

Mastering NGINX

An in-depth guide to configuring NGINX for any
situation, including numerous examples and
reference tables describing each directive

Dimitri Aivaliotis

 BIRMINGHAM - MUMBAI

Mastering NGINX

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2013

Production Reference: 1070313

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK..

ISBN 978-1-84951-744-7

www.packtpub.com

Cover Image by Asher Wishkerman (wishkerman@hotmail.com)

Credits

Author
Dimitri Aivaliotis

Reviewers
Yasir Adnan

Andrew Alexeev

Antonio P. P. Almeida

Rainer Duffner

Acquisition Editor
Usha Iyer

Lead Technical Editor
Azharuddin Sheikh

Technical Editors
Varun Pius Rodrigues

Lubna Shaikh

Project Coordinator
Abhishek Kori

Proofreader
Aaron Nash

Indexer
Tejal Soni

Graphics
Aditi Gajjar

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

About the Author

Dimitri Aivaliotis works as a Systems Architect at a hosting provider in Zurich,
Switzerland. His career has taken him from building a Linux-based computer network
for a school up through dual-datacenter high-availability infrastructures for banks
and online portals. He has spent over a decade solving his customers’ problems and
discovered NGINX along the way. He uses the software daily to provide web serving,
proxying, and media-streaming services to his customers.

Dimitri graduated summa cum laude with a BS in Physics from Rensselaer
Polytechnic Institute and received an MS in Management Information Systems
at Florida State University.

This is his first book.

I would like to thank John Blackwell and Phil Margolis for reading
early drafts of the manuscript. Their criticism and tips have helped
me greatly and made this a better book. I would also like to thank the
technical reviewers for providing constructive feedback and pointing
out errors I have made along the way. Any remaining errors are of
course my own.

The team at Packt Publishing has been really supportive in
getting this project off the ground. Their faith in me as a writer
has bolstered me during the dark times of missed deadlines.

The knowledge and support of the NGINX, Inc. team has been
instrumental in filling in the gaps in my understanding of how
NGINX works. I could not have written this book without them.

An especially heartfelt thanks goes out to my family. My wife
and children have had to cope with my many writing sessions.
Their patience during this time is greatly appreciated.

About the Reviewers

Yasir Adnan lives in Dhaka, Bangladesh. He is a computer science student.
He also works as a freelance programmer. He has worked on both mobile and
web applications. Nowadays he mainly develops mobile applications. He can
be reached at yasiradnan@outlook.com.

Andrew Alexeev is a co-founder of NGINX, Inc.—the high performance
web company behind the NGINX web server. Prior to joining NGINX, Inc. at
the beginning of 2011, Andrew worked in the Internet industry and in a variety
of ICT divisions for enterprises. Andrew holds a diploma in Electronics from
St. Petersburg Electrotechnical University and an executive MBA from Antwerp
Management School.

Antonio P.P. Almeida (@perusio) has been obsessed with NGINX and
high-performance web stacks ever since he was trying to develop for Drupal
on a battered 1.3 GHz Centrino-based laptop and Apache’s resource appetite
made NGINX inevitable. He has been learning how to get the most out of
NGINX in all possible kinds of applications, in particular all the subtleties of
NGINX configuration language. He lives and works in Paris. Besides NGINX,
his other main obsessions are obscure late Italian medieval music, cinema,
and how to make Drupal more awesome.

mailto:yasiradnan@outlook.com

Rainer Duffner received a degree in Information Systems from the University of
Applied Science in Konstanz, Germany, and currently works as a Systems Engineer
at EveryWare AG, where he helps customers get the most out of their managed
dedicated FreeBSD, Linux, and Solaris servers. He lives in a small town next to
Zurich, Switzerland, and enjoys spending his free time on a mountain bike around
Zurich and the Swiss mountains.

I’d like to thank Dimitri for the opportunity to help review this fine
book. It’s a useful resource all along.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online
digital book library. Here, you can access, read and search across Packt’s entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Dedicated to my father, who has always said I can do anything
I set my mind to.

Table of Contents
Preface	 1
Chapter 1: Installing NGINX and Third-Party Modules	 7

Installing NGINX using a package manager	 8
CentOS	 8
Debian	 9

Installing NGINX from source	 9
Preparing a build environment	 10
Compiling from source	 10

Table: Common configure options	 11
Table: Configure options for optimization	 12

Configuring for web or mail service	 12
Configure options for a mail proxy	 12

Table: Mail configure options	 12
Configure the options to specify paths	 13

Table: HTTP configure options	 13
Enabling various modules	 14

Table: HTTP module configure options	 14
Disabling unused modules	 16

Table: Disable configure options	 16
Finding and installing third-party modules	 18
Putting it all together	 19
Summary	 20

Chapter 2: A Configuration Guide	 21
The basic configuration format	 21
NGINX global configuration parameters	 22

Table: Global configuration directives	 22
Using include files	 24

Table of Contents

[ii]

The HTTP server section	 24
Client directives	 25

Table: HTTP client directives	 25
File I/O directives	 26

Table: HTTP file I/O directives	 26
Hash directives	 27

Table: HTTP hash directives	 27
Socket directives	 28

Table: HTTP socket directives	 28
Sample configuration	 29

The virtual server section	 30
Table: listen parameters	 30

Locations – where, when, and how	 34
Table: Location modifiers	 34
Table: Location-only directives	 35

The mail server section	 36
Table: Mail module directives	 37
Table: Mail SSL directives	 37

Full sample configuration	 38
Summary	 40

Chapter 3: Using the Mail Module	 41
Basic proxy service	 41

POP3 service	 43
IMAP service	 44
SMTP service	 45
Using SSL/TLS	 46
Complete mail example	 48

Authentication service	 50
Combining with memcached	 58
Interpreting log files	 60
Operating system limits	 63
Summary	 64

Chapter 4: NGINX as a Reverse Proxy	 65
Introduction to reverse proxying	 66

The proxy module	 67
Table: Proxy module directives	 67
Legacy servers with cookies	 72

The upstream module	 73
Table: Upstream module directives	 73
Keepalive connections	 74
Load-balancing algorithms	 75

Table of Contents

[iii]

Types of upstream servers	 76
Single upstream server	 76
Multiple upstream servers	 77
Non-HTTP upstream servers	 79

Memcached upstream servers	 79
FastCGI upstream servers	 80
SCGI upstream servers	 80
uWSGI upstream servers	 81

Converting an "if"-fy configuration to a more modern interpretation	 81
Using error documents to handle upstream problems	 85
Determining the client's real IP address	 87
Summary	 88

Chapter 5: Reverse Proxy Advanced Topics	 89
Security through separation	 90

Encrypting traffic with SSL	 90
Authenticating clients using SSL	 92
Blocking traffic based on originating IP address	 95

Isolating application components for scalability	 97
Reverse proxy performance tuning	 101

Buffering	 101
Table: Proxy module buffering directives	 101

Caching	 104
Table: Proxy module caching directives	 105
Storing	 109

Compressing	 111
Table: Gzip module directives	 112

Summary	 114
Chapter 6: The NGINX HTTP Server	 115

NGINX's architecture	 115
The HTTP core module	 117

The server	 117
Table: HTTP server directives	 118

Logging	 119
Table: HTTP logging directives	 120
Table: Log format variables	 121

Finding files	 122
Table: HTTP file-path directives	 124

Name resolution	 124
Table: Name resolution directives	 125

Client interaction	 126
Table: HTTP client interaction directives	 126

Table of Contents

[iv]

Using limits to prevent abuse	 128
Table: HTTP limits directives	 129

Restricting access	 133
Table: HTTP access module directives	 133

Streaming media files	 137
Table: HTTP streaming directives	 137

Predefined variables	 138
Table: HTTP variables	 139

Using NGINX with PHP-FPM	 141
Table: FastCGI directives	 141

An example Drupal configuration	 146
Wiring NGINX and uWSGI together	 154

An example Django configuration	 154
Summary	 157

Chapter 7: NGINX for the Developer	 159
Caching integration	 159

No application caching	 160
Caching in the database	 162

Table: Memcached module directives	 164
Caching in the filesystem	 165

Table: Header modifying directives	 165
Changing content on-the-fly	 168

The addition module	 169
Table: HTTP addition module directives	 169

The sub module	 170
Table: HTTP sub module directives	 171

The xslt module	 171
Table: HTTP XSLT module directives	 172

Using Server Side Includes	 172
Table: Server Side Includes directives	 172
Table: Server Side Includes commands	 173

Decision-making in NGINX	 176
Table: Perl module directives	 176

Creating a secure link	 179
Generating images	 181

Table: Image filter directives	 181
Tracking website visitors	 185

Table: UserID module directives	 186
Preventing inadvertent code execution	 187
Summary	 188

Table of Contents

[v]

Chapter 8: Troubleshooting Techniques	 189
Analyzing log files	 189

Error log file formats	 190
Error log file entry examples	 191

Configuring advanced logging	 194
Debug logging	 194

Switching binaries at runtime	 194
Using access logs for debugging	 201

Common configuration errors	 203
Using if instead of try_files	 204
Using if as a hostname switch	 205
Not using the server context to best effect	 206

Operating system limits	 207
File descriptor limits	 208
Network limits	 210

Performance problems	 211
Using the Stub Status module	 213
Summary	 214

Appendix A: Directive Reference	 215
Table: Directive reference	 215

Appendix B: Rewrite Rule Guide	 265
Introducing the rewrite module	 265

Table: Rewrite module directives	 269
Creating new rewrite rules	 270
Translating from Apache	 272

Rule #1: Replace directory and file existence checks with try_files	 272
Rule #2: Replace matches against REQUEST_URI with a location	 273
Rule #3: Replace matches against HTTP_HOST with a server	 274
Rule #4: Replace RewriteCond with if for variable checks	 276

Summary	 277
Appendix C: The NGINX Community	 279

Mailing list	 279
IRC channel	 280
Web resources	 280
Writing a good bug report	 280
Summary	 281

Appendix D: Persisting Solaris Network Tunings	 283
Index	 287

Preface
NGINX is a high-performance web server designed to use very few system
resources. There are many how-to's and example configurations floating around on
the Web. This guide will serve to clarify the murky waters of NGINX configuration.
In doing so you will learn how to tune NGINX for various situations, what some of
the more obscure configuration options do, and how to design a decent configuration
to match your needs.

You will no longer feel the need to copy-paste a configuration snippet because you
will understand how to construct a configuration file to do exactly what you want
it to do. This is a process, and there will be bumps along the way, but with the tips
explained in this book you will feel comfortable writing an NGINX configuration
file by hand. In case something doesn't work as expected, you will be able to debug
the problem yourself or at least be capable of asking for help without feeling like
you haven't given it a try yourself.

This book is written in a modular fashion. It is laid out to help you get to the
information you need as quickly as possible. Each chapter is pretty much a standalone
piece. Feel free to jump in anywhere you feel you need to get more in-depth about a
particular topic. If you feel you have missed something major, go back and read the
earlier chapters. They are constructed in a way to help you grow your configuration
piece-by-piece.

Preface

[2]

What this book covers
Chapter 1, Installing NGINX and Third-Party Modules, teaches you how to install
NGINX on your operating system of choice and how to include third-party
modules in your installation.

Chapter 2, A Configuration Guide, explains the NGINX configuration file format.
You will learn what each of the different contexts are for, how to configure global
parameters, and what a location is used for.

Chapter 3, Using the Mail Module, explores NGINX's mail proxy module, detailing
all aspects of its configuration. An example authentication service is included in
the code for this chapter.

Chapter 4, NGINX as a Reverse Proxy, introduces the concept of a reverse proxy
and describes how NGINX fills that role.

Chapter 5, Reverse Proxy Advanced Topics, delves deeper into using NGINX as a
reverse proxy to solve scaling issues and performance problems.

Chapter 6, The NGINX HTTP Server, describes how to use the various modules
included with NGINX to solve common web serving problems.

Chapter 7, NGINX for the Developer, shows how NGINX can be integrated with
your application to deliver content to your users more quickly.

Chapter 8, Troubleshooting Techniques, investigates some common configuration
problems, how to debug a problem once it arises, and makes some suggestions
for performance tuning.

Appendix A, Directive Reference, provides a handy reference for the configuration
directives used throughout the book, as well as a selection of others not
previously covered.

Appendix B, Rewrite Rule Guide, describes how to use the NGINX rewrite module
and describes a few simple steps for converting Apache-style rewrite rules into
ones NGINX can process.

Appendix C, Community, introduces you to the online resources available to seek
more information.

Appendix D, Persisting Solaris Network Tunings, details what is necessary to persist
different network tuning changes under Solaris 10 and above.

Preface

[3]

What you need for this book
Any modern Linux PC should be sufficient to run the code samples in the book.
The installation instructions are given in each chapter that uses code samples.
Basically, it boils down to:

•	 A build environment: Compiler, header files, and a few more
•	 NGINX: Most recent version should be fine
•	 Ruby: Best installed from https://rvm.io
•	 Perl: Default version should be fine

Who this book is for
This book is for experienced systems administrators or systems engineers, familiar
with installing and configuring servers to meet specific needs. You do not need
to have experience using NGINX already.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "NGINX will attempt to build a dependent
library statically if you include a ––with-<library>=<path> option to configure."

A block of code is set as follows:

$ export BUILD_DIR=`pwd`
$ export NGINX_INSTALLDIR=/opt/nginx
$ export VAR_DIR=/home/www/tmp
$ export LUAJIT_LIB=/opt/luajit/lib
$ export LUAJIT_INC=/opt/luajit/include/luajit-2.0

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

$ export BUILD_DIR=`pwd`
$ export NGINX_INSTALLDIR=/opt/nginx
$ export VAR_DIR=/home/www/tmp
$ export LUAJIT_LIB=/opt/luajit/lib
$ export LUAJIT_INC=/opt/luajit/include/luajit-2.0

Preface

[4]

Any command-line input or output is written as follows:

$ mkdir $HOME/build

$ cd $HOME/build && tar xzf nginx-<version-number>.tar.gz

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "clicking the Next
button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to
have the files e-mailed directly to you.

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission will
be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Installing NGINX and
Third-Party Modules

NGINX was first conceived to be an HTTP server. It was created to solve the C10K
problem, described by Daniel Kegel at http://www.kegel.com/c10k.html, of
designing a web server to handle 10,000 simultaneous connections. NGINX is able
to do this through its event-based connection-handling mechanism, and will use
the OS-appropriate event mechanism in order to achieve this goal.

Before we begin exploring how to configure NGINX, we will first install it. This chapter
details how to install NGINX itself and how to get the correct modules installed and
configured. NGINX is modular by design, and there is a rich community of third-
party module developers who have added functionality to the core NGINX server by
creating modules that can be compiled into the server and installed along with it.

In this chapter, we will cover:

•	 Installing NGINX using a package manager
•	 Installing NGINX from source
•	 Configuring for web or mail service
•	 Enabling various modules
•	 Finding and installing third-party modules
•	 Putting it all together

Installing NGINX and Third-Party Modules

[8]

Installing NGINX using a package
manager
Chances are that your operating system of choice already provides nginx as a package.
Installing it is as simple as using your package manager's commands:

•	 Linux (deb-based)
sudo apt-get install nginx

•	 Linux (rpm-based)
sudo yum install nginx

•	 FreeBSD
sudo pkg_install -r nginx

The sudo command is representative of what you need
to execute on your operating system to achieve superuser
('root') privileges. If your operating system supports RBAC
(Role-based access control), then you would use a different
command, such as 'pfexec' to achieve the same goal.

These commands will install NGINX into standard locations, specific to your
operating system. This is the preferred installation method if you need to use
your operating system's packages.

The NGINX core team also provides binaries of the stable version, available from
http://nginx.org/en/download.html. Users of distributions without an nginx
package (such as CentOS), can use the following instructions to install pre-tested,
pre-compiled binaries.

CentOS
Add the NGINX repository to your yum configuration by creating the following file:

sudo vi /etc/yum.repos.d/nginx.repo

[nginx]

name=nginx repo

baseurl=http://nginx.org/packages/centos/6/$basearch/

gpgcheck=0

enabled=1

Chapter 1

[9]

Then install nginx by executing the following command:

sudo yum install nginx

Alternative instructions for installing an nginx-release package are available at
the preceding URL.

Debian
Install the NGINX signing key by downloading it from http://nginx.org/keys/
nginx_signing.key and adding it to the apt keyring:

sudo apt-key add nginx_signing.key

Append the nginx.org repository to the end of /etc/apt/sources.list:

vi /etc/apt/sources.list

deb http://nginx.org/packages/debian/ squeeze nginx

deb-src http://nginx.org/packages/debian/ squeeze nginx

Then install nginx by executing the following command:

sudo apt-get update

sudo apt-get install nginx

If your operating system does not include nginx in its list of available packages,
the version there is too old for what you would like to do, the packages at nginx.
org don't serve your needs, or you would like to use the "development" release
of NGINX, then compiling NGINX from source is the only other option.

Installing NGINX from source
NGINX downloads are available for two separate branches of NGINX code—stable
and development. The development branch is the one in which active development is
taking place. Here is where new features will be found and integrated before finding
their way into the stable branch. When a "development" version is released, it has
undergone the same QA and a similar set of functional tests as the stable branch,
so either branch may be used on production systems. The major difference between
the two branches lies in the support of third-party modules. The internal API may
change in the development release, whereas it stays the same on the stable branch, so
backward compatibility for third-party modules is only available for stable releases.

Installing NGINX and Third-Party Modules

[10]

Preparing a build environment
In order to compile NGINX from source, certain requirements need to be met on your
system. Besides a compiler, you also need the OpenSSL and PCRE (Perl Compatible
Regular Expressions) libraries and development headers, if you want to enable the
SSL support and be able to use the rewrite module, respectively. Depending on
your system, these requirements may already be met in the default installation. If not,
you will need to either locate the appropriate package and install it, or download the
source, unpack it, and point NGINX's configure script to this location.

NGINX will attempt to build a dependent library statically if you include a –with-
<library>=<path> option to configure. You might want this if you would like to
ensure that NGINX is not dependent on any other part of the system and/or would
like to squeeze that extra bit of performance out of your nginx binary. If you are
using features of external libraries that are only available from a certain version
onwards (for example, the Next Protocol Negotiation TLS extension available from
OpenSSL Version 1.0.1), then you would have to specify the path to the unpacked
sources of that particular version.

There are other, optional, packages that you may provide support for if you like.
These include MD5 and SHA-1 hashing algorithm support, zlib compression,
and libatomic library support. The hashing algorithms are used in many places in
NGINX, for example, to compute the hash of a URI to determine a cache key. The zlib
compression library is used for delivering gzipped content. If the atomic_ops library
is available, NGINX will use its atomic memory update operations to implement
high-performance memory-locking code.

Compiling from source
NGINX may be downloaded from http://nginx.org/en/download.html.
Here you will find the source of either branch in the .tar.gz or .zip format.
Unpack the archive into a temporary directory as follows:

$ mkdir $HOME/build

$ cd $HOME/build && tar xzf nginx-<version-number>.tar.gz

Configure it using the following command:

$ cd $HOME/build/nginx-<version-number> && ./configure

And compile it as follows:

$ make && sudo make install

Chapter 1

[11]

When compiling your own nginx binary, you are much more free to include only
what you need. Can you already say under which user NGINX should run? Do you
want to specify the default logfile locations so that they don't need to be explicitly set
in the configuration? The following table of configure options will help you design
your own binary. These are options that are valid for NGINX independent of which
module is activated.

Table: Common configure options

Option Explanation
--prefix=<path> The root of the installation.

All other installation paths
are relative to this one.

--sbin-path=<path> The path to the nginx binary.
If not specified, this will be
relative to the prefix.

--conf-path=<path> The path to where nginx will look
for its configuration file, if not
specified on the command line.

--error-log-path=<path> This is where nginx will write
its error logfile, unless configured
otherwise.

--pid-path=<path> This is where nginx will write
the pid file of the master process,
usually under /var/run.

--lock-path=<path> The path to the shared memory
mutex lock file.

--user=<user> The user under which the worker
processes should run.

--group=<group> The group under which the worker
processes should run.

--with-file-aio. Enables asynchronous I/O for
FreeBSD 4.3+ and Linux 2.6.22+

--with-debug This option will enable debug
logging. Not recommended for
production systems.

Installing NGINX and Third-Party Modules

[12]

You are also able to compile with optimizations that you may not get in a packaged
installation. This is where the following options can be especially useful:

Table: Configure options for optimization

Option Explanation
--with-cc=<path> If you would like to set a C compiler that

is not in your default PATH.
--with-cpp=<path> This is the corresponding path to the

C preprocessor.
--with-cc-opt=<options> Here is where the path to the necessary include

files may be indicated (-I<path>), as well as
optimizations (-O4) and specifying a 64-bit build.

--with-ld-opt=<options> The options to the linker include library path
(-L<path>) and run path (-R<path>).

--with-cpu-opt=<cpu> A build specific to a particular CPU family may be
specified with this option.

Configuring for web or mail service
NGINX is unique among high-performing web servers in that it was also designed
to be a mail proxy server. Depending on your goals in building NGINX, you can
configure it for web acceleration, a web server, a mail proxy, or all of them. It may be
beneficial to have one package that you can install on any server in your infrastructure
and be able to set NGINX's role through configuration, or it may serve your needs
better to have a slimmed-down binary to use in high-performance environments
where every extra KB counts.

Configure options for a mail proxy
The following table specifies configuration options that are unique to the mail module:

Table: Mail configure options

Option Explanation
--with-mail This will enable the mail module, which is

not activated by default.
--with-mail_ssl_module In order to proxy any kind of mail

transaction that uses SSL/TLS, this module
will need to be activated.

Chapter 1

[13]

Option Explanation
--without-mail_pop3_module When enabling the mail module, the POP3

module may be disabled separately.
--without-mail_imap_module When enabling the mail module, the IMAP

module may be disabled separately.
--without-mail_smtp_module When enabling the mail module, the SMTP

module may be disabled separately.
--without-http This option will completely disable the

http module; use it if you know you only
want to compile in mail support.

For a typical mail proxy, I would recommend configuring NGINX as follows:

$./configure --with-mail --with-mail_ssl_module --with-openssl=$
{BUILD_DIR}/openssl-1.0.1c

SSL/TLS is needed nowadays on almost every mail installation and not having it
enabled on a mail proxy robs users of expected functionality. I've recommended
compiling OpenSSL statically so that there are no dependencies on the operating
system's OpenSSL library. The BUILD_DIR variable referenced in the preceding
command would of course have to be set beforehand.

Configure the options to specify paths
The following table shows what configuration options are available to the http module,
from activating the Perl module to specifying the location of temporary directories:

Table: HTTP configure options

Option Explanation
--without-http-cache When using the upstream module, NGINX

can be configured to cache the contents
locally. This option disables that cache.

--with-http_perl_module NGINX configuration can be extended by
using Perl code. This option activates that
module. (Use of this module, however,
degrades performance.)

--with-perl_modules_
path=<path>

This option specifies the path to additional
Perl modules needed for using the
embedded Perl interpreter. It may also be
specified as a configuration option.

--with-perl=<path> The path to Perl (Version 5.6.1 and higher),
if not found on the default path.

Installing NGINX and Third-Party Modules

[14]

Option Explanation
--http-log-path=<path> The default path to the HTTP access log.
--http-client-body-temp-
path=<path>

When receiving the request from the client,
this is the directory used as a temporary
location for the body of that request.
If the WebDAV module is enabled, it is
recommended to set this path to be on the
same filesystem as the final destination.

--http-proxy-temp-
path=<path>

When proxying, this is the directory used
as a location to store temporary files.

--http-fastcgi-temp-
path=<path>

The location for FastCGI temporary files.

--http-uwsgi-temp-
path=<path>

The location for uWSGI temporary files.

--http-scgi-temp-
path=<path>

The location for SCGI temporary files.

Enabling various modules
Besides the http and mail modules, there are a number of other modules included in the
NGINX distribution. These modules are not activated per default, but may be enabled by
setting the appropriate configuration option --with-<module-name>_module.

Table: HTTP module configure options

Option Explanation
--with-http_ssl_module If you need to encrypt web traffic, you will need

this option to be able to use URLs beginning
with https. (Requires the OpenSSL library.)

--with-http_realip_module If your NGINX will be behind a L7 load balancer
or other device that passes the client's IP address
in an HTTP header, you will need to enable this
module. For use in situations where multiple
clients appear to come from one IP address.

--with-http_addition_module This module works as an output filter, enabling
you to add content of a different location before
or after that of the location itself.

--with-http_xslt_module This module will handle transformations of
XML responses, based on one or more XSLT
stylesheets. (Requires the libxml2 and libxslt
libraries.)

Chapter 1

[15]

Option Explanation
--with-http_image_filter_
module

This module is able to act as a filter on images,
processing them before handing them over to
the client. (Requires the
libgd library.)

--with-http_geoip_module With this module, you are able to set various
variables to use in configuration blocks to make
decisions based on the geographic location
found for a client's IP address. (Requires the
MaxMind GeoIP library and the corresponding
precompiled database files.)

--with-http_sub_module This module implements a substitution filter,
replacing one string in the response with
another.

--with-http_dav_module Enabling this module will activate the
configuration directives for using WebDAV.
Note that this module should only be enabled
on a need-to-use basis, as it could present
security problems if configured incorrectly.

--with-http_flv_module If you need to be able to stream Flash video
files, this module will provide for pseudo-
streaming.

--with-http_mp4_module This module supports pseudo-streaming for
H.264/AAC files.

--with-http_gzip_static_
module

Use this module if you would like to support
sending pre-compressed versions of static files
when the resource is called without the .gz
ending.

--with-http_gunzip_module This module will decompress pre-compressed
content for clients that do not support gzip
encoding.

--with-http_random_index_
module

If you would like to serve an index file chosen
at random from the files in a directory, then this
module needs to be enabled.

--with-http_secure_link_
module

This module provides a mechanism to hash a
link to a URL, so that only those with the proper
password would be able to calculate the link.

--with-http_stub_status_
module

Enabling this module will help you gather
statistics from NGINX itself. The output can be
graphed using RRDtool or something similar.

Installing NGINX and Third-Party Modules

[16]

As you can see, these are all modules that build upon the http module, providing
extra functionality. Enabling the modules at compile time should not affect runtime
performance at all. Using the modules later in the configuration is where performance
may be impacted.

I would therefore recommend the following configure options for a web
accelerator/proxy:

$./configure --with-http_ssl_module --with-http_realip_module --with-
http_geoip_module --with-http_stub_status_module --with-openssl=${BUILD_
DIR}/openssl-1.0.1c

And the following for a web server:

$./configure --with-http_stub_status_module

The difference lies in where NGINX will be faced with clients. The web acceleration
role would take care of terminating SSL requests as well as dealing with proxied
clients and making decisions based on where a client came from. The web server
role would need only provide default file serving capability.

I would recommend always enabling the stub_status module, as it provides a
means of gathering metrics on how your NGINX is performing.

Disabling unused modules
There are also a number of http modules that are normally activated, but may
be disabled by setting the appropriate configuration option --without-<module-
name>_module. If you have no use for these modules in your configuration, you
can safely disable them.

Table: Disable configure options

Option Explanation
--without-http_charset_module The charset module is responsible for

setting the Content-Type response
header, as well as converting from one
charset to another.

--without-http_gzip_module The gzip module works as an output
filter, compressing content as it's
delivered to the client.

--without-http_ssi_module This module is a filter that processes
Server Side Includes. If the Perl module
is enabled, an additional SSI command
(perl) is available.

Chapter 1

[17]

Option Explanation
--without-http_userid_module The userid module enables NGINX

to set cookies that can be used for client
identification. The variables $uid_set
and $uid_got can then be logged for
user tracking.

--without-http_access_module The access module controls access to a
location based on IP address.

--without-http_auth_basic_
module

This module limits access via HTTP Basic
Authentication.

--without-http_autoindex_
module

The autoindex module enables
NGINX to generate a directory listing
for directories that have no index file.

--without-http_geo_module This module enables you to set up
configuration variables based on a
client's IP address and then take action
on the value of those variables.

--without-http_map_module The map module enables you to map
one variable to another.

--without-http_split_clients_
module

This module creates variables that can
be used for A/B testing.

--without-http_referer_module This module enables NGINX to block
requests based on the Referer HTTP
header.

--without-http_rewrite_module The rewrite module allows you
to change URIs based on various
conditions.

--without-http_proxy_module The proxy module allows NGINX to
pass requests on to another server or
group of servers.

--without-http_fastcgi_module The FastCGI module enables NGINX
to pass requests to a FastCGI server.

--without-http_uwsgi_module This module enables NGINX to pass
requests to a uWSGI server.

--without-http_scgi_module The SCGI module enables NGINX to
pass requests to an SCGI server.

--without-http_memcached_
module

This module enables NGINX to interact
with a memcached server, placing
responses to queries into a variable.

--without-http_limit_conn_
module

This module enables NGINX to set
connection limits based on certain keys,
usually an IP address.

Installing NGINX and Third-Party Modules

[18]

Option Explanation
--without-http_limit_req_
module

With this module, NGINX can limit the
request rate per key.

--without-http_empty_gif_
module

The empty GIF module produces a 1 x
1-pixel in-memory transparent GIF.

--without-http_browser_module The browser module allows for
configurations based on the User-
Agent HTTP request header. Variables
are set based on the version found in this
header.

--without-http_upstream_ip_
hash_module

This module defines a set of servers that
may be used in conjunction with the
various proxy modules.

Finding and installing third-party
modules
As with many open source projects, there is an active developer community
surrounding NGINX. Thanks to NGINX's modular nature, this community
is able to develop and publish modules to provide additional functionality.
They cover a wide range of applications, so it pays to take a look at what is
available before embarking on developing your own module.

The procedure for installing a third-party module is fairly straightforward:

1.	 Locate the module you would like to use (either search on
https://github.com or see http://wiki.nginx.org/3rdPartyModules).

2.	 Download the module.
3.	 Unpack the source.
4.	 Read the README file, if included. See if there are any dependencies

that you will need to install.
5.	 Configure NGINX to use the module as follows. /configure –add-

module=<path>.

This procedure will give you an nginx binary with the additional functionality
of that module.

Chapter 1

[19]

Keep in mind that many third-party modules are of an experimental nature. Test
using a module first before rolling it out on production systems. And remember that
the development releases of NGINX may have API changes that can cause problems
with third-party modules.

Special mention should be made here of the ngx_lua third-party module.
The ngx_lua module serves to enable Lua instead of Perl as a configuration time
embedded scripting language. The great advantage this module has over the perl
module is its non-blocking nature and tight integration with other third-party
modules. The installation instructions are fully described at http://wiki.nginx.
org/HttpLuaModule#Installation. We will be using this module as an example
of installing a third-party module in the next section.

Putting it all together
Now that you have gotten a glimpse at what all the various configuration options
are for, you can design a binary that precisely fits your needs. The following example
specifies the prefix, user, group, certain paths, disables some modules, enables some
others, and includes a couple of third-party modules:

$ export BUILD_DIR=`pwd`
$ export NGINX_INSTALLDIR=/opt/nginx
$ export VAR_DIR=/home/www/tmp
$ export LUAJIT_LIB=/opt/luajit/lib
$ export LUAJIT_INC=/opt/luajit/include/luajit-2.0

$./configure \
 --prefix=${NGINX_INSTALLDIR} \
 --user=www \
 --group=www \
 --http-client-body-temp-path=${VAR_DIR}/client_body_temp \
 --http-proxy-temp-path=${VAR_DIR}/proxy_temp \
 --http-fastcgi-temp-path=${VAR_DIR}/fastcgi_temp \
 --without-http_uwsgi_module \
 --without-http_scgi_module \
 --without-http_browser_module \
 --with-openssl=${BUILD_DIR}/../openssl-1.0.1c \
 --with-pcre=${BUILD_DIR}/../pcre-8.32 \
 --with-http_ssl_module \
 --with-http_realip_module \
 --with-http_sub_module \
 --with-http_flv_module \
 --with-http_gzip_static_module \

Installing NGINX and Third-Party Modules

[20]

 --with-http_gunzip_module \
 --with-http_secure_link_module \
 --with-http_stub_status_module \
 --add-module=${BUILD_DIR}/ngx_devel_kit-0.2.17 \
 --add-module=${BUILD_DIR}/ngx_lua-0.7.9

Following a lot of output showing what configure was able to find on your system,
a summary is printed out as follows:

Configuration summary
 + using PCRE library: /home/builder/build/pcre-8.32
 + using OpenSSL library: /home/builder/build/openssl-1.0.1c
 + md5: using OpenSSL library
 + sha1: using OpenSSL library
 + using system zlib library

 nginx path prefix: "/opt/nginx"
 nginx binary file: "/opt/nginx/sbin/nginx"
 nginx configuration prefix: "/opt/nginx/conf"
 nginx configuration file: "/opt/nginx/conf/nginx.conf"
 nginx pid file: "/opt/nginx/logs/nginx.pid"
 nginx error log file: "/opt/nginx/logs/error.log"
 nginx http access log file: "/opt/nginx/logs/access.log"
 nginx http client request body temporary files: "/home/www/tmp/
 client_body_temp"
 nginx http proxy temporary files: "/home/www/tmp/proxy_temp"
 nginx http fastcgi temporary files: "/home/www/tmp/fastcgi_temp"

As you can see, configure found all the items we were looking for, and acknowledged
our preferences for certain paths. Now, you can build your nginx and install it, as
mentioned at the beginning of the chapter.

Summary
This chapter has introduced you to the various modules available for NGINX.
By compiling your own binary, you are able to tailor what functionality your nginx
will provide. Building and installing software will not be new to you, so not a lot of
time was spent on creating a build environment or making sure that all dependencies
were present. An NGINX installation should be one that fits your needs, so feel free
to enable or disable modules as you see fit.

Next up we will present an overview of basic NGINX configuration, to get a feel for
how to configure NGINX in general.

A Configuration Guide
The NGINX configuration file follows a very logical format. Learning this format
and how to use each section is one of the building blocks that will help you to create
a configuration file by hand. This chapter will help you reach that goal by explaining
the following topics:

•	 Basic configuration format
•	 NGINX global configuration parameters
•	 Using include files
•	 The HTTP server section
•	 The virtual server section
•	 Locations – where, when, and how
•	 The mail server section
•	 Full sample configuration

The basic configuration format
The basic NGINX configuration file is set up in a number of sections. Each section
is delineated in the following way:

<section> {

 <directive> <parameters>;

}

It is important to note that each directive line ends with a semicolon (;). This marks
the end-of-line. The curly braces ({}) actually denote a new configuration context,
but we will read these as "sections" for the most part.

A Configuration Guide

[22]

NGINX global configuration parameters
The global section is used to configure the parameters that affect the entire server,
and is an exception to the format shown in the preceding section. The global section
may include configuration directives, such as user and worker_processes, as well
as sections, such as events. There are no open and closing braces ({}) surrounding
the global section.

The most important configuration directives in the global context are shown in the
following table. These will be the ones that you will be dealing with for the most part.

Table: Global configuration directives

Directive Explanation
user The user and group under which the worker

processes run is configured using this
parameter. If the group is omitted, a group
name equal to that of the user is used.

worker_processes This is the number of worker processes
that will be started. These will handle all
connections made by the clients. Choosing
the right number depends on the server
environment, the disk subsystem, and the
network infrastructure. A good rule of thumb
is to set this equal to the number of processor
cores for CPU-bound loads and to multiply
this number by 1.5 to 2 for I/O bound loads.

error_log error_log is where all errors are written.
If no other error_log is given in a separate
context, this log file will be used for all errors,
globally. A second parameter to this directive
indicates the level at which (debug, info,
notice, warn, error, crit, alert, and
emerg) errors are written to the log. Note
that debug-level errors are only available
if the --with-debug configuration switch is
given at compilation time.

pid This is the file where the process ID of the
main process is written, overwriting the
compiled-in default.

Chapter 2

[23]

Directive Explanation
use The use directive indicates which connection

processing method should be used. This will
overwrite the compiled-in default, and must
be contained in an events context, if used.
It will not normally need to be overridden,
except when the compiled-in default is found
to produce errors over time.

worker_connections This directive configures the maximum
number of simultaneous connections
that a worker process may have open.
This includes, but is not limited to, client
connections and connections to upstream
servers. This is especially important on
reverse proxy servers – some additional
tuning may be required at the operating
system level in order to reach this number
of simultaneous connections.

Here is a short example using each of these directives:

we want nginx to run as user 'www'
user www;

the load is CPU-bound and we have 12 cores
worker_processes 12;

explicitly specifying the path to the mandatory error log
error_log /var/log/nginx/error.log;

also explicitly specifying the path to the pid file
pid /var/run/nginx.pid;

sets up a new configuration context for the 'events' module
events {

 # we're on a Solaris-based system and have determined that nginx
 # will stop responding to new requests over time with the default
 # connection-processing mechanism, so we switch to the second-best
 use /dev/poll;

A Configuration Guide

[24]

 # the product of this number and the number of worker_processes
 # indicates how many simultaneous connections per IP:port pair are
 # accepted
 worker_connections 2048;

}

This section would be placed at the top of the nginx.conf configuration file.

Using include files
Include files can be used anywhere in your configuration file, to help it be more
readable and to enable you to re-use parts of your configuration. To use them, make
sure that the files themselves contain the syntactically correct NGINX configuration
directives and blocks; then specify a path to those files:

include /opt/local/etc/nginx/mime.types;

A wildcard may appear in the path to match multiple files:

include /opt/local/etc/nginx/vhost/*.conf;

If the full path is not given, NGINX will search relative to its main configuration file.

A configuration file can be easily tested by calling NGINX as follows:

nginx -t -c <path-to-nginx.conf>

This will test the configuration including all the files separated out into include files,
for syntax errors.

The HTTP server section
The HTTP server section, or HTTP configuration context, is available unless you have
built NGINX without the HTTP module (--without-http). This section controls all
the aspects of working with the HTTP module, and will probably be the one that you
will use the most.

The configuration directives found in this section deal with handling HTTP
connections. As such, there are quite a number of directives defined by this module
We will divide these directives up by type, to be able to talk about them more easily.

Chapter 2

[25]

Client directives
This set of directives deals with the aspects of the client connection itself, as well as
with different types of clients.

Table: HTTP client directives

Directive Explanation
chunked_transfer_encoding Allows disabling the standard HTTP/1.1

chunked transfer encoding in responses to
clients.

client_body_buffer_size Used to set a buffer size for the client
request body larger than the default
two memory pages, in order to prevent
temporary files from being written to the
disk.

client_body_in_file_only Used for debugging or further processing
of the client request body. This directive
can be set to on to force save the client
request body to a file.

client_body_in_single_buffer This directive forces NGINX to save the
entire client request body in a single
buffer, to reduce copy operations.

client_body_temp_path Defines a directory path for saving the
client request body.

client_body_timeout Specifies the length of time between
successive read operations of the client
body.

client_header_buffer_size Used for specifying a buffer size for the
client request header, when this needs to
be larger than the default 1 KB.

client_header_timeout This timeout is the length of time for
reading the entire client header.

client_max_body_size Defines the largest allowable client request
body, before a 413 (Request Entity
Too Large) error is returned to the
browser.

keepalive_disable Disables the keep-alive requests for certain
browser types.

keepalive_requests Defines how many requests may be made
over one keep-alive connection before it
is closed.

A Configuration Guide

[26]

Directive Explanation
keepalive_timeout Specifies how long a keep-alive connection

will stay open. A second parameter may
be given, to set a "Keep-Alive" header in
the response.

large_client_header_buffers Defines the maximum number and size of
a large client request header.

msie_padding Enables the disabling of adding comments
to responses with a status greater than
400 for MSIE clients, in order to pad the
response size to 512 bytes.

msie_refresh Enables the sending of a refresh instead of
a redirect for MSIE clients.

File I/O directives
These directives control how NGINX delivers static files and/or how it manages
file descriptors.

Table: HTTP file I/O directives

Directive Explanation
aio Enables the use of asynchronous file I/O.

It is available on all the modern versions
of FreeBSD and distributions of Linux. On
FreeBSD, aio may be used to preload data
for sendfile. Under Linux, directio
is required, which automatically disables
sendfile.

directio Enables the operating system specific flag
or function for serving files larger than the
given parameter. It's required when using
aio on Linux.

directio_alignment Sets the alignment for directio. The
default of 512 is usually enough, although
it's recommended to increase this to 4 K
when using XFS on Linux.

open_file_cache Configures a cache that can store open file
descriptors, directory lookups, and file
lookup errors.

open_file_cache_errors Enables the caching of file lookup errors by
open_file_cache.

Chapter 2

[27]

Directive Explanation
open_file_cache_min_uses Configures the minimum number of uses

for a file within the inactive parameter to
open_file_cache for the file descriptor
to remain open in the cache.

open_file_cache_valid Specifies the time interval between validity
checks for items in open_file_cache.

postpone_output Specifies the minimum size of data for
NGINX to send to the client. If possible, no
data will be sent until this value is reached.

read_ahead If possible, the kernel will preread files
up to the size parameter. It's supported
on current FreeBSD and Linux (the size
parameter is ignored on Linux).

sendfile Enables using sendfile(2) to directly copy
the data from one file descriptor to another.

sendfile_max_chunk Sets the maximum size of data to copy
in one sendfile(2) call, to prevent a
worker from seizing.

Hash directives
The set of hash directives controls how large a range of static memory NGINX allocates
to certain variables. NGINX will calculate the minimum size needed on startup and
reconfiguration. You will most likely only need to adjust one of the *_hash_max_size
parameters by setting the appropriate directive when NGINX emits a warning to
that effect. The *_hash_bucket_size variables are set by default to a multiple of
the processor's cache line size to minimize lookups needed to retrieve the entry, and
therefore should not normally be changed. See http://nginx.org/en/docs/hash.
html for additional details.

Table: HTTP hash directives

Directive Explanation
server_names_hash_bucket_size It specifies the bucket size used to

hold the server_name hash tables.
server_names_hash_max_size It specifies the maximum size of the

server_name hash tables.
types_hash_bucket_size It specifies the bucket size used to

hold the types hash tables.
types_hash_max_size It specifies the maximum size of the

types hash tables.

A Configuration Guide

[28]

Directive Explanation
variables_hash_bucket_size It specifies the bucket size used to

hold the remaining variables.
variables_hash_max_size It specifies the maximum size of

the hash that holds the remaining
variables.

Socket directives
These directives describe how NGINX can set various options on the TCP sockets
it creates.

Table: HTTP socket directives

Directive Explanation
lingering_close It specifies how a client connection will be

kept open for more data.
lingering_time In connection with the lingering_close

directive, this directive will specify how
long a client connection will be kept open
for processing more data.

lingering_timeout Also in conjunction with lingering_
close, this directive indicates how long
NGINX will wait for additional data before
closing the client connection.

reset_timedout_connection With this directive enabled, connections
that have been timed out will immediately
be reset, freeing all associated memory. The
default is to leave the socket in the FIN_
WAIT1 state, which will always be the case
for keep-alive connections.

send_lowat If non-zero, NGINX will try to minimize
the number of send operations on client
sockets. It is ignored on Linux, Solaris, and
Windows.

send_timeout Sets a timeout between two successive write
operations for a client receiving a response.

Chapter 2

[29]

Directive Explanation
tcp_nodelay Enables or disables the TCP_NODELAY

option for keep-alive connections.
tcp_nopush Relevant only when sendfile is used. It

enables NGINX to attempt to send response
headers in one packet, as well as sending a
file in full packets.

Sample configuration
The following is an example of an HTTP configuration section:

http {

 include /opt/local/etc/nginx/mime.types;

 default_type application/octet-stream;

 sendfile on;

 tcp_nopush on;

 tcp_nodelay on;

 keepalive_timeout 65;

 server_names_hash_max_size 1024;

}

This context block would go after any global configuration directives in the
nginx.conf file.

A Configuration Guide

[30]

The virtual server section
Any context beginning with the keyword server is considered a "virtual server"
section. It describes a logical separation of a set of resources that will be delivered
under a different server_name directive. These virtual servers respond to HTTP
requests, and so are contained within the http section.

A virtual server is defined by a combination of the listen and server_name
directives. listen defines an IP address/port combination or path to a
UNIX-domain socket:

listen address[:port];
listen port;
listen unix:path;

The listen directive uniquely identifies a socket binding under NGINX.
There are also a number of optional parameters that listen can take:

Table: listen parameters

Parameter Explanation Comment
default_server Defines this

address:port
combination as being the
default for the requests
bound here.

setfib Sets the corresponding FIB
for the listening socket.

Only supported on FreeBSD.
Not for UNIX-domain
sockets.

backlog Sets the backlog parameter
in the listen() call.

Defaults to -1 on FreeBSD
and 511 on all other
platforms.

rcvbuf Sets the SO_RCVBUF
parameter on the listening
socket.

sndbuf Sets the SO_SNDBUF
parameter on the listening
socket.

accept_filter Sets the name of the accept
filter to either dataready
or httpready.

Only supported on FreeBSD.

Chapter 2

[31]

Parameter Explanation Comment
deferred Sets the TCP_DEFER_

ACCEPT option to use a
deferred accept() call.

Only supported on Linux.

bind Make a separate bind()
call for this address:port
pair.

A separate bind() call will
be made implicitly if any
of the other socket-specific
parameters are used.

ipv6only Sets the value of the IPV6_
V6ONLY parameter.

Can only be set on a fresh
start. Not for UNIX-domain
sockets.

ssl Indicates that only HTTPS
connections will be made on
this port.

Allows for a more compact
configuration.

so_keepalive Configures the TCP
keepalive for the listening
socket.

The server_name directive is fairly straightforward, but can be used to solve a number
of configuration problems. Its default value is "", which means that a server section
without a server_name directive will match a request that has no Host header field
set. This can be used, for example, to drop requests that lack this header:

server {

 listen 80;

 return 444;

}

The non-standard HTTP code, 444, used in this example will cause NGINX to
immediately close the connection.

A Configuration Guide

[32]

Besides a normal string, NGINX will accept a wildcard as a parameter to the
server_name directive:

•	 The wildcard can replace the subdomain part: *.example.com
•	 The wildcard can replace the top-level-domain part: www.example.*
•	 A special form will match the subdomain or the domain itself:

.example.com (matches *.example.com as well as example.com)

A regular expression can also be used as a parameter to server_name by prepending
the name with a tilde (~):

server_name ~^www\.example\.com$;

server_name ~^www(\d+).example\.(com)$;

The latter form is an example using captures, which can later be referenced
(as $1, $2, and so on) in further configuration directives.

NGINX uses the following logic when determining which virtual server should
serve a specific request:

1.	 Match the IP address and port to the listen directive.
2.	 Match the Host header field against the server_name directive as a string.
3.	 Match the Host header field against the server_name directive with a

wildcard at the beginning of the string.
4.	 Match the Host header field against the server_name directive with a

wildcard at the end of the string.
5.	 Match the Host header field against the server_name directive as a regular

expression.
6.	 If all the Host headers match fail, then direct to the listen directive

marked as default_server.
7.	 If all the Host headers match fail and there is no default_server,

direct to the first server with a listen directive that satisfies step 1.

Chapter 2

[33]

This logic is expressed in the following flowchart:

Host header matches
server_name with a

wildcard at the front?

Is there a
default_server?

Find sever context
with listen/port match

Does the Host header
match the server_name

as a string?

Host header matches
server_name with a
wildcard at the end?

Host header matches
server_name with a
regular expression?

Does the IP/port
match the listen?

Request from client

Find server context
with listen/port match

Find server context
with listen/port match

Direct to
default_server

Continue with request
processing.

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

No

default_server can be used to handle requests that would otherwise go unhandled.
It is therefore recommended to always set default_server explicitly, so that these
unhandled requests will be handled in a defined manner.

A Configuration Guide

[34]

Besides this usage, default_server may also be helpful in configuring a number
of virtual servers with the same listen directive. Any directives set here will be
the same for all matching server blocks.

Locations – where, when, and how
The location directive may be used within a virtual server section and indicates a
URI that comes either from the client or from an internal redirect. Locations may be
nested with a few exceptions. They are used for processing requests with as specific
a configuration as possible.

A location is defined as follows:

location [modifier] uri {...}

Or for a named location:

location @name {…}

A named location is only reachable from an internal redirect. It preserves the URI
as it was before entering the location block. It may only be defined at the server
context level.

The modifiers affect processing of a location in the following way:

Table: Location modifiers

Modifier Handling
= Use exact match and terminate search.
~ Case-sensitive regular expression matching.
~* Case-insensitive regular expression matching.
^~ Stops processing before regular expressions are

checked for a match of this location's string, if
it's the most specific match. Note that this is not
a regular expression match – its purpose is to
preempt regular expression matching.

When a request comes in, the URI is checked against the most specific location
as follows:

•	 Locations without a regular expression are searched for the most-specific
match, independent of the order in which they are defined.

Chapter 2

[35]

•	 Regular expressions are matched in the order in which they are found in the
configuration file. The regular expression search is terminated on the first
match. The most-specific location match is then used for request processing.

The comparison match described here is against decoded URIs; for example,
a "%20" in a URI will match against a " " (space) specified in a location.

A named location may only be used by internally redirected requests.

The following directives are found only within a location:

Table: Location-only directives

Directive Explanation
alias Defines another name for the location, as found on the

filesystem. If the location is specified with a regular
expression, alias should reference captures defined in
that regular expression. alias replaces the part of the URI
matched by the location, such that the rest of the URI not
matched will be searched for in that filesystem location.
Using the alias directive is fragile when moving bits of
the configuration around, so using the root directive is
preferred, unless the URI needs to be modified in order to
find the file.

internal Specifies a location that can only be used for internal
requests (redirects defined in other directives, rewrite
requests, error pages, and so on.)

limit_except Limits a location to the specified HTTP verb(s) (GET also
includes HEAD).

Additionally, a number of directives found in the http section may also be specified
in a location. See Appendix A, Directive Reference, for a complete list.

The try_files directive deserves a special mention here. It may also be used in
a server context, but will most often be found in a location. try_files will do just
that—try files in the order given as parameters; the first match wins. It is often used
to match potential files from a variable, then pass processing to a named location,
as shown in the following example:

location / {

 try_files $uri $uri/ @mongrel;

}

A Configuration Guide

[36]

location @mongrel {
 proxy_pass http://appserver;

}

Here, an implicit directory index is tried if the given URI is not found as a file, then
processing is passed on to appserver via a proxy. We will explore how best to use
location, try_files, and proxy_pass to solve specific problems throughout the
rest of the book.

Locations may be nested except when:

•	 The prefix is "="
•	 The location is a named location

Best practice dictates that regular expression locations be nested inside string-based
locations. An example of this is as follows:

first, we enter through the root
location / {

 # then we find a most-specific substring
 # note that this is not a regular expression
 location ^~ /css {

 # here is the regular expression that then gets matched
 location ~* /css/.*\.css$ {

 }

 }

}

The mail server section
The mail server section, or mail configuration context, is available only if you've
built NGINX with the mail module (--with-mail). This section controls all aspects
of working with the mail module.

The mail module allows for configuration directives that affect all aspects of
proxying mail connections, as well as for specifying them per server. The server
context also accepts the listen and server_name directives that we saw under
the http server section.

Chapter 2

[37]

NGINX can proxy the IMAP, POP3, and SMTP protocols. The following table lists
the directives that are available to this module:

Table: Mail module directives

Directive Explanation
auth_http Specifies the server used for authenticating

the POP3/IMAP user. The functionality
of this server will be discussed in detail
in Chapter 3.

imap_capabilities Indicates which IMAP4 capabilities are
supported by the backend server.

pop3_capabilities Indicates which POP3 capabilities are
supported by the backend server.

protocol Indicates which protocol is supported by
this virtual server context.

proxy This directive will simply enable or disable
mail proxying.

proxy_buffer This directive allows setting the size of the
buffer used for the proxy connection beyond
the default of one page.

proxy_pass_error_message Useful in situations where the backend
authentication process emits a useful error
message to the client.

proxy_timeout If a timeout beyond the default of 24 hours
is required, this directive can be used.

xclient The SMTP protocol allows checking based
on IP/HELO/LOGIN parameters, which are
passed via the XCLIENT command. This
directive enables NGINX to communicate
this information.

If NGINX was compiled with SSL support (--with-mail_ssl_module), the following
directives will be available in addition to the previous ones:

Table: Mail SSL directives

Directive Explanation
ssl Indicates if this context should support SSL

transactions.
ssl_certificate It specifies the path to the PEM-encoded SSL

certificate(s) for this virtual server.

A Configuration Guide

[38]

Directive Explanation
ssl_certificate_key It specifies the path to the PEM-encoded

SSL secret key for this virtual server.
ssl_ciphers It specifies the ciphers that should be

supported in this virtual server context
(OpenSSL format).

ssl_prefer_server_
ciphers

Indicates that SSLv3 and TLSv1 server
ciphers are preferred over the client's
ciphers.

ssl_protocols Indicates which SSL protocols should be
enabled.

ssl_session_cache Specifies an SSL cache, and whether or
not it should be shared among all worker
processes.

ssl_session_timeout How long the client can use the same SSL
parameters, provided they are stored in
the cache.

Full sample configuration
What follows is a sample configuration file including the different sections discussed
in this chapter. Please note that this should not be copy-pasted and used as is. It will
most likely not fit your needs. It is shown here only to give an idea of the structure of
a complete configuration file.

user www;

worker_processes 12;

error_log /var/log/nginx/error.log;

pid /var/run/nginx.pid;

events {

 use /dev/poll;

 worker_connections 2048;

}

Chapter 2

[39]

http {

 include /opt/local/etc/nginx/mime.types;

 default_type application/octet-stream;

 sendfile on;

 tcp_nopush on;

 tcp_nodelay on;

 keepalive_timeout 65;

 server_names_hash_max_size 1024;

 server {

 listen 80;

 return 444;

 }

 server {

 listen 80;

 server_name www.example.com;

 location / {

 try_files $uri $uri/ @mongrel;

 }

 location @mongrel {

 proxy_pass http://127.0.0.1:8080;

 }

 }

}

A Configuration Guide

[40]

Summary
In this chapter, we have seen how the NGINX configuration file is built. Its
modular nature is a reflection, in part, of the modularity of NGINX itself. A global
configuration block is responsible for all aspects that affect the running of NGINX
as a whole. There is a separate configuration section for each protocol that NGINX
is responsible for handling. We may further define how each request is to be
handled by specifying servers within those protocol configuration contexts (either
http or mail), so that requests are routed to a specific IP address/port. Within
the http context, locations are then used to match the URI of the request. These
locations may be nested or otherwise ordered to ensure that requests get routed
to the right areas of the filesystem or application server.

What we did not cover in this chapter are the configuration options provided by
the various modules that may be compiled into your nginx binary. These additional
directives will be touched upon throughout the book, as that particular module is
used to solve a problem. Also absent was an explanation of the variables that NGINX
makes available for its configuration. These too will be discussed later in this book.
This chapter's focus was on the basics of configuring NGINX.

In the next chapter, we will explore configuring NGINX's mail module, to enable
mail proxying.

Using the Mail Module
NGINX was designed to not only serve web traffic, but also to provide a means of
proxying mail services. In this chapter you will learn how to configure NGINX as a
mail proxy for POP3, IMAP, and SMTP services. We will examine running NGINX
as a mail proxy server in the following sections:

•	 Basic proxy service
•	 Authentication service
•	 Combining with memcached
•	 Interpreting log files
•	 Operating system limits

Basic proxy service
The NGINX mail proxy module was originally developed for FastMail. They had a
need to provide a single IMAP endpoint for their users, while hosting the actual mail
account on one of a number of upstream mail servers. Typical proxying programs of
the time used the classic Unix forking model, which meant that a new process was
forked for each connection. IMAP has very long-lived connections, which means
that these processes would stay around for a very long time. This would then lead
to very sluggish proxy servers, as they would have to manage these processes for
the lifetime of each connection. NGINX's event-based process model was a better
fit for this type of service. As a mail proxy, NGINX is able to direct traffic to any
number of mailbox servers where the actual mail account is hosted. This provides
the ability to communicate one endpoint to customers, while scaling the number of
mailbox servers up with the number of users. Both commercial and open-source mail
solutions, such as Atmail and Zimbra, are built around this model.

Using the Mail Module

[42]

The following diagram will help visualize how this works:

An incoming request will be handled on a per-protocol basis. The mail proxy
module may be configured differently for POP3, IMAP, or SMTP. For each protocol,
NGINX queries an authentication service with the username and password. If the
authentication is successful, the connection is proxied to the mail server indicated in
the response from the authentication service. If the authentication was unsuccessful,
the client connection is terminated. The authentication service thus determines which
clients can use POP3 / IMAP / SMTP services and which mail server they may use.
As any number of mail servers may be handled in this way, NGINX can provide a
proxy service for all of them through one central gateway.

A proxy acts on behalf of someone or something else. In this case, NGINX is acting
on behalf of the mail client, terminating the connection and opening a new one to the
upstream server. This means that there is no direct communication between the mail
client and the actual mailbox server or SMTP relay host.

If there are any mail rules based on information contained in the client
connection, these rules will not work, unless the mail software is able
to support an extension, such as XCLIENT for SMTP.

Chapter 3

[43]

This is an important point in designing an architecture that contains a proxy server—
the proxy host will need to be able to support more connections than a typical
upstream server. Not as much processing power or memory as a mailbox server would
be needed, but the number of persistent connections needs to be taken into account.

POP3 service
The Post Office Protocol is an Internet standard protocol used to retrieve mail
messages from a mailbox server. The current incarnation of the protocol is Version 3,
thus POP3. Mail clients will typically retrieve all new messages on a mailbox server
in one session, then close the connection. After closing, the mailbox server will delete
all messages that have been marked as retrieved.

In order for NGINX to act as a POP3 proxy, some basic directives need to
be configured:

mail {
 auth_http localhost:9000/auth;

 server {
 listen 110;
 protocol pop3;
 proxy on;
 }
}

This configuration snippet enables the mail module and configures it for POP3
service, querying an authentication service running on port 9000 on the same
machine. NGINX will listen on port 110 on all local IP addresses, providing a
POP3 proxy service. You will notice that we do not configure the actual mail
servers here—it is the job of the authentication service to tell NGINX which
server a particular client should be connected to.

If your mail server only supports certain capabilities (or you only want to advertise
certain capabilities), NGINX is flexible enough to announce these:

mail {
 pop3_capabilities TOP USER;
}

Capabilities are a way of advertising support for optional commands. For POP3,
the client can request the supported capabilities before or after authentication,
so it is important to configure these correctly in NGINX.

Using the Mail Module

[44]

You may also specify which authentication methods are supported:

mail {
 pop3_auth apop cram-md5;
}

If the APOP authentication method is supported, the authentication service needs
to provide NGINX with the user's password in clear text, so that it can generate
the MD5 digest.

IMAP service
The Internet Message Access Protocol is also an Internet-standard protocol used
to retrieve mail messages from a mailbox server. It provides quite a bit of extended
functionality over the earlier POP protocol. Typical usage leaves all messages on the
server, so that multiple mail clients can access the same mailbox. This also means
that there may be many more, persistent connections to an upstream mailbox server
from clients using IMAP than those using POP3.

To proxy IMAP connections, a configuration similar to the POP3 NGINX snippet
used before can be used:

mail {
 auth_http localhost:9000/auth;

 imap_capabilities IMAP4rev1 UIDPLUS QUOTA;
 imap_auth login cram-md5;

 server {
 listen 143;
 protocol imap;
 proxy on;
 }
}

Note that we did not need to specify the protocol, as imap is the default value.
It is included here for clarity.

The imap_capabilities and imap_auth directives function similarly to their
POP3 counterparts.

Chapter 3

[45]

SMTP service
The Simple Mail Transport Protocol is the Internet-standard protocol for
transferring mail messages from one server to another or from a client to a
server. Although authentication was not at first conceived for this protocol,
SMTP-AUTH is supported as an extension.

As you have seen, the logic of configuring the mail module is fairly straightforward.
This holds for SMTP proxying as well:

mail {
 auth_http localhost:9000/auth;

 smtp_capabilities PIPELINING 8BITMIME DSN;
 smtp_auth login cram-md5;

 server {
 listen 25;
 protocol smtp;
 proxy on;
 }
}

Our proxy server will only advertise the smtp_capabilities that we set,
otherwise it will only list which authentication mechanisms it accepts, because
the list of extensions is sent to the client when it sends the HELO/EHLO command.
This may be useful when proxying to multiple SMTP servers, each having different
capabilities. You could configure NGINX to list only the capabilities that all of these
servers have in common. It is important to set these to only the extensions that the
SMTP server itself supports.

Due to SMTP-AUTH being an extension to SMTP, and not necessarily supported
in every configuration, NGINX is capable of proxying an SMTP connection that
does no authentication whatsoever. In this case, only the HELO, MAIL FROM, and RCPT
TO parts of the protocol are available to the authentication service for determining
which upstream should be chosen for a given client connection. For this setup,
ensure that the smtp_auth directive is set to none.

Using the Mail Module

[46]

Using SSL/TLS
If your organization requires mail traffic to be encrypted, or if you yourself want
more security in your mail transfers, you can enable NGINX to use TLS to provide
POP3 over SSL, IMAP over SSL, or SMTP over SSL. To enable TLS support, either
set the starttls directive to on for STLS/STARTTLS support or set the ssl
directive to on for pure SSL/TLS support and configure the appropriate ssl_*
directives for your site:

mail {
 # allow STLS for POP3 and STARTTLS for IMAP and SMTP
 starttls on;
 # prefer the server's list of ciphers, so that we may determine
 security
 ssl_prefer_server_ciphers on;
 # use only these protocols
 ssl_protocols TLSv1 SSLv3;
 # use only high encryption cipher suites, excluding those
 # using anonymous DH and MD5, sorted by strength
 ssl_ciphers HIGH:!ADH:!MD5:@STRENGTH;
 # use a shared SSL session cache, so that all workers can
 # use the same cache
 ssl_session_cache shared:MAIL:10m;
 # certificate and key for this host
 ssl_certificate /usr/local/etc/nginx/mail.example.com.crt;
 ssl_certificate_key /usr/local/etc/nginx/mail.example.com.key;
}

See https://www.fastmail.fm/help/technology_ssl_vs_tls_starttls.html
for a description of the differences between a pure SSL/TLS connection
and upgrading a plain connection to an encrypted one with SSL/TLS.

Using OpenSSL to generate an SSL certificate
If you have never generated an SSL certificate before,
the following steps will help you create one:
Create a certificate request:
$ openssl req -newkey rsa:2048 -nodes -out mail.
example.com.csr -keyout mail.example.com.key

Chapter 3

[47]

This should generate the following output:
Generating a 2048 bit RSA private key

..

..

....+++

....................+++

writing new private key to 'mail.example.com.key'

You are about to be asked to enter information that will
be incorporated

into your certificate request.

What you are about to enter is what is called a
Distinguished Name or a DN.

There are quite a few fields but you can leave some
blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:CH

State or Province Name (full name) [Some-State]:Zurich

Locality Name (eg, city) []:ZH

Organization Name (eg, company) [Internet Widgits Pty
Ltd]:Example Company

Organizational Unit Name (eg, section) []:

Common Name (e.g. server FQDN or YOUR name) []:mail.
example.com

Email Address []:

Please enter the following 'extra' attributes

to be sent with your certificate request

A challenge password []:

An optional company name []:

You can get this Certificate Signing Request (mail.example.com.csr)
signed by a Certificate Authority such as Verisign or GoDaddy, or you
can sign it yourself:
$ openssl x509 -req -days 365 -in mail.example.com.csr
-signkey mail.example.com.key -out mail.example.com.crt

You will see the following response:
Signature ok

subject=/C=CH/ST=Zurich/L=ZH/O=Example Company/CN=mail.
example.com

Getting Private key

Using the Mail Module

[48]

The signed certificate is shown in the following screenshot.

Please note, though, that a self-signed certificate will generate an
error in a client that connects to your server. If you are deploying
this certificate on a production server, make sure that you get it
signed by a recognized authority.

Complete mail example
Mail services are often combined on one gateway. The following configuration will
enable NGINX to service POP3, IMAP, and SMTP traffic (as well as their encrypted
variants) from one authentication service, while offering clients the option to use
STLS/STARTTLS on unencrypted ports:

events {
 worker_connections 1024;
}

mail {
 server_name mail.example.com;
 auth_http localhost:9000/auth;

 proxy on;

 ssl_prefer_server_ciphers	 on;
 ssl_protocols TLSv1 SSLv3;
 ssl_ciphers HIGH:!ADH:!MD5:@STRENGTH;

Chapter 3

[49]

 ssl_session_cache	 shared:MAIL:10m;
 ssl_certificate 	 /usr/local/etc/nginx/mail.example.com.crt;
 ssl_certificate_key /usr/local/etc/nginx/mail.example.com.key;

 pop3_capabilities	 TOP USER;
 imap_capabilities	 IMAP4rev1 UIDPLUS QUOTA;
 smtp_capabilities	 PIPELINING 8BITMIME DSN;

 pop3_auth apop cram-md5;
 imap_auth login cram-md5;
 smtp_auth login cram-md5;

 server {
 listen 25;
 protocol smtp;
 timeout 120000;
 }
 server {
 listen 465;
 protocol smtp;
 ssl on;
 }
 server {
 listen 587;
 protocol smtp;
 starttls on;
 }
 server {
 listen 110;
 protocol pop3;
 starttls on;
 }
 server {
 listen 995;
 protocol pop3;
 ssl on;
 }
 server {
 listen 143;
 protocol imap;
 starttls on;
 }
 server {
 listen 993;
 protocol imap;
 ssl on;
 }
}

Using the Mail Module

[50]

As you can see, we declared the name of this server at the top of the mail context.
This is because we want each of our mail services to be addressed as mail.example.
com. Even if the actual hostname of the machine on which NGINX runs is different,
and each mail server has its own hostname, we want this proxy to be a single point
of reference for our users. This hostname will in turn be used wherever NGINX
needs to present its own name, for example, in the initial SMTP server greeting.

The timeout directive was used in the smtp server context in order to double its
default value because we knew this particular upstream SMTP relay host inserted an
artificial delay in order to dissuade spammers from trying to send mail via this server.

Authentication service
We have mentioned the authentication service quite a few times in the previous
section, but what exactly is the authentication service and what does it do? When
a user makes a POP3, IMAP, or SMTP request to NGINX, authenticating the
connection is one of the first steps. NGINX does not perform this authentication
itself, but rather makes a query to an authentication service that will fulfill the
request. NGINX then uses the response from the authentication service to make
the connection to the upstream mail server.

This authentication service may be written in any language. It need only conform
to the authentication protocol required by NGINX. The protocol is similar to HTTP,
so it will be fairly easy for us to write our own authentication service.

NGINX will send the following headers in its request to the authentication service:

•	 Host
•	 Auth-Method
•	 Auth-User
•	 Auth-Pass
•	 Auth-Salt
•	 Auth-Protocol
•	 Auth-Login-Attempt
•	 Client-IP
•	 Client-Host
•	 Auth-SMTP-Helo
•	 Auth-SMTP-From
•	 Auth-SMTP-To

Chapter 3

[51]

The meaning of each of these headers should be fairly self-explanatory, and not each
header will be present in every request. We will go over these as we write
our authentication service.

We choose Ruby as the language for this authentication service implementation.
If you do not currently have Ruby installed, don't worry about doing so now. Ruby
as a language is very clear to read, so just try to follow along with the commented
code below. Adapting it to your environment and running it is outside the scope
of this book. This example will give you a good starting point in writing your own
authentication service.

A good resource to help you get Ruby installed easily
is located at https://rvm.io.

Let us first examine the request part of the HTTP request/response dialogue.

We first collect the values we need from the headers NGINX sends:

 # the authentication mechanism
 meth = @env['HTTP_AUTH_METHOD']
 # the username (login)
 user = @env['HTTP_AUTH_USER']
 # the password, either in the clear or encrypted,
 depending on the
 # authentication mechanism used
 pass = @env['HTTP_AUTH_PASS']
 # need the salt to encrypt the cleartext password, used for some
 # authentication mechanisms, not in our example
 salt = @env['HTTP_AUTH_SALT']
 # this is the protocol being proxied
 proto = @env['HTTP_AUTH_PROTOCOL']
 # the number of attempts needs to be an integer
 attempt = @env['HTTP_AUTH_LOGIN_ATTEMPT'].to_i
 # not used in our implementation, but these are
 here for reference
 client = @env['HTTP_CLIENT_IP']
 host = @env['HTTP_CLIENT_HOST']

What are all these @'s about?
The @ symbol is used in Ruby to denote a class variable. We'll use
them in our example to make it easier to pass around variables. In
the preceding snippet, we are referencing the environment (@env)
as passed into the Rack request. Besides all the HTTP headers that
we need, the environment contains additional information relating
to how the service is being run.

Using the Mail Module

[52]

Now that we know how to handle each of the headers NGINX may send, we need
to do something with them and send NGINX a response. The following headers are
expected in the response from the authentication service:

•	 Auth-Status: In this header, anything but OK is an error
•	 Auth-Server: This is the IP address to which the connection is proxied
•	 Auth-Port: This is the port to which the connection is proxied
•	 Auth-User: This is the user that will be used to authenticate with the

mail server
•	 Auth-Pass: The plaintext password used for APOP
•	 Auth-Wait: How many seconds to wait before another authentication

attempt is made
•	 Auth-Error-Code: An alternative error code to return to the client

The three headers used most often are Auth-Status, Auth-Server, and Auth-Port.
The presence of these in a response is typically all that is needed for a successful
authentication session.

As we will see in the following snippet, additional headers may be used, depending
on the situation. The response itself consists of simply emitting the relevant headers
with the appropriate values substituted in.

We first check if there have been too many tries:

 # fail if more than the maximum login attempts are tried
 if attempt > @max_attempts
 @res["Auth-Status"] = "Maximum login attempts exceeded"
 return
 end

Then we return the appropriate headers and set with the values obtained from our
authentication mechanism:

 @res["Auth-Status"] = "OK"
 @res["Auth-Server"] = @mailhost
 # return the correct port for this protocol
 @res["Auth-Port"] = MailAuth::Port[proto]
 # if we're using APOP, we need to return the password in
 cleartext
 if meth == 'apop' && proto == 'pop3'
 @res["Auth-User"] = user
 @res["Auth-Pass"] = pass
 end

Chapter 3

[53]

If the authentication check has failed, we need to tell NGINX.

 # if authentication was unsuccessful, we return an appropriate
response
 @res["Auth-Status"] = "Invalid login or password"
 # and set the wait time in seconds before the client may make
 # another authentication attempt
 @res["Auth-Wait"] = "3"
 # we can also set the error code to be returned
 to the SMTP client
 @res["Auth-Error-Code"] = "535 5.7.8"

Not every header is required in the response, but as we can see, some are dependent
on the status of the authentication query and/or any error condition that may exist.

One interesting use of the Auth-User header is to return a different
username than the one given in the request. This can prove useful,
for example, when migrating from an older upstream mail server that
accepted a username without the domain to a newer upstream mail
server that requires the username to have a domain. NGINX will then
use this username when connecting to the upstream server.

The authentication database may take any form, from a flat text file, to an LDAP
directory, to a relational database. It does not have to necessarily be the same store
that your mail service uses to access this information, but should be in sync with
that store to prevent any errors due to stale data.

Our example authentication database is a simple hash for this example:

 @auths = { "test:1234" => '127.0.1.1' }

The mechanism used to verify a user is a simple hash lookup:

 # this simply returns the value looked-up by the 'user:pass' key
 if @auths.key?("#{user}:#{pass}")
 @mailhost = @auths["#{user}:#{pass}"]
 return true
 # if there is no such key, the method returns false
 else
 return false
 end

Using the Mail Module

[54]

Tying these three parts together, we have the complete authentication service:

#!/usr/bin/env rackup

This is a basic HTTP server, conforming to the authentication
protocol
required by NGINX's mail module.
#
require 'logger'
require 'rack'

module MailAuth

 # setup a protocol-to-port mapping
 Port = {
 'smtp' => '25',
 'pop3' => '110',
 'imap' => '143'
 }

 class Handler

 def initialize
 # setup logging, as a mail service
 @log = Logger.new("| logger -p mail.info")
 # replacing the normal timestamp by the service name and pid
 @log.datetime_format = "nginx_mail_proxy_auth pid: "
 # the "Auth-Server" header must be an IP address
 @mailhost = '127.0.0.1'
 # set a maximum number of login attempts
 @max_attempts = 3
 # our authentication 'database' will just be a fixed hash for
 # this example
 # it should be replaced by a method to connect to LDAP or a
 # database
 @auths = { "test:1234" => '127.0.1.1' }
 end

After the preceding setup and module initialization, we tell Rack which requests
we would like to have handled and define a get method to respond to requests
from NGINX.

 def call(env)
 # our headers are contained in the environment
 @env = env

Chapter 3

[55]

 # set up the request and response objects
 @req = Rack::Request.new(env)
 @res = Rack::Response.new
 # pass control to the method named after the HTTP verb
 # with which we're called
 self.send(@req.request_method.downcase)
 # come back here to finish the response when done
 @res.finish
 end

 def get
 # the authentication mechanism
 meth = @env['HTTP_AUTH_METHOD']
 # the username (login)
 user = @env['HTTP_AUTH_USER']
 # the password, either in the clear or encrypted, depending on
 # the authentication mechanism used
 pass = @env['HTTP_AUTH_PASS']
 # need the salt to encrypt the cleartext password, used for some
 # authentication mechanisms, not in our example
 salt = @env['HTTP_AUTH_SALT']
 # this is the protocol being proxied
 proto = @env['HTTP_AUTH_PROTOCOL']
 # the number of attempts needs to be an integer
 attempt = @env['HTTP_AUTH_LOGIN_ATTEMPT'].to_i
 # not used in our implementation, but these are here for
 reference
 client = @env['HTTP_CLIENT_IP']
 host = @env['HTTP_CLIENT_HOST']

 # fail if more than the maximum login attempts are tried
 if attempt > @max_attempts
 @res["Auth-Status"] = "Maximum login attempts exceeded"
 return
 end

 # for the special case where no authentication is done
 # on smtp transactions, the following is in nginx.conf:
 # smtp_auth none;
 # may want to setup a lookup table to steer certain senders
 # to particular SMTP servers
 if meth == 'none' && proto == 'smtp'
 helo = @env['HTTP_AUTH_SMTP_HELO']

Using the Mail Module

[56]

 # want to get just the address from these two here
 from = @env['HTTP_AUTH_SMTP_FROM'].split(/: /)[1]
 to = @env['HTTP_AUTH_SMTP_TO'].split(/: /)[1]
 @res["Auth-Status"] = "OK"
 @res["Auth-Server"] = @mailhost
 # return the correct port for this protocol
 @res["Auth-Port"] = MailAuth::Port[proto]
 @log.info("a mail from #{from} on #{helo} for #{to}")
 # try to authenticate using the headers provided
 elsif auth(user, pass)
 @res["Auth-Status"] = "OK"
 @res["Auth-Server"] = @mailhost
 # return the correct port for this protocol
 @res["Auth-Port"] = MailAuth::Port[proto]
 # if we're using APOP, we need to return the password in
 cleartext
 if meth == 'apop' && proto == 'pop3'
 @res["Auth-User"] = user
 @res["Auth-Pass"] = pass
 end
 @log.info("+ #{user} from #{client}")
 # the authentication attempt has failed
 else
 # if authentication was unsuccessful, we return an appropriate
 response
 @res["Auth-Status"] = "Invalid login or password"
 # and set the wait time in seconds before the client may make
 # another authentication attempt
 @res["Auth-Wait"] = "3"
 # we can also set the error code to be returned to the SMTP
 client
 @res["Auth-Error-Code"] = "535 5.7.8"
 @log.info("! #{user} from #{client}")
 end

 end

Chapter 3

[57]

The next section is declared private so that only this class may use the methods
declared afterwards. The auth method is the workhorse of the authentication service,
checking the username and password for validity. The method_missing method is
there to handle invalid methods, responding with a Not Found error message:

 private

 # our authentication method, adapt to fit your environment
 def auth(user, pass)
 # this simply returns the value looked-up by the 'user:pass' key
 if @auths.key?("#{user}:#{pass}")
 @mailhost = @auths["#{user}:#{pass}"]
 return @mailhost
 # if there is no such key, the method returns false
 else
 return false
 end
 end

 # just in case some other process tries to access the service
 # and sends something other than a GET
 def method_missing(env)
 @res.status = 404
 end

 end # class MailAuthHandler
end # module MailAuth

This last section sets up the server to run and routes the /auth URI to the
proper handler:

setup Rack middleware
use Rack::ShowStatus
map the /auth URI to our authentication handler
map "/auth" do
 run MailAuth::Handler.new
end

This listing may be saved as a file, nginx_mail_proxy_auth.ru, and called with a -p
<port> parameter to tell it on which port it should run. For more options and more
information about the Rack web server interface, visit http://rack.github.com.

Using the Mail Module

[58]

Combining with memcached
Depending on the frequency of clients accessing the mail services on your proxy
and how many resources are available to the authentication service, you may want
to introduce a caching layer into the setup. To this end, we will integrate memcached
as an in-memory store for authentication information.

NGINX can look up a key in memcached, but only in the context of a location in
the http module. Therefore, we will have to implement our own caching layer
outside of NGINX.

Authentication Request from NGINX

Is user/pass
in cache?

Retrieve value from cache
and return to NGINX

Store key/value
in memcached

No

Yes

As the flowchart shows, we will first check whether or not this username/password
combination is already in the cache. If not, we will query our authentication store for
the information and place the key/value pair into the cache. If it is, we can retrieve
this information directly from the cache.

Zimbra has created a memcache module for NGINX that takes care of
this directly within the context of NGINX. To date, though, this code
has not been integrated into the official NGINX sources.

Chapter 3

[59]

The following code will extend our original authentication service by implementing
a caching layer (admittedly, a little overkill for our implementation, but this is to
provide a basis for working with a networked authentication database):

gem install memcached (depends on libsasl2 and gettext libraries)
require 'memcached'

set this to the IP address/port where you have memcached running
@cache = Memcached.new("localhost:11211")

def get_cache_value(user, pass)
 resp = ''
 begin
 # first, let's see if our key is already in the cache
 resp = @cache.get("#{user}:#{pass}")
 rescue Memcached::NotFound
 # it's not in the cache, so let's call the auth method
 resp = auth(user, pass)
 # and now store the response in the cache, keyed on 'user:pass'
 @cache.set("#{user}:#{pass}",resp)
 end
 # explicitly returning the response to the caller
 return resp
end

In order to use this code, you will of course have to install and run memcached.
There should be a pre-built package for your operating system:

•	 Linux (deb-based)
sudo apt-get install memcached

•	 Linux (rpm-based)
sudo yum install memcached

•	 FreeBSD

sudo pkg_add -r memcached

Memcached is configured simply by passing parameters to the binary when running
it. There is no configuration file that is read directly, although your operating system
and/or packaging manager may provide a file that is parsed to make passing these
parameters easier.

Using the Mail Module

[60]

The most important parameters for memcached are as follows:

•	 -l: This parameter specifies the address(es) on which memcached will listen
(default is all). It is important to note that for the greatest security, memcached
shouldn't listen on an address that is reachable from the Internet because
there is no authentication.

•	 -m: This parameter specifies the amount of RAM to use for the cache
(in megabytes).

•	 -c: This parameter specifies the maximum number of simultaneous
connections (default is 1024).

•	 -p: This parameter specifies the port on which memcached will listen
(default is 11211).

Setting these to reasonable values will be all you need to do to get memcached
up and running.

Now, by substituting the elsif auth(user, pass) with elsif get_cache_
value(user, pass) in our nginx_mail_proxy_auth.ru service, you should
have an authentication service running with a caching layer, to help serve as
many requests as quickly as possible.

Interpreting log files
Log files provide some of the best clues as to what is going on when a system doesn't
act as expected. Depending on the verbosity level configured and whether or not
NGINX was compiled with debugging support (--enable-debug), the log files will
help you understand what is going on in a particular session.

Each line in the error log corresponds to a particular log level, configured using
the error_log directive. The different levels are debug, info, notice, warn, error,
crit, alert, and emerg, in order of increasing severity. Configuring a particular
level will include messages for all of the more severe levels above it. The default log
level is error.

In the context of the mail module, we would typically want to configure a log level
of info, so that we can get as much information about a particular session as possible
without having to configure debug logging. Debug logging in this case would be
useful only for following function entry points, or seeing what password was used
for a particular connection.

Chapter 3

[61]

Since mail is extremely dependent upon a correctly-functioning DNS,
many errors can be traced back to invalid DNS entries or expired
cache information. If you believe you may have a case that could be
explained by a name resolution error, you can get NGINX to tell you
what IP address a particular hostname is resolved to by configuring
debug logging. Unfortunately, this requires a recompile if your
nginx binary was not initially compiled with debugging support.

A typical proxy connection is logged as in the following example of a POP3 session.

First, the client establishes a connection to the proxy:

<timestamp> [info] <worker pid>#0: *<connection id> client <ip
address> connected to 0.0.0.0:110

Then, once the client has completed a successful login, a statement listing all relevant
connection information is logged:

<timestamp> [info] <worker pid>#0: *<connection id> client logged
in, client: <ip address>, server: 0.0.0.0:110, login: "<username>",
upstream: <upstream ip>:<upstream port>, [<client ip>:<client port>-
<local ip>:110] <=> [<local ip:<high port>-<upstream ip>:<upstream
port>]

You will notice that the section before the double arrows <=> relates to the client-to-
proxy side of the connection, whereas the section after the double arrows describes
the proxy-to-upstream part of the connection. This information is again repeated
once the session is terminated:

<timestamp> [info] <worker pid>#0: *<connection id> proxied session
done, client: <ip address>, server: 0.0.0.0:110, login: "<username>",
upstream: <upstream ip>:<upstream port>, [<client ip>:<client port>-
<local ip>:110] <=> [<local ip:<high port>-<upstream ip>:<upstream
port>]

In this way, we see which ports are in use on all sides of the connection, to help
debug any potential problems or to perhaps correlate the log entry with what may
appear in a firewall log.

Other log entries at the info level pertain to timeouts or invalid commands/
responses sent by either the client or upstream.

Entries at the warn log level are typically configuration errors:

<timestamp> [warn] <worker pid>#0: *<connection id> "starttls"
directive conflicts with "ssl on"

Using the Mail Module

[62]

Many errors that are reported at the error log level are indicative of problems
with the authentication service. You will notice the text while in http auth
state in the following entries. This shows where in the connection state the
error has occurred:

<timestamp> [error] <worker pid>#0: *<connection id> auth http server
127.0.0.1:9000 timed out while in http auth state, client: <client
ip>, server: 0.0.0.0:25
<timestamp> [error] <worker pid>#0: *<connection id> auth http server
127.0.0.1:9000 sent invalid response while in http auth state, client:
<client ip>, server: 0.0.0.0:25

If the authentication query is not successfully answered for any reason, the
connection is terminated. NGINX doesn't know to which upstream the client
should be proxied, and thereby closes the connection with an Internal server
error with the protocol-specific response code.

Depending on whether or not the username is present, the information will
appear in the log file. Here's an entry from an authenticated SMTP connection:

<timestamp> [error] <worker pid>#0: *<connection id> auth http server
127.0.0.1:9000 did not send server or port while in http auth state,
client: <client ip>, server: 0.0.0.0:25, login: "<login>"

Note the previous two entries are missing in the login information.

An alert log level event will indicate that NGINX was not able to set a parameter
as expected, but will otherwise operate normally.

Any log entry at the emerg level, however, will prevent NGINX from starting:
either the situation has to be corrected or the configuration must be changed.
If NGINX is already running, it will not restart any worker process until the
change has been made:

<timestamp> [error] <worker pid>#0: *<connection id> no "http_auth" is
defined for server in /opt/nginx/conf/nginx.conf:32

Here we need to define an authentication service using the http_auth directive.

Chapter 3

[63]

Operating system limits
You may run into a situation in which NGINX does not perform as you expect.
Either connections are being dropped or warning messages are printed in the log file.
This is when it is important to know what limits your operating system may place on
NGINX and how to tune them to get the best performance out of your server.

The area in which a mail proxy is most likely to run into problems is a connection
limit. To understand what this means, you first have to know how NGINX handles
client connections. The NGINX master process starts a number of workers, each of
which runs as a separate process. Each process is able to handle a fixed number of
connections, set by the worker_connections directive. For each proxied connection,
NGINX opens a new connection to the mail server. Each of these connections
requires a file descriptor and per mail server IP/port combination, a new TCP
port from the ephemeral port range (see the following explanation).

Depending on your operating system, the maximum number of open file descriptors
is tunable in a resource file or by sending a signal to a resource-management
daemon. You can see what the current value is set to by entering the following
command at the prompt:

ulimit -n

If by your calculations, this limit is too low, or you see a message in your error log
that worker_connections exceed open file resource limit, you'll know
that you need to increase this value. First tune the maximum number of open file
descriptors at the operating system level, either for just the user that NGINX runs as
or globally. Then, set the worker_rlimit_nofile directive to the new value in the
main context of the nginx.conf file. Sending nginx a configuration reload signal
(HUP) will then be enough to raise this limit without restarting the main process.

If you observe a connection limit due to exhaustion of available TCP ports, you will
need to increase the ephemeral port range. This is the range of TCP ports which your
operating system maintains for outgoing connections. It can default to as few as 5000,
but is typically set to a range of 16384 ports. A good description of how to increase
this range for various operating systems is provided at http://www.ncftp.com/
ncftpd/doc/misc/ephemeral_ports.html.

Using the Mail Module

[64]

Summary
In this chapter, we have seen how NGINX can be configured to proxy POP3, IMAP,
and SMTP connections. Each protocol may be configured separately, announcing
support for various capabilities in the upstream server. Encrypting mail traffic is
possible by using TLS and providing the server with an appropriate SSL certificate.

The authentication service is fundamental to the functioning of the mail module,
as no proxying can be done without it. We have detailed an example of such an
authentication service, outlining the requirements of both what is expected in the
request and how the response should be formed. With this as a foundation, you
should be able to write an authentication service that fits your environment.

Understanding how to interpret log files is one of the most useful skills a system
administrator can develop. NGINX gives fairly detailed log entries, although some
may be a bit cryptic. Knowing where to place the various entries within the context
of a single connection and seeing the state NGINX is in at that time is helpful to
deciphering the entry.

NGINX, like any other piece of software, runs within the context of an operating
system. It is therefore extremely useful to know how to increase any limits the OS
may place on NGINX. If it is not possible to increase the limits any further, then an
architectural solution must be found by either multiplying the number of servers
on which NGINX runs, or using some other technique to reduce the number of
connections a single instance must handle.

In the next chapter, we see how to configure NGINX to proxy HTTP connections.

NGINX as a Reverse Proxy
A reverse proxy is a web server that terminates connections with clients and
makes new ones to upstream servers on their behalf. An upstream server is
defined as a server that NGINX makes a connection with in order to fulfill the
client's request. These upstream servers can take various forms, and NGINX
can be configured differently to handle each of them.

NGINX configuration, which you have been learning about in detail, can be
difficult to understand at times. There are different directives that may be used
to fulfill similar configuration needs. Some of these options should not really be
used, as they can lead to unexpected results.

At times, an upstream server may not be able to fulfill a request. NGINX has the
capability to deliver an error message to the client, either directly from this upstream
server, from its local disk, or as a redirect to a page on a completely different server.

Due to the nature of a reverse proxy, the upstream server doesn't obtain information
directly from the client. Some of this information, such as the client's real IP address,
is important for debugging purposes, as well as tracking requests. This information
may be passed to the upstream server in the form of headers.

We will cover these topics, as well as an overview of some proxy module directives,
in the following sections:

•	 Introduction to reverse proxying
•	 Types of upstream servers
•	 Converting an "if"-fy configuration to a more modern interpretation
•	 Using error documents to handle upstream problems
•	 Determining the client's real IP address

NGINX as a Reverse Proxy

[66]

Introduction to reverse proxying
NGINX can serve as a reverse proxy by terminating requests from clients and
opening new ones to its upstream servers. On the way, the request can be split
up according to its URI, client parameters, or some other logic, in order to best
respond to the request from the client. Any part of the request's original URL
can be transformed on its way through the reverse proxy.

The most important directive when proxying to an upstream server is the proxy_
pass directive. This directive takes one parameter—the URL to which the request
should be transferred. Using proxy_pass with a URI part will replace the request_
uri with this part. For example, /uri in the following example will be transformed
to /newuri when the request is passed on to the upstream:

location /uri {

 proxy_pass http://localhost:8080/newuri;
}

There are two exceptions to this rule, however. First, if the location is defined
with a regular expression, no transformation of the URI occurs. In this example,
the URI /local will be passed directly to the upstream, and not be transformed
to /foreign as intended:

location ~ ^/local {

 proxy_pass http://localhost:8080/foreign;
}

The second exception is that if within the location a rewrite rule changes the URI,
and then NGINX uses this URI to process the request, no transformation occurs.
In this example, the URI passed to the upstream will be /index.php?page=<match>,
with <match> being whatever was captured in the parentheses, and not /index, as
indicated by the URI part of the proxy_pass directive:

location / {

 rewrite /(.*)$ /index.php?page=$1 break;

 proxy_pass http://localhost:8080/index;
}

The break flag to the rewrite directive is used here to immediately
stop all processing of rewrite module directives.

Chapter 4

[67]

In both of these cases, the URI part of the proxy_pass directive is not relevant,
so the configuration would be complete without it:

location ~ ^/local {

 proxy_pass http://localhost:8080;
}

location / {

 rewrite /(.*)$ /index.php?page=$1 break;

 proxy_pass http://localhost:8080;
}

The proxy module
The following table summarizes some of the commonly used directives in the
proxy module:

Table: Proxy module directives

Directive Explanation
proxy_connect_timeout The maximum amount of time NGINX

will wait for its connection to be
accepted when making a request to an
upstream server.

proxy_cookie_domain Replaces the domain attribute of the
Set-Cookie header from the upstream
server; the domain to be replaced can
either be a string or a regular expression,
or reference a variable.

proxy_cookie_path Replaces the path attribute of the Set-
Cookie header from the upstream
server; the path to be replaced can either
be a string or a regular expression, or
reference a variable.

proxy_headers_hash_bucket_size The maximum size of header names.
proxy_headers_hash_max_size The total size of headers received from

the upstream server.
proxy_hide_header A list of header fields that should not be

passed on to the client.

NGINX as a Reverse Proxy

[68]

Directive Explanation
proxy_http_version The HTTP protocol version used to

communicate with upstream servers
(use 1.1 for keepalive connections).

proxy_ignore_client_abort If set to on, NGINX will not abort the
connection to an upstream server if the
client aborts the connection.

proxy_ignore_headers Sets which headers can be disregarded
when processing the response from the
upstream server.

proxy_intercept_errors If enabled, NGINX will display a
configured error_page error instead of
the response directly from the upstream
server.

proxy_max_temp_file_size The maximum size of the overflow file,
written when the response doesn't fit
into memory buffers.

proxy_pass Specifies the upstream server to which the
request is passed, in the form of a URL.

proxy_pass_header Overrides the disabled headers set in
proxy_hide_header, allowing them
to be sent to the client.

proxy_pass_request_body Prevents sending the body of the request
to the upstream server if set to off.

proxy_pass_request_headers Prevents sending the headers of the
request to the upstream server if set to
off.

proxy_read_timeout Specifies the length of time that needs
to elapse between two successive read
operations from an upstream server,
before the connection is closed. Should
be set to a higher value if the upstream
server processes requests slowly.

proxy_redirect Rewrites the Location and Refresh
headers received from the upstream
servers; useful for working around
assumptions made by an application
framework.

Chapter 4

[69]

Directive Explanation
proxy_send_timeout The length of time that needs to elapse

between two successive write operations
to an upstream server, before the
connection is closed.

proxy_set_body The body of a request sent to an
upstream server may be altered by
setting this directive.

proxy_set_header Rewrites the contents of headers sent to
an upstream server; may also be used to
not send certain headers by setting its
value to the empty string.

proxy_temp_file_write_size Limits the amount of data buffered to
a temporary file at one time, so that
NGINX will not block too long on a
single request.

proxy_temp_path A directory where temporary files
may be buffered as they are proxied
from the upstream server, optionally
multi-level deep.

The following listing brings many of these directives together in a file that can be
included in the configuration within the same location as the proxy_pass directive.

Contents of proxy.conf:

proxy_redirect off;

proxy_set_header Host $host;

proxy_set_header X-Real-IP $remote_addr;

proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

client_max_body_size 10m;

client_body_buffer_size 128k;

NGINX as a Reverse Proxy

[70]

proxy_connect_timeout 30;

proxy_send_timeout 	 15;

proxy_read_timeout 	 15;

proxy_send_lowat 12000;

proxy_buffer_size 	 4k;

proxy_buffers 4 32k;

proxy_busy_buffers_size 	 64k;

proxy_temp_file_write_size 64k;

We are setting a number of common directives to values that we think would be
useful for reverse-proxying scenarios:

•	 The proxy_redirect directive has been set to off because there is no
need to rewrite the Location header in most situations.

•	 The Host header is set so the upstream server can map the request to a
virtual server or otherwise make use of the host portion of the URL the
user entered.

•	 The X-Real-IP and X-Forwarded-For headers serve similar purposes—
to relay the information about the connecting client's IP address to the
upstream server.

°° The $remote_addr variable used in the X-Real-IP header is the
IP address of the client as NGINX perceives it.

°° The $proxy_add_x_forwarded_for variable contains the contents
of the X-Forwarded-For header field from the client's request,
followed by the $remote_addr variable.

•	 The client_max_body_size directive, while not strictly a proxy module
directive, is mentioned here because of its relevance to proxy configurations.
If this value is set too low, uploaded files will not make it to the upstream
server. When setting this directive, keep in mind that files uploaded via a web
form will usually have a larger file size than that shown in the filesystem.

•	 The proxy_connect_timeout directive indicates how long NGINX will wait
when establishing initial contact with the upstream server.

Chapter 4

[71]

•	 The proxy_read_timeout and proxy_send_timeout directives define
how long NGINX will wait between successive operations with the
upstream server.

•	 The proxy_send_lowat directive is only effective on FreeBSD systems
and specifies the number of bytes the socket send buffer should hold
before passing the data on to the protocol.

•	 The proxy_buffer_size, proxy_buffers, and proxy_busy_buffers_size
directives will be discussed in detail in the next chapter. Suffice it to say
that these buffers control how quickly NGINX appears to respond to
user requests.

•	 The proxy_temp_file_write_size directive controls how long a worker
process blocks while spooling data: the higher the value, the longer the
process blocks.

These directives are included in a file as follows, and may be used multiple times
in the same configuration:

location / {

 include proxy.conf;

 proxy_pass http://localhost:8080;
}

If one of these directives should have a different value than what's in the include file,
then override it in that particular location.

location /uploads {

 include proxy.conf;

 client_max_body_size 	 500m;

 proxy_connect_timeout 	 75;

 proxy_send_timeout 	 90;

 proxy_read_timeout 	 90;

 proxy_pass http://localhost:8080;
}

The order is important here. If there is more than one occurrence of
a directive in a configuration file (or include), NGINX will take the
value of the directive defined last.

NGINX as a Reverse Proxy

[72]

Legacy servers with cookies
You may find yourself in a situation where you will need to place multiple legacy
applications behind one common endpoint. The legacy applications were written
for a case where they were the only servers talking directly with the client. They set
cookies from their own domain, and assumed that they would always be reachable
via the / URI. In placing a new endpoint in front of these servers, these assumptions
no longer hold true. The following configuration will rewrite the cookie domain and
path to match that of the new application endpoint:

server {

 server_name app.example.com;

 location /legacy1 {

 proxy_cookie_domain legacy1.example.com app.example.com;

 proxy_cookie_path $uri /legacy1$uri;

 proxy_redirect default;

 proxy_pass http://legacy1.example.com/;
 }

The value of the $uri variable already includes the beginning
slash (/), so it is not necessary to duplicate it here.

 location /legacy2 {

 proxy_cookie_domain legacy2.example.org app.example.com;

 proxy_cookie_path $uri /legacy2$uri;

 proxy_redirect default;

 proxy_pass http://legacy2.example.org/;

 }

 location / {

 proxy_pass http://localhost:8080;

 }
}

Chapter 4

[73]

The upstream module
Closely paired with the proxy module is the upstream module. The upstream
directive starts a new context, in which a group of upstream servers is defined.
These servers may be given different weights (the higher the weight, the greater
the number of connections NGINX will pass to that particular upstream server),
may be of different types (TCP versus UNIX domain), and may even be marked
as down for maintenance reasons.

The following table summarizes the directives valid within the upstream context:

Table: Upstream module directives

Directive Explanation
ip_hash Ensures the distribution of connecting clients evenly over

all servers by hashing the IP address, keying on its class-C
network.

keepalive The number of connections to upstream servers that
are cached per worker process. When used with HTTP
connections, proxy_http_version should be set to 1.1
and proxy_set_header to Connection "".

least_conn Activates the load-balancing algorithm where the server
with the least number of active connections is chosen for
the next new connection.

server Defines an address (domain name or IP address with an
optional TCP port, or path to a UNIX-domain socket)
and optional parameters for an upstream server. The
parameters are:

•	 weight: It sets the preference for one server over
another

•	 max_fails: It is the maximum number of
unsuccessful communication attempts to a server
within fail_timeout before the server is marked
as down

•	 fail_timeout: It is the length of time a server
has to respond to a request and the length of time
a server will be marked as down

•	 backup: It will only receive requests once the
other servers are down

•	 down: It marks a server as not able to
process requests

NGINX as a Reverse Proxy

[74]

Keepalive connections
The keepalive directive deserves special mention. NGINX will keep this number of
connections per worker open to an upstream server. This connection cache is useful
in situations where NGINX has to constantly maintain a certain number of open
connections to an upstream server. If the upstream server speaks HTTP, NGINX
can use the HTTP/1.1 Persistent Connections mechanism for maintaining these
open connections.

upstream apache {

 server 127.0.0.1:8080;

 keepalive 32;

}

location / {

 proxy_http_version	 1.1;

 proxy_set_header		 Connection "";

 proxy_pass http://apache;

}

Here, we've indicated that we'd like to hold open 32 connections to Apache running
on port 8080 of the localhost. NGINX need only negotiate the TCP handshake for
the initial 32 connections per worker, and will then keep these connections open by
not sending a Connection header with the close token. With proxy_http_version,
we specify that we'd like to speak HTTP/1.1 with the upstream server. We also clear
the contents of the Connection header with proxy_set_header, so that we are not
proxying the client connection properties directly.

If more than 32 connections are needed, NGINX will, of course, open them to
satisfy requests. After this peak has passed, NGINX will close the least recently
used connections, to bring the number back down to 32, as we indicated in the
keepalive directive.

This mechanism can also be used to proxy non-HTTP connections, as well. In the
following example, we show that NGINX maintains 64 connections to two instances
of memcached:

Chapter 4

[75]

upstream memcaches {

 server 10.0.100.10:11211;

 server 10.0.100.20:11211;

 keepalive 64;

}

If we were to switch load-balancing algorithms from the default round-robin to
either ip_hash or least_conn, we would need to specify this before using the
keepalive directive:

upstream apaches {

 least_conn;

 server 10.0.200.10:80;

 server 10.0.200.20:80;

 keepalive 32;

}

Load-balancing algorithms
The upstream module can select which upstream server to connect to in the next
step by using one of three load-balancing algorithms—round-robin, IP hash, or least
connections. The round-robin algorithm is selected by default, and doesn't need a
configuration directive to activate it. This algorithm selects the next server, based on
which server was selected previously, which server is next in the configuration block,
and what weight each server carries. The round-robin algorithm tries to ensure a fair
distribution of traffic, based on a concept of who's turn it is next.

The IP hash algorithm, activated by the ip_hash directive, instead takes the view that
certain IP addresses should always be mapped to the same upstream server. NGINX
does this by using the first three octets of an IPv4 address or the entire IPv6 address, as
a hashing key. The same pool of IP addresses are therefore always mapped to the same
upstream server. So, this mechanism isn't designed to ensure a fair distribution, but
rather a consistent mapping between the client and upstream server.

NGINX as a Reverse Proxy

[76]

The third load-balancing algorithm supported by the default upstream module,
least connections, is activated by the least_conn directive. This algorithm is
designed to distribute the load evenly among upstream servers, by selecting the
one with the fewest number of active connections. If the upstream servers do not
all have the same processing power, this can be indicated using the weight
parameter to the server directive. The algorithm will take into account the
differently-weighted servers when calculating the number of least connections.

Types of upstream servers
An upstream server is a server to which NGINX proxies a connection. This can be on
a different physical or virtual machine, but doesn't have to be. The upstream server
may be a daemon listening on a UNIX domain socket for connections on the local
machine or could be one of many on a different machine listening over TCP. It may
be an Apache server, with multiple modules to handle different kinds of requests,
or a Rack middleware server, providing an HTTP interface to Ruby applications.
NGINX can be configured to proxy to each of them.

Single upstream server
The Apache web server is used in common hosting scenarios to serve static files as
well as multiple types of interpreted files. The extensive documentation and how-to's
(found online) help users to get up-and-running quickly with their favorite CMS.
Unfortunately, the typical Apache configuration, due to resource limits, is not able to
handle many simultaneous requests. NGINX, though, is designed to handle this kind
of traffic and performs very well with little resource consumption. Since most CMSs
come pre-configured for Apache, integrating the use of .htaccess files for extended
configuration, the easiest way to take advantage of NGINX's strengths is for NGINX
to simply proxy connections to an Apache instance:

server {

 location / {

 proxy_pass http://localhost:8080;

 }

}

Chapter 4

[77]

This is the most basic proxy configuration possible. NGINX will terminate all client
connections, and then proxy all requests to the local host on TCP port 8080. We
assume here that Apache has been configured to listen on localhost:8080.

A configuration such as this is typically extended so that NGINX will serve any static
files directly, and then proxy the remaining requests to Apache:

server {

 location / {

 try_files $uri @apache;

 }

 location @apache {

 proxy_pass http://127.0.0.1:8080;

 }

}

The try_files directive (included in the http core module) does just what its name
implies—it tries files, in order, until it finds a match. So, in the preceding example,
NGINX will deliver any files it finds in its root that match the URI given by the
client. If it doesn't find any files, it will proxy the request to Apache for further
processing. We use a named location here to proxy the request after an unsuccessful
try to locate the file locally.

Multiple upstream servers
It is also possible to configure NGINX to pass the request to more than one upstream
server. This is done by declaring an upstream context, defining multiple servers, and
referencing the upstream in a proxy_pass directive:

upstream app {

 server 127.0.0.1:9000;

 server 127.0.0.1:9001;

 server 127.0.0.1:9002;

}

NGINX as a Reverse Proxy

[78]

server {

 location / {

 proxy_pass http://app;

 }

}

Using this configuration, NGINX will pass consecutive requests in a round-
robin fashion to the three upstream servers. This is useful when an application
can handle only one request at a time, and you'd like NGINX to handle the
client communication so that none of the application servers get overloaded.
The configuration is illustrated in the following diagram:

Other load-balancing algorithms are available, as detailed in the Load-balancing
algorithms section earlier in this chapter. Which one should be used in a particular
configuration depends on the situation.

Chapter 4

[79]

If a client should always get the same upstream server, to effect a poor-man's session-
stickiness, the ip_hash directive should be used. When the distribution of requests
leads to widely varying response times per request, the least_conn algorithm
should be selected. The default round-robin algorithm is good for a general case
where no special consideration of either the client or upstream server is required.

Non-HTTP upstream servers
So far, we've focused on communicating with upstream servers over HTTP. For this,
we use the proxy_pass directive. As hinted at earlier in this chapter, in the Keepalive
connections section, NGINX can proxy requests to a number of different kinds of
upstream servers. Each has its corresponding *_pass directive.

Memcached upstream servers
The memcached NGINX module (enabled by default) is responsible for communicating
with a memcached daemon. As such, there is no direct communication between the
client and the memcached daemon; that is, NGINX does not act as a reverse-proxy in
this sense. The memcached module enables NGINX to speak the memcached protocol,
so that a key lookup can be done before a request is passed to an application server:

upstream memcaches {

 server 10.0.100.10:11211;

 server 10.0.100.20:11211;

}

server {

 location / {

 set	 $memcached_key "$uri?$args";

 memcached_pass	 memcaches;

 error_page 404 = @appserver;

 }

NGINX as a Reverse Proxy

[80]

 location @appserver {

 proxy_pass http://127.0.0.1:8080;

 }

}

The memcached_pass directive uses the $memcached_key variable to make the key
lookup. If there is no corresponding value (error_page 404), we pass the request
on to localhost, where there is presumably a server running that will handle this
request and insert a key/value pair into the memcached instance.

FastCGI upstream servers
Using a FastCGI server is a popular way to run PHP applications behind an NGINX
server. The fastcgi module is compiled in by default, and is activated with the
fastcgi_pass directive. This enables NGINX to speak the FastCGI protocol with one
or more upstream servers. We define a set of FastCGI upstream servers as follows:

upstream fastcgis {

 server 10.0.200.10:9000;

 server 10.0.200.20:9000;

 server 10.0.200.30:9000;
}

And pass connections to them from the root location:

location / {

 fastcgi_pass fastcgis;
}

This is a very minimalist configuration to illustrate the basics of using FastCGI.
The fastcgi module contains a number of directives and configuration possibilities,
which we will discuss in Chapter 6, The NGINX HTTP Server.

SCGI upstream servers
NGINX can also speak the SCGI protocol by using its built-in scgi module.
The principle is the same as for the fastcgi module. NGINX communicates
with an upstream server indicated with the scgi_pass directive.

Chapter 4

[81]

uWSGI upstream servers
The uWSGI protocol has been very popular with Python developers. NGINX provides
support for connecting to a Python-based upstream server through its uwsgi
module. The configuration is similar to the fastcgi module, using the uwsgi_pass
directive instead to indicate an upstream server. An example configuration will be
shown in Chapter 6, The NGINX HTTP Server.

Converting an "if"-fy configuration to a
more modern interpretation
Using the if directive within a location is really only considered valid for certain
cases. It may be used in combination with a return and with a rewrite with a last
or break flag, but should generally be avoided in other situations. This is due in
part to the fact that it can produce some very unexpected results. Consider the
following example:

location / {

 try_files /img /static @imageserver;

 if ($request_uri ~ "/blog") {

 proxy_pass http://127.0.0.1:9000;

 break;

 }

 if ($request_uri ~ "/tickets") {

 proxy_pass http://tickets.example.com;

 break;
 }

}

location @imageserver {

 proxy_pass http://127.0.0.1:8080;
}

NGINX as a Reverse Proxy

[82]

Here, we're trying to determine which upstream to pass the request to, based on the
value of the $request_uri variable. This seems like a very reasonable configuration
at first glance, because it works for our simple test cases. But the images will neither
be served from the /img filesystem location, the /static filesystem location, nor
from the @imageserver named location. try_files simply doesn't work when an
if directive is present in the same location. if creates an implicit location with its
own content handler; in this case, the proxy module. So the outer content handler,
where try_files is registered, won't ever get invoked. There is a way to write this
configuration differently to make it do what we want.

Let's think about our request as NGINX processes it. After having found a matching
IP and port, it first selects a virtual host (server) based on the Host header. Then, it
scans all locations under this server, looking for a matching URI. So, we see that the
better way to configure a selector based on the URI is in fact by defining multiple
locations, as shown in the following example:

location /blog {

 proxy_pass http://127.0.0.1:9000;

}

location /tickets {

 proxy_pass http://tickets.example.com;

}

location /img {

 try_files /static @imageserver;

}

location / {

 root /static;

}

location @imageserver {

Chapter 4

[83]

 proxy_pass http://127.0.0.1:8080;
}

This configuration can be illustrated by the following diagram:

Another example of an "if"-fy configuration is the following:

server {

 server_name marketing.example.com communication.example.com
 marketing.example.org communication.example.org marketing.example.
 net communication.example.net;

 if ($host ~* (marketing\.example\.com|marketing\.example\.
 org|marketing\.example\.net)) {

 rewrite ^/$ http://www.example.com/marketing/application.do
redirect;

 }

 if ($host ~* (communication\.example\.com|communication\.example\.
 org|communication\.example\.net)) {

 rewrite ^/$ http://www.example.com/comms/index.cgi redirect;

NGINX as a Reverse Proxy

[84]

 }

 if ($host ~* (www\.example\.org|www\.example\.net)) {

 rewrite ^/(.*)$ http://www.example.com/$1 redirect;

 }

}

Here, we have a number of if directives matching the Host header (or, if not
present, server_name). After each if, the URI is rewritten to lead directly to
the correct application component. Besides being terribly inefficient due to the
processing required to match each regular expression for every URI, it breaks
our "no ifs within a location" rule.

This type of configuration is better rewritten as a series of separate server contexts,
in which the URL is rewritten to the application component:

server {

 server_name marketing.example.com marketing.example.org marketing.
 example.net;

 rewrite ^ http://www.example.com/marketing/application.do permanent;

}

server {

 server_name communication.example.com communication.example.org
 communication.example.net;

 rewrite ^ http://www.example.com/comms/index.cgi permanent;

}

server {

 server_name www.example.org www.example.net;

 rewrite ^ http://www.example.com$request_uri permanent;
}

Chapter 4

[85]

In each block, we have placed only those server_name that are relevant to the
respective rewrite, so that no if is needed. In each rewrite rule, we have replaced
the redirect flag with the permanent flag to indicate that this is a full URL that
the browser should remember and automatically use the next time the domain is
requested. In the last rewrite rule, we have also replaced the match (^/(.*)$) with a
readily-available variable, $request_uri, which contains the same information but
saves the trouble of matching the regular expression and saving the capture variable.

Using error documents to handle
upstream problems
There are situations in which the upstream server cannot respond to a request. In
these cases, NGINX can be configured to supply a document from its local disk:

server {

 error_page 500 502 503 504 /50x.html;

 location = /50x.html {

 root share/examples/nginx/html;

 }

}

Or from an external site:

server {

 error_page 500 http://www.example.com/maintenance.html;

}

When proxying to a set of upstream servers, you may want to define an extra
upstream as being a "fallback" server, to handle requests when the others cannot.
This is useful in scenarios when the fallback server is able to deliver a customized
response based on the requested URI:

upstream app {

 server 127.0.0.1:9000;

 server 127.0.0.1:9001;

NGINX as a Reverse Proxy

[86]

 server 127.0.0.1:9002;

}

server {

 location / {

 error_page 500 502 503 504 = @fallback;

 proxy_pass http://app;
 }

 location @fallback {

 proxy_pass http://127.0.0.1:8080;

 }
}

The "=" notation shown in the preceding error_page line is used to
indicate that we want to return the status code resulting from the last
parameter; in this case, the @fallback location.

These examples cover cases in which the error code was 500 or greater.
NGINX can also supply an error_page for error codes 400 or greater, when the
proxy_intercept_errors directive is set to on, as in the following example:

server {

 proxy_intercept_errors on;

 error_page 400 403 404 /40x.html;

 location = /40x.html {

 root share/examples/nginx/html;

 }
}

Chapter 4

[87]

When HTTP error code 401 is configured to be served from an error_
page, the authentication will not complete. You may want to do this in
situations when the authentication backend is offline, for maintenance
or other reasons, but you should otherwise avoid them.

Determining the client's real IP address
When using a proxy server, the clients don't have a direct connection to the upstream
servers. The upstream servers, therefore, aren't able to get information directly from
those clients. Any information, such as the client's IP address, would need to be
passed via headers. NGINX provides this with the proxy_set_header directive:

proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

The client's IP address will then be available in both the X-Real-IP and
X-Forwarded-For headers. The second form takes a client request header into
account. If present, the IP address of the request will be added to the X-Forwarded-
For header from the client, separated by a comma. Depending on your upstream
server configuration, you will need one or the other of these. Configuring Apache,
for example, to use the X-Forwarded-For header for the client's IP address in its logs
is done using the %{<header-name>}i formatting option.

The following example shows how to change the default 'combined' Apache
log format:

LogFormat "%{X-Forwarded-For}i %l %u %t \"%r\" %>s %b \"%{Referer}i\"
\"%{User-Agent}i\"" combined

If your upstream server, on the other hand, requires a non-standard header such as
Client-IP, then this can easily be configured with the following:

proxy_set_header Client-IP $remote_addr;

Other information, such as the Host header, can be passed to the upstream servers
in the same manner:

proxy_set_header Host $host;

NGINX as a Reverse Proxy

[88]

Summary
We have seen how NGINX can be used as a reverse proxy. Its efficient connection-
handling model is ideal for interfacing directly with clients. After having terminated
requests, NGINX can then open new ones to upstream servers, taking into account
the strengths and weaknesses of each upstream server. Using if inside a location
is only considered valid under certain situations. By thinking about how NGINX
actually handles a request, we can develop a configuration that is more suited to
what we want to achieve. If NGINX cannot reach an upstream server for any reason,
it can serve another page instead. As NGINX terminates the clients' requests, the
upstream servers can obtain information about the client only via headers passed
in NGINX's proxied request. These concepts will help you design an ideal NGINX
configuration to match your needs.

Coming up in the next chapter, we will explore more advanced
reverse-proxy techniques.

Reverse Proxy
Advanced Topics

As we saw in the previous chapter, a reverse proxy makes connections to upstream
servers on behalf of clients. These upstream servers therefore have no direct connection
to the client. This is for several different reasons, such as security, scalability,
and performance.

A reverse proxy server aids security because if an attacker were to try to get onto
the upstream server directly, he would have to first find a way to get onto the
reverse proxy. Connections to the client can be encrypted by running them over
HTTPS. These SSL connections may be terminated on the reverse proxy, when the
upstream server cannot or should not provide this functionality itself. NGINX can
act as an SSL terminator as well as provide additional access lists and restrictions
based on various client attributes.

Scalability can be achieved by utilizing a reverse proxy to make parallel connections to
multiple upstream servers, enabling them to act as if they were one. If the application
requires more processing power, additional upstream servers can be added to the pool
served by a single reverse proxy.

Performance of an application may be enhanced through the use of a reverse proxy
in several ways. The reverse proxy can cache and compress content before delivering
it out to the client. NGINX as a reverse proxy can handle more concurrent client
connections than a typical application server. Certain architectures configure NGINX
to serve static content from a local disk cache, passing only dynamic requests to
the upstream server to handle. Clients can keep their connections to NGINX alive,
while NGINX terminates the ones to the upstream servers immediately, thus freeing
resources on those upstream servers.

Reverse Proxy Advanced Topics

[90]

We will discuss these topics, as well as the remaining proxy module directives,
in the following sections:

•	 Security through separation
•	 Isolating application components for scalability
•	 Reverse proxy performance tuning

Security through separation
We can achieve a measure of security by separating out the point to which clients
connect to an application. This is one of the main reasons for using a reverse proxy in
an architecture. The client connects directly only to the machine running the reverse
proxy. This machine should therefore be secured well enough that an attacker cannot
find a point of entry.

Security is such a large topic that we will touch only briefly on the main points
to observe:

•	 Set up a firewall in front of the reverse proxy that only allows public access
to port 80 (and 443, if HTTPS connections should also be made)

•	 Ensure that NGINX is running as an unprivileged user (typically www,
webservd, or www-data, depending on the operating system)

•	 Encrypt traffic where you can to prevent eavesdropping

We will spend some time on this last point in the next section.

Encrypting traffic with SSL
NGINX is often used to terminate SSL connections, either because the upstream
server is not capable of using SSL or to offload the processing requirements of SSL
connections. This requires that your nginx binary was compiled with SSL support
(--with_http_ssl_module) and that you install an SSL certificate and key.

For details about how to generate your own SSL certificate,
please see the Using OpenSSL to generate an SSL certificate
tip in Chapter 3, Using the Mail Module.

Chapter 5

[91]

The following is an example configuration for enabling HTTPS connections to
www.example.com:

server {

 listen 443 default ssl;

 server_name www.example.com;

 ssl_prefer_server_ciphers on;

 ssl_protocols TLSv1 SSLv3;

 ssl_ciphers RC4:HIGH:!aNULL:!MD5:@STRENGTH;

 ssl_session_cache shared:WEB:10m;

 ssl_certificate /usr/local/etc/nginx/www.example.com.crt;

 ssl_certificate_key /usr/local/etc/nginx/www.example.com.key;

 location / {

 proxy_set_header X-FORWARDED-PROTO https;

 proxy_pass http://upstream;

 }

}

In the preceding example, we first activate the ssl module by using the ssl
parameter to the listen directive. Then, we specify that we wish the server's ciphers
to be chosen over the client's list, as we can configure the server to use the ciphers
that have proven to be most secure. This prevents clients from negotiating a cipher
that has been deprecated. The ssl_session_cache directive is set to shared so that
all worker processes can benefit from the expensive SSL negotiation that has already
been done once per client. Multiple virtual servers can use the same ssl_session_
cache directive if they are all configured with the same name, or if this directive is
specified in the http context. The second and third parts of the value are the name of
the cache and its size, respectively. Then it is just a matter of specifying the certificate
and key for this host. Note that the permissions of this key file should be set such that
only the master process may read it. We set the header X-FORWARDED-PROTO to the
value https so that the application running on the upstream server can recognize
the fact that the original request used HTTPS.

Reverse Proxy Advanced Topics

[92]

SSL ciphers
The preceding ciphers were chosen based on NGINX's default,
which excludes those that offer no authentication (aNULL) as
well as those using MD5. The RC4 is placed at the beginning
so that ciphers not susceptible to the BEAST attack described
in CVE-2011-3389 are preferred. The @STRENGTH string at
the end is present to sort the list of ciphers in order of the
encryption algorithm key length.

We have just encrypted the traffic passing between the client and the reverse
proxy. It is also possible to encrypt the traffic between the reverse proxy and
the upstream server:

server {
 …

 proxy_pass https://upstream;

}

This is usually only reserved for those architectures in which even the internal
network over which such a connection flows is considered insecure.

Authenticating clients using SSL
Some applications use information from the SSL certificate the client presents,
but this information is not directly available in a reverse proxy architecture.
To pass this information along to the application, you can instruct NGINX to
set an additional header:

location /ssl {

 proxy_set_header ssl_client_cert $ssl_client_cert;

 proxy_pass http://upstream;

}

The $ssl_client_cert variable contains the client's SSL certificate, in PEM format.
We pass this on to the upstream server in a header of the same name. The application
itself is then responsible for using this information in whatever way is appropriate.

Chapter 5

[93]

Instead of passing the whole client certificate to the upstream server, NGINX can do
some work ahead of time to see if the client is even valid. A valid client SSL certificate
is one which has been signed by a recognized Certificate Authority, has a validity date
in the future, and has not been revoked:

server {
 …

 ssl_client_certificate /usr/local/etc/nginx/ClientCertCAs.pem;

 ssl_crl /usr/local/etc/nginx/ClientCertCRLs.crl;

 ssl_verify_client on;

 ssl_verify_depth 3;

 error_page 495 = @noverify;

 error_page 496 = @nocert;

 location @noverify {

 proxy_pass http://insecure?status=notverified;

 }

 location @nocert {

 proxy_pass http://insecure?status=nocert;

 }

 location / {

 if ($ssl_client_verify = FAILED) {

 return 495;

 }

 proxy_pass http://secured;

 }

}

Reverse Proxy Advanced Topics

[94]

The preceding configuration is constructed out of the following parts to achieve the
objective of having NGINX validate client SSL certificates before passing the request
on to the upstream server:

•	 The argument to the ssl_client_certificate directive specifies the path
to the PEM-encoded list of root CA certificates that will be considered valid
signers of client certificates.

•	 The ssl_crl argument indicates the path to a certificate revocation list, issued
by the Certificate Authority responsible for signing client certificates. This CRL
needs to be downloaded separately and periodically refreshed.

•	 The ssl_verify_client directive states that we want NGINX to check the
validity of SSL certificates presented by clients.

•	 The ssl_verify_depth directive is responsible for how many signers will
be checked before declaring the certificate invalid. SSL certificates may
be signed by one or more intermediate CAs. Either an intermediate CA
certificate or the root CA that signed it needs to be in our ssl_client_
certificate path for NGINX to consider the client certificate valid.

•	 If some sort of error occurred during client certificate validation, NGINX
will return the non-standard error code 495. We have defined an error_page
that matches this code and redirects the request to a named location, to be
handled by a separate proxied server. We also include a check for the value
of $ssl_client_verify within the proxy_pass location, so that an invalid
certificate will also return this code.

•	 If a certificate is not valid, NGINX will return the non-standard error
code 496, which we capture as well with an error_page directive.
The error_page directive that we define points to a named location,
which proxies the request to a separate error handler.

Only when the client has presented a valid SSL certificate will NGINX pass the
request on to the upstream server, secured. By doing so, we have ensured that
only authenticated users actually get to place requests to the upstream server.
This is an important security feature of a reverse proxy.

NGINX from Version 1.3.7 provides the capability to use OCSP
responders to verify client SSL certificates. See the ssl_stapling*
and ssl_trusted_certificate directives in Appendix A, Directive
Reference, for a description of how to activate this functionality.

Chapter 5

[95]

If the application still needs some information present in the certificate, for example,
to authorize a user, NGINX can deliver this information in a header:

location / {

 proxy_set_header X-HTTP-AUTH $ssl_client_s_dn;

 proxy_pass http://secured;

}

Now, our application running on the upstream server secured can use the value
of the X-HTTP-AUTH header to authorize the client for access to different areas.
The variable $ssl_client_s_dn contains the subject DN of the client certificate.
The application can use this information to match the user against a database
or make a look up in a directory.

Blocking traffic based on originating IP
address
As client connections terminate on the reverse proxy, it is possible to limit clients based
on IP address. This is useful in cases of abuse where a number of invalid connections
originate from a certain set of IP addresses. As in Perl, there is more than one way to
do it. We will discuss the GeoIP module here as a possible solution.

Your nginx binary will need to have been compiled with the GeoIP module activated
(--with-http_geoip_module) and the MaxMind GeoIP library installed on your
system. Specify the location of the precompiled database file with the geoip_country
directive in the http context. This provides the most efficient way to block/allow IP
addresses by country code:

geoip_country /usr/local/etc/geo/GeoIP.dat;

If a client's connection comes from an IP address listed in this database, the value
of the $geoip_country_code variable will be set to the ISO two-letter code for the
originating country.

We will use the data provided by the GeoIP module together with the closely-
named geo module, as well. The geo module provides a very basic interface for
setting variables based on the IP address of a client connection. It sets up a named
context within which the first parameter is the IP address to match and the second
is the value that match should obtain. By combining these two modules, we can
block IP addresses based on the country of origin, while allowing access from a
set of specific IP addresses.

Reverse Proxy Advanced Topics

[96]

In our scenario, we are providing a service to Swiss banks. We want the public parts
of the site to be indexed by Google, but are for now still restricting access to Swiss
IPs. We also want a local watchdog service to be able to access the site to ensure
it is still responding properly. We define a variable $exclusions, which will have
the value 0 by default. If any of our criteria are matched, the value will be set to 1,
which we will use to control access to the site:

http {

 # the path to the GeoIP database

 geoip_country /usr/local/etc/geo/GeoIP.dat;

 # we define the variable $exclusions and list all IP addresses
 # allowed
 # access by setting the value to "1"

 geo $exclusions {

 default 0;
 127.0.0.1 1;
 216.239.32.0/19 1;
 64.233.160.0/19 1;
 66.249.80.0/20 1;
 72.14.192.0/18 1;
 209.85.128.0/17 1;
 66.102.0.0/20 1;
 74.125.0.0/16 1;
 64.18.0.0/20 1;
 207.126.144.0/20 1;
 173.194.0.0/16 1;

 }

 server {

 # the country code we want to allow is "CH", for Switzerland
 if ($geoip_country_code = "CH") {

 set $exclusions 1;

 }

Chapter 5

[97]

 location / {

 # any IP's not from Switzerland or in our list above
 # receive the
 # default value of "0" and are given the Forbidden HTTP
 # code
 if ($exclusions = "0") {

 return 403;

 }

 # anybody else has made it this far and is allowed access
 # to the
 # upstream server
 proxy_pass http://upstream;

 }

 }

}

This is just one way of solving the problem of blocking access to a site based on the
client's IP address. Other solutions involve saving the IP address of the client in a
key-value store, updating a counter for each request, and blocking access if there
have been too many requests within a certain time period.

Isolating application components for
scalability
Scaling applications can be described by moving in two dimensions, up and out.
Scaling up refers to adding more resources to a machine, growing its pool of available
resources to meet client demand. Scaling out means adding more machines to a pool
of available responders, so that no one machine gets tied up handling the majority
of clients. Whether these machines are virtualized instances running in the cloud or
physical machines sitting in a datacenter, it is often more cost-effective to scale out
rather than up. This is where NGINX fits in handily as a reverse proxy.

Reverse Proxy Advanced Topics

[98]

Due to its very low resource usage, NGINX acts ideally as the broker in a client-
application relationship. NGINX handles the connection to the client, able to process
multiple requests simultaneously. Depending on the configuration, NGINX will
either deliver a file from its local cache or pass the request on to an upstream server
for further processing. The upstream server can be any type of server that speaks
the HTTP protocol. More client connections can be handled than if an upstream
server were to respond directly:

upstream app {

 server 10.0.40.10;

 server 10.0.40.20;

 server 10.0.40.30;

}

Over time, the initial set of upstream servers may need to be expanded. The traffic to
the site has increased so much, that the current set can't respond in a timely enough
manner. By using NGINX as the reverse proxy, this situation can easily be remedied
by adding more upstream servers.

Adding more upstream servers can be done as follows:

upstream app {

 server 10.0.40.10;

 server 10.0.40.20;

Chapter 5

[99]

 server 10.0.40.30;

 server 10.0.40.40;

 server 10.0.40.50;

 server 10.0.40.60;

}

Perhaps the time has come for the application to be rewritten, or to be migrated
onto a server with a different application stack. Before moving the whole application
over, one server can be brought into the active pool for testing under real load with
real clients. This server could be given fewer requests to help minimize any negative
reactions should problems arise.

This is done with the following configuration:

upstream app {

 server 10.0.40.10 weight 10;

 server 10.0.40.20 weight 10;

 server 10.0.40.30 weight 10;

 server 10.0.40.100 weight 2;

}

Reverse Proxy Advanced Topics

[100]

Alternatively, perhaps it is time for scheduled maintenance on a particular upstream
server, so it should not receive any new requests. By marking that server as down in
the configuration, we can proceed with that maintenance work:

The following configuration describes how to mark the server down:

upstream app {

 server 10.0.40.10;

 server 10.0.40.20;

 server 10.0.40.30 down;

}

Unresponsive upstream servers should be handled quickly. Depending on the
application, the timeout directives can be set aggressively low:

location / {

 proxy_connect_timeout 5;

 proxy_read_timeout 10;

 proxy_send_timeout 10;

}

Chapter 5

[101]

Be careful, though, that the upstream servers can usually respond within the time
set by the timeout, or NGINX may deliver a 504 Gateway Timeout Error when no
upstream servers respond within this time.

Reverse proxy performance tuning
NGINX can be tuned in a number of ways to get the most out of the application
for which it is acting as a reverse proxy. By buffering, caching, and compressing,
NGINX can be configured to make the client's experience as snappy as possible.

Buffering
Buffering can be described with the help of the following figure:

The most important factor to consider performance-wise when proxying is buffering.
NGINX, by default, will try to read as much as possible from the upstream server as
fast as possible before returning that response to the client. It will buffer the response
locally so that it can deliver it to the client all at once. If any part of the request from
the client or the response from the upstream server is written out to disk, performance
might drop. This is a trade-off between RAM and disk. So it is very important to
consider the following directives when configuring NGINX to act as a reverse proxy:

Table: Proxy module buffering directives

Directive Explanation
proxy_buffer_size The size of the buffer used for the first part

of the response from the upstream server,
in which the response headers are found.

Reverse Proxy Advanced Topics

[102]

Directive Explanation
proxy_buffering Activates buffering of proxied content;

when switched off, responses are sent
synchronously to the client as soon as
they are received, provided the proxy_
max_temp_file_size parameter is set
to 0. Setting this to 0 and turning proxy_
buffering to on ensures that there is no
disk usage during proxying, while still
enabling buffering.

proxy_buffers The number and size of buffers used for
responses from upstream servers.

proxy_busy_buffers_size The total size of buffer space allocated to
sending the response to the client while still
being read from the upstream server. This is
typically set to two proxy_buffers.

In addition to the preceding directives, the upstream server may influence buffering
by setting the X-Accel-Buffering header. The default value of this header is yes,
meaning that responses will be buffered. Setting the value to no is useful for Comet
and HTTP streaming applications, where it is important to not buffer the response.

By measuring the average request and response sizes going through the reverse
proxy, the proxy buffer sizes can be tuned optimally. Each buffer directive counts
per connection, in addition to an OS-dependent per-connection overhead, so we
can calculate how many simultaneous client connections we can support with the
amount of memory on a system.

The default values for the proxy_buffers directive (8 4k or 8 8k, depending on
the operating system), enable a large number of simultaneous connections. Let's
figure out just how many connections that is. On a typical 1 GB machine, where
only NGINX runs, most of the memory can be dedicated to its use. Some will be
used by the operating system for the filesystem cache and other needs, so let's be
conservative and estimate that NGINX would have up to 768 MB.

Eight 4 KB buffers is 32,768 bytes (8 * 4 * 1024) per active connection.

The 768 MB we allocated to NGINX is 805,306,368 bytes (768 * 1024 * 1024).

Dividing the two, we come up with 805306368 / 32768 = 24576 active connections.

Chapter 5

[103]

So, NGINX would be able to handle just under 25,000 simultaneous, active connections
in its default configuration, assuming that these buffers will be constantly filled. There
are a number of other factors that come into play, such as cached content and idle
connections, but this gives us a good ballpark estimate to work with.

Now, if we take the following numbers as our average request and response sizes,
we see that eight 4 KB buffers just aren't enough to process a typical request. We
want NGINX to buffer as much of the response as possible so that the user receives
it all at once, provided the user is on a fast link.

•	 Average request size: 800 bytes
•	 Average response size: 900 KB

The tuning examples in the rest of this section will use more
memory at the expense of concurrent, active connections.
They are optimizations, and shouldn't be understood as
recommendations for a general configuration. NGINX is
already optimally tuned to provide for many, slow clients
and a few, fast upstream servers. As the trend in computing
is more towards mobile users, the client connection is
considerably slower than a broadband user's connection.
So, it's important to know your users and how they will be
connecting, before embarking on any optimizations.

We would adjust our buffer sizes accordingly so that the whole response would fit
in the buffers:

http {

 proxy_buffers 30 32k;

}

This means, of course, that we would be able to handle far fewer concurrent users.

Thirty 32 KB buffers is 983,040 bytes (30 * 32 * 1024) per connection.

The 768 MB we allocated to NGINX is 805,306,368 bytes (768 * 1024 * 1024).

Dividing the two, we come up with 805306368 / 983040 = 819.2 active connections.

Reverse Proxy Advanced Topics

[104]

That isn't too many concurrent connections at all. Let's adjust the number of buffers
down, and ensure that NGINX will start transferring something to the client while
the rest of the response is read into the remaining proxy_buffers space:

http {

 proxy_buffers 4 32k;

 proxy_busy_buffers_size 64k;

}

Four 32 KB buffers is 131,072 bytes (4 * 32 * 1024) per connection.

The 768 MB we allocated to NGINX is 805,306,368 bytes (768 * 1024 * 1024).

Dividing the two, we come up with 805306368 / 131072 = 6144 active connections.

For a reverse-proxy machine, we may therefore want to scale up by adding more
memory (6 GB RAM will yield us approximately 37,000 connections) or scale out by
adding more 1 GB machines behind a load balancer, up to the number of concurrent,
active users we can expect.

Caching
Caching can be described with the following figure:

Chapter 5

[105]

NGINX is also capable of caching the response from the upstream server, so that
the same request asked again doesn't have to go back to the upstream server to
be served. The preceding figure illustrates this as follows:

•	 1a: A client makes a request
•	 1b: The request's cache key is not currently found in the cache, so NGINX

requests it from the upstream server
•	 1c: The upstream responds and NGINX places the response corresponding

to that request's cache key into the cache
•	 1d: The response is delivered to the client
•	 2a: Another client makes a request that has a matching cache key
•	 2b: NGINX is able to serve the response directly from the cache without

needing to first get the response from the upstream server

Table: Proxy module caching directives

Directive Explanation
proxy_cache Defines a shared memory zone to be used

for caching.
proxy_cache_bypass One or more string variables, which when

non-empty or non-zero, will cause the
response to be taken from the upstream
server instead of the cache.

proxy_cache_key A string used as the key for storing and
retrieving cache values. Variables may be
used, but care should be taken to avoid
caching multiple copies of the same content.

proxy_cache_lock Enabling this directive will prevent multiple
requests to the upstream server(s) during
a cache miss. The requests will wait for the
first to return and make an entry into the
cache key. This lock is per worker.

proxy_cache_lock_timeout The length of time a request will wait for
an entry to appear in the cache or for the
proxy_cache_lock to be released.

proxy_cache_min_uses The number of requests for a certain key
needed before a response is cached.

Reverse Proxy Advanced Topics

[106]

Directive Explanation
proxy_cache_path A directory in which to place the cached

responses and a shared memory zone
(keys_zone=name:size) to store active
keys and response metadata. Optional
parameters are:

•	 levels: Colon-separated length of
subdirectory name at each level (1 or
2), maximum of three levels deep

•	 inactive: The maximum length of
time an inactive response stays in the
cache before being ejected

•	 max_size: The maximum size of
the cache; when the size exceeds
this value, a cache manager process
removes the least recently used items

•	 loader_files: The maximum
number of cached files whose
metadata are loaded per iteration of
the cache loader process

•	 loader_sleep: The number of
milliseconds paused between each
iteration of the cache loader process

•	 loader_threshold: The maximum
length of time a cache loader iteration
may take

proxy_cache_use_stale The cases under which it is acceptable to
serve stale cached data when an error occurs
while accessing the upstream server. The
updating parameter indicates the case
when fresh data are being loaded.

proxy_cache_valid Indicates the length of time for which a
cached response with response code 200,
301, or 302 is valid. If an optional response
code is given before the time parameter,
that time is only for that response code. The
special parameter any indicates that any
response code should be cached for that
length of time.

Chapter 5

[107]

The following configuration is designed to cache all responses for six hours, up to
a total cache size of 1 GB. Any items that stay fresh, that is, are called within the six
hour timeout, are valid for up to one day. After this time, the upstream server will
be called again to provide the response. If the upstream isn't able to respond due to
an error, timeout, invalid header, or if the cached item is being updated, a stale cache
element may be used. The shared memory zone, CACHE, is defined to be 10 MB
large and is referenced within the location where the cache keys need to be set
and looked-up.

http {

 # we set this to be on the same filesystem as proxy_cache_path
 proxy_temp_path /var/spool/nginx;

 # good security practice dictates that this directory is owned by
the
 # same user as the user directive (under which the workers run)
 proxy_cache_path /var/spool/nginx keys_zone=CACHE:10m levels=1:2
inactive=6h max_size=1g;

 server {

 location / {

 # using include to bring in a file with commonly-used
 settings
 include proxy.conf;

 # referencing the shared memory zone defined above
 proxy_cache CACHE;

 proxy_cache_valid any 1d;

 proxy_cache_use_stale error timeout invalid_header
updating http_500 http_502 http_503 http_504;

 proxy_pass http://upstream;

 }

 }

}

Reverse Proxy Advanced Topics

[108]

Using this configuration, NGINX will set up a series of directories under /var/spool/
nginx that will first differentiate on the last character of the MD5 hash of the URI,
followed by the next two characters from the last. For example, the response for "/
this-is-a-typical-url" will be stored as:

/var/spool/nginx/3/f1/614c16873c96c9db2090134be91cbf13

In addition to the proxy_cache_valid directive, a number of headers control how
NGINX caches responses. The header values take precedence over the directive.

•	 The X-Accel-Expires header can be set by the upstream server to control
cache behavior:

°° An integer value indicates the time in seconds for which
a response may be cached

°° If the value of this header is 0, caching for that response
is disabled completely

•	 A value beginning with @ indicates the time in seconds since the epoch.
The response is valid only up to this absolute time.

•	 The Expires and Cache-Control headers have the same precedence level.
•	 If the value of the Expires header is in the future, the response will be

cached until then.
•	 The Cache-Control header can have multiple values:

°° no-cache

°° no-store

°° private

°° max-age

•	 The only value for which the response is actually cached is a max-age,
which is numeric and non-zero, that is, max-age=x where x > 0.

•	 If the Set-Cookie header is present, the response is not cached.
This may be overridden, though, by using the proxy_ignore_headers
directive:
proxy_ignore_headers Set-Cookie;

•	 But if doing so, be sure to make the cookie value part of the proxy_cache_key:
proxy_cache_key "$host$request_uri $cookie_user";

Chapter 5

[109]

Care should be taken when doing this, though, to prevent multiple response
bodies from being cached for the same URI. This can happen when public content
inadvertently has the Set-Cookie header set for it, and this then becomes part of
the key used to access this data. Separating public content out to a different location
is one way to ensure that the cache is being used effectively. For example, serving
images from an /img location where a different proxy_cache_key is defined:

server {

 proxy_ignore_headers Set-Cookie;

 location /img {

 proxy_cache_key "$host$request_uri";

 proxy_pass http://upstream;

 }

 location / {

 proxy_cache_key "$host$request_uri $cookie_user";

 proxy_pass http://upstream;

 }

}

Storing
Related to the concept of a cache is a store. If you are serving large, static files that
will never change, that is, there is no reason to expire the entries, then NGINX offers
something called a store to help serve these files faster. NGINX will store a local copy
of any files that you configure it to fetch. These files will remain on disk and the
upstream server will not be asked for them again. If any of these files should change
upstream, they need to be deleted by some external process, or NGINX will continue
serving them, so for smaller, static files, using the cache is more appropriate.

Reverse Proxy Advanced Topics

[110]

The following configuration summarizes the directives used to store these files:

http {

 proxy_temp_path /var/www/tmp;

 server {

 root /var/www/data

 location /img {

 error_page 404 = @store;

 }

 location @store {

 internal;

 proxy_store on;

 proxy_store_access group:r all:r;

 proxy_pass http://upstream;

 }

 }

}

In this configuration, we define a server with a root under the same filesystem as
the proxy_temp_path. The location directive /img will inherit this root, serving
files of the same name as the URI path under /var/www/data. If a file is not found
(error code 404), the named location directive @store is called to fetch the file from
the upstream. The proxy_store directive indicates that we want to store files under
the inherited root with permissions 0644 (the user:rw is understood, while group
or all are specified in proxy_store_access). That's all it takes for NGINX to store
a local copy of static files served by the upstream server.

Chapter 5

[111]

Compressing
Compressing can be described with the following figure:

Optimizing for bandwidth can help reduce a response's transfer time. NGINX has
the capability of compressing a response it receives from an upstream server before
passing it on to the client. The gzip module, enabled by default, is often used on
a reverse proxy to compress content where it makes sense. Some file types do not
compress well. Some clients do not respond well to compressed content. We can
take both cases into account in our configuration:

http {

 gzip on;

 gzip_http_version 1.0;

 gzip_comp_level 2;

 gzip_types text/plain text/css application/x-javascript text/
xml application/xml application/xml+rss text/javascript application/
javascript application/json;

 gzip_disable msie6;

}

Here we've specified that we want files of the preceding MIME types to be compressed
at a gzip compression level of 2 if the request has come over at least HTTP/1.0, except
if the user agent reports being an older version of Internet Explorer. We've placed this
configuration in the http context so that it will be valid for all servers we define.

Reverse Proxy Advanced Topics

[112]

The following table lists the directives available with the gzip module:

Table: Gzip module directives

Directive Explanation
gzip Enables or disables the compression of

responses.
gzip_buffers Specifies the number and size of buffers used

for compressing a response.
gzip_comp_level The gzip compression level (1-9).
gzip_disable A regular expression of User-Agents that

shouldn't receive a compressed response. The
special value msie6 is a shortcut for MSIE
[4-6]\. excluding MSIE 6.0; ... SV1.

gzip_min_length The minimum length of a response before
compression is considered, determined by the
Content-Length header.

gzip_http_version The minimum HTTP version of a request
before compression is considered.

gzip_proxied Enables or disables compression if the request
has already come through a proxy. Takes one
or more of the following parameters:

•	 off: Disables compression
•	 expired: Enables compression

if the response should not be
cached, as determined by the
Expires header

•	 no-cache: Enables
compression if the Cache-
Control header is equal to
no-cache

•	 no-store: Enables
compression if the Cache-
Control header is equal to
no-store

•	 private: Enables compression
if the Cache-Control header
is equal to private

Chapter 5

[113]

Directive Explanation
•	 no_last_modified:

Enables compression if the
response doesn't have a
Last-Modified header

•	 no_etag: Enables compression
if the response doesn't have an
ETag header

•	 auth: Enables compression
if the request contains an
Authorization header

•	 any: Enables compression for
any response whose request
includes the Via header

gzip_types The MIME types that should be compressed,
in addition to the default value text/html.

gzip_vary Enables or disables the response header
Vary: Accept-Encoding if gzip is active.

When gzip compression is enabled and you find large files being truncated, the likely
culprit is gzip_buffers. The default value of 32 4k or 16 8k buffers (depending on
the platform) leads to a total buffer size of 128 KB. This means that the file NGINX is
to compress cannot be larger than 128 KB. If you're using an unzipped large JavaScript
library, you may find yourself over this limit. If that is the case, just increase the
number of buffers so that the total buffer size is large enough to fit the whole file.

http {

 gzip on;

 gzip_min_length 1024;

 gzip_buffers 40 4k;

 gzip_comp_level 5;

 gzip_types text/plain application/x-javascript application/json;

}

For example, the preceding configuration will enable compression of any file up to 40
* 4 * 1024 = 163840 bytes (or 160 KB) large. We also use the gzip_min_length directive
to tell NGINX to only compress a file if it is larger than 1 KB. A gzip_comp_level of 4
or 5 is usually a good trade-off between speed and compressed file size. Measuring on
your hardware is the best way to find the right value for your configuration.

Reverse Proxy Advanced Topics

[114]

Besides on-the-fly compression of responses, NGINX is capable of delivering
precompressed files, using the gzip_static module. This module is not compiled
by default, but can be enabled with the --with-http_gzip_static_module
compile-time switch. The module itself has one directive, gzip_static, but also
uses the following directives of the gzip module in order to determine when to
check for precompressed files:

•	 gzip_http_version

•	 gzip_proxied

•	 gzip_disable

•	 gzip_vary

In the following configuration, we enable delivery of precompressed files if the
request contains an Authorization header and if the response contains one of
the Expires or Cache-Control headers disabling caching:

http {

 gzip_static on;

 gzip_proxied expired no-cache no-store private auth;

}

Summary
We have seen in this chapter how NGINX can be used effectively as a reverse
proxy. It can act in three roles, either individually or in some combination, which
are to enhance security, to enable scalability, and/or to enhance performance.
Security is achieved through separation of the application from the end user.
NGINX can be combined with multiple upstream servers to achieve scalability.
The performance of an application relates directly to how responsive it is to a
user's request. We explored different mechanisms to achieve a more responsive
application. Faster response times mean happier users.

Up next is an exploration of NGINX as an HTTP server. We have so far only
discussed how NGINX can act as a reverse proxy, but there is so much more
that NGINX is capable of.

The NGINX HTTP Server
An HTTP server is primarily a piece of software that will deliver web pages to clients
when requested. These web pages can be anything from a simple HTML file on disk to
a multicomponent framework delivering user-specific content, dynamically updated
through AJAX or WebSocket. NGINX is modular, and is designed to handle any kind
of HTTP serving necessary.

In this chapter, we will investigate the various modules that work together to make
NGINX such a scalable HTTP server. The following topics are included in this chapter:

•	 NGINX's architecture
•	 The HTTP core module
•	 Using limits to prevent abuse
•	 Restricting access
•	 Streaming media files
•	 Predefined variables
•	 Using NGINX with PHP-FPM
•	 Wiring NGINX and uWSGI together

NGINX's architecture
NGINX consists of a single master process and multiple worker processes.
Each of these is single-threaded and designed to handle thousands of connections
simultaneously. The worker process is where most of the action takes place, as this
is the component that handles client requests. NGINX makes use of the operating
system's event mechanism to respond quickly to these requests.

The NGINX HTTP Server

[116]

The NGINX master process is responsible for reading the configuration, handling
sockets, spawning workers, opening log files, and compiling embedded Perl scripts.
The master process is the one that responds to administrative requests via signals.

The NGINX worker process runs in a tight event loop to handle incoming connections.
Each NGINX module is built into the worker, so that any request processing, filtering,
handling of proxy connections, and much more is done within the worker process.
Due to this worker model, the operating system can handle each process separately
and schedule the processes to run optimally on each processor core. If there are any
processes that would block a worker, such as disk I/O, more workers than cores can
be configured to handle the load.

There are also a small number of helper processes that the NGINX master process
spawns to handle dedicated tasks. Among these are the cache loader and cache
manager processes. The cache loader is responsible for preparing the metadata
for worker processes to use the cache. The cache manager process is responsible
for checking cache items and expiring invalid ones.

NGINX is built in a modular fashion. The master process provides the foundation
upon which each module may perform its function. Each protocol and handler is
implemented as its own module. The individual modules are chained together into
a pipeline to handle connections and process requests. After a request is handled,
it is then passed on to a series of filters, in which the response is processed. One of
these filters is responsible for processing subrequests, one of NGINX's most
powerful features.

Subrequests are how NGINX can return the results of a request that differs from
the URI that the client sent. Depending on the configuration, they may be multiply
nested and call other subrequests. Filters can collect the responses from multiple
subrequests and combine them into one response to the client. The response is then
finalized and sent to the client. Along the way, multiple modules come into play.
See http://www.aosabook.org/en/nginx.html for a detailed explanation of
NGINX internals.

We will be exploring the http module and a few helper modules in the remainder
of this chapter.

Chapter 6

[117]

The HTTP core module
The http module is NGINX's central module, which handles all interactions with
clients over HTTP. We have already discussed the following aspects of this module
in Chapter 2, A Configuration Guide:

•	 Client directives
•	 File I/O directives
•	 Hash directives
•	 Socket directives
•	 The listen directive
•	 Matching a request to a server_name and location directive

We will have a look at the remaining directives in the rest of this section, again divided
by type.

The server
The server directive starts a new context. We have already seen examples of its usage
throughout the book so far. One aspect that has not yet been examined in-depth is the
concept of a default server.

A default server in NGINX means that it is the first server defined in a particular
configuration with the same listen IP address and port as another server. A default
server may also be denoted by the default_server parameter to the listen directive.

The default server is useful to define a set of common directives that will then be
reused for subsequent servers listening on the same IP address and port:

server {

 listen 127.0.0.1:80;

 server_name default.example.com;

 server_name_in_redirect on;

}

server {

 listen 127.0.0.1:80;

 server_name www.example.com;

}

The NGINX HTTP Server

[118]

In this example, the www.example.com server will have the server_name_in_
redirect directive set to on as well as the default.example.com server. Note that
this would also work if both servers had no listen directive, since they would still
both match the same IP address and port number (that of the default value for listen,
which is *:80). Inheritance, though, is not guaranteed. There are only a few directives
that are inherited, and which ones are changes over time.

A better use for the default server is to handle any request that comes in on that IP
address and port, and does not have a Host header. If you do not want the default
server to handle requests without a Host header, it is possible to define an empty
server_name directive. This server will then match those requests.

server {

 server_name "";

}

The following table summarizes the directives relating to server:

Table: HTTP server directives

Directive Explanation
port_in_redirect Determines whether or not the port will be

specified in a redirect issued by NGINX.
server Creates a new configuration context,

defining a virtual host. The listen
directive specifies the IP address(es) and
port(s); the server_name directive lists
the Host header values that this context
matches.

server_name Configures the names that a virtual host
may respond to.

server_name_in_redirect Activates using the first value of the
server_name directive in any redirect
issued by NGINX within this context.

server_tokens Disables sending the NGINX version string
in error messages and the Server response
header (default value is on).

Chapter 6

[119]

Logging
NGINX has a very flexible logging model. Each level of configuration may have
an access log. In addition, more than one access log may be specified per level,
each with a different log_format. The log_format directive allows you to specify
exactly what will be logged, and needs to be defined within the http section.

The path to the log file itself may contain variables, so that you can build a dynamic
configuration. The following example describes how this can be put into practice:

http {

 log_format vhost '$host $remote_addr - $remote_user [$time_local]
'
 '"$request" $status $body_bytes_sent '
 '"$http_referer" "$http_user_agent"';

 log_format downloads '$time_iso8601 $host $remote_addr '
 '"$request" $status $body_bytes_sent $request_
 time';

 open_log_file_cache max=1000 inactive=60s;

 access_log logs/access.log;

 server {

 server_name ~^(www\.)?(.+)$;

 access_log logs/combined.log vhost;

 access_log logs/$2/access.log;

 location /downloads {

 access_log logs/downloads.log downloads;

 }

 }

}

The NGINX HTTP Server

[120]

The following table describes the directives used in the preceding code:

Table: HTTP logging directives

Directive Explanation
access_log Describes where and how access logs are to

be written. The first parameter is a path to the
file where the logs are to be stored. Variables
may be used in constructing the path. The
special value off disables the access log.
An optional second parameter indicates
log_format that will be used to write the
logs. If no second parameter is configured,
the predefined combined format is used. An
optional third parameter indicates the size of
the buffer if write buffering should be used
to record the logs. If write buffering is used,
this size cannot exceed the size of the atomic
disk write for that filesystem. If this third
parameter is gzip, then the buffered logs
will be compressed on-the-fly, provided that
the nginx binary was built with the zlib
library. A final flush parameter indicates
the maximum length of time buffered log
data may remain in memory before being
flushed to disk.

log_format Specifies which fields should appear in the
log file and what format they should take.
See the next table for a description of the
log-specific variables.

log_not_found Disables reporting of 404 errors in the error
log (default value is on).

log_subrequest Enables logging of subrequests in the access
log (default value is off).

open_log_file_cache Stores a cache of open file descriptors used
in access_logs with a variable in the
path. The parameters used are:

•	 max: The maximum number of file
descriptors present in the cache

•	 inactive: NGINX will wait this
amount of time for something to
be written to this log before its file
descriptor is closed

Chapter 6

[121]

•	 min_uses: The file descriptor has to
be used this amount of times within
the inactive period in order to
remain open

•	 valid: NGINX will check this
often to see if the file descriptor still
matches a file with the same name

•	 off: Disables the cache

In the following example, log entries will be compressed at a gzip level of 4. The buffer
size is the default of 64 KB and will be flushed to disk at least every minute.

access_log /var/log/nginx/access.log.gz combined gzip=4 flush=1m;

Note that when specifying gzip the log_format parameter is not optional.

The default combined log_format is constructed like this:

log_format combined '$remote_addr - $remote_user [$time_local] '

 '"$request" $status $body_bytes_sent '

 '"$http_referer" "$http_user_agent"';

As you can see, line breaks may be used to improve readability. They do not affect
the log_format itself. Any variables may be used in the log_format directive. The
variables in the following table which are marked with an asterisk (*) are specific to
logging and may only be used in the log_format directive. The others may be used
elsewhere in the configuration, as well.

Table: Log format variables

Variable Name Value
$body_bytes_sent The number of bytes sent to the client,

excluding the response header.
$bytes_sent The number of bytes sent to the client.
$connection A serial number, used to identify unique

connections.
$connection_requests The number of requests made through a

particular connection.
$msec The time in seconds, with millisecond

resolution.
$pipe * Indicates if the request was pipelined (p)

or not (.).

The NGINX HTTP Server

[122]

Variable Name Value
$request_length * The length of the request, including the

HTTP method, URI, HTTP protocol,
header, and request body.

$request_time The request processing time, with
millisecond resolution, from the first byte
received from the client to the last byte
sent to the client.

$status The response status.
$time_iso8601 * Local time in ISO8601 format.
$time_local * Local time in common log format

(%d/%b/%Y:%H:%M:%S %z).

In this section, we have focused solely on access_log and how that can
be configured. You can also configure NGINX to log errors. The error_log
directive is described in Chapter 8, Troubleshooting.

Finding files
In order for NGINX to respond to a request, it passes it to a content handler,
determined by the configuration of the location directive. The unconditional content
handlers are tried first: perl, proxy_pass, flv, mp4, and so on. If none of these is a
match, the request is passed to one of the following, in order: random index, index,
autoindex, gzip_static, static. Requests with a trailing slash are handled by
one of the index handlers. If gzip is not activated, then the static module handles the
request. How these modules find the appropriate file or directory on the filesystem is
determined by a combination of certain directives. The root directive is best defined
in a default server directive, or at least outside of a specific location directive, so
that it will be valid for the whole server:

server {

 root /home/customer/html;

 location / {

 index index.html index.htm;

 }

Chapter 6

[123]

 location /downloads {

 autoindex on;

 }

}

In the preceding example any files to be served are found under the root /home/
customer/html. If the client entered just the domain name, NGINX will try to serve
index.html. If that file does not exist, then NGINX will serve index.htm. When a user
enters the /downloads URI in their browser, they will be presented with a directory
listing in HTML format. This makes it easy for users to access sites hosting software
that they would like to download. NGINX will automatically rewrite the URI of a
directory so that the trailing slash is present, and then issue an HTTP redirect. NGINX
appends the URI to the root to find the file to deliver to the client. If this file does not
exist, the client receives a 404 Not Found error message. If you don't want the error
message to be returned to the client, one alternative is to try to deliver a file from
different filesystem locations, falling back to a generic page, if none of those options
are available. The try_files directive can be used as follows:

location / {

 try_files $uri $uri/ backups/$uri /generic-not-found.html;

}

As a security precaution, NGINX can check the path to a file it's about to deliver,
and if part of the path to the file contains a symbolic link, it returns an error message
to the client:

server {

 root /home/customer/html;

 disable_symlinks if_not_owner from=$document_root;

}

In the preceding example, NGINX will return a "Permission Denied" error if a
symlink is found after /home/customer/html, and that symlink and the file it
points to do not both belong to the same user ID.

The NGINX HTTP Server

[124]

The following table summarizes these directives:

Table: HTTP file-path directives

Directive Explanation
disable_symlinks Determines if NGINX should perform

a symbolic link check on the path to a
file before delivering it to the client. The
following parameters are recognized:

•	 off: Disables checking for symlinks
(default)

•	 on: If any part of a path is a symlink,
access is denied

•	 if_not_owner: If any part of a
path contains a symlink in which the
link and the referent have different
owners, access to the file is denied

•	 from=part: When specified, the
path up to part is not checked for
symlinks, everything afterward is
according to either the on or if_
not_owner parameter

root Sets the path to the document root. Files are
found by appending the URI to the value of
this directive.

try_files Tests the existence of files given as
parameters. If none of the previous files are
found, the last entry is used as a fallback, so
ensure that this path or named location
exists, or is set to return a status code
indicated by =<status code>.

Name resolution
If logical names instead of IP addresses are used in an upstream or *_pass directive,
NGINX will by default use the operating system's resolver to get the IP address, which
is what it really needs to connect to that server. This will happen only once, the first
time upstream is requested, and won't work at all if a variable is used in the *_pass
directive. It is possible, though, to configure a separate resolver for NGINX to use. By
doing this, you can override the TTL returned by DNS, as well as use variables in the
*_pass directives.

Chapter 6

[125]

server {

 resolver 192.168.100.2 valid=300s;

}

Table: Name resolution directives

Directive Explanation
resolver Configures one or more name servers to be

used to resolve upstream server names into
IP addresses. An optional valid parameter
overrides the TTL of the domain name
record.

In order to get NGINX to resolve an IP address anew, place the logical name into
a variable. When NGINX resolves that variable, it implicitly makes a DNS look-up
to find the IP address. For this to work, a resolver directive must be configured:

server {

 resolver 192.168.100.2;

 location / {

 set $backend upstream.example.com;

 proxy_pass http://$backend;

 }

}

Of course, by relying on DNS to find an upstream, you are dependent on the resolver
always being available. When the resolver is not reachable, a gateway error occurs.
In order to make the client wait time as short as possible, the resolver_timeout
parameter should be set low. The gateway error can then be handled by an error_
page designed for that purpose.

server {

 resolver 192.168.100.2;

 resolver_timeout 3s;

 error_page 504 /gateway-timeout.html;

The NGINX HTTP Server

[126]

 location / {

 proxy_pass http://upstream.example.com;

 }

}

Client interaction
There are a number of ways in which NGINX can interact with clients. This can range
from attributes of the connection itself (IP address, timeouts, keepalive, and so on) to
content negotiation headers. The directives listed in the following table describe how
to set various headers and response codes to get the clients to request the correct page
or serve up that page from its own cache:

Table: HTTP client interaction directives

Directive Explanation
default_type Sets the default MIME type of a response.

This comes into play if the MIME type of
the file cannot be matched to one of those
specified by the types directive.

error_page Defines a URI to be served when an error
level response code is encountered. Adding
an = parameter allows the response code to be
changed. If the argument to this parameter is
left empty, the response code will be taken from
the URI, which must in this case be served by an
upstream server of some sort.

etag Disables automatically generating the
ETag response header for static resources
(default is on).

if_modified_since Controls how the modification time of a
response is compared to the value of the
If-Modified-Since request header:

•	 off: The If-Modified-Since header
is ignored

•	 exact: An exact match is made (default)
•	 before: The modification time of the

response is less than or equal to the value
of the If-Modified-Since header

Chapter 6

[127]

Directive Explanation
ignore_invalid_headers Disables ignoring headers with invalid names

(default is on). A valid name is composed
of ASCII letters, numbers, the hyphen, and
possibly the underscore (controlled by the
underscores_in_headers directive).

merge_slashes Disables the removal of multiple slashes.
The default value of on means that NGINX
will compress two or more / characters into
one.

recursive_error_pages Enables doing more than one redirect using
the error_page directive (default is off).

types Sets up a map of MIME types to file name
extensions. NGINX ships with a conf/mime.
types file that contains most MIME type
mappings. Using include to load this file
should be sufficient for most purposes.

underscores_in_headers Enables the use of the underscore character in
client request headers. If left at the default value
off, evaluation of such headers is subject to
the value of the ignore_invalid_headers
directive.

The error_page directive is one of NGINX's most flexible. Using this directive,
we may serve any page when an error condition presents. This page could be on
the local machine, but could also be a dynamic page produced by an application
server, and could even be a page on a completely different site.

http {

 # a generic error page to handle any server-level errors
 error_page 500 501 502 503 504 share/examples/nginx/50x.html;

 server {

 server_name www.example.com;

 root /home/customer/html;

 # for any files not found, the page located at
 # /home/customer/html/404.html will be delivered
 error_page 404 /404.html;

The NGINX HTTP Server

[128]

 location / {

 # any server-level errors for this host will be directed
 # to a custom application handler
 error_page 500 501 502 503 504 = @error_handler;

 }

 location /microsite {

 # for any non-existent files under the /microsite URI,
 # the client will be shown a foreign page
 error_page 404 http://microsite.example.com/404.html;

 }

 # the named location containing the custom error handler
 location @error_handler {

 # we set the default type here to ensure the browser
 # displays the error page correctly
 default_type text/html;

 proxy_pass http://127.0.0.1:8080;

 }

 }

}

Using limits to prevent abuse
We build and host websites because we want users to visit them. We want our
websites to always be available for legitimate access. This means that we may have
to take measures to limit access to abusive users. We may define "abusive" to mean
anything from one request per second to a number of connections from the same IP
address. Abuse can also take the form of a DDOS (distributed denial-of-service)
attack, where bots running on multiple machines around the world all try to access
the site as many times as possible at the same time. In this section, we will explore
methods to counter each type of abuse to ensure that our websites are available.

Chapter 6

[129]

First, let's take a look at the different configuration directives that will help us
achieve our goal:

Table: HTTP limits directives

Directive Explanation
limit_conn Specifies a shared memory zone (configured

with limit_conn_zone) and the
maximum number of connections that are
allowed per key value.

limit_conn_log_level When NGINX limits a connection due to
the limit_conn directive, this directive
specifies at which log level that limitation is
reported.

limit_conn_zone Specifies the key to be limited in limit_
conn as the first parameter. The second
parameter, zone, indicates the name of the
shared memory zone used to store the key
and current number of connections per key
and the size of that zone (name:size).

limit_rate Limits the rate (in bytes per second) at which
clients can download content. The rate limit
works on a connection level, meaning that a
single client could increase their throughput
by opening multiple connections.

limit_rate_after Starts the limit_rate after this number of
bytes have been transferred.

limit_req Sets a limit with bursting capability on the
number of requests for a specific key in
a shared memory store (configured with
limit_req_zone). The burst can be
specified with the second parameter. If there
shouldn't be a delay in between requests up
to the burst, a third parameter nodelay
needs to be configured.

limit_req_log_level When NGINX limits the number of requests
due to the limit_req directive, this
directive specifies at which log level that
limitation is reported. A delay is logged at a
level one less than the one indicated here.

The NGINX HTTP Server

[130]

Directive Explanation
limit_req_zone Specifies the key to be limited in limit_

req as the first parameter. The second
parameter, zone, indicates the name of the
shared memory zone used to store the key
and current number of requests per key and
the size of that zone (name:size). The third
parameter, rate, configures the number
of requests per second (r/s) or per minute
(r/m) before the limit is imposed.

max_ranges Sets the maximum number of ranges
allowed in a byte-range request. Specifying
0 disables byte-range support.

Here we limit access to 10 connections per unique IP address. This should be enough
for normal browsing, as modern browsers open two to three connections per host.
Keep in mind, though, that any users behind a proxy will all appear to come from
the same address. So observe the logs for error code 503 (Service Unavailable),
meaning that this limit has come into effect:

http {

 limit_conn_zone $binary_remote_addr zone=connections:10m;

 limit_conn_log_level notice;

 server {

 limit_conn connections 10;

 }

}

Limiting access based on a rate looks almost the same, but works a bit differently.
When limiting how many pages per unit of time a user may request, NGINX will
insert a delay after the first page request, up to a burst. This may or may not be
what you want, so NGINX offers the possibility to remove this delay with the
nodelay parameter:

Chapter 6

[131]

http {

 limit_req_zone $binary_remote_addr zone=requests:10m rate=1r/s;

 limit_req_log_level warn;

 server {

 limit_req zone=requests burst=10 nodelay;

 }

}

Using $binary_remote_addr
We use the $binary_remote_addr variable in the preceding
example to know exactly how much space storing an IP address
will take. This variable takes 32 bytes on 32-bit platforms and
64 bytes on 64-bit platforms. So the 10m zone we configured
previously is capable of holding up to 320,000 states on 32-bit
platforms or 160,000 states on 64-bit platforms.

We can also limit the bandwidth per client. This way we can ensure that a few
clients don't take up all the available bandwidth. One caveat, though: the limit_
rate directive works on a connection basis. A single client that is allowed to open
multiple connections will still be able to get around this limit:

location /downloads {

 limit_rate 500k;

}

Alternatively, we can allow a kind of bursting to freely download smaller files,
but make sure that larger ones are limited:

location /downloads {

 limit_rate_after 1m;

 limit_rate 500k;

}

The NGINX HTTP Server

[132]

Combining these different rate limitations enables us to create a configuration that
is very flexible as to how and where clients are limited:

http {

 limit_conn_zone $binary_remote_addr zone=ips:10m;

 limit_conn_zone $server_name zone=servers:10m;

 limit_req_zone $binary_remote_addr zone=requests:10m rate=1r/s;

 limit_conn_log_level notice;

 limit_req_log_level warn;

 reset_timedout_connection on;

 server {

 # these limits apply to the whole virtual server
 limit_conn ips 10;
 # only 1000 simultaneous connections to the same server_name
 limit_conn servers 1000;

 location /search {

 # here we want only the /search URL to be rate-limited
 limit_req zone=requests burst=3 nodelay;

 }

 location /downloads {

 # using limit_conn to ensure that each client is
 # bandwidth-limited
 # with no getting around it
 limit_conn connections 1;

 limit_rate_after 1m;

 limit_rate 500k;

 }

 }

}

Chapter 6

[133]

Restricting access
In the previous section, we explored ways to limit abusive access to websites running
under NGINX. Now we will take a look at ways to restrict access to a whole website
or certain parts of it. Access restriction can take two forms here: restricting to a
certain set of IP addresses, or restricting to a certain set of users. These two methods
can also be combined to satisfy requirements that some users can access the website
either from a certain set of IP addresses or if they are able to authenticate with a valid
username and password.

The following directives will help us achieve these goals:

Table: HTTP access module directives

Directive Explanation
allow Allows access from this IP address, network,

or all.
auth_basic Enables authentication using HTTP Basic

Authentication. The parameter string is
used as the realm name. If the special value
off is used, this indicates that the auth_
basic value of the parent configuration
level is negated.

auth_basic_user_file Indicates the location of a file of
username:password:comment tuples
used to authenticate users. The password
field needs to be encrypted with the crypt
algorithm. The comment field is optional.

deny Denies access from this IP address, network,
or all.

satisfy Allows access if all or any of the preceding
directives grant access. The default value
all indicates that a user must come from
a specific network address and enter the
correct password.

To restrict access to clients coming from a certain set of IP addresses, the allow and
deny directives can be used as follows:

location /stats {

 allow 127.0.0.1;

The NGINX HTTP Server

[134]

 deny all;

}

This configuration will allow access to the /stats URI from the localhost only.

To restrict access to authenticated users, the auth_basic and auth_basic_user_file
directives are used as follows:

server {

 server_name restricted.example.com;

 auth_basic "restricted";

 auth_basic_user_file conf/htpasswd;

}

Any user wanting to access restricted.example.com would need to provide
credentials matching those in the htpasswd file located in the conf directory
of NGINX's root. The entries in the htpasswd file can be generated using any
available tool that uses the standard UNIX crypt() function. For example,
the following Ruby script will generate a file of the appropriate format:

#!/usr/bin/env ruby

setup the command-line options
require 'optparse'

OptionParser.new do |o|

 o.on('-f FILE') { |file| $file = file }

 o.on('-u', "--username USER") { |u| $user = u }

 o.on('-p', "--password PASS") { |p| $pass = p }

 o.on('-c', "--comment COMM (optional)") { |c| $comm = c }

 o.on('-h') { puts o; exit }

 o.parse!

 if $user.nil? or $pass.nil?

Chapter 6

[135]

 puts o; exit

 end

end

initialize an array of ASCII characters to be used for the salt
ascii = ('a'..'z').to_a + ('A'..'Z').to_a + ('0'..'9').to_a + [".",
"/"]

$lines = []

begin

 # read in the current http auth file
 File.open($file) do |f|

 f.lines.each { |l| $lines << l }

 end

rescue Errno::ENOENT

 # if the file doesn't exist (first use), initialize the array
 $lines = ["#{$user}:#{$pass}\n"]

end

remove the user from the current list, since this is the one we're
editing
$lines.map! do |line|

 unless line =~ /#{$user}:/

 line

 end

end

generate a crypt()ed password
pass = $pass.crypt(ascii[rand(64)] + ascii[rand(64)])

The NGINX HTTP Server

[136]

if there's a comment, insert it
if $comm

 $lines << "#{$user}:#{pass}:#{$comm}\n"

else

 $lines << "#{$user}:#{pass}\n"

end

write out the new file, creating it if necessary

File.open($file, File::RDWR|File::CREAT) do |f|

 $lines.each { |l| f << l}

end

Save this file as http_auth_basic.rb and give it a filename (-f), a user (-u), and
a password (-p), and it will generate entries appropriate to use in NGINX's auth_
basic_user_file directive:

$./http_auth_basic.rb -f htpasswd -u testuser -p 123456

To handle scenarios where a username and password should only be entered if
not coming from a certain set of IP addresses, NGINX has the satisfy directive.
The any parameter is used here for this either/or scenario:

server {

 server_name intranet.example.com;

 location / {

 auth_basic "intranet: please login";

 auth_basic_user_file conf/htpasswd-intranet;

 allow 192.168.40.0/24;

 allow 192.168.50.0/24;

 deny all;

Chapter 6

[137]

 satisfy any;

 }

If, instead, the requirements are for a configuration in which the user must come
from a certain IP address and provide authentication, the all parameter is the
default. So, we omit the satisfy directive itself and include only allow, deny,
auth_basic, and auth_basic_user_file:

server {

 server_name stage.example.com;

 location / {

 auth_basic "staging server";

 auth_basic_user_file conf/htpasswd-stage;

 allow 192.168.40.0/24;

 allow 192.168.50.0/24;

 deny all;

 }

Streaming media files
NGINX is capable of serving certain video media types. The flv and mp4 modules,
included in the base distribution, can perform what is called pseudo-streaming. This
means that NGINX will seek to a certain location in the video file, as indicated by the
start request parameter.

In order to use the pseudo-streaming capabilities, the corresponding module needs
to be included at compile time: --with-http_flv_module for Flash Video (FLV) files
and/or --with-http_mp4_module for H.264/AAC files. The following directives
will then become available for configuration:

Table: HTTP streaming directives

Directive Explanation
flv Activates the flv module for this location.
mp4 Activates the mp4 module for this location.

The NGINX HTTP Server

[138]

Directive Explanation
mp4_buffer_
size

Sets the initial buffer size for delivering
MP4 files.

mp4_max_
buffer_size

Sets the maximum size of the buffer used
to process MP4 metadata.

Activating FLV pseudo-streaming for a location is as simple as just including the
flv keyword:

location /videos {

 flv;

}

There are more options for MP4 pseudo-streaming, as the H.264 format includes
metadata that needs to be parsed. Seeking is available once the "moov atom" has
been parsed by the player. So to optimize performance, ensure that the metadata
is at the beginning of the file. If an error message such as the following shows up
in the logs, the mp4_max_buffer_size needs to be increased:

mp4 moov atom is too large

mp4_max_buffer_size can be increased as follows:

location /videos {

 mp4;

 mp4_buffer_size 1m;

 mp4_max_buffer_size 20m;

}

Predefined variables
NGINX makes constructing configurations based on the values of variables easy.
Not only can you instantiate your own variables by using the set or map directives,
but there are also predefined variables used within NGINX. They are optimized for
quick evaluation and the values are cached for the lifetime of a request. You can use
any of them as a key in an if statement, or pass them on to a proxy. A number of
them may prove useful if you define your own log file format. If you try to redefine
any of them, though, you will get an error message as follows:

Chapter 6

[139]

<timestamp> [emerg] <master pid>#0: the duplicate "<variable_name>"
variable in <path-to-configuration-file>:<line-number>

They are also not made for macro expansion in the configuration—they are mostly
used at run time.

The following are the variables and their values defined in the http module:

Table: HTTP variables

Variable Name Value
$arg_name The name argument present in the request

parameters.
$args All of the request parameters.
$binary_remote_addr The client's IP address in binary form (always

4 bytes long).
$content_length The value of the Content-Length request

header.
$content_type The value of the Content-Type request

header.
$cookie_name The cookie labeled name.
$document_root The value of the root or alias directive for

the current request.
$document_uri An alias for $uri.
$host The value of the Host request header,

if present. If this header is not present,
the value is equal to the server_name
matching the request.

$hostname The name of the host where NGINX is
running.

$http_name The value of the name request header.
If this header has dashes, they are converted
to underscores; capital letters to lower case.

$https If the connection was made over SSL, the
value of this variable is on. Otherwise, it's
an empty string.

$is_args If the request has arguments, the value of this
variable is ?. Otherwise, it's an empty string.

$limit_rate The value of the limit_rate directive.
If not set, allows rate limitation to be set
using this variable.

$nginx_version The version of the running nginx binary.

The NGINX HTTP Server

[140]

Variable Name Value
$pid The process ID of the worker process.
$query_string An alias for $args.
$realpath_root The value of the root or alias directive for

the current request, with all symbolic links
resolved.

$remote_addr The client's IP address.
$remote_port The client's port.
$remote_user When using HTTP basic authentication, this

variable is set to the username.
$request The complete request, as received from the

client, including the HTTP method, URI,
HTTP protocol, header, and request body.

$request_body The body of the request, for use in locations
processed by a *_pass directive.

$request_body_file The path to the temporary file where the
request's body is saved. For this file to be
saved, the client_body_in_file_only
directive needs to be set to on.

$request_completion If the request has completed, the value of this
variable is OK. Otherwise, it's an empty string.

$request_filename The path to the file for the current request,
based on the value of the root or alias
directive plus the URI.

$request_method The HTTP method used in the current request.
$request_uri The complete request URI, as received from

the client, including arguments.
$scheme The scheme for the current request, either

HTTP or HTTPS.
$sent_http_name The value of the name response header. If

this header has dashes, they are converted to
underscores; capital letters to lower case.

$server_addr The value of the server's address that accepted
the request.

$server_name The server_name of the virtual host that
accepted the request.

$server_port The value of the server's port that accepted
the request.

$server_protocol The HTTP protocol used in the current request.

Chapter 6

[141]

Variable Name Value
$status The response's status.
$tcpinfo_rtt

$tcpinfo_rttvar

$tcpinfo_snd_cwnd

$tcpinfo_rcv_space

If a system supports the TCP_INFO socket
option, these variables will be filled with the
relevant information.

$uri The normalized URI of the current request.

Using NGINX with PHP-FPM
Apache has long been considered the only option for serving PHP websites because
the mod_php Apache module makes integrating PHP directly into the web server an
easy task. With PHP-FPM being accepted into PHP's core, there is now an alternative
bundled with the PHP distribution. PHP-FPM is a way of running PHP under a
FastCGI server. The PHP-FPM master process takes care of spawning workers,
adapting to site usage, and restarting sub processes when necessary. It communicates
with other services using the FastCGI protocol. You can learn more about PHP-FPM
itself at http://php.net/manual/en/install.fpm.php.

NGINX has a fastcgi module, which is capable of communicating not only with
PHP-FPM, but also with any FastCGI-compliant server. It is enabled by default, so no
special consideration needs to be made to start using NGINX with FastCGI servers.

Table: FastCGI directives

Directive Explanation
fastcgi_buffer_size The size of the buffer used for the first part

of the response from the FastCGI server, in
which the response headers are found.

fastcgi_buffers The number and size of buffers used for the
response from a FastCGI server, for a single
connection.

fastcgi_busy_buffers_size The total size of buffer space allocated to
sending the response to the client while still
being read from the FastCGI server. This is
typically set to two fastcgi_buffers.

fastcgi_cache Defines a shared memory zone to be used
for caching.

The NGINX HTTP Server

[142]

Directive Explanation
fastcgi_cache_bypass One or more string variables, which when

non-empty or non-zero, will cause the
response to be taken from the FastCGI
server instead of the cache.

fastcgi_cache_key A string used as the key for storing and
retrieving cache values.

fastcgi_cache_lock Enabling this directive will prevent multiple
requests from making an entry into the
same cache key.

fastcgi_cache_lock_timeout The length of time a request will wait for
an entry to appear in the cache or for the
fastcgi_cache_lock to be released.

fastcgi_cache_min_uses The number of requests for a certain key
needed before a response is cached.

fastcgi_cache_path A directory in which to place the cached
responses and a shared memory zone
(keys_zone = name:size) to store active
keys and response metadata. Optional
parameters are:

•	 levels: Colon-separated length of
subdirectory name at each level (one
or two), maximum of three levels
deep

•	 inactive: The maximum length of
time an inactive response stays in the
cache before being ejected

•	 max_size: The maximum size of
the cache; when the size exceeds
this value, a cache manager process
removes the least recently used items

•	 loader_files: The maximum
number of cached files whose
metadata are
loaded per iteration of the
cache loader process

•	 loader_sleep: The number of
milliseconds paused between each
iteration of the cache loader process

•	 loader_threshold: The maximum
length of time a cache loader iteration
may take

Chapter 6

[143]

Directive Explanation
fastcgi_cache_use_stale The cases under which it is acceptable to

serve stale cached data if an error occurs
when accessing the FastCGI server. The
updating parameter indicates the case
when fresh data are being loaded.

fastcgi_cache_valid Indicates the length of time for which a
cached response with response code 200,
301, or 302 is valid. If an optional response
code is given before the time parameter,
that time is only for that response code. The
special parameter any indicates that any
response code should be cached for that
length of time.

fastcgi_connect_timeout The maximum amount of time NGINX will
wait for its connection to be accepted when
making a request to a FastCGI server.

fastcgi_hide_header A list of header fields that should not be
passed on to the client.

fastcgi_ignore_client_abort If set to on, NGINX will not abort the
connection to a FastCGI server if the client
aborts the connection.

fastcgi_ignore_headers Sets which headers may be disregarded
when processing the response from the
FastCGI server.

fastcgi_index Sets the name of a file to be appended to
$fastcgi_script_name that ends with a
slash.

fastcgi_intercept_errors If enabled, NGINX will display a configured
error_page instead of the response
directly from the FastCGI server.

fastcgi_keep_conn Enables keepalive connections to FastCGI
servers by instructing the server not to
immediately close the connection.

fastcgi_max_temp_file_size The maximum size of the overflow file,
written when the response doesn't fit into
memory buffers.

The NGINX HTTP Server

[144]

Directive Explanation
fastcgi_next_upstream Indicates the conditions under which the

next FastCGI server will be selected for the
response. This won't be used if the client
has already been sent something. The
conditions are specified using the following
parameters:

•	 error: An error occurred while
communicating with the FastCGI
server

•	 timeout: A timeout occurred while
communicating with the FastCGI
server

•	 invalid_header: The FastCGI
server returned an empty or
otherwise invalid response

•	 http_500: The FastCGI server
responded with a 500 error code

•	 http_503: The FastCGI server
responded with a 503 error code

•	 http_404: The FastCGI server
responded with a 404 error code

•	 off: Disables passing the request
to the next FastCGI server when an
error occurs

fastcgi_no_cache One or more string variables, which when
non-empty or non-zero, will instruct
NGINX to not save the response from the
FastCGI server in the cache.

fastcgi_param Sets a parameter and its value to be passed
to the FastCGI server. If the parameter
should only be passed when the value is
non-empty, the if_not_empty additional
parameter should be set.

fastcgi_pass Specifies the FastCGI server to which
the request is passed, either as an
address:port combination or as
unix:path for a UNIX-domain socket.

Chapter 6

[145]

Directive Explanation
fastcgi_pass_header Overrides the disabled headers set in

fastcgi_hide_header, allowing them
to be sent to the client.

fastcgi_read_timeout Specifies the length of time that needs
to elapse between two successive read
operations from a FastCGI server before the
connection is closed.

fastcgi_send_timeout The length of time that needs to elapse
between two successive write operations to
a FastCGI server before the connection is
closed.

fastcgi_split_path_info Defines a regular expression with two
captures. The first capture will be the value
of the $fastcgi_script_name variable.
The second capture becomes the value of
the $fastcgi_path_info variable. Only
necessary for applications that rely upon
PATH_INFO.

fastcgi_store Enables storing responses retrieved from
a FastCGI server as files on disk. The on
parameter will use the alias or root
directive as the base path under which to
store the file. A string may instead be given,
to indicate an alternative location to store
the files.

fastcgi_store_access Sets file access permissions for newly-
created fastcgi_store files.

fastcgi_temp_file_write_
size

Limits the amount of data buffered to a
temporary file at one time, so that NGINX
will not block too long on a single request.

fastcgi_temp_path A directory where temporary files may
be buffered as they are proxied from the
FastCGI server, optionally multilevel deep.

The NGINX HTTP Server

[146]

An example Drupal configuration
Drupal (http://drupal.org) is a popular open source content management platform.
There is a large installed user base, and many popular websites are run on Drupal.
As with most PHP web frameworks, Drupal is typically run under Apache using
mod_php. We are going to explore how to configure NGINX to run Drupal.

There is a very comprehensive Drupal configuration guide for NGINX found at
https://github.com/perusio/drupal-with-nginx. It goes more in-depth than
we are able to do here, but we will point out some features mentioned, and go
through some of the differences between Drupal 6 and Drupal 7:

Defines the $no_slash_uri variable for drupal 6.
map $uri $no_slash_uri {

 ~^/(?<no_slash>.*)$ $no_slash;
}

server {

 server_name www.example.com;

 root /home/customer/html;

 index index.php;

 # keep alive to the FastCGI upstream (used in conjunction with
 # the "keepalive" directive in the upstream section)
 fastcgi_keep_conn on;

 # The 'default' location.
 location / {
 ## (Drupal 6) Use index.html whenever there's no index.php.
 location = / {
 error_page 404 =200 /index.html;
 }
 # Regular private file serving (i.e. handled by Drupal).
 location ^~ /system/files/ {

 include fastcgi_private_files.conf;

 fastcgi_pass 127.0.0.1:9000;

Chapter 6

[147]

 # For not signaling a 404 in the error log whenever the
 # system/files directory is accessed add the line below.
 # Note that the 404 is the intended behavior.
 log_not_found off;

 }

 # Trying to access private files directly returns a 404.
 location ^~ /sites/default/files/private/ {
 internal;
 }

 ## (Drupal 6) If accessing an image generated by imagecache,
 ## serve it directly if available, if not relay the request to
 # Drupal
 ## to (re)generate the image.
 location ~* /imagecache/ {

 access_log off;

 expires 30d;

 try_files $uri /index.php?q=$no_slash_uri&$args;

 }

 # Drupal 7 image handling, i.e., imagecache in core
 location ~* /files/styles/ {

 access_log off;

 expires 30d;

 try_files $uri @drupal;

 }

The Advanced Aggregation module configuration coming up next differs only
in the location used. The Advanced Aggregation module configuration for CSS
is as follows:

 # Advanced Aggregation module CSS support.
 location ^~ /sites/default/files/advagg_css/ {

The NGINX HTTP Server

[148]

 location ~* /sites/default/files/advagg_css/css_
[[:alnum:]]+\.css$ {

And for JavaScript is as follows:

 # Advanced Aggregation module JS
 location ^~ /sites/default/files/advagg_js/ {
 location ~* /sites/default/files/advagg_js/js_
[[:alnum:]]+\.js$ {

The common lines to both sections are as follows:

 access_log off;

 add_header Pragma '';

 add_header Cache-Control 'public, max-age=946080000';

 add_header Accept-Ranges '';

 # This is for Drupal 7
 try_files $uri @drupal;

 ## This is for Drupal 6 (use only one)
 try_files $uri /index.php?q=$no_slash_uri&$args;

 }

 }

 # All static files will be served directly.
 location ~* ^.+\.(?:css|cur|js|jpe?g|gif|htc|ico|png|html|x
 ml)$ {

 access_log off;

 expires 30d;

 # Send everything all at once.
 tcp_nodelay off;

 # Set the OS file cache.
 open_file_cache max=3000 inactive=120s;

Chapter 6

[149]

 open_file_cache_valid 45s;

 open_file_cache_min_uses 2;

 open_file_cache_errors off;

 }

 # PDFs and powerpoint files handling.
 location ~* ^.+\.(?:pdf|pptx?)$ {

 expires 30d;

 # Send everything all at once.
 tcp_nodelay off;

 }

Serving audio files exemplifies the use of AIO. The MP3 location is as follows:

 # MP3 files are served using AIO where supported by the OS.
 location ^~ /sites/default/files/audio/mp3 {

 location ~* ^/sites/default/files/audio/mp3/.*\.mp3$ {

And Ogg/Vorbis location is as follows:

 # Ogg/Vorbis files are served using AIO where supported by the
 OS.
 location ^~ /sites/default/files/audio/ogg {

 location ~* ^/sites/default/files/audio/ogg/.*\.ogg$ {

These have the following lines in common:

 directio 4k; # for XFS

 tcp_nopush off;
 aio on;
 output_buffers 1 2M;
 }

 }

The NGINX HTTP Server

[150]

 # Pseudo-streaming of FLV files
 location ^~ /sites/default/files/video/flv {

 location ~* ^/sites/default/files/video/flv/.*\.flv$ {

 flv;

 }

 }

The next two pseudo-streaming sections are also similar. The pseudo-streaming for
H264 file is specified in the following code:

 # Pseudo-streaming of H264 files.
 location ^~ /sites/default/files/video/mp4 {

 location ~* ^/sites/default/files/video/mp4/.*\.
(?:mp4|mov)$ {

And pseudo-streaming for AAC files is specified in the following code:

 # Pseudo-streaming of AAC files.
 location ^~ /sites/default/files/video/m4a {

 location ~* ^/sites/default/files/video/m4a/.*\.m4a$ {

These have the following common between them:

 mp4;

 mp4_buffer_size 1M;

 mp4_max_buffer_size 5M;

 }

 }

 # Advanced Help module makes each module-provided
 # README available.
 location ^~ /help/ {

 location ~* ^/help/[^/]*/README\.txt$ {

Chapter 6

[151]

 include fastcgi_private_files.conf;

 fastcgi_pass 127.0.0.1:9000;

 }
 }

 # Replicate the Apache <FilesMatch> directive of Drupal
 # standard
 # .htaccess. Disable access to any code files. Return a 404 to
 # curtail
 # information disclosure. Also hide the text files.
 location ~* ^(?:.+\.(?:htaccess|make|txt|engine|inc|info|inst
 all|module|profile|po|sh|.*sql|test|theme|tpl(?:\.
 php)?|xtmpl)|code-style\.pl|/Entries.*|/Repository|/Root|/
 Tag|/Template)$ {

 return 404;

 }

 #First we try the URI and relay to the /index.php?q=$uri&$args
 if not found.
 try_files $uri @drupal;

 ## (Drupal 6) First we try the URI and relay to the /index.
 php?q=$no_slash_uri&$args if not found. (use only one)
 try_files $uri /index.php?q=$no_slash_uri&$args;

 } # default location ends here

 # Restrict access to the strictly necessary PHP files. Reducing
 the
 # scope for exploits. Handling of PHP code and the Drupal event
 loop.
 location @drupal {

 # Include the FastCGI config.
 include fastcgi_drupal.conf;

 fastcgi_pass 127.0.0.1:9000;

 }

 location @drupal-no-args {

The NGINX HTTP Server

[152]

 include fastcgi_private_files.conf;

 fastcgi_pass 127.0.0.1:9000;

 }

 ## (Drupal 6)
 ## Restrict access to the strictly necessary PHP files. Reducing
 # the
 ## scope for exploits. Handling of PHP code and the Drupal event
 # loop.
 ## (use only one)
 location = /index.php {

 # This is marked internal as a pro-active security practice.
 # No direct access to index.php is allowed; all accesses are
 # made
 # by NGINX from other locations or internal redirects.
 internal;

 fastcgi_pass 127.0.0.1:9000;

 }

The following locations all have return 404 in order to deny access:

 # Disallow access to .git directory: return 404 as not to disclose
 # information.
 location ^~ /.git { return 404; }
 # Disallow access to patches directory.
 location ^~ /patches { return 404; }
 # Disallow access to drush backup directory.
 location ^~ /backup { return 404; }
 # Disable access logs for robots.txt.
 location = /robots.txt {

 access_log off;

 }

 # RSS feed support.
 location = /rss.xml {

 try_files $uri @drupal-no-args;

Chapter 6

[153]

 ## (Drupal 6: use only one)
 try_files $uri /index.php?q=$uri;

 }

 # XML Sitemap support.
 location = /sitemap.xml {
 try_files $uri @drupal-no-args;

 ## (Drupal 6: use only one)
 try_files $uri /index.php?q=$uri;
 }

 # Support for favicon. Return an 1x1 transparent GIF if it doesn't
 # exist.
 location = /favicon.ico {

 expires 30d;

 try_files /favicon.ico @empty;

 }

 # Return an in-memory 1x1 transparent GIF.
 location @empty {

 expires 30d;

 empty_gif;

 }

 # Any other attempt to access PHP files returns a 404.
 location ~* ^.+\.php$ {

 return 404;

 }

} # server context ends here

The include files mentioned above are not reproduced here, for brevity's sake.
They can be found in perusio's GitHub repository mentioned at the beginning
of this section.

The NGINX HTTP Server

[154]

Wiring NGINX and uWSGI together
The Python WSGI (Web Server Gateway Interface) is an interface specification
formalized as PEP-3333 (http://www.python.org/dev/peps/pep-3333/). Its
purpose is to provide a "standard interface between web servers and Python
web applications or frameworks to promote web application portability across a
variety of web servers". Due to its popularity in the Python community, a number
of other languages have implementations that conform to the WSGI specification.
The uWSGI server, although not written exclusively for Python, provides a way of
running applications that conform to this specification. The native protocol used
to communicate with the uWSGI server is called uwsgi. More details about the
uWSGI server, including installation instructions, example configurations, and
other supported languages can be found at http://projects.unbit.it/uwsgi/
and https://github.com/unbit/uwsgi-docs.

NGINX's uwsgi module can be configured to talk to this server using directives
similar to the fastcgi_* directives discussed in the previous section. Most directives
have the same meaning as their FastCGI counterparts, with the obvious difference
being that they begin with uwsgi_ instead of fastcgi_. There are a few exceptions
however—uwsgi_modifier1 and uwsgi_modifier2, as well as uwsgi_string.
The first two directives set either the first or second modifier, respectively, of the
uwsgi packet header. uwsgi_string enables NGINX to pass an arbitrary string to
uWSGI, or any other uwsgi server that supports the eval modifier. These modifiers
are specific to the uwsgi protocol. A table of valid values and their meanings can be
found at http://uwsgi-docs.readthedocs.org/en/latest/Protocol.html.

An example Django configuration
Django (https://www.djangoproject.com/) is a Python web framework in which
developers can quickly create high-performing web applications. It has become a
popular framework in which many different kinds of web applications are written.

The following configuration is an example of how to connect NGINX to multiple
Django applications running under an Emperor mode uWSGI server with FastRouter
activated. See the URLs embedded in the comments in the following code for more
information about running uWSGI like this:

http {
 # spawn a uWSGI server to connect to
 # uwsgi --master --emperor /etc/djangoapps --fastrouter
127.0.0.1:3017 --fastrouter-subscription-server 127.0.0.1:3032

Chapter 6

[155]

 # see http://uwsgi-docs.readthedocs.org/en/latest/Emperor.html
 # and http://projects.unbit.it/uwsgi/wiki/Example
 upstream emperor {
 server 127.0.0.1:3017;
 }

 server {
 # the document root is set with a variable so that multiple
 # sites
 # may be served - note that all static application files are
 # expected to be found under a subdirectory "static" and all
 # user
 # uploaded files under a subdirectory "media"

 # see https://docs.djangoproject.com/en/dev/howto/static-
 files/
 root /home/www/sites/$host;

 location / {
 # CSS files are found under the "styles" subdirectory
 location ~* ^.+\.$ {
 root /home/www/sites/$host/static/styles;
 expires 30d;
 }
 # any paths not found under the document root get passed
 # to
 # the Django running under uWSGI
 try_files $uri @django;
 }

 location @django {
 # $document_root needs to point to the application code
 root /home/www/apps/$host;
 # the uwsgi_params file from the nginx distribution
 include uwsgi_params;
 # referencing the upstream we defined earlier, a uWSGI
 # server
 # running in Emperor mode with FastRouter

The NGINX HTTP Server

[156]

 uwsgi_param UWSGI_FASTROUTER_KEY $host;
 uwsgi_pass emperor;
 }

 # the robots.txt file is found under the "static" subdirectory
 # an exact match speeds up the processing

 location = /robots.txt {
 root /home/www/sites/$host/static;
 access_log off;
 }

 # again an exact match
 location = /favicon.ico {
 error_page 404 = @empty;
 root /home/www/sites/$host/static;
 access_log off;
 expires 30d;
 }

 # generates the empty image referenced above
 location @empty {
 empty_gif;
 }

 # if anyone tries to access a '.py' file directly,
 # return a File Not Found code
 location ~* ^.+\.py$ {
 return 404;
 }
 }
}

This enables multiple sites to be dynamically hosted without changing the
NGINX configuration.

Chapter 6

[157]

Summary
In this chapter, we have explored a number of directives used to make NGINX serve
files over HTTP. Not only does the http module provide this functionality, but there
are also a number of helper modules that are essential to the normal operation of
NGINX. These helper modules are enabled by default. Combining the directives
of these various modules enables us to build a configuration that meets our needs.
We explored how NGINX finds files based on the URI requested. We examined how
different directives control how the HTTP server interacts with the client, and how
the error_page directive can be used to serve a number of needs. Limiting access
based on bandwidth usage, request rate, and number of connections is all possible.

We saw, too, how we can restrict access based on either IP address or through
requiring authentication. We explored how to use NGINX's logging capabilities to
capture just the information we want. Pseudo-streaming was examined briefly, as
well. NGINX provides us with a number of variables that we can use to construct
our configurations. We also explored the possibility of using the fastcgi module to
connect to the PHP-FPM applications and the uwsgi module to communicate with a
uWSGI server. The example configurations combined the directives discussed in this
chapter, as well as some discussed in other chapters.

The next chapter will introduce some modules that will help you as a developer
integrate NGINX into your application.

NGINX for the Developer
Throughout the book so far, we have seen how to configure NGINX for a number
of different scenarios. What we have not yet done is look at the possibilities that
NGINX offers the application developer. There are a number of ways that NGINX
can be integrated directly into your application. We will explore those possibilities
in the following sections:

•	 Caching integration
•	 Changing content on-the-fly
•	 Using Server Side Includes
•	 Decision-making in NGINX
•	 Creating a secure link
•	 Generating images
•	 Tracking website visitors
•	 Preventing inadvertent code execution

Caching integration
NGINX is superb at serving static content. It is designed to support over 100,000
simultaneous connections while using only minimal system resources. Integrating a
dynamic web application into such a well-architected server may mean a performance
hit for the server. We may not be able to support as many simultaneous connections,
but that does not mean that we cannot still give our users a snappy web experience.

NGINX for the Developer

[160]

Caching was introduced in Chapter 5, Reverse Proxy Advanced Topics. In this section,
we will take an in-depth view of integrating NGINX's caching mechanisms into a web
application. Your web application may already cache to a certain extent. Perhaps it
writes pre-rendered pages into a database so that an expensive rendering task does
not have to be repeated at each page view. Or, even better, your application may write
prerendered pages into the filesystem, so that they can simply be served by NGINX's
stellar static file performance. No matter the caching mechanism your application
already has (even if it has none), NGINX offers a way to integrate it into the server.

No application caching
When your application does no caching at all, NGINX can still help speed up your
users' response times. Both the proxy and the fastcgi modules are able to make
use of this caching feature. You will therefore either be using the proxy_cache_*
or the fastcgi_cache_* directives to configure caching for your application.
The proxy_cache_* directives were described in the Caching section in Chapter 5,
Reverse Proxy Advanced Topics; the fastcgi_cache_* directives summarized
in Chapter 6, The NGINX HTTP Server.

Here we will describe how to extend your application to instruct NGINX how to
cache individual pages. This is done by using headers sent to NGINX. You can use
either the standard Expires and Cache-Control headers or the special X-Accel-
Expires header, which NGINX interprets for caching and does not pass on to the
client. This header allows the application to completely control how long NGINX
caches a file. This makes it very easy to expire normally long-lived objects.

Let's say that you have a news application that's suffering from slow page load
times. This can happen for different reasons, but after analysis, you have determined
that each page is rendered in real time from the content stored in a database. When
a user visits the site, this causes a new database connection to be opened, multiple
SQL queries to be made, and the result to be parsed, before a fully-rendered page
can be delivered to that user. Due to multiple connections in the application's
backend system, the architecture cannot easily be restructured to make use of
a more reasonable rendering strategy.

Given these restrictions, you decide on the following caching strategy:

•	 The front page is to be cached for 1 minute, as this contains links to articles
and the list is frequently updated

•	 Each article will be cached for 1 day because once written they don't change,
but we don't want the cache to be filled with older entries that need to be
removed due to lack of space

Chapter 7

[161]

•	 Any image will be cached for as long as possible, due to the images
also being stored in the database, making it a truly expensive operation
to retrieve them

We will configure NGINX to support this strategy as follows:

http {

 # here we configure two separate shared memory zones for the keys/
metadata
 # and filesystem paths for the cached objects themselves
 proxy_cache_path /var/spool/nginx/articles keys_zone=ARTICLES:16m
levels=1:2 inactive=1d;

 proxy_cache_path /var/spool/nginx/images keys_zone=IMAGES:128m
levels=1:2 inactive=30d;

 # but both paths still lie on the same filesystem as proxy_temp_
 path
 proxy_temp_path /var/spool/nginx;

 server {

 location / {

 # this is where the list of articles is found
 proxy_cache_valid 1m;

 }

 location /articles {

 # each article has a URI beginning with "/articles"
 proxy_cache_valid 1d;

 }

 location /img {

 # every image is referenced with a URI under "/img"
 proxy_cache_valid 10y;

 }

}

That takes care of our requirements. We have now activated caching for a legacy
application that has no caching support.

NGINX for the Developer

[162]

Caching in the database
If your application currently caches prerendered pages in a database, it should be
possible without too much additional effort to place those pages into a memcached
instance instead. NGINX is capable of answering requests directly from what is
stored in memcached. The logic is shown in the following figure:

The interface is very simple, allowing it to be as flexible as possible. NGINX looks
up a key in the store. If it is found, the value is returned to the client. Constructing
the proper key is a configuration task, which we will discuss next. Storing the value
at that key is outside the scope of what NGINX was designed to do. That job belongs
to the application.

Determining which key to use is a fairly simple task. For resources that
are not personalized, the best key to use is the URI itself. This is set in the
$memcached_key variable:

location / {

 set $memcached_key $uri;

 memcached_pass 127.0.0.1:11211;

}

Chapter 7

[163]

If your application reads request arguments to construct a page, then the $memcached_
key should include these as well:

location / {

 set $memcached_key "$uri?$args";

 memcached_pass 127.0.0.1:11211;

}

If the key is not present, NGINX will need a means of requesting the page from
the application. Hopefully, the application will then write the key/value pair into
memcached so that the next request can be directly served from memory. NGINX
will report a "Not Found" error if the key couldn't be found in memcached, so
the best way to then pass the request to the application is to use the error_page
directive and a location to handle the request. We should also include the error
codes for a "Bad Gateway" error and a "Gateway Timeout" error, in case memcached
does not respond to our key lookup:

server {

 location / {

 set $memcached_key "$uri?$args";

 memcached_pass 127.0.0.1:11211;

 error_page 404 502 504 = @app;

 }

 location @app {

 proxy_pass 127.0.0.1:8080;

 }

}

Remember that by using the equals sign (=) in the arguments to error_page, NGINX
will substitute in the return code from the last argument. This enables us to turn an
error condition into a normal response.

NGINX for the Developer

[164]

The following table describes the directives available with the memcached module,
which is compiled into an nginx binary by default:

Table: Memcached module directives

Directive Explanation
memcached_buffer_size The size of the buffer for the response from

memcached. This response is then sent
synchronously to the client.

memcached_connect_timeout The maximum length of time NGINX will
wait for its connection to be accepted when
making a request to a memcached server.

memcached_next_upstream The conditions under which a request will
be passed to the next memcached server, as
specified by one or more of the following
parameters:

•	 error: An error occurred when
communicating with the memcached
server

•	 timeout: A timeout was reached
when communicating with the
memcached server

•	 invalid_response: The
memcached server returned an
empty or otherwise invalid response

•	 not_found: The key was not found
on this memcached instance

•	 off: Disables passing a request to
the next memcached server

memcached_pass Specifies the name or address of a
memcached server and its port. May also
be a server group, as declared in an
upstream context.

memcached_read_timeout Specifies the length of time that needs
to elapse between two successive read
operations from a memcached server before
the connection is closed.

memcached_send_timeout The length of time that needs to elapse
between two successive write operations to
a memcached server before the connection
is closed.

Chapter 7

[165]

Caching in the filesystem
Suppose your application writes prerendered pages as files. You know how long
each file should be valid. You can configure NGINX to deliver certain headers with
each file that instruct the client, and any proxy in between, how long the file should
be cached. In this way, you have enabled a local cache for your users without having
to change a single line of code.

You can do this by setting the Expires and Cache-Control headers. These are
standard HTTP headers understood by clients and HTTP proxies alike. No change
is required in your application; you merely need to set these headers in the NGINX
configuration block for the corresponding locations. NGINX makes it convenient by
providing the expires and add_header directives.

Table: Header modifying directives

Directive Explanation
add_header Adds fields to a header present in the

responses with HTTP codes 200, 204, 206,
301, 302, 303, 304, or 307.

expires Adds or modifies the Expires and
Cache-Control headers. The parameters
can be an optional modified parameter,
followed by time, or one of epoch,
max, or off. If time alone is present,
the Expires header will be set to the
current time plus the time specified in
the time parameter. Cache-Control
will be set to max-age=t, where t is the
time specified as an argument, in seconds.
If the modified parameter precedes a
time value, the Expires header is set to
the file's modification time plus the time
specified in the time parameter. If the
time contains an @, the time specified
will be interpreted as the time of day;
for example, @12h is 12 noon. epoch is
defined to be the exact date and time Thu,
01 Jan 1970 00:00:01 GMT. max
sets Expires to Thu, 31 Dec 2037
23:55:55 GMT and Cache-Control
to 10 years. Any negative time will set
Cache-Control to no-cache.

NGINX for the Developer

[166]

Knowing what you do about the files your application generates, you can set these
headers appropriately. Let's take an example application where the main page should
be cached for 5 minutes, all JavaScript and CSS files for 24 hours, each HTML page for
3 days, and each image for as long as possible:

server {

 root /home/www;

 location / {

 # match the index.html page explicitly so the *.html below
 # won't match the main page
 location = /index.html	 {

 expires 5m;

 }

 # match any file ending in .js or .css (Javascript or CSS
 files)
 location ~* /.*\.(js|css)$ {

 expires 24h;

 }

 # match any page ending in .html
 location ~* /.*\.html$ {

 expires 3d;

 }

 }

 # all of our images are under a separate location (/img)
 location /img {

 expires max;

 }

}

Chapter 7

[167]

To see how this configuration sets the headers, let's take a look at what each location
looks like in the browser. Each modern browser has a tool either built-in or available
as a plug-in that enables you to view the headers of both the request and the response.
The following series of screenshots show how Chrome displays the response headers
for these locations:

•	 The main page (index.html): The Expires header is set to 5 minutes later
than the Date header. The Cache-Control header has a max-age parameter
set to 300 seconds.

•	 A CSS file: The Expires header is set to 24 hours later than the Date header.
The Cache-Control header has a max-age parameter of 86400 seconds.

NGINX for the Developer

[168]

•	 An HTML file: The Expires header is set to 3 days later than the Date header.
The Cache-Control header has a max-age parameter set to 259200 seconds.

•	 An image: The Expires header is set to Thu, 31 Dec 2037 23:55:55 GMT.
The Cache-Control header has a max-age parameter set to 315360000 seconds.

Just by setting the one directive, expires, in the appropriate location, we can ensure
that our prerendered files are cached locally for as long as they should be.

Changing content on-the-fly
Sometimes it may be helpful post-process what comes from your application.
Maybe you would like to add a string at a certain point in your page to show
which frontend server delivered that page to the client. Or maybe you would
like to perform a transformation on the rendered HTML page. NGINX provides
three modules that could be useful here: the addition module, the sub module,
and the xslt module.

Chapter 7

[169]

The addition module
The addition module works as a filter to add text before and/or after a response.
It is not compiled by default, so if you want to make use of this feature, you must
enable it at configure time by adding --with-http_addition_module.

This filter works by referencing a subrequest, which is then either appended to a
request, or placed at the beginning of one:

server {

 root /home/www;

 location / {

 add_before_body /header;

 add_after_body /footer;

 }

 location /header {

 proxy_pass http://127.0.0.1:8080/header;

 }

 location /footer {

 proxy_pass http://127.0.0.1:8080/footer;

 }

}

The addition module directives are summarized in the following table:

Table: HTTP addition module directives

Directive Explanation
add_before_body Adds the result of processing a subrequest

before the response body.
add_after_body Adds the result of processing a subrequest

after the response body.
addition_types Lists the MIME types of a response in

addition to text/html, in which an
addition will be made. It may be * to
enable all MIME types.

NGINX for the Developer

[170]

The sub module
The sub module works as a filter to replace (substitute) one text for another. It is not
compiled by default, so if you want to make use of this feature, you must enable it at
configure time by adding --with-http_sub_module.

It is fairly easy to work with. You use the sub_filter directive to specify a string
to be replaced and its replacement, and the filter makes a case-insensitive match for
your string, and substitutes in the replacement:

location / {

 sub_filter </head> '<meta name="frontend" content="web3"></head>';

}

In the preceding example, we added a new meta tag to the header of the page as it
passed through NGINX.

It's also possible to make the match more than once. To do this, you set the sub_
filter_once directive to off. This can be useful to replace all relative links in a
page with absolute ones, for example:

location / {

 sub_filter_once off;

 sub_filter '<img src="img/' '<img src="/img/';

}

If there are any spaces or embedded quotes in the string to be matched, they must
be enclosed in quotes in order for NGINX to recognize them as the first parameter.

NGINX will automatically use the sub_filter directive on any HTML file. If you
want to use substitution on other types of files, such as JavaScript or CSS, just add
the corresponding MIME type to the sub_filter_types directive.

location / {

 sub_filter_types text/css;

 sub_filter url(img/ 'url(/img/';

}

Chapter 7

[171]

Since text/html is the default value, this type doesn't need
to be added—it won't be overwritten by adding additional
MIME types to be transformed. This principle applies to all
MIME type specification directives in NGINX.

The following table summarizes these directives:

Table: HTTP sub module directives

Directive Explanation
sub_filter Sets the string to be matched without

regards to case and the string to be
substituted into that match. The substitution
string may contain variables.

sub_filter_once Setting to off will cause the match in
sub_filter to be made as many times
as the string is found.

sub_filter_types Lists the MIME types of a response
in addition to text/html in which
a substitution will be made. It may
be * to enable all MIME types.

The xslt module
The xslt module works as a filter to transform XML using XSLT stylesheets. It is not
compiled by default, so if you would like to make use of it, you will need to install
the libxml2 and libxslt libraries and enable compilation of the module by passing
--with-http_xslt_module to NGINX's configure script.

To use the xslt module, you define a DTD in which the character entities are declared.
You then specify one or more XSLT stylesheets and their corresponding parameters to
process the XML document:

location / {

 xml_entities /usr/local/share/dtd/entities.dtd;

 xsl_stylesheet /usr/local/share/xslt/style1.xslt;

 xsl_stylesheet /usr/local/share/xslt/style2.xslt theme=blue;

}

NGINX for the Developer

[172]

The directives included in the xslt module are summarized in the following table:

Table: HTTP XSLT module directives

Directive Explanation
xml_entities The path to the DTD that declares the

character entities referenced in the XML to be
processed.

xslt_param Parameters passed to the stylesheets, whose
values are XPath expressions.

xslt_string_param Parameters passed to the stylesheets, whose
values are strings.

xslt_stylesheet The path to an XSLT stylesheet used to
transform an XML response. Parameters may
be passed as a series of key/value pairs.

xslt_types Lists the MIME types of a response in
addition to text/xml in which a substitution
will be made. It may be * to enable all MIME
types. If the transformation results in an
HTML response, the MIME type will be
changed to text/html.

Using Server Side Includes
The ssi module is also a filter, and one of NGINX's most flexible. It enables the use
of Server Side Includes for processing logic embedded in a webpage. It supports a
series of commands that are controlled by the following directives:

Table: Server Side Includes directives

Directive Explanation
ssi Enables the processing of SSI files.
ssi_silent_errors Suppresses the error message normally output

when an error occurs during SSI processing.
ssi_types Lists the MIME types of a response in addition

to text/html in which SSI commands are
processed. It may be * to enable all MIME
types.

Chapter 7

[173]

The Server Side Includes commands supported by NGINX are shown in the
following table. They all follow the following pattern:

 <!--# command parameter1=value1 parameter2=value2 … -->

Table: Server Side Includes commands

Command Argument Explanation
block Defines a section that can be

referenced in the include
command. Ends with <!--#
endblock -->.

name Name of the block.
config Sets global parameters used

during SSI processing.
errmsg Configures the string used as the

error message if something goes
wrong during SSI processing.
The default is [an error
occurred while processing
the directive].

timefmt A string passed to strftime()
to format a timestamp used in
other commands. The default is
%A, %d-%b-%Y %H:%M:%S %Z.

echo Writes out the value of a variable.
var The name of the variable whose

value is written out.
encoding The encoding method used for

the variable. The value it can take
is one of none, url, and entity.
The default is entity.

default A value to write out if the
variable is undefined. If unset,
none is the default.

if Evaluates a condition. If true, the
block enclosed will be included.
The sequence if, elsif, else,
and endif is supported one level
deep.

NGINX for the Developer

[174]

Command Argument Explanation
expr The expression to be evaluated

for truth:
•	 variable existence

(expr="$var")
•	 text comparison

(expr="$var = text"
or expr="$var !=
text")

•	 regular expression
match (expr="$var
= /regexp/" or
expr="$var != /
regexp/")

include Writes the result of a subrequest.
file The name of a file to include.
virtual The URI of a subrequest to

include.
stub The block to be included instead

of an empty body, or if there was
an error in processing.

wait If there are multiple include
commands on the same page,
they will be processed serially
if this parameter is present.

set If the subrequest made in
virtual is to a proxy_pass or
memcached_pass location,
the result can be stored in the
variable named as the argument
to set.

set Creates a variable and sets the
value to it.

var The name of the variable to be
set.

value The value of the variable to set.

Chapter 7

[175]

An SSI file is nothing more than an HTML file with these commands embedded
within comments. That way, if ssi isn't enabled for a particular location that
contains such a file, the HTML portion will still render, albeit incompletely.

The following is an example of an SSI file which uses calls to a subrequest to render
the header, footer, and menu of a page:

<html>
 <head>
 <title>*** SSI test page ***</title>
 <link rel="stylesheet" href="/css/layout.css" type="text/css"/>
 <!--# block name="boilerplate" -->
 <p>...</p>
 <!--# endblock -->
 </head>
 <body>
 <div id="header">
 <!--# include virtual="/render/header?page=$uri"
 stub="boilerplate" -->
 </div>
 <div id="menu">
 <!--# include virtual="/render/menu?page=$uri"
 stub="boilerplate" -->
 </div>
 <div id="content">
 <p>This is the content of the page.</p>
 </div>
 <div id="footer">
 <!--# include virtual="/render/footer?page=$uri"
 stub="boilerplate" -->
 </div>
 </body>
</html>

The stub is used to render some default content in case of an error in processing
the subrequest.

If these primitives don't offer enough flexibility in processing logic, you can
use the embedded perl module to solve just about any other processing or
configuration need you may have.

NGINX for the Developer

[176]

Decision-making in NGINX
You may find yourself trying to bend NGINX's configuration directives in ways that
they were not meant to be used. This is frequently seen in configurations where there
are a lot of if checks to try to emulate some sort of logic chain. A better option would
be to use NGINX's embedded perl module. With this module, you will be able to use
the flexibility of Perl to achieve your configuration goals.

The perl module is not built by default, so it needs to be enabled with the --with-
http_perl_module configure switch. Ensure as well that your Perl was built with
-Dusemultiplicity=yes (or -Dusethreads=yes) and -Dusemymalloc=no. NGINX
configuration reloads will cause the perl module to leak memory over time, so this
last parameter is included to help mitigate that problem.

After having built an nginx with embedded Perl, the following directives
are available:

Table: Perl module directives

Directives Explanation
perl Activates a Perl handler for this location. The

argument is the name of the handler or a string
describing a full subroutine.

perl_modules Specifies an additional search path for Perl
modules.

perl_require Indicates a Perl module that will be loaded at
each NGINX reconfiguration. May be specified
multiple times for separate modules.

perl_set Installs a Perl handler to set the value of a
variable. The argument is the name of the
handler or a string describing a full subroutine.

When writing Perl scripts to be used in an NGINX configuration, you have use of
the $r object, representing the request. The methods on this object are as follows:

•	 $r->args: The request arguments.
•	 $r->filename: The name of the file referenced by the URI.
•	 $r->has_request_body(handler): If there is a request body, the handler

will be called.
•	 $r->allow_ranges: Enables the use of byte ranges in a response.
•	 $r->discard_request_body: Discards the body of the request.

Chapter 7

[177]

•	 $r->header_in(header): The value of the specified request header.
•	 $r->header_only: Instructs NGINX to return only the header to the client.
•	 $r->header_out(header, value): Sets the specified response header to

this value.
•	 $r->internal_redirect(uri): Makes an internal redirect to the specified

URI once the Perl handler has completed execution.
•	 $r->print(text): Prints the specified text out to the client.
•	 $r->request_body: The body of the request, if it fits in memory.
•	 $r->request_body_file: The body of the request, if written out to a

temporary file.
•	 $r->request_method: The HTTP method of the request.
•	 $r->remote_addr: The client's IP address.
•	 $r->flush: Immediately send data to the client.
•	 $r->sendfile(name[, offset[, length]]): Sends the specified file to

the client, with an optional offset and length, once the Perl handler has
completed execution.

•	 $r->send_http_header([type]): Sends the response headers to the client,
with an optional content type.

•	 $r->status(code): Sets the HTTP status of the response.
•	 $r->sleep(milliseconds, handler): Sets a timer to execute the handler

after having waited the specified number of milliseconds. NGINX will
continue processing other requests while the timer is running.

•	 $r->unescape(text): Decodes URI-encoded text.
•	 $r->uri: The URI in the request.
•	 $r->variable(name[, value]): Either returns a named, request-local

variable or sets one to the specified value.

The perl module may also be used within Server Side Includes. An SSI command
using Perl has the following format:

<!--# perl sub="module::function" arg="parameter1" arg="parameter2"
... -->

Let's take a look at an example of using the perl module. Our goal is to pass requests
to a different upstream server, as determined by the first letter of the request URI. We
could implement this as a series of locations in NGINX, but it will be more concise
expressed as a Perl handler.

NGINX for the Developer

[178]

The first step is to define the processing actions in a Perl handler:

upstreammapper.pm

name our package
package upstreammapper;

include the nginx request methods and return code definitions
use nginx;

this subroutine will be called from nginx
sub handler {

 my $r = shift;

 my @alpha = ("a".."z");

 my %upstreams = ();

 # simplistically create a mapping between letter and
 # an IP which is between 10 and 35 of that network
 foreach my $idx (0..$#alpha) {

 $upstreams{ $alpha[$idx] } = $idx + 10;

 }

 # get the URI into an array
 my @uri = split(//,$r->uri);

 # so that we can use the first letter as a key
 my $ip = "10.100.0." . $upstreams{ $uri[1] };

 return $ip;

}

1;

__END__

Chapter 7

[179]

Then we set up NGINX to use this module to do the mapping:

http {

 # this path is relative to the main configuration file
 perl_modules perl/lib;

 perl_require upstreammapper.pm;

 # we'll store the result of the handler in the $upstream variable
 perl_set $upstream upstreammapper::handler;

Then we pass the request along to the correct upstream server:

 location / {

 include proxy.conf;

 proxy_pass http://$upstream;

 }

}

We have seen a very simple example of implementing some configuration logic in a
Perl handler. Just about any kind of special requirement can be done in a similar way.

Request processing in a Perl handler should be as well-defined
as possible. Whenever NGINX has to wait on a Perl handler
finishing, the whole worker responsible for handling that
request will block. So, any I/O or DNS-related tasks should
be done outside of a Perl handler.

Creating a secure link
You may have cause to protect certain content on your site, but do not want to
integrate full user authentication to allow access to that content. One way of enabling
this is to use NGINX's secure_link module. By passing configure the --with-http_
secure_link switch at compile time, you get access to the secure_link_secret
directive, and its corresponding variable $secure_link.

NGINX for the Developer

[180]

The secure_link module works by computing the MD5 hash of a link concatenated
with a secret word. If the hash matches that found in the URI, then the $secure_
link variable is set to the portion of the URI after the hash. If there is no match,
then $secure_link is set to the empty string.

One possible scenario is to generate a page of download links using a secret word.
This word is then placed in the NGINX configuration to enable access to these links.
The word and page are replaced periodically to prevent saved links from being
called again at a later time. The following example illustrates this scenario.

We first decide on a secret word supersecret. Then, we generate the MD5 hash of
the links we want to enable:

$ echo -n "alphabet_soup.pdfsupersecret" |md5sum
8082202b04066a49a1ae8da9ec4feba1 -

$ echo -n "time_again.pdfsupersecret" |md5sum
5b77faadb4f5886c2ffb81900a6b3a43 -

Now, we can create the HTML for our links:

<a href="/downloads/8082202b04066a49a1ae8da9ec4feba1/alphabet_soup.
pdf">alphabet soup
<a href="/downloads/5b77faadb4f5886c2ffb81900a6b3a43/time_again.
pdf">time again

These will only be valid if we use the same secure_link_secret directive in our
configuration that we used to generate these hashes:

any access to URIs beginning with /downloads/ will be protected
location /downloads/ {

 # this is the string we used to generate the hashes above
 secure_link_secret supersecret;

 # deny access with a Forbidden if the hash doesn't match
 if ($secure_link = "") {

 return 403;

 }

 try_files /downloads/$secure_link =404;

}

Chapter 7

[181]

To ensure that links without a hash will not work, we can add an additional link to
our HTML:

bare link

Calling this link reports a "403 Forbidden" error, as it should.

The technique for generating a secure_link module described
before is just one possible way of solving this type of problem.
NGINX itself even offers an alternative way described at
http://wiki.nginx.org/HttpSecureLinkModule.

Generating images
Instead of writing an image manipulation module for your application, you can
configure NGINX to handle some simple transformations. If your image-manipulation
needs are as simple as rotating an image, resizing it, or cropping it, NGINX is capable
of doing this for you.

To make use of this functionality, you need to have installed the libgd library, and
enabled the image_filter module at compile-time (--with-http_image_filter_
module). If that is the case, you now have use of the directives in the following table:

The GD library (libgd) is an image generation library written in C.
It is often used in combination with a programming language such as
PHP or Perl to generate images for websites. NGINX's image_filter
module uses libgd to provide the capability of creating a simple
image resizing proxy, which we discuss in the following example.

Table: Image filter directives

Directive Explanation
empty_gif Causes a 1x1 pixel transparent GIF to be

emitted for that location.
image_filter Transforms an image according to one of the

following parameters:
•	 off: Turns off image transformation.
•	 test: Ensures that responses are

either GIF, JPEG, or PNG images.
If not, an error 415 (Unsupported
Media Type) is returned.

NGINX for the Developer

[182]

Directive Explanation
•	 size: Emits information about an

image in JSON format.
•	 rotate: Rotates an image counter-

clockwise by either 90, 180, or 270
degrees.

•	 resize: Reduces an image
proportionally by the width and
height given. One dimension may
be "-" in order to reduce by only
the other dimension. If combined
with rotate, rotation happens
after reduction. An error will result
in returning 415 (Unsupported
Media Type).

•	 crop: Reduces an image by the size
of the largest side, as specified by
the width and height given. Any
extraneous space along the other
edges will be cut. One dimension
may be "-" in order to reduce by only
the other dimension. If combined
with rotate, rotation happens
before reduction. An error will result
in returning 415 (Unsupported Media
Type).

image_filter_
buffer

The size of the buffer used to process
images. If more memory is needed, the
server will return a 415 error (Unsupported
Media Type).

image_filter_jpeg_
quality

The quality of the resulting JPEG image,
after processing. Not recommended to
exceed 95.

image_filter_
sharpen

Increases the sharpness of a processed
image by this percentage.

image_filter_
transparency

Disables preserving transparency of
transformed GIF and PNG images.
The default on preserves transparency.

Note that the empty_gif directive is not part of the image_filter module, but is
included in a default installation of NGINX.

Chapter 7

[183]

Using these directives, we can construct an image resizing module as follows:

location /img {

 try_files $uri /resize/$uri;

}

location ~* /resize/(?.<name>.*)_(?<width>[[:digit:]]*)
x(?<height>[[:digit:]]*)\.(?<extension>gif|jpe?g|png)$ {

 error_page 404 = /resizer/$name.$extension?width=$width&height=$
 height;

}

location /resizer {

 image_filter resize $arg_width $arg_height;

}

This little snippet will first try to serve an image as requested in the URI. If it
cannot find an appropriately-named image, it will then move on to the /resize
location. The /resize location is defined as a regular expression so that we can
capture the size we'd like the image to be. Note that we use named capture groups
to create meaningful variable names. We then pass these on to the /resizer
location so that we have the name of the original file as the URI and the width
and height as named arguments.

We can now combine this with NGINX's proxy_store or proxy_cache capability to
save the resized images so that another request for the same URI won't need to hit
the image_filter module:

server {

 root /home/www;

 location /img {

 try_files $uri /resize/$uri;

 }

 location /resize {

 error_page 404 = @resizer;

NGINX for the Developer

[184]

 }

 location @resizer {

 internal;

 proxy_pass http://localhost:8080$uri;

 proxy_store /home/www/img$request_uri;

 proxy_temp_path /home/www/tmp/proxy_temp;

 }

}

server {

 listen 8080;

 root /home/www/img;

 location ~* /resize/(?.<name>.*)_(?<width>[[:digit:]]*)
 x(?<height>[[:digit:]]*)\.(?<extension>gif|jpe?g|png)$ {

 error_page 404 = /resizer/$name.$extension?width=$width&heigh
 t=$height;

 }

 location /resizer {

 image_filter resize $arg_width $arg_height;

 }

}

As you can see in the table of directives for the image_filter module, any error
returned by this module has the code 415. We can catch this error to replace it with
an empty GIF, so that the end user will still get an image instead of an error message:

location /thumbnail {

 image_filter resize 90 90;

 error_page 415 = @empty;

}

Chapter 7

[185]

location = @empty {

 access_log off;

 empty_gif;

}

The size parameter to image_filter deserves special mention. When this parameter
is configured for a location, information about the image is delivered instead of the
image itself. This could be useful in your application for discovering metadata about
an image before calling a resize or crop URI:

location /img {

 image_filter size;

}

The result is a JSON object such as the following:

{ "img" : { "width": 150, "height": 200, "type": "png" } }

Tracking website visitors
A fairly unobtrusive way to track unique website visitors is to use the userid module.
This module sets cookies that are used to identify unique clients. The value of these
cookies is referenced by the $uid_set variable. When that same user returns to the
site and the cookie is still valid, the value is available in the $uid_got variable. An
example of how to use these is as follows:

http {

 log_format useridcomb '$remote_addr - $uid_got [$time_local] '
 '"$request" $status $body_bytes_sent '
 '"$http_referer" "$http_user_agent"';

 server {

 server_name .example.com;

 access_log logs/example.com-access.log useridcomb;

 userid on;

NGINX for the Developer

[186]

 userid_name uid;

 userid_domain example.com;

 userid_path /;

 userid_expires 365d;

 userid_p3p 'policyref="/w3c/p3p.xml", CP="CUR ADM OUR NOR
 STA NID"';

 }

}

These directives are summarized in the following table:

Table: UserID module directives

Directive Explanation
userid Activates the module according to the

following parameters:
•	 on: Sets Version 2 cookies and logs

those received
•	 v1: Sets Version 1 cookies and logs

those received
•	 log: Disables setting of cookies, but

enables logging them
•	 off: Disables both the setting of

cookies and the logging of them
userid_domain Configures a domain to be set in the cookie.
userid_expires Sets the age of the cookie. If the keyword

max is used, this translates to 31 Dec 2037
23:55:55 GMT.

userid_name Sets the name of the cookie (default is uid).
userid_p3p Configures the P3P header; for sites which

declare their privacy policy using the
Platform for Privacy Preferences Project's
protocol.

userid_path Defines the path set in the cookie.
userid_service Identity of the service that set the cookie.

For example, the default value for Version
2 cookies is the IP address of the server that
set the cookie.

Chapter 7

[187]

Preventing inadvertent code execution
When trying to construct a configuration that does what you expect it to do, you
may inadvertently enable something that you did not expect. Take the following
configuration block, for example:

location ~* \.php {

 include fastcgi_params;

 fastcgi_pass 127.0.0.1:9000;

}

Here we seem to be passing all requests for PHP files to the FastCGI server responsible
for processing them. This would be OK if PHP only processed the file it was given,
but due to differences in how PHP is compiled and configured this may not always be
the case. This can become a problem if user uploads are made into the same directory
structure that PHP files are in.

Users may be prevented from uploading files with a .php extension, but are allowed
to upload .jpg, .png, and .gif files. A malicious user could upload an image file
with the embedded PHP code, and cause the FastCGI server to execute this code
by passing a URI with the uploaded filename in it.

To prevent this from happening, either set the PHP parameter cgi.fix_pathinfo
to 0 or use something similar to the following in your NGINX configuration:

location ~* \.php {

 try_files $uri =404;

 include fastcgi_params;

 fastcgi_pass 127.0.0.1:9000;

}

We have used try_files to ensure that the file actually exists before passing the
request on to the FastCGI server for PHP processing.

Keep in mind that you should evaluate your configuration
to see if it matches your goals. If you have only a few files,
you would be better served by explicitly specifying which
PHP files may be executed instead of the regular expression
location and corresponding try_files.

NGINX for the Developer

[188]

Summary
NGINX provides a number of ways to support developers wishing to integrate
a high-performance web server into their application. We looked at various
possibilities of integrating both legacy and new applications. Caching plays a
key role in the modern web application. NGINX offers both passive and active
ways of using caching to help deliver a web page more quickly.

We also explored how NGINX can help manipulate a response by adding or replacing
text. Server Side Includes are also possible with NGINX. We saw a way of integrating
these commands into normal text. We then examined the powerful embedded Perl
capabilities in NGINX. Image transformation is also possible using just core NGINX.
We examined how to set a unique cookie to track website visitors. We wound up the
chapter with a word of caution about how to prevent code from inadvertently being
executed. On the whole, there are quite a few tools at the developer's disposal when
working with NGINX as a web server.

In the next chapter, we will explore troubleshooting techniques to try to get at the
root of the problem when something doesn't work as expected.

Troubleshooting Techniques
We live in an imperfect world. Despite our best intentions and planning, sometimes
things don't turn out the way we had expected. We need to be able to step back and
take a look at what went wrong. When we cannot immediately see what is causing the
error, we need to be able to reach into a toolbox of techniques for helping us discover
the problem. This process of figuring out what went wrong and how to fix it is what
we call troubleshooting.

In this chapter, we will explore different techniques for troubleshooting NGINX:

•	 Analyzing log files
•	 Configuring advanced logging
•	 Common configuration errors
•	 Operating system limits
•	 Performance problems
•	 Using the Stub Status module

Analyzing log files
Before going into a prolonged debugging session trying to track down the cause of a
problem, it is usually helpful to first look at the log files. They will often provide the
clue we need to track down the error and correct it. The messages that appear in the
error_log can sometimes be a bit cryptic, however, so we will discuss the format of
the log entries and then take a look at a few examples to show you how to interpret
what they mean.

Troubleshooting Techniques

[190]

Error log file formats
NGINX uses a couple of different logging functions that produce the error_log
entries. The formats used with these functions take on the following patterns:

<timestamp> [log-level] <master/worker pid>#0: message

For example:

2012/10/14 18:56:41 [notice] 2761#0: using inherited sockets from "6;"

This is an example of informational messages (log level notice). In this case, an nginx
binary has replaced a previously-running one, and was able to successfully inherit the
old binary's sockets.

The error-level logger produces a message like the following:

2012/10/14 18:50:34 [error] 2632#0: *1 open() "/opt/nginx/html/blog"
failed (2: No such file or directory), client: 127.0.0.1, server: www.
example.com, request: "GET /blog HTTP/1.0", host: "www.example.com"

Depending on the error, you will see messages from the operating system (such as in
this case), or just from NGINX itself. In this case, we see the following components:

•	 timestamp (2012/10/14 18:50:34)
•	 log level (error)
•	 worker pid (2632)
•	 connection number (1)
•	 system call (open)
•	 argument to the system call (/opt/nginx/html/blog)
•	 error message resulting from the system call (2: No such file or

directory)
•	 which client made the request resulting in the error (127.0.0.1)
•	 which server context was responsible for handling the request (www.

example.com)
•	 the request itself (GET /blog HTTP/1.0)
•	 the Host header sent in the request (www.example.com)

Here is an example of a critical-level log entry:

2012/10/14 19:11:50 [crit] 3142#0: the changing binary signal is ignored:
you should shutdown or terminate before either old or new binary's
process

Chapter 8

[191]

A critical-level message means that NGINX cannot perform the requested action.
If it was not already running, this means that NGINX would not start.

Here is an example of an emergency message:

2012/10/14 19:12:05 [emerg] 3195#0: bind() to 0.0.0.0:80 failed (98:
Address already in use)

An emergency message also means that NGINX could not do what was requested.
It also means that NGINX won't start, or if it was already running when asked to
read the configuration, it won't perform the requested change.

If you are wondering why your configuration change is not taking
effect, check the error log. NGINX has most likely encountered an
error in the configuration and has not applied the change.

Error log file entry examples
The following are some examples of error messages found in real log files. After each
example, a short explanation of what it could mean follows. Please note that the exact
text may be different from what you see in your log files, due to improvements made
in newer releases of NGINX.

Look at the following log file entry example:

2012/11/29 21:31:34 [error] 6338#0: *1 upstream prematurely
closed connection while reading response header from upstream,
client: 127.0.0.1, server: , request: "GET / HTTP/1.1", upstream:
"fastcgi://127.0.0.1:8080", host: "www.example.com"

Here we have a message that could be interpreted in a couple of ways. It might
mean that the server we are talking to has an error in its implementation, and
does not speak the FastCGI protocol properly. It could also mean that we have
mistakenly directed traffic to an HTTP server, instead of a FastCGI server. If that
is the case, a simple configuration change (using proxy_pass instead of fastcgi_
pass, or using the correct address for the FastCGI server) could fix the problem.

This type of message could also simply mean that the upstream server takes too
long to generate a response. The reason could be due to a number of factors, but
the solution, as far as NGINX is concerned, is fairly simple: increase the timeouts.
Depending on which module was responsible for making this connection, the
proxy_read_timeout or fastcgi_read_timeout (or other *_read_timeout)
directive would need to be increased from the default value of 60s.

Troubleshooting Techniques

[192]

Look at the following log file entry example:

2012/11/29 06:31:42 [error] 2589#0: *6437 client intended to send too
large body: 13106010 bytes, client: 127.0.0.1, server: , request: "POST
/upload_file.php HTTP/1.1", host: "www.example.com", referrer: "http://
www.example.com/file_upload.html"

This one is fairly straightforward. NGINX reports that the file could not be uploaded
because it is too large. To fix this problem, raise the value of client_body_size. Keep
in mind that due to encoding, the uploaded size will be about 30 percent greater than
the file size itself (for example, if you want to allow your users to upload files up to
12 MB, set this directive to 16m).

Look at the following log file entry example:

2012/10/14 19:51:22 [emerg] 3969#0: "proxy_pass" cannot have URI part in
location given by regular expression, or inside named location, or inside
"if" statement, or inside "limit_except" block in /opt/nginx/conf/nginx.
conf:16

In this example, we see that NGINX won't start due to a configuration error. The error
message is very informative as to why NGINX won't start. We see that there is a URI
in the argument to the proxy_pass directive in a place where it should not have one.
NGINX even tells us on which line (here 16) of which file (/opt/nginx/conf/nginx.
conf) the error occurred.

2012/10/14 18:46:26 [emerg] 2584#0: mkdir() "/home/www/tmp/proxy_temp"
failed (2: No such file or directory)

This is an example of a case where NGINX won't start because it can't perform what
was asked of it. The proxy_temp_path directive specifies a location for NGINX to store
temporary files when proxying. If NGINX cannot create this directory, it won't start,
so ensure that the path leading up to this directory exists.

Look at the following log file entry example:

2012/10/14 18:46:54 [emerg] 2593#0: unknown directive "client_body_temp_
path" in /opt/nginx/conf/nginx.conf:6

We see in the preceding code what may appear to be a puzzling message. We know
that client_body_temp_path is a valid directive, but NGINX does not accept it and
gives an unknown directive message. When we think about how NGINX processes
its configuration file, we realize that this does make sense after all. NGINX is built in
a modular fashion. Each module is responsible for processing its own configuration
context. We therefore conclude that this directive appeared in a part of the
configuration file outside the context of the module that parses this directive.

Chapter 8

[193]

2012/10/16 20:56:31 [emerg] 3039#0: "try_files" directive is not allowed
here in /opt/nginx/conf/nginx.conf:16

Sometimes, NGINX will give us a hint as to what is wrong. In the preceding example,
NGINX has understood the try_files directive, but tells us that it is used in the
wrong place. It very conveniently gives us the location in the configuration file where
the error occurred, so that we can find it more easily.

2012/10/16 20:56:42 [emerg] 3043#0: host not found in upstream "tickets.
example.com" in /opt/nginx/conf/nginx.conf:22

This emergency-level message shows us how dependent NGINX is on DNS if
hostnames are used in the configuration. If NGINX can't resolve the hostnames used
in upstream, proxy_pass, fastcgi_pass, or other *_pass directives, then it won't
start. This will have implications on the order in which NGINX is started after a fresh
boot. Ensure that name resolution works at the time when NGINX starts.

2012/10/29 18:59:26 [emerg] 2287#0: unexpected "}" in /opt/nginx/conf/
nginx.conf:40

This type of message is indicative of a configuration error in which NGINX can't
close the context. Something leading up to the line given has prevented NGINX
from forming a complete context with the { and } characters. This usually means
that the previous line is missing a semicolon, so NGINX reads the } character as
part of that unfinished line.

2012/10/28 21:38:34 [emerg] 2318#0: unexpected end of file, expecting "}"
in /opt/nginx/conf/nginx.conf:21

Related to the previous error, this one means that NGINX reached the end of the
configuration file before finding a matching closing brace. This kind of error occurs
when there are unbalanced { and } characters. Using a text editor that matches sets
of braces is helpful in locating exactly where one is missing. Depending on where
that missing brace is inserted, the configuration can end up meaning something
completely different from what was intended.

2012/10/29 18:50:11 [emerg] 2116#0: unknown "exclusion" variable

Here we see an example of using a variable without first declaring it. This means
that $exclusion appeared in the configuration before a set, map, or geo directive
defined what the value was to be. This type of error could also be indicative of
a typo. We may have defined the $exclusions variable, but mistakenly later
referenced it as $exclusion.

2012/11/29 21:26:51 [error] 3446#0: *2849 SSL3_GET_FINISHED:digest check
failed

Troubleshooting Techniques

[194]

This means that you need to disable SSL session reuse. You can do this by setting the
proxy_ssl_session_reuse directive to off.

Configuring advanced logging
Under normal circumstances, we want logging to be as minimal as possible. Usually
what's important is which URIs were called by which clients and when, and if there
was an error, to show the resulting error message. If we want to see more information,
that leads into a debug logging configuration.

Debug logging
To activate debug logging, the nginx binary needs to have been compiled with the
--with-debug configure flag. As this flag is not recommended for high performance
production systems, we may want to provide two separate nginx binaries for our
needs: one which we use in production, and one that has all the same configure
options, with the addition of --with-debug so that we may simply swap out the
binary at runtime in order to be able to debug.

Switching binaries at runtime
NGINX provides the capability to switch out binaries at runtime. After having
replaced the nginx binary with a different one, either because we're upgrading or we
would like to load a new NGINX which has different modules compiled in, we can
begin the procedure for replacing a running nginx binary:

1.	 Send the running NGINX master process a USR2 signal, to tell it to start
a new master process. It will rename its PID file to .oldbin (for example,
/var/run/nginx.pid.oldbin):
kill -USR2 `cat /var/run/nginx.pid`

There will now be two NGINX master processes running, each with its own
set of workers to handle incoming requests:
root 1149 0.0 0.2 20900 11768 ?? Is Fri03PM 0:00.13 nginx: master
process /usr/local/sbin/nginx

www 36660 0.0 0.2 20900 11992 ?? S 12:52PM 0:00.19 nginx: worker
process (nginx)

www 36661 0.0 0.2 20900 11992 ?? S 12:52PM 0:00.19 nginx: worker
process (nginx)

www 36662 0.0 0.2 20900 12032 ?? I 12:52PM 0:00.01 nginx: worker
process (nginx)

Chapter 8

[195]

www 36663 0.0 0.2 20900 11992 ?? S 12:52PM 0:00.18 nginx: worker
process (nginx)

root 50725 0.0 0.1 18844 8408 ?? I 3:49PM 0:00.05 nginx: master
process /usr/local/sbin/nginx

www 50726 0.0 0.1 18844 9240 ?? I 3:49PM 0:00.00 nginx: worker
process (nginx)

www 50727 0.0 0.1 18844 9240 ?? S 3:49PM 0:00.01 nginx: worker
process (nginx)

www 50728 0.0 0.1 18844 9240 ?? S 3:49PM 0:00.01 nginx: worker
process (nginx)

www 50729 0.0 0.1 18844 9240 ?? S 3:49PM 0:00.01 nginx: worker
process (nginx)

2.	 Send the old NGINX master process a WINCH signal to tell it to stop
handling new requests, and phase out its worker processes once they
are done with their current requests:
kill -WINCH `cat /var/run/nginx.pid.oldbin`

You'll get the following response output:
root 1149 0.0 0.2 20900 11768 ?? Ss Fri03PM 0:00.14 nginx: master
process /usr/local/sbin/nginx

root 50725 0.0 0.1 18844 8408 ?? I 3:49PM 0:00.05 nginx: master
process /usr/local/sbin/nginx

www 50726 0.0 0.1 18844 9240 ?? I 3:49PM 0:00.00 nginx: worker
process (nginx)

www 50727 0.0 0.1 18844 9240 ?? S 3:49PM 0:00.01 nginx: worker
process (nginx)

www 50728 0.0 0.1 18844 9240 ?? S 3:49PM 0:00.01 nginx: worker
process (nginx)

www 50729 0.0 0.1 18844 9240 ?? S 3:49PM 0:00.01 nginx: worker
process (nginx)

3.	 Send the old NGINX master process a QUIT signal, once all its worker
processes have ended, and we will have only the new nginx binary
running, responding to requests:
kill -QUIT `cat /var/run/nginx.pid.oldbin`

If there is any problem with the new binary, we can roll back to the old one before
sending the QUIT signal to the old binary:

kill -HUP `cat /var/run/nginx.pid.oldbin`

kill -QUIT `cat /var/run/nginx.pid`

Troubleshooting Techniques

[196]

If the new binary still has a master process running, you can send it a TERM signal to
force it to quit:

kill -TERM `cat /var/run/nginx.pid`

Likewise, any new worker processes that are still running may first be stopped with
a KILL signal.

Note that some operating systems will automatically perform the binary
upgrade procedure for you when the nginx package is upgraded.

Once we have our debug-enabled nginx binary running, we can configure
debug logging:

user www;

events {

 worker_connections 1024;

}

error_log logs/debug.log debug;

http {

 …

}

We have placed the error_log directive in the main context of the NGINX
configuration, so that it will be valid for each subcontext, if not overwritten
within. We can have multiple error_log directives, each pointing to a different
file and with a different logging level. In addition to debug, error_log can also
take on the following values:

•	 debug_core

•	 debug_alloc

•	 debug_mutex

•	 debug_event

•	 debug_http

•	 debug_imap

Chapter 8

[197]

Each level is to debug a specific module within NGINX.

It also makes sense to configure a separate error log per virtual server. That way,
the errors related only to that server are found in a specific log. This concept can
be extended to include the core and http modules as well:

error_log logs/core_error.log;

events {

 worker_connections 1024;

}

http {

 error_log logs/http_error.log;

 server {

 server_name www.example.com;

 error_log logs/www.example.com_error.log;

 }

 server {

 server_name www.example.org;

 error_log logs/www.example.org_error.log;

 }

}

Using this pattern, we are able to debug a particular virtual host, if that is the area
we are interested in:

 server {

 server_name www.example.org;

 error_log logs/www.example.org_debug.log debug_http;

 }

Troubleshooting Techniques

[198]

What follows is an example of debug_http level output from a single request.
Some comments as to what is going on at each point are interspersed throughout:

<timestamp> [debug] <worker pid>#0: *<connection number> http cl:-1
max:1048576

The rewrite module is activated very early on in the request processing phase:

<timestamp> [debug] <worker pid>#0: *<connection number> rewrite phase: 3

<timestamp> [debug] <worker pid>#0: *<connection number> post rewrite
phase: 4

<timestamp> [debug] <worker pid>#0: *<connection number> generic phase: 5

<timestamp> [debug] <worker pid>#0: *<connection number> generic phase: 6

<timestamp> [debug] <worker pid>#0: *<connection number> generic phase: 7

Access restrictions are checked:

<timestamp> [debug] <worker pid>#0: *<connection number> access phase: 8

<timestamp> [debug] <worker pid>#0: *<connection number> access: 0100007F
FFFFFFFF 0100007F

The try_files directive is parsed next. The path to the file is constructed from any
string (http script copy) plus the value of any variable (http script var) in the
parameters to the try_files directive:

<timestamp> [debug] <worker pid>#0: *<connection number> try files phase:
11

<timestamp> [debug] <worker pid>#0: *<connection number> http script
copy: "/"

<timestamp> [debug] <worker pid>#0: *<connection number> http script var:
"ImageFile.jpg"

The evaluated parameter is then concatenated with the alias or root for that
location, and the full path to the file is found:

<timestamp> [debug] <worker pid>#0: *<connection number> trying to use
file: "/ImageFile.jpg" "/data/images/ImageFile.jpg"

<timestamp> [debug] <worker pid>#0: *<connection number> try file uri: "/
ImageFile.jpg"

Once the file is found, its contents are processed:

<timestamp> [debug] <worker pid>#0: *<connection number> content phase: 12

<timestamp> [debug] <worker pid>#0: *<connection number> content phase: 13

Chapter 8

[199]

<timestamp> [debug] <worker pid>#0: *<connection number> content phase: 14

<timestamp> [debug] <worker pid>#0: *<connection number> content phase: 15

<timestamp> [debug] <worker pid>#0: *<connection number> content phase: 16

The http filename is the full path to the file to be sent:

<timestamp> [debug] <worker pid>#0: *<connection number> http filename:
"/data/images/ImageFile.jpg"

The static module receives the file descriptor for this file:

<timestamp> [debug] <worker pid>#0: *<connection number> http static fd:
15

Any temporary content in the body of the response is no longer needed:

<timestamp> [debug] <worker pid>#0: *<connection number> http set discard
body

Once all information about the file is known, NGINX can construct the full
response headers:

<timestamp> [debug] <worker pid>#0: *<connection number> HTTP/1.1 200 OK

Server: nginx/<version>

Date: <Date header>

Content-Type: <MIME type>

Content-Length: <filesize>

Last-Modified: <Last-Modified header>

Connection: keep-alive

Accept-Ranges: bytes

The next phase involves any transformations to be performed on the file due to
output filters that may be active:

<timestamp> [debug] <worker pid>#0: *<connection number> http write
filter: l:0 f:0 s:219

<timestamp> [debug] <worker pid>#0: *<connection number> http output
filter "/ImageFile.jpg?file=ImageFile.jpg"

<timestamp> [debug] <worker pid>#0: *<connection number> http copy
filter: "/ImageFile.jpg?file=ImageFile.jpg"

<timestamp> [debug] <worker pid>#0: *<connection number> http postpone
filter "/ImageFile.jpg?file=ImageFile.jpg" 00007FFF30383040

<timestamp> [debug] <worker pid>#0: *<connection number> http write
filter: l:1 f:0 s:480317

Troubleshooting Techniques

[200]

<timestamp> [debug] <worker pid>#0: *<connection number> http write
filter limit 0

<timestamp> [debug] <worker pid>#0: *<connection number> http write
filter 0000000001911050

<timestamp> [debug] <worker pid>#0: *<connection number> http copy
filter: -2 "/ImageFile.jpg?file=ImageFile.jpg"

<timestamp> [debug] <worker pid>#0: *<connection number> http finalize
request: -2, "/ImageFile.jpg?file=ImageFile.jpg" a:1, c:1

<timestamp> [debug] <worker pid>#0: *<connection number> http run
request: "/ImageFile.jpg?file=ImageFile.jpg"

<timestamp> [debug] <worker pid>#0: *<connection number> http writer
handler: "/ImageFile.jpg?file=ImageFile.jpg"

<timestamp> [debug] <worker pid>#0: *<connection number> http output
filter "/ImageFile.jpg?file=ImageFile.jpg"

<timestamp> [debug] <worker pid>#0: *<connection number> http copy
filter: "/ImageFile.jpg?file=ImageFile.jpg"

<timestamp> [debug] <worker pid>#0: *<connection number> http postpone
filter "/ImageFile.jpg?file=ImageFile.jpg" 0000000000000000

<timestamp> [debug] <worker pid>#0: *<connection number> http write
filter: l:1 f:0 s:234338

<timestamp> [debug] <worker pid>#0: *<connection number> http write
filter limit 0

<timestamp> [debug] <worker pid>#0: *<connection number> http write
filter 0000000000000000

<timestamp> [debug] <worker pid>#0: *<connection number> http copy
filter: 0 "/ImageFile.jpg?file=ImageFile.jpg"

<timestamp> [debug] <worker pid>#0: *<connection number> http writer
output filter: 0, "/ImageFile.jpg?file=ImageFile.jpg"

<timestamp> [debug] <worker pid>#0: *<connection number> http writer
done: "/ImageFile.jpg?file=ImageFile.jpg"

Once the output filters have run, the request is finalized:

<timestamp> [debug] <worker pid>#0: *<connection number> http finalize
request: 0, "/ImageFile.jpg?file=ImageFile.jpg" a:1, c:1

The keepalive handler is responsible for determining if the connection should
remain open:

<timestamp> [debug] <worker pid>#0: *<connection number> set http
keepalive handler

<timestamp> [debug] <worker pid>#0: *<connection number> http close
request

Chapter 8

[201]

After the request has been processed, it can then be logged:

<timestamp> [debug] <worker pid>#0: *<connection number> http log handler

<timestamp> [debug] <worker pid>#0: *<connection number> hc free:
0000000000000000 0

<timestamp> [debug] <worker pid>#0: *<connection number> hc busy:
0000000000000000 0

<timestamp> [debug] <worker pid>#0: *<connection number> tcp_nodelay

The client has closed the connection, so NGINX will as well:

<timestamp> [debug] <worker pid>#0: *<connection number> http keepalive
handler

<timestamp> [info] <worker pid>#0: *<connection number> client <IP
address> closed keepalive connection

<timestamp> [debug] <worker pid>#0: *<connection number> close http
connection: 3

As you can see, there is quite a bit of information included here. If you have trouble
figuring out why a particular configuration isn't working, going through the output
of the debug log can be helpful. You can immediately see in what order the various
filters run, as well as what handlers are involved in serving the request.

Using access logs for debugging
When I was learning how to program, and couldn't find the source of a problem,
a friend of mine told me to "put printf's everywhere". That was how he was most
quickly able to find the source of a problem. What he meant by this was to place a
statement that would print a message at each code branch point, so that we could
see which code path was getting executed and where the logic was breaking down.
By doing this, we could visualize what was going on and could more easily see
where the problem lies.

This same principle can be applied to configuring NGINX. Instead of printf() we
can use the log_format and access_log directives to visualize request flow and
analyze what's going on during request processing. Use the log_format directive
to see the values of variables at different points in the configuration:

http {

 log_format sentlog '[$time_local] "$request" $status $body_bytes_
sent ';

Troubleshooting Techniques

[202]

 log_format imagelog '[$time_local] $image_file $image_type '
 '$body_bytes_sent $status';

 log_format authlog '[$time_local] $remote_addr $remote_user '
 '"$request" $status';

}

Use multiple access_logs to see which locations are getting called at what times. By
configuring a different access_log for each location, we can easily see which ones are
not being used. Any change to such a location will have no effect on request processing;
the locations higher-up in the processing hierarchy need to be examined first.

http {

 log_format sentlog '[$time_local] "$request" $status $body_bytes_
sent ';

 log_format imagelog '[$time_local] $image_file $image_type '
 '$body_bytes_sent $status';

 log_format authlog '[$time_local] $remote_addr $remote_user '
 '"$request" $status';

 server {

 server_name .example.com;

 root /home/www;

 location / {

 access_log logs/example.com-access.log combined;

 access_log logs/example.com-root_access.log sentlog;

 rewrite ^/(.*)\.(png|jpg|gif)$ /images/$1.$2;

 set $image_file $1;

 set $image_type $2;

Chapter 8

[203]

 }

 location /images {

 access_log logs/example.com-images_access.log imagelog;

 }

 location /auth {

 auth_basic "authorized area";

 auth_basic_user_file conf/htpasswd;

 deny all;

 access_log logs/example.com-auth_access.log authlog;

 }

 }

}

In the preceding example, there is an access_log declaration for each location, as
well as a different log_format for each access_log declaration. We can determine
which requests made it to each location depending on the entries found in the
corresponding access_log. If there are no entries in the example.com-images_
access.log file, for example, then we know that no requests reached the /images
location. We can compare the contents of the various log files to see if the variables
are being set to the proper values. For example, if the $image_file and $image_
type variables are empty, the corresponding placeholders in the imagelog format
access_log will be empty.

Common configuration errors
The next step in troubleshooting a problem is to take a look at the configuration,
to see if it actually achieves the goal you are trying to accomplish. NGINX
configurations have been floating around the Internet for a number of years.
Often, they were designed for an older version of NGINX, and to solve a
specific problem. Unfortunately, these configurations are copied without really
understanding the problem they were designed to solve. There is sometimes a
better way to solve the same problem, using a newer configuration.

Troubleshooting Techniques

[204]

Using if instead of try_files
One such case is a situation in which a user wants to deliver a static file if it is found
on the filesystem, and if not, to pass the request on to a FastCGI server:

server {

 root /var/www/html;

 location / {

 if (!-f $request_filename) {

 include fastcgi_params;

 fastcgi_pass 127.0.0.1:9000;

 break;

 }

 }

}

This was the way this problem was commonly solved before NGINX had the try_
files directive, which appeared in Version 0.7.27. The reason why this is considered a
configuration error is that it involves using if within a location directive. As detailed
in the Converting an "if"-fy configuration to a more modern interpretation section in Chapter
4, NGINX as a Reverse Proxy, this can lead to unexpected results or possibly even a
crash. The way to correctly solve this problem is as follows:

server {

 root /var/www/html;

 location / {

 try_files $uri $uri/ @fastcgi;

 }

 location @fastcgi {

Chapter 8

[205]

 include fastcgi_params;

 fastcgi_pass 127.0.0.1:9000;

 }

}

The try_files directive is used to determine if the file exists on the filesystem,
and if not, passes the request on to the FastCGI server, without using if.

Using if as a hostname switch
There are countless examples of configurations where if is used to redirect requests
based on the HTTP Host header. These types of configurations work as selectors and
are evaluated for each request:

server {

 server_name .example.com;

 root /var/www/html;

 if ($host ~* ^example\.com) {

 rewrite ^/(.*)$ http://www.example.com/$1 redirect;

 }

}

Instead of incurring the processing costs associated with evaluating if for each
request, NGINX's normal request-matching routine can route the request to the
correct virtual server. The redirect can then be placed where it belongs, and even
without a rewrite:

server {

 server_name example.com;

 return 301 $scheme://www.example.com;

}

Troubleshooting Techniques

[206]

server {

 server_name www.example.com;

 root /var/www/html;

 location / {

 …

 }

}

Not using the server context to best effect
Another place where copied configuration snippets often lead to incorrect
configurations is the area of the server context. The server context describes
the whole virtual server (everything that should be addressed under a particular
server_name). It is underutilized in these copied configuration snippets.

Often, we will see root and index specified per location:

server {

 server_name www.example.com;

 location / {

 root /var/www/html;

 index index.php index.html index.htm;

 }

 location /ftp{

 root /var/www/html;

 index index.php index.html index.htm;

 }

}

Chapter 8

[207]

This can lead to configuration errors when new locations are added, and the directives
are not copied to those new locations or are copied incorrectly. The point of using the
root and index directives is to indicate the document root for the virtual server and
the files that should be tried when a directory is given in the URI, respectively. These
values are then inherited for any location within that server context.

server {

 server_name www.example.com;

 root /var/www/html;

 index index.php index.html index.htm;

 location / {

 ...

 }

 location /ftp{

 ...

 }

}

Here, we have specified that all files will be found under /var/www/html and
that index.php index.html index.htm are to be tried, in order, as index files
for any location.

Operating system limits
The operating system is often the last place we look to for discovering a problem.
We assume that whoever set up the system has tuned the operating system for
our workload and tested it under similar scenarios. This is often not the case.
We sometimes need to look into the operating system itself to identify a bottleneck.

As with NGINX, there are two major areas where we can initially look for performance
problems: file descriptor limits and network limits.

Troubleshooting Techniques

[208]

File descriptor limits
NGINX uses file descriptors in several different ways. The major use is to respond
to client connections, each one using a file descriptor. Each outgoing connection
(especially prevalent in proxy configurations) requires a unique IP:TCP port pair,
which NGINX refers to using a file descriptor. If NGINX is serving any static file or a
response from its cache, a file descriptor is used as well. As you can see, the number
of file descriptors can climb quickly with the number of concurrent users. The total
number of file descriptors that NGINX may use is limited by the operating system.

The typical UNIX-like operating system has a different set of limits for the superuser
(root) than for a regular user, so make sure to execute the following command as
the non-privileged user under which you're running NGINX (specified either by
the --user compile-time option or the user configuration directive).

ulimit -n

This command will show you the number of open file descriptors allowed for that
user. Usually, this number is set conservatively to 1024 or even lower. Since we know
that NGINX will be the major user of file descriptors on the machine, we can set this
number much higher. How to do this depends on the specific operating system. This
can be done as follows:

•	 Linux
vi /etc/security/limits.conf

www-run hard nofile 65535

$ ulimit -n 65535

•	 FreeBSD
vi /etc/sysctl.conf

kern.maxfiles=65535

kern.maxfilesperproc=65535

kern.maxvnodes=65535

/etc/rc.d/sysctl reload

•	 Solaris
projadd -c "increased file descriptors" -K "process.max-file-
descriptor=(basic,65535,deny)" resource.file

usermod -K project=resource.file www

Chapter 8

[209]

The preceding two commands will increase the maximum number of file descriptors
allowed for a new process running as user www. This will also persist across a reboot.

The following two commands will increase the maximum number of file descriptors
allowed for a running NGINX process:

prctl -r -t privileged -n process.max-file-descriptor -v 65535 -i
process `pgrep nginx`

prctl -x -t basic -n process.max-file-descriptor -i process `pgrep
nginx`

Each of these methods will change the operating system limit itself, but will have
no effect on the running NGINX process. To enable NGINX to use the number of
file descriptors specified, set the worker_rlimit_nofile directive to this new limit:

worker_rlimit_nofile 65535;

worker_processes 8;

events {

 worker_connections	 8192;

}

Now, send the running nginx master process the HUP signal:

kill -HUP `cat /var/run/nginx.pid`

NGINX will then be able to handle just over 65,000 simultaneous clients, connections
to upstream servers, and any local static or cached files. This many worker_processes
only makes sense if you actually have eight CPU cores or are heavily I/O bound. If
that is not the case, decrease the number of worker_processes to match the number
of CPU cores and increase worker_connections so that the product of the two
approaches 65,000.

You can, of course, increase the number of total file descriptors and worker_
connections up to a limit that makes sense for your hardware and use case. NGINX
is capable of handling millions of simultaneous connections, provided the operating
system limits and configuration are set correctly.

Troubleshooting Techniques

[210]

Network limits
If you find yourself in a situation in which no network buffers are available, you
will most likely only be able to log in at the console, if at all. This can happen when
NGINX receives so many client connections that all available network buffers are
used up. Increasing the number of network buffers is also specific to a particular
operating system and may be done as follows:

•	 FreeBSD
vi /boot/loader.conf

kern.ipc.nmbclusters=262144

•	 Solaris
ndd -set /dev/tcp tcp_max_buf 16777216

When NGINX is acting as either a mail or an HTTP proxy, it will need to open many
connections to its upstream servers. To enable as many connections as possible, the
ephemeral TCP port range should be adjusted to its maximum.

•	 Linux
vi /etc/sysctl.conf

net.ipv4.ip_local_port_range = 1024 65535

sysctl -p /etc/sysctl.conf

•	 FreeBSD
vi /etc/sysctl.conf

net.inet.ip.portrange.first=1024

net.inet.ip.portrange.last=65535

/etc/rc.d/sysctl reload

•	 Solaris
ndd -set /dev/tcp tcp_smallest_anon_port 1024

ndd -set /dev/tcp tcp_largest_anon_port 65535

Having adjusted these basic values, we will now take a look at more specific
performance-related parameters in the next section.

Chapter 8

[211]

Performance problems
When designing an application and configuring NGINX to deliver it, we expect it to
perform well. When we experience performance problems, however, we need to take a
look at what could cause them. It may be in the application itself. It may be our NGINX
configuration. We will investigate how to discover where the problem lies.

When proxying, NGINX does most of its work over the network. If there are any
limitations at the network level, NGINX cannot perform optimally. Network tuning
is again specific to the operating system and network that you are running NGINX
on, so these tuning parameters should be examined in your particular situation.

One of the most important values relating to network performance is the size of the
listen queue for new TCP connections. This number should be increased to enable
more clients. Exactly how to do this and what value to use depends on the operating
system and optimization goal.

•	 Linux
vi /etc/sysctl.conf

net.core.somaxconn = 3240000

sysctl -p /etc/sysctl.conf

•	 FreeBSD
vi /etc/sysctl.conf

kern.ipc.somaxconn=4096

/etc/rc.d/sysctl reload

•	 Solaris
ndd -set /dev/tcp tcp_conn_req_max_q 1024

ndd -set /dev/tcp tcp_conn_req_max_q0 4096

Troubleshooting Techniques

[212]

The next parameter to change is the size of the send and receive buffers. Note that
these values are for illustration purposes only— they may lead to excessive memory
usage, so be sure to test in your specific scenario.

•	 Linux
vi /etc/sysctl.conf

net.ipv4.tcp_wmem = 8192 87380 1048576

net.ipv4.tcp_rmem = 8192 87380 1048576

sysctl -p /etc/sysctl.conf

•	 FreeBSD
vi /etc/sysctl.conf

net.inet.tcp.sendspace=1048576

net.inet.tcp.recvspace=1048576

/etc/rc.d/sysctl reload

•	 Solaris
ndd -set /dev/tcp tcp_xmit_hiwat 1048576

ndd -set /dev/tcp tcp_recv_hiwat 1048576

You can also change these buffers in NGINX's configuration directly, so that they are
only valid for NGINX and not for any other software you are running on the machine.
This may be desirable when you have multiple services running, but want to ensure
that NGINX gets the most out of your network stack:

server {

 listen 80 sndbuf=1m rcvbuf=1m;

}

Depending on your network setup, you will notice a marked change in performance.
You should examine your particular setup, though, and make one change at a time,
observing the results after each change. Performance tuning can be done on so many
different levels that this small treatment here does not do the subject justice. If you
are interested in learning more about performance tuning, there are a number of
books and online resources that you should take a look at.

Chapter 8

[213]

Making network tuning changes in Solaris persistent
In the previous two sections, we changed several TCP-level
parameters on the command line. For Linux and FreeBSD,
these changes would be persisted after a reboot due to the
changes also being made in system configuration files (for
example, /etc/sysctl.conf). For Solaris, the situation is
different. These changes are not made in sysctls, so they
cannot be persisted in this file.
Solaris 10 and above offers the Service Management
Framework (SMF). This is a unique way of managing
services and ensuring a start order at reboot. (Of course, it
is much more than this, but this oversimplification serves
here.) To persist the TCP-level changes mentioned before,
we can write an SMF manifest and corresponding script to
apply the changes.
These are detailed in Appendix D, Persisting Solaris Network
Tunings.

Using the Stub Status module
NGINX provides an introspection module, which outputs certain statistics about
how it is running. This module is called Stub Status and is enabled with the
--with-http_stub_status_module configure flag.

To see the statistics produced by this module, the stub_status directive needs
to be set to on. A separate location directive should be created for this module,
so that an ACL may be applied:

location /nginx_status {

 stub_status on;

 access_log off;

 allow 127.0.0.1;

 deny all;

}

Troubleshooting Techniques

[214]

Calling this URI from the localhost (for example, with curl http://localhost/
nginx_status) will show output similar to the following lines:

Active connections: 2532
server accepts handled requests
 1476737983 1476737983 3553635810
Reading: 93 Writing: 13 Waiting: 2426

Here we see that there are 2,532 open connections, of which NGINX is currently
reading the request header of 93, and 13 connections are in a state in which NGINX
is either reading the request body, processing the request, or writing a response
to the client. The remaining 2,426 requests are considered keepalive connections.
Since this nginx process was started, it has both accepted and handled 1,476,737,983
connections, meaning that none were closed immediately after having been accepted.
There were a total of 3,553,635,810 requests handled through these 1,476,737,983
connections, meaning there were approximately 2.4 requests per connection.

This kind of data can be collected and graphed using your favorite system metrics
tool chain. There are plugins for Munin, Nagios, collectd, and others, which use the
stub_status module to collect statistics. Over time, you may notice certain trends
and be able to correlate them to specific factors, but only if the data is collected.
Spikes in user traffic as well as changes in the operating system should be visible
in these graphs.

Summary
Problems surface on a number of levels when bringing a new piece of software into
production. Some errors can be tested for and eradicated in a test environment;
others surface only under real load with real users. To discover the reasons for
these problems, NGINX provides very detailed logging, at a number of levels.
Some of the messages may have multiple interpretations, but the overall pattern is
understandable. By experimenting with the configuration and seeing what kinds of
error messages are produced, we can gain a feeling for how to interpret the entries
in the error log. The operating system has an influence on how NGINX runs, as it
imposes certain limits due to default settings for a multiuser system. Understanding
what is going on at the TCP level will help when tuning these parameters to meet
the load under real conditions. Rounding off our tour of troubleshooting, we saw
what kind of information the stub_status module was capable of delivering.
This data can be useful to get an overall idea for how our NGINX is performing.

The appendices are up next. The first is a directive reference, listing all of NGINX's
configuration directives in one place, including default values and in which context
they may be used.

Directive Reference
This appendix lists the configuration directives used throughout the book.
There are also some directives that did not appear in the book, but are listed
here for completeness. The entries have been expanded to show under which
context each directive may be used. If a directive has a default value, it has
been listed as well. These directives are current as of NGINX Version 1.3.9.
The most up-to-date list can be found at http://nginx.org/en/docs/
dirindex.html.

Table: Directive reference

Directive Explanation Context/Default
accept_mutex Serializes the accept() method

on new connections by worker
processes.

Valid context: events
Default value: on

accept_mutex_delay The maximum time a worker
process will wait to accept new
connections if another worker
is already doing this.

Valid context: events
Default value: 500ms

Directive Reference

[216]

Directive Explanation Context/Default
access_log Describes where and how

access logs are to be written.
The first parameter is a path to
the file where the logs are to be
stored. Variables may be used in
constructing the path. The special
value off disables the access log.
An optional second parameter
indicates the log_format that
will be used to write the logs. If no
second parameter is configured,
the predefined combined format is
used. An optional third parameter
indicates the size of the buffer if
write buffering should be used to
record the logs. If write buffering
is used, this size cannot exceed the
size of the atomic disk write for
that filesystem.

Valid contexts: http,
server, location,
if in location,
limit_except

Default value:
logs/access.log
combined

add_after_body Adds the result of processing
a subrequest after the response
body.

Valid context:
location

Default value: -
add_before_body Adds the result of processing a

subrequest before the response
body.

Valid context:
location

Default value: -
add_header Adds fields to a header present in

responses with the HTTP codes
200, 204, 206, 301, 302, 303, 304, or
307.

Valid contexts: http,
server, location
Default value: -

addition_types Lists the MIME types of a response
in addition to text/html, in
which an addition will be made.
May be * to enable all
MIME types.

Valid contexts: http,
server, location
Default value: text/
html

aio This directive enables the use
of asynchronous file I/O. It is
available on all modern versions
of FreeBSD and distributions
of Linux. On FreeBSD, aio
may be used to preload data
for sendfile. Under Linux,
directio is required, which
automatically disables sendfile.

Valid contexts: http,
server, location
Default value: off

Appendix A

[217]

Directive Explanation Context/Default
alias Defines another name for

the location, as found on
the filesystem. If the location
is specified with a regular
expression, the alias should
reference captures defined
in that regular expression.

Valid context:
location

Default value: -

allow Allows access from this IP address,
network, or all.

Valid contexts: http,
server, location,
limit_except

Default value: -.
ancient_browser Specifies one or more strings,

which if found in the User-Agent
header, will indicate that the
browser is considered ancient by
setting the $ancient_browser
variable to the ancient_
browser_value directive.

Valid contexts: http,
server, location
Default value: -.

ancient_browser_
value

The value to which the
$ancient_browser variable
will be set.

Valid contexts: http,
server, location
Default value: 1.

auth_basic Enables authentication using
HTTP Basic Authentication.
The parameter string is used as the
realm name. If the special value
off is used, this indicates that the
auth_basic value of the parent
configuration level is negated.

Valid contexts: http,
server, location,
limit_except

Default value: off.

auth_basic_user_
file

Indicates the location of a file of
username:password:comment
tuples used to authenticate
users. The password needs
to be encrypted with the crypt
algorithm. The comment is
optional.

Valid contexts: http,
server, location,
limit_except

Default value: -

auth_http This directive specifies the server
used for authenticating the POP3/
IMAP user.

Valid contexts: mail,
server

Default value: -
auth_http_header Sets an additional header (first

parameter) to the specified value
(second parameter).

Valid contexts: mail,
server

Default value: -

Directive Reference

[218]

Directive Explanation Context/Default
auth_http_timeout The maximum amount of

time NGINX will wait when
communicating with an
authentication server.

Valid contexts: mail,
server

Default value: 60s

autoindex Activates the automatic generation
of a directory listing page.

Valid contexts: http,
server, location
Default value: off

autoindex_exact_
size

Indicates whether the file sizes
in a directory listing page should
be listed in bytes or rounded
to kilobytes, megabytes, and
gigabytes.

Valid contexts: http,
server, location.
Default value: on

autoindex_localtime Sets the file modification time in
a directory listing page to either
local time (on) or UTC (off).

Valid contexts: http,
server, location
Default value: off

break Ends the processing of the
rewrite module directives found
within the same context.

Valid contexts:
server, location,
if

Default value: -
charset Adds the character set specified

to the Content-Type response
header. If this is different than the
source_charset directive, a
conversion is performed.

Valid contexts: http,
server, location,
if in location

Default value: off

charset_map Sets up a conversion table from
one character set to another.
Each character code is specified
in hexadecimal. The files conf/
koi-win, conf/koi-utf, and
conf/win-utf include mappings
from koi8-r to windows-1251,
from koi8-r to utf-8, and
from windows-1251 to utf-8,
respectively.

Valid context: http
Default value: -

Appendix A

[219]

Directive Explanation Context/Default
charset_types Lists the MIME types of a response

in addition to text/html, in
which a character set conversion
will be made. It may be * to enable
all MIME types.

Valid contexts: http,
server, location
Default value: text/
html, text/xml,
text/plain, text/
vnd.wap.wml,
application/x-
javascript,
application/
rss+xml

chunked_transfer_
encoding

Allows disabling the standard
HTTP/1.1 chunked transfer
encoding in responses to the
clients.

Valid contexts: http,
server, location
Default value: on

client_body_buffer_
size

Used to set a buffer size for the
client request body larger than
the default two memory pages,
in order to prevent temporary
files from being written to disk.

Valid contexts: http,
server, location
Default value: 8k|16k
(platform dependent)

client_body_in_
file_only

Used for debugging or further
processing of the client request
body, this directive can be set
to on to force saving the client
request body to a file. The value
clean will cause the files to
be removed after the request
processing is finished.

Valid contexts: http,
server, location
Default value: off

client_body_in_
single_buffer

This directive will force NGINX to
save the entire client request body
in a single buffer, to reduce copy
operations.

Valid contexts: http,
server, location
Default value: off

client_body_temp_
path

Defines a directory path for
saving the client request body.
If a second, third, or fourth
parameter is given, these specify
a subdirectory hierarchy with the
parameter value as the number
of characters in the subdirectory
name.

Valid contexts: http,
server, location
Default value:
client_body_temp

Directive Reference

[220]

Directive Explanation Context/Default
client_body_timeout Specifies the length of time

between successive read
operations of the client body.
If reached, the client receives
a 408 error message (Request
Timeout).

Valid contexts: http,
server, location
Default value: 60s

client_header_
buffer_size

Used for specifying a buffer size
for the client request header, when
this needs to be larger than the
default 1 KB.

Valid contexts: http,
server

Default value: 1k

client_header_
timeout

Specifies the length of time for
reading the entire client header.
If reached, the client receives
a 408 error message (Request
Timeout).

Valid contexts: http,
server

Default value: 60s

client_max_body_
size

Defines the largest allowable
client request body, before a 413
(Request Entity Too Large)
error is returned to the browser.

Valid contexts: http,
server, location
Default value: 1m

connection_pool_
size

Fine tunes per-connection memory
allocation.

Valid contexts: http,
server

Default value: 256
create_full_put_
path

Allows recursive directory
creation when using WebDAV.

Valid contexts: http,
server, location
Default value: off

daemon Sets whether or not to daemonize
the nginx process.

Valid context: main
Default value: on

dav_access Sets filesystem access permissions
for newly-created files and
directories. If group or all is
specified, user may be omitted.

Valid contexts: http,
server, location
Default value:
user:rw

dav_methods Allows the specified HTTP and
WebDAV methods. When PUT
is used, a temporary file is first
created and then renamed. So, it's
recommended to put client_
body_temp_path on the same
filesystem as the destination. A
modification date for such files
may be specified in the Date
header.

Valid contexts: http,
server, location
Default value: off

Appendix A

[221]

Directive Explanation Context/Default
debug_connection Enables debug logging for any

client matching the value of this
directive. It may be specified
multiple times. To debug UNIX-
domain sockets, use unix:.

Valid contexts: events
Default value: -

debug_points When debugging, the process will
either create a core file (abort)
or stop (stop) so that a system
debugger may be attached.

Valid context: main
Default value: -

default_type Sets the default MIME type of a
response. This comes into play if
the MIME type of the file cannot
be matched to one of those
specified by the types directive.

Valid contexts: http,
server, location
Default value: text/
plain

deny Denies access from this IP address,
network, or all.

Valid contexts: http,
server, location,
limit_except

Default value: -
directio Enables the operating system-

specific flag or function for serving
files larger than the parameter
given. Required when using aio
on Linux.

Valid contexts: http,
server, location
Default value: off

directio_alignment Sets the alignment for
directio. The default of 512
is usually enough, although it's
recommended to increase this to
4K when using XFS on Linux.

Valid contexts: http,
server, location
Default value: 512

disable_symlinks Refer to the HTTP file path
directives table in the Finding files
section in Chapter 6, The NGINX
HTTP Server.

Valid contexts: http,
server, location
Default value: off

empty_gif Causes a 1x1 pixel transparent GIF
to be emitted for that location.

Valid context:
location

Default value: -

Directive Reference

[222]

Directive Explanation Context/Default
env Sets environment variables for use

in:
•	 inheritance during a live

upgrade
•	 making use of them in the

perl module
•	 making them available to

worker processes

Specifying the variable alone
will use the value found in the
nginx environment. Setting
a variable may be done in the
form var=value.
N.B. NGINX is an internal variable
and shouldn't be set by the user.

Valid context: main
Default value: TZ

error_log The error_log file is where
all errors will be written. It may
be set to a file or stderr. If no
other error_log is given in a
separate context, this log file will
be used for all errors, globally. A
second parameter to this directive
indicates at which level (debug,
info, notice, warn, error,
crit, alert, emerg) errors
will be written to the log. Note
that debug level errors are only
available if the --with-debug
configuration switch was given
at compile time.

Valid contexts: main,
http, server,
location

Default value: logs/
error.log error

error_page Defines a URI to be served when
an error level response code
is encountered. Adding an =
parameter allows the response
code to be changed. If the
argument to this parameter is left
empty, the response code will be
taken from the URI, which must in
this case be served by an upstream
server of some sort.

Valid contexts: http,
server, location,
if in location

Default value: -

Appendix A

[223]

Directive Explanation Context/Default
etag Disables automatically generating

the ETag response header for
static resources.

Valid contexts: http,
server, location
Default value: on

events Defines a new context in which
connection-processing directives
are specified.

Valid context: main.
Default value: -

expires Refer to the Header modifying
directives table in the Caching in
the filesystem section in Chapter 7,
NGINX for the Developer.

Valid contexts: http,
server, location
Default value: off

fastcgi_bind Specifies which address should be
used for the outgoing connections
to a FastCGI server.

Valid contexts: http,
server, location
Default value: -

fastcgi_buffer_size The size of the buffer used for
the first part of the response from
the FastCGI server, in which the
response headers are found.

Valid contexts: http,
server, location
Default value: 4k|8k
(platform dependent)

fastcgi_buffers The number and size of buffers
used for the response from a
FastCGI server, for a single
connection.

Valid contexts: http,
server, location
Default value: 4k|8k
(platform dependent)

fastcgi_busy_
buffers_size

The total size of the buffer space
allocated to sending the response
to the client while still being read
from the FastCGI server. This is
typically set to two fastcgi_
buffers.

Valid contexts: http,
server, location
default value: 4k|8k
(platform dependent)

fastcgi_cache Defines a shared memory zone to
be used for caching.

Valid contexts: http,
server, location
Default value: off

fastcgi_cache_
bypass

One or more string variables,
which when non-empty or non-
zero, will cause the response to
be taken from the FastCGI server
instead of the cache.

Valid contexts: http,
server, location
Default value: -

fastcgi_cache_key A string used as the key for storing
and retrieving cache values.

Valid contexts: http,
server, location
Default value: -

Directive Reference

[224]

Directive Explanation Context/Default
fastcgi_cache_lock Enabling this directive will

prevent multiple requests from
making an entry into the same
cache key.

Valid contexts: http,
server, location
Default value: off

fastcgi_cache_lock_
timeout

The length of time a request will
wait for an entry to appear in the
cache or for the fastcgi_cache_
lock to be released.

Valid contexts: http,
server, location
Default value: 5s

fastcgi_cache_min_
uses

The number of requests for a
certain key needed before a
response is cached.

Valid contexts: http,
server, location
Default value: 1

fastcgi_cache_path Refer to the FastCGI directives
table in the Using NGINX with
PHP-FPM section in Chapter 6, The
NGINX HTTP Server.

Valid context: http
Default value: -

fastcgi_cache_use_
stale

The cases under which it is
acceptable to serve stale cached
data when an error occurs while
accessing the FastCGI server. The
updating parameter indicates
the case when fresh data are being
loaded.

Valid contexts: http,
server, location
Default value: off

fastcgi_cache_valid Indicates the length of time for
which a cached response with
response code 200, 301, or 302 is
valid. If an optional response code
is given before the time parameter,
that time is only for that response
code. The special parameter any
indicates that any response code
should be cached for that length
of time.

Valid contexts: http,
server, location
Default value: -

fastcgi_connect_
timeout

The maximum amount of time
NGINX will wait for its connection
to be accepted when making a
request to a FastCGI server.

Valid contexts: http,
server, location
Default value: 60s

fastcgi_hide_header A list of header fields that should
not be passed on to the client.

Valid contexts: http,
server, location
Default value: -

Appendix A

[225]

Directive Explanation Context/Default
fastcgi_ignore_
client_abort

If set to on, NGINX will not abort
the connection to a FastCGI server
if the client aborts the connection.

Valid contexts: http,
server, location
Default value: off

fastcgi_ignore_
headers

Sets which headers may be
disregarded when processing the
response from the FastCGI server.

Valid contexts: http,
server, location
Default value: -

fastcgi_index Sets the name of a file to be
appended to $fastcgi_script_
name that ends with a slash.

Valid contexts: http,
server, location
Default value: -

fastcgi_intercept_
errors

If enabled, NGINX will display a
configured error_page directive
instead of the response directly
from the FastCGI server.

Valid contexts: http,
server, location
Default value: off

fastcgi_keep_conn Enables the keepalive
connections to the FastCGI servers
by instructing the server not to
immediately close the connection.

Valid contexts: http,
server, location
Default value: off

fastcgi_max_temp_
file_size

The maximum size of the overflow
file, written when the response
doesn't fit into the memory
buffers.

Valid contexts: http,
server, location
Default value: 1024m

fastcgi_next_
upstream

Refer to the FastCGI directives
table in the Using NGINX with
PHP-FPM section in Chapter 6,
The NGINX HTTP Server.

Valid contexts: http,
server, location
Default value: error
timeout

fastcgi_no_cache One or more string variables,
which when non-empty or non-
zero will instruct NGINX not
to save the response from the
FastCGI server in the cache.

Valid contexts: http,
server, location
Default value: -

fastcgi_param Sets a parameter and its value to
be passed to the FastCGI server.
If the parameter should only be
passed when the value is non-
empty, the additional if_not_
empty parameter should be set.

Valid contexts: http,
server, location
Default value: -

Directive Reference

[226]

Directive Explanation Context/Default
fastcgi_pass Specifies the FastCGI server to

which the request is passed, either
as an address:port combination
or as unix:path for a UNIX-
domain socket.

Valid contexts:
location, if in
location

Default value: -

fastcgi_pass_header Overrides the disabled headers
set in fastcgi_hide_header,
allowing them to be sent to the
client.

Valid contexts: http,
server, location
Default value: -

fastcgi_read_
timeout

Specifies the length of time that
needs to elapse between two
successive read operations from
a FastCGI server before the
connection is closed.

Valid contexts: http,
server, location
Default value: 60s

fastcgi_send_lowat This is a FreeBSD directive. When
non-zero, it will tell NGINX to use
either the NOTE_LOWAT kqueue
method or the SO_SNDLOWAT
socket option with the specified
size when communicating with an
upstream server. Ignored in Linux,
Solaris, and Windows.

Valid contexts: http,
server, location
Default value: 0

fastcgi_send_
timeout

The length of time that needs to
elapse between two successive
write operations to a FastCGI
server before the connection is
closed.

Valid contexts: http,
server, location
Default value: 60s

fastcgi_split_path_
info

Defines a regular expression with
two captures. The first capture will
be the value of the $fastcgi_
script_name variable. The
second capture becomes the value
of the $fastcgi_path_info
variable.

Valid context:
location

Default value: -

Appendix A

[227]

Directive Explanation Context/Default
fastcgi_store Enables storing responses

retrieved from a FastCGI server as
files on the disk. The on parameter
will use the alias or root
directive as the base path under
which to store the file. A string
may instead be given, to indicate
an alternative location to store the
files.

Valid contexts: http,
server, location
Default value: off

fastcgi_store_
access

Sets file access permissions for the
newly-created fastcgi_store
files.

Valid contexts: http,
server, location
Default value:
user:rw

fastcgi_temp_file_
write_size

Limits the amount of data buffered
to a temporary file at one time, so
that NGINX will not be blocked
for too long on a single request.

Valid contexts: http,
server, location
Default value: 8k|16k
(platform dependent)

fastcgi_temp_path A directory where temporary
files may be buffered as they
are proxied from the FastCGI
server, optionally multilevel
deep. If a second, third, or fourth
parameter is given, these specify
a subdirectory heirarchy with the
parameter value as the number
of characters in the subdirectory
name.

Valid contexts: http,
server, location
Default value:
fastcgi_temp

flv Activates the flv module for this
location.

Valid context:
location

Default value: -

Directive Reference

[228]

Directive Explanation Context/Default
geo Defines a new context, in which a

variable is set to a specified value,
dependent on the IP address found
in another variable. If no other
variable is specified, $remote_
addr is used to determine the IP
address. The format of the context
definition is:

geo [$address-variable]
$variable-to-be-set { … }

The following parameters are
recognized within the context:

•	 delete: Deletes the
specified network

•	 default: The variable will
be set to this value if no IP
address matches

•	 include: Includes a file of
address-to-value mappings

•	 proxy: Defines an address
or network of a direct
connection from which the
IP address will be taken
from the X-Forwarded-
For header

•	 proxy_recursive: Works
with proxy to specify that
the last address in a multi-
valued X-Forwarded-For
header will be used

•	 ranges: When defined,
indicates that the following
addresses are specified as
ranges

Valid context: http
Default value: -

Appendix A

[229]

Directive Explanation Context/Default
geoip_city The path to a GeoIP database

file containing IP address-to-city
mappings. The following variables
then become available:

•	 $geoip_city_country_
code: Two-letter country
code

•	 $geoip_city_country_
code3: Three-letter country
code

•	 $geoip_city_country_
name: Country name

•	 $geoip_region: Country
region name

•	 $geoip_city: City name
•	 $geoip_postal_code:

Postal code

valid context: http
Default value: -

geoip_country The path to a GeoIP database
file containing the IP address-to-
country mappings. The following
variables then become available:

•	 $geoip_country_code:
Two-letter country code

•	 $geoip_country_code3:
Three-letter country code

•	 $geoip_country_name:
Country name

Valid context: http
Default value: -

geoip_org The path to a GeoIP database
file containing the IP address-
to-organization mappings. The
following variable then becomes
available:

•	 $geoip_org: Organization
name

Valid context: http.
Default value: -

geoip_proxy Defines an address or network of
a direct connection from which the
IP address will be taken from the
X-Forwarded-For header.

Valid context: http
Default value: -

Directive Reference

[230]

Directive Explanation Context/Default
geoip_proxy_
recursive

Works with geoip_proxy, to
specify that the last address in a
multivalued X-Forwarded-For
header will be used.

Valid context: http
Default value: off.

gunzip Enables the decompression of
gzipped files when the client
doesn't support gzip.

Valid contexts: http,
server, location
Default value: off

gunzip buffers Specifies the number and size of
buffers used for decompressing a
response.

Valid contexts: http,
server, location
Default value: 32
4k|16 8k (platform
dependent)

gzip Enables or disables the
compression of responses.

Valid contexts: http,
server, location,
if in location

Default value: off
gzip_buffers Specifies the number and size of

buffers used for compressing a
response.

Valid contexts: http,
server, location
Default value: 32
4k|16 8k (platform
dependent)

gzip_comp_level The gzip compression level (1-9). Valid contexts: http,
server, location
Default value: 1

gzip_disable A regular expression of User-
Agents that shouldn't receive a
compressed response. The special
value msie6 is a shortcut for MSIE
[4-6]\., excluding MSIE 6.0;
... SV1.

Valid contexts: http,
server, location
Default value: -

gzip_http_version The minimum HTTP version of
a request before compression is
considered.

Valid contexts: http,
server, location
Default value: 1.1

gzip_min_length The minimum length of a response
before compression is considered,
determined by the Content-
Length header.

Valid contexts: http,
server, location
Default value: 20

Appendix A

[231]

Directive Explanation Context/Default
gzip_proxied Refer to the Gzip module directives

table in the Compressing section in
Chapter 5, Reverse Proxy Advanced
Topics.

Valid contexts: http,
server, location
Default value: off

gzip_static Enables checking for
precompressed files, to be
delivered directly to clients which
support gzip compression.

Valid contexts: http,
server, location
Default value: off

gzip_types The MIME types that should be
compressed with gzip, in addition
to the default text/html. It may
be * to enable all MIME types.

Valid contexts: http,
server, location
Default value: text/
html

gzip_vary Enables or disables the response
header Vary: Accept-
Encoding if gzip or gzip_
static is active.

Valid contexts: http,
server, location
Default value: off

http Sets up a configuration context in
which HTTP server directives are
specified.

Valid context: main
Default value: -

if Refer to the Rewrite module
directives table in the Introducing
the rewrite module section in
Appendix B, Rewrite Rule Guide.

Valid contexts:
server, location
Default value: -

if_modified_since Controls how the modification
time of a response is compared to
the value of the If-Modified-
Since request header:

•	 off: The If-Modified-
Since header is ignored

•	 exact: An exact match is
made (default)

•	 before: The modification
time of the response is less
than or equal to the value of
the If-Modified-Since
header

Valid contexts: http,
server, location
Default value: exact

Directive Reference

[232]

Directive Explanation Context/Default
ignore_invalid_
headers

Disables ignoring headers with
invalid names. A valid name
is composed of ASCII letters,
numbers, the hyphen, and possibly
the underscore (controlled by the
underscores_in_headers
directive).

Valid contexts: http,
server

Default value: on

image_filter Refer to the Image filter directives
table in the Generating images
section in Chapter 7, NGINX for
the Developer.

Valid context:
location

Default value: -

image_filter_buffer The size of the buffer used to
process images. If more memory
is needed, the server will return a
415 error (Unsupported Media
Type).

Valid contexts: http,
server, location
Default value: 1M

image_filter_jpeg_
quality

The quality of the resulting JPEG
image, after processing. Not
recommended to exceed 95.

Valid contexts: http,
server, location
Default value: 75

image_filter_
sharpen

Increases the sharpness of
a processed image by this
percentage.

Valid contexts: http,
server, location
Default value: 0

image_filter_
transparency

Disables preserving transparency
of transformed GIF and PNG
images. The default on preserves
transparency.

Valid contexts: http,
server, location
Default value: on

imap_auth Sets the supported client
authentication mechanism. It can
be one or more of login, plain,
or cram-md5.

Valid contexts: mail,
server

Default value: plain

imap_capabilities Indicates which IMAP4
capabilities are supported by the
backend server.

Valid contexts: mail,
server

Default value: IMAP4
IMAP4rev1 UIDPLUS

imap_client_buffer Sets the size of the read buffer for
IMAP commands.

Valid contexts: mail,
server

Default value: 4k|8k
(platform dependent)

Appendix A

[233]

Directive Explanation Context/Default
include The path to a file containing

additional configuration
directives. It may be specified as a
glob to include multiple files.

Valid context: any
Default value: -

index Defines which file will be served
to the client when a URI ending
with / is received. It may be
multivalued.

Valid contexts: http,
server, location
Default value: index.
html

internal Specifies a location that
can only be used for internal
requests (redirects defined in
other directives, rewrite requests,
and similar request processing
directives).

Valid context:
location

Default value: -

ip_hash Ensures the distribution of clients
evenly over all server by hashing
the IP address, keying on its class
C network.

Valid context:
upstream

Default value: -

keepalive The number of connections to
upstream servers that are cached
per worker process. When used
with HTTP connections, proxy_
http_version should be set to
1.1 and proxy_set_header to
Connection.

Valid context:
upstream

Default value: -

keepalive_disable Disables keep-alive requests for
certain browser types.

Valid contexts: http,
server, location
Default value: msie6

keepalive_requests Defines how many requests may
be made over one keepalive
connection before it is closed.

Valid contexts: http,
server, location
Default value: 100

keepalive_timeout Specifies how long a keep-alive
connection will stay open. A
second parameter may be given,
to set a Keep-Alive header in the
response.

Valid contexts: http,
server, location
Default value: 75s

large_client_
header_buffers

Defines the maximum number
and size of a large client request
header.

Valid contexts: http,
server

Default value: 4 8k

Directive Reference

[234]

Directive Explanation Context/Default
least_conn Activates the load-balancing

algorithm where the server
with the least number of active
connections is chosen for the next
new connection.

Valid context:
upstream

Default value: -

limit_conn Specifies a shared memory zone
(configured with limit_conn_
zone) and the maximum number
of connections that are allowed per
key value.

Valid contexts: http,
server, location
Default value: -

limit_conn_log_
level

When NGINX limits a connection
due to the limit_conn directive,
this directive specifies at which log
level that limitation is reported.

Valid contexts: http,
server, location
Default value: error

limit_conn_zone Specifies the key to be limited
in limit_conn as the first
parameter. The second parameter,
zone, indicates the name of the
shared memory zone used to store
the key and current number of
connections per key and the size of
that zone (name:size).

Valid context: http
Default value: -

limit_except Will limit a location to the
specified HTTP verb(s) (GET also
includes HEAD).

Valid context:
location

Default value: -
limit_rate Limits the rate (in bytes per

second) at which clients can
download content. The rate limit
works on a connection level,
meaning that a single client could
increase their throughput by
opening multiple connections.

Valid context: http,
server, location,
if in location

Default value: 0

limit_rate_after Starts the limit_rate after
this number of bytes have been
transferred.

Valid contexts: http,
server, location,
if in location

Default value: 0

Appendix A

[235]

Directive Explanation Context/Default
limit_req Sets a limit with bursting

capability on the number of
requests for a specific key in a
shared memory store (configured
with limit_req_zone). The
burst may be specified with
the second parameter. If there
shouldn't be a delay in between
requests up to the burst, a third
parameter nodelay needs to be
configured.

Valid context: http,
server, location
Default value: -

limit_req_log_level When NGINX limits the number
of requests due to the limit_req
directive, this directive specifies
at which log level that limitation
is reported. A delay is logged
at a level one less than the one
indicated here.

Valid contexts: http,
server, location
Default value: -

limit_req_zone Specifies the key to be limited in
limit_req as the first parameter.
The second parameter, zone,
indicates the name of the shared
memory zone used to store
the key and current number of
requests per key and the size of
that zone (name:size). The third
parameter, rate, configures the
number of requests per second
(r/s) or per minute (r/m) before
the limit is imposed.

Valid context: http
Default value: -

limit_zone Deprecated. Use limit_conn_
zone instead.

Valid context: http
Default value: -

lingering_close This directive specifies how a
client connection will be kept open
for more data.

Valid contexts: http,
server, location
Default value: on

lingering_time In connection with the
lingering_close directive, this
directive will specify how long a
client connection will be kept open
for processing more data.

Valid contexts: http,
server, location
Default value: 30s

Directive Reference

[236]

Directive Explanation Context/Default
lingering_timeout Also in conjunction with

lingering_close, this directive
indicates how long NGINX will
wait for additional data before
closing the client connection.

Valid contexts: http,
server, location
default value: 5s

listen (http) Refer to the listen parameters table
in the section named The virtual
server section in Chapter 2, A
Configuration Guide.

Valid context: server
Default value: *:80 |
*:8000

listen (mail) The listen directive uniquely
identifies a socket binding under
NGINX. It takes the following
parameter:

•	 bind: make a separate
bind() call for this
address:port pair.

Valid context: server
Default value: -

location Defines a new context based on
the request URI.

Valid context: server,
location

Default value: -
lock_file The prefix name for lock files.

Depending on the platform, a lock
file may be needed to implement
accept_mutex and shared
memory access serialization.

Valid context: main
Default value: logs/
nginx.lock.

log_format Specifies which fields should
appear in the log file and what
format they should take.

Valid context: http
Default value:
combined
$remote_addr
- $remote_user
[$time_local],
"$request"
$status
$body_bytes_
sent, "$http_
referer""$http_
user_agent"'

log_not_found Disables reporting of 404 errors in
the error log.

Valid contexts: http,
server, location
Default value: on

Appendix A

[237]

Directive Explanation Context/Default
log_subrequest Enables logging of subrequests in

the access log.
Valid contexts: http,
server, location
Default value: off

mail Sets up a configuration context in
which mail server directives are
specified.

Valid context: main
Default value: -

map Defines a new context, in which a
variable is set to a specified value,
dependent on the value of a source
variable. The format of the context
definition is:

map $source-variable
$variable-to-be-set { … }

The string or strings to be mapped
may also be regular expressions.
The following parameters are
recognized within the context:

•	 default: Sets a default
value for the variable if
the value of the source
variable didn't match any
of the strings or regular
expressions specified

•	 hostnames: Indicates
that source values may be
hostnames with a prefix or
suffix glob

•	 include: Includes a
file with string-to-value
mappings

Valid context: http
Default value: -

map_hash_bucket_
size

The bucket size used to hold the
map hash tables.

Valid context: http
Default value:
32|64|128

map_hash_max_size The maximum size of the map
hash tables.

Valid context: http
Default value: 2048

master_process Determines whether or not to start
worker processes.

Valid context: main
Default value: on

Directive Reference

[238]

Directive Explanation Context/Default
max_ranges Sets the maximum number of

ranges allowed in a byte-range
request. Specifying 0 disables
byte-range support.

Valid contexts: http,
server, location
Default value: -

memcached_bind Specifies which address should be
used for outgoing connections to a
memcached server.

Valid contexts: http,
server, location
Default value: -

memcached_buffer_
size

The size of the buffer for the
response from memcached.
This response is then sent
synchronously to the client.

Valid contexts: http,
server, location
Default value: 4k|8k

memcached_connect_
timeout

The maximum length of time
NGINX will wait for its connection
to be accepted when making a
request to a memcached server.

Valid contexts: http,
server, location
Default value: 60s

memcached_gzip_flag Specifies a value, when found in
the response from a memcached
server, which will set the
Content-Encoding header to
gzip.

Valid contexts: http,
server, location
Default value: -

memcached_next_
upstream

Refer to the Memcached module
directives table in the Caching in
the database section in Chapter 7,
NGINX for the Developer.

Valid contexts: http,
server, location
Default value: error
timeout

memcached_pass Specifies the name or address of a
memcached server and its port. It
may also be a server group, as
declared in an upstream context.

Valid contexts:
location, if in
location

Default value: -
memcached_read_
timeout

Specifies the length of time that
needs to elapse between two
successive read operations from
a memcached server before the
connection is closed.

Valid contexts: http,
server, location
Default value: 60s

memcached_send_
timeout

The length of time that needs to
elapse between two successive
write operations to a memcached
server before the connection is
closed.

Valid contexts: http,
server, location
Default value: 60s

Appendix A

[239]

Directive Explanation Context/Default
merge_slashes Disables the removal of multiple

slashes. The default value of on
means that NGINX will compress
two or more / characters into one.

Valid contexts: http,
server

Default value: on

min_delete_depth Allows the WebDAV DELETE
method to remove files when at
least this number of elements is
present in the request path.

Valid contexts: http,
server, location
Default value: 0

modern_browser Specifies a browser and version
parameter, which together will
indicate that the browser is
considered modern by setting
the $modern_browser variable
to modern_browser_value.
The browser parameter may
take one of the following values:
msie, gecko, opera, safari,
or konqueror. An alternative
parameter unlisted may be
specified to indicate that any
browser not found in ancient_
browser nor in modern_
browser or has a missing User-
Agent header is considered
modern.

Valid contexts: http,
server, location
Default value: -

modern_browser_
value

The value to which the $modern_
browser variable will be set.

Valid contexts: http,
server, location
Default value: 1

mp4 Activates the mp4 module for this
location.

Valid context:
location

Default value: -
mp4_buffer_size Sets the initial buffer size for

delivering MP4 files.
Valid contexts: http,
server, location
Default value: 512K

mp4_max_buffer_size Sets the maximum size of the
buffer used to process MP4
metadata.

Valid contexts: http,
server, location
Default value: 10M

Directive Reference

[240]

Directive Explanation Context/Default
msie_padding Enables the disabling of adding

comments to responses with
a status greater than 400 for
MSIE clients, in order to pad the
response size to 512 bytes.

Valid contexts: http,
server, location
Default value: on

msie_refresh This directive enables the sending
of a refresh instead of a
redirect for MSIE clients.

Valid contexts: http,
server, location
Default value: off

multi_accept Instructs a worker process to
accept all new connections at
once. Disregarded if the kqueue
event method is used because
kqueue reports the number of
new connections waiting to be
accepted.

Valid context: events
Default value: off

open_file_cache Configures a cache that can store
open file descriptors, directory
lookups, and file lookup errors.

Valid contexts: http,
server, location
Default value: off

open_file_cache_
errors

Enables the caching of the file
lookup errors by the open_file_
cache directive.

Valid contexts: http,
server, location
Default value: off

open_file_cache_
min_uses

Configures the minimum
number of uses for a file within
the inactive parameter to
open_file_cache for that file
descriptor to remain open in the
cache.

Valid contexts: http,
server, location
Default value: 1

open_file_cache_
valid

Specifies the time interval between
the validity checks for the items in
the open_file_cache directive.

Valid contexts: http,
server, location
Default value: 60s

open_log_file_cache Refer to the HTTP logging directives
table in the Logging section in
Chapter 6, The NGINX HTTP Server.

Valid contexts: http,
server, location
Default value: off

optimize_server_
names

This is deprecated. Use the
server_name_in_redirect
directive instead.

Valid contexts: http,
server

Default value: off

Appendix A

[241]

Directive Explanation Context/Default
override_charset Indicates whether the charset

specified in the Content-Type
header of a response received from
a proxy_pass or fastcgi_pass
request should be converted or
not. If the response comes as a
result of a subrequest, conversion
to the main request's charset will
always be performed.

Valid contexts: http,
server, location,
if in location

Default value: off

pcre_jit Enables just-in-time compilation
of Perl-compatible regular
expressions known at
configuration time. JIT support
needs to be enabled in the PCRE
library to make use of this
speedup.

Valid context: main
Default value: off

perl Activates a Perl handler for this
location. The argument is the
name of the handler or a string
describing a full subroutine.

Valid contexts:
location, limit_
except

Default value: -
perl_modules Specifies an additional search path

for Perl modules.
Valid context: http
Default value: -

perl_require Indicates a Perl module that
will be loaded at each NGINX
reconfiguration. It may be
specified multiple times for
separate modules.

Valid context: http
Default value: -

perl_set Installs a Perl handler to set the
value of a variable. The argument
is the name of the handler or a
string describing a full subroutine.

Valid context: http
Default value: -

pid This is the file where the process
ID of the main process will be
written, overwriting the compiled-
in default.

Valid context: main
Default value: nginx.
pid

pop3_auth Sets the supported client
authentication mechanism. It can
be one or more of plain, apop, or
cram-md5.

Valid contexts: mail,
server

Default value: plain

Directive Reference

[242]

Directive Explanation Context/Default
pop3_capabilities Indicates which POP3 capabilities

are supported by the backend
server.

Valid contexts: mail,
server

Default value: TOP
USER UIDL

port_in_redirect Determines whether or not
the port will be specified in a
redirect method issued by
NGINX.

Valid contexts: http,
server, location
Default value: on

postpone_output Specifies the minimum size of data
for NGINX to send to the client. If
possible, no data will be sent until
this value is reached.

Valid contexts: http,
server, location
Default value: 1460

protocol Indicates which protocol is
supported by this mail server
context. It may be one of imap,
pop3, or smtp.

Valid context: server
Default value: -

proxy Enables or disables mail proxying. Valid context: server
Default value: -

proxy_bind Specifies which address should be
used for outgoing connections to a
proxied server.

Valid contexts: http,
server, location
Default value: -

proxy_buffer Allows setting the size of the
buffer used for the mail proxy
connection beyond the default of
one page.

Valid contexts: mail,
server

Default value: 4k|8k
(platform dependent)

proxy_buffer_size The size of the buffer used for
the first part of the response from
the upstream server, in which the
response headers are found.

Valid contexts: http,
server, location
Default value: 4k|8k
(platform dependent)

proxy_buffering Activates buffering of proxied
content; when switched off,
responses are sent synchronously
to the client as soon as they are
received.

Valid contexts: http,
server, location
Default value: on

Appendix A

[243]

Directive Explanation Context/Default
proxy_buffers The number and size of buffers

used for responses from upstream
servers.

Valid contexts: http,
server, location
Default value: 8
4k|8k (platform
dependent)

proxy_busy_buffers_
size

The total size of buffer space
allocated to sending the response
to the client while still being read
from the upstream server. This
is typically set to two proxy_
buffers.

Valid contexts: http,
server, location
Default value: 8k|16k
(platform dependent)

proxy_cache Defines a shared memory zone to
be used for caching.

Valid contexts: http,
server, location
Default value: off

proxy_cache_bypass One or more string variables,
which when non-empty or non-
zero, will cause the response to be
taken from the upstream server
instead of the cache.

Valid contexts: http,
server, location
Default value: -

proxy_cache_key A string used as the key for storing
and retrieving cache values.

Valid contexts: http,
server, location
Default value:
$scheme$proxy_
host$request_uri

proxy_cache_lock Enabling this directive will
prevent multiple requests from
making an entry into the same
cache key.

Valid contexts: http,
server, location
Default value: off

proxy_cache_lock_
timeout

The length of time a request will
wait for an entry to appear in the
cache or for the proxy_cache_
lock directive to be released.

Valid contexts: http,
server, location
Default value: 5s

Directive Reference

[244]

Directive Explanation Context/Default
proxy_cache_min_
uses

The number of requests for a
certain key needed before a
response is cached.

Valid contexts: http,
server, location
Default value: 1

proxy_cache_path Refer to the Proxy module caching
directives table in the Caching
section in Chapter 5, Reverse Proxy
Advanced Topics.

Valid context: http
Default value: -

proxy_cache_use_
stale

The cases under which it is
acceptable to serve stale cached
data when an error occurs when
accessing the upstream server. The
updating parameter indicates
the case when fresh data are being
loaded.

Valid contexts: http,
server, location
Default value: off

proxy_cache_valid Indicates the length of time for
which a cached response with
response code 200, 301, or 302 is
valid. If an optional response code
is given before the time parameter,
that time is only for that response
code. The special parameter any
indicates that any response code
should be cached for that length
of time.

Valid contexts: http,
server, location
Default value: -

proxy_connect_
timeout

The maximum amount of time
NGINX will wait for its connection
to be accepted when making a
request to an upstream server.

Valid contexts: http,
server, location
Default value: 60s

proxy_cookie_domain Replaces the domain attribute of
the Set-Cookie header from the
upstream server; the domain to be
replaced can either be a string or a
regular expression, or reference a
variable.

Valid contexts: http,
server, location
Default value: off

Appendix A

[245]

Directive Explanation Context/Default
proxy_cookie_path Replaces the path attribute of the

Set-Cookie header from the
upstream server; the path to be
replaced can either be a string or a
regular expression, or reference a
variable.

Valid contexts: http,
server, location
Default value: off

proxy_header_hash_
bucket_size

The bucket size used to hold proxy
header names (one name cannot
be longer than the value of this
directive).

Valid contexts: http,
server, location,
if

Default value: 64
proxy_header_hash_
max_size

The total size of headers received
from the upstream server.

Valid contexts: http,
server, location
Default value: 512

proxy_hide_header A list of header fields that should
not be passed on to the client.

Valid contexts: http,
server, location
Default value: -

proxy_http_version The HTTP protocol version used
to communicate with upstream
servers (use 1.1 for keepalive
connections).

Valid contexts: http,
server, location
Default value: 1.0

proxy_ignore_
client_abort

If set to on, NGINX will not abort
the connection to an upstream
server if the client aborts the
connection.

Valid contexts: http,
server, location
Default value: off

proxy_ignore_
headers

Sets which headers may be
disregarded when processing
the response from the upstream
server.

Valid contexts: http,
server, location
Default value: -

proxy_intercept_
errors

If enabled, NGINX will display a
configured error_page instead
of the response directly from the
upstream server.

Valid contexts: http,
server, location
Default value: off

proxy_max_temp_
file_size

The maximum size of the overflow
file, written when the response
doesn't fit into memory buffers.

Valid contexts: http,
server, location
Default value: 1024m

Directive Reference

[246]

Directive Explanation Context/Default
proxy_next_upstream Indicates the conditions under

which the next upstream server
will be selected for the response.
This won't be used if the client has
already been sent something. The
conditions are specified using the
following parameters:

•	 error: An error occurred
while communicating with
the upstream server

•	 timeout: A timeout
occurred while
communicating with the
upstream server

•	 invalid_header: The
upstream server returned
an empty or otherwise
invalid response

•	 http_500: The upstream
server responded with a 500
error code

•	 http_503: The upstream
server responded with a 503
error code

•	 http_504: The upstream
server responded with a 504
error code

•	 http_404: The upstream
server responded with a 404
error code

•	 off: Disables passing
the request to the next
upstream server when an
error occurs

Valid contexts: http,
server, location
Default value: error
timeout

proxy_no_cache Defines the conditions under
which the response will not be
saved to the cache. The parameters
are string variables, which
evaluate to something non-empty
and non-zero to not cache.

Valid contexts: http,
server, location
Default value: -

Appendix A

[247]

Directive Explanation Context/Default
proxy_pass Specifies the upstream server to

which the request is passed, in the
form of a URL.

Valid contexts:
location, if in
location, limit_
except

Default value: -
proxy_pass_error_
message

Useful in situations where the
backend authentication process
emits a useful error message to the
client.

Valid contexts: mail,
server

Default value: off

proxy_pass_header Overrides the disabled headers
set in proxy_hide_header,
allowing them to be sent to the
client.

Valid contexts: http,
server, location
Default value: -

proxy_pass_request_
body

Prevents sending the body of the
request to the upstream server if
set to off.

Valid contexts: http,
server, location
Default value: on

proxy_pass_request_
headers

Prevents sending the headers of
the request to the upstream server
if set to off.

Valid contexts: http,
server, location
Default value: on

proxy_read_timeout Specifies the length of time that
needs to elapse between two
successive read operations from
an upstream server before the
connection is closed.

Valid contexts: http,
server, location
Default value: 60s

proxy_redirect Rewrites the Location and
Refresh headers received from
the upstream servers; useful for
working around assumptions
made by an application
framework.

Valid contexts: http,
server, location
Default value:
default

proxy_send_lowat If non-zero, NGINX will try
to minimize the number of
send operations on outgoing
connections to a proxied server. It
is ignored in Linux, Solaris, and
Windows.

Valid contexts: http,
server, location
Default value: 0

proxy_send_timeout The length of time that needs to
elapse between two successive
write operations to an upstream
server before the connection is
closed.

Valid contexts: http,
server, location
Default value: 60s

Directive Reference

[248]

Directive Explanation Context/Default
proxy_set_body The body of a request sent to an

upstream server may be altered by
setting this directive.

Valid contexts: http,
server, location
Default value: -

proxy_set_header Rewrites the contents of the
headers sent to an upstream
server; may also be used to not
send certain headers by setting its
value to the empty string.

Valid contexts: http,
server, location
Default value: Host
$proxy_host,
Connection close

proxy_ssl_session_
reuse

Sets whether or not SSL sessions
may be reused when proxying.

Valid contexts: http,
server, location
Default value: on

proxy_store Enables storing responses
retrieved from an upstream server
as files on disk. The on parameter
will use the alias or root
directive as the base path under
which to store the file. A string
may instead be given, to indicate
an alternative location to store the
files.

Valid contexts: http,
server, location
Default value: off

proxy_store_access Sets file access permissions for the
newly-created proxy_store files.

Valid contexts: http,
server, location
Default value:
user:rw

proxy_temp_file_
write_size

Limits the amount of data buffered
to a temporary file at one time, so
that NGINX will not be blocked
for too long on a single request.

Valid contexts: http,
server, location
Default value: 8k|16k
(platform dependent)

proxy_temp_path A directory where temporary
files may be buffered as they
are proxied from the upstream
server, optionally multilevel
deep. If a second, third, or fourth
parameter is given, these specify
a subdirectory hierarchy with the
parameter value as the number
of characters in the subdirectory
name.

Valid contexts: http,
server, location
Default value: proxy_
temp

Appendix A

[249]

Directive Explanation Context/Default
proxy_timeout If a timeout beyond the default of

24 hours is required, this directive
can be used.

Valid contexts: mail,
server

Default value: 24h
random_index Activates randomly choosing a file

to be served to the client when a
URI ending with / is received.

Valid context:
location

Default value: off
read_ahead If possible, the kernel will preread

files up to the size parameter.
Supported on current FreeBSD
and Linux (the size parameter is
ignored on Linux).

Valid contexts: http,
server, location
Default value: 0

real_ip_header Sets the header whose value is
used as the client IP address when
set_real_ip_from matches the
connecting IP.

Valid contexts: http,
server, location
Default value:
X-Real-IP

real_ip_recursive Works with set_real_ip_from,
to specify that the last address in
a multi-valued real_ip_header
header will be used.

Valid contexts: http,
server, location
Default value: off

recursive_error_
pages

Enables doing more than one
redirect using the error_page
directive (default is off).

Valid contexts: http,
server, location
Default value: off

referer_hash_
bucket_size

The bucket size of the valid
referers hash tables.

Valid contexts:
server, location
Default value: 64

referer_hash_max_
size

The maximum size of the valid
referers hash tables.

Valid contexts:
server, location
Default value: 2048

request_pool_size Fine tunes per-request memory
allocation.

Valid contexts: http,
server

Default value: 4k
reset_timedout_
connection

With this directive enabled,
connections that have been timed
out will immediately be reset,
freeing all associated memory.
The default is to leave the socket
in the FIN_WAIT1 state, which
will always be the case for the
keepalive connections.

Valid contexts: http,
server, location
Default value: off

Directive Reference

[250]

Directive Explanation Context/Default
resolver Configures one or more name

servers to be used to resolve
upstream server names into IP
addresses. An optional valid
parameter overrides the TTL of the
domain name record.

Valid contexts: http,
server, location
Default value: -

resolver_timeout Sets the timeout for name
resolution.

Valid contexts: http,
server, location
Default value: 30s

return Stops processing and returns the
specified code to the client. The
non-standard code 444 will close
the connection without sending
any response headers. If a code
additionally has text accompanying
it, the text will be placed in the
response body. If instead, a URL
is given after the code, that URL
will be the value of the Location
header. A URL without a code is
treated as a code 302.

Valid contexts:
server, location,
if

Default value: -

rewrite Refer to the Rewrite module
directives table in the Introducing
the rewrite module section in
Appendix B, Rewrite Rule Guide.

Valid contexts:
server, location,
if

Default value: -
rewrite_log Activates notice level logging of

rewrites to the error_log.
Valid contexts: http,
server, if in
server, location,
if in location

Default value: off
root Sets the path to the document root.

Files are found by appending the
URI to the value of this directive.

Valid contexts: http,
server, location,
if in location

Default value: html
satisfy Allows access if all or any of

the access or auth_basic
directives grant access. The default
value all indicates that a user
must come from a specific network
address and enter the correct
password.

Valid contexts: http,
server, location
Default value: all

Appendix A

[251]

Directive Explanation Context/Default
satisfy_any This is deprecated. Use the

any parameter of the satisfy
directive.

Valid contexts: http,
server, location
Default value: off

secure_link_secret A salt used to compute the MD5
hash of a URI.

Valid context:
location

Default value: -
send_lowat If non-zero, NGINX will try to

minimize the number of send
operations on client sockets.
Ignored in Linux, Solaris, and
Windows.

Valid contexts: http,
server, location
Default value: 0

send_timeout This directive sets a timeout
between two successive write
operations for a client receiving a
response.

Valid contexts: http,
server, location
Default value: 60s

sendfile Enable using sendfile(2) to
directly copy data from one file
descriptor to another.

Valid contexts: http,
server, location,
if in location

Default value: off
sendfile_max_chunk Sets the maximum size of data to

copy in one sendfile(2) call to
prevent a worker from seizing.

Valid contexts: http,
server, location
Default value: 0

server (http) Creates a new configuration
context, defining a virtual host.
The listen directive specifies
the IP address(es) and port(s);
the server_name directive lists
the Host header values that this
context matches.

Valid context: http
Default value: -

server (upstream) Refer to the Upstream modules
directives table in the The upstream
module section in Chapter 4, NGINX
as a Reverse Proxy.

Valid context:
upstream

Default value: -

server (mail) Creates a new configuration
context, defining a mail server.
The listen directive specifies
the IP address(es) and port(s); the
server_name directive sets the
name of the server.

Valid context: mail
Default value: -

Directive Reference

[252]

Directive Explanation Context/Default
server_name (http) Configures the names that a

virtual host may respond to.
Valid context: server
Default value: ""

server_name (mail) Sets the name of the server, which
is used in the following ways:

•	 The POP3/SMTP server
greeting

•	 The salt for SASL CRAM-
MD5 authentication

•	 The EHLO name when
using xclient to talk to an
SMTP backend

Valid contexts: mail,
server

Default value:
hostname

server_name_in_
redirect

Activates using the first value of
the server_name directive in any
redirect issued by NGINX within
this context.

Valid contexts: http,
server, location
Default value: off

server_names_hash_
bucket_size

The bucket size used to hold the
server_name hash tables.

Valid context: http
Default value:
32|64|128 (processor
dependent)

server_names_hash_
max_size

The maximum size of the
server_name hash tables.

Valid context: http
Default value: 512

server_tokens Disables sending the NGINX
version string in error messages
and the Server response header
(default value is on).

Valid contexts: http,
server, location
Default value: on

set Sets a given variable to a specific
value.

Valid context: server,
location, if
Default value: -

set_real_ip_from Defines the connecting address(es)
from which the client IP will be
extracted from the real_ip_
header directive. The value
unix: means that all connections
from UNIX-domain sockets will be
treated this way.

Valid contexts: http,
server, location
Default value: -

smtp_auth Sets the supported SASL client
authentication mechanism. It can
be one or more of login, plain,
or cram-md5.

Valid contexts: mail,
server

Default value: login,
plain

Appendix A

[253]

Directive Explanation Context/Default
smtp_capabilities Indicates which SMTP capabilities

are supported by the backend
server.

Valid contexts: mail,
server

Default value: -
so_keepalive Sets the TCP keepalive

parameter on the socket
connection to the proxied server.

Valid contexts: mail,
server

Default value: off
source_charset Defines the charset of a response.

If it is different from the defined
charset, a conversion is performed.

Valid contexts: http,
server, location,
if in location

Default value: -
split_clients Creates a context in which

variables appropriate to A/B (or
split) testing are set. The string
specified in the first parameter is
hashed using MurmurHash2. The
variable specified in the second
parameter is then set to a value
based on how the string falls
within the range of hash values.
The match is specified as either a
percentage or * to place weights
on the values.

valid context(s): http
default value: -

ssi Enables the processing of SSI files. Valid contexts: http,
server, location,
if in location

Default value: off
ssi_min_file_chunk Sets the minimum size of a file

above which it should be sent
using sendfile(2).

Valid contexts: http,
server, location
Default value: 1k

ssi_silent_errors Suppresses the error message
normally output when an error
occurs during SSI processing.

Valid contexts: http,
server, location
Default value: off

ssi_types Lists the MIME types of a response
in addition to text/html in which
SSI commands are processed. It
may be * to enable all MIME types.

Valid contexts: http,
server, location
Default value: text/
html

ssi_value_length Sets the maximum length of values
for parameters used in Server Side
Includes.

Valid contexts: http,
server, location
Default value: 256

Directive Reference

[254]

Directive Explanation Context/Default
ssl (http) Enables the HTTPS protocol for

this virtual server.
Valid contexts: http,
server

Default value: off
ssl (mail) Indicates if this context should

support SSL/TLS transactions.
Valid contexts: mail,
server

Default value: off
ssl_certificate
(http)

The path to the file containing
the SSL certificate for this
server_name in PEM format.
If intermediate certificates are
required, they need to be added
in order after the certificate
corresponding to the server_
name directive, up to the root, if
necessary.

Valid contexts: http,
server

Default value: -

ssl_certificate
(mail)

The path to the PEM-encoded SSL
certificate(s) for this virtual server.

Valid contexts: mail,
server

Default value: -
ssl_certificate_key
(http)

The path to the file containing the
SSL certificate's secret key.

Valid contexts: http,
server

Default value: -
ssl_certificate_key
(mail)

The path to the PEM-encoded SSL
secret key for this virtual server.

Valid contexts: mail,
server

Default value: -
ssl_ciphers The ciphers that should be

supported in this virtual server
context (OpenSSL format).

Valid contexts: http,
server

Default value:
HIGH:!aNULL:!MD5

ssl_client_
certificate

The path to the file containing
the PEM-encoded public CA
certificate(s) of the certificate
authorities used to sign client
certificates.

Valid contexts: http,
server

Default value: -

ssl_crl The path to the file containing
the PEM-encoded certificate
revocation list (CRL) for the client
certificates that are to be verified.

Valid contexts: http,
server

Default value: -

ssl_dhparam The path to a file containing DH
parameters, used for EDH ciphers.

Valid contexts: http,
server

Default value: -

Appendix A

[255]

Directive Explanation Context/Default
ssl_engine Specifies a hardware SSL

accelerator.
Valid context: main
Default value: -

ssl_prefer_server_
ciphers (http)

Indicates that the server ciphers
are to be preferred over the client's
ciphers when using the SSLv3 and
TLS protocols.

Valid contexts: http,
server

Default value: off

ssl_prefer_server_
ciphers (mail)

Indicates that SSLv3 and TLSv1
server ciphers are preferred over
the client's ciphers.

Valid contexts: mail,
server

Default value: off
ssl_protocols (http) Indicates which SSL protocols

should be enabled.
Valid contexts: http,
server

Default value: SSLv3,
TLSv1, TLSv1.1,
TLSv1.2

ssl_protocols (mail) Indicates which SSL protocols
should be enabled.

Valid contexts: mail,
server

Default value: SSLv3,
TLSv1, TLSv1.1,
TLSv1.2

ssl_session_cache
(http)

Sets the type and size of the SSL
cache to store session parameters.
A cache can be one of the
following types:

•	 off: Clients are told that
sessions won't be reused
at all

•	 none: Clients are told that
sessions are reused, but
they aren't really

•	 builtin: An OpenSSL
builtin cache used by only
one worker with a size
specified in sessions

•	 shared: A cache shared by
all worker processes, given
a name and session size
specified in megabytes

Valid contexts: http,
server

Default value: none

Directive Reference

[256]

Directive Explanation Context/Default
ssl_session_cache
(mail)

Sets the type and size of the SSL
cache to store session parameters.
A cache can be one of the
following types:

•	 off: Clients are told that
sessions won't be reused
at all

•	 none: Clients are told that
sessions are reused, but
they aren't really

•	 builtin: An OpenSSL
builtin cache used by only
one worker with a size
specified in sessions

•	 shared: A cache shared by
all worker processes, given
a name and session size
specified in megabytes

Valid contexts: mail,
server

Default value: none

ssl_session_timeout
(http)

How long the client can use the
same SSL parameters, provided
they are stored in the cache.

Valid contexts: http,
server

Default value: 5m
ssl_session_timeout
(mail)

How long the client can use the
same SSL parameters, provided
they are stored in the cache.

Valid contexts: mail,
server

Default value: 5m
ssl_stapling Enables stapling of OCSP

responses. The CA certificate
of the server's issuer should be
contained in the file specified by
ssl_trusted_certificate. A
resolver should also be specified
to be able to resolve the OCSP
responder hostname.

Valid contexts: http,
server

Default value: off

ssl_stapling_file The path to a DER-formatted
file containing the stapled OCSP
response.

Valid contexts: http,
server

Default value: -
ssl_stapling_
responder

A URL specifying the OCSP
responder. Only URLs beginning
with http:// are currently
supported.

Valid contexts: http,
server

Default value: -

Appendix A

[257]

Directive Explanation Context/Default
ssl_stapling_verify Enables verification of OCSP

responses.
Valid contexts: http,
server

Default value: -
ssl_trusted_
certificate

The path to a file containing PEM-
formatted SSL certificates of the
CA's signing client certificates
and OCSP responses when ssl_
stapling is enabled.

Valid contexts: http,
server

Default value: -

ssl_verify_client Enables verification of SSL client
certificates. If the optional
parameter is specified, a client
certificate will be requested and if
present, verified. If the optional_
no_ca parameter is specified, a
client certificate is requested, but
doesn't require it to be signed by a
trusted CA certificate.

Valid contexts: http,
server

Default value: off

ssl_verify_depth Sets how many signers will be
checked before declaring the
certificate invalid.

Valid contexts: http,
server

Default value: 1
starttls Indicates whether or not STLS/

STARTTLS are supported
and/or required for further
communication with this server.

Valid contexts: mail,
server

Default value: off

sub_filter Sets the string to be matched
without regards to case and the
string to be substituted into that
match. The substitution string may
contain variables.

Valid contexts: http,
server, location
Default value: -

sub_filter_once Setting to off will cause the match
in sub_filter to be made as
many times as the string is found.

Valid contexts: http,
server, location
Default value: on

sub_filter_types Lists the MIME types of a response
in addition to text/html in which
a substitution will be made. It may
be * to enable all MIME types.

Valid contexts: http,
server, location
Default value: text/
html

tcp_nodelay Enables or disables the TCP_
NODELAY option for the keep-
alive connections.

Valid contexts: http,
server, location
Default value: on

Directive Reference

[258]

Directive Explanation Context/Default
tcp_nopush Relevant only when the sendfile

directive is used. Enables NGINX
to attempt to send response
headers in one packet, as well as
sending a file in full packets.

Valid contexts: http,
server, location
Default value: off

timeout The amount of time NGINX will
wait before a connection to the
backend server is finalized.

Valid contexts: mail,
server

Default value: 60s
timer_resolution Specifies how often

gettimeofday() is called
instead of each time a kernel event
is received.

Valid context: main
Default value: -

try_files Tests the existence of files given as
parameters. If none of the previous
files are found, the last entry is
used as a fallback, so ensure that
this path or named location
exists.

Valid contexts:
server, location
Default value: -

types Sets up a map of MIME types to
filename extensions. NGINX ships
with a conf/mime.types file
that contains most MIME type
mappings. Using include to load
this file should be sufficient for
most purposes.

Valid contexts: http,
server, location
Default value:

 text/html
html;
 image/gif
gif;
 image/jpeg
jpg

types_hash_bucket_
size

The bucket size used to hold the
types hash tables.

Valid contexts: http,
server, location
Default value:
32|64|128 (processor
dependent)

Appendix A

[259]

Directive Explanation Context/Default
types_hash_max_size The maximum size of the types

hash tables.
Valid contexts: http,
server, location
Default value: 1024

underscores_in_
headers

Enables the use of the underscore
character in client request headers.
If left at the default value off,
evaluation of such headers
is subject to the value of the
ignore_invalid_headers
directive.

Valid contexts: http,
server

Default value: off

uninitialized_
variable_warn

Controls whether or not warnings
about uninitialized variables are
logged.

Valid contexts: http,
server, location,
if

Default value: on
upstream Sets up a named context in which

a group of servers is defined.
Valid context: http
Default value: -

use The use directive indicates
which connection processing
method should be used. This
will overwrite the compiled-in
default, and must be contained
in an events context, if used.
It is especially useful when the
compiled-in default is found to
produce errors over time.

Valid context: events
Default value: -

user The user and group under which
the worker processes will run is
configured using this parameter.
If the group is omitted, a group
name equal to that of the user
will be used.

Valid context: main
Default value: nobody
nobody

Directive Reference

[260]

Directive Explanation Context/Default
userid Activates the module according to

the following parameters:
•	 on: Sets Version 2 cookies

and logs those received
•	 v1: Sets Version 1 cookies

and logs those received
•	 log: Disables setting of

cookies, but enables logging
them

•	 off: Disables both the
setting of cookies and the
logging of them

Valid contexts: http,
server, location
Default value: off

userid_domain Configures a domain to be set in
the cookie.

Valid contexts: http,
server, location
Default value: none

userid_expires Sets the age of the cookie. If
the keyword max is used, this
translates to 31 Dec 2037
23:55:55 GMT.

Valid contexts: http,
server, location
Default value: -

userid_mark Sets the first character of the tail of
the userid_name cookie's base64
representation.

Valid contexts: http,
server, location
Default value: off

userid_name Sets the name of the cookie. Valid contexts: http,
server, location
Default value: uid

userid_p3p Configures the P3P header. Valid contexts: http,
server, location
Default value: -

userid_path Defines the path set in the cookie. Valid contexts: http,
server, location
Default value: /

userid_service Identity of the service that set the
cookie. For example, the default
value for Version 2 cookies is the
IP address of the server that set the
cookie.

Valid contexts: http,
server, location
Default value: IP
address of the server

Appendix A

[261]

Directive Explanation Context/Default
valid_referers Defines which values of the

Referer header will cause the
$invalid_referer variable
to be set to an empty string.
Otherwise it will be set to 1. The
parameters can be one or more of
the following:

•	 none: There is no Referer
header

•	 blocked: The Referer
header is present, but
empty or lacking a scheme

•	 server_names: The
Referer value is one of the
server_names

•	 arbitrary string: the value
of the Referer header
is a server name with or
without URI prefixes and *
at the beginning or end

•	 regular expression: matches
the text after the scheme in
the Referer header's value

Valid context: server,
location

Default value: -

variables_hash_
bucket_size

The bucket size used to hold the
remaining variables.

Valid context: http
Default value: 64

variables_hash_max_
size

The maximum size of the hash that
holds the remaining variables.

Valid context: http
Default value: 512

worker_aio_requests The number of open asynchronous
I/O operations for a single worker
process when using aio with
epoll.

Valid context: events
Default value: 32

worker_connections This directive configures
the maximum number of
simultaneous connections that a
worker process may have open.
This includes, but is not limited to,
client connections and connections
to upstream servers.

Valid context: events
Default value: 512

Directive Reference

[262]

Directive Explanation Context/Default
worker_cpu_affinity Binds worker processes to CPU

sets, as specified by a bitmask.
Only available on FreeBSD and
Linux.

Valid context: main
Default value: -

worker_priority Sets the scheduling priority for
worker processes. Works like the
nice command, with a negative
number being a higher priority.

Valid context: main
Default value: 0

worker_processes This is the number of worker
processes that will be started.
These will handle all connections
made by clients. Choosing the
right number is a complex process,
a good rule of thumb is to set this
equal to the number of CPU cores.

Valid context: main
Default value: 1

worker_rlimit_core Changes the limit on core file size
of a running process.

Valid context: main
Default value: -

worker_rlimit_
nofile

Changes the limit on the number
of open files of a running process.

Valid context: main
Default value: -

worker_rlimit_
sigpending

Changes the limit on the number
of pending signals of a running
process when using the rtsig
connection processing method.

Valid context: main
Default value: -

working_directory The current working directory
for worker processes. It should be
writable by the worker to produce
core files.

Valid context: main
Default value: -

xclient The SMTP protocol allows
checking based on IP/HELO/
LOGIN parameters, which
are passed via the XCLIENT
command. This directive enables
NGINX to communicate this
information.

Valid contexts: mail,
server

Default value: on

xml_entities The path to the DTD that declares
the character entities referenced in
the XML to be processed.

Valid contexts: http,
server, location
default value: -

Appendix A

[263]

Directive Explanation Context/Default
xslt_param Parameters passed to the

stylesheets, whose values are
XPath expressions.

Valid contexts: http,
server, location
Default value: -

xslt_string_param Parameters passed to the
stylesheets, whose values are
strings.

Valid contexts: http,
server, location
Default value: -

xslt_stylesheet The path to an XSLT stylesheet
used to transform an XML
response. Parameters may be
passed as a series of key/value
pairs.

Valid context:
location

Default value: -

xslt_types Lists the MIME types of a response
in addition to text/xml, in which
a substitution will be made. It may
be * to enable all MIME types. If
the transformation results in an
HTML response, the MIME type
will be changed to text/html.

Valid contexts: http,
server, location
Default value: text/
xml

Rewrite Rule Guide
This appendix is meant to introduce the rewrite module in NGINX and serve as a
guide for creating new rules as well as translating legacy Apache rewrite rules into
NGINX's format. In this appendix, we will discuss the following:

•	 Introducing the rewrite module
•	 Creating new rewrite rules
•	 Translating from Apache

Introducing the rewrite module
NGINX's rewrite module is a simple regular expression matcher combined with
a virtual stack machine. The first part of any rewrite rule is a regular expression.
As such, it is possible to use parentheses to define certain parts as "captures", which
can later be referenced by positional variables. A positional variable is one in which
its value depends on the order of the capture in the regular expression. They are
labeled by number, so positional variable $1 references what is matched by the first
set of parentheses, $2 the second set, and so on. For example, refer to the following
regular expression:

^/images/([a-z]{2})/([a-z0-9]{5})/(.*)\.(png|jpg|gif)$

The first positional variable, $1, references a two-letter string which comes immediately
after the string /images/ at the beginning of the URI. The second positional variable,
$2, refers to a five character string composed of lowercase letters and the numbers
from 0 to 9. The third positional variable, $3, is presumably the name of a file. And the
last variable to be extracted from this regular expression, $4, is one of png, jpg, or gif,
which appears at the very end of the URI.

Rewrite Rule Guide

[266]

The second part of a rewrite rule is the URI to which the request is rewritten. The URI
may contain any positional variable captured in the regular expression indicated by
the first argument, or any other variable valid at this level of NGINX's configuration:

/data?file=$3.$4

If this URI does not match any of the other locations in the NGINX configuration,
then it is returned to the client in the Location header with either a 301 (Moved
Permanently) or a 302 (Found) HTTP status code indicating the type of redirect
that is to be performed. This status code may be specified explicitly if permanent
or redirect is the third parameter.

This third parameter to the rewrite rule may also be either last or break, indicating
that no further rewrite module directives will be processed. Using the last flag will
cause NGINX to search for another location matching the rewritten URI.

rewrite '^/images/([a-z]{2})/([a-z0-9]{5})/(.*)\.(png|jpg|gif)$' /
data?file=$3.$4 last;

The break parameter may also be used as a directive on its own, to stop rewrite
module directive processing within an if block or other context in which the
rewrite module is active. The following snippet presumes that some external
method is used to set the $bwhog variable to a non-empty and non-zero value
when a client has used too much bandwidth. The limit_rate directive will then
enforce a lower transfer rate. break is used here because we entered the rewrite
module with if, and we don't want to process any further such directives:

if ($bwhog) {

 limit_rate 300k;

 break;

}

Another way to stop the processing of the rewrite module directives is to return
control to the main http module processing the request. This may mean that
NGINX returns information directly to the client, but return is often combined with
an error_page to either present a formatted HTML page to the client or activate a
different module to finish processing the request. The return directive may indicate
a status code, a status code with some text, or a status code with a URI. If a bare URI
is the sole parameter, then the status code is understood to be a 302. When the text
is placed after the status code, that text becomes the body of the response. If a URI is
used instead, then that URI becomes the value of the Location header, to which the
client will then be redirected.

Appendix B

[267]

As an example, we want to set a short text as the output for a file not found error in
a particular location. We specify the location with an equals sign (=) to exactly match
just this URI:

location = /image404.html {

 return 404 "image not found\n";

}

Any call to this URI would then be answered with an HTTP code of 404, and the
text image not found\n. So, we can use /image404.html at the end of a try_files
directive or as an error page for image files.

In addition to directives relating to the act of rewriting a URI, the rewrite module
also includes the set directive to create new variables and set their values. This is
useful in a number of ways, from creating flags when certain conditions are present,
to passing named arguments on to other locations and logging what was done.

The following example demonstrates some of these concepts and the usage of the
corresponding directives:

http {

 # a special log format referencing variables we'll define later
 log_format imagelog '[$time_local] ' $image_file ' ' $image_type '
' $body_bytes_sent ' ' $status;

 # we want to enable rewrite-rule debugging to see if our rule does
 # what we intend
 rewrite_log on;

 server {

 root /home/www;

 location / {

 # we specify which logfile should receive the rewrite-rule
 debug
 # messages
 error_log logs/rewrite.log notice;

 # our rewrite rule, utilizing captures and positional
 variables

Rewrite Rule Guide

[268]

 # note the quotes around the regular expression - these
 are
 # required because we used {} within the expression
 itself
 rewrite '^/images/([a-z]{2})/([a-z0-9]{5})/(.*)\.
 (png|jpg|gif)$' /data?file=$3.$4;

 # note that we didn't use the 'last' parameter above; if
 we had,
 # the variables below would not be set because NGINX
 would
 # have ended rewrite module processing

 # here we set the variables that are used in the custom
 log
 # format 'imagelog'
 set $image_file $3;

 set $image_type $4;

 }

 location /data {

 # we want to log all images to this specially-formatted
 logfile
 # to make parsing the type and size easier
 access_log logs/images.log imagelog;

 root /data/images;

 # we could also have used the $image-variables we defined
 # earlier, but referencing the argument is more readable
 try_files /$arg_file /image404.html;

 }

 location = /image404.html {

 # our special error message for images that don't exist
 return 404 "image not found\n";

 }

}

Appendix B

[269]

The following table summarizes the rewrite module directives we discussed in
this section:

Table: Rewrite module directives

Directive Explanation
break Ends the processing of the rewrite module

directives found within the same context.
if Evaluates a condition, and if true follows

the rewrite module directives specified
within the context set up using the
following format:
if (condition) { … }

The condition may be any of the following:
•	 a variable name: false if empty or

any string starting with 0
•	 string comparison: using the = and

!= operators
•	 regular expression matching: using

the ~ (case-sensitive) and the ~*
(case-insensitive) positive operators
and their negative counterparts !~
and !~*

•	 file existence: using the -f and ! -f
operators

•	 directory existence: using the -d and
! -d operators

•	 file, directory, or symbolic link
existence: using the -e and ! -e
operators

•	 file executability: using the -x and !
-x operators

return Stops processing and returns the specified
code to the client. The non-standard code 444
will close the connection without sending
any response headers. If a code additionally
has text accompanying it, the text will be
placed in the response body. If instead, a
URL is given after the code, that URL will be
the value of the Location header. A URL
without a code is treated as a code 302.

Rewrite Rule Guide

[270]

Directive Explanation
rewrite Changes the URI from one matched by the

regular expression in the first parameter to
the string in the second parameter. If a third
parameter is given, it is one of the following
flags:

•	 last: stops processing the rewrite
module directives and searches for a
location matched by the changed URI

•	 break: stops processing the
rewrite module directives

•	 redirect: returns a temporary
redirect (code 302), used when the
URI does not begin with a scheme

•	 permanent: returns a permanent
redirect (code 301)

rewrite_log Activates the notice level logging of
rewrite to error_log.

set Sets a given variable to a specific value.
unitialized_
variable_warn

Controls whether or not warnings about
uninitialized variables are logged.

Creating new rewrite rules
When creating new rules from scratch, just as with any configuration block, plan out
exactly what needs to be done. Some questions to ask yourself are as follows:

•	 What pattern(s) do I have in my URLs?
•	 Is there more than one way to reach a particular page?
•	 Do I want to capture any parts of the URL into variables?
•	 Am I redirecting to a site not on this server, or could my rule be seen again?
•	 Do I want to replace the query string arguments?

In examining the layout of your website or application, it should be clear what
patterns you have in your URLs. If there is more than one way to reach a certain
page, create a rewrite rule to send a permanent redirect back to the client. Using
this knowledge, you can construct a canonical representation of your website or
application. This not only makes for cleaner URLs, but also helps your site to be
found more easily.

Appendix B

[271]

For example, if you have a home controller to handle default traffic, but can also
reach that controller through an index page, you could have users getting to the
same information using the following URIs:

/
/home
/home/
/home/index
/home/index/
/index
/index.php
/index.php/

It would be more efficient to direct requests containing the name of the controller
and/or the index page back to the root:

rewrite ^/(home(/index)?|index(\.php)?)/?$ $scheme://$host/ permanent;

We specified the $scheme and $host variables because we're making a permanent
redirect (code 301) and want NGINX to construct the URL using the same
parameters that reached this configuration line in the first place.

If you would like to be able to log individual parts of the URL separately, you can use
captures on the URI in the regular expression. Then, assign the positional variables to
named variables, which are then part of a log_format definition. We saw an example
of this in the previous section. The components are essentially as follows:

log_format imagelog '[$time_local] ' $image_file ' ' $image_type ' '
$body_bytes_sent ' ' $status;

rewrite '^/images/([a-z]{2})/([a-z0-9]{5})/(.*)\.(png|jpg|gif)$' /
data?file=$3.$4;

set $image_file $3;

set $image_type $4;

access_log logs/images.log imagelog;

When your rewrite rule leads to an internal redirect or instructs the client to call a
location in which the rule itself is defined, special care must be taken to avoid a rewrite
loop. For example, a rule may be defined in the server context with the last flag, but
must use the break flag when defined within the location it references.

server {

 rewrite ^(/images)/(.*)\.(png|jpg|gif)$ $1/$3/$2.$3 last;

Rewrite Rule Guide

[272]

 location /images/ {

 rewrite ^(/images)/(.*)\.(png|jpg|gif)$ $1/$3/$2.$3 break;

 }

}

Passing new query string arguments as part of a rewrite rule is one of the objectives
of using rewrite rules. However, when the initial query string arguments should be
discarded, and only the ones defined in the rule should be used, a ? character needs
to be placed at the end of the list of new arguments.

rewrite ^/images/(.*)_(\d+)x(\d+)\.(png|jpg|gif)$ /resizer/$1.$4?width
=$2&height=$3? last;

Translating from Apache
There is a long history of writing rewrite rules for Apache's powerful mod_rewrite
module, and most resources on the Internet are focused on these. When encountering
rewrite rules in Apache's format, they can be translated into a form that NGINX can
parse by following a few simple rules.

Rule #1: Replace directory and file existence
checks with try_files
When encountering an Apache rewrite rule of the following form:

RewriteCond %{REQUEST_FILENAME} !-f

RewriteCond %{REQUEST_FILENAME} !-d

RewriteRule ^(.*)$ index.php?q=$1 [L]

This can best be translated into an NGINX configuration as follows:

try_files $uri $uri/ /index.php?q=$uri;

These rules state that when the filename specified in the URI is neither a file nor
a directory on disk, the request should be passed to the index.php file lying in
the current context's root and given the argument q with a value matching the
original URI.

Appendix B

[273]

Before NGINX had the try_files directive, there would be no choice but to use
if to test for the existence of the URI:

if (!-e $request_filename) {

 rewrite ^/(.*)$ /index.php?q=$1 last;

}

Don't do this. You may see configurations on the Internet that recommend you do
exactly this, but they are outdated or are copies of an outdated configuration. While
not strictly a rewrite rule, because try_files belongs to the core http module, the
try_files directive is much more efficient at performing this task and this is exactly
what it was created for.

Rule #2: Replace matches against REQUEST_
URI with a location
Many Apache rewrite rules are made to be placed into .htaccess files because,
historically, users would most likely have access to these files themselves. A
typical shared hoster would not enable their users direct access to the virtual host
configuration context responsible for their website, but would instead offer the ability
to place nearly any kind of configuration into an .htaccess file. This led to the
situation we have today, with a proliferation of .htaccess-file-specific rewrite rules.

While Apache also has a Location directive, it is rarely used to solve the problem
of matching against the URI because it may only be used in either the main server
configuration or the configuration of a virtual host. So, instead we will see a
proliferation of rewrite rules that match against REQUEST_URI:

RewriteCond %{REQUEST_URI} ^/niceurl

RewriteRule ^(.*)$ /index.php?q=$1 [L]

This is best handled in NGINX by using a location:

location /niceurl {

 include fastcgi_params;

 fastcgi_index index.php;

 fastcgi_pass 127.0.0.1:9000;

}

Rewrite Rule Guide

[274]

Of course, what is inside the location context is dependent upon your setup, but the
principle remains the same; matches against the URI are best served by a location.

This principle also applies to RewriteRules that have an implicit REQUEST_URI. These
are typically bare RewriteRules that transform the URI from an older format to a
newer one. In the following example, we see that the show.do is no longer necessary:

RewriteRule ^/controller/show.do$ http://example.com/controller
[L,R=301]

This translates to an NGINX configuration as follows:

location = /controller/show.do {

 rewrite ^ http://example.com/controller permanent;

}

Not to get too carried away with creating locations whenever we see a RewriteRule,
we should keep in mind that regular expressions translate directly.

Rule #3: Replace matches against HTTP_
HOST with a server
Related closely to Rule #2, this rule takes configurations into account that try to either
remove or add a www onto a domain name. These types of rewrite rules are often
found in .htaccess files or in virtual hosts with overloaded ServerAliases:

RewriteCond %{HTTP_HOST} !^www

RewriteRule ^(.*)$ http://www.example.com/$1 [L,R=301]

Here, we translate the case where no www is found at the beginning of the Host part
of the URL to the variant with a www there:

server {

 server_name example.com;

 rewrite ^ http://www.example.com$request_uri permanent;

}

Appendix B

[275]

In the opposite case, where no www is desired, we enter the following rule:

RewriteCond %{HTTP_HOST} ^www

RewriteRule ^(.*)$ http://example.com/$1 [L,R=301]

This translates to the following NGINX configuration:

server {

 server_name www.example.com;

 rewrite ^ http://example.com$request_uri permanent;

}

What is not shown is the server context for the variant that has been redirected.
This has been left out because it's not relevant to the rewriting itself.

This same principle applies to more than just matching a www or lack of one. It can
be used in dealing with any RewriteCond that uses %{HTTP_HOST}. These rewrites
are best done in NGINX by using multiple server contexts, one each to match the
desired condition.

For example, we have the following multisite configuration in Apache:

RewriteCond %{HTTP_HOST} ^site1

RewriteRule ^(.*)$ /site1/$1 [L]

RewriteCond %{HTTP_HOST} ^site2

RewriteRule ^(.*)$ /site2/$1 [L]

RewriteCond %{HTTP_HOST} ^site3

RewriteRule ^(.*)$ /site3/$1 [L]

This basically translates to a configuration that matches on hostname and has a
different root configuration per host.

server {

 server_name site1.example.com;

Rewrite Rule Guide

[276]

 root /home/www/site1;

}

server {

 server_name site2.example.com;

 root /home/www/site2;

}

server {

 server_name site3.example.com;

 root /home/www/site3;

}

These are essentially different virtual hosts, so it is best to treat them as such in the
configuration as well.

Rule #4: Replace RewriteCond with if for
variable checks
This rule applies only after having applied rules 1 to 3. If there are any remaining
conditions not covered by those rules, then if may be applied to test the values of
variables. Any HTTP variable may be used by prefixing the lowercased name of the
variable with $http_. If there are hyphens (-) in the name, these are translated into
underscores (_).

The following example (taken from Apache's documentation on the mod_rewrite
module at http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html) is
used to decide which page should be delivered to a client based on the User-Agent
header:

RewriteCond %{HTTP_USER_AGENT} ^Mozilla

RewriteRule ^/$ /homepage.max.html [L]

RewriteCond %{HTTP_USER_AGENT} ^Lynx

Appendix B

[277]

RewriteRule ^/$ /homepage.min.html [L]

RewriteRule ^/$ /homepage.std.html [L]

This can be translated to an NGINX configuration as follows:

if ($http_user_agent ~* ^Mozilla) {

 rewrite ^/$ /homepage.max.html break;

}

if ($http_user_agent ~* ^Lynx) {

 rewrite ^/$ /homepage.min.html break;

}

index homepage.std.html;

If there are any special variables that are available only under Apache's mod_rewrite,
then these of course can't be checked in NGINX.

Summary
We explored NGINX's rewrite module in this appendix. There are only a few
directives associated with the module, but these can be used to create some complex
configurations. Taking the process of creating new rewrite rules step-by-step has
hopefully demonstrated how rewrite rules can be made easily. An understanding
of regular expressions, how to read and construct them, is needed before creating
rewrite rules of any complexity. We rounded this appendix off by examining how
to translate Apache-style rewrite rules into a configuration that NGINX can parse.
In doing so, we discovered that quite a few Apache rewrite rule scenarios can be
solved differently in NGINX.

The NGINX Community
NGINX is not only supported by a vibrant community, but also has a company
to back it now, too. Igor Sysoev, the original author of NGINX, co-founded
NGINX, Inc. in 2011 to offer professional support to companies using NGINX.
He and the other NGINX developers are still available to the community, though.
This appendix provides a brief overview of community resources available online.

Topics covered in this appendix include the following:

•	 Mailing list
•	 IRC channel
•	 Web resources
•	 Writing a proper bug report

Mailing list
The mailing list at nginx@nginx.org has been active since 2005. Subscribing to the
list and seeing what kind of questions are asked and how they are answered is the
best way to get an idea of how to get help from the list. Before asking a question,
search online for an answer first. There is also an FAQ at http://wiki.nginx.org/
Faq. See if someone has already asked the question recently by searching the archives
at http://mailman.nginx.org/pipermail/nginx/. It's not only embarrassing
for you if the same question has been asked recently, but it's also annoying to the
readers of the list.

The NGINX Community

[280]

IRC channel
The IRC channel #nginx at irc.freenode.net is a real-time resource for those
interested in getting to know the developers and having helpful responses to short
queries. Please do follow IRC etiquette though when visiting the channel. Larger
blocks of text such as configuration files or compilation output should go into a
Pastebin and only the URL copied into the channel. More details about the channel
can be found at http://wiki.nginx.org/IRC.

Web resources
The wiki at http://wiki.nginx.org has been a useful resource for a number of years.
Here you will find a complete directive reference, a module listing, and a number of
configuration examples. Keep in mind though, that this is a wiki, and the information
found on it is not guaranteed to be accurate, up-to-date, or to fit your needs exactly.
As we have seen throughout this book, it is always important to think about what you
want to accomplish before setting out to derive the solution.

NGINX, Inc. maintains the official reference documentation located at http://nginx.
org/en/docs/. There are some documents introducing NGINX, as well as How-to's
and pages describing each module and directive.

Writing a good bug report
When searching for help online, it is useful to be able to write a good bug report.
You will find that an answer is much more easily forthcoming if you can formulate
the problem in a clear, reproducible way. This section will help you do just that.

The most difficult part of a bug report is actually defining the problem itself. It will
help you to first think about what it is you are trying to accomplish. State your goal
in a clear, concise manner as follows:

I need all requests to subdomain.example.com to be served from server1.

Avoid writing reports in the following manner:

I'm getting requests served from the local filesystem instead of
proxying them to server1 when I call subdomain.example.com.

Do you see the difference between these two statements? In the first case, you can
clearly see that there is a specific goal in mind. The second case describes more the
result of the problem than the goal itself.

Appendix C

[281]

Once the problem has been defined, the next step is describing how that problem can
be reproduced:

Calling http://subdomain.example.com/serverstatus yields a "404 File
Not Found".

This will help whoever is looking at this problem to try to solve it. It ensures that there
is a non-working case that can be shown to be working once the problem is solved.

Next, it is helpful to describe the environment in which this problem was observed.
Some bugs only surface in certain operating systems or with a particular version of
a dependent library.

Any configuration files necessary to reproduce the problem should be included in the
report. If a file is found in the software archive, then a reference to that file is enough.

Read your bug report before sending it off. Often, you will find that some information
has been left out. Sometimes, you will find that you have even solved the problem
yourself, just by defining it clearly!

Summary
In this appendix, we learned a bit about the community behind NGINX. We saw
who the major players are and what resources are available online. We also got an
in-depth look at writing a bug report that should be helpful in finding a solution
to a problem.

Persisting Solaris
Network Tunings

In Chapter 8, Troubleshooting Techniques, we saw how to change different network
tuning parameters for different operating systems. This appendix details what is
necessary to persist these changes under Solaris 10 and above.

The following script is what is actually run by the Service Management Framework
(SMF) to set the network parameters with ndd. Save it as /lib/svc/method/network-
tuning.sh and make it executable, so that it can be run at any time on the command
line to test:

vi /lib/svc/method/network-tuning.sh

The following snippet is the content of the /lib/svc/method/network-tuning.sh file:

#!/sbin/sh

Set the following values as desired

ndd -set /dev/tcp tcp_max_buf 16777216

ndd -set /dev/tcp tcp_smallest_anon_port 1024

ndd -set /dev/tcp tcp_largest_anon_port 65535

ndd -set /dev/tcp tcp_conn_req_max_q 1024

ndd -set /dev/tcp tcp_conn_req_max_q0 4096

ndd -set /dev/tcp tcp_xmit_hiwat 1048576

ndd -set /dev/tcp tcp_recv_hiwat 1048576

chmod 755 /lib/svc/method/network-tuning.sh

The following manifest serves to define the network-tuning service and will run the
script at boot time. Note that we specify a duration of transient to let SMF know that
this is a run-once script and not a persistent daemon.

Persisting Solaris Network Tunings

[284]

Place it in /var/svc/manifest/site/network-tuning.xml and import with the
following command:

svccfg import /var/svc/manifest/site/network-tuning.xml

You should see the following output:

<?xml version="1.0"?>
<!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_
bundle.dtd.1">

<service_bundle type='manifest' name='SUNW:network_tuning'>

<service
 name='site/network_tuning'
 type='service'
 version='1'>

 <create_default_instance enabled='true' />

 <single_instance />

 <dependency
 name='usr'
 type='service'
 grouping='require_all'
 restart_on='none'>
 <service_fmri value='svc:/system/filesystem/minimal' />
 </dependency>

<!-- Run ndd commands after network/physical is plumbed. -->
 <dependency
 name='network-physical'
 grouping='require_all'
 restart_on='none'
 type='service'>
 <service_fmri value='svc:/network/physical' />
 </dependency>

<!-- but run the commands before network/initial -->
 <dependent
 name='ndd_network-initial'
 grouping='optional_all'

Appendix D

[285]

 restart_on='none'>
 <service_fmri value='svc:/network/initial' />
 </dependent>

 <exec_method
 type='method'
 name='start'
 exec='/lib/svc/method/network-tuning.sh'
 timeout_seconds='60' />

 <exec_method
 type='method'
 name='stop'
 exec=':true'
 timeout_seconds='60' />

 <property_group name='startd' type='framework'>
 <propval name='duration' type='astring'
 value='transient' />
 </property_group>

 <stability value='Unstable' />

 <template>
 <common_name>
 <loctext xml:lang='C'>
 Network Tunings
 </loctext>
 </common_name>

 </template>
</service>

</service_bundle>

This service is intentionally kept simple, for demonstration purposes. The interested
reader can explore SMF in the Solaris man pages and online resources.

Index
Symbols
403 Forbidden error 181
504 Gateway Timeout Error 101
$1 reference 265
$2 reference 265
$3 reference 265
$4 reference 265
$arg_name variable 139
$args variable 139
$binary_remote_addr variable

about 139
using 131

$body_bytes_sent variable 121
$bwhog variable 266
$bytes_sent variable 121
$connection_requests variable 121
$connection variable 121
$content_length variable 139
$content_type variable 139
$cookie_name variable 139
$document_root variable 139
$document_uri variable 139
$host name variable 139
$host variable 139
$http_ 276
$http_name variable 139
$https variable 139
$is_args variable 139
$limit_rate variable 139
$memcached_key variable 162
$msec variable 121
$nginx_version variable 139
$pid variable 140
$pipe * variable 121
$query_string variable 140

$real path_root variable 140
$remote_addr variable 140
$remote_port variable 140
$remote_user variable 140
$request_body_file variable 140
$request_body variable 140
$request_completion variable 140
$request_filename variable 140
$request_length * variable 122
$request_method variable 140
$request_time variable 122
$request_uri variable 140
$request variable 140
$scheme variable 140
$sent_http_name variable 140
$server_addr variable 140
$server_name variable 140
$server_port variable 140
$server_protocol variable 140
$ssl_client_cert variable 92
$status variable 122, 141
$tcpinfo_rcv_space variable 141
$tcpinfo_rtt variable 141
$tcpinfo_rttvar variable 141
$tcpinfo_snd_cwnd variable 141
$time_iso8601 * variable 122
$time_local * variable 122
$uri variable 141
--conf-path=<path> option 11
--error-log-path=<path> option 11
--group=<group> option 11
.htaccess file 273
--http-client-body-temp-path=<path>

option 14
--http-fastcgi-temp-path=<path> option 14
--http-log-path=<path> option 14

[288]

--http-proxy-temp-path=<path> option 14
--http-scgi-temp-path=<path> option 14
--http-uwsgi-temp-path=<path> option 14
--lock-path=<path> option 11
--pid-path=<path> option 11
--prefix=<path> option 11
--sbin-path=<path> option 11
@STRENGTH string 92
--user=<user> option 11
--with-cc-opt=<options> option 12
--with-cc=<path> option 12
--with-cpp=<path> option 12
--with-cpu-opt=<cpu> option 12
--with-debug configure flag 194
--with-debug option 11
--with-file-aio option 11
--with-http_addition_module option 14
--with-http_dav_module option 15
--with-http_flv_module option 15
--with-http_geoip_module option 15
--with-http_gunzip_module option 15
--with-http_gzip_static_module option 15
--with-http_image_filter_module option 15
--with-http_mp4_module option 15
--with-http_perl_module option 13
--with-http_random_index_module

option 15
--with-http_realip_module option 14
--with-http_secure_link_module option 15
--with-http_ssl_module option 14
--with-http_stub_status_module option 15
--with-http_sub_module option 15
--with-http_xslt_module option 14
--with-ld-opt=<options> option 12
-with-<library>=<path> option 10
--with-mail option 12
--with-mail_ssl_module option 12
--without-http_access_module option 17
--without-http_auth_basic_module

option 17
--without-http_autoindex_module option 17
--without-http_browser_module option 18
--without-http-cache option 13
--without-http_charset_module option 16
--without-http_empty_gif_module option

18
--without-http_fastcgi_module option 17

--without-http_geo_module option 17
--without-http_gzip_module option 16
--without-http_limit_conn_module

option 17
--without-http_limit_req_module option 18
--without-http_map_module option 17
--without-http_memcached_module

option 17
--without-http option 13
--without-http_proxy_module option 17
--without-http_referer_module option 17
--without-http_rewrite_module option 17
--without-http_scgi_module option 17
--without-http_split_clients_module

option 17
--without-http_ssi_module option 16
--without-http_upstream_ip_hash_module

option 18
--without-http_userid_module option 17
--without-http_uwsgi_moduleoption 17
--without-mail_imap_module option 13
--without-mail_pop3_module option 13
--without-mail_smtp_module option 13
--with-perl_modules_path=<path>

option 13
--with-perl=<path> option 13

A
accept_filter parameter 30
accept_mutex_delay directive 215
accept_mutex directive 215
access

restricting 133-137
access_log directive 120, 201, 216
access logs

used, for debugging 201-203
access module 17
add_after_body directive 169, 216
add_before_body directive 169, 216
add_header directive 165, 216
addition module

about 169
directives 169

addition_types directive 169, 216
advanced logging

configuring 194

[289]

aio directive 26, 216
alias directive 35, 217
allow directive 133, 217
ancient_browser directive 217
ancient_browser_value directive 217
Apache rewrite rules

about 272
directory, replacing with try_files 272, 273
file existence checks, replacing with

try_files 272, 273
HTTP_HOST matches, replacing with

server 274- 276
REQUEST_URI matches, replacing with

location 273, 274
RewriteCond, replacing with if for

variable checks 276, 277
Apache's documentation

mod_rewrite module, URL 276
APOP authentication 44
application components

isolating, for scalability 97-101
Atmail 41
atomic_ops library 10
auth_basic directive 133, 217
auth_basic_user_file directive 133, 136, 217
authentication service 50-57
auth_http directive 37, 217
auth_http_header directive 217
auth_http_timeout directive 218
auth method 57
autoindex directive 218
autoindex_exact_size directive 218
autoindex_localtime directive 218
autoindex module 17

B
backlog parameter 30
basic configuration format, NGINX 21
binaries

switching, at runtime 194-201
bind parameter 31
block command 173
break 270
break directive 218, 269
break flag 66
break parameter 266

buffering 101
bug report

writing 280, 281

C
CACHE 107
cache loader process 116
cache manager process 116
caching

about 104, 105, 160
store concept 109, 110

caching integration
about 159, 160
in database 162, 163
in filesystem 165-168

charset directive 218
charset_map directive 218
charset module 16
charset_types directive 219
chunked_transfer_encoding

directive 25, 219
client

IP address, determining 87
client_body_buffer_size directive 25, 219
client_body_in_file_only directive 25, 219
client_body_in_single_buffer

directive 25, 219
client_body_temp_path directive 25, 192,

219
client_body_timeout directive 25, 220
client directives, HTTP server section

chunked_transfer_encoding 25
client_body_buffer_size 25
client_body_in_file_only 25
client_body_in_single_buffer 25
client_body_temp_path 25
client_body_timeout 25
client_header_buffer_size 25
client_header_timeout 25
client_max_body_size 25
keepalive_disable 25
keepalive_requests 25
keepalive_timeout 26
large_client_header_buffers 26
msie_padding 26
msie_refresh 26

[290]

client_header_buffer_size directive 25, 220
client_header_timeout directive 25, 220
client_max_body_size directive 25, 70, 220
clients

authenticating, SSL used 92-95
collectd 214
compressing 111
config command 173
configuration, advanced logging 194
configuration directives

limit_conn 129
limit_conn_log_level 129
limit_conn_zone 129
limit_rate 129
limit_rate_after 129
limit_req 129
limit_req_log_level 129
limit_req_zone 130
max_ranges 130

configuration errors
about 203
if directive, using as hostname switch 205
if directive, using instead of try_files

directive 204
configuration options, http module

--http-client-body-temp-path=<path>
option 14

--http-fastcgi-temp-path=<path> option 14
--http-log-path=<path> option 14
--http-proxy-temp-path=<path> option 14
--http-scgi-temp-path=<path> option 14
--http-uwsgi-temp-path=<path> option 14
--with-http_perl_module option 13
--without-http-cache option 13
--with-perl_modules_path=<path> option

13
--with-perl=<path> option 13

configuration options, mail module
--with-mail option 12
--with-mail_ssl_module option 12
--without-http option 13
--without-mail_imap_module option 13
--without-mail_pop3_module option 13
--without-mail_smtp_module option 13

configuration options, other modules
--with-http_addition_module option 14
--with-http_dav_module option 15

--with-http_flv_module option 15
--with-http_geoip_module option 15
--with-http_gunzip_module option 15
--with-http_gzip_static_module option 15
--with-http_image_filter_module option 15
--with-http_mp4_module option 15
--with-http_random_index_module option

15
--with-http_realip_module option 14
--with-http_secure_link_module option 15
--with-http_ssl_module option 14
--with-http_stub_status_module option 15
--with-http_sub_module option 15
--with-http_xslt_module option 14

configuration options, web accelerator/
proxy 16

connection_pool_size directive 220
create_full_put_path directive 220
critical-level log entry

example 190, 191
critical-level message 191
crypt() function 134

D
daemon directive 220
Daniel Kegel

URL 7
dav_access directive 220
dav_methods directive 220
DDOS 128
debug_connection directive 221
debugging

access logs, using for 201-203
debug logging 194
debug_points directive 221
decision making, NGINX 176-179
default server 117
default_server parameter 30, 33, 34, 117
default_type directive 126, 221
deferred parameter 31
deny directive 133, 221
directio_alignment directive 26, 221
directio directive 26, 221
directives, addition module

add_after_body 169
add_before_body 169

[291]

addition_types 169
directives, fastcgi module

fastcgi_buffers 141
fastcgi_buffer_size 141
fastcgi_busy_buffers_size 141
fastcgi_cache 141
fastcgi_cache_bypass 142
fastcgi_cache_key 142
fastcgi_cache_lock 142
fastcgi_cache_lock_timeout 142
fastcgi_cache_min_uses 142
fastcgi_cache_path 142
fastcgi_cache_use_stale 143
fastcgi_cache_valid 143
fastcgi_connect_timeout 143
fastcgi_hide_header 143
fastcgi_ignore_client_abort 143
fastcgi_ignore_headers 143
fastcgi_index 143
fastcgi_intercept_errors 143
fastcgi_keep_conn 143
fastcgi_max_temp_file_size 143
fastcgi_next_upstream 144
fastcgi_no_cache 144
fastcgi_param 144
fastcgi_pass 144
fastcgi_pass_header 145
fastcgi_read_timeout 145
fastcgi_send_timeout 145
fastcgi_split_path_info 145
fastcgi_store 145
fastcgi_store_access 145
fastcgi_temp_file_write_size 145
fastcgi_temp_path 145

directives, gzip module
gzip 112
gzip_buffers 112
gzip_comp_level 112
gzip_disable 112
gzip_http_version 112
gzip_min_length 112
gzip_proxied 112
gzip_types 113
gzip_vary 113

directives, image_filter module
empty_gif 181
image_filter 181

image_filter_buffer 182
image_filter_jpeg_quality 182
image_filter_sharpen 182
image_filter_transparency 182

directives, logging
access_log 120
log_format 120
log_not_found 120
log_subrequest 120
open_log_file_cache 120

directives, memcached module
memcached_buffer_size 164
memcached_connect_timeout 164
memcached_next_upstream 164
memcached_pass 164
memcached_read_timeout 164
memcached_send_timeout 164

directives, perl module
perl 176
perl_modules 176
perl_require 176
perl_set 176

directives, proxy module
proxy_connect_timeout 67
proxy_cookie_domain 67
proxy_cookie_path 67
proxy_headers_hash_bucket_size 67
proxy_headers_hash_max_size 67
proxy_hide_header 67
proxy_http_version 68
proxy_ignore_client_abort 68
proxy_ignore_headers 68
proxy_intercept_errors 68
proxy_max_temp_file_size 68
proxy_pass 68
proxy_pass_header 68
proxy_pass_request_body 68
proxy_pass_request_headers 68
proxy_read_timeout 68
proxy_redirect 68
proxy_send_timeout 69
proxy_set_body 69
proxy_set_header 69
proxy_temp_file_write_size 69
proxy_temp_path 69

directives, server
port_in_redirect 118

[292]

server 118
server_name 118
server_name_in_redirect 118
server_tokens 118

directives, ssi module
ssi 172
ssi_silent_errors 172
ssi_types 172

directives, sub module
sub_filter 171
sub_filter_once 171
sub_filter_types 171

directives, upstream module
ip_hash 73
keepalive 73
least_conn 73
server 73

directives, userid module
userid 186
userid_domain 186
userid_expires 186
userid_name 186
userid_p3p 186
userid_path 186
userid_service 186

directives, xslt module
xml_entities 172
xslt_param 172
xslt_string_param 172
xslt_stylesheet 172
xslt_types 172

disable_symlinks directive 124, 221
distributed denial-of-service. See DDOS
Django 154
Django configuration

example 154, 156
Drupal

about 146
URL 146

Drupal configuration
example 146-153

E
echo command 173
empty_gif directive 181, 221
entry examples, error log file 191-193

env directive 222
error documents

used, for handling upstream issues 85
error_log directive 22, 60, 189, 222
error log file

entry examples 191-193
formats 190, 191

error_page 266
error_page directive 94, 126, 127, 163, 222
etag directive 126, 223
events directive 223
expires directive 165, 223

F
fastcgi_bind directive 223
fastcgi_buffers directive 141, 223
fastcgi_buffer_size directive 141, 223
fastcgi_busy_buffers_size directive 141, 223
fastcgi_cache_bypass directive 142, 223
fastcgi_cache directive 141, 223
fastcgi_cache_key directive 142, 223
fastcgi_cache_lock directive 142, 224
fastcgi_cache_lock_timeout

directive 142, 224
fastcgi_cache_min_uses directive 142, 224
fastcgi_cache_path directive 142, 224
fastcgi_cache_use_stale directive 143, 224
fastcgi_cache_valid directive 143, 224
fastcgi_connect_timeout directive 143, 224
fastcgi_hide_header directive 143, 224
fastcgi_ignore_client_abort

directive 143, 225
fastcgi_ignore_headers directive 143, 225
fastcgi_index directive 143, 225
fastcgi_intercept_errors directive 143, 225
fastcgi_keep_conn directive 143, 225
fastcgi_max_temp_file_size

directive 143, 225
fastcgi module 80, 141
fastcgi_next_upstream directive 144, 225
fastcgi_no_cache directive 144, 225
fastcgi_param directive 144, 225
fastcgi_pass directive 80, 144, 226
fastcgi_pass_header directive 145, 226
fastcgi_read_timeout directive 145, 226
fastcgi_send_lowat directive 226

[293]

fastcgi_send_timeout directive 145, 226
fastcgi_split_path_info directive 145, 226
fastcgi_store_access directive 145, 227
fastcgi_store directive 145, 227
fastcgi_temp_file_write_size

directive 145, 227
fastcgi_temp_path directive 145, 227
FastCGI upstream servers 80
FastMail 41
file descriptor limits 207-209
file I/O directives, HTTP server section

aio 26
directio 26
directio_alignment 26
open_file_cache 26
open_file_cache_errors 26
open_file_cache_min_uses 27
open_file_cache_valid 27
postpone_output 27
read_ahead 27
sendfile 27
sendfile_max_chunk 27

files
finding 122, 123

flv directive 137, 227
formats, error log file 190, 191
FreeBSD 213
FreeBSD, package manager command 8
full sample configuration 38

G
GD library 181
geo directive 228
geoip_city directive 229
geoip_country directive 95, 229
GeoIP module 95
geoip_org directive 229
geoip_proxy directive 229
geoip_proxy_recursive directive 230
global configuration parameters, NGINX

error_log 22
pid 22
use 23
user 22
worker_connections 23
worker_processes 22

gunzip buffers directive 230
gunzip directive 230
gzip_buffers directive 112, 230
gzip_comp_level directive 112, 230
gzip directive 112, 230
gzip_disable directive 112, 230
gzip_http_version directive 112, 230
gzip_min_length directive 112, 230
gzip module

about 16, 111
directives 112, 113

gzip_proxied directive 112, 231
gzip_static directive 231
gzip_types directive 113, 231
gzip_vary directive 113, 231

H
hash directives, HTTP server section

server_names_hash_bucket_size 27
server_names_hash_max_size 27
types_hash_bucket_size 27
types_hash_max_size 27
variables_hash_bucket_size 28
variables_hash_max_size 28

hashing algorithm 10
Host header 70
hostname switch

if directive, using as 205
http_auth directive 62
http directive 231
http module

about 58, 117, 266
client interaction 126, 127
configuration options 13, 14
files, finding 122, 123
logging model 119
name resolution 124
server 117

HTTP server 115
HTTP server section

about 24
client directives 25, 26
file I/O directives 26, 27
hash directives 27
sample configuration 29
socket directives 28

[294]

I
if block 266
if command 173
if directive

about 81, 231, 269
using, as hostname switch 205
using, instead of try_files directive 204

if_modified_since directive 126, 231
if statement 138
ignore_invalid_headers directive 127, 232
image_filter_buffer directive 182, 232
image_filter directive 181, 232
image_filter_jpeg_quality directive 182, 232
image_filter module

about 181
directives 181-183

image_filter_sharpen directive 182, 232
image_filter_transparency directive 182, 232
images

generating 181-185
IMAP 41, 42
imap_auth directive 44, 232
imap_capabilities directive 37, 44, 232
imap_client_buffer directive 232
inadvertent code execution

preventing 187
include command 174
include directive 233
include files

about 24
using 24

index directive 233
internal directive 35, 233
Internet Message Access Protocol. See IMAP
IP hash algorithm 75
ip_hash directive 73, 75, 233
ipv6only parameter 31
IRC channel

about 280
URL, for info 280

K
keepalive connections 74, 214
keepalive directive 73, 74, 233
keepalive disable directive 233

keepalive_disable directive 25
keepalive_requests directive 25, 233
keepalive_timeout directive 26, 233
KILL signal 196

L
large_client_header_buffers

directive 26, 233
last 270
last flag 266
least_conn directive 73, 76, 234
least connections 76
legacy servers, with cookies 72
libatomic library support 10
limit_conn directive 129, 234
limit_conn_log_level directive 129, 234
limit_conn_zone directive 129, 234
limit_except directive 35, 234
limit_rate_after directive 129, 234
limit_rate directive 129, 131, 234, 266
limit_req directive 129, 235
limit_req_log_level directive 129, 235
limit_req_zone directive 130, 235
limits

used, for avoiding abusive users 128-131
limit_zone directive 235
lingering_close directive 28, 235
lingering_time directive 28, 235
lingering_timeout directive 28, 236
Linux 213
Linux (deb-based), package manager

command 8
Linux (rpm-based), package manager

command 8
listen directive 30, 91, 117, 117
listen directive, parameters

accept_filter 30
backlog 30
bind 31
default_server 30
deferred 31
ipv6only 31
rcvbuf 30
setfib 30
sndbuf 30
so_keepalive 31

[295]

ssl 31
listen (HTTP) directive 236
listen (mail) directive 236
load-balancing algorithms 75
location directive 34-36, 236, 273
lock_file directive 236
log files

about 60
analyzing 189
interpreting 60, 62

log_format directive 119, 120, 121, 201, 236
logging model 119, 120
log_not_found directive 120, 236
log_subrequest directive 120, 237

M
mail directive 237
mailing list 279
mail server section 36, 37
mail services 48-50
map directive 237
map_hash_bucket_size directive 237
map_hash_max_size directive 237
map module 17
master process 116
master_process directive 237
max_ranges directive 130, 238
MD5 10
media files

streaming 137
memcached

integrating 58-60
parameters 60

memcached_bind directive 238
memcached_buffer_size directive 164, 238
memcached_connect_timeout

directive 164, 238
memcached_gzip_flag directive 238
memcached module

directives 164
memcached_next_upstream

directive 164, 238
memcached_pass directive 80, 164, 238
memcached_read_timeout directive 164, 238
memcached_send_timeout

directive 164, 238

memcached upstream servers 79, 80
memcache module 58
merge_slashes directive 127, 239
method_missing method 57
min_delete_depth directive 239
modern_browser directive 239
modern_browser_value directive 239
mod_rewrite module 272
modules (unused), disabling

--without-http_access_module option 17
--without-http_auth_basic_module

option 17
--without-http_autoindex_module

option 17
--without-http_browser_module option 18
--without-http_charset_module option 16
--without-http_empty_gif_module

option 18
--without-http_fastcgi_module option 17
--without-http_geo_module option 17
--without-http_gzip_module option 16
--without-http_limit_conn_module

option 17
--without-http_limit_req_module option 18
--without-http_map_module option 17
--without-http_memcached_module

option 17
--without-http_proxy_module option 17
--without-http_referer_module option 17
--without-http_rewrite_module option 17
--without-http_scgi_module option 17
--without-http_split_clients_module

option 17
--without-http_ssi_module option 16
--without-http_upstream_ip_hash_module

option 18
--without-http_userid_module option 17
--without-http_uwsgi_moduleoption 17

mp4_buffer_size directive 138, 239
mp4 directive 137, 239
mp4_max_buffer_size directive 138, 239
msie_padding directive 26, 240
msie_refresh directive 26, 240
multi_accept directive 240
multiple upstream servers 77, 78
Munin 214

[296]

N
Nagios 214
network limits 207, 210
network tuning changes

making, in Solaris persistent 213
NGINX

about 7, 41
basic configuration format 21
configuration options 12
configuration options, http module 13, 14
configuration options, mail module 12, 13
decision making 176-179
global configuration parameters 22-24
installing, from source 9
installing, package manager used 8
modules, enabling 14, 15
modules (unused), disabling 16
options 11, 12
other modules 14-16
predefined variables 138-140
rewrite module 265
third-party modules, finding 18
third-party modules, installing 18
URL, for directives 215
URL, for documentation 280
URL, for downloading 10
URL, for FAQ 279
using, with PHP-FPM 141-145
wiring, with uWSGI 154

NGINX architecture 115, 116
NGINX community 279
nginx.conf configuration file 24
nginx.conf file 63
NGINX configuration 65
NGINX configuration file 21
nginx-release package 9
NGINX signing key

URL, for downloading 9
ngx_lua third-party module 19
non-HTTP upstream servers

about 79
FastCGI upstream servers 80
memcached upstream servers 79, 80
SCGI upstream servers 80
uWSGI upstream servers 81

O
open_file_cache directive 26, 240
open_file_cache_errors directive 26, 240
open_file_cache_min_uses directive 27, 240
open_file_cache_valid directive 27, 240
open_log_file_cache directive 120, 240
OpenSSL

used, for generating SSL certificate 46, 47
operating system

limits 63
operating system limits

file descriptor limits 208, 209
network limits 210

optimize_server_names directive 240
override_charset directive 241

P
package manager

commands 8
FreeBSD 8
Linux (deb-based) 8
Linux (rpm-based) 8
NGINX repository,adding to yum

configuration 8
NGINX signing key, URL for

downloading 9
used, for installing NGINX 8

pcre_jit directive 241
PCRE (Perl Compatible Regular

Expressions) libraries 10
PEP-3333 154
performance issues 211, 212
perl directive 176, 241
perl module 19

about 175
directives 176

perl_modules directive 176, 241
perl_require directive 176, 241
perl_set directive 176, 241
permanent 270
PHP-FPM

about 141
NGINX, using with 141-145
URL 141

[297]

pid directive 22, 241
Platform for Privacy Preferences Project's

protocol 186
POP3 42-44
pop3_auth directive 241
pop3_capabilities directive 37, 242
port_in_redirect directive 118, 242
Post Office Protocol. See POP3
postpone_output directive 27, 242
predefined variables, NGINX

$arg_name 139
$args 139
$binary_remote_addr 139
$content_length 139
$content_type 139
$cookie_name 139
$document_root 139
$document_uri 139
$host 139
$host name 139
$http_name 139
$https 139
$is_args 139
$limit_rate 139
$nginx_version 139
$pid 140
$query_string 140
$real path_root 140
$remote_addr 140
$remote_port 140
$remote_user 140
$request 140
$request_body 140
$request_body_file 140
$request_completion 140
$request_filename 140
$request_method 140
$request_uri 140
$scheme 140
$sent_http_name 140
$server_addr 140
$server_name 140
$server_port 140
$server_protocol 140
$status 141
$tcpinfo_rcv_space 141
$tcpinfo_rtt 141

$tcpinfo_rttvar 141
$tcpinfo_snd_cwnd 141
$uri 141

printf() method 201
protocol directive 37, 242
proxy 42
proxy_bind directive 242
proxy_buffer directive 37, 242
proxy_buffering directive 102, 242
proxy_buffers directive 71, 102, 243
proxy_buffer_size directive 71, 101, 242
proxy_busy_buffers_size

directive 71, 102, 243
proxy_cache_bypass directive 105, 243
proxy_cache directive 105, 243
proxy_cache_key directive 105, 243
proxy_cache_lock directive 105, 243
proxy_cache_lock_timeout

directive 105, 243
proxy_cache_min_uses directive 105, 244
proxy_cache_path directive 106, 244
proxy_cache_use_stale directive 106, 244
proxy_cache_valid directive 106, 244
proxy_connect_timeout directive 67, 70, 244
proxy_cookie_domain directive 67, 244
proxy_cookie_path directive 67, 245
proxy directive 37, 242
proxy_header_hash_bucket_size

directive 245
proxy_header_hash_max_size directive 245
proxy_headers_hash_bucket_size

directive 67
proxy_headers_hash_max_size directive 67
proxy_hide_header directive 67, 245
proxy_http_version directive 68, 245
proxy_ignore_client_abort directive 68, 245
proxy_ignore_headers directive 68, 245
proxy_intercept_errors directive 68, 245
proxy_max_temp_file_size directive 68, 245
proxy module

about 17, 41
directives 67-71
legacy servers, with cookies 72

proxy_next_upstream directive 246
proxy_no_cache directive 246
proxy_pass directive 66, 68, 247
proxy_pass_error_message directive 37, 247

[298]

proxy_pass_header directive 68, 247
proxy_pass_request_body directive 68, 247
proxy_pass_request_headers

directive 68, 247
proxy_read_timeout directive 68, 71, 247
proxy_redirect directive 68, 70, 247
proxy_send_lowat directive 71, 247
proxy_send_timeout directive 69, 71, 247
proxy service

about 41-43
IMAP 44
POP3 43, 44
SMTP 45
SSL 46
TLS 46

proxy_set_body directive 69, 248
proxy_set_header directive 69, 87, 248
proxy_ssl_session_reuse directive 248
proxy_store_access directive 248
proxy_store directive 110, 248
proxy_temp_file_write_size

directive 69, 71, 248
proxy_temp_path directive 69, 192, 248
proxy_timeout directive 37, 249
pseudo-streaming 137

R
random_index directive 249
RBAC 8
rcvbuf parameter 30
read_ahead directive 27, 249
real_ip_header directive 249
real_ip_recursive directive 249
recursive_error_pages directive 127, 249
redirect 270
referer_hash_bucket_size directive 249
referer_hash_max_size directive 249
request_pool_size directive 249
reset_timedout_connection directive 28, 249
resolver directive 125, 250
resolver_timeout directive 250
return directive 250, 266, 269
reverse proxy 65
reverse proxying 66, 67
reverse- proxying

proxy module 67-71

upstream module 73
reverse proxy performance tuning

about 101
buffering 101-104
caching 104-109
compressing 111-114

rewrite directive 250, 270
rewrite_log directive 250, 270
rewrite module

about 17, 198, 265, 266, 267
directives 269

rewrite module, directives
break directive 269
if directive 269
return directive 269
rewrite directive 270
rewrite_log directive 270
set directive 270
unitialized_variable_warn directive 270

rewrite rules
creating, steps for 270-272

RewriteRules 274
Role-based access control. See RBAC
root directive 124, 250
round-robin algorithm 75
Ruby 51
runtime

binaries, switching at 194-201

S
satisfy_any directive 251
satisfy directive 133, 250
scalability

about 89
application components,

isolating for 97-101
SCGI module 17
SCGI upstream servers 80
secure link

creating 179-181
secure_link module

about 179
working 180

secure_link_secret directive 179, 251
security

about 90

[299]

through separation 90
sendfile directive 27, 251
sendfile_max_chunk directive 27, 251
send_lowat directive 28, 251
send_timeout directive 28, 251
server context

avoiding 206, 207
server directive 73, 117, 118
server (http) directive 251
server (mail) directive 251
server_name directive 31, 118
server_name (http) directive 252
server_name_in_redirect directive 118, 252
server_name (mail) directive 252
server_names_hash_bucket_size

directive 27, 252
server_names_hash_max_size

directive 27, 252
Server Side Includes

using 172-175
server_tokens directive 118, 252
server (upstream) directive 251
Service Management

Framework (SMF) 213 , 283
set command 174
set directive 252, 270
setfib parameter 30
set_real_ip_from directive 252
SHA-1 hashing algorithm support 10
Simple Mail Transport Protocol. See SMTP
single upstream server 76, 77
SMTP 42, 45
smtp_auth directive 45, 252
smtp_capabilities directive 253
sndbuf parameter 30
socket directives, HTTP server section

lingering_close 28
lingering_time 28
lingering_timeout 28
reset_timedout_connection 28
send_lowat 28
send_timeout 28
tcp_nodelay 29
tcp_nopush 29

so_keepalive directive 253
so_keepalive parameter 31
Solaris 10 213

Solaris network tunings
persisting 283-285

Solaris persistent
network tuning changes, making in 213

source_charset directive 253
source, NGINX installing from

about 9
build environment, preparing 10
compilation 10, 11

split_clients directive 253
ssi directive 172, 253
ssi_min_file_chunk directive 253
ssi module

about 172
directives 172

ssi_silent_errors directive 172, 253
ssi_types directive 172, 253
ssi_value_length directive 253
SSL

about 46
used, for authenticating clients 92-95
used, for encrypting traffic 90-92

SSL certificate
generating, OpenSSL used 46, 47

ssl_certificate directive 37
ssl_certificate (http) directive 254
ssl_certificate_key directive 38
ssl_certificate_key (http) directive 254
ssl_certificate_key (mail) directive 254
ssl_certificate (mail) directive 254
SSL Ciphers 92
ssl_ciphers directive 38, 254
ssl_client_certificate directive 94, 254
ssl_crl argument 94
ssl_crl directive 254
ssl_dhparam directive 254
ssl directive 37
ssl_engine directive 255
ssl (http) directive 254
ssl (mail) directive 254
ssl module 91
ssl parameter 31, 91
ssl_prefer_server_ciphers directive 38
ssl_prefer_server_ciphers (http)

directive 255
ssl_prefer_server_ciphers (mail)

directive 255

[300]

ssl_protocols directive 38
ssl_protocols (http) directive 255
ssl_protocols (mail) directive 255
ssl_session_cache directive 38, 91
ssl_session_cache (http) directive 255
ssl_session_cache (mail) directive 256
ssl_session_timeout directive 38
ssl_session_timeout (http) directive 256
ssl_session_timeout (mail) directive 256
ssl_stapling directive 256
ssl_stapling_file directive 256
ssl_stapling_responder directive 256
ssl_stapling_verify directive 257
ssl_trusted_certificate directive 257
ssl_verify_client directive 94, 257
ssl_verify_depth directive 94, 257
starttls directive 257
store 109
Stub Status module

about 213
using 214

sub_filter directive 171, 257
sub_filter_once directive 170, 171, 257
sub_filter_types directive 171, 257
sub module

about 170
directives 171

subrequests 116
sudo command 8

T
tcp_nodelay directive 29, 257
tcp_nopush directive 29, 258
third-party modules

finding 18
installing, steps for 18

timeout directive 50, 258
timer_resolution directive 258
TLS 46
traffic

blocking, based on originating
IP address 95-97

encrypting, with SSL 90-92
troubleshooting techniques

advanced logging, configuring 194
configuration errors 203

log files, analyzing 189
operating system limits 207
performance issues 211, 212
Stub Status module, using 213

try_files directive 35, 77, 123, 124, 193, 198,
205, 258, 273

types directive 127, 258
types_hash_bucket_size directive 27, 258
types_hash_max_size directive 27, 259

U
underscores_in_headers directive 127, 259
uninitialized_variable_warn directive 259
unitialized_variable_warn directive 270
upstream directive 259
upstream issues

handling, error documents used 85
upstream module

about 73-75
directives 73
keepalive connections 74
load-balancing algorithms 75

upstream servers
about 65, 76
types 76

upstream servers, types
multiple 77, 78
non-HTTP 79
single 76, 77

use directive 23, 259
user directive 22, 259
userid directive 186, 260
userid_domain directive 186, 260
userid_expires directive 186, 260
userid_mark directive 260
userid module

about 17, 185
directives 186

userid_name directive 186, 260
userid_p3p directive 186, 260
userid_path directive 186, 260
userid_service directive 186, 260
uWSGI

wiring, with NGINX 154
uwsgi module 154
uWSGI upstream servers 81

[301]

V
valid_referers directive 261
variables_hash_bucket_size

directive 28, 261
variables_hash_max_size directive 28, 261
virtual server section 30-34

W
web resources 280
Web Server Gateway Interface. See WSGI
website visitors

tracking 185, 186
worker_aio_requests directive 261
worker_connections directive 23, 63, 261
worker_cpu_affinity directive 262
worker_priority directive 262
worker process 116
worker_processes directive 22, 262
worker_rlimit_core directive 262
worker_rlimit_nofile directive 63, 209, 262
worker_rlimit_sigpending directive 262
working_directory directive 262
WSGI 154

X
X-Accel-Expires header 160
XCLIENT 42
xclient directive 37, 262
xml_entities directive 172, 262
xslt module

about 171
directives 172

xslt_param directive 172, 263
xslt_string_param directive 172, 263
xslt_stylesheet directive 172, 263
xslt_types directive 172, 263

Y
yum configuration

NGINX repository, adding 8

Z
Zimbra 41, 58
zlib compression 10
zlib compression library 10

Thank you for buying
Mastering NGINX

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no
writing experience, our experienced editors can help you develop a writing career, or
simply get some additional reward for your expertise.

Nginx HTTP Server
ISBN: 978-1-849510-86-8 Paperback: 348 pages

Adopt Nginx for your web applications to make the
most of your infrastructure and server pages faster
than ever

1.	 Get started with Nginx to serve websites faster
and safer

2.	 Learn to configure your servers and virtual
hosts efficiently

3.	 Set up Nginx to work with PHP and other
applications via FastCGI

Nginx 1 Web Server
Implementation Cookbook
ISBN: 978-1-849514-96-5 Paperback: 236 pages

Over 100 recipes to master using the Nginx HTTP
server and reverse proxy

1.	 Quick recipes and practical techniques to help
you maximize your experience with Nginx

2.	 Interesting recipes that will help you optimize
your web stack and get more out of your
existing setup

3.	 Secure your website and prevent your setup
from being compromised using SSL and
rate-limiting techniques

Please check www.PacktPub.com for information on our titles

Linux Shell Scripting Cookbook
ISBN: 978-1-849513-76-0 Paperback: 360 pages

Solve real-world shell scripting problems with over
110 simple but incredibly efficient recipes

1.	 Master the art of crafting one-liner command
sequence to perform tasks such as text
processing, digging data from files, and
lot more

2.	 Practical problem solving techniques adherent
to the latest Linux platform

3.	 Packed with easy-to-follow examples to
exercise all the features of the Linux shell
scripting language

CentOS 6 Linux Server Cookbook
ISBN: 978-1-849519-02-1 Paperback: 350 pages

Learn to configure Linux CentOS for the service you
need; Providing Web Services, FTP Services and Mail
Services

1.	 Quickly get CentOS up and running while
customizing your installation with a few 'tricks
of the trade'

2.	 Establish the basic needs of your server before
building on that to achieve your goals

3.	 Practical and concise recipes lead you through
what you need to manage the system, packages,
file systems and more

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Installing NGINX and Third-Party Modules
	Installing NGINX using a package manager
	CentOS
	Debian

	Installing NGINX from source
	Preparing a build environment
	Compiling from source
	Table: Common configure options
	Table: Configure options for optimization

	Configuring for web or mail service
	Configure options for a mail proxy
	Table: Mail configure options

	Configure the options to specify paths
	Table: HTTP configure options

	Enabling various modules
	Table: HTTP module configure options
	Disabling unused modules
	Table: Disable configure options

	Finding and installing third-party modules
	Putting it all together
	Summary

	Chapter 2: A Configuration Guide
	The basic configuration format
	NGINX global configuration parameters
	Table: Global configuration directives

	Using include files
	The HTTP server section
	Client directives
	Table: HTTP client directives

	File I/O directives
	Table: HTTP file I/O directives

	Hash directives
	Table: HTTP hash directives

	Socket directives
	Table: HTTP socket directives

	Sample configuration

	The virtual server section
	Table: listen parameters

	Locations – where, when, and how
	Table: Location modifiers
	Table: Location-only directives

	The mail server section
	Table: Mail module directives
	Table: Mail SSL directives

	Full sample configuration
	Summary

	Chapter 3: Using the Mail Module
	Basic proxy service
	POP3 service
	IMAP service
	SMTP service
	Using SSL/TLS
	Complete mail example

	Authentication service
	Combining with memcached
	Interpreting log files
	Operating system limits
	Summary

	Chapter 4: NGINX as a Reverse Proxy
	Introduction to reverse proxying
	The proxy module
	Table: Proxy module directives
	Legacy servers with cookies

	The upstream module
	Table: Upstream module directives
	Keepalive connections
	Load-balancing algorithms

	Types of upstream servers
	Single upstream server
	Multiple upstream servers
	Non-HTTP upstream servers
	Memcached upstream servers
	FastCGI upstream servers
	SCGI upstream servers
	uWSGI upstream servers

	Converting an "if"-fy configuration to a more modern interpretation
	Using error documents to handle upstream problems
	Determining the client's real IP address
	Summary

	Chapter 5: Reverse Proxy
Advanced Topics
	Security through separation
	Encrypting traffic with SSL
	Authenticating clients using SSL
	Blocking traffic based on originating IP address

	Isolating application components for scalability
	Reverse proxy performance tuning
	Buffering
	Table: Proxy module buffering directives

	Caching
	Table: Proxy module caching directives
	Storing

	Compressing
	Table: Gzip module directives

	Summary

	Chapter 6: The NGINX HTTP Server
	NGINX's architecture
	The HTTP core module
	The server
	Table: HTTP server directives

	Logging
	Table: HTTP logging directives
	Table: Log format variables

	Finding files
	Table: HTTP file-path directives

	Name resolution
	Table: Name resolution directives

	Client interaction
	Table: HTTP client interaction directives

	Using limits to prevent abuse
	Table: HTTP limits directives

	Restricting access
	Table: HTTP access module directives

	Streaming media files
	Table: HTTP streaming directives

	Predefined variables
	Table: HTTP variables

	Using NGINX with PHP-FPM
	Table: FastCGI directives
	An example Drupal configuration

	Wiring NGINX and uWSGI together
	An example Django configuration

	Summary

	Chapter 7: NGINX for the Developer
	Caching integration
	No application caching
	Caching in the database
	Table: Memcached module directives

	Caching in the filesystem
	Table: Header modifying directives

	Changing content on-the-fly
	The addition module
	Table: HTTP addition module directives

	The sub module
	Table: HTTP sub module directives

	The xslt module
	Table: HTTP XSLT module directives

	Using Server Side Includes
	Table: Server Side Includes directives
	Table: Server Side Includes commands

	Decision-making in NGINX
	Table: Perl module directives

	Creating a secure link
	Generating images
	Table: Image filter directives

	Tracking website visitors
	Table: UserID module directives

	Preventing inadvertent code execution
	Summary

	Chapter 8: Troubleshooting Techniques
	Analyzing log files
	Error log file formats
	Error log file entry examples

	Configuring advanced logging
	Debug logging
	Switching binaries at runtime

	Using access logs for debugging

	Common configuration errors
	Using if instead of try_files
	Using if as a hostname switch
	Not using the server context to best effect

	Operating system limits
	File descriptor limits
	Network limits

	Performance problems
	Using the Stub Status module
	Summary

	Appendix A: Directive Reference
	Table: Directive reference

	Appendix B: Rewrite Rule Guide
	Introducing the rewrite module
	Table: Rewrite module directives

	Creating new rewrite rules
	Translating from Apache
	Rule #1: Replace directory and file existence checks with try_files
	Rule #2: Replace matches against REQUEST_URI with a location
	Rule #3: Replace matches against HTTP_HOST with a server
	Rule #4: Replace RewriteCond with if for variable checks

	Summary

	Appendix C: The NGINX Community
	Mailing list
	IRC channel
	Web resources
	Writing a good bug report
	Summary

	Appendix D: Persisting Solaris
Network Tunings
	Index

