi_jgop.nod'.

Ф grub-install: info: copying '/.. ./grub/xB6_64-efi/font.nod’ -> '/boot/grub/x86_64-efi/font.nod'.

Ф grub-install: info: copying '/usr/sbare/grub/unicode.pf2' -> '/boot/grub/fonts/unicode.pf2'.

© grub-install: info: grub-nkinage --directory '/usr/lib/grub/x86_64-efi' --prefix '(,gpt2)/boot/grub'
--output '/boot/grub/x86_64-efi/core.efi' --dtb " --format 'x86_64-efi' --compression 'auto' 'ext2' 'part_gpt'

© grub-install: info: reading /usr/lib/grub/x86_64-efi/kernel.img.

© grub-install: info: reading /usr/lib/grub/x86_64-efi/fshelp.nod.

© grub-install: info: reading /usr/lib/grub/x86_64-efi/ext2.nod.

384 Глава 10

@ grub-install: info: reading /usr/lib/grub/x86_64-efi/part_gpt.nod.

@ grub-install: info: kernel_vng=Qx5636d82a7866, kernel_size=6xla666.

© grub-install: info: the core size is 6xle286.

© grub-install: info: writing 6x21066 bytes.

© grub-install: info: copying '/boot/grub/x86_6A-efi/core.efi' -> '/boot/efi/EFI/BOOT/BOOTXSt.EFI'.

Installation finished. No error reported.

Загрузчик W:[GRUB] сам по себе имеет модульное устройство, поэтому при его
инсталляции сначала в каталог /boot/grub копируются ® его модули *.mod (и другие
компоненты, например шрифты .pf2) на корневую ФС, а затем формируется стар­
товый файл core.efi путем компоновки нескольких модулей ©, а затем он «пра­
вильным образом» помещается1 на ESP-раздел ©. Таким образом, получается, что
при загрузке стартового файла с ESP он содержит только минимально необходи­
мые модули (драйвер ФС ext2.mod и таблицы разделов gpt_part.nod), но позволяю­
щие динамически догружать любые другие модули с корневой ФС. Нужно отме­
тить, что такую (классическую) схему инсталлятор загрузчика выбрал потому, что
его опции указывают, что инсталляция ведется на «съемное» --removable устройство
и не требуется соответствовать спецификациям «безопасной загрузки» --no-uefi-

secure-boot, когда проверяются цифровые подписи загружаемых компонент (и ком­
поновка неподписанного core.efi на лету уже не сработает). Для «стационарных»
устройств используются похожие, но немного другие схемы, что можно наблюдать
в листингах 10.1 и 10.2.

Процедура инсталляции ядра, показанная в листинге 10.19, намного проще и
обычно ограничивается инсталляцией пакета Ф ядра. Этот пакет, как правило, за­
висит от необходимых утилит О работы с образами «временной» корневой ФС
(см. листинг 10.5), модулей ядра Ф и службы Ф udev, которая начинает работу на
самых ранних этапах загрузки, еще при поиске и монтировании «настоящей» кор­
невой ФС.

Ф root@ubuntu:/# apt install linux-image-5.3.0-18-generic

Reading package lists... Done

Building dependency tree

Reading state information... Done

1 П о д именем B00TX64.EFI, которое по умолчанию ищет «аппаратный» UEFI-загрузчик на подклю­

ченных накопителях, если ему вообще разрешено с них загружаться.

От отдельных компонент— к системе 385

The following NEW packages will be installed:

busybox-initramfs cpio initramfs-tools О initramfs-tools-bin

initramfs-tools-core klibc-utils kmod libklibc

libkmod2 linux-base linux-image-5.3.0-18-generic linux-modules-5.3.0-18-generic О

lz4 udev ©

0 upgraded, 14 newly installed, 0 to remove and 0 not upgraded.

Need to get 24.6 MB of archives.

After this operation, 93.9 MB of additional disk space will be used.

Do you want to continue? [Y/n] Y

Setting up linux-image-5.3.0-18-generic (5.3.0-18.19+1) ...

Processing triggers for initranfs-tools (0.133ubuntul0) ...

О update-initramfs: Generating /boot/initrd.ing-5.3.0-18-generic

root@ubuntu:/# Is /boot/*5.3.0*
/boot/Systen.nap-5.3.0-18-generic /boot/initrd.ing-5.3.0-18-generic Ф

/boot/config-5.3.0-18-generic /boot/vnlinuz-5.3.0-18-generic ©

Нужно отметить, что образ «временной» корневой ФС, в который включаются мо­
дули ядра, необходимые для ее монтирования, создается «на лету» О сразу при
его установке. Остается только сообщить об установленном ядре загрузчику
GRUB и указать параметры bootparam(7), которые должны сообщаться при передаче
ему управления, что проиллюстрировано в листинге 10.20.

root@ubuntu:/# nano /boot/grub/grub.conf
О insnod efijjga

insmod efi_gop
© set gfxpayload=auto

Ф nenuentry 'МУ Flash Linux' {
echo Loading /boot/vnlinuz-5.3.0-18-generic... i ® © l

О linux /boot/vnlinuz-5.3.0-18-generic root=/dev/disk/by-uuid/e74422dd-b74a-40bf-a6c4-elabd516c570 ro

echo Loading /boot/initrd.img-5.3.0-18-generic...
© initrd /boot/initrd.img-5.3.0-18-generic

echo Booting.
© boot

}

Конфигурационный файл загрузчика является сценарием на его командном языке.
При отсутствии такового загрузчик перейдет при старте в режим интерактивного
взаимодействия с пользователем, выведет приглашение к вводу команд grub> и бу­

386 Глава to

дет выполнять вводимые команды. Тремя самыми важными командами являются
linux О, initrd © и boot ©. Первая команда загружает в память ядро и параметры
Ф©, вторая — образ «временной» корневой ФС, а третья передает ядру управле­
ние. Команда insmod ©, как нетрудно догадаться, загружает указанный модуль GRUB,
команда set © устанавливает значение переменной окружения GRUB, а команда echo

вообще не нуждается в пояснениях. Кроме того, директива menuentry О заставляет
GRUB изобразить простейшее меню с таким количеством пунктов, сколько таких
директив было найдено, а при выборе одного из них выполнить команды из соот­
ветствующей секции

Приведенный в листинге 10.20 конфигурационный файл указывает GRUB загрузить
модули О, реализующие спецификации EFI UGA (Universal Graphic Adapter) и UEFI
GOP (Graphics Output Protocol), которые организуют доступ к видеоадаптеру, а пе­
ременная окружения gfxpayload сообщает © загрузчику в формате WxH, какой видео­
режим нужно выбрать для передачи его параметров в ядро. Так как загрузка со
«съемного» накопителя может быть в принципе производиться в любом аппаратном
окружении, то список поддерживаемых видеорежимов заранее неизвестен, и ис­
пользуется специальное значение auto.

Самым последним этапом при загрузке операционной системы является запуск
процесса init, на который возложена обязанность запуска системных служб, в том
числе служб терминального, графического и сетевого входа в операционную сис­
тему. Для этого остается только добавить пакет systemd на корневую ФС (листинг
10.21), и все будет готово для запуска.

root@ubuntu:/# apt install systend

root@ubuntu:/# apt clean

root@ubuntu:/# df -h /

Filesystem Size Used Avail Use96 Mounted on

/dev/sdc2 1.8G 365M 1.3G 23% /

root@ubuntu:/# exit

morty@ubuntu:~$ sudo mount -R / m t

Тестирование полученной инсталляции можно производить на «голом железе», т. е.
попробовать выполнить перезагрузку и загрузить инсталлированную ОС с USB-
флэш, но это не очень удобно, т. к. если что-то «пошло не так», то потребуется
повторная загрузка исходной ОС для исправления. Куда удобнее использовать
виртуальные машины с пара- или полной виртуализацией, например W :[QEMU] или
W : [Virtual РС]. В листинге 10.22 показано, как, используя QEMU, можно запустить

От отдельных компонент— к системе 387

«виртуальный РС» с подключенным к нему накопителем USB-флэш. При этом для
паравиртуализации используется W : [гипервизор] W:[KVM] (можно и без него, но бу­
дет медленнее), а в качестве UEFI-прошивки используется OVFM1 (Open Virtual
Machine Firmware).

morty@ubuntu:~$ Is -1 /dev/sdc*

brw-rw--- 1 root disk "• 8, 32 янв 17 01:14 /dev/sdc

brw-rw--- 1 root disk 8, 33 янв 17 01:14 /dev/sdd

brw-rw--- 1 root disk 8, 34 янв 17 01:14 /dev/sdc2

О morty@ubuntu:~$ sudo gpasswd -a norty disk

morty@ubuntu:~$ Is -la /dev/kvn

crw-rw--- 1 root kwi "• 10, 232 янв 18 01:46 /dev/kvn

в morty@ubuntu:~$ sudo gpasswd -a norty kvn

norty@ubuntu:~$ logout

norty@ubuntu:~$ id

uid=1001(morty) gid=1001(norty) rpynnw=1001(norty),...,6(disk),...,135(kvn),...

morty@ubuntu:~$ qenu-systen-x86_64 -enable-kvn -n 512 \
> -usbdevice disk:fomat=raw:/dev/sdc -bios OVMF.fd

10.5. В заключение
Искренне надеюсь, что рассмотрение процессов, происходящих в операционной
системе Linux от включения питания и до входа в ее графический интерфейс, до­
бавит пониманию ее внутреннего устройства некоторого рода «завершенность» и
полноту. Вместе с тем нужно признаться, еще много интересного осталось за ка­
дром и в силу тех или иных причин выходит за рамкй данной книги «для начи­
нающих».

Одна из целей книги, которая ставилась при ее написании, — дать начинающим
толчок в правильном направлении, научить самостоятельно докапываться до сути
вещей, преумножать и укреплять свои знания, опираясь на излюбленные мной
способы и приемы, проиллюстрированные здесь.

Буду польщен, если этот процесс доставит вам такое же искреннее удовольствие,
как и мне.

Д .К .

1 Требуется установка одноименного пакета ovmf.

Заключение

Изначально содержимое этой книги задумывалось как практическая иллюстрация
внутреннего устройства различных компонент операционной системы, в равной
степени подкрепляемая примерами их анализа и синтеза.

Аналитическая часть удалась примерно в той степени, в которой и задумывалась,
а примеры синтеза выходили достаточно блеклыми, особенно по сравнению с те­
ми, которые уже представлены в соответствующих изданиях, целиком посвященных
программному окружению и разработке. Более того, сделать эти примеры доступ­
ными для их успешного понимания читателем, не владеющим базовыми знаниями
по программированию на языке С (Си), не удалось вовсе.

Поэтому все эти не столь многочисленные примеры перекочевали в электронное
приложение к книге, которое в виде архива доступно на сайте издательства
www.bhv.ru со страницы книги или по ссылке:

ftp : / / ftp.bhv.ru/9785977566308.zip

Большинство примеров являются простейшими и достаточно грубыми моделями
программ, уже существующих в операционной системе.

Так, например, работу с файлами и ссылками иллюстрируют модели программ
touch(1), ln(1), rm(1), mv(1), cp(1), а работу со специальными файлами устройств —
модель программы eject(1), открывающая лоток привода CD/DVD, и специальная
программа mouse, обрабатывающая перемещения манипулятора «мышь». Управление
процессами продемонстрировано при помощи программы shell, моделирующей про­
стейший командный интерпретатор, а управление нитями представляет программа
pdu, параллельная модель измерителя файлов в дереве каталогов du(1). Сетевое
взаимодействие иллюстрируется простейшими TCP-клиентом, моделирующим
telnet(1) (или netcat(1)), и TCP-сервером, моделирующим сервер службы удаленного
доступа, похожей на telnetd(8) (или sshd(8), только без криптозащиты).

Завершаются иллюстрации четырьмя вариантами простейшей GUI-программы
W : [Hello, _world!], выполненной на языках С, Python и Тс1 и являющейся Х-клиен-
том оконной системы X Window, использующим ее графические библиотеки ин­
терфейсных элементов Qt, Gtk+ и Tk.

http://www.bhv.ru
ftp://ftp.bhv.ru/9785977566308.zip

390 Заключение

Кроме собственно иллюстрационных программ, архив содержит вспомогательные
сценарии на языке командного интерпретатора, формирующие «программного гида»,
который поможет откомпилировать и запустить эти программы и вдобавок про­
комментирует результат их выполнения в тех частях, где анализ результата не бу­
дет тривиальным. Сами сценарии «программного гида» тоже являются живыми
примерами практик и приемов программирования на языке командного интерпрета­
тора, анализируя которые можно расширить восприятие материала соответствую­
щей главы, посвященной этой теме.

Как и ожидалось с самого начала, эта книга является лишь иллюстративным вве­
дением во внутреннее устройство ОС Linux, оставляющим за кадром массу спе­
цифичных деталей реализации конкретных версий ее ядер или ее дистрибутивов.
Выстроив «правильную» начальную ментальную модель операционной системы, все
эти тонкости можно без значительных усилий почерпнуть из собственной практики,
документации, интернет-общения или других книг (см. список литературы).

Список литературы

Для удовольствия
Торвальдс Л., Даймонд Д. Just for Fun. Рассказ нечаянного революционера:

Пер. с англ. — М.: Эксмо-Пресс, 2002. 288 с. — ISBN 5-04-009285-7.

Начинающим
Граннеман С. Linux. Карманный справочник: Пер. с англ. — М.: Вильямс, 2015.

416 с. — ISBN 978-5-8459-1956-4.

Пайк Р., Керниган Б. UNIX. Программное окружение: Пер. с англ. — СПб.:
Символ-плюс, 2003. 416 с. — ISBN 5-93286-029-4.

Реймонд Э. Искусство программирования для UNIX: Пер. с англ. — М.: Вильямс,
2016. 544 с. — ISBN 978-5-8459-2064-5.

Тейнсли Д. Linux и UNIX: программирование в shell. Руководство разработчика:
Пер. с англ. — СПб.: БХВ-Петербург, 2001. 464 с. — ISBN 5-7315-0114-9.

Фридл Дж. Регулярные выражения: Пер. с англ. — СПб.: Символ-плюс, 2008.
608 с. — ISBN 5-93286-121-5.

Dougherty D., Robbins A. sed & awk. — O’Reilly Media, 1997. 432 p. —
ISBN: 1-56592-225-5.

Программистам
Керриск M. Linux API. Исчерпывающее руководство: Пер. с англ. — СПб.:

Питер, 2019. 1248 с. — ISBN: 978-5-4461-0985-2.

Лав Р. Linux. Системное программирование: Пер. с англ. — СПб.: Питер, 2016.
448 с. — ISBN 978-5-496-01684-1.

Роббинс A. Linux: программирование в примерах: Пер. с англ. —
СПб.: КУДИЦ-Пресс, 2008. 656 с. — ISBN:978-5-91136-056-6.

392 Список литературы

Стивенс У. Р., Раго С. UNIX. Профессиональное программирование:
Пер. с англ. — СПб.: Символ-плюс, 2014. 1104 с. —
ISBN 978-5-93286-216-2.

Бесстрашным
Бовет Д., Чезати М. Ядро Linux: Пер. с англ. — СПб.: БХВ-Петербург, 2007.

1104 с. — ISBN 0-596-00565-2, 978-5-94157-957-0.

Лав Р. Ядро Linux. Описание процесса разработки: Пер. с англ. — М.: Вильямс,
2014. 496 с. — ISBN 978-5-8459-1944-1.

Kroah-Hartman G. Linux Kernel in a Nutshell. — O’Reilly Media, 2006. 202 p. —
ISBN 978-0-596-10079-7.

McKellar /., Rubini A., Corbet /., Kroah-Hartman G. Linux Device Drivers,
3rd Edition. — O’Reilly Media, 2005. 640 p. — ISBN 978-0-596-00590-0.

Предметный указатель

А И
Авторизация 48
Адрес виртуальный 160
Алгоритм 115
0 планирования 145

° вытесняющий 145
Аутентификация 49

Имя:
0 абсолютное путевое 62
0 относительное путевое 62
Интерпретатор 115

К
Б Кадр страничный 160

Канал:
Библиотека 116 0 именованный 63, 74, 181

0 неименованный 180, 199
В Каталог 63, 65

Взимодействие межпроцессное 179
Вызов:
0 библиотечный 19
0 системный 19
Выражение регулярное 237

0 рабочий 62
Ключ:
0 закрытый 263, 266
0 открытый 263, 266
0 сеансовый 263
Компилятор 115

Г Л
Группа процессов 176

Д
Лидер:
0 группы 176
0 сеанса 176

Демон 136
Дерево:
0 каталогов 78
0 процессов 134
Дескриптор файловый 75
Драйвер терминала 73

м
Маркер доступа:
0 DAC 137
0 MAC 139
Метасимвол 202

3 Многозадачность 121
Монтирование 78

Задача 133

394 Предметный указатель

н
Нить 19, 123

о
Обмен страничный 162
Обработка конвейерная 198
Однозадачность 121
Отображение страничное 160

п
Память:
0 виртуальная 162
0 разделяемая 186
Параметр:
0 позиционный 204, 207
0 специальный 204, 208
Переменная 204
0 окружения 53, 204
Планировщик 144
Подсистема:
0 ввода-вывода 19
0 управления памятью 19
0 ядра, файловая 20
Подстановка:
0 вывода команд 209
0 значений параметров 204
0 имен фалов 202
Политика SELinux 107
Поток текстовый 237
Программа 115
Прозрачность сетевая 291
Протокол сетевой 251
Процесс 19, 121, 122
0 демон 136
0 прародитель 134
0 прикладной 135
0 системный 136

Р
Режим:
0 доступа к файлу 90
0 пользовательский 17
0 ядерный 17

с
Сеанс 176
Семафор 190
Сигнал 171
Символ управляющий 25
Система псевдофайловая 82
Служба имен 188
Смесь мультипрограммная 122
Сокет 182
0 именованный локальный 184
0 неименованный локальный 182
0 сетевой 251
0 файловый 63, 74
Список команд 218
0 простой 218

° асинхронный 218
° синхронный 218

0 условный 219, 221
0 циклический 226
Ссылка:
0 жесткая 67
0 права доступа 94
0 символическая 69
-0 сирота 69
Страница памяти 160
Сценарий на языке командного

интерпретатора 234

т
Таблица:
0 имен 65
0 страниц 160
Терминал 25
0 алфавитно-цифровой 25
0 аппаратный 73
0 виртуальный 73
0 дисплейный 25
0 печатающий 25

У
Устройство:
0 бесконечно нулевое 74
0 всегда полное 74
0 всегда пустое 74

Предметный указатель 395

ф
Файл:
О FIFO 74
О обычный 63, 64
О специальный:

° блочный 71
° символьный 71

О устройства, специальный 63
Файловая система:
О дисковая 80
О сетевая 80
Функция 231

Ц

ш
Шифрование симметричное 263

э
Экранирование:
0 сильное 216
0 слабое 216
Электронная почта 270

Я
Ядро 17, 118, 136

Цикл с параметром 226

Колисниченко Д.
Linux. О т новичка к профессионалу

www.bhv.ru
7-е изд.

Отдел оптовых поставок:
e-mail: opt@bhv.ru

Гарантия эффективной работы в Linux

• Ядро 5.0
• Варианты загрузки Linux и управление загрузкой
• Работа с файловой системой и устройствами

в Linux
• Файловая система ext4, UUID накопителей,

загрузчик GRUB2
• Настройка сети, Интернета и популярных

серверов Apache, ProFTPD, Samba, BIND и др.
• Настройка SSL-сертификата, ускорение

веб-сервера с помощью Memcached и Google
PageSpeed

• Настройка VPN-соединения, выбор
VPN-провайдера, настройка VPN-сервера

• Выбор VPS/VDS-провайдера
• Системы виртуализации OpenVZ, Virtuozzo
• Программные системы хранения данных

с резервированием

Книга предназначена для широкого круга пользователей Linux и поможет им само­
стоятельно настроить и оптимизировать эту операционную систему. Даны ответы
на все вопросы, возникающие при работе с Linux: от установки и настройки этой
ОС до настройки сервера на базе Linux. Материал книги максимально охватывает
все сферы применения Linux от запуска Windows-игр под управлением Linux до
настройки собственного Web-сервера. Материал ориентирован на последние вер­
сии дистрибутивов Fedora, openSUSE, Slackware, Ubuntu. В седьмом издании книги
много внимания уделяется веб-серверам; в частности, добавлены описание на­
стройки SSL-сертификата и рекомендации по ускорению работы с помощью
Google-сервиса PageSpeed и системы кэширования данных Memcached.
Колисниченко Денис Николаевич, инженер-программист, системный администратор и
IT-консультант. Имеет богатый опыт эксплуатации и создания локальных сетей от домаш­
них до уровня предприятия на базе операционной системы Linux. Автор более 70 книг ком­
пьютерной тематики, в том числе «Самоучитель системного администратора», «РНР
и MySQL. Разработка веб-приложений», «Самоучитель Linux», «Самоучитель Microsoft
Windows 10», «Планшет и смартфон на базе Android для ваших родителей», «Самоучитель
системного администратора Linux» и др.

http://www.bhv.ru
mailto:opt@bhv.ru

www.bhv.ru

Кении А., Колисниченко Д.

Самоучитель системного администратора,

5-е изд.

Отдел оптовых поставок:
e-mail: opt@bhv.ru

Настольная книга администратора

• Системы высокой доступности и их
построение

• Оптимизация производительности

• Выбор оборудования и его характеристики

• Использование облачных технологий

• Объединение компьютеров Windows и Linux

• Контроль и управление

• Надежная защита данных

• Облачные технологии на практике

• Информационные системы на основе
Windows 7/8/10/Server 2012/2016

АЛЕКСАНДР КЕНИИ
ДЕНИС КОЛИСНИЧЕНКО

САМОУЧИТЕЛЬ
СИСТЕМНОГО

АДМИНИСТРАТОРА
5-е издание

Есть области человеческой деятельности, где фактор личного опыта и мастерства
играет решающую роль. Как ни парадоксально, вышедшее из самых точных наук
компьютерное дело относится к таковым. Дружественность интерфейсов часто бы­
вает столь же обманчива, как дружелюбие страховых агентов, а инструкции для
сисадминов написаны в расчете на профессионала, ответы так называемых специа­
листов еще более неясны.
К счастью, исключения есть. Авторы этой книги охотно делятся своим опытом,
консультируют, объясняют, обучают. Эти специалисты не только знают свое дело,
но и умеют рассказать о нем легко и доходчиво. Книга, которую вы держите в сво­
их руках, — яркое тому подтверждение.

Кении Александр Михайлович, автор более 10 книг компьютерной тематики, вышедших
общим тиражом более 500 000 экз., делится с читателями своим двадцатилетним опытом
проектирования и управления информационными системами.

Колисниченко Денис Николаевич, инженер-программист и системный администратор.
Имеет богатый опыт эксплуатации и создания локальных сетей от домашних до уровня
предприятия. Автор более 50 книг компьютерной тематики, в том числе по операционным
системам Linux и Microsoft Windows 7/8/10.

http://www.bhv.ru
mailto:opt@bhv.ru

Шлее М.^bhv
www.bhv.ru

Q t 5.10. П роф ессиональное программирование
на C++

Отдел оптовых поставок:
e-mail: opt@bhv.ru

Платформно-независимая реализация приложений —
это уже сегодняшний и завтрашний день программной индустрии.

И эта книга станет вашим путеводителем в будущее.

• Кроссплатформенная реализация приложений
для Windows, Mac OS X и Linux

• Разработка мобильных приложений для Android
и iOS

• Программирование 2D- и 3 D-графики,
мультимедиа, веб-приложений, баз данных,
сети, таймера, многопоточности, XML, QML
и JavaScript

• 240 завершенных программ

Книга подробно знакомит с библиотекой Qt 5.10,
являющейся не только средством для создания
пользовательских интерфейсов, но и позволяющей
разрабатывать приложения практически любой
сложности. Недаром Qt широко используется мно­

гими организациями и компаниями, такими как ADOBE, AMAZON, AMD, BOSCH,
BLACKBERRY, CANNON, CISCO SYSTEMS, DISNEY, INTEL, IBM, PANASONIC,
PIONEER, PHILIPS, ORACLE, HP, GOOBER, GOOGLE, NASA, NEC, NEONWAY,
NOKIA, SAMSUNG, SIEMENS, SONY, XEROX, XILINX, YAMAHA и др.
Если вы хотите идти в ногу со временем, то вам без этой книги просто не обойтисьг
поскольку она является исчерпывающим пособием по написанию Qt 5-программ
на C++ и QML.
Макс Шлее (Max Schlee) — закончил Университет прикладных наук в городе Кайзерлау-
терн (Германия). Сооснователь компании NEONWAY по разработке программного обеспе­
чения на Qt. Работал разработчиком программного обеспечения в фирмах THOMSON,
Grass Valley, DigitalFilmTechnology Weiterstadt, Goober Ltd. и Advancis. Эксперт в области
объектно-ориентированного проектирования, специализирующийся на C++ и Qt. Создатель
более 40 программ и приложений для Windows, Mac OS X, iPhone, iPad и Android. Увлечен­
но занимается проектами в области программирования графики, звука и анализа финансо­
вых рынков. Является автором ряда статей, научных докладов на международных конфе­
ренциях по генеративному программированию пользовательского интерфейса. Автор книг
«Qt 4/4.5/4.8. Профессиональное программирование на C++» и др. Связаться с автором
можно по адресу электронной почты Max.Schlee@neonway.com или через его персональ­
ный блог www.maxschlee.com.

■—ш— ф у

Ш5.10 м
ПРОФЕССИОНАЛЬНОЕ О ■ i
ПРОГРАММИРОВАНИЕ НА ||Т Т

В ПОДЛИ Н Н И КЕ0

http://www.bhv.ru
mailto:opt@bhv.ru
mailto:Max.Schlee@neonway.com
http://www.maxschlee.com

Прохоренок Н.
Основы Java

2-е изд.

^bhv
www.bhv.ru

Просто о сложном

• Базовый синтаксис языка Java

• Объектно-ориентированное программирование

• Работа с файлами и каталогами

• Stream API

• Функциональные интерфейсы

• Лямбда-выражения

• Работа с базой данных MySQL

• Получение данных из Интернета

• Интерактивная оболочка JShell

Если вы хотите научиться программировать на языке Java, то эта книга для вас.
В книге описан базовый синтаксис языка Java: типы данных, операторы, условия,
циклы, регулярные выражения, лямбда-выражения, ссылки на методы, объектно-
ориентированное программирование. Рассмотрены основные классы стандартной
библиотеки, получение данных из сети Интернет, работа с базой данных MySQL.
Во втором издании приводится описание большинства нововведений: модули, ин­
терактивная оболочка JShell, инструкция var и др.
Книга содержит большое количество практических примеров, помогающих начать
программировать на языке Java самостоятельно. Весь материал тщательно подоб­
ран, хорошо структурирован и компактно изложен, что позволяет использовать
книгу как удобный справочник.
Прохоренок Николай Анатольевич, профессиональный программист, автор книг «HTML,
JavaScript, РНР и MySQL. Джентльменский набор Web-мастера», «Python 3. Самое необхо­
димое», «Python 3 и PyQt 5. Разработка приложений», «OpenCV и Java. Обработка изобра­
жений и компьютерное зрение» и др.

Отдел оптовых поставок
E-mail: opt@bhv.ru

Основы Java
язы ка Java
О бъекте
ориентированнее
программирование
Работа с файлами
и каталогами
Stream API
Функциональные
интерфейсы

| Лпмодз выражения
Работа с базой
данных MySQL
Получение равны *
из Интернета
Интерактивная

http://www.bhv.ru
mailto:opt@bhv.ru

ВНУТРЕННЕЕ | | |L| |
устройство L i l l ^ l l wJSl

• П ользовательское о кр у ж ен и е
и интерф ейс ком андной строки CLI

• Ф айлы , каталоги и ф айловы е системы
• Д и скр ец и о н н о е , м андатное

р азгр ан и чен и е д оступа и привилегии
• Процессы и нити
• Виртуальная память и отображ аем ы е

файлы
• Каналы , сокеты и разделяем ая память

• Сетевая подсистем а и сл уж ба SSH
• Граф и чески й интерф ейс GUI:

оконны е системы X W indow
и W ayland

• П рограм м ирование на язы ке
ком анд ного интерпретатора

• Контейнеры и виртуализация
• Linux своими рукам и

Кни га , которую вы д ер ж и те в руках, адресована студентам , начинаю щ им поль­
зователям , програм м истам и систем ны м адм инистраторам операционной
системы Linux. О на представляет собой введение во внутреннее устройство
Linux — от ядра до сетевы х сл уж б и от утил ит ком андной строки до гр аф и ч е ­
ско го интерф ейса.

Все части операционной системы рассм атриваю тся в ко н тексте типичны х з а ­
дач, реш аем ы х на п р акти ке , и поясняю тся при пом ощ и соответствую щ его
инструм ентария пользователя, адм инистратора и разраб отчика .

Все полож ения наглядно проиллю стрированы прим ерам и, разработанны м и
и проверенны м и автором с целью привить читателю навы ки сам остоятельного
исследования постоянно эволю ционирую щ ей операционной системы Linux.

Кетов Д м итрий Владимирович, инженер в Санкт-Петербургском
исследовательском центре LG Russia R&D Lab. Профессионально
занимается теорией построения и практикой разработки
операционных систем и системного программного обеспечения.
Имеет многолетний опыт преподавания в Санкт-Петербургском
политехническом университете (СПбПУ) в области операционных
систем и сетевых технологий.

ISBN 978-5-9775-6630-8

9 785977 566308

191036, Санкт-Петербург,
Гончарная ул., 20
Тел.: (812) 717-10-50,
339-54-17, 339-54-28
E-mail: mail@bhv.ru
Internet: www.bhv.ru

mailto:mail@bhv.ru
http://www.bhv.ru

