

Debian 7: System
Administration Best Practices

Learn the best ways to install and administer a Debian
Linux distribution

Rich Pinkall Pollei

BIRMINGHAM - MUMBAI

Debian 7: System Administration Best Practices

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2013

Production Reference: 1181013

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK

ISBN 978-1-78328-311-8

www.packtpub.com

Cover Image by Vivek Sinha (vs@viveksinha.com)

Credits

Author
Rich Pinkall Pollei

Reviewers
Arturo Borrero González

Daniele Raffo

Ron Savage

Acquisition Editor
Rubal Kaur

Commissioning Editor
Govindan K

Technical Editors
Rohit Kumar Singh

Harshad Vairat

Project Coordinator
Romal Karani

Proofreader
Kevin McGowan

Indexer
Rekha Nair

Graphics
Sheetal Aute

Production Coordinator
Aditi Gajjar

Cover Work
Aditi Gajjar

About the Author

Rich Pinkall Pollei's over 40 year interest in computer hardware and software
began in high school with Ohio Scientific's release of the first kit-built computers
in the early 1970s. Later, he progressed to other systems, learning all he could of
both the underlying hardware and software architectures, eventually working as a
consulting programmer on some of the early time-sharing systems, first at the college
he attended, and later when he worked as a Psychiatric Social Worker for the Tri-
County Human Services Center in Reedsburg, Wisconsin.

Eventually, he decided to move into Information Technology as a permanent
profession. He started as the Assistant Manager of Data Entry for Wisconsin Dairy
Herd Improvement Cooperative at a time when such departments were common.
He stayed with that company in various positions involving systems programming
and analysis, and continued to learn. He was an official Beta Tester for Windows
3.0. Later, he set up the company's first Internet e-mail system using a discarded
computer and modem, and the free version of Red Hat Linux. Total cost, not
counting the dial-up account and his time, was $0, demonstrating that: "We who
have done so much with so little for so long are now prepared to do absolutely
anything with nothing".

Eventually, Wisconsin DHIA became AgSource Cooperative Services, which
soon combined with other dairy industry-related cooperatives under a holding
cooperative known as Cooperative Resources International (CRI). Rich continued to
study and learn as computers and networking grew to greater importance in both
our personal and business lives. For a number of years, he served as an official on the
Unite Conference Planning committee (Unite is an independent, Unisys User Group).

Today, his official position is as a Security Analyst and Systems Engineer in the
Infrastructure department of Information Technology for CRI, and he is approaching
his 35th year with the company (or its predecessors). As such, he administers a
number of Debian Linux servers, manages the official Internet infrastructure (he has
one of the oldest individual handles still in use by an original registrant at ARIN),
and consults on hardware issues, software internals, networking problems, and
system and network security. He is a member of the Association for Computing
Machinery (ACM), and has contributed code to several free software projects,
including the Linux kernel, Blender, Vega Strike, and the Novell Core Protocol
Filesystem utilities for Linux.

When not playing with computers, he is a science geek, plays chess, writes and
arranges music, sings and plays saxophone and percussion in a local music group,
collects old-fashioned books and board games, and is a licensed pilot.

This book would not have been possible without the support of my
wife, Patricia, who gave up a good deal of our social time, since
my day job required me to write it outside of normal working
hours. Thanks, also, go to Sharvari Tawde of Packt Publishing, for
encouraging me to take the plunge and write my first, full book,
and the rest of the crew at Packt Publishing for helping me through
the rough spots. I'd also like to thank my co-workers, especially
Kathleen Anderson and Jean Banker, who provided encouragement
when I was first offered the opportunity to write this book.
Finally, to Louie and Tinkerbelle, the family cats who forced me
to take periodic breaks by jumping on the computer keyboard and
demanding attention.

About the Reviewers

Arturo Borrero González has been working in the IT environment for almost 5
years now, always with Linux systems.

He is interested in networking and high availability clusters.

For the last 3 years, Arturo's job has been in Centro Informático Científico de
Andalucía (CICA), the regional National Research and Education Network (NREN)
of Andalusia (Spain). There, he does system administration for the Network
Information Security department.

He loves Debian and free/open-source software.

Currently he is collaborating with the Netfilter project. Also, he's trying to get his
degree in IT engineering at the University of Seville.

Daniele Raffo has been a happy Linux user since the mid-1990s, and now an LPIC
certified Linux Professional. Holder of a Ph.D. in Computer Science and former
CERN civil servant, he also has experience in the fields of networking, security, and
Java programming. He is the lead author of the official Handbook for Enigmail, the
OpenPGP plugin for Mozilla applications.

I would like to thank my parents and Renata for their support, and
Linus Torvalds for his extraordinary idea.

Ron Savage is a semi-retired programmer who has been writing software in Perl
for a number of decades.

He has a degree in mathematics (astrophysics), but has always worked as
a programmer.

He has found that, even using Perl, he still has to write a lot of Bash, SQL, JavaScript,
HTML, and CSS to design and build databases for servers such as Postgres.

Nevertheless, while writing Perl he's had great fulfillment, and endless opportunities
for expressing creativity, and has enjoyed almost every single day's work. Yes, even
the hard days.

He's always worked as a self-employed contractor, and has encountered a fascinating
range of work. Some instances are:

At BHP (an Australian mining corporation), they bought some American 'Star Wars'
technology which fired radar straight down from a plane into the sea, searching
for Russian submarines. BHP adapted it to search for seams of minerals (on land),
aimed down from a wooden glider towed by a (metallic) plane, and that required
processing vast amounts of data, and new ways to visualize such data.

At Telstra (the dominant Australia-wide communications company) he wrote a lot of
code to help maintain about 15,000 network routers scattered across the country, and
which carry almost all Australian phone and Internet sessions.

Another contract was a pair of search engines written for Monash University, based
in Melbourne. One is used by staff and students, and the other is dedicated to the
telephonists. The latter uses the same database as the former, but also communicates
with a number of PABXes.

Currently, he's working with Peter Stuifzand (in the Netherlands) on a short book
called The Marpa Guide. Marpa is a recent, and astonishing, generic lexer and parser
written by Jeffrey Kegler.

He also writes fiction and autobiographical works.

I'm indebted to my parents for providing a liberal-minded
environment to grow up in, completely free from
doctrinaire-style influences.

I'm also delighted to thank everyone who contributes to
Open Source projects, in all their variety. It's a wonderful,
global, and communal type of volunteering, and has provided
me with a fascinating and fulfilling career.

One drawback of programming, though, is that it deals with
concepts and activities incomprehensible to people of my parents'
generation, and even to my friends, but the creativity makes up
for that.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface	 1
Chapter 1: Debian Basics for Administrators	 5

Linux distributions	 5
The three branches	 6

SLS	 6
RPM	 6
DPKG or DEB	 7

Other differences	 7
The Debian Project	 8

The social contract	 9
Constitution	 9
Policies	 10
Licensing	 11

What happened to Firefox?	 11
Repositories	 12
Debian environments	 13
Impact on administration	 14

Debian support	 14
Proprietary features	 15
Where to find installation help and information	 16

Summary	 16
Chapter 2: Filesystem Layout	 17

Partition tables	 17
Single or multiboot	 18
BIOS versus UEFI	 18

Boot code under BIOS	 18
Boot code under UEFI	 20

Table of Contents

[ii]

Filesystem types	 20
ext2, ext3, and ext4	 21
Journaled File System	 21
SGI's XFS File System	 21
Reiser File System	 21
B-Tree File System	 22
Clustered formats	 22
Non-Linux formats	 22
Other Unix formats	 22
Choosing a format	 23

Partitioning	 23
Partitioning for backup and recovery	 23
Space-limiting partitions	 23
Disk management	 24
Logical Volume Management	 24
The swap partition	 24
Selecting a partitioning scheme	 25

Encryption	 25
Why encrypt?	 26
Disk encryption	 26
Directory encryption	 27
Choosing encryption	 27

Installing Debian	 28
Summary	 28

Chapter 3: Package Management	 29
Package managers	 30

dpkg and dselect	 30
Advanced Package Tool	 30
aptitude	 31
Synaptic	 31

Package selection and maintenance	 32
Configuring media or repositories	 32
The significance of the release name	 35
Selecting packages	 35
Updating your package cache	 35

Command-line selection	 36
Selection lists	 36

Meta packages	 36
A word about dependency resolution	 37
Removing packages	 38

Keeping current	 38

Table of Contents

[iii]

Automatic updates	 38
Foreign packages	 39

Alien	 39
Manual builds	 40

Upgrading your system	 41
Prior to the upgrade	 41
During the upgrade	 42
After the upgrade	 43

Summary	 44
Chapter 4: Basic Package Configuration	 45

Configuration files	 45
/etc/default	 46
/etc/<package name>	 46
Initial configuration	 47

Configuration utilities	 48
dpkg-reconfigure	 48
gadmin	 49
Desktop configuration	 49
Other utilities	 49

Local configuration trends	 50
Local configuration files	 50
Configuration subdirectories	 51
Configuration advice	 51

Apache configuration	 51
Configuration files	 52
Enabling sites and modules	 53
Testing and activating the configuration	 53

Other examples	 54
Summary	 55

Chapter 5: System Management	 57
Startup and shutdown	 57

Debian run levels	 57
Dependency-based boot sequence	 58
Managing SysV scripts	 60
Third-party and local scripts	 60
Network administration	 61
The interfaces file	 61
Network Manager	 63
Combining methods	 64
Which method?	 65

Table of Contents

[iv]

Filesystem maintenance	 66
Partition maintenance	 66

Filesystem Check (FSCK)	 66
Partition resizing	 67

Backups	 69
Low-level backups	 69
File-level backups	 70
Backup utilities	 70
Choosing your solution	 71

System logging	 72
The logging facility	 72
Controlling the logs	 73
Monitoring the logs	 73

Display managers	 74
Where did my desktop go?	 74
GNOME	 75
KDE	 75
Other desktops	 75
Showing your best face	 76

Summary	 76
Chapter 6: Basic System Security	 77

User administration	 77
Default user group	 77
ACLs	 78
The root account	 79

Debian hardening packages	 80
Firewall tools	 81

IPTABLES	 82
Basic firewall design	 83

Inbound opens	 83
Outbound traffic	 84
Local loopback traffic	 84
The perimeter network	 85

Intrusion detection	 86
NIDS	 86
File Monitors	 87
System scanners	 87

A final word on remote logging	 88
Summary	 88

Chapter 7: Advanced System Management	 89
Remote backups	 89

Amanda	 90

Table of Contents

[v]

Bacula	 91
Other backup systems	 92
Beyond backups	 92

Configuration management	 92
Fully Automated Installation	 93
Puppet	 93
Other packages	 93

Clusters	 94
High Availability clusters	 94
Beowulf clusters	 95
Common tools	 95

Webmin	 95
Installing Webmin	 96
Using Webmin	 96
Webmin and Debian	 97
Webmin security	 98
Usermin	 98

Summary	 98
Index	 99

Preface
The Debian Linux distribution is the most stable distribution available, and it is
used on more Internet web servers than any other operating system. While there
are many instructional web pages and cookbooks written about Linux, and Debian
Linux in particular, it is too easy for new users and seasoned administrators to get
lost in the details. This book provides a broad overview, more of a what to than
a how to, of Debian Linux administration. The chapters are designed to cover the
subjects an administrator must address, and include background information, tips
and suggestions, and basic knowledge and administration techniques. References are
included that cover the various topics in greater detail than can be included in a book
of this length.

Although oriented towards the current Debian stable distribution, the subjects
covered are useful for any Linux administrator to know. As for the lack of numerous,
detailed examples, I apologize. It is impossible in a book of this length to go as far
into details as I would have liked. Fortunately, the Debian Project provides excellent
guides and references, as well as online web pages that are pointed out in the text.

What this book covers
Chapter 1, Debian Basics for Administrators, covers what distinguishes Debian from
other Linux distributions, and delves into the background of the Debian Project and
free software in general.

Chapter 2, Filesystem Layout, covers the two primary methods used to boot Intel
32- and 64-bit systems, the various Linux filesystem formats, disk partitioning,
and data protection using disk, partition, and directory-based encryption.

Chapter 3, Package Management, covers the basics of Debian package management,
including the management utilities and updating your system.

Preface

[2]

Chapter 4, Basic Package Configuration, covers common software configuration
techniques, including the location of files and documentations, and trends in
Debian configuration.

Chapter 5, System Management, covers important system management topics,
including startup and shutdown, networking, filesystem maintenance, and
display managers.

Chapter 6, Basic System Security, covers security issues important for system safety,
including special packages available to assist in installing additional security
software, firewall tools, and intrusion detection.

Chapter 7, Advanced System Management, briefly covers advanced management topics
including remote backups, distributed configuration management, and clustering.
It also includes coverage of Webmin, a web-based administration tool that is
compatible with nearly all Linux installations.

What you need for this book
Although software is not required, this book covers the Debian 7 Linux distribution.
All software referred to in this book, with the exception of Webmin, is available in
the Debian stable release, available for download from the Debian Project web site
(http://www.debian.org/). It is also available on CD, DVD, and Blu-ray Discs
from vendors mentioned on that site. Webmin software is available from its own site
(http://www.webmin.com/).

Access to the Internet is required if you are going to download the software, or if
you wish to follow up with the various reference material and other documents
mentioned in the book. In particular, beginners are encouraged to become familiar
with the Debian installation guide (http://www.debian.org/releases/stable/
installmanual) and the reference manual (http://www.debian.org/doc/
manuals/debian-reference/), which are also available as documentation packages
in the Debian distribution.

Who this book is for
This book is for users and administrators who are new to Debian, or for seasoned
administrators who are switching to Debian from another Linux distribution. A
basic knowledge of Linux or Unix systems is assumed. Since the book is a high-level
guide, more of a what to than a how to, the reader should be willing to go to the
referenced material for further details and practical examples.

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Usually, this is added to a separate
webmin.list file in /etc/apt/sources.list.d."

Any command-line input or output is written as follows:

deb cdrom:[Debian GNU/Linux 7.0.0 "Wheezy" - Official amd64 \
 NETINST Binary-1 20130504-14:43]/ stable main

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Often,
this is as simple as providing a standard configuration, such as Apache's simple
It works! page."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[4]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Debian Basics for
Administrators

"What is the best distribution for my needs? What do I need to know to administer
a Debian system? What's different about Debian? What is the best way to handle
something specific in Debian? I ran an Internet search on these questions and got
millions of results. Now what do I do? Can someone help me?"

The answer to the last question is yes. Answering the others requires a bit of
background. This discussion is oriented towards those who are new to Debian.
In it, we'll cover Debian's place among the various Linux distributions, project
organization (and how that impacts administration), and licensing issues. Those
who are already familiar with Debian may wish to skip ahead to the next chapter.

Linux distributions
Debian is just one of many Linux distributions. Selecting which distribution is
best for your deployment can be a rather daunting task. The reason for so many
distributions is that the developers or sponsors of each have a different vision of
which software should be installed by default, which software is appropriate for
particular tasks, and how the system is best administered. This means that selecting
a distribution that matches your purpose and preferences will make installation and
administration easier.

Any distribution can be made to reflect an administrator's preferences
by installing non-default software or, in some cases, software not native
to the distribution software and using non-default configurations.
However, selecting an appropriate distribution means less effort is
necessary to fulfill the administrator's requirements.

Debian Basics for Administrators

[6]

The three branches
Linux distributions can be broken down into three branches, named from their
original distribution or their package managers: SLS, RPM, and DPKG.

SLS
The Softlanding Linux System (SLS) distribution, which evolved into the Slackware
distribution, is one of the oldest. Distributions in this branch generally made
minimal or no changes to the original software packages before including them.
Distributions using this format generally provided no native software management
and depended on third-party utilities for package management and administration.
These utilities were readily available and often included, so this was not necessarily
a disadvantage.

These distributions are also known as Sorcerer/Lunar-Linux/Source
Mage (SLS) distributions for the most common distributions using the
format.

These distributions are mostly obsolete and not often seen. However, the package
format is still used by many software projects.

RPM
The Red Hat Package Manager (RPM) was developed by Red Hat in order to
provide some structure for software management. It provides all of the customary
software management features which are as follows:

•	 Software installation, including resolution of software dependencies during
the process

•	 Various reports on the installed software
•	 Software verification and control
•	 The ability for users to package their own software so that it can also

be managed

Most RPM-based distributions are sponsored by a company that also sells an
enhanced version of the distribution and provide extensive, paid support. This also
means that unified administrative utilities are available, at least in the paid version,
and often in the free version with somewhat reduced features. Many administrators
prefer this approach, which makes most common administrative tasks available
through a single starting place.

Chapter 1

[7]

The most common distributions using this format are Red Hat (and the paid
version, Red Hat Enterprise Linux or RHEL) and SuSE (the free version is known as
OpenSuSE and the paid version is often referred to as SuSE Linux Enterprise Server
or SLES).

DPKG or DEB
The Debian Packaging System (DPKG/DEB) was developed about the same time
as the RPM, and has the same features, although they are implemented differently.
DPKG refers to the original software packaging utility. This has been superseded
by more flexible and user-friendly utilities, so this branch is often referred to by the
extension used by the package files: DEB (.deb). Some distributions in this branch
have corporate sponsorship (Ubuntu is the most notable) and thus, have a unified
administrative utility, similar to SuSE's YaST for example. Others, such as Debian,
depend upon third-party software to fulfill this function.

The most common distributions in this branch are Debian and Ubuntu. Most of the
others in the branch, such as Mint and BackTrack, are derived from one of these.

Other differences
There are a couple of other things administrators should know about how Debian
differs from other distributions before we get into details.

One thing to note is that the home of a distribution, if you will, can affect the
character of a distribution. For example, Red Hat was originally developed in the
United States and, as such, reflects the common usage and preferences of American
administrators. SuSE, on the other hand, originated in Germany, and reflects
European practices. A concrete example of this is that, for Red Hat, GNOME is the
preferred window manager, while SuSE is more geared towards the KDE desktop
manager, although both window managers, as well as others, are available in both
distributions. The primary issue is that a distribution that matches your preferences
will require fewer configuration changes or software package installations to match
your administrative style. Information on a distribution's history and intended
purpose can be found on the distribution's home page, and frequently in Wikipedia
entries as well.

The Debian project originated in the United States, but recruited developers
worldwide right from the beginning. Thus, defaults and settings reflect the most
common best practices worldwide as much as possible, with individual packages
reflecting the interpretation of their developer's particular experience.

Debian Basics for Administrators

[8]

The best practice is to select a distribution that best matches your preferences. That
way, the default configuration will be closest to what you want, and will require less
tweaking to match your administrative style.

Next, distributions fall into two main categories: those with corporate sponsorship,
and those without it. Corporate sponsorship usually implies that paid support is
available, as well as a paid version of the distribution with extra features. This does
not mean that it is not available for distributions without such sponsorship, only that
one must find third-parties that provide it rather than finding it in one place.

Debian does not have or accept corporate sponsorship, although it does accept and
receive a great deal of corporate support in the form of hardware, developer support,
and donations. The idea is that Debian is guided by their social contract and their
developers, rather than a particular corporate sponsor. Paid support is available from
a number of sources (many who have also contributed), and free support from the
developers and user community is available via many support pages and forums, as
well as an official bug reporting and tracking site.

Another thing that the lack of corporate sponsorship might imply is a lack of
structure or direction. This is not the case for Debian. In fact, there is a very strong
structure, with supporting processes and administrative responsibilities, guiding
Debian development and release. The main impact is more subtle—Debian is guided
by a social contract, and a community of developers committed to the idea of quality,
free software, widely available, that runs as trouble-free as possible in as many
environments as possible.

With that, let's take a look at the Debian Project itself.

The Debian Project
Debian is, at its heart, a totally free, volunteer-supported distribution. Unlike
Ubuntu, Red Hat, or SuSE, it is not sponsored by any corporation. This does not
mean it is any less organized. The Debian project is, in fact, well-organized, with
a well-defined government, detailed standards and guidelines, and specified
procedures for software release, maintenance, and support.

The name Debian comes from the names of the project founder, Ian
Murdock, and his wife Debra.

Chapter 1

[9]

The social contract
Above everything else, Debian developers believe in free software, as defined by
the Free Software Foundation. In essence, this definition ensures that users have
the freedom to:

•	 Run the program for any purpose
•	 Study how the program works and make modifications
•	 Redistribute copies
•	 Distribute copies of modified versions

All of this is embodied in the Debian Social Contract, and the Debian Free Software
Guidelines (DFSG), both of which may be found at http://www.debian.org/
social_contract. All Debian developers commit to this social contract, which states
the guiding principles for the Debian Project, and influences all decisions as to what's
included in the distribution and how it is distributed and maintained. Of particular
note are the provisions for non-free software, and support in many different
computing environments.

The non-free provision not only allows for such software to run on Debian systems,
but provides for special Debian repositories for that software which can be released
without payment. Such software is, in fact, supported by Debian developers who
package and support it. The primary distinction is that it is not a part of the official
Debian distribution, due to licensing restrictions. Of course, software that must
be paid for can also be run on Debian distributions. It just can't be included in the
Debian repositories.

Constitution
The means of achieving the goals of the Debian Social Contract is outlined in the
Debian Constitution. It lays out the formal structure and decision-making process.
The project has a full organizational structure that includes Officers, Distribution,
Publicity, Support, and Infrastructure divisions, with specific positions and
responsibilities. Although Debian is an all-volunteer organization, it is every bit as
organized as any large corporate entity.

Debian Basics for Administrators

[10]

Policies
In addition to the organization, there are very comprehensive policy manuals that
guide everything about development and release, including the structure of the
repositories and archives, as well as a number of related standards documents.
Information on all of this is available at http://www.debian.org/devel/.

One of the most important effects of these policies, and the organization behind
them, is the stability of the Debian distribution. At any one time, there are three
main versions of Debian available: stable, testing, and unstable. There are also
experimental and backports versions, but they are not complete distributions.

The experimental version contains packages that are incomplete and not
ready to be included in the unstable release. Backports contain newer
packages compiled especially for the current Debian stable release.

The unstable version is where active development takes place. Once a package
has no "release critical" bugs and works on all supported architectures, it is moved
to testing, where it gets additional testing. At some point, the testing contents are
frozen in preparation for a new stable release. After stability is verified and all
packages satisfy Debian requirements for release, testing becomes the new stable
release, and the cycle continues.

Requirements for the stable release are quite stringent. In fact, requirements for
testing are strict enough as some have commented that the testing version is more
stable than many companies' stable releases. Thus, in Debian, stable means just that.
A stable release of Debian is extremely dependable, with a system for releasing
security and emergency updates that keeps it so. It provides mission-critical,
production quality software for servers and development systems. This is one of the
main reasons Debian is used on more production web servers than any other Linux
distribution (according to W3Tech, as of January 2012).

As with any advantage, there is a corresponding disadvantage. Debian stable does
not always contain the latest, leading-edge software. This is done to ensure the
distribution is as mature and crash-free as possible. Of course, it is possible to install
newer software under Debian with its required dependencies. In fact, the backports
set of repositories contains just such software, pre-compiled especially for use on the
Debian stable release. Such packages, however, are not guaranteed to be as stable as
those that comprise the official stable release.

Chapter 1

[11]

Licensing
As mentioned in The social contract section, licensing is one of the central issues in
Debian. All of the software in the official Debian distribution is released under any
one of several free software licenses, usually some version of the GNU General
Public License (GPL), a Berkeley BSD-style license, or some form of the artistic
license used by some Perl developers.

What this means for administrators is that they can run Debian on as many different
systems as they wish, without licensing fees, and provide as many copies as they
wish to others, without restrictions (well, technically, there are restrictions, but
mostly they are requirements that will keep the software free, in the spirit of the Free
Software Foundation's definition).

This freedom does not prevent an administrator from running proprietary software
in Debian. In fact, such freedom is a part of the social contract. The only restrictions
are whatever that software's license states.

What happened to Firefox?
One of the best examples of how careful Debian is about licensing issues involves
the Mozilla suite of software, which includes the Thunderbird mail reader and the
popular Firefox browser. A whole chapter could be written on the history of the
dispute and the issues involved. However, the basic problem is that the Mozilla
artwork is not under a free license as defined by the Debian guidelines. For a while,
Debian was allowed to use other artwork, but eventually the Mozilla Corporation
withdrew that permission. Some of the reasons this changed included the way the
Debian developers compiled the software to comply with their policies and the
social contract.

After a long argument, the Debian project determined that the best approach was
to rename the software, as allowed by the Mozilla license, so it would remain
compatible with the DFSG. Thunderbird in Debian is now called Iceowl, and Firefox
is called Iceweasel.

The names evolved from early discussions when Iceweasel was used
to describe a hypothetical re-branded version. The name stuck. Other
Mozilla software was renamed in a similar fashion.

Debian Basics for Administrators

[12]

The advantages for administrators include the following:

•	 The Debian version is unencumbered by non-free licensing.
•	 Bugs are frequently fixed by the Debian maintainers more quickly. These

patches are passed on to the Mozilla maintainers. This is actually required
for all patches to any software by Debian developers by policy.

•	 Updates are managed via the Debian packaging framework rather than
requiring a separate, proprietary update procedure.

•	 The software uses standard Debian system libraries rather than installing
Mozilla's separate libraries.

•	 The software will run on the various Debian supported, non-Intel
architectures. For example, do you have an old IBM z Series server? Debian
Iceweasel will run on it. How about an old SG or Sparc workstation? Same
story, Debian Iceweasel will run just fine.

Nevertheless, Debian Iceweasel is, for all practical purposes, Firefox. It offers the same
look and feel, uses the same plugins, and identifies itself to servers as compatible with
Firefox. The same is true for the rest of the re-branded Mozilla software.

The Plugin Search feature is modified in Debian to seek only free plugins,
but I've never found this to be a problem. Non-free plugins can still be
installed at the user's own discretion, and will work.

Repositories
Another result of Debian's licensing policies is the existence of three distinct
software repositories:

•	 main: These are packages whose license conforms to the DFSG
•	 contrib: These packages have licenses that also conform to the DFSG,

but that depend on other packages or libraries that do not
•	 non-free: These are packages whose license does not conform to the DFSG

but that are allowed to be distributed with Debian

Users are free to choose whether to allow software from the contrib and non-free
classes to be installed. If it is installed, the users are responsible for knowing and
following the appropriate licenses.

Other, non-official repositories also exist, which host software that, for one
reason or another, isn't included in any of the official Debian repositories.

Chapter 1

[13]

Debian environments
Debian includes as wide a variety of software as possible. As of this writing, the
Debian stable distribution contains over 48,000 pre-compiled packages in the
latest stable version. According to some counts, this is more than any other Linux
distribution. To be fair, many of these are niche applications that do not have a wide
user base. But the number of packages is only a part of the story.

The support of many different environments is also a distinguishing characteristic
of Debian distributions, and probably one of the most startling. In fact, Debian is
unique in the number of different processors supported. At the time of writing, they
include both 32-bit and 64-bit Intel and AMD chips, ARM (EABI or little endian
version), Intel Itanium, MIPS (both big and little endian), PowerPC (yes, this means
it will run on IBM servers!), System/390 (the old IBM architecture), and SPARC. In
addition, the Alpha architecture was supported up until Debian 6.0, and there are
unofficial ports to other ARM architectures as well as Amtel's RISC chip (AVR32),
HP's PA-RISC chip (up until Debian 6.0), the Motorola 68000, IBM system Z, and
Hitachi SuperH processors. There is also support for FreeBSD as the primary
operating system instead of Linux on Intel 32-bit and 64-bit architectures, and there
are other unofficial or experimental non-Linux-based Debian distributions for the
GNU Hurd operating system.

This commitment results in a distribution that is extremely flexible, which can
be used in a great many environments. Because of this, the Debian developers
have chosen not to design a default installation package suitable for most users. A
default Debian install (with no optional software selected) includes only the basics.
The administrator is expected to select as options, or install later, the appropriate
software. This is not difficult as the base system includes everything necessary to
easily install additional software.

This contrasts with Ubuntu Linux, which is based on Debian. A basic Ubuntu
installation is designed to work out of the box for the majority of users. Thus, it
includes more software, making it an appropriate distribution for a new Linux
user without extensive knowledge of what may be available, or a preference for
exploring what is there, as opposed to wading through packages offered for
optional installation. However, this may also result in an installation with
unnecessary components. Of course, they may be easily removed, but it is another
example of choosing the proper distribution to reduce the administrator's workload.

Debian Basics for Administrators

[14]

This is one reason Debian is one of the major players in commercial servers, as only
the software and services necessary are installed, which generally leads to better
performance and simpler system management. This also means that Debian will
run acceptably on older, poorer performing equipment. Note that, in spite of this,
it is also most certainly possible to install a wide variety of software, both during
and after installation, which will allow a Debian system to fulfill even the most
insatiable developers.

Impact on administration
Now that we have the background on how Debian is organized and developed, the
question to be answered is, "how does this affect the administrator."

There are three primary areas which an administrator needs to be aware of. They are
as follows:

•	 The availability of support
•	 The availability of proprietary features
•	 Licensing issues

Debian support
The Debian Project has a very large and well-defined support structure that includes
a lot of documentation, a Wiki, mailing lists and newsgroups, websites, and forums.
Live help is available on IRC, and there is a well-developed and effective bug
tracking system, usable by anyone. It is also possible to contact Debian developers
and package maintainers directly, something not always possible with other
distributions. These and other available support resources may be found at
http://www.debian.org/support.

The thing to remember is that these are volunteers (some of them are, in fact, paid
by companies that officially donate their time to the Debian Project). A major release
occurs about every two years, and is supported with updates for three years, or
about a year after the following major release. The response to bug reports and
support requests, in my experience, is quite good, and sometimes faster than paid
support. Of course, the quality of advice in places like the forums varies with the
experience of the person giving the advice. Nevertheless, this works very well for
the majority of users. The fact that Debian releases are extremely stable to begin with
helps.

For those who prefer to pay for support, there are a number of companies and
individuals that provide such a service. In fact, the Debian website has a page that
lists such consultants all over the world.

Chapter 1

[15]

In a similar vein, although Debian is freely available by downloading from any of the
numerous Debian servers and mirror sites, and burning one's own set of installation
CDs, DVDs, or Blue-ray discs from the images so obtained, it is also possible to
purchase ready-made installation media from third-party vendors.

Proprietary features
Simply put, there is no paid version of Debian with extra features.

One of the side effects of this is that there is no official Debian-unified administration
utility. SuSE, for example, provides YaST, and Ubuntu provides UCC. However,
there are many configuration and administration tools available in the distribution,
and the various window managers, such as GNOME and KDE gather their
administrative menu entries in one place for easy use. Likewise, there are third-party
applications that work well on Debian that bring most, if not all, common tasks into
a single place with a unified and user-friendly interface.

Probably the most important issue the administrator will run into is the problem
of supported hardware. While Debian attempts to support as wide a variety of
hardware as possible, some manufacturers don't provide information on their
proprietary hardware. Without such information (required to write a driver), if a
manufacturer doesn't provide a Linux driver, it won't be supported in Debian.

There are special cases. Certain Windows XP drivers can be used by
Linux if they are available, but they require additional steps to install
and activate them.

Actually, this isn't so much a Debian issue as a Linux issue. Some distributions
that offer a paid version may include proprietary drivers in the enhanced version.
However, in general, if your hardware is supported by Linux, it will work with
Debian. There are a number of pages available on the Debian Wiki as well as other
sites explaining how to get Linux and Debian to run on many systems with unusual
hardware. Furthermore, with the gain in popularity of Linux, many manufacturers
are providing the necessary drivers, if not free and with a license that allows them
to be included in the base distribution, at least in a format that can be installed and
used with Debian.

Best practice: check hardware support lists and compatibility sites for
Linux before purchasing hardware or installing any distribution.

Debian Basics for Administrators

[16]

Where to find installation help and information
So, how do you find out about supported hardware or what to do in case your
hardware isn't supported during Debian installation? Probably the best starting place
is the current Debian installation guide. Versions for all supported architectures
in different languages are available at http://www.debian.org/releases/
stable/installmanual, and they are quite thorough. Section 2.1 covers supported
hardware, and includes links to more general Linux hardware compatibility sites.
The chapter also links to section 6.4 in the same manual, which covers how to
provide missing firmware during installation. Some of the architecture specific
manuals mention the Linux Hardware Compatibility HOWTO, but some do not. It
may be found at http://www.tldp.org/HOWTO/Hardware-HOWTO/. Finally, you may
find additional information specific to each supported architecture for the current
Debian release at http://www.debian.org/releases/stable/releasenotes.

Summary
Debian is an extremely stable Linux distribution that includes a great variety of
software that runs in many different environments and on many different CPU
architectures. It is free, in the spirit of the Free Software Foundation's definition,
and thus may be run freely on as many systems as an administrator desires, without
limit or licensing fees. It may be freely copied, modified, and re-distributed. Debian
is available from many official Debian servers and mirrors, and it is well supported
by an official and well-defined, albeit all-volunteer organization, which provides
support via many channels. Paid installation media and support are also available
from many third parties.

Debian installations tend to install the minimum services necessary, requiring the
administrator to add any additional services necessary after the initial installation.
This results in systems that are secure, run faster without unnecessary services,
and allows Debian to work satisfactorily on older, less capable systems.

Now that we've covered the basics of Debian, it's time to cover the basics of disk
layouts, including the structures used for booting and how to determine the
partition layouts.

Filesystem Layout
Some of the first decisions that must be made, even before installing Debian, involve
deciding the best way to format the storage space for the installation. This includes
what type of filesystem to use, how to partition it for the best effect, and whether
and what to encrypt for security. The actual work of partitioning and boot code
placement is handled by the Debian installer, and can be altered later using standard
Linux bootloader and partitioning utilities. The installation process and the utilities
are covered well by the Debian installation guide mentioned in the previous chapter,
and the documentations for the GRUB2, fdisk, and GNU Parted included with the
appropriate software packages.

This chapter serves as a basic introduction to the concepts of boot loading and disk
partitioning, along with some guidelines to keep in mind when installing Debian or
updating your boot or partitioning schemes. Do not worry if you are still uncertain
what is best for your situation when first installing Debian. As we shall see, the
defaults will work just fine for most cases, and the beginner can't really go wrong
while using them when in doubt.

Partition tables
Each architecture has its own characteristic method of partitioning disk drives and
placing boot code in the appropriate place. For most, this is very straightforward.
However, the Intel architecture is undergoing changes that require some
understanding of the boot process and disk layout.

Filesystem Layout

[18]

Single or multiboot
One of the first choices to be made when installing any Linux distribution is
whether the system will be single or multiboot. In general, many developers run
both Windows and Linux on the same machine. In some cases, due to licensing
restrictions or just personal preference, they wish to use the Windows installation
that came with their computer and boot into one or the other as needed. This is
perfectly fine, and most bootloaders will recognize both operating systems and
provide menu items to boot the desired one. Another option is to use Xen or
similar virtualization software to boot both simultaneously. A third choice is to run
Windows under a Linux virtual machine (VM) using QEMU or KVM software.
Creating VMs under QEMU, KVM, Xen, or any other virtualization software (such
as VMware), would be a complete book in itself. For our purpose, we will consider a
VM as essentially equivalent to an actual hardware system, since the issues outside
VM creation are identical.

Best practice, if this is a single operating system server environment,
will be a single-boot system. If this is a developer system that may
require booting into an alternative operating system, use dual boot.
VM generally does not require dual boot.

BIOS versus UEFI
Up until the late 1990s, the Basic Input/Output System, or BIOS, was the way all
Intel-based systems were booted. Its disk partitioning information was held in a
Master Boot Record (MBR) with additional code in the first sector of each bootable
partition. With the advent of the Microsoft-sponsored Secure Boot feature, and its
associated boot mechanism known as the Universal Extensible Firmware Interface
(UEFI), there is a new partitioning layout, and additional considerations.

Boot code under BIOS
BIOS is the traditional boot method, and is well-supported by Debian. There are
several choices for the placement of the boot code. Common practice is for it to be
placed in the MBR at the beginning of the boot disk. However, if there are multiple
operating systems already installed (especially Microsoft Windows), this replaces the
installed bootloader with the one common to Linux. This is generally not a problem,
since the installation and update process searches for other operating systems and
includes the ability to boot them as an alternative in the boot menu.

Chapter 2

[19]

The current bootloader for Debian on Intel is called GRUB2, although
other, older loaders exist and may be installed as an alternative.

However, there are occasions where the original, non-Linux bootloader is preferred.
For example, some Windows installations won't update properly if a non-Windows
bootloader is installed. In this case, the Linux boot code can be placed at the
beginning of the Linux boot partition rather than the MBR at the beginning of
the drive, where the non-Linux bootloader can usually find it and offer it as an
alternative on its boot menu.

The problem of Windows updates when using the Linux GRUB2 bootloader is quite
complex. The issue seems to occur primarily with major Internet Explorer version
upgrades, and the reasons remain unclear, at least in any discussions and bug reports
I've been able to find. Adding to the problem is the occasional report of inconsistent
recognition of Linux boot partitions by the Windows loader. There seems to be no
hard-and-fast guideline as to which Windows installations will experience problems
and which will not. The only certain way to know is to try it, and that requires
patience, good backups, and a willingness to start over if it doesn't work.

So, if you are planning to use a dual or multiboot layout that includes Windows,
and you don't have the time, patience, and determination to actually try all the
alternatives, the answer comes down to the following practical considerations:

•	 Can you live without a major version upgrade to Internet Explorer?
•	 Can you run Windows as a VM instead of as part of a dual or

multiboot system?
•	 Will your Windows bootloader recognize the Linux boot partition?

Many users never upgrade major versions of Internet Explorer, and are perfectly
satisfied with security and feature updates to their current version. If this works for
you, then proceed with the default placement in the MBR. If you absolutely must
have the ability to upgrade major Internet Explorer versions, consider running
Windows as a VM rather than as part of a dual or multiboot system. If you do not
wish to do so (usually because of virtual hardware compatibility or licensing issues),
then go with installing the Linux bootloader at the beginning of the Linux partition.
Recent versions of Windows (since Vista) are pretty good about recognizing the
Linux boot partition and adding it to the boot menu.

Filesystem Layout

[20]

Best practice is to use the default placement in the MBR. Only if you truly
need the original bootloader should you place the Linux boot code at
the beginning of the Linux boot partition and, if necessary, configure the
non-Linux bootloader to include it in the boot menu, if it doesn't do so
automatically.

Boot code under UEFI
The UEFI is a recent development by Intel and Microsoft that supports what is
called Secure Boot, which requires all the loaded firmware to be signed or it won't
be loaded. This is a problem for Linux, since the keys required for signing must,
under the current GPL, be made public. This, of course, defeats the purpose.
There are several workarounds, including some being used by Red Hat, SuSE, and
Ubuntu, which are being discussed by the Debian developers and will probably be
included in an update at some future point. For now, the UEFI specification allows
Secure Boot to be disabled, and that is the recommended way to install Debian so
that it boots under UEFI. It is also possible to switch on Legacy mode in most UEFI
implementations, which allows the old MBR method to work as well.

Under UEFI, boot code is placed in a subdirectory in a special partition. Generally,
this will be a subdirectory of /EFI in the first partition on the disk (formatted with
the FAT32 filesystem). Generally, the boot modules and configuration files are placed
in the /EFI/grub directory in the UEFI partition. It is not a good idea to replace the
default EFI module (usually /EFI/Boot/bootx64.efi) by copying the grubx64.efi
module over it, as some have recommended in the past. Debian installation generally
takes care of including the GRUB loader as one of the options when booting, and if it
isn't the default option, the boot settings menu should be used to set it as the default.
It can also be used to add it as an option if the installation doesn't do this for you.

Getting into the UEFI boot settings menu usually involves holding down
certain keys while booting the computer, very similar to the way the old
BIOS menus were invoked. It is different for each computer model.

UEFI is new to Debian 7.

Filesystem types
Selecting a filesystem format is the next major choice before installing Debian. The
supported formats that are appropriate for a Linux installation include ext2, ext3,
ext4, JFS, XFS, ReiserFS, and Btrfs. The first three are actually progressive versions of
the extended filesystem (ext) developed specifically for Linux.

Chapter 2

[21]

ext2, ext3, and ext4
The ext filesystem was originally developed to overcome the limitations of the
MINIX filesystem.

MINIX was Linus Torvalds' inspiration for Linux.

The second extended filesystem (ext2) improved upon it, while the third extended
filesystem (ext3) added journaling, as well as performance improvements. The fourth
extended filesystem (ext4) added additional features and performance improvements.

The ability to disable journaling is one reason ext2
was sometimes used over ext3 for flash drives in
order to reduce the write cycles.

Journaled File System
Developed by IBM for its Unix-like AIX operating system, and offered as an
alternative to the ext and ext2 filesystems via release under the GPL, Journaled File
System (JFS) is one of the alternatives to the current ext4. It uses fewer resources,
while remaining quite stable and resilient. It includes many features of Btrfs, and
is a good choice when CPU power is limited, or with database systems that require
synchronous writes to survive hardware failures.

SGI's XFS File System
XFS is another alternative, developed by Silicon Graphics in 1993. It is a high-
speed JFS, with emphasis on parallel input/output (I/O). The NASA Advanced
Supercomputing Division uses this format on their 300+ terabyte Altix storage
servers. Metadata operations are somewhat slower than other formats, although this
was improved somewhat with the changes made by Red Hat. This is a good choice
where metadata changes very little (such as few file or directory creation, move, or
delete operations) and I/O performance is of utmost importance.

Reiser File System
Reiser File System (ReiserFS) was intended to supplant ext3 as the filesystem of
choice for Linux, offering improved performance. At one point, ReiserFS version 3 was
the default format choice for SuSE Linux. Version 4 was released, but development
waned when the company went out of business, and SuSE eventually decided to go
back to ext3 as its default.

Filesystem Layout

[22]

ReiserFS offered some advantages over formats existing at the time, but it has fallen
behind in some performance areas. It does support dynamic resizing, while other
filesystems must be offline in order to be resized, or use a logical volume manager to
provide virtual resizing support.

B-Tree File System
B-Tree File System (Btrfs) is the next Linux filesystem format. It focuses on fault-
tolerance, repair, and easy administration, with the ability to scale up to larger
storage configurations. ext-based systems can be easily converted to Btrfs. For the
moment, Btrfs is still under heavy development, although only forward-compatible
format changes are anticipated. Debian 7 does allow it to be used, but it is not yet
recommended for production systems.

Clustered formats
There are various formats supported for clustered systems, including AFS and GFS2.
In general, they are not used for the basic system files required for booting, but are
better suited for shared data. It is possible to set up such systems for booting, but
this is beyond the scope of this discussion. If you are interested, there are a number
of publications available on Linux clustering. A good starting point might be the
Wikipedia article on clustered filesystems at http://en.wikipedia.org/wiki/
Clustered_file_system.

Non-Linux formats
The Linux kernel supports many additional formats, such as Microsoft's NTFS, the
various FAT formats, the old OS/2 HPFS, and Apple's HFS. These formats do not
support the attributes required by a Linux system, and are thus not appropriate for
a root filesystem. They could be used for other data should it be necessary. Note that
these formats lack the basic Linux security attributes, although there is some provision
for translating the attributes that do exist into their approximate Linux equivalents.

Other Unix formats
Many other formats are available, such as SCO's Unix BFS, QNX, and BSD's
UFS. Although Unix-related, they are not considered appropriate for Linux root
installations due to slight differences in attribute handling. They may work fine,
but the Linux-specific formats generally have better performance and features.

Chapter 2

[23]

Choosing a format
Generally, the default ext4 format is the best choice. In specific cases, JFS or XFS may
provide some advantages, and if the ability to resize dynamically is more important
than performance or scalability, and you don't want to use logical volumes, ReiserFS
(especially version 4) might be appropriate. Btrfs should not be used for critical data
yet, but at some point soon it will become the preferred format. Non-Linux formats
should not be used for the basic system.

Partitioning
The next decision to be made is how to partition the available storage space. There
are the following three main considerations when deciding how to partition storage
for a Debian system:

•	 Efficient backup and recovery
•	 Limiting space
•	 Disk management

Partitioning for backup and recovery
In the past, backups were performed on full partitions. Large partitions could take
a long time to back up, and the system could not write to the partition during the
process. With the advent of incremental and live backups, this is no longer a primary
consideration. Another problem was that when a disk got corrupted, recovery
usually was limited to a single partition. There are partition repair utilities now that
can fix most problems (though not all), and only those files that can't be fixed need
to be recovered.

Still, limiting the damage and the focus of recovery can be useful and remains a
valid consideration.

Space-limiting partitions
Some administrators used partitions to limit the space available for certain
directories. A good example is a mail spool directory. A massive spam attack can
quickly consume large amounts of disk space. Using a separate partition for the
spool directories will limit the total space that can be used by spool files, and the
errors generated when no space remains alerts the administrator to the condition.

The availability of account quota systems for Linux can handle this situation without
using partitions, but some administrators still prefer the hard limit of partitions.

Filesystem Layout

[24]

Disk management
Aside from backup, recovery, and damage limitation, there are administrative
functions that may differ depending on how a disk is partitioned. In particular, using
a single partition for an entire disk relieves an administrator from having to modify
partition sizes if one partition fills up and more space is necessary. This is frequently
why a single disk partition (plus swap space) is the recommendation for new users
who are uncertain how they want to partition their drives.

Early BIOS systems could not boot from locations beyond the first
1024 cylinders of the disk. Thus, at one time, it was necessary to create
a small/boot partition below that limit so that the system code (which
could access larger areas) could be booted.

Logical Volume Management
Logical Volume Management, or LVM, is a format pretty much exclusive to Linux.
It is an alternative to partitions which makes space management much easier. Logical
volumes can be resized at will, and can span multiple disks. They can be migrated to
different disks without interrupting services (live migration). There are also striping
and mirroring features that are similar to RAID 0 and RAID 1.

LVM is more complex than basic partitioning, and not commonly used except in
large storage installations.

Technically, LVM is a structure that overlays the physical disk partitioning.

The swap partition
If available, a swap file or partition is used by Linux when memory paging to disk
is necessary. With the advent of cheap memory, such paging is often infrequent
with one exception: system hibernation. This is where the system is paused and the
memory contents are written to disk prior to power off in order to allow the system
to resume from the saved state. While this is commonly associated with laptop
systems, servers sometimes make use of it as well.

Swap files are single files created within an existing filesystem, while swap partitions
are exactly that—a specially formatted disk partition. In general, swap files are only
used when additional swap space is necessary for some reason, as it has all the
additional overhead (metadata, journaling, allocation, and such) of the filesystem in
which it resides.

Chapter 2

[25]

Unless an administrator is absolutely certain a system will never need to swap to
disk or require the ability to hibernate, a swap partition equal in size to the installed
memory is recommended.

Solid-state drives (SSD), so-called flash drives, were once considered
an exception. In that the limited write cycles were considered a problem
if swap files were placed on such a drive. However, with modern flash
technology, this is no longer an issue, especially since the swapping has
been greatly reduced by the large amounts of memory in current systems.

Selecting a partitioning scheme
The single partition (plus swap space) per disk scheme is the most common
nowadays, as it is simple to create and manage. Multiple partitions may be used in
the special cases mentioned previously, although, in general, the quality and speed
of current backup utilities minimizes the need for separate partitions just for backup
efficiency. If the system has multiple disks and may require resizing or live migration
in the event of hardware changes, then LVM should be considered.

In general, the Debian defaults follow best practice. This usually means a single root
partition and a single swap partition. If the administrator wants multiple partitions
but isn't certain of the sizes required and doesn't want to use LVM, the defaults for
the multipartition setup are a good starting point.

An exception to accepting the single root and single swap partitions
default is the case of disk encryption discussed later. If implemented
via the Linux kernel, an unencrypted/boot partition is required.

Encryption
The final choice to be made prior to installation is whether to encrypt the disk
contents. There are two main options, disk encryption and directory encryption.

In some countries, encryption is subject to legal restrictions. Know the
laws in your jurisdiction!

Filesystem Layout

[26]

Why encrypt?
One of the main reasons for encryption is to keep private and sensitive data secure
from unauthorized access. Laptops, for example, are frequently stolen and their
contents have, in some well-publicized cases, been made public or put to harmful
or illegal uses. Servers, on the other hand, aren't usually stolen, but they do have
multiple users, and while the Linux permissions system can prevent unauthorized
access, there are ways for hackers to bypass it, and they are constantly trying. For
example, if one can gain root access, either legally as a system administrator, or
illicitly by exploiting unpatched software security vulnerabilities, read/write
access to everything on the system is allowed. Or, if a user is not careful with
setting permissions, access via other users may be allowed unintentionally. In all
cases, access by anyone who does not have the proper keys can be prevented
by encryption.

Disk encryption
Disk encryption comes in several flavors. Full disk encryption, where the entire
contents of the storage device are encrypted, is handled by hardware in the disk
drive itself, or on the system's motherboard. This is because the code necessary to
decrypt the disk can't really reside on the disk, since it will be in encrypted form and
thus can't be loaded until decrypted. Since this method depends on the motherboard
or disk software, which varies with manufacturer, it won't be covered here.

A non-hardware method does exist, using an unencrypted USB stick
or other media to provide the boot code, but requires special steps for
creating the boot media that won't be covered here either.

Partial disk encryption, where individual partitions are encrypted, can be handled
by Linux directly. There must be some unencrypted area from which the decryption
software and keys can be loaded. This usually means an unencrypted boot partition,
or booting from an unencrypted USB stick, thus getting the initial decryption
software loaded and then chain loading from the encrypted disk. The keys
themselves are encrypted by a password or pass phrase that is required at boot
time to keep the keys secure.

A special case would be encrypting the swap partition. If there is any page
swapping, or if hibernation (suspend to disk) is used, information in memory
can be exposed to anyone who can read the partition. For this reason, many
administrators encrypt the swap partition.

Chapter 2

[27]

Disk encryption is appropriate for laptops, or for separate partitions on servers that
contain sensitive data.

Directory encryption
An alternative to encrypting full partitions or disks is to encrypt portions of a
filesystem, usually a directory and everything below it in the hierarchy, by using
special features of Linux so that the encryption and decryption are handled
automatically by the kernel or special software in the background. Thus, there
are no implications for booting (as long as the boot directory isn't encrypted) and
no installation issues, as it is configured after installation. Directory encryption is
appropriate for servers containing sensitive information that resides in certain parts
of the directory hierarchy.

Debian provides several packages for this type of encryption. The two most common
are encfs and cryptsetup.

Choosing encryption
There are two primary disadvantages to disk or directory encryption. The first is
probably the most serious; if the password is forgotten, the data is permanently lost
and completely unrecoverable unless unencrypted backups (or encrypted backups
where the password has not been lost) are available. The second disadvantage
is performance. Most software encryption modules perform well, but there is no
avoiding some overhead, even if it is minimal. Hardware encryption, such as that
provided by the motherboard or the disk controller or drive itself, generally does not
have significant overhead.

Best practice is to evaluate whether the disadvantages of encryption
outweigh the potential damage from compromised or stolen systems.
In general, laptops with sensitive information and systems that contain
sensitive information with many users, or that potentially can be accessed
by hackers (such as web servers for example, which must be publicly
accessible in order to serve their purpose) should use directory encryption
at the very least. Disk encryption, especially if implemented in hardware,
is even better.
Most corporate policies require partial or full (if available) disk encryption
on laptops, and directory encryption as a minimum on public servers.

Filesystem Layout

[28]

Installing Debian
The actual installation is quite straightforward, and is considered one of the simplest
distributions for base installs. Boot up the installation disk, and answer the necessary
questions. A help button is frequently available to provide additional information
during the installation. Also, standard and advanced installation subjects (including
much of what is discussed in this chapter) are covered in detail in the Debian
installation guide for the current release, available at http://www.debian.org/
releases/stable/installmanual.

Recommended practice is to install only the base system and use the
package manager to install additional software after the system is up
and running. However, it is possible during installation to select tasks
which will install additional classes of software (such as the desktop
environment which installs KDE, GNOME, XFCE, or LXDE, "Laptop"
which installs software commonly used on laptops, and so on, all
described in the installation guide). Doing this installs a standard set of
additional software that suits most users' needs.

Summary
Prior to installing Debian, or any Linux distribution for that matter, an administrator
should know whether he/she will be using single or dual/multiboot, and what his
boot firmware is (BIOS or UEFI). It is also good to have some idea of where he/she
will place the boot code, what filesystem types he/she will use, and some idea of his
partitioning scheme. If unsure, the defaults offered by the Debian installer can be
taken safely. If full disk encryption will be used, the setup depends on the hardware
implementation and will probably need to be set up prior to installation. Directory
encryption can be set up after the installation.

Once your system is set up, the next major issue to address is installing additional
packages, which leads us to the next chapter on package management.

Package Management
You've installed a basic system, now it's time to install additional software. Or, if
you've selected some tasks during installation, you want to see what's installed
and maybe remove some you won't use. Maybe your boss has asked for a report on
what's installed. Or what about security updates?

All of these, and more, are the province of the Debian package management system.
In this chapter, we'll cover package managers, software selection and maintenance,
how to update your system, and how to set up automatic updating.

A note for beginners

This section assumes that you are familiar with using the root
account. Information on accessing root account functions is available
at https://wiki.debian.org/Root, and in the Debian reference
manual at http://www.debian.org/doc/manuals/debian-
reference/. Quick help for commands mentioned in this chapter
(as well as most Linux commands) can be obtained by executing
man <command name> or info <command name> from the
command line, or using the help button available in most graphical
applications. The Debian reference manual also contains more
detailed information on using the package manager commands in
this chapter.

Package Management

[30]

Package managers
The Debian package manager started out as a simple, command line utility, dpkg,
with an additional utility called dselect that allowed more complex package
selection and dependency resolution via a menu-based, curses interface. Eventually,
additional utilities were developed to provide a better interface, better automatic
dependency resolution, or both. The current standard package manager is Synaptic,
a full-blown GUI application that runs in a graphical window manager, and provides
extensive selection and reporting features.

We'll start at the beginning.

dpkg and dselect
These were the first package management tools for Debian. The dpkg command still
does all of the work, since all the newer tools use it as a backend. As such, it has all
the functions required to install, remove, configure, and report on packages. It is a
command line tool.

One of the limitations of dpkg is that it does very little in the way of dependency
checking, other than to offer an error message when there is a dependency problem.
It requires the user to examine the dependency report and include the necessary
packages during installation. Another limitation is that dpkg only works on
packages that have already been downloaded. However, both of these limitations are
addressed by the dselect utility.

The dselect command is a menu-driven utility that provides access to information
on packages in the Debian repositories, and also checks and helps resolve software
dependencies. This greatly simplifies package selection and installation. Once
packages are selected and all dependencies satisfied, either automatically or with
user assistance, dpkg is run automatically to perform the actual installation.

Advanced Package Tool
The Advanced Package Tool (APT) was developed to provide a better command
line tool, that provides the download and dependency resolution of dselect without
requiring a separate utility for installation. Think of it as an all-in-one command
line tool that can select and install or remove packages, and automatically
resolve dependencies.

APT is actually a set of utilities that include apt-get, the basic package installation
tool, plus several other command line tools with an apt prefix that provide
additional functions, such as reporting on available software, and other basic local
repository maintenance functions.

Chapter 3

[31]

The man apt command is a good starting point, as it references other
man pages for the additional commands. The Debian reference manual
also has a lot of information on these and other package management
commands

This tool is fast and, except in unusual circumstances, handles dependencies without
requiring user intervention. It is the basic tool used for automatic, unattended
software installation and updating.

aptitude
aptitude is a frontend for the APT suite of tools, with added functions that make it
a little more like dselect, where it offers finer-grained dependency checking, and
resolves dependencies with user assistance rather than autonomously. As such, it is
sometimes more successful than dselect or apt-get in resolving dependencies in ways
that require fewer major software changes. Like dselect, it is menu-driven (using the
curses interface), with command line functions as well. Due to the user assistance
sometimes required for dependency resolution, it is less suited to unattended or
automatic software updating. However, it will frequently find simpler solutions,
involving fewer changes, when compared to APT.

Synaptic
Synaptic is a package manager with a complete GUI interface and no command
line capability. It offers most of the capabilities of aptitude along with many of the
repository handling features of dselect. Like the menu-based dselect and aptitude
utilities, it provides a software list divided into sections of interest, such as databases,
development, editors, and many more, which allow an administrator to browse
available software more effectively. It also has search functions which allow easy
discovery of packages for specific purposes.

Best practices are as follows:

•	 For general use – Synaptic
•	 For automated installation – APT
•	 For dependency resolution in difficult cases – aptitude

Package Management

[32]

Package selection and maintenance
Debian software is grouped together in a release. All of the software in a release
is available as a set of purchased or downloaded media (CDs, DVDs, or new with
Debian 7, Blue-ray Discs), or as individual packages grouped in an online repository.
While dpkg works only on packages already downloaded (or on media mounted
locally), the other package management utilities understand offline media, and local
and remote repositories, which must be configured.

Configuring media or repositories
All of the configuration for media or repositories resides in /etc/apt, in a file called
sources.list and any files in /etc/apt/sources.list.d with a .list extension.
These files can be modified manually using your preferred editor, manipulated by
various APT utilities such as apt-add-repository or apt-spy, or via a menu item
in the Synaptic GUI. Details on how each method works are available in various man
pages, such as those for sources.list, apt-add-repository and apt-spy, and
so on, or in the help files for Synaptic. However, since they all depend on the same
configuration files and format, the required entries are all similar.

Each line includes an indicator of whether the repository contains binary packages
or source packages (from which binary packages can be built), the location of the
repository, the identity of the release, and the sections from which software may
be selected. Generally, an entry for the media from which you installed Debian has
already been made during the installation process, along with an entry for the online
repositories if they were used during installation as well.

All package sources are identified by a URI, described in the sources.list man
page. The release is identified by its release name (such as squeeze for Debian 6, or
wheezy for Debian 7) or by a generic term such as stable, which refers to whatever
the current stable release is.

The current Debian stable release is Debian 7, code named wheezy, released
on 4 May, 2013. At the time of writing, stable is a synonym for wheezy.
Debian releases are named in order to make the mirroring of various
distributions easier. The code names to date are all taken from the movie
Toy Story. This tradition apparently began in 1996 when Bruce Perens, who
worked for Pixar at that time, took command of the Debian Project.

Taking all these together, a set of repositories as they might appear in /etc/apt/
sources.list would look like the following:

deb cdrom:[Debian GNU/Linux 7.0.0 "Wheezy" - Official amd64 \
 NETINST Binary-1 20130504-14:43]/ stable main

Chapter 3

[33]

deb http://ftp.us.debian.org/debian/ wheezy main non-free contrib

deb-src http://ftp.us.debian.org/debian/ wheezy main non-free \
 contrib

deb http://security.debian.org/ wheezy/updates main contrib \
 non-free

deb-src http://security.debian.org/ wheezy/updates main contrib \
 non-free

wheezy-updates, previously known as 'volatile'

deb http://ftp.us.debian.org/debian/ wheezy-updates main contrib \
 non-free

deb-src http://ftp.us.debian.org/debian/ wheezy-updates main \
 contrib non-free

Beginner's note
Some of the lines in the example are too long for the page and are split
into two lines, using the common convention of adding a backslash (\)
at the end of the first line to indicate it is continued. In reality, these
lines should not be split in the APT sources configuration files.

Let's take the lines one at a time.

The first line begins with a #, meaning this entry is disabled. This entry was made
by a network installation, wherein a minimal CD is mounted, and basic software
is installed to allow the remainder of the software to be installed from online
repositories as listed in the later lines. Only the main section is required, as shown at
the end of the line.

The next two lines are for binaries (deb) and source packages (deb-src), to be
obtained from an HTTP server (http://ftp.us.debian.org/debian). The release
is wheezy, and all three sections—main, contrib, and non-free—will be available.
Following the main repository lines are two lines for binary and source package
updates. This is where security updates to the stable release are available.

Even if you prefer to use media for the release, rather than online
repositories, you should include the update repositories, as this is
the only way to obtain security fixes that are released as necessary.

Package Management

[34]

Finally, there is a comment, and two lines for what used to be called the 'volatile'
repository, and is now just referred to by the release code name followed by
-updates. This repository contains packages that are routinely updated throughout
the life of the release, much more often than the security update repository. Packages
that include virus definitions are examples of software included in this repository.

While the various methods of configuring the repositories have slight differences,
the same basic information will be required, no matter which method you use. Also,
since all of the utilities use the same configuration files and format, information
entered, deleted, or modified by one method will be immediately visible to all of
the utilities.

All of the previous lines were pre-configured by the installation procedure, and
did not need to be modified. However, there are often reasons to modify or add
repositories. You may want to add repositories for software that isn't available
directly from Debian, or modify the URL to use a different, better performing server,
or different access method.

For example, HTTP is more resistant to network delays or error, while
FTP is somewhat faster. Also, not all mirrors support both methods, so if
you change servers, you may need to change the access method as well.

There are a number of non-Debian repositories that contain software that is not
included in the standard Debian release. Usually, this is due to licensing issues, or
because development takes place outside of the Debian Project policies and there is
no sponsor to integrate it into Debian. Some of the more useful ones are as follows:

•	 Deb Multimedia: As it says, this is primarily a multimedia package that can't
be included in the normal distribution

•	 Webmin: This is a web-based system administration software
•	 Oracle: This provides Oracle Express software
•	 Skype: This provides the Skype software
•	 MongoDB: This is a software from the NoSQL MongoDB project

As an example, the following is a /etc/apt/sources.list.d/webmin.list file for
the Webmin archive just mentioned:

deb http://download.webmin.com/download/repository sarge contrib

deb http://webmin.mirror.somersettechsolutions.co.uk/repository \
 sarge contrib

Chapter 3

[35]

Generally, sites that offer such repositories will include instructions for configuring
the sources list file for their repository.

The significance of the release name
One of the more subtle changes often made, other than adding non-Debian
repositories, has very important implications. Note that the release name in most
of the lines from the previous Debian release sources.list is wheezy. This means
that the packages available through the package managers will always be from the
Debian 7 release. Some administrators change the release name to stable. This has
both advantages and disadvantages.

One advantage is that, when a new major version is released, your package managers
will immediately recognize this and update package lists and dependencies
accordingly. The disadvantage related is that major releases involve major changes in
package dependencies. While package managers can handle this, such major changes
usually result in many new packages being installed to satisfy new dependencies,
many old ones being deleted due to changing dependencies or obsolescence, and
major version changes that often change the way the software behaves. These changes
can be quite disruptive to server operation, or to developers' or users' habits.

Best practice to ensure stability is to leave the official release name in place
until you are ready to upgrade to the next release. Then change the name
in the package manager configuration, and perform a manual upgrade.

Selecting packages
Once you have the repositories that you want configured, you need to retrieve
information about what is in the repositories. This includes not only package lists,
but package descriptions, contents, and dependencies. This is done by updating
your package cache, after which you can browse, select, install, upgrade, and
delete packages.

Updating your package cache
The package information is updated simply by the refresh menu entry in Synaptic, or
the aptitude or apt-get update command to update the package information cache.
This should be done regularly to ensure that the information you have on available
packages is current. Once you have the repositories configured and have updated the
package information cache, you can select and install software from any or all of them
as desired. There are two basic methods for selecting packages. command line and
selection lists.

Package Management

[36]

Command-line selection
This is the simplest and fastest method to install one or a few packages and their
dependencies, but it requires that you know what packages you want to install.
There are several utilities that can be used to search package names and descriptions,
which will provide you with the means to find the proper package names. The most
common of these is apt-cache. Once you know what package or packages you want
to install, you can use apt-get or the command line format of aptitude or dselect to
quickly download and install the packages.

Selection lists
Both aptitude and dselect provide a basic, interactive interface as well. You can
navigate through a list of available packages, classified according to sections, or
you can search for packages using a number of criteria. The interface is based on
the simple curses library, and can seem cumbersome at times, although it is an
improvement over the command line utilities mentioned previously. One advantage
of these interfaces (as well as the command line utilities) is that they can be used
in a terminal environment and do not require a graphic desktop environment be
installed. They are frequently used on high-performance servers where a graphic
desktop environment is not installed for security or performance reasons.

On the other hand, Synaptic provides a full GUI interface for browsing, searching,
and selecting packages, as well as configuring repositories, selecting installation
options, and providing information on available and installed packages. It requires a
graphic desktop environment, such as GNOME or KDE, in order to operate.

Synaptic can be run remotely, over a Secure Shell connection, from
a system that does have a graphic window manager installed. Some
administrators install Synaptic on servers without graphical desktops
and use it in this manner to avoid security or performance issues of
graphic environments on the server itself.

Meta packages
One of the most useful package types is called meta packages. These are packages
that contain no software themselves, but that require other packages to be installed,
and thus provide a unified set of software for a particular purpose. This works
because, although no actual software is in the meta package, the package manager
will select and install all of the required dependent packages, providing a complete
set of features in a single, easy installation step.

Chapter 3

[37]

Frequently, there are multiple packages with slightly different names that install a
slightly different set of dependencies. A good example is GNOME. You can install
the GNOME meta package, which will provide a complete GNOME installation,
including many extras. Or, you can elect to install gnome-core, which provides only
the basic desktop environment, and select from any of the additional packages that
provide additional features and functions, such as:

•	 evolution (e-mail software, similar to Outlook)
•	 gnome-documents (document management features)
•	 gnome-games
•	 gnome-media (multimedia applications)
•	 libreoffice-gnome (office suite) and others

One minor problem with meta packages is that there is no easy way to search for
them. Many do have 'meta' in their descriptions, which can facilitate some searches,
but this is not universally true. The GNOME packages mentioned previously do not
follow this convention as of Debian 7. Nevertheless, they are often fairly obvious,
and not too difficult to find.

A word about dependency resolution
dselect, APT, aptitude, and Synaptic, all provide some form of automatic
dependency resolution. In rare cases, a dependency can't be resolved automatically,
and user intervention is required. aptitude will calculate alternatives and ask the user
to select from them. APT and Synaptic generally require the user to add packages to
the command line or selection list manually.

Such problems generally only occur in the testing and unstable releases, where
software dependencies are constantly updated and some may not completely
resolve until all of the software involved has been updated and placed in the release.
However, one common source of this problem occurs in the stable release as well,
and is due to a dependency on a virtual package.

A virtual package is not the name of an actual package, but the name of a library or
function that any one of a number of packages can provide. Since there are usually
multiple packages that can satisfy the dependency, the user must choose one to
manually install, after which the remainder of the original dependencies can be
satisfied automatically. This rarely occurs during a standard upgrade, and almost
never during a distribution upgrade, where such virtual packages are selected
automatically.

Package Management

[38]

In general, you will only see this problem, and then rarely, when
installing single packages manually.

Removing packages
Removing packages is also handled by any of the package managers. Something
to be aware of, however, is that apt-get and Synaptic do not automatically remove
dependencies after the package that depends on them is removed. The command
apt-get autoremove should be used to do this, no matter which package manager
was used for installation and removal. aptitude does this automatically.

Keeping current
After installing the software you need for your system, it is good practice to check for
updates at regular intervals. In particular, security updates are released as soon as
possible after a security flaw in any Debian software is identified.

It is easy to update a Debian system. After updating the package cache (see the
previous section on Updating your package cache) so that it holds current information
on all software in the repositories, the Synaptic mark all upgrades menu item, or
the apt-get or aptitude upgrade command will update all software with any newer
versions available.

Automatic updates
It is possible to perform automatic, unattended updates to a system, but there are
some potential problems. Setting it up is quite simple. Just install the unattended-
upgrades package. If you aren't asked during installation if you want to enable
automatic security upgrades, run the command dpkg-reconfigure -plow
unattended-upgrades.

Generally, only security upgrades will be automatically installed, which will minimize
potential problems, which include modified dependencies and changes that modify
how the software is configured or how it operates. It is possible to allow other upgrades
by modifying the configuration file in /etc/apt/apt.conf.d/50unattended-
upgrades. The file is commented to help identify the modifications desired, generally
just removing the // in front of the lines you want to enable. Note that enabling
anything other than security updates can result in errors (when dependency issues are
encountered) or system disruption (when the upgrade modifies software behavior or
configuration). This is especially true if the stable release name is used, which can result
in very major changes when a new stable version is released.

Chapter 3

[39]

Best practice is to allow automatic installation of security upgrades
only (use the default configuration). The package information cache for
all packages will be updated in any case, so you can manually upgrade
the rest of the packages periodically, allowing you to address any
unusual upgrade issues as they arise.

Foreign packages
What do you do when a package doesn't exist in Debian? There are several options.
One mentioned previously is to add non-Debian repositories to the repository
configuration. After a Synaptic refresh, apt-get, or aptitude update, all of the package
information in the repository will be available to the Debian package managers.

If, however, the software isn't included in any repository, there are a couple of
options available.

There is actually one additional option: just install such software from its
original source. This technique is not recommended because it places the
software completely outside of the package management system. Future
system upgrades that involve required libraries can cause the software to
behave strangely or even break completely, and finding the reason can be
quite frustrating. This technique should be used as a last resort only.

Alien
If the package exists in some other Linux distribution, it can often be converted
to a Debian package. This is done using a package called alien. Alien provides
commands to convert between a number of package formats (including Red Hat
RPM, Stampede SLP, Slackware TGZ, Solaris PKG, and Debian DEB).

Before using alien, note the warnings in the man page.

In general, the conversion itself is fairly straightforward. Although the results cannot
be guaranteed, the converted package often will install okay under Debian. Any
problems that do occur are most likely to be caused by different library dependency
names, or even differences in software level identification.

Package Management

[40]

All is not lost when this happens, however. Alien can perform a partial conversion,
essentially stopping at the point where it has created the temporary directory from
which it normally builds the Debian package. You can then go into the directory and
make the necessary modifications, and then complete the build manually.

Manual builds
It is also possible to build Debian packages yourself, either from a partial alien
conversion (as previously discussed), or from scratch using the original software.
The procedure can vary from simple to complex, depending on what the package
is to provide, and is well covered in the Debian maintainer's guide and the Debian
policy manual, both available online or as installable packages in Debian, and in
many other online resources. A good online starting place is the Debian packaging
Wiki page at https://wiki.debian.org/HowToPackageForDebian.

Manual builds, either from scratch or from a partial alien conversion,
are the recommended way to handle software that cannot be obtained
in standard Debian format.

Details vary greatly, depending on the actual software involved. Generally, a
package is built from source code, but it is also possible to build a package from a
binary only software release as well. The general procedure for this is as follows:

1.	 Obtain the source (or binary files) and place in an appropriate package
building directory.

2.	 Create the necessary Debian packaging files, which include additional
documentation as necessary, optional script files specific to Debian packages,
files to control the package building process, and files required by Debian
package managers.

3.	 Test the build. If necessary, add patches to correct any problems in
packaging, or that are required for the software to compile or run properly
in a Debian environment.

4.	 Repeat steps 2 and 3 until the final product installs and runs on
your distribution.

The packages available to Debian developers are included in the distribution for
anyone to use. The primary ones used in building your own packages are:

•	 build-essential (packages essential for building Debian packages)
•	 dpkg-dev (package development tools)
•	 fakeroot (allows users to build as if they were the root user)

Chapter 3

[41]

•	 dh-make (tools to create files in the debian package build directory)
•	 debhelper (helper programs for the debian/rules file)
•	 cdbs (optional, additional helper programs for the debian/rules file)
•	 quilt (debian package patch management)

It is all but impossible to give any general example, as every package will differ
in all but the first step. However, there are many good examples and tutorials
available online, and the full package source of all Debian packages included in the
distribution is available for anyone to examine and learn from.

Upgrading your system
As mentioned previously, it is simple to update your system. The commands (or
menu items) for upgrading your system to the next official release are different
from the standard updating commands. The apt-get command dist-upgrade or the
aptitude full-upgrade will perform the necessary special calculations to upgrade
to the next major distribution release after the package information cache has been
updated (either using the normal update command if you have configured the
release name as stable, or after changing to the new release name and executing
the update command). The reason for the special commands is that there are major
changes in package dependencies between official releases, and the way some
software is configured, as well as the removal of obsolete packages, all of which
require special calculations not involved in a normal package upgrade.

Synaptic can also handle a full distribution upgrade, but instead of a
different command, it handles such upgrades when 'smart upgrade'
is set in Preferences instead of 'default upgrade'.

Prior to the upgrade
Read the release notes! This can't be emphasized enough. The Debian developers are
careful to include all the important details on what has changed between releases,
and any special steps required prior to and after the upgrade process.

Package Management

[42]

There are two ways to handle a major upgrade: all-at-once, and a little at a time
(which we'll refer to as a partial upgrade). The all-at-once upgrade basically involves
a single command that updates all packages. The partial upgrade method involves
selecting a group of packages and updating them and their dependencies. This
reduces the dependency calculations to a more easily handled subset. Generally, one
selects one of the meta packages, such as GNOME or Apache2, or a selected set of
packages to update, and uses the install command in either apt-get or aptitude, or
selects the packages in dselect, aptitude, or Synaptic. After they are upgraded, the
next set is chosen and updated, until all packages have been updated, along with
any new dependencies or removals required. At some point, after the majority of
software has been upgraded, the remainder of the upgrade can be handled all
at once.

Choosing a subset of packages is fairly simple. The apt-get dist-upgrade command
and aptitude full-upgrade command will provide information on what will be
added, upgraded, and removed and ask you to confirm the selection. At this point,
you can tell them not to perform the upgrade, then review the packages proposed
for upgrading, and select one or a few to use with the apt-get or aptitude command
line install command (which upgrades already installed packages). A similar
procedure works with Synaptic.

One way to ease the upgrade process is to perform a standard package
upgrade first. This will perform the simpler, standard package upgrades
that don't require major changes in dependencies. Once this is done, the
full distribution upgrade will involve fewer packages

During the upgrade
You've selected the packages to upgrade (or are performing an all at once upgrade),
and started the process. The first thing to note is what packages are going to be
removed. If one or more of them appear to be packages you need, cross-check them
with the packages being installed to see if they are being replaced by a new package
with similar functions. If they are not, make a note to follow the upgrade with a
separate installation of whatever packages are required.

During a distribution upgrade, the system can generally remain in operation,
although there will be slight disruptions when a package requires certain services to
be restarted or libraries to be loaded.

Chapter 3

[43]

These disruptions are more severe than a normal upgrade, particularly
in cases where a package is removed and replaced with a different one
to fulfill the same function, or removed because it is obsolete. Therefore,
you may want to inform users prior to the upgrade, and keep system
activity to a minimum.

The next thing to watch for is the upgrade notes. Major changes are in how some
software works are displayed (and e-mailed to the root account for later checking as
well) in order to notify the installer of necessary post-installation steps to be taken.

Finally, when the administrator has made changes to the configuration of a package,
the upgrade process will notify him/her of the non-default configuration and ask
for help in resolving the differences. This involves leaving the current local version
in place, replacing it with the developers' version, or pausing the installation so the
differences can be examined and resolved manually.

Often there are new options or defaults that should be added to the old
configuration. Best practice is to either resolve the changes immediately,
or keep the old configuration and cross-check it later with the new default
configuration (which is placed in the same directory with a modified
name to keep it inactive but available for just this reason).

After the upgrade
Once the distribution upgrade is complete, there are still a few steps that should
be taken. First, if the configuration file issues weren't resolved during installation,
now is the time to do this. The new file is in the same place as the old one, with an
added dpkg-new extension. If the installer selected the developers' version, the old
configuration is there with a dpkg-old extension. Either way, the administrator can
check them for differences and make the necessary changes.

Next, if there are major changes in software operation, any applications that use
the software should be modified, or the configuration updated to recreate the old
behavior if possible. A good example of this issue is major changes to how PHP
works, which often necessitates re-coding web pages that used the changed features
or modifying the configuration when it supports operation in a legacy mode. Other
major changes may affect users, such as the change from GNOME 2 to GNOME 3,
which involves a major change in the user experience. Also, any post-installation
steps noted in the release notes should be taken.

Package Management

[44]

Summary
The package managers in Debian make it easy to upgrade software packages, and
even upgrade to a new, major release level. Upgrades don't require major server
downtime, although if they involve major software changes that modify how
the software is configured or behaves, additional work may be required after the
upgrade to return service to normal. Non-Debian repositories can be added so that
the package managers can update non-Debian software just as easily as official
Debian packages. If software isn't available in Debian format, it can be packaged
using the same tools Debian developers use, so that Debian package managers will
handle it as well.

Usually after an installation or upgrade, there are additional steps that must
be taken. The major one is package configuration, which we will cover in the
next chapter.

Basic Package
Configuration

Debian depends heavily on the configuration methods used by the upstream
developers of each package, supplemented by the Debian developers' modifications
and additions to standardize package configuration, and make the administrator's
life easier. In this chapter, we will cover the standard location of configuration files,
utilities available to assist in configuration, trends in configuration file management,
and some examples.

Configuration files
Most configuration files reside in the /etc directory hierarchy. In general, most
packages place their configuration files in a subdirectory named after the software.
In cases where the upstream developers do not do this, the Debian package
usually modifies the behavior. A good example is the BIND DNS server software.
Traditionally, the base configuration is placed in /etc/named.conf, with any other
configuration files placed in the /var/lib/named directory. The Debian BIND
package places all configuration files in /etc/bind9 and its subdirectory.

In addition, there is a /etc/default directory, in which commonly modified options
are placed in a file matching the package name. Again, using BIND, the file is /etc/
default/bind9, and contains two simple options: whether the resolvconf dynamic
resolver is being used, and what options the server should be run with. We'll cover
this directory first.

Basic Package Configuration

[46]

/etc/default
The configuration files in this directory are intended to control the standard
initialization scripts found in /etc/init.d (known as init scripts), or the way
various system libraries behave. They contain environment variable definitions
that are used by system libraries or in the init scripts, to control execution options,
software module loading, and anything else that can be controlled dynamically.

In the case of definitions used by the init scripts, the variables usually include a
definition of command line options to be used. In some cases, setting one of the
variables modifies the behavior of the script. For example, setting RESOLVCONF
to anything but no in /etc/default/bind9 will cause the init script to use the
resolvconf utility to add an appropriate resolver line for the local loopback
interface during initialization (and remove it during shutdown).

For those scripts that apply to system libraries, they generally define default behavior
for commands or software that the libraries affect. A good example of this is /etc/
default/nss, which controls how the Name Service Switch (NSS) functions in the
GNU C library. In particular, it controls what information the library will consider
authoritative for NSS calls, as well as the behavior of certain function calls.

In special cases, the default definition file may not be a single file, but
a subdirectory of /etc/default. This is done to split information
into groups of related variables, both for ease of update, and to allow
local modifications that won't be overwritten when configuration
files are replaced.

/etc/<package name>
Configuration files are placed in /etc by most software developers, and this is
standard practice for Debian packages. If the file is fairly simple, and the only file
required, it is often placed directly in /etc with a .conf extension, such as /etc/
inetd.conf for the openbsd-inetd package. For packages that require a more
complex configuration, usually via multiple configuration files, those files are placed
in a subdirectory of /etc which is generally named after the package. A good
example of this is the apache2 package, which has its configuration files in /etc/
apache2 and its subdirectories.

Multiple files in a subdirectory are used for a number of reasons. In some cases,
it is because the original software uses different files for different purposes. In
other cases, it is done to organize configuration items into a more manageable and
understandable group. Occasionally, Debian developers have modified the package
to organize the configuration to simplify or streamline administration.

Chapter 4

[47]

A good example of this is Apache. Normal Apache configuration is either by a single
file or multiple files that are included by the master configuration file. Traditionally,
SSL (Secure Sockets Layer) certificates and keys, and Virtual Host configuration
files are contained in subdirectory, but all major options are configured in one or
a few files in the main directory. Debian has actually split the configuration into
many files in various subdirectories. This allows Debian to supply separate packages
that provide certain features via individual configuration files that are added to the
proper directory, rather than requiring modification of the primary configuration
files. Also, there are subdirectories for modules and virtual hosts prefixed by
available- or enabled-. This allows a simple script to activate or deactivate
modules and virtual hosts easily and quickly.

As it's not yet available in the stable release, Debian developers are taking
this concept further in future releases, by providing a config-available and
config-enabled directory, as well as allowing features to be activated and
deactivated without editing config files or installing or removing feature
packages. This will probably be available in Debian 8, code-named Jessie.

Initial configuration
One of the stability requirements for Debian is that when a package is installed,
it should not adversely affect the system. Often, this is as simple as providing a
standard configuration, such as Apache's simple It works! page. In other cases,
however, at least some information must be provided during installation in order
to create a basic, working configuration. This is handled by having the installation
procedure ask the necessary questions during the installation process in order to
create a working configuration. In fact, Debian developers have created the extensive
debconf subsystem for this purpose.

The debconf subsystem provides the ability to configure packages before, during,
and after installation, and it is integrated into all Debian packages that require
configuration. It supports a number of frontend user interfaces, prewritten answers
that can be input to the installation process, a simple interface for asking questions
and providing the answers to the installation scripts, and even ways to reconfigure
packages any time after installation. In general, this method of configuration
provides only the most commonly used configuration options. More complex
configurations must be handled by using any utilities provided by the packages,
or by editing the configuration files directly.

Basic Package Configuration

[48]

Even if you edit configuration files directly, Debian administrators have passed on
various techniques to the developers to ease this process. In some cases, they have
created alternative and more understandable configuration files that are scanned and
used to create the actual, complex configuration by scripts provided in the package.
A good example of this is the GRUB2 boot loader. An administrator makes whatever
modifications to the configuration files in /etc/default and /etc/grub.d, and
then runs update-grub to create the actual file that GRUB uses to load the operating
system. The script then executes the necessary commands for creating and installing
the configuration, as well as the necessary updates of other files affected by GRUB
reconfiguration. This is just one example of how various utilities created by the
Debian developers and other third parties have simplified Debian administration.

Another good example is sendmail. Administrators often modify the files and
various database files required by sendmail to tailor it for large, corporate
installations. However, instead of compiling the configuration and databases,
then forcing sendmail to load the new configuration, a single command,
sendmailconfig, will perform all of the necessary steps at once, with minimal
interruption in server operation.

Configuration utilities
So, what are some of the utilities provided for Debian administration? We've
already mentioned a couple of specialized ones for GRUB and sendmail. There are
many others that handle specific software or services, either included in the Debian
package itself, or in a separate package. Here, however, we're concerned with more
general utilities. The two main ones are dpkg-reconfigure and gadmin.

dpkg-reconfigure
This utility reruns the same configuration scripts that run during installation. It is
run from the command line, and options can be used to vary the level of complexity
of the questions asked. It is generally used when extensive, local modifications
aren't required and the administrator just wants to update the basic configuration
as provided by the installation scripts. It is also useful if the basic configuration has
been corrupted, or changes made that have caused the package to stop working, to
return it to the configuration provided immediately after installation.

It is generally not useful if the configuration requires options that are not
commonly used, or if the configuration requires extensive local modifications
that aren't normally covered by the installation scripts, except perhaps to return
the configuration to a post-installation condition as noted previously.

Chapter 4

[49]

gadmin
This is actually a suite of packages, each covering a different major service.
Unfortunately, this is not as universal as dpkg-reconfigure, but it does handle
more complex configurations. The following services are covered as of Debian 7:

•	 Bind (DNS)
•	 OpenVPN (both client and server)
•	 ProFTPD (FTP)
•	 RSYNC
•	 Samba (Windows Shares)

It is a graphical tool, based on GTK (GIMP Tool Kit). It was developed to provide
some administrator functions under the GNOME desktop environment. It will
handle fairly complex configurations.

Desktop configuration
So far, we have been discussing server configuration. User configuration of a
desktop environment is actually a little easier, as both GNOME (GNU Object
Model Environment) and KDE (K Desktop Environment), as well as other desktop
managers, provide a full suite of utilities gathered in one menu area that allows the
user to easily configure things such as desktop appearance, behavior, window themes,
login behavior, and system and session services relevant to their environment.

Other utilities
Finally, there are a number of packages that were created for the express purpose of
configuring individual services. There are software packages that provide graphic
or command line configuration tools for any number of other software packages.
The packages vary in complexity and usage, as they are usually provided by third
parties. They can be found by using any of the search capable Debian package
managers. Synaptic is probably the easiest as it allows one to easily browse
descriptions after searching.

Basic Package Configuration

[50]

Many of the third-party utilities are not aware of modifications Debian
makes to the configuration file layout in order to ease administration,
upgrades, and stability. Often, they use the upstream configuration
file layout, or sometimes even the author's idea of a better layout.
Although the Debian package upgrade procedure will handle this as
a local configuration file modification, it does make extra work for
the administrator during upgrades. Keep this in mind when deciding
whether to use third-party configuration utilities.

The next section will cover the preferred methods for local configuration in Debian.

Local configuration trends
Because Debian upgrades often affect configuration files, the developers have crafted
techniques to lower the impact of upgrades on locally modified configurations. In
particular, they are moving to provide separate local configuration files and special
directories that help maintain local changes during upgrades.

Local configuration files
Many software packages are moving to a multiple file configuration system.
Debian developers are using this feature to protect local changes by instructing
administrators to place their modifications in a file with a .local extension. In other
cases, such as the Apache configuration directories, files are placed in specified
subdirectories (conf.d and sites-available in this case), and may be named
freely, as long as they don't conflict with file names used by standard Debian or
upstream configurations. In these cases, the Debian developers have modified the
configuration files so they contain commands to include local configuration files,
overriding the standard files as necessary. In any case, a savvy administrator will
use such separate files for local configuration changes when possible, so that they are
unaffected by package updates.

One of the side effects of this separation of local configuration files is that the update
procedure will no longer ask you whether to install the developers' configuration,
leave the local configuration, or reconcile the two. Generally, this is what you
want, as your local changes will remain in place, and any new features will have
reasonable defaults that shouldn't cause problems. However, in cases where there
are possible major changes to the configuration defaults, a pop-up description of
the changes occurs during the upgrade (requiring acknowledgement), and is also
emailed to the root account. Even without this, though, it is good practice to browse
the package documentation for configuration advice and the configuration files for
any obvious changes, after the upgrade is complete.

Chapter 4

[51]

Configuration subdirectories
Many software packages not only support separate, local configuration files, but also
provide a special subdirectory to help organize and manage multiple configuration
files. In some cases, the files in these directories require a specific extension in
order to be considered active or enabled. This makes it easy to enable or disable
software features. In other cases, all files in the directory are considered as part of the
configuration, and a different method is used to enable and disable specific files or
features, such as used in the Debian Apache software packages.

In any case, Debian developers usually recommend care in adding your own files,
usually by including the word local somewhere in the name, or by placing them in
directories that are provided specifically for local files.

Configuration advice
So, how do you know what configuration facilities are provided and what the
recommended approach to local configuration is? The best place to begin is
the README.debian file that comes with the package. It is a requirement of the
Debian Policy manual that this file explains any special configuration issues, how
configuration under Debian differs from the configuration provisions of the original
software developers, and recommended ways to handle local configuration. It
also explains any utilities Debian has added to aid in software configuration. This
file exists in /usr/share/doc/<package name>, which also contains any original
software documentation, plus any added by the Debian developers. This directory
is standard with nearly all Debian packages, and is mandatory for any that have
extensive documentation or special configuration issues.

Some packages have such extensive documentation that it is provided
in a separate package so that it can be installed on a separate system
providing faster, local access to the information without requiring
space or processing on the server on which the software is installed.

Let's take a look at some examples that involve fairly complex configuration file sets.

Apache configuration
Here we will look at the Apache web server software configuration and see how
Debian handles it. The details on what the configuration actually does will not be
covered, as they are complex and covered in the package documentation. However,
we will look at how the files are set up, and what procedures are provided by Debian
for configuration maintenance.

Basic Package Configuration

[52]

The first thing to observe about the Debian Apache packages is that the type of
server, threaded, non-threaded, event-driven, or multi-user, is determined by which
package is installed to satisfy the server dependency in the main apache2 meta
package. In addition, the documentation is split off into a separate package, which
places the Apache manuals in a web directory and adds the necessary configuration
files so that Apache can serve them up as web pages.

Configuration files
The basic configuration file layout is as follows and is also documented in the
/etc/apache2/apache2.conf:

The files shown are the only ones that are considered part of the actual apache2
configuration by virtue of being included by commands in the main configuration
file or one of the files it includes. Note that there is also a sites-available and a
mods-available directory that are not automatically included in the configuration.
The files in these latter two directories are included by virtue of links pointing to
them from the mods-enabled and sites-enabled directories, which we will
cover shortly.

In general, configuration changes will be limited to the ports.conf file, adding
or modifying files in conf.d, and the links in mods-enabled and sites-enabled
directories (and the files they point to). Any files you modify that are provided as
part of one of the Debian packages will, of course, be checked during upgrades and
you will be prompted for the proper action. Such files are generally only:

•	 envvars: This is the file containing environment variables used by Apache
and the apache2ctl utility

•	 ports.conf: This is the file that controls which ports and IP addresses
Apache listens on

•	 .conf extension files in mods-available directory: These are the files which
control the configuration of a module when loaded

Chapter 4

[53]

•	 default and default-ssl in sites-available directory: These are the files
which control the behavior of the default web service

•	 files in the conf.d directory: These are the files that are part of add-on
packages, such as phpmyadmin

Modifications to these files should, of course, be kept to a minimum, but sometimes
they are necessary. Most local configuration will be done by adding files to the
conf.d directory, or to the sites-available directory (along with appropriate links
in the sites-enabled directory), where virtual hosts are configured.

In Debian 7, the files are only included if they begin with a letter
or number. It does not include .dpkg and do not contain anything
other than letters, numbers, and underscores. In Debian 8, only files
that end in .conf or .load will be included.

Enabling sites and modules
As mentioned previously, site and module configurations and options are placed
in the sites-available and mods-available directories. They are not included
unless there is a link to them in the sites-enabled or mods-enabled directory.
Instead of making the links manually, use the a2enmod and a2dismod commands to
enable or disable modules, and the a2ensite and a2dissite commands to enable or
disable specific site configurations.

Testing and activating the configuration
Once all modifications have been made, and the appropriate sites or modules
enabled, it is best to test the configuration for obvious errors. While it is possible
to use the init script in /etc/init.d/apache2 for this, the apache2ctl utility is
specifically intended for, and better suited for this purpose. There is a configtest
command option (detailed in the apache2ctl manual page) which will perform
basic checking on all of the included files. It won't catch all errors, but it will catch the
majority of them. After you are confident the configuration is correct, it is necessary
to reload or restart Apache in order for the changes to become effective. Again, while
the init script can handle this, using apache2ctl is the preferred method.

Basic Package Configuration

[54]

There are two ways to get Apache to reload its configuration files, a regular restart,
or a graceful restart (which doesn't actually restart, it just reloads the configuration).
The graceful restart is the preferred method because if there is some issue with the
configuration, especially something the configtest was unable to catch, the web
service continues running with the old configuration, avoiding server downtime
while you fix the problem. A graceful restart may take some time if there are
long-running threads, since it waits until all threads are idle before reloading
the configuration. A full restart forcibly terminates all threads and reloads the
configuration, and won't restart the server after it is fully stopped, if there are
configuration errors.

Other examples
The Apache example should give you a feel for how Debian splits configuration
files into smaller, more easily managed files, and provides means to ease various
administration tasks, such as activating and deactivation modules. Other software
will have different layouts, as well as, different configuration features and utilities,
all described in the appropriate documentation.

Exim, for example, uses a single, monolithic configuration file. In order to split files
out, Debian provides a utility update-exim4.conf that combines all of the separate
configuration files from the /etc/exim4/conf.d hierarchy into the single file
required by the exim4 software. There are several minor variations in how this may
be done (all explained in the documentation), so that an administrator can choose his
preferred method.

Debian sendmail, another email package, uses another method. All of its
configuration files are in the /etc/mail hierarchy, and GNU make is used after
updating the configuration to create all of the necessary database and config files. In
fact, a special utility, sendmailconfig, will not only run make for you, it will also
handle incorporating /etc/default/sendmail changes, and reload the sendmail
configuration after processing is complete.

All of this shows how the Debian developers provide various methods of making
configuration easier. Simpler packages may have few, one, or no configuration files.
Those with larger or more complex configuration won't all be handled identically,
although the technique of splitting files into smaller, easier to modify pieces and
providing utilities to ease config administration will be common to most (and, per
Debian policy, described in the documentation for each package).

Chapter 4

[55]

Summary
Although Debian stays close to the upstream software developer's configuration
methods, the Debian developers frequently modify configuration file layout to
simplify local configuration and upgrades, and often provide additional utilities to
ease the administrator's job. Third-party utilities are sometimes available as well,
but the administrator should understand that the output of these utilities may not
always follow the Debian configuration layout.

Now, with basic software configuration out of the way, it's time to cover more
system wide administration issues.

System Management
Aside from configuring individual software packages, an administrator is
responsible for managing how the various services on his systems are started and
stopped, managing network connections, maintaining the filesystem, managing
system logs, and configuring the face the system shows to the users.

Startup and shutdown
The proper startup and shutdown of services required for a system to function and
fulfill its purpose is central to its management. While Unix init scripts (also known as
System V or SysV scripts, due to their origin in Unix System V) have a long history and
are in one form or another, common to all Unix and Linux systems, the way in which
they are managed, sequenced, enabled, disabled, and the preferred script format often
differs somewhat between distributions. The primary areas to be aware of for Debian
startup and shutdown scripts include the purpose of run levels, dependency-based
sequencing, and utilities available for administering the boot sequence.

Debian run levels
In Debian, as in nearly all Unix/Linux operating systems, run levels from 0 through
6 are available, defined as follows:

•	 0: System Halt
•	 1: Single User (maintenance)
•	 2 to 5: Multi-User Modes
•	 6: System Reboot

System Management

[58]

Note that run levels 2 through 5 are identical in Debian. This is unlike some other
distributions, such as RedHat, Fedora, SuSE, or OpenSuSE, which give specific
purposes to some of these run levels. For example, run level 2 in these distributions
is often defined as one without network support, 3 with networking, 4 with file
sharing, and 5 includes a display manager which isn't active in the other run levels.

In most Debian systems, there is no difference between the multiuser run levels, and
all of the init scripts default to active in levels 2 through 5. This doesn't mean you
can't define your own purposes for different run levels. However, if you do choose
to do this, do not manually edit the various links to init scripts in the run level
directories. The update-rc.d command should be used instead. The reason for this
is that Debian now defaults to dependency based boot sequencing.

Dependency-based boot sequence
As mentioned previously, this is now the default as of Debian 7 Wheezy. It was
introduced in Debian 6 Squeeze, although it could be turned off. It is now always
enabled, although provisions are made for legacy ordering (assigning specific
numbers to start and stop scripts). Because of this, the administrator no longer needs
to determine the order in which the init scripts are run. This is now handled by the
insserv utility.

The insserv utility should not be called directly. The update-rc.d
utility provided by Debian, which calls the low-level insserv command,
is the recommended interface to manage init scripts.

The init scripts must now have dependencies and defaults listed in a special set of
headers, along with a description of the script, what service or services it provides,
and what run levels the service should be active in. A good example is the beginning
of the script for starting Apache:

#!/bin/sh

BEGIN INIT INFO

Provides: apache2

Required-Start: $local_fs $remote_fs $network $syslog $named

Required-Stop: $local_fs $remote_fs $network $syslog $named

Default-Start: 2 3 4 5

Default-Stop: 0 1 6

X-Interactive: true

Short-Description: Start/stop apache2 web server

END INIT INFO

Chapter 5

[59]

The fields are fairly self-explanatory. This script provides the apache2 service. Other
scripts can name this service as a pre-requisite. This script requires that local and
remote filesystems be mounted, and that the network be up, and that syslog and
named services be available prior to starting. Likewise, these services must not be
stopped after this script has shut down the apache2 service. The default runlevels
where apache2 should be active are 2 through 5, and of course, 0, 1, and 6 is where it
is stopped. The X-Interactive field means that the script can require user input if it is
run in such a way that a terminal is available to communicate with the script.
There are other fields available as well, which are documented in the insserv
manual page.

These headers are called LSB headers, since they are defined in the
Linux Standard Base document, developed jointly by a number of Linux
distributions under the organizational structure of the Linux Foundation.

While dependencies generally do not change, the administrator can modify what run
levels a script is active in. This should not be done by editing the headers. Rather,
update-rc.d should be used to modify the run levels. For example, suppose you
want apache to run only in run levels 4 and 5, and not 2 or 3, the command update-
rc.d apache2 disable 2 3 will do this.

Many scripts provide a switch in their /etc/default config file that
defines whether the service should run at all. When you want to disable a
service completely, this switch should be used in preference to disabling
the script in all run levels via update-rc.d.

The manual page for update-rc.d also documents the options start and stop,
as well as a means of specifying the start or stop order of a script (using the legacy
method of assigning numbers to the start and stop links). However, these are
deprecated and it appears they will be removed in Jessie (Debian 8).

If you have locally developed or third-party init scripts that do not
include the necessary headers, Debian 7 will still boot using the old
method of script ordering, but will notify you of the reasons it can't
migrate to a dependency-based boot sequence.

System Management

[60]

Managing SysV scripts
The update-rc.d utility has already been mentioned, and is one of the primary
command line interfaces for managing init scripts. However, there are several other
utilities that are essentially a frontend for update-rc.d that make the administrator's
job a little easier. The primary ones are bum and sysv-rc-conf.

The Boot Up Manager, or bum, is a graphical application for managing init scripts.
It requires a window manager to run, and provides a nice interface showing what
services are running and what scripts are enabled. In advanced mode, it will also
allow you to adjust individual run levels and run order.

As mentioned for the update-rc.d start and stop commands, adjusting
script ordering is not recommended.

There is also a utility called sys-rc-conf. It uses the curses library to provide
a full-screen text interface. In its default mode, it will not modify script order,
although special options on the command line will allow this if you really need this
functionality.

Both utilities are pretty much self-explanatory. Check the services you want, uncheck
those you don't, and you can set or unset check marks for different run levels on the
same script.

Frequently, you will need to execute a SysV script manually, either to
check the status, or to restart a service that requires it. Although the
script in /etc/init.d may be executed manually, the recommended
method is to use the invoke-rc.d command, which ensures that
system policy and run level constraints are satisfied.

Third-party and local scripts
Non-Debian third-party packages often do not provide SysV scripts to start and
stop their software's background processes, and you may need to write your own.
Even if such scripts are provided, they may need to be modified to follow the
Debian standards, particularly if they use prepackaged functions available in other
distributions that differ from those in Debian.

Chapter 5

[61]

Writing init scripts is a whole subject in itself. However, the Debian initscripts
package includes a /etc/init.d/skeleton script that can be copied and modified
according to your needs. The requirements for such scripts are defined in Chapter
9, The Operating System of the Debian Policy Manual (available as a Debian package
and at http://www.debian.org/doc/debian-policy/) and Chapter 20, System
Initialization of the Core Linux System Base standard (available at http://refspecs.
linuxfoundation.org/lsb.shtml). The latter also provides for some standard
functions in /lib/lsb/init-functions to assist in script coding.

Network administration
Basic to any system is network access, either to allow others to use its services, or to
allow users to access services on other systems. There are two main ways of setting
up and controlling networking, the static /etc/network/interfaces file, and the
more dynamic Network Manager.

The interfaces file
This is the traditional method for setting up networking on a Debian system. It
involves a series of files in /etc/network. RPM-based systems such as RedHat
Fedora and SuSE Linux use a different layout in /etc/sysconfig/network that is
managed by their own utilities.

The /etc/network/interfaces file is probably the simplest way to get a network
up and running. While it must be edited manually, it is easy to understand and
a minimum number of configuration lines are needed to handle most situations.
In fact, the Debian installation process will set up this file for you. If you use the
same networking configuration as you used for installation, the network will work
immediately and require minimal tweaking. In fact, a minimal interfaces file is
usually sufficient for most servers that aren't part of a cluster. Even if you do use an
alternate method for network configuration, such as Network Manager, the local
loopback interface is usually left configured in the interfaces file to keep the alternate
configuration uncluttered, since it requires only basic configuration and doesn't
normally need to be modified.

System Management

[62]

The interfaces file, while it can be very simple, also offers many options for more
complex setups. You can configure wired, wireless, VLAN (Virtual Local Area
Network) and Bridge interfaces, IP tunnels, and Point to Point (PPP) interfaces. Each
interface can be configured to use DHCP or a static IP address, with both IPv4 and
IPv6 supported as well as Novell's IPX protocol. A simple interfaces file is shown
as follows:

This file describes the network interfaces available on your

system and how to activate them. For more information, see

interfaces(5).

The loopback network interface

auto lo

iface lo inet loopback

The primary network interface

allow-hotplug eth0

iface eth0 inet static

 address 192.168.3.52

 netmask 255.255.255.0

 gateway 192.168.3.1

Lines beginning with # are comments, of course. The purpose of other lines is
as follows:

•	 auto lo: The lo interface is brought up whenever ifup is run with
the -a option, as it is during system initialization

•	 iface lo inet loopback: This defines the basic loopback interface ;
the address is always 127.0.0.1 or ::1 for IPv6

•	 allow-hotplug eth0: This brings up Ethernet 0 if it is available and
plugged in

•	 iface eth0 inet static: This defines Ethernet 0 as an interface with
a static IP address

•	 address, netmask, and gateway: These define Ethernet 0's address, net
mask, and the default IP gateway, respectively.

Chapter 5

[63]

Simple and to the point. This file was actually set up during Debian installation and
works as is. Of course, there are many other options available which are documented
in the interfaces manual page that allow you to handle much more complex
configurations. The details on setting up the interfaces file may be found in the
interfaces manual page. It includes information on setting up IPv6 and many
other protocols.

In addition to the interfaces file, there are a number of scripts in the /etc/network
hierarchy that are related. In particular, the subdirectories if-pre-up.d, if-up.d,
if-down.d, and if-post-down.d contain scripts that are run automatically when
interfaces are brought up or down. In addition, specific scripts can be identified in
the interfaces file to be executed when a particular interface is brought up or down
(this is especially useful in configuring Bridges). The major disadvantage to using
the /etc/network/interfaces file is that there is no provision to configure Virtual
Private Networks (VPN). However, in general, these can be configured using
command line tools.

Additional details and examples may be found in Chapter 5, Network
Setup of the Debian Reference Manual (http://www.debian.org/
doc/manuals/debian-reference/ch05.en.html).

Network Manager
As flexible as the /etc/network/interfaces configuration is, many administrators
prefer a more graphical interface to network configuration that may be used in
a more dynamic network environment. Network Manager is most often used to
manage wireless connections. It consists of a background process that does the actual
connection management and has both a command line and a graphical utility that
allows you to configure and control the managed connections.

The graphical utility displays available access points and provides a menu and an
easy way to configure the connection. It can also be used for wired connections and
can manage VPN connections to a private network as well. The main disadvantage
of Network Manager is that it does not handle bridging, VLANs, or the IPX protocol.
Of course, command line tools can be used to supplement Network Manager in
order to configure these options, or the interfaces file can be used to manually
configure them while Network Manager handles the rest.

There are other packages that provide a GUI interface for network configuration.
One of the main ones is wicd. Some users prefer it as it handles wireless connections
in a different manner that may allow certain wireless cards to work better, but it has
fewer features.

System Management

[64]

Combining methods
It is possible to combine both the interfaces file and Network Manager methods of
network configuration, with each responsible for a portion of the configuration. This
technique might be used when certain features are required that only one of the
methods support. For example, Network Manager doesn't handle network bridging,
and the interfaces file generally can't be used to configure VPN connections. If you
needed both, you would set up bridging using the interfaces file and configure your
VPN connection using Network Manager.

For those unfamiliar with network bridging, a good example would be a development
system that runs one or more virtual machines that require direct access to the network
(meaning its connection must behave as if it is an actual interface with a direct network
connection). The basic setup looks like the following diagram:

Network

PC

Ethernet
Hardware
(eth0)

Bridge (br0)

VM Virtual
Network
Connection
(tap0)

VM

Note that the host machine now uses br0 instead of eth0 as its primary interface.
The bridge interface uses eth0 to connect to the actual network. The VM (Virtual
Machine) will set up its own network interface (or you will set it up). These are
generally set up as a tap or tunnel interface (hence the name tap0).

Chapter 5

[65]

To set it up, the basic interfaces file might look like the following listing (assuming
the hardware Ethernet card is eth0):

TAP setup

auto tap0

iface tap0 inet manual

 pre-up /usr/sbin/tunctl -t tap0

Bridge setup

auto br0

iface br0 inet dhcp

 bridge_ports eth0 tap0

This sets up a TAP device using the tunctl command to create the device. It must
appear before the bridge or it won't be there when the bridge device is initialized and
attempts to connect it to the bridge. The bridge setup creates the bridge interface and
uses DHCP to obtain the IP address. The bridge_ports line indicates that it bridges
traffic to the real interface (eth0) and the tap0 interface, which will be used by the
VM. I've left out the loopback entry for clarity. In this example, VPN and wireless
connections are left for Network Manager to handle.

More about network bridging may be found in the bridge-utils package, and
network tap and tunnel interfaces are covered by the uml-utilities package.

Which method?
Network Manager is automatically installed with the GNOME Window Manager.
It is especially useful in a laptop environment. For servers, the interfaces file is
probably the best and most flexible option. Of course, if you require certain features
available only in one or the other, use whatever provides them, combining the two
techniques if necessary.

Don't attempt to control the same interface using both methods. While
Network Manager will refuse to manage a connection defined in the
interfaces file, and the ifup command will generate an error if it
attempts to set up an interface already controlled by Network Manager,
it is possible to circumvent these protections.

System Management

[66]

Filesystem maintenance
There are two types of filesystem maintenance: partition and content maintenance.
The former includes periodic checking of the filesystem's underlying structure and
metadata, modifying the partition layout, and low-level backups. The latter involves
monitoring and controlling the space used by files as well as file backup and recovery.

Partition maintenance
Although modern journaling filesystems are quite resilient, they will, on occasion,
suffer an error in the underlying infrastructure. The reasons are many and include
power fluctuations, hardware failures, and certain types of kernel failures. While the
last is extremely rare in Debian stable releases, it does happen, especially if third-
party kernel modules that are not part of Debian are installed or if the kernel has
been modified locally for some reason.

Filesystem Check (FSCK)
Maintenance involves running the Filesystem Check program (FSCK). If the system
is rebooted frequently, as is the case with laptops or workstations, or the partition is
unmounted and mounted frequently, this will normally happen automatically. EXT3
and EXT4 filesystems default to every 39 mounts when originally created unless
otherwise requested. This may be changed using the tune2fs utility which can also
set a time-dependent check interval instead of mount count dependent.

Although it is possible, periodic checking should not be disabled.
Journaling filesystems in general are always marked clean and so
Linux will not recognize when such a system may have problems.

If your system is always up and the partition in question is never unmounted, you
may want to arrange for a periodic reboot of the system, either via the shutdown -rF
command that forces a filesystem check, or by using tune2fs to set a time-dependent
check interval that is less than the reboot interval. Of course, if problems are found,
you must have access to the physical console in order to answer the questions about
how to fix them.

An alternative is to never check the filesystem except when problems are obvious or
likely. Normally, after a failure that could potentially cause filesystem infrastructure
errors, the system will need to be rebooted anyway, if it isn't forced. This is the
time to run the FSCK manually in maintenance (single user) mode, or to force the
check by having a short, time-dependent check interval set. Again, if problems arise,
someone will need access to the physical console in order to answer questions.

Chapter 5

[67]

To speed up periodic filesystem checks, use EXT4 instead of EXT3.
In most circumstances, checks are anywhere from 2 to 20 times
faster for EXT4.

Partition resizing
Partition resizing may be required if you need more space. To get a quick overview of
your disk space usage, use the df command. There is also a disk usage (du) command
that summarizes file and directory space. Refer to the manual pages for details.

If you must resize a disk partition, the procedures are fairly straightforward but
there are some considerations.

There is always a risk in modifying your partition layout. Make sure
you have current backups prior to modifying the layout.

If the partition is being expanded, there must be room to expand it. If you are using
Logical Volume Manager (LVM), this can be as simple as adding a physical volume
to the volume group if there is not enough space left in it. If you are not using LVM,
or if you have multiple partitions configured on the same logical volume, then there
must be free space available on the physical disk or logical volume following the
end of the partition to be expanded. If there isn't, it must be created somehow. If the
partition is to be shrunk, space is not an issue, although you may want to move or
expand other partitions to use the space freed up by shrinking. Also, it is sometimes
necessary to move partitions around. This is not necessary if you use LVM and
assign one partition per logical volume.

Moving or shrinking a partition may only be done with unmounted (offline)
partitions, since it requires moving files and risks corruption if any files are in use.
Some filesystems, EXT3 and EXT4 in particular, may be expanded while the partition
is still mounted, however, since this doesn't require moving any files, just modifying
the filesystem metadata.

While each filesystem architecture has appropriate tools for resizing and there are
simple tools for managing the partition table, the primary tool for managing partitions
is parted. There are other, mostly commercial tools, but parted does pretty much
everything that is necessary, is available as an easy to use graphical utility (gparted),
and it is free. There is even a live CD version you can boot to manage your partitions
regardless of what operating system is installed. Many Windows administrators use it
quite successfully. It handles both enlarging and shrinking partitions as well as moving
them, and will handle many different filesystem architectures, and ensures that the
partition table matches the filesystem sizes.

System Management

[68]

Unfortunately, neither parted nor gparted will not allow you to
expand a mounted partition. If you must expand a partition while it is in
use, you must delete and recreate the partition with the same, identical
beginning position, force a reread of the partition table, and then use the
appropriate filesystem resizing commands. This is extremely dangerous
and should never be used for resizing the root partition.

The procedures for modifying partition layout are straightforward.
Note that if you aren't booted from a gparted live CD or similar utility
disk, you cannot unmount partitions required to run the necessary
utilities and operating system services.

To manually modify your partition layout:

1.	 Ensure there is adequate space for the expanded partition, or to hold the
partition being moved. If necessary, shrink or move other partitions or
expand the logical volume.

2.	 You must ensure the partition table matches the resized or moved partition
exactly. Failing to do this can result in corrupted or lost data. gparted will
handle this for you automatically.

3.	 To shrink a partition, it must be offline (unmounted). Resize the filesystem
first, then modify the partition table to match the new size.

4.	 To expand a partition, modify the partition table first, then expand the
filesystem. If you are doing this with a mounted partition, you must use the
procedure outlined previously.

5.	 To move a partition, you must first create a new partition of the same size as
the original. Then you must unmount the current partition, copy the data to
the new partition exactly, and delete the old partition.

In all cases, the partition must be clean prior to modifying or moving it, and should
be checked afterwards prior to mounting it. The gparted utility or similar will
handle the steps above automatically, including the necessary filesystem checks, data
movement, and partition table modifications.

Note that either gparted or the manual procedures may be used on a live system,
provided the partitions being modified can be unmounted, or if a mounted partition
must be modified, it is only being expanded and gparted is not being used.

Chapter 5

[69]

Unless you must expand a partition while it remains mounted and
in use, the recommended procedure is to boot from a gparted live
CD. This greatly simplifies the whole process, allows modification of
all partitions, not just those that aren't required for operating system
services and necessary utilities, and reduces the risk of corruption.

Backups
In general, there are two types of backups: low-level image backups, and file-level
backups.

Low-level backups
Low-level disk image or so-called Bare Metal backups, are byte-level copies of a full
partition or even a complete logical or physical disk. Some utilities will only include
used sectors in the copy, thus reducing the size and speed of the backup and restore
operations, but this is not always the case. When restoring such a backup, some sort
of media, such as a live CD, is required in order to boot up the software to restore
the image.

Full disk byte-level backups are useful if you need to duplicate or restore a system
quickly, as long as the disk being restored is the same or larger. Partition backups of
this type may also be done, but in order to restore them you will need some way to
restore the partition information to the disk partition table.

Low-level backups are useful in two situations:

•	 When a system must be replaced and restored quickly with
identical hardware

•	 When a system needs to be duplicated many times on identical hardware

A good example of the latter is when a company provides workers with
preconfigured systems all with identical or nearly identical initial configurations. In
this case, it is easy just to restore the disk from a standardized copy whenever a new
system is required or an old one needs to be returned to its original condition for a
new employee.

System Management

[70]

File-level backups
File-level backups can be as simple as a file-by-file copy of everything in your
directory hierarchy, to a backup that takes into account the filesystem metadata
structures and that doesn't store duplicate data (commonly called data
de-duplication). Restoration generally requires a minimal installed system,
or a live CD. File-level backups do not have the ability to restore boot sectors or
partition tables, so these must already exist or be created prior to restoring your
files. Many file-level backup utilities provide the ability to back up only files that
have changed since a previous backup.

File-level backups are most useful when individual files or directories are lost or
corrupted, or need to be reverted to an earlier version, as only the files necessary
need to be restored. This is not possible with low-level image backups.

Backup utilities
There are many backup utilities available and they vary from simple ones
appropriate for individual systems, to complex backup suites appropriate for
managing backups for multiple production systems and clusters.

The simpler utilities generally provide file-level backups that are written to external
media or even a remote network location. They frequently provide options for
incremental backups, where only changed files are copied after the first, full backup.
Mostly, these are command line utilities which can be scripted and executed
periodically via a CRON job, although there are graphical front ends available.
The disadvantage of most of these are that in the event you need to restore after a
complete disk failure, you must have some other means of restoring the partition
information correctly, and of recreating the boot sector information properly so the
system will be bootable.

Among the more common of the simple utility commands are rsync and tar.
Frequently, these utilities are used in the more complex backup software to
actually store the data. If you use one of the EXT filesystems, the dump and restore
commands are of particular interest, because they understand and take into account
the filesystem's metadata and are thus faster and more efficient than the simpler
copy utilities. The disadvantage, of course, is that restores may only be done to an
equivalent EXT filesystem. Other utilities such as rsync can restore to a completely
different filesystem type, although certain metadata, such as file ownership and
permissions, may be lost if the type is too different, such as backing up from an EXT4
filesystem and restoring to an NTFS partition.

Chapter 5

[71]

More complex backup software is sometimes capable of so-called Bare Metal
backups. These combine small, low-level backups of (or at least the ability to
recreate) the non-filesystem structures such as the partition tables and boot sectors,
with file-level backups of the filesystem contents. Many are multisystem backup
solutions that can be administered from a central location and which can store the
backups on various media in various locations. Usually, these multisystem suites
include the ability to define and control backup schedules, contents, and locations
as well as provide for off-site archiving.

Choosing your solution
Which backup software you choose is somewhat a matter of taste, but there are some
guidelines. For quick and dirty backups of individual files, the standard rsync,
tar, and cpio utilities are usually sufficient. For more routine backup of individual
systems, one of the software packages that provide for configuring and scheduling
automatic backups, both full and incremental, is your best bet. If you have multiple
systems to back up, one of the major backup suites that provide central control,
scheduling, and storage is best. We will discuss this further in Chapter 7, Advanced
System Management.

In all cases, if your backup solution doesn't automatically take care of it, be sure
to include a rescue or live CD that includes the software necessary to format and
partition the disk drive, restore the files, and recreate the boot information. Some
backup packages, such as Mondo, include the creation of such bootable media as part
of their software.

Don't neglect backups. Even the most resilient VM environment with
multipath Network Addressable Storage (NAS) can fail in unexpected
ways that will corrupt your data. I am aware of one such environment
where the UPS was disconnected in a way that removed power from
both the NAS system and the VM host. Although the Debian system
used a non-cached journal for its filesystem, the NAS was buffering the
journal writes. When power was lost, the journal was incomplete, and
the disk ended up quite corrupted. Lesson learned.

System Management

[72]

System logging
Another one of the system administrator's responsibilities is to manage the system
logs. Debian systems by default log information that can tell an administrator how
the system is being used, provide warnings and error messages that can indicate
problems with software or hardware, and even provide early signs the system is
being attacked or misused.

System logs are handled by the rsyslog package, and normally reside in /var/
log and its subdirectories. Various software packages and especially those that
provide important services, such as DNS, FTP, E-Mail, and HTTP (Apache), often do
extensive logging that may include entries that allow activity to be tracked and warn
of potential problems or misconfiguration. The package documentation includes
information on how to configure what is logged and where.

The logging facility
The rsyslog system logging facility in Linux provides for various options, facilities,
and log levels. The options control what happens when a message is logged, such as
whether it is sent to the console if it can't be logged in a file, whether the process ID
(PID) is included in the message. The facilities provide a means to divide messages
into various areas according to what subsystem is involved, such as AUTH for
authorization messages, CRON for scheduled jobs, KERN for kernel messages. Most
software that uses the system log provides configuration items to control the options,
files, and facilities it uses for its messages. In addition, and most important, are the
levels of log messages, which determine how important a message is.

Log levels detail which messages, of the many that might be sent to the system
log, actually get logged. This varies from the EMERG level, which only involves
messages that essentially mean the system is unusable, down through ALERT
(immediate action required), CRIT (critical), and ERR (errors) to WARN (warning
conditions), NOTICE (normal but significant), INFO, and DEBUG. Setting the log
level to any of the latter three can generate a significant number of entries and use
a lot of disk space as well as requiring significant system overhead.

For that reason, there are some guidelines as to what should be logged:

•	 Production systems should only log EMERG, CRIT, ALERT, ERR, and
WARN levels. NOTICE, INFO, and DEBUG should never be logged on
a production system unless absolutely necessary.

•	 Development systems should log those levels mentioned in the previous
point, along with NOTICE and perhaps INFO levels to provide information
necessary to the software developers. DEBUG may also be used
when necessary.

Chapter 5

[73]

The idea is to provide the necessary information without unduly burdening
a system. In particular, NOTICE, INFO and especially DEBUG levels can
produce massive amounts of data that are generally unnecessary in a stable
production system.

Log data is frequently used to analyze how the system is being used, who accesses it,
what activities are being performed, as well as to notify the administrator of things
that need attention.

Controlling the logs
Even production system logs will eventually grow to the point where they
take up a significant amount of disk space, and this is even more of a problem
with development systems that follow the preceding guidelines. One of the
administrator's duties is to determine how much log data should be kept, and
manage the files appropriately.

All distributions, and Debian is no exception, provide by default a job or jobs that
run periodically to close the current log files, mark them with a cycle number, and
open new, clean files for logging. In Debian, this is provided by the logrotate
package. While this package is primarily concerned with log files, it can be used for
any other files that grow constantly and need to be cycled. Detailed documentation
is provided with the package, but the basic idea is that each log file is checked and if
it is over a certain size, it is closed. Then all cycles of the log file are renamed, and if
necessary, those over a certain age or cycle number are deleted. A new log file is then
created to continue logging.

You can configure how many cycles are kept, or even how old the cycles can be
before they are deleted. The primary choice here is how long you wish to keep log
entries. The defaults installed with each package reflect the experience of many
administrators and are usually appropriate in most circumstances.

Monitoring the logs
So, does an administrator need to wade through all of the log entries daily? That
would be an extremely tedious task, and is really not necessary. A number of
packages exist in Debian that will scan the logs for certain conditions and email
the results to the administrator for further checking and action. The most common
is logcheck, which checks the latest log cycles against a database of entries that
an administrator might be interested in. It then emails the important ones to the
administrator for further checking. There are also packages that perform various
analysis tasks, such as email statistics or HTTP access statistics, using the system
logs often combined with other information sources. They may be found using the
Debian package management search facilities.

System Management

[74]

What package you use to check the logs, or even whether you use
your own scripts based on string searches, is not important. The
critical thing is to check the logs regularly. They can give you timely
warning of impending hardware issues, software instabilities,
programming problems, and attacks on your system.

Display managers
Straight servers, as opposed to development servers, generally do not require a
display manager. Of course, development servers and those servers that do provide
the ability to log in to a managed display environment do require both a display
manager and a window manager. The former handles the creation and security
of the X-Windows display environment and resources required, while the latter
handles the actual desktop environment presented to the user.

There are several major environments, each with its associated Display and Window
Managers. The two major environments are GNOME and KDE. Both support a
variety of graphic toolkit libraries, so that most applications that run in one will run
in the other, provided the necessary services are available. These services are usually
installed as a dependency when the application is installed if you don't install the
basic meta package for either GNOME or KDE. So if, for example, you like the
KcacheGrind tool for browsing program profiling data, but are using GNOME, you
can go ahead and install and use it under GNOME. It will work fine. Likewise, if you
prefer the K Display Manager (KDM) that comes with KDE to the GNOME Display
Manager (GDM) provided by GNOME, it will work just as well.

Given this interoperability, why choose one over the other? It is mostly a matter of
personal preference. As mentioned in the first chapter, KDE is usually preferred by
European users, while GNOME is more of an American preference. Our main concern
in this section will be where to find configuration files or applications for each.

Where did my desktop go?
Both GNOME and KDE, like the new Windows 8, have abandoned the old desktop
metaphor for a more activity or task oriented look. It takes some getting used to
and can be disconcerting at first. Covering the changes from the old look to the new
would take a book for each Desktop Manager! However, the home sites for both
KDE and GNOME provide tutorials and documentation to help you get started. If
you prefer the older desktop metaphor, both GNOME and KDE provide ways to set
this up as well.

Chapter 5

[75]

GNOME
The current GNOME release in Debian 7 is 3.4. If you install the gnome meta package,
all major GNOME applications as well as the window and display managers, will
be installed. Configuration is pretty straightforward, as the user menu provides a
System Settings application to access the major settings of your workspace in order
to alter how it looks and feels.

Modifying the GNOME login screen, GDM3, if you don't want the default behavior,
requires manual editing of /etc/gdm3/greeter.gsettings and /etc/gdm3/
daemon.conf as the root user. Then execute the dpkg-reconfigure gdm3 command.

Part of the reason for this is that GDM is being integrated more fully into
GNOME, and is being moved to the dconf settings framework from the
old GNOME 2 gconf based settings. At some point, the GNOME control
center should provide the appropriate utility but, at this time, there is no
official GDM3 setup utility. An unofficial utility called gdm3setup exists,
but has not found its way into Debian, yet.

KDE
The current KDE release for Debian 7 is 4.8.4. The kde-full meta package will
provide all KDE applications as well as the window and display managers. The
KDE user environment provides a System Settings application just as GNOME
does, but it is a bit more comprehensive as it includes the ability to configure KDM,
the display manager responsible for the login screen. In fact, because of this, some
administrators use KDM as the display manager, even though the default session
may be GNOME.

Other desktops
XFCE and LXDE are the most common alternatives to KDE or GNOME, although
there are others. Neither one provides a display manager for login screens, although
LXDE recommends LightDM, a lightweight display manager. XFCE and LXDE
(as well as LightDM) retain the old desktop metaphor, and are designed to place a
minimal load on the system, making them appropriate for older hardware.

During the time Linus Torvalds abandoned GNOME3, he ran XFCE.

System Management

[76]

Like both GNOME and KDE, both XFCE and LXDE provide a system settings
application to control the look and feel. LightDM also provides a graphical
settings utility.

Showing your best face
Take time to at least look into the settings for your chosen display manager. Unless
you are running a server that never sees a graphical login, this is the first and last
thing your users see. You may also want to look into appropriate backgrounds for
your users' desktops. They don't need to be fancy but they do make an impression.

Summary
The tasks of an administrator are many and include the responsibility for what
services the system provides (especially how they are started and shut down),
network configuration, system backup, filesystem space management, system
operation (system logs), and providing the face the system shows to the world.
We've covered some of the issues in each of these areas, although comprehensive
coverage of any of the subjects could take several books. One subject not covered
here that must be covered in depth is basic system security. We will cover this in
the next chapter.

Basic System Security
One of the most critical tasks performed by system administrators is setting up and
monitoring system security. Debian provides some assistance here, with special
packages that help in hardening your systems, but this is only the beginning. In
particular, you must pay attention to how you set up the root account, how to
block improper access to your systems, and how to monitor your system for
security problems.

User administration
One of the first things to consider is how to set up user groups and how to manage
the root account. Although this can be changed any time, it should be done just after
installation when changes will have less impact. The two basic issues are how to set
up default user group assignment, and whether the root account should be disabled.

Default user group
Traditionally, there are two ways to set up the default group assigned to a new
user. The first is to have everyone assigned to a single users group. This will allow
all users on the system access files and directories with group read (and execute)
permissions, and write to files with group write permissions.

The other way is to give each user his own groups, usually with the same name as
his user ID. This is the default in Debian, and this scheme is often referred to as user
private groups. If user A wants others to be able to access certain files or directories
via the group permissions, someone with system privileges that allow group
modification must add the appropriate user IDs to user A's group.

Basic System Security

[78]

At one point, a single users group was common practice. Best practice
at present, though, is to use user private groups.

This is similar to the most common way to handle developer's access to each other's
files. In this case, though, a new group, such as web-dev or whatever you feel is
an appropriate group name, is created and the developers are assigned to it as
necessary. A similar technique is used for some administration tasks as well. For
example, an ftpadmin group that is allowed to modify the FTP server directories
and files in ways that the normal (and especially the anonymous) ftp user cannot.
Careful creation and assignment of groups can facilitate proper user access to files
while preventing undesired access or modification.

User and group maintenance is handled by the standard command-line functions,
such as useradd, usermod, userdel, groupadd, groupmod, and groupdel, all
documented in the passwd package. Of course, there are GUI utilities available for
user and group maintenance as well.

ACLs
While the traditional user/group/world permissions structure is adequate for many
systems, there are times when more fine-grained control is required. This may be
handled by using Access Control Lists (ACL). ACLs are implemented using the
extended attributes available in various filesystems and are available by default in
the EXT filesystems normally used in Debian Linux. The details may be found in
the Debian acl package. In particular, check out the manual pages for the getacl,
setacl, and chacl commands.

While ACLs are useful, there are some issues to be aware of. For example, most
graphical file managers do not support them, and some utilities (EMACS comes to
mind) clear the file ACL list when updating a file. This can be addressed somewhat
by setting a default ACL for the directory, but non-default file ACLs will still need to
be reconstructed if they are lost. Another issue is performance. On some filesystems,
the existence of an ACL delays the initial file access due to the additional access
verification required. Since this occurs only on the initial access, its impact is often
minimal in practice. Finally, there is the issue of backups when you use ACLs.
Most backup utilities now recognize ACLs. In Debian Linux, both rsync and tar
now have options to allow them to recognize and back up ACLs, but they are only
handled if you use the proper command options. The EXT backup utilities dump
and restore also handle ACLs. However, some utilities may not recognize or handle
ACLs properly, so always check the package documentation and manual pages if
you use Access Control Lists.

Chapter 6

[79]

Note that, if you do use ACLs, you are not required to use them for all files and
directories. It is quite possible to set them on only those files and directories that
need them. Judicious use of file ACLs and default ACLs set for certain directories
will help streamline ACL management.

The root account
Root access to a system is a serious issue. Anyone who knows the root password can
do great damage, and the more people who know it, the greater the chance of the
password getting into the wrong hands. To avoid this problem, the sudo package
provides the ability to run commands as if one were the root user (including, if
desired, a shell with full root permissions) without requiring the root password,
only the user's own password and proper authorization. The advantage of this is
that authorized commands are logged with the user's ID, providing an audit of who
actually performed the command.

When sudo is used on a system, the only remaining use for the administrator
password is when the system is booted into maintenance (single user) mode. Most
Linux distributions, including Debian, require the root password before providing the
root shell prompt in single user mode. However, this requirement can be bypassed
in several ways by someone with access to the physical console. Therefore, many
administrators completely disable the root password. When this is done, booting into
maintenance or single user mode no longer prompts for the root password.

By disabling the root password completely, root-level access to the system via any
method other than sudo, other programs that provide root privileges to normal
users (also known as setuid programs), or via boot into single user mode is not
possible. Note that, since booting into maintenance mode no longer requires a
password, physical access to the system console must be controlled in some other
way. This may be done by physical means, by requiring a password for the system
boot via BIOS (Basic Input/Output System) or UEFI (Unified Extensible Firmware
Interface), or by password protecting the GRUB or other system boot loader.

Best practice is to disable the root account login completely. Ubuntu
now does this by default, and Debian is moving in that direction. Make
sure you either restrict physical access to the console or password
protect the boot process.

Basic System Security

[80]

The /etc/sudoers file and files in the /etc/sudoers.d directory are where sudo
access is configured. The details are provided in the sudo package documentation.
Briefly, access to commands can be allowed or restricted by individual user, group
members, or even lists and can allow access to commands depending on the remote
host from which the user is accessing the system.

Debian hardening packages
Debian provides several packages to assist the administrator in securing the system.
They are all meta packages, and include:

•	 harden: This installs harden-environment and harden-servers
•	 harden-clients: This prevents installation of software clients that have

the potential to expose critical information or allow unauthorized access to
your system

•	 harden-environment: This installs tools for intrusion detection
•	 harden-nids: This installs tools for network intrusion detection
•	 harden-servers: This prevents installation of services that are potentially

insecure and could allow unauthorized access to your system
•	 harden-tools: This installs tools to help enhance and analyze

system security

There are other hardening packages that install tools to analyze or audit systems
remotely, and help developers create more secure programs. The packages can
be found by searching the package cache for "harden". One way to do this is the
command apt-cache search harden.

Installing any of these packages is just a start, and won't automatically make your
system secure. They are just a way of installing groups of security related packages,
or preventing certain packages from being installed if they have potential security
issues. In particular, if you install harden-environment, harden-nids, and harden-
tools, you will also need to consult the appropriate package documentation and
configure them properly to detect and analyze security issues, issue the proper
warnings, or take the necessary actions.

Chapter 6

[81]

One thing to be aware of is that some of these packages prevent the
installation of certain services, such as an FTP server. If your server must
provide FTP services (for example), then first install the appropriate
hardening packages. After the install completes, install the FTP package
confirming that you want to remove the hardening package. That way,
you at least know that insecure services other than FTP have not been
installed. To maintain that assurance, periodically test what harden-
servers would remove if installed. This can be done, for example,
by running apt-get –dry-run install harden-servers, and
examining the output to see what would be done.

Firewall tools
One thing that the hardening packages do not provide is tools for protecting your
systems via firewalls. This absence belies their importance in securing your systems,
as a short search of Debian packages will show many tools for building firewalls.
They vary from simple to complex, and from command line to full graphic interface.
Nearly all are frontends for IPTABLES, the Linux kernel firewall modules and
associated commands, and produce appropriate configuration files. Some provide
a simple configuration language that is more readable than the standard iptables
commands, which the tool then translates into the proper commands for you. Some
provide a way of defining firewall policies, which are then translated into proper
iptables configuration commands.

Even if your system is already behind a firewall, it is good practice to
provide its own firewall as well. This multilayer approach provides
additional protection in case the first firewall is somehow compromised.

Of course, with the variety of firewall packages available, it is difficult to recommend
any particular package over the others. Each has strengths and weaknesses.
However, if we restrict ourselves to the more popular packages, there are a few
general recommendations that can be made.

First, for desktop and development systems which don't require extremely complex
configurations, firestarter (for GNOME) or guarddog (KDE) are good starting points.
They are oriented towards beginners but have advanced options that can be useful
to more experienced users. Both are graphical applications. A special case is fireflier,
which actually analyzes the applications traffic on the system and recommends rules.
Mason is a similar application, but it does not offer a graphical interface.

Basic System Security

[82]

For servers or systems that require more robust protection, consider fwbuilder.
It is similar to many enterprise firewall management systems and can provide
configuration not only for Linux (both IPTABLES and IPCHAINS rules), but also
BSD, Mac OS/X, and Cisco access-lists as well. Configurations for multiple servers
can be kept in one place and installed remotely as needed. Refer to http://www.
fwbuilder.org/ for more information.

A popular alternative is Shorewall, which can also handle traffic shaping and IPsec
to some extent. Shorewall uses text configuration files rather than a graphic interface.
More information may be found at http://shorewall.net/.

In all cases, for Debian Linux, the firewall packages control traffic by generating
the IPTABLES rules used by the kernel modules to recognize, analyze, and control
network traffic.

IPTABLES
IPTABLES, which supersedes the old IPCHAINS code, is the generic name for what
is actually a group of kernel modules and applications used to define and control
Linux kernel firewalling. It actually includes modules and applications to provide
IPv4, IPv6, ARP, and Ethernet Frame packet filtering as well as some stateful
inspection of packets. There are many options for filtering, depending not only on
the packet characteristics (such as protocol, source and destination addresses), but
on how the packet is being handled, such as whether it is just entering the system,
being forwarded, exiting to the network, needs address translation (such as Network
Address Translation or NAT), related to an established connection. There are several
good books available on IPTABLES, or you can start with the documentation on the
www.netfilter.org website, which is the home of IPTABLES code as well as many
related projects.

There is a project, NFTABLES, which is slated to replace IPTABLES
in the kernel. It is still under development and at the time of writing,
there is no official Debian support (either in Debian 7 or the testing
release for Debian 8). However, there are compatibility packages in
the works, and once the code becomes part of the official Linux kernel,
official Debian packages are expected to follow.

Chapter 6

[83]

Since most firewall packages provide their own ways to define your firewalls and
output the appropriate iptables configuration commands, it is not necessary to
understand all of the gritty details of IPTABLES, but a good administrator will want
to understand the basics for a couple of reasons. First, it will help in understanding
the capabilities of the firewall configuration software, since the features will be
based on what can be done with IPTABLES, and second, it will be needed if you use
something such as fireflier or mason, which propose rules and expect you to modify
or delete them as required for your specific environment.

Of course, beyond understanding what is possible, it is necessary to figure out what
is required for your firewall.

Basic firewall design
There are many books and reams of Internet advice on building firewalls. The classic
work on the subject is Building Internet Firewalls by Elizabeth D. Zwicky, Simon Cooper,
and D. Brent Chapman, O'Reilly Media. However, for our present purposes, we'll
cover some basic design principles.

Inbound opens
Any time someone can open a connection to a system, that system can be attacked
via that connection. This doesn't refer to inbound traffic in general, especially since
much of this will be related to connections the local system established. It refers to
the request from a remote system for a new connection to a local service. This is
usually called an inbound open as it involves an initial request by a remote system to
open a connection on a specific IP port.

Of course, if your system is a server that provides services to remote users, you must
allow requests for services your server provides. Just don't allow any other inbound
requests, and if you can, limit the source address of the requests unless the service is
to be provided to anyone and everyone.

Limit inbound requests (opens) to only those absolutely required to
provide particular services to remote clients. Do not allow any other
inbound traffic unless it is on or related to an established connection.

Basic System Security

[84]

Outbound traffic
In general, outbound traffic is legitimate, and many administrators do not restrict
traffic originating on the local system going to remote systems. Unfortunately, there
are cases where this is not advisable. A common example is when a company wishes
to restrict the outside services its employees can use (such as preventing the use of
YouTube because it is inappropriate for them to be using it during working hours).
Another example, though, is the case where a system has been compromised and
starts contacting a remote command and control system for orders and additional
malicious software to install.

Both cases may be handled by at least logging, and in many cases restricting
outbound traffic. In most cases it is sufficient to limit outbound opens (requests
for a new connection).

On a personal system, outbound opens need not be restricted unless
company policy requires such restrictions. On a server, outbound
opens should be restricted to those services that the server requires for
proper operation. Outbound traffic should be allowed only if it is on or
related to an established connection.

Local loopback traffic
Most administrators are not concerned with traffic on the local loopback interface.
This is because such traffic is often necessary for proper operation of the local
system. It is also rather difficult to analyze in order to determine what is necessary
and what may be safely blocked without affecting normal operation. The major
reason to firewall loopback traffic is that if rogue software is installed on the system
by a virus or worm, then that software has more avenues to further attack the local
system over the unprotected loopback interface. It may allow a minor compromise to
exploit the opening to become a major system takeover.

The major trade-off here is whether the likelihood of compromise and the resulting
potential for damage justify the additional time and effort required to analyze and
create a proper firewall for the loopback interface.

If a system is subject to frequent, serious attacks, consider firewalling
the local loopback interface as well.

Chapter 6

[85]

The perimeter network
Probably one of the most important ways to protect private networks while still
providing services available to the public Internet is by using a perimeter network.
Often called a De-Militarized Zone (DMZ), it is a buffer between attackers and
your internal network.

Traditional Design Single Firewall
(Cisco) Design

Internet

Perimeter
Network

Internal (Private)
Network

Internet

Perimeter
Network

Internal ()
Network

Private

In the previous diagram, there are two architectures given. The traditional design
uses two firewalls with the perimeter network placed in between them. The reason
for this is that if the external firewall which is exposed directly to the Internet and
attack is compromised, the attacker still has to get through the internal firewall
before he has access to systems on your internal network. Experience has shown
that firewall compromise is uncommon enough that a single firewall can be used
reasonably safely, as shown on the right. The dual firewall architecture is still
preferred for high security environments.

In all cases, the only systems that can be accessed from the Internet are those on
the perimeter network. Those servers must not have any access to internal servers
through the firewall. Internal servers can connect to the perimeter systems and thus
allow two-way communication, but servers on the perimeter should never be able
to initiate connections to internal systems. This prevents a compromised server from
further endangering your internal network.

Basic System Security

[86]

No matter how careful you are, any server connected to the Internet will
be attacked, and attacked frequently. Sooner or later, one of those attacks
will succeed. No server that allows any outside access is completely
immune to compromise. Best practice for any system, not just Debian, is
to place Internet servers on a perimeter network in order to protect your
internal systems and data in the event an Internet server is compromised.

So, now you have your system properly firewalled. As mentioned previously, you
will still be attacked, and eventually compromised. The next section deals with how
to detect both the attempts and any compromise as soon as possible.

Intrusion detection
Debian includes a number of intrusion detection applications. There are three basic
classes: Network Intrusion Detection Systems (NIDS), File Monitors, and System
Scanners. The former works by scanning network traffic to detect attempts to discover
and exploit allowed network connections. The latter works by scanning a known clean
system, then monitoring it for new, deleted, and modified files.

NIDS
Network Intrusion Detection basically involves monitoring network interfaces,
analyzing all the packets seen, and providing alerts when certain attack
characteristics are seen. On Debian, the primary tool for this is Snort. Snort will be
installed if you install harden-nids, mentioned previously. Other packages are also
available in Debian as well.

Snort can be paired with a package called fwsnort to not only detect potential attacks,
but block them dynamically via adding IPTABLES rules when attacks are detected.

One caveat is that NIDS can only analyze traffic they actually see. They will see all
traffic on whatever interfaces they monitor (in fact, Snort will see it before IPTABLES
does, ensuring that all traffic is analyzed). However, if your system is protected
by an external firewall (for example, if it's on a perimeter network), it will only see
packets that are allowed through the external firewall. Because of this, NIDS may be
of limited use unless it is run on the external firewall. Nevertheless, it is still useful to
detect attack attempts that manage to get through the external firewall.

Chapter 6

[87]

File Monitors
The second level of intrusion detection involves monitoring the files on the system.
There are several good monitors that will alert you to new, deleted, or modified files,
usually filtering the reports so they include only changes that indicate a potential
compromise. The most commonly used File Monitor is Tripwire and that is what is
installed by the harden-environment package. However, Tripwire is now owned by
a commercial enterprise that sells proprietary versions. While open source tripwire
is still available, many administrators are switching to AIDE (Advanced Intrusion
Detection Environment) or Samhain as alternatives.

Configure your file monitors carefully to catch important changes and
filter out as many false positives as possible without filtering out the
true positives.

The importance of filtering your results can't be overemphasized. An alert or report
with too many false positives will frequently be skimmed at best or ignored at worst,
and can result in missing a true positive indication of compromised files.

System scanners
System scanners include packages that scan for possible rootkits that may be
installed or active on your system, and virus scanners. The packages rkhunter and
chkrootkit are two of the most used rootkit detection packages. The Tiger package
is a somewhat more comprehensive scanner that uses chkrootkit and Tripwire
or AIDE as well as its own scripts to perform a full audit of your system's security.
After the first audit of your clean system, Tiger will alert you to changes in your
system's vulnerabilities.

The only major function absent from Tiger is virus scanning, which can be handled
by the clamav package, which also provides live scanning of email.

Best practice is to set up regular system security audits.

Basic System Security

[88]

A final word on remote logging
One of the first things an accomplished hacker will do once he penetrates a system is
attempt to erase all signs of system compromise. This includes removing entries from
log files, hiding files, and network connections so they can't be shown using normal
utilities, and so on. They may even go so far as to install their own compromised
versions of your intrusion detection software, and your file and system scanners that
won't report any sign of their illicit activities. One of the best countermeasures for
this is to set your system up to write your system logs and NIDS and scan results to a
remote system. Many scanners also provide ways to encrypt and verify configuration
files and scan databases to protect them from compromise as well.

If your system is subject to frequent attacks, set up remote logging,
reporting, and alerting, and secure the configuration files and databases
of your system and file scanners and your Intrusion Detection System.

Summary
System security is one of the most important duties of an administrator. Ensure
that your system is protected by setting up proper policies for users and groups,
and hardening your systems (especially servers) when exposed to attack from the
Internet. Firewall tools are useful in blocking attacks, and intrusion detection should
be used to discover any system anomalies as early as possible.

We've now been through pretty much all of the major administrative areas of Debian
Linux, not counting individual software suites. Next, we will cover some advanced
administration techniques.

Advanced System
Management

In this final chapter, we'll cover briefly several advanced administration subjects.
Remote backups and configuration administration will be covered, and we will
briefly look at cluster management. Finally, we will look at one of the most useful
administration tools for any Linux system, Webmin.

Remote backups
If you're in charge of one or more systems that are installed at a distant location,
backing them up individually can be a large chore. Fortunately, there are a number of
packages that can help. Most backup packages, even those intended to create a backup
of a single machine, have options to send the data to a remote location for actual
storage. Of course, any of the packages with this capability can be used on multiple
machines. However, there are two popular packages that not only provide backup
services to multiple hosts from a central location, but provide for management of
backup cycles and automated runs as well. They are Amanda and Bacula. Of course,
other such packages exist, and there are some excellent third-party backup solutions as
well. However, both Amanda and Bacula are provided as part of Debian, so they are
free as well as able to handle many systems and a variety of backup media.

Advanced System Management

[90]

Amanda
For many years, the University of Maryland (UoM) Computer Science department
was the source of quality, free software that rivaled or even surpassed proprietary
solutions. The Advanced Maryland Automatic Network Disk Archiver
(AMANDA), is one such solution. Although no longer supported by UoM, it is now
hosted on SourceForge, where it remains in active development. In addition to the
free Community edition, there is a paid Enterprise edition that includes additional
features, such as a graphical configuration utility.

The Amanda site notes that some Linux distributions are far behind in
the release they include. This is not the case with Debian. Version 3.3.1
is included in Debian 7 Wheezy.

Originally oriented heavily towards centralized tape backup of many networked
systems, it now supports disk and even cloud-based storage of backup data as well.
Amanda requires a software client running on the systems to be backed up. Clients
are available for most Unix type systems, as well as Mac OS/X and various Windows
releases. The server side will run on pretty much any Unix- or Linux-based system.
This makes Amanda especially useful for large, heterogeneous sites.

Amanda uses standard tape and disk file formats, which allows standard tools, such
as mt and tar, to be used to browse or even recover data if desired. Amanda provides
for parallel backups of many systems at once, backup file management; restore utilities
that are easy to use, and several layers of security (including encryption of the backup
data over the network, and encryption of the backup files). Amanda is implemented as
a single central server that communicates with multiple clients.

A discussion of Amanda configuration could take up a whole book and is very
dependent on the type of backup media you use and the systems you are backing
up. However, briefly, the community (free) version of Amanda must be configured
manually, by adding subdirectories and configuration files to the /etc/amanda/
configuration directory. Refer to the documentation that comes with Amanda,
or visit the www.amanda.org website for further information. Also, several
commercially published books on backup and recovery have chapters on
Amanda configuration.

http://www.amanda.org/

Chapter 7

[91]

Bacula
Bacula is another popular free backup package. It is designed to be more modular
than Amanda. Like Amanda, it requires a client on the system to be backed up. In
addition to the client, however, there is an administrative console service, a status
monitor service, a backup director which controls the actual backup operations, a
storage service that keeps the actual backup data, and a database service where the
backup information and catalogs are maintained. Of course, except for the client
(which must reside on the systems being backed up), these services may be spread
among different systems or consolidated on a single server.

Bacula configuration is object-oriented, in that you define clients, jobs, schedules
jobs, file sets (to be backed up), storage pools to hold the backup data, messages (to
handle emailing of reports), the catalog database, and the director which coordinates
the whole thing. There are many useful functions, including some that allow
restoration of a system without access to the catalog, creation of boot CDs which will
allow a full, bare metal restore.

One thing to note is that the Bacula rescue CD is set up to restore disk partitions
exactly as they existed at the time of the disk creation. If you need to run a bare metal
restore to a system with a different disk configuration, the rescue CD also provides
the fdisk utility, and you can add other utilities to it if you wish.

The Bacula director and storage components run on Linux, FreeBSD, or Solaris. It has
also been reported to work on some Windows versions, Mac OS/X, and other BSD
variants, although this is not officially supported. The client is available for many
different systems, including various Linux, Windows, Mac, and BSD systems. Bacula
is also reported to work on AIX, BSDI, and HPUX systems, although this is not
officially supported.

Installing Bacula on Debian is straightforward. There are packages for each of the
various parts, as well as, several meta packages. The bacula meta package installs
both the bacula-client and bacula-server meta packages. The client package
installs the Bacula console and file daemon (client). The server package installs
the Bacula director and storage packages. There are several choices for the Bacula
director, depending on what database you wish to use for your catalogs. The
packages may be installed either via the meta packages or individually, as desired.

Advanced System Management

[92]

As with Amanda, Bacula is a comprehensive and complex solution. Aside from
the comprehensive documentation available on the Bacula web site, http://
www.bacula.org/, there are several books available that cover it well, including
one available from www.packtpub.com (Network Backup with Bacula [How-to], by
Yauheni V. Pankov, [PACKT] Publishing). Briefly, though, Bacula uses text files for
configuration, in directories under /etc/bacula. The Bacula console package
provides a graphical console application, although in practice the interface is
actually a command line utility.

Other backup systems
Of course, Debian offers other backup packages as well. They are less complex than
Amanda or Bacula, but more suited to smaller environments. Most use standard
file archiving utilities, and offer remote storage options (either via standard remote
file specification or by using a client and server approach). Some offer backup cycle
management utilities, backup encryption, communications encryption, and even de-
duplication when using special backup storage formats. Synaptic or apt-cache can be
used to search for these packages using the search term backup.

Some administrators prefer to keep it even simpler and write their own short scripts
which use the basic archiving commands (such as rsync, tar, or the EXT dump/
restore commands) to perform backups as a scheduled CRON job.

Beyond backups
Of course, backups are not the only issue with managing multiple, remote systems.
In particular, managing such multiple configurations using a centralized application
is often desirable.

Configuration management
One of the issues frequently faced by administrators is that of having multiple,
remote systems all with similar software for the most part, but with minor
differences in what is installed or running. Debian provides several packages that
can help manage such an environment in a unified manner. Two of the more popular
packages, both available in Debian, are FAI and Puppet. While we don't have the
space to go into details, both applications are described briefly here.

http://www.bacula.org/en/
http://www.bacula.org/en/

Chapter 7

[93]

Fully Automated Installation
Fully Automated Installation (FAI) focuses on managing Linux installations, and
is developed using Debian, although it works with many different distributions,
not just Debian. FAI uses a class concept for categorizing similar systems, and
provides a good deal of flexibility and customization via hooks. FAI provides for
unattended, automatic installation as well as tools for monitoring and updating
groups of systems. FAI is frequently used for creating and maintaining clusters.
More information is available at http://fai-project.org/.

Puppet
Probably the best known application for distributed management is Puppet,
developed by Puppet Labs. Unlike FAI, only the Open Source edition is free, the
Enterprise edition, which has many additional features, is not. Puppet does include
support for environments other than Linux. The desired configuration is described
in a custom, high-level definition language, and distributed to systems with installed
clients. Unlike FAI, Puppet does not provide its own bare metal remote installation
method, but does use existing methods (such as kickstart) to provide this function.
A number of companies that make heavy use of distributed and clustered systems
use Puppet to manage their environments. More information is available at
http://puppetlabs.com/.

Other packages
There are other packages that can be used to manage a distributed environment,
such as Chef and BCFG2. While simpler than Puppet or FAI, they support similar
functions and have been used in some distributed and clustered environments.

The use of FAI, Puppet, and others in cluster management warrants a brief look at
clustering next, and what packages in Debian support clustering.

Advanced System Management

[94]

Clusters
A cluster is a group of systems that work together in such a way that the whole
functions as a single unit. Such clusters can be loosely coupled or tightly coupled.
A loosely coupled environment, each system is complete in itself, and can handle
all of the tasks any of the other systems can handle. The environment provides
mechanisms for redundancy, load sharing, and fail-over between systems, and is
often called a High Availability (HA) cluster. In a tightly coupled environment, the
systems involved are highly dependent on one another, often sharing memory and
disk storage, and all work on the same task together. The environment provides
mechanisms for data sharing, avoiding storage conflicts, keeping the systems in
synchronization, and splitting up tasks appropriately. This design is often used in
super-computing environments.

Clustering is an advanced technique that involves more than just
installing and configuring software. It also involves hardware integration,
and systems and network design, and implementation. Along with the
URLs mentioned below, a good text on the subject is Building Clustered
Linux Systems, by Robert W. Lucke, Prentice Hall. Here we will only touch
the very basics, along with what tools Debian provides.

Let's take a brief look at each environment, and some of the tools used to create them.

High Availability clusters
Two primary functions are required to implement a high availability cluster:

1.	 A way to handle load balancing and individual host fail-over.
2.	 A way to synchronize storage so that all servers provide the same view of the

data they serve.
Debian includes meta packages that bring together software from the Linux High
Availability project, including cluster-agents and resource-agents, two of the
higher-level meta packages. These packages install various agents that are useful in
coordinating and managing load balancing and fail-over. In some cases, a master
server is designated to distribute the processing load among other servers.

Data synchronization is handled by using shared storage and any of the filesystems
that provide for multiple accesses and shared files, such as NFS or AFS.

High Availability clusters generally use standard software, along with software that
is readily available to manage the dynamics of such environments.

Chapter 7

[95]

Beowulf clusters
In addition to the considerations for High Availability clusters, more tightly coupled
environments such as Beowulf clusters also require an infrastructure to manage
and distribute computing tasks. There are several web pages devoted to creating a
Beowulf cluster using Debian as well as packages that aid in creating such a cluster.
One such page is https://wiki.debian.org/StartaBeowulf, a Debian Wiki page
on Beowulf basics. The manual for FAI, mentioned previously in configuration
management, also has a section on creating a Beowulf cluster. Books are available as
well. Debian provides several packages that are helpful in building such a cluster,
such as the OpenMPI libraries for message passing, and various utilities that run
commands on multiple systems, such as those in the kadif package. There are even
projects that have released scripts and live CDs that allow you to set up a cluster
quickly (one such project is the PelicanHPC project, developed for Debian Lenny,
hosted at http://www.pelicanhpc.org/.

This type of cluster is not something that you can set up and go. Beowulf and
other tightly coupled clusters are intended for highly parallel computing, and the
programs that do the actual computing must be designed specifically for such an
environment. That said, some packages for specific parallel computations do exist
in Debian, such as nwchem, which provides several applications for computational
chemistry that take advantage of parallelism.

Common tools
Some common components of clusters have already been mentioned, such as
the OpenMPI libraries. Aside from the meta-packages already mentioned, the
redhat-cluster suite of tools is available in Debian, as well as many useful libraries,
scheduling tools, and failover tools such as booth. All of these can be found using
apt-cache or Synaptic by searching for "cluster".

Webmin
Many administrators will never have to administer a cluster, and many won't
be responsible for a large number of systems requiring central backup solutions.
However, even administering a single system using command line tools and
text editors can be a chore. Even clusters sometimes require administrative
tasks on individual systems. Fortunately, there is an application that can ease
many administrative tasks, is easy to use, and can handle many aspects of Linux
administration. It is called Webmin.

https://wiki.debian.org/StartaBeowulf
https://wiki.debian.org/StartaBeowulf
http://www.pelicanhpc.org/
http://www.pelicanhpc.org/

Advanced System Management

[96]

Up until Debian Sarge, Webmin was a part of Debian distributions. However,
the Debian developer in charge of packaging it had difficulty keeping up with
the frequent releases, and it was eventually dropped from Debian. However, the
upstream Webmin developers maintain current packages that install cleanly. Some
users have reported issues because Webmin does not always handle configuration
files exactly as Debian intends, but it most certainly attempts to handle them in
a compatible manner, and while some users have experienced problems with
upgrades, many administrators are quite happy with Webmin.

As long as you are willing to deal with conflicts during upgrades, or restrict use of
modules that have major configuration impacts, you will find Webmin quite useful.

Installing Webmin
Webmin may be installed by adding the following lines to your apt sources file:

deb http://download.webmin.com/download/repository sarge contrib
deb http://webmin.mirror.somersettechsolutions.co.uk/repository
 sarge contrib

Usually, this is added to a separate webmin.list file in /etc/apt/sources.list.d.

The use of 'sarge' for the release name in the configuration is not a
mistake. Since Webmin was dropped after the Sarge release (Debian
3.1), the developers update the repository as it is and haven't bothered
changing it to keep up with the Debian code names. However, the
versions available in the repository are compatible with any Debian
release since 3.1.

After updating your cache file, Webmin can be installed and maintained using
apt-get, aptitude, or Synaptic. Also, if you request a Webmin upgrade from within
Webmin itself on a Debian system, it will use the proper Debian package to upgrade.

Using Webmin
Webmin runs in the background, and provides an HTTP or HTTPS server on
localhost port 10,000. You can use any web browser to connect to http://
localhost:10000/ to access Webmin. Upon first installation, only the root user
or those in a group allowed to use sudo to access the root account, may log in but
Webmin users can be managed separately or in conjunction with local users.

Webmin provides extensive and easy to understand menus and icons for various
configuration tasks. Webmin is also highly modular and extensible, and an extensive
list of standard modules is included with the base package. It is not possible to cover
Webmin as fully here as it deserves, but a short list of some of its capabilities includes:

http://localhost:10000/

Chapter 7

[97]

•	 Configuration of Webmin itself (the server, users, modules, and security)
•	 Local system user and password management
•	 Filesystem management
•	 Bootup and service management
•	 CRON job management
•	 Software updates
•	 Basic filesystem backups
•	 Authentication and security configuration
•	 APACHE, DNS, SSH, and FTP (if you're using ProFTP) configuration
•	 User mail management
•	 Qmail or sendmail configuration
•	 Network and Firewall configuration and management
•	 Bandwidth monitoring
•	 Printer management

There are even modules that apply to clusters. Also, Webmin can search and allow
access to other Webmin servers on the local network or you can define remote
servers manually. This allows a central Webmin server, installed on a particular
system, to be the gateway to all of the other servers in your environment, essentially
providing a single point of access to manage all Webmin enabled servers.

Webmin and Debian
Webmin understands the configuration file layout of many distributions. The main
problem is when a particular module does not handle certain types of configuration
in the way the Debian developers prefer, which can make package upgrades
somewhat difficult.

This can be handled in a couple of ways. Most modules provide a means to edit
configuration files directly, so if you have read the Debian documentation you
can modify the configuration appropriately to use Debian specific configuration
techniques. Or, you may choose to allow Webmin to modify files as it sees fit, and
handle any conflicts manually when you upgrade the software involved. Finally,
you can avoid those modules involved with specific software that are more likely to
cause problems.

Advanced System Management

[98]

One such module is Apache, which doesn't use links from sites-
enabled to sites-available. Rather, it configures directly in
the sites-enabled directory. Some administrators create the
configuration in Webmin, and then move and link the files. Others
prefer to manually configure Apache outside of Webmin.

Webmin modules are constantly changing, and some actually recognize the Debian
file layouts well, so it is not possible to give a comprehensive list of modules to avoid
at this time.

Best practice when using Webmin is to read the documentation
and check the configuration files for specific software prior to using
Webmin. Then, after configuring with Webmin, check the files again
to determine whether changes may be required to work within the
particular package's Debian configuration framework. Based upon
this, you can decide whether to continue to configure using Webmin or
switch back to manual configuration of that particular software.

Webmin security
Security is always a concern when remote access to a system is involved. Webmin
handles this by requiring authentication and providing for detailed access
restrictions that provide a layer of control beyond the firewall. Webmin users can
be defined separately, or certain local users can be designated. Access to the various
modules in Webmin can be restricted to certain users or groups of users, and detailed
logs of Webmin actions are kept.

Usermin
In addition to Webmin, there is a server called Usermin which may be installed from
the same repository as Webmin. It allows individual users to perform a number of
functions more easily, such as changing their password, accessing their files, read
and manage their email, and managing some aspects of their user profile. It is also
modular and has the same security features as Webmin.

Summary
Several powerful and flexible central backup solutions exist that help manage
backups for multiple remote servers and sites. Debian provides packages that assist
in building High Availability and Beowulf style multiprocessing clusters as well.
And, whether you are involved in managing clusters or not, or even a single system,
Webmin can ease an administrator's tasks.

Index
Symbols
/etc/default 46
/etc/<package name> 46

A
Access Control Lists (ACL) 78
Advanced Maryland Automatic Network

Disk Archiver (AMANDA) 90
AIDE (Advanced Intrusion Detection Envi-

ronment) 87
alien 39
Amanda 89, 90
Apache configuration

about 51
activating 54
files 52
modules, enabling 53
sites, enabling 53
testing 53

Apache configuration files
.conf.d directory 53
.conf extension files 52
envvars 52
ports.conf 52

Apache example
Exim 54
GNU make 54

aptitude 31

B
backups

file-level backups 70
low-level backups 69
solution, selecting 71

utilities 70
Bacula 89, 91
Basic Input/Output System. See BIOS
Beowulf clusters 95
BIOS

boot code 18, 19
versus UEFI 18

B-tree filesystem (Btrfs) 22

C
clustered formats 22
clusters

about 94
beowulf clusters 95
common tools 95
HA clusters 94

command line selection 36
configtest command option 53
configuration files

/etc/default 46
/etc/<package name> 46, 47
about 45
initial configuration 47, 48

configuration management
about 92
lly Automated Installation (FAI) 93
puppet 93

D
data de-duplication 70
Debian

installation guide 28
installing 28
intrusion detection applications 86
package configuration 45

[100]

startup and shutdown 57
Debian Free Software Guidelines (DFSG) 9
Debian hardening packages

firewall design 83
harden 80
harden-clients 80
harden-environment 80
harden-nids 80
harden-servers 80
harden-tools 80
IPTABLES 81

Debian package manager
about 30
Advanced Package Tool (APT) 30
aptitude 31
dpkg and dselect 30
media, configuring 32-34
package cache, updating 35
packages, selecting 35
release name 35
repositories, configuring 32, 34
Synaptic 31

Debian Packaging System (DPKG/DEB) 7
Debian Policy manual 51
Debian Project

about 8
administrator, areas 14
constitution 9
environments 13
help 16
licensing 11
licensing, in Firefox 11, 12
policies 10
proprietary features 15
repositories 12
social contract 9
support 14

Debian Project, repositories
main 12

Debian system 5
Deb Multimedia 34
directory encryption 27
De-Militarized Zone (DMZ) 85
disk encryption 26
disk management 24
display managers

about 74

GNOME 75
KDE 75
other desktops 75

dist-upgrade command 42
dpkg

about 30
reconfiguration 48

dselect command 30

E
encryption

about 26
choosing 27
disk encryption 26
need for 26

Exim 54
ext2 filesystem 21
ext3 filesystem 21
ext4 filesystem 21
extended filesystem (ext) 20

F
Filesystem Check program (FSCK) 66
filesystem maintenance

backups 69
content 66
partition 66
system logging 72

filesystem types
about 20
B-Tree File System (Btrfs) 22
clustered formats 22
ext2 21
ext3 21
ext4 21
format, choosing 23
Journaled File System 21
non-Linux formats 22
other Unix formats 22
Reiser File System (ReiserFS) 21
SGI's XFS filesystem 21

fireflier 81
firestarter 81
firewall design

inbound requests 83
local loopback traffic 84

[101]

outbound traffic 84
perimeter network 85, 86

file-level backups 70
foreign packages

about 39
alien 39
manual builds 40

format
selecting 23

full-upgrade command 42
fwsnort 86

G
gadmin 49
General Public License (GPL) 11
GNOME 75
GNOME Display Manager (GDM) 74
GNOME (GNU Object Model Environment)

49
GNU make 54
gparted utility 68
GTK (GIMP Tool Kit) 49
guarddog 81

H
High Availability (HA) 94

I
input/output (I/O) 21
intrusion detection applications

fle Monitors 87
NIDS 86
system scanners 87

IPTABLES 82

J
Jessie 47
Journaled File System (JFS) 21

K
KDE (K Desktop Environment) 49, 79
K Display Manager (KDM) 74

L
Linux distributions

branches 6
Debian 5
features 7, 8

Linux distributions, branches
DPKG/DEB 7
RPM 6
SLS 6

Linux Standard Base (LSB) 59
local configuration

files 50
subdirectories 51
tips 51

local loopback traffic 84
Logical Volume Manager (LVM) 67
low-level backups

about 69
uses 69

M
Master Boot Record (MBR) 18
meta packages 36
MongoDB 34

N
Name Service Switch (NSS) functions 46
Network Addressable Storage (NAS) 71
Network Address Translation (NAT) 82
Network Intrusion Detection Systems. See

NIDS
NFTABLES 82
NIDS

about 86
Snort 86

non-Linux formats 22

O
Oracle 34

[102]

P
package cache, updating

command line selection 36
selection lists 36

package managers
dependency resolution 37
meta packages 36
packages, removing 38

partioning
disk management 24
for backup and recovery 23
for Debian system 23
Logical Volume Management (LVM) 24
scheme, partioning 25
space-limiting partitions 23
swap partition 24

partition maintenance
about 66
Filesystem Check (FSCK) 66
partition resizing 67-69

partition tables
about 17
BIOS 18
multiboot 18
single 18

perimeter network 85, 86
Point to Point (PPP) 62
policies, Debian Project 10
process ID (PID) 72
puppet 93

R
Red Hat Enterprise Linux (RHEL) 7
Red Hat Package Manager. See RPM
Reiser Filesystem (ReiserFS) 21
remote backups

alternatives 92
Amanda 90
Bacula 91

remote logging 88
RPM 6, 7

S
selection lists 36
SGI's XFS filesystem 21

Shorewall 82
Skype 34
SLS 6
Snort 86
Softlanding Linux System. See SLS
Solid-state drives (SSD) 25
space-limiting partitions 23
SSL (Secure Sockets Layer) 47
standard command-line functions 78
startup and shutdown

about 57
dependency-based boot sequence 58, 59
interfaces file 61-63
levels 57, 58
local scripts 60, 61
methods, combining 64, 65
networking 61
Network Manager 63
SysV scripts, managing 60
third-party scripts 60, 61

SuSE Linux Enterprise Server (SLES) 7
Synaptic 31, 49, 50
system logging

about 72
logging facility 72
logs, controlling 73
monitoring 73

system scanners 87
system upgradation

post actions 41, 43
pre actions 42
process 42

T
Thresholds fields

contrib 12
non-free 12

Tripwire 87
tunctl command 65

U
Ubuntu 79
UEFI

about 18
boot code 20
versus, BIOS 18

[103]

Universal Extensible Firmware
Interface. See UEFI

University of Maryland (UoM) 90
updates checking

about 38
automatic updates 38

user administration
about 77
ACLs 78
default user group 77, 78
root account 79

Usermin 98
utilities configuration

about 48
desktop configuration 49
dpkg 48
gadmin 49
Synaptic 49, 50

V
virtual machine (VM) 18, 64
virtual package 37
Virtual Private Networks (VPN) 63
VLAN (Virtual Local Area Network) 62

W
Webmin

about 34, 95
and Debian 97
capabilities 96
installing 96
security 98
Usermin 98
using 96

wheezy (Debian 7) 32

Thank you for buying
Debian 7: System Administration Best Practices

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

CentOS 6 Linux Server Cookbook
ISBN: 978-1-84951-902-1 Paperback: 374 pages

A practical guide to installing, configuring, and
administering the CentOS community-based
enterprise server

1.	 Delivering comprehensive insight into CentOS
server with a series of starting points that show
you how to build, configure, maintain and
deploy the latest edition of one of the world's
most popular community based enterprise
servers

2.	 Providing beginners and more experienced
individuals alike with the opportunity to
enhance their knowledge by delivering instant
access to a library of recipes that addresses all
aspects of CentOS server and put you in control

Mastering NGINX
ISBN: 978-1-84951-744-7 Paperback: 322 pages

An in-depth guide to configuring NGINX for
any situation, including numerous examples and
reference tables describing each directive

1.	 An in-depth configuration guide to help you
understand how to best configure NGINX for
any situation

2.	 Includes useful code samples to help you
integrate NGINX into your application
architecture

3.	 Full of example configuration snippets, best-
practice descriptions, and reference tables for
each directive

Please check www.PacktPub.com for information on our titles

Mastering Web Application
Development with AngularJS
ISBN: 978-1-78216-182-0 Paperback: 372 pages

Build single-page web applications using the power
of AngularJS

1.	 Make the most out of AngularJS by
understanding the AngularJS philosophy and
applying it to real life development tasks

2.	 Effectively structure, write, test, and finally
deploy your application

3.	 Add security and optimization features to your
AngularJS applications

4.	 Harness the full power of AngularJS by
creating your own directives

Responsive Web Design by
Example
ISBN: 978-1-84969-542-8 Paperback: 338 pages

Discover how you can easily create engaging,
responsive websites with minimum hassle!

1.	 Rapidly develop and prototype responsive
websites by utilizing powerful open source
frameworks

2.	 Focus less on the theory and more on results,
with clear step-by-step instructions, previews,
and examples to help you along the way

3.	 Learn how you can utilize three of the most
powerful responsive frameworks available
today: Bootstrap, Skeleton, and Zurb Foundation

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Debian Basics for Administrators
	Linux distributions
	The three branches
	SLS
	RPM
	DPKG or DEB

	Other differences
	The Debian Project
	The social contract
	Constitution
	Policies
	Licensing
	What happened to Firefox?

	Repositories
	Debian environments
	Impact on administration
	Debian support
	Proprietary features
	Where to find installation help and information

	Summary

	Chapter 2: Filesystem Layout
	Partition tables
	Single or multiboot
	BIOS versus UEFI
	Boot code under BIOS
	Boot code under UEFI

	Filesystem types
	ext2, ext3, and ext4
	Journaled File System
	SGI's XFS File System
	Reiser File System
	B-Tree File System
	Clustered formats
	Non-Linux formats
	Other Unix formats
	Choosing a format

	Partitioning
	Partitioning for backup and recovery
	Space-limiting partitions
	Disk management
	Logical Volume Management
	The swap partition
	Selecting a partitioning scheme

	Encryption
	Why encrypt?
	Disk encryption
	Directory encryption
	Choosing encryption

	Installing Debian
	Summary

	Chapter 3: Package Management
	Package managers
	dpkg and dselect
	Advanced Package Tool
	aptitude
	Synaptic

	Package selection and maintenance
	Configuring media or repositories
	The significance of the release name
	Selecting packages
	Updating your package cache
	Command-line selection
	Selection lists

	Meta packages
	A word about dependency resolution
	Removing packages

	Keeping current
	Automatic updates

	Foreign packages
	Alien
	Manual builds

	Upgrading your system
	Prior to the upgrade
	During the upgrade
	After the upgrade

	Summary

	Chapter 4: Basic Package
Configuration
	Configuration files
	/etc/default
	/etc/<package name>
	Initial configuration

	Configuration utilities
	dpkg-reconfigure
	gadmin
	Desktop configuration
	Other utilities

	Local configuration trends
	Local configuration files
	Configuration subdirectories
	Configuration advice

	Apache configuration
	Configuration files
	Enabling sites and modules
	Testing and activating the configuration

	Other examples
	Summary

	Chapter 5: System Management
	Startup and shutdown
	Debian run levels
	Dependency-based boot sequence
	Managing SysV scripts
	Third-party and local scripts
	Network administration
	The interfaces file
	Network Manager
	Combining methods
	Which method?

	Filesystem maintenance
	Partition maintenance
	Filesystem Check (FSCK)
	Partition resizing

	Backups
	Low-level backups
	File-level backups
	Backup utilities
	Choosing your solution

	System logging
	The logging facility
	Controlling the logs
	Monitoring the logs

	Display managers
	Where did my desktop go?
	GNOME
	KDE
	Other desktops
	Showing your best face

	Summary

	Chapter 6: Basic System Security
	User administration
	Default user group
	ACLs
	The root account

	Debian hardening packages
	Firewall tools
	IPTABLES
	Basic firewall design
	Inbound opens
	Outbound traffic
	Local loopback traffic
	The perimeter network

	Intrusion detection
	NIDS
	File Monitors
	System scanners

	A final word on remote logging
	Summary

	Chapter 7: Advanced System Management
	Remote backups
	Amanda
	Bacula
	Other backup systems
	Beyond backups

	Configuration management
	Fully Automated Installation
	Puppet
	Other packages

	Clusters
	High Availability clusters
	Beowulf clusters
	Common tools

	Webmin
	Installing Webmin
	Using Webmin
	Webmin and Debian
	Webmin security
	Usermin

	Summary

	Index

