Nginx

From Beginner to Pro

Rahul Soni

Apress’

http://www.it-ebooks.info/

Nginx

From Beginner to Pro

Rahul Soni

Apress®

www.it-ebooks.info

http://www.it-ebooks.info/

Nginx: From Beginner to Pro

Rahul Soni
Kolkata, West Bengal
India

ISBN-13 (pbk): 978-1-4842-1657-6 ISBN-13 (electronic): 978-1-4842-1656-9
DOI10.1007/978-1-4842-1656-9

Library of Congress Control Number: 2016951451
Copyright © 2016 by Rahul Soni

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly
analysis or material supplied specifically for the purpose of being entered and executed on a computer system,

for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only
under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use
must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be
made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr

Acquisitions Editor: Louise Corrigan

Development Editor: Corbin Collins

Technical Reviewer: Eduardo Balsa

Editorial Board: Steve Anglin, Pramila Balen, Laura Berendson, Aaron Black, Louise Corrigan, James DeWolf,
Jonathan Gennick, Todd Green, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James Markham,
Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Nancy Chen

Copy Editor: Karen Jameson

Compositor: SPi Global

Indexer: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,

6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www. springer.com. Apress Media, LLC is a California LLC and the sole member (owner) is

Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales-eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to www.apress.com/
source-code/.

Printed on acid-free paper

www.it-ebooks.info

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/
http://www.apress.com/source-code/
http://www.it-ebooks.info/

This book is dedicated to the open source community
at large who keep pushing the limits of what software can achieve!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Contents at a Glance

About the AUthOrccvveriemmis s ———————=———— xvii
About the Technical REVIEWETccusemsssmsssmsssmssmmsssmssmssmsssssssssssssssssssssssssssnsssssnns Xix
AcknowledgmEeNts.......ccceermssssssssssnnmmesssssssssssssnsssssssssssssssnsnsssssssssssssnnnnnnssssssssssnnnnnns XXi
Chapter 1: Introduction to Nginx Web Server.........cccomummmmmnmmsssssnnmssssssssssssssssssssss 1
Chapter 2: Installing NginX......cccussenmmssssnnnssssssnnnsssssssnnsesssssssssssssssssssssssnnssssssnnnnss 17
Chapter 3: Nginx Core DireCtives.......cccurrmsssssssmnsnmssssssssssssssssnsssssssssssssnssnssssssssssns 49
Chapter 4: NginX ModUlescccussmenrmssssnnnssssssssssesssssssssssssssssssssssnssssssssnnssssssnnnnss 77
Chapter 5: Nginx Core Architecture.........ccccnnsemmmmnssssnnmmmsssssnnmsssssssnmssssssssssssssnnns 97
Chapter 6: Hosting Web Sites on NginX......ccccccummmssmmmmmssssnsnmssssssssssssssssssssssnnnnns 107
Chapter 7: Nginx and Dynamic Content..........cccevvnnemmmmmnsssnsnnmssssssssssssssssssssssnsns 131
Chapter 8: Load Balancing with NginXcccsemmmmmsssmmmmssssnmmssssssnsssssssssssssssnnns 153
Chapter 9: Log Analysis, Monitoring, and Automation............ccccusssmeeennnnneessssnns 173
Chapter 10: SSL, Security, and Authentication..........c.cccccurmmrnssmnnsssnnssssnsssssansnas 195
Chapter 11: Upgrading and Migratingcccuscemmmnssmmnmmmsssssnmsssssssnsssssssssssssssnnns 209
Chapter 12: Troubleshooting Tips and FAQ.........ccccermssssnmmsnnnnmmsssssssssssssssssesssnns 217
INA@X.ciiieriiesrsmsssssssn s ssn s s ———————— 235
v

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

AbOUt the AUTNOLcceeiiiieeeiiirseneirsesessrnssns s s nns s s snnss s s s nnssssnnnnnsssssnnnssssnnnnnnnsnnnnn Xvii

About the Technical REVIEWETcerrrrrrsmmmmssssssssmmsssssnsssssssssssssssnnssssssssnsssssnnnnnsnnsnns XIX

AcknowledgmEeNts.......ccceermsssssssnnnmmmmmssssssssssssnsnssssssssssssssnnsssssssssssssnnnnnsnsssssssssnnnnnns XXi
Chapter 1: Introduction to Nginx Web Serverccousmmsmmmssmssmsssssssssssssssasssasnns 1
HTTP BASICSccevceeierieiscsie e e se s s s se s snnsn s 1
What IS @ WED SEIVEI? ...t 3
Seven Reasons Why You Should Be USing NGinXcccecverrserennsesnsesessssesssessessssenns 4

IS FAST....ciicicici i ——————————————————— 4
It Can Accelerate YOUr APPIICALIONcoveevererererierreierre e sessesasessesessesessesassessssesassessessssessssessssessenssnes 4
It Has a Straightforward Load BalanCer.............ccuuerrnienenninesesisss s sesessssssssessssssssessssssenes 4
IESCAIBS WEIL ...ttt bbb bbb 4
You Can Upgrade It On the FIY ... sas s sesss s s ss s sesessssssssessssns 5
It’s Affordable to Install and Maintain..........c.coovnnnnn s ———————— 5
L0 T (0 5
Main Features Of NGINXccocvcrciirircerser s s sn e n s 5
More Than Just @ WED SEIVET ... 5
L LT0 0L T DT T OO 6
ASYNCRIONOUS WED SEIVET ...t 6
Reverse Proxy and Load Balancing Capability...........ccceoeerreenenensecrirseesesse e 6
Low Resource Requirement and CONSUMPLION.........ccorieeerireiescrineescsesese e sseses 6
Unparalleled PErfOrMANCE..........ccocouruieicririeeciri e 7
Multiple Protocol Support: HTTP(S), WebSocket, IMAP, POP3, SMTP. ... 7
SSL TEIMINALION.......ceieieiecectri bbb 7
HTTP Video Streaming USing MPA/FLV/HDS/HLS..........c.ou e 7
vii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Extended Monitoring and LOGUING.......c.ccvvrrririmnieninie s s s s s ssessesaessessessesaesaesnesaesaess 8
LT o) {01 (=T T (1 o 8
Upgrades without Downtime Using Live BiNari€s.........cccuvrininininininine s sesesesessessesnes 8
Enterprise Features 0f NQINX PIUScoccvvrinininini s s sse s s saesne s 8
Support Available With NGINX PIUScccveierererererieressersneresessesesessssessssessssessssessessssesssssssssesassesssnssseens 9
Advantages 0f NGINX PIUS........cceceeeeeneiresesse e sse e e ssesnesne e ssessesnesssssssnssnsssssssnes 9
Advanced HTTP and TCP Load BalanCiNgccoceceerereenerernenisesseese s e sesss e esssesssssneas 9
SESSION PEISISIBNCEeeeererere et 9
Content Caching Enhanced Capabilitiesooceeerieicnrnecrrce s 9
Application Health CRECKS ... s s 10
HTTP Live Streaming (HLS) and Video on Demand (VOD)ccccorerrnenerennesmneseee e 10
HTTP Dynamic Streaming (HDS/VOD).......cccoueermrneinerereee s sssee e se s se s ssssessesennas 11
Bandwidth Management for MP4 Media...........cocveerrrerenenererece s 11
Live ACtiVity MONITOKINGc.coerereiere et e 11
Nginx Commercial SUPPOM.........coe i e e ne e aae 12
Differences between Apache and NgINXcccececernreresnsesssesesessesesese s e ssssens 12
313 (0] OSSR 13
PEITOIMANCE ... s 13
ReSOUICe REQUIFEMENTSccceereriecreriseese s e ses e e se s e sas e e ss e sas s sensas 13
AVRIIADIITLY +.vvvvveersreereeseesessessesesssssesssssssssssssssseessssssssessesseseesssssss s sssess e sessssseesssssasee s s ssessnsssesennness 13
Proxy and Load BalanCing SEIVENcccerreermreneeseseseesesessssesesessseesessssssssessssssssssssssssssssssssssssenses 14
Static vS. DYNamIiC CONTENL..........ccovreieeerirneere s e nenas 14
0] 1 1T Lo SO 14
LT T LTS (0] g o 1T R 3T 14
DOCUMENTALION ... s 15
£ 117 0] 0] o TSSOSO 15
SUMMAIY ...ttt r e r e e e e R e e e Re e e Re e e e e Re e e e sne e nnennnnnas 15

viii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Chapter 2: Installing NginX.......ccussenmmmssssnnnmsssssnnnssssssnnsssssssssssssssssnssssssssnssssssnnnness 17

Preparing Your ENVIrONMENt..........cccovvniini s s 17
Installing Nginx Using Pre-Built PACKAQEScccererrereereereerrrie s ses e e sneeas 19
Install NginX Pre-Built PACKAGEcccoererueererirereesisieseseseses e sss s s e s s s e sesssssssssssnsnses 19
NGINX FOIART STPUCTUNE........eeeeeeecre et p s 21
UNINSTAI NGINX....etieeeieireeeeseieeere e s et b st se s e e e s e e e e npnnn s 22
Downloading NginX from SOUICE..........ccvrerrmrmiins e 23
DOWNIOAAING NGINX...viriiirrirrinissssrisissss s 23
Extracting the NginX ArChIVE ... s 23
Understanding the Nginx SOUrce DIr€CIOrY ... 23
Installing NginX BiNAIIES........cccceeeererereressessessessessessessessessessesssssessssssssssssssssssssssssssesses 24
Build Tools for COMPIlAtioNooeiirerirerererer e sa e sa e sa e sa s sr s sa e saenen 24
Install Dependent PACKAGESccccerrrerriericresire s r e sn s s n e ns e s nesrsnesnnnens 27
COMPIlING NOINX c.viiieiierese e sr s s sn s sn s sn e s sn s e snssnnnens 29
Understanding the ./configure SCHPT ... 29
ComPilE-TiME OPLIONScceeieeeereee e 29
Compiling and INSTAllING NGINX ..o 37
Enable Nginx Service on ReDOOL............c s 41
Troubleshooting SErvice STAr ... s 41
Verifying Web Server Installationcccoevererenercncssse s sesseseens 42
Firewall ConNfiQUIAtioNccccceeeererere st st rer s s ae e re e se s s e s e sae e sae e sae s e s e sae e saenesaenenaesananns 43
Nginx in Amazon Elastic Compute Cloud (EC2)c.covrermnssnsneninesisesssssssesesesenens 44
1111 11 SRS S S SS 47
Chapter 3: Nginx Core DireCltivesS.....ccccusssemsrrssssnnssmsssssnnsssssssnssssssssnssssssssnnssssssnnnnss 49
Location of Configuration Files..........c.cceeriinnnmnennninessessss s ssssnsnens 49
What Are Dir€CHVES?covreriiiciiii s 49
000 1 =)] LS 50
Understanding the Default Configurationccccoeeeeececece s 51
SIMPIE DIFBCHIVES.....cveveecririeecserie e e b et e e s e e e s s e e e e npn s s 51
EVENES CONTBXL.....cceccciccresee e 53

ix

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

S] - 54
The CONT.d FOIUEN ... s 56
e T g 0] 57
LOCALION CONEEXL.....cocvriiiriririesi b 62
Location Context SPECIAI CASES.......ccvurererrerrererrererererersssersesessesessessssessssessesessessssessssessssessesessessssssansens 69
Verify the Correctness of ConfigUration............ccccveeevrierniersreseseseresseres e ssesessesessesassessssessssessssenaes 72
AlIOW DireCtory LiSTiNg......cceveererrirrirrirris s ssssassss s s s s e s s s s s s sas s s st s st st s s s sas st s s s s s ssssas s s 72
Deny Access t0 Any SPECific LOCALIONccvveveerererercrer st se e sas e sae e sae e snenanaens 73
Proxy the Requests 10 APACHEcov i sa e e a e sa e e sa e e sn e sn e nnn 73
Proxy the Requests 10 FASICGL..........ccceoeveiererererererereres st ses e ses e sassessesessesessesessesassessssesssssssssnsens 73
NGINX VAADIES........ccoceierceririr st n s s n s nn e nn e n s 74
A Quick Note about Nginx Official Documentationccccveeencrrernseresnsese e 75
RS0 111 75
Chapter 4: NginX Modulesccccuusmenmmssssnnnsmssssssnssssssssnnssssssssssssssssssssssssnnssssssnnnnss 77
What Are MOAUIES? ..o s 77
Module INSTAlALION ... ——————————————— 77
Lo 10 T O L =T [0 - T 79
How Does @ Module WOrK?..........cceinmiess s 80
MOUIE STFUCTUTE ... s 80
How ModUules Fit in NGINX......cooeiiirirerinierescse e ses e sa et ssesesse s sss e sassessssessssssassananns 80
Configuring Default Modules for Optimal Performance............ccooueeeenerrennsesesensessesennens 81
0] =0T] 81
EVENES MOQUIEcetect e 83
HTTP MOGUIE ... se s n s ae e e s a e e nan e sannesansnnnas 84
Enabling Optional MOdUIES.........c.cvvrrerverrirer e sn e snen e 88
627 08100 L 88
FASTOGI MOTUIE.......ceuriicitriiisi s bbb 89
Basic AUtNENTICALION. ... —————————————— 90

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Enabling Third-Party MOUUIESc.coveerrnirerreresireres s 91
PAM AUERENTICAION ... 91

E3 1111 1P S 95
Chapter 5: Nginx Core ArchiteCtUure........ccususmsssnsssssnsmssansssssnsssssnsssssnsssssnsssssnnnssnns 97
A QUICK ANGIOGY ...ecueeruerererieeressesessseeses e ses e s se s ss s se s sesse e sas e s sas e s snnssnens 97
ThE MaSEer PrOCESS........cccruieermieissseisssss s s 98
Processes VS. THIEAUS ...t bbb bbb 99
The WOTKEE PrOCESS......ccciuitiicitsiic st b s 100
State MACKINES ... ———————— 102
Update CoNfiGUIAtioN ..ot 104
10T U LTS 104
HTTP Request Processing in NGiNX........ccouurnnnnnnnsnessness s sessesesssssssessssessssessssssssssssssssssssssenns 104
SUMMEAIY ...t a s s ae e s re e s e n e e s ae e s nnnnnnnns 106
Chapter 6: Hosting Web Sites on NginXouceeeeemmmmmsmsssssssssssmssmsssssssssssssssssssssnns 107
WED SErVer SELUP......ccocereririrsir sttt e 108
Connecting HoSt and GUEST SEIVEIScccouiuieeeririreeririe e eens 110
0L T g 8 111
SaAMPIE APPHCALIONS ... s e r e e e pn s 112
UPIOAdING CONLENTcveeeeeert et se s ne s e e nnas 112
HOSHING WEDSITES ...t p e 115
Websites USing Different NAMEScccovreeerrneeresinese s sessssssssesesssssssssssns 119
Websites USing DOMAIN NAME.........c.ccoeerrreeririneesesesss s ssssssssessssssssssssssssssssssns 121
INtEINAI REUINECES ... 122
Sites USiNg Different POMES.........cooeeeerireercrirne e ssss s ss e snsnnes 123
WildCard MapPing.......c.oeeeererenmesereresseesessssessesessssesesesss s e e sssssesssenssssssans 124
BIOCKING ACCESS. .. e veueeereeseeseresseesessssessessssssssesesssss e e sssss e e ssssasesessssasesssessasasssssssssssssssssessnssssssnsnsnns 125
Domain Name MapPingccoceueererereneiereresssesesesssssse e sese s s sssss s e e sssssssessssssssssssssssssssssssnsnns 125
IP-BaSEd HOSTING.......cccererrirrerereree e ree e saessesaessessesaesaesassassassassaesassassassassaesassassnssasnnnns 126
Mixed Name-Based and IP-Based SErVErS..........conmimnnsssssssssssssssssssss s sssssssssssens 127

xi

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Common Configuration MISTaKEScccecrerrrrerenmnerinesesssse s s 127
LI N I 127
Root Inside LOCation BIOCK ... 127
Monolithic Configuration FileS..........oeceeriririererireeserrre e 128
Unnecessary COMPIICALIONSccocvureerererriesesisrssse e sss e se e sssnnsnens 128
Listening 0n HOSTNAME..........ccoueueeeerineccriree e s s s e s nnnns 129

E3 U111 7SS 129

Chapter 7: Nginx and Dynamic Content...........ccccuiemmmmnnssssmnmmssssssnmnssssssnssssssnns 131

SUAOD SCAME...c.ciireririirieei s 131

Installing MySQL.........ccorerr e e s 132

INSTAIING PHP ...t s s 134

Configure NGinX fOr WOFAPIESScccveerereerererreersessessesssnnns 139

The MEAN STACK........ccecrirerirsir s 148
InStalling MONQODB.........ccoo e e e s b e p e e e e np e r e e 148
INSTAIING NOUR.JS.....oeeee e e e s b e e e e e e s 149
INSTAIIING EXPIESS.JS ...t s e e e 149
INSTAllING ANQUIALJS ... e e e s 149
Creating @ MEAN APPIICALION ..ot r e s e n s e 150

Configure NginX for MEAN STaCK..........cccuererrrerenmnesensesesesse s s sesse s 151

£ 1111 1P 7S 152

Chapter 8: Load Balancing with NginXcccsemmmmmsmsmmmmmssssnmmssssssmssssssssssssssnnns 153

Defining High Availability.........c.ccoorvrininirsnrer e 153

Load Balancing for High Availabilityccccereeeeeiesenesesese e see s sessnssnssnnnens 155
Hardware Load BalanCer ... s 156
Software Load BAlANCEN ...t b 156

Load Balancing in NGiNX.......c.cceveeeerminernsesenessessesesesessessssessesssss s ssssessesssssssssssssssnsens 158
ClEaN Up the SEIVEIS......v ettt se s ns e ne s e e e 158
Create WED CONTENT...........co o 159
Configure WFET @NA WFE2 ..ot sss e sn s s s sssss s ssssssnssnnns 159
SELUP NLB SEIVEN ...ttt s et e s s e e e e s nnn s 160

xii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Load Balancing AlgOritNMS........c.coeieiinnne e e sa s e sr et st s a e 162
Most Suitable AIGOFENMccoeerece e ra e a e e a e e e e sa e e es 164
Load BalancCing SCENAIIOS........cccuereeererrerressessessessessessessesssssssssssssssssssssssssssssssssssssssnsans 164
Nginx Routing Request 10 EXPreSS/NOUE.]Scocourueeerererccreriree e eens 165
PassSing the HOST HEAUEc.coceeeeieecirieeese st 165
Forwarding IP INfOPMALioN ...t 167

ST 1]] o OSSR 168
01D 0 T 111 oo TSR 168
Server Directive Additional Parameters............cov 169
Configure Nginx (PLUS) for Heath CheckKsS.........c.ccoverrrerensseresssessssessesssessssessesensens 169
Activity Monitoring in NginX (PLUS).......ccconmmmissssssssessssssssssssssssesesesens 170
1111 112 SRS 171
Chapter 9: Log Analysis, Monitoring, and Automationcccusmnsemsnssasssannns 173
(0] 0o SRS 173
ACCESS LOQ ..eueeeeeernernersersessessessessesssssesssssessessesssnsssssessnnes 175
WREE L0 LOG?....ceeireeecrerieeesesisse s sa s s s sa s s e e ss e s p e s nr e e e e s n e e s nnans 176
LOG BUFFEIS c.vvueerteecicsesesssse e see s e e s s s s s nsssa e se s esn e s s ssnssssnsnsnsesnssssnsnnnnes 177
CONAITIONAL LOG ... veveueererseseesesssseesessssssssesssnssssssssssssssssessssssssssssanns 177
LOG COMPIESSIONecueeerreueeserssseesessssssssessssssssessssssssessssssssessssssssessssssssnssssssssnsssssssessssssssssssnsssssssnsns 177
SYSI0G e et ————————————————— 178
ANAIYZE LOUS ...cveverecrerresrerse e s e sse e ssessessessesaesae s e ss s sne s e s e nesnesnesnesnesnesrssnennennesnnnns 179
.52 | SO S 179
100§ 179
GOACCESS ...vveseseseseseee e 182
CUSTOM EFTOF PAQES....cvierererreresersesessessssessessssessesessessssessessssssssssssssssessessssesssssssessssenns 184
BeNCAMArK.......cociiir s —————— 187
APACHE BENCHMAIKccviiiieiiircie sttt se st sa st ss st sa e e e a e e st e e e se e e e e e e e e e e e e s 188
UVIBERE vttt 190
Cloud-Based BENCHMAIKING........cccoererereriererrerserersssersesessessssessssessesessesessessssessssessesesssnssssssssessssessenenes 190
xiii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

BASEIINE......cceeeercircr et n s 190
10T 150 1 oSS 190
NOINX PLUS ...ttt re e sae e s e ae e sas e saesasaesa s s s e e sae e saenesaenasae e e e sa e e sae e saesanaeanaerannenes 191
AULOMALION ... 192
SUMMEAIY ...ttt ae s e ae b s e s e e s a e e s ne e n e nnnnnnnns 194
Chapter 10: SSL, Security, and Authentication..........c.cccusmmmnnssnmnmnsssssnnmnsssnnnn 195
Tools to Protect Network Trafficccoverernienesncnnc e 195
Capturing Network Traffic With WireShark.............eoeeeernencnnnieicsssseses e 195
USING SECUIE HTTP ...t sse e saesse e sssssssaesassassassassassaesaesassassassassassnssasnnnns 197
SSL ENCIYPHION ...ttt sn s sn e sn s sn e sn s n e sn s n s nn e nn s nn e nn e nn e nn e nn e nnnan 200
EN@bliNg SSL NGINXuvieiiieiccrcse s e r e s s b s b p e e e e nn s p s 201
OptimiIZING HTTPS SEIVEIS.......ccciericcresire s sss e e s re s s sn s p e s sn e e e a s 203
Creating a Certificate REQUEST.........cc et 205
WED SEIVEI SECUIY....ccvreereerrereserresessesesseseses e sss s ses s e sss e sse e s ne e s sensssesnnens 206
Creating the PasSWOrd File...........ccooieeerinseinireesesesise e sssenens 206
Configuring Nginx Password AuthentiCationcccocveeeernnenennneesess e 207
E3 1111 1P 7SS 208
Chapter 11: Upgrading and Migratingccousseesmsssnsssssnsssssssssssnsssssnsssssnnssssansss 209
CONTrOHING NGINX....eiererererereresersessessessessessessesssssssasssssasssssssssssssssssssssssasssssssssssssssnns 209
CommaAN-LiNe PAraMELErS.........cocoerererererereresesesesesesesesesesesesesesssesesesssesssssssssessssssssssssssssssssssssssasasas 210
Migrating from Apache 10 NgiNX.........cccverrrsrnssssessssses s se e s ses s sns s snssnsnns 213
Feature COMPATISONccceeierecrccr et r s e e b s a e e a e e e e e e e e 213
Configuration COMPANISONcooveiirerertre e s se s b a e e se e se e e e e e 215
SUMMEAIY ...t e s s ae e s r e e s e n e s ae e s e nnnnnnnns 216
Chapter 12: Troubleshooting Tips and FAQ..........ccccensnsssmmmmsnmnmmsssssssssssssssssessssnes 217
First, What You Should NOt DOcccooeriirierirree s s e s sse e sne e ssnesaessnesnes 217
First Commandment of Troubleshooting: Isolate the ISSUEccccevvrvrverrersersensenienns 217
Scenario 1: Page Cannot Be Displayed in the BrOWSEFcccceveereriererererereseseresesessessssessesessesensens 217
Scenario 2: CONfliCtiNG POMSc.ccvrereerrrere st ree e resse e rse e sse e saesas e sas e saesesassesasanaens 220

xiv

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Scenario 3: Bad PErmiSSIONS........couururinismssisssssssesessssssssss s 220
Scenario 4: Bad ConfigUurationcccoecevereresserrers s s e ssesessesessesassesassessssessssessesasaens 221
Scenario 5: REWHILE RUIES ..o 221
Scenario 6: Log Only YOUr REQUESTSccccevrererererererersssersesessesessessssessssessssessessssessssesssesssnsssensssesassens 221
Important Tools for Web AdmIniStratorscccceeeeeecesesesc e snneens 222
01110 SRS S SRS 222
TrACEIOULE ...t ————————————————— 222
(0] 0SSR PSSR 222
0D e —————————————————————————————— e e 222
(0] 0TSSR SRS 223
1701111 1 OO S 223
1] 223
IFCONTIQ OF I AUAY ... e e e n e 223
1] 1 OSSR 223
LT (00T OO 224
01011 T o o] o RSSO SRS 224
0] (0] o SRS 225
DT e e e e e e 226
L0010 1T 1o OO SR 226
WIFESRAIK ... s 226
1 T L0 LTSRS 226
21 1] 1] GO 227
W et seeese e s e s e A e RS e RE R SRS E SRR AR RS RRR R SRR AR SRR RE SRR RESESESERRS AR SRR RERAELESEEASAERRSnESREeEREeESaEeRenEeRenEnRenananas 227
IS0 . ———————————————————————————————————— 227
Common Pitfalls 10 AVOIM..........occoeeereirerecrereere s 227
CRIMOU 777 ...ttt a s e b e R e Re e e s e Re e e s nae e e e nnnnnnnes 227
Having Root InSide LOCAtION BIOCKcccorreerererrsesesesesseesesssseesesssssesesesssssssssssssssssesssssssnssssssssasnns 227
USING if BIOCKScvivieeesirisiesesiriste e ss e e se s ss s s sn s sse s s ssssasessnsnssssnsnnes 228
Passing Uncontrolled REQUESES 10 PHP ... seenens 230
REWITLE ISSUBS ..o e e 230
Using Hostname in Configurationcocoveceeenennencnsnssese e se s sssesssssssnnnnns 231
XV

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Frequently ASKed QUESTIONS..........ccoieieeericresirers e 231
“Is there an option to compare Nginx and NginX PIUS?” ..o 231

“Is there a location for sample configurationS?”...........ccoorreirnnercnr s 231

“How can | redirect from www to No-WWW and ViCe VErsa?”.........cooenerersnsnsnsnssssssssssssssssssnens 232

“How can | write all http requests to https while maintaining a sub-domain?”............ccccoovvverernnnne. 232

“How can | find which flags Nginx was compiled With?”..........cccornnernnrreseses s 233

“Is there any mechanism for detailed debugging?”.........cooeeerneierrnsseser e 233

“How many third-party modules does NginX RaVe?”ceeerrerernnnenesesse e sesesens 233
“What happens if | have Nginx Plus and the liCense eXpireS?”.........ccovrerererernesesesesesesesesssseseseseens 233

“Is there design or consulting help available?” ... e 233

E3 1111 1P 7SS 233
1T . 235

XVi

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Rahul Soni worked at Microsoft for a decade (2004-2014) before becoming
completely fascinated and then pulled into open source technologies.
He consulted on IIS, .NET, and SharePoint during his Microsoft tenure.

There was no looking back when he realized how much could
be achieved using the open source stack. Nginx and the MEAN stack
floored him completely, and he founded Attosol Technologies
(http://www.attosol.com) to pursue his passion. This book is an honest
attempt from a guy who has always been into a proprietary stack, but
ultimately found that the open source community is exciting enough to
leave the corporate world.

Rahul is a man of simple taste and loves reading, listening to music,
and traveling. When not working, he can be found hanging around with
his wife Neha and their two kids Anika and Aarav.

xvii

www.it-ebooks.info

http://www.attosol.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

About the Technical Reviewer

Eduardo Balsa has worked in system administration for the last 13 years,
focusing on server scaling and security. His work on the Fintech and web
marketing sector has led him to push web server software to its limits and
to gather an extensive knowledge of the ins and outs of their deployment,
configuration, and day-to-day maintenance.

Eduardo is adept at system-wide automation and of the K.L.S.S.
principle and passionate about tinkering and photography.

You can find him online at https://ebalsa.org.

Xix

www.it-ebooks.info

https://ebalsa.org/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgments

There are many people who I would like to acknowledge since they have directly or indirectly played a huge
role in getting this book released.

Igor Sysoev - The creator of Nginx who solved a problem that pushed web delivery to the next level.

The open source community at large, which has helped Nginx along its way.

Apress, for their support in releasing this book.

All the editors at Apress, who reviewed the book and helped me express myself better.

Nancy Chen, the coordinating editor, for being flexible and supportive throughout!

Microsoft, where I learned a lot about IIS and other web technologies.

And my family, who understood and supported me more than I ever imagined possible when I took up
this project!

XXi

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

Introduction to Nginx Web Server/

When you type http://www.Xyz.comin your browser, you probably don’t even notice the HTTP (or HTTPS)
that almost every URL is prefixed with. Browsing the Internet is fun, but what lurks underneath is nothing
short of magical. It starts with a request; leaves your home WiFi router or network; hops through multiple
network locations across the globe; and eventually reaches its destination, which is just another server
whose job is to deliver what you are looking for. This final server is what you typically refer to as a web server.

That is, of course, an oversimplification of what a web server and HTTP is. But as we go along, you will
learn the nitty-gritty around how this communication takes place, and where Nginx fits.

Nginx (pronounced engine-x) is the brainchild of Igor Sysoev. Its development started around 2002,
and it was publicly released in 2004. It is available at www.nginx.org and is described by the Nginx team as
“a free, open-source, high-performance HTTP server and reverse proxy, as well as an IMAP/POP3 proxy
server.” Nginx is known for its high performance, stability, rich feature set, simple configuration, and low
resource consumption.

HTTP Basics

HTTP stands for HyperText Transfer Protocol. Since the dawn of the Internet, HTTP has been playing a

key role in delivering the content worldwide. In simple terms, you can consider HTTP as a set of rules for
transferring files. If you notice carefully while browsing a website, you will find that there are files (like
images, text, video, etc.) that display in your browser directly, while others (like zip, rar, etc.) get downloaded.

Think about it for a second: why does one file get downloaded, while others get rendered or played in
the browser directly? The answer is simply because of how the web server and web client (typically your
web browser) are interacting behind the scenes. You can think of HTTP as a language in which the web
server and a web client communicates. As a website user, you are simply consuming the visual elements that
the website creators planned for you. Hence, unless you are curious, you will hardly notice the underlying
communication.

It is almost like using a refrigerator. You just need to know that it is used to preserve your food by
keeping it cold and what goes in normal comes out chilled. You would hardly ever bother about how it
actually works.

As an IT pro or a web developer, it is imperative that you understand how communication is taking
place behind the scenes. Your knowledge of HTTP is extremely important in the context of this book. This
knowledge will help you configure your web server in such a way that you get the best performance out of
your web servers and ensure happy visitors on your website.

Can you “see” what HTTP looks like? Of course you can! There are multiple tools at your disposal, but
for now let us seek help from your favorite browser’s built-in developer tools. For brevity, we have chosen to
use Google Chrome for the examples in this book. The steps will be quite similar if you use Mozilla Firefox or
Internet Explorer.

© Rahul Soni 2016 1
R. Soni, Nginx, DOI 10.1007/978-1-4842-1656-9_1

www.it-ebooks.info

http://www.xyz.com/
http://www.nginx.org/
http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION TO NGINX WEB SERVER

e Start Chrome.

e Open Developer Tools using the menu. (Command + Alt + I or CTRL + Shift + I)

e Switch to Network tab.

e Browse to www.amazon.com and wait until the page loads.

e Sortit by the Name column (click on the tab header) and examine a few packets.

e InFigure 1-1, a specific CSS that starts with AmazonUI-xxxxxxxxx has been selected.

e We won't be sharing details of all the headers at this point because the idea is to
give you a little overview about how HTTP communication happens between your
browser and the web server.

Q [0 Elements | Network | Sources Timeline Profiles Resources Audits Console a1>. ¥ 0O x
® © W™ 7 View = = | [IPreserve log [Disable cache = No throttling v
| B Hide dataUrLs ()| XHR JS CSS Img Media Font Doc WS Other

20000 ms 40000 ms 60000 ms 80000ms 100000ms 120000ms 140000ms 160000ms 180000ms 200000ms 220000ms 240000ms 260000ms 2

=t
M. 2 4 | ® Headers Preview Response Timing
u ATVPDKIKXODER:186-5965511-4236649:1, 2 ¥ General
ATVPDKIKXODER:186-5965511-4236649: 1A4V. .. Remote Address: 45.20@.255.217:80
= = - Request URL: http://z-ecx. images-amazon. com/images/G/81/AUIC L ients/AmazonUI-e5028b261f44c5c
L] ATVPOKIKXODER:186-5965511-4236649:1A4V... 9£79811b5e79b95808b8b253d. rendering_engine-not-trident.weblab-AUI_UX_49594-T1.min._V2_.css
|| ATVPDKIKXODER:186-5965511-4236649:1A4V. . Request Method: GET
= Acoustics_360x180_v1.jpg Status Code: @ 200 0K
AmazonEmber_Ltwoff ¥ Response Headers view source
= 3 Access-Control-Allow-Origin: =
L] AmazonEmber_Rg.woff Cache-Control: public, max-age=629725813
|| AmazonUi-4e9caBbSc70a202d1ale2Bd34d7 Connection: keep-alive

B AmazonUl-e9028b061f44c5c9i79011b5e79b9... Content-Encoding: gzip
Content-Length: 18577

|| AssociatesSiteStripe)5-962d97f7162f59e81a85... Content-Type: text/css
|_| CA-combined-3052395040. V379596253 _.css Date: Sun, 96 Sep 2015 @5:32:30 GMT
|_| CA-combined-4100186973._ V357966219 _.css Expires: Mon, 20 Aug 2035 17:22:43 GMT

Last-Modified: Tue, @2 Jun 2015 19:05:27 GMT

| D= =
[1] D-GNO3-500x490._V318409967_.png Carvar: nptn

B DigitalVideoDeeplinkingAssets-ee62d5a8e7403... Vary: Accept-Encoding
[] igitalvideoProductDerailsCrossLinidhgassets-... ¥ Request Headers view source
DigitalVideoProductD: Assers-3T8Qe. .. Accept: text/css,*/+;q=0.1

Accept-Encoding: gzip, deflate, sdch

L] oot LB B DR Accept-Language: en-US,en;q=8.8
|_| DigitalVideoProductDetailsThirdPartyAssets-87... Cache-Control: no-cache
|s] FO_GND2_TAB_shoes_men._V314157659_.png Connection: keep-alive

Host: z-ecx. images-amazon.com

Fi le. 4 .
|s| FO_GNO2_babysale. V311604477 _png Pragma: no-cache

Ls] GNO_Aston_Ariel_500x472. V33033721 png Referer: http://www.amazon. con/dp/BOOMROUYBA/ ref=DVM_US_TL_CS_SH2_ALL_HOGpf_rd_m=ATVPDKIKXO
GetPlayback 7 ons... DER&pf_rd_s=desktop-hero-pivpf_rd_r=142WVHT Z5MDXAWE1TIHREDf _rd_t=36701&pf_rd_p=21984889025p
Ec'ﬂ" cesirs e f_rd_i=desktop

User-Agent: Mozilla/5.@ (Macintosh; Intel Mac 05 X 10_11_8) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/45.08.2454.85 Safari/537.36

GetP Tasi ons.
175 / 183 requests | 4.1 MB / 4.1 MB transferred...

Figure 1-1. View the inner details of an HTTP request

There are many things that should be noted in Figure 1-1. It has been annotated so that you can easily
check the details:

1. The browser made 183 requests to render just 1 page!

2. Inthe Headers section, you can see the HTTP communication in action.

www.it-ebooks.info

http://www.amazon.com/
http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION TO NGINX WEB SERVER

a. Request URL: The request made by the browser for a specific asset.

b. Remote Address: The IP address of the resource along with port
information. The port defaults to 80 for an HTTP request.

c. Request Method: The method tells the server and you can consider it as
a verb. In this example, it is telling the server that it is only interested in
receiving data and not POSTing it. Status Code = 200 means that the
server said “All okay!”

3. Response Headers: Similar to the request headers, there are response headers. It
is telling a lot of things that is in plain English, but the key is to understand that it
is not talking to you. In fact, it is talking to the browser. For example, when it says
Content-Encoding is gzip, it simply means that all the data is compressed at the
server side using the gzip algorithm and the browser is supposed to decompress
that data. You can clearly see how important this discussion between the server
and the browser is. All of these put together make your browsing experience a joy.

4. The question now is this: how and why did it send the data in a compressed
format? What if the browser had no clue about compression? Well, that part is
taken care of by the request headers. The browser sent a header called Accept-
Encoding with a value of gzip, deflate, sdch. It was an HTTP way of telling the
server, “You know what, let’s save on bandwidth! I can decompress the data using
gzip, deflate & sdch. I would prefer if you send it using gzip though (since gzip is
the first option)!” Essentially, what happened was that the request header went
all the way to the server, and the server obliged, as you saw in the previous point,
by sending the data that was compressed using gzip.

Interesting, right? All this and more for just one request! Thanks to HTTP, as an end user, you will never
have to bother about such gory details.

By the way, did you notice the server header in Figure 1-1 (labeled no. 3)? It says the web server is Nginx!
Itis not a coincidence. You will find that the adoption of Nginx has increased rapidly in recent times. It has,
in fact, become the number one web server for the top 10,000 busiest sites in the world. Among the top 1,000
websites of the world today, almost 40 percent use Nginx!

Extremely busy websites including Netflix, Dropbox, Pinterest, Airbnb, WordPress, Box, Instagram,
GitHub, SoundCloud, Zappos, and Yandex use Nginx as part of their infrastructure, and for good reasons.

What Is a Web Server?

In simple words, a web server is a server that hosts an application that listens to the HTTP requests. It is
the web server’s responsibility to hear (i.e., to understand HTTP) what the browser is saying, and respond
appropriately. Sometimes, it could be as simple as fetching a file from the file system and delivering it to
the web browser. At other times, it delegates the request to a handler that performs complicated logic and
returns the processed response to the web server, which in turn transfers it back to the client! Typically, the
server that hosts web server software is termed a web server or a web front-end server.

If you are new to the web server’s world, don’t worry. By the time you are done reading this book, you
will have a good grasp on the subject.

Although there are quite a few web servers around, three dominate: Apache, Microsoft Internet
Information Services (IIS), and Nginx combined have captured around 85 percent of the market. Each web
server has its space and its user base. When you are making a choice, you should evaluate wisely based on
your workload. It becomes extremely crucial to make a diligent effort while you are setting up your web
server, since migration from one web server to another is typically a painful exercise. Sometimes, it is just not
possible and you have to rewrite a lot of code.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © INTRODUCTION TO NGINX WEB SERVER

Historically, the fight for market share used to be between Apache and IIS, until Nginx showed up. Since
then, Nginx received its fifth consecutive “Web Server of the Year Award” from W3Techs in 2015. Itis also a
testament to the power of Nginx, and why Nginx should not be ignored for your web hosting needs.

Seven Reasons Why You Should Be Using Nginx

Making a decision about which server to choose is often a debatable subject. Even more, the IT pros typically
get used to working with specific software. Nginx acts as a complementary solution to most web servers.

The idea is not to replace your existing infrastructure completely, but to augment it with Nginx in ways that
you get the best of both worlds. In the upcoming section you will learn about the reasons why you should
seriously consider adding Nginx servers to your web farm.

It’s Fast

The online users today have very low threshold of tolerance for slow websites. With smartphones and
tablets available at your fingertips and so much of social data to consume, everybody seems to be in a rush.
Innovation hence will not cut it alone. The website has to have equally good performance. As if this was not
enough, Google now incorporates page load time into its search rankings. In essence, poorly performing
websites will find it increasingly difficult to succeed.

Fast page load times builds trust in your site and leads to more returning visitors. If your site is slow, you
are most certainly going to lose your visitors to your competition. Recent surveys reveal that users expect the
page to load in less than 2 seconds, and 40 percent of them will abandon your website if it takes more than 3
seconds!

Nginx has solved the performance problem and that is one of the biggest reasons for all the praise and
awards it bags. It is extremely fast, and shines even under high load.

It Can Accelerate Your Application

Not only Nginx is extremely fast, but it can also act as an acceleration toolkit for your existing application.
The idea is to drop Nginx in front of an existing set of web servers and let it take care of routing traffic to the
back end intelligently. This way, you can offload a lot of tasks to Nginx and let your back-end server handle
more data intensive tasks. In effect, you will find that the users have been served the content while your back
end was churning out the data.

It Has a Straightforward Load Balancer

Setting up a hardware load balancer is quite costly and resource intensive. It requires a lot of expertise to
handle and also takes a considerable amount of time to set up. After a physical installation of the devices,
you can definitely reap the rewards from your hardware load balancer, but you are locked in with the
solution and hardware that may require servicing at times. In any case, you add one more layer of complexity
in your infrastructure by using a hardware load balancer.

With Nginx you can set up a pretty straightforward and fast software load balancer. It can immediately
help you out by sharing load across your front-end web servers.

It Scales Well

With Apache and IIS, it is a common pain: The more connections, the more issues. These servers solved a
big problem around bringing dynamic content to the web server instead of static files, but scalability has
always been a challenge. Keep in mind that scalability and performance are not the same problem.

4

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION TO NGINX WEB SERVER

Let’s say you have server that can handle 1000 concurrent connections. As long as the requests are
short and the server is able to handle 1000 connections/second, you are good. But the moment a request
starts taking 10 seconds to execute, the server simply starts crawling and you see the domino effect where
one thing fails after another. If you have large files available for download, your server will most likely choke
with a high number of concurrent connections. Apache and IIS servers are not suitable for this kind of load,
simply because of the way they have been architected. They are also prone to denial of service attacks (DoS).
Unfortunately, adding more resources like CPU and RAM doesn’t help much. For example, if you double the
RAM or CPU, that doesn’t mean the server will be able to handle 2000 concurrent connections. As you can
see, the issue is not with performance, but with scale.

Nginx is one of the very few servers (along with Node.js) that is capable of addressing this issue, which is
often referred to as C10K problem (a term coined in 1999 by Dan Kegel for 10,000 concurrent connections).

You Can Upgrade It On the Fly

Nginx provides you an ability to reconfigure and upgrade Nginx instances on the fly without interrupting
customer activity. It is an extremely important capability because every server and every service needs
patching at times. With Nginx you can patch your production environment reliably without completely
bringing down your services levels.

It's Affordable to Install and Maintain

Nginx performs pretty well even on servers with a very low hardware footprint. Even with default settings,
you can get much more throughout from an Nginx server compared to Apache or IIS.

It’s Easy to Use

Don’t be intimidated by the lack of a user interface (UI). Nginx is easy if you understand how to use it. The
configuration system is pretty well thought out and once you get up to speed, you will thoroughly enjoy it!

Main Features of Nginx

Nginx is a fantastic web server and a lot more. This section introduces some of its more important features.

More Than Just a Web Server

At its core, you can consider Nginx to be an event-based reverse proxy server. That may come as a surprise to
many, because mostly Nginx is usually said to be a web server.

A reverse proxy is a type of proxy server that retrieves resources from the servers on behalf of a client.
It can be helpful to offload the number of requests that the actual web server ends up handling. Figure 1-2
illustrates what a proxy server does.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © INTRODUCTION TO NGINX WEB SERVER

Web Front End 1
[] 0 4
Web Front End 2
Proxy Server

[X f ,'«/”/J. - ‘

O — (-—________) Web Front End ...

[O [|
Web Front End N
[|

B]

Figure 1-2. A typical proxy server

Modular Design

It has an extremely extensible architecture due to its support for plug-ins. Even basic things like SSL and
compression are built as modules. The real power lies in the fact that you can rebuild Nginx from source
and include or exclude the modules that you don’t need. This gives you a very focused executable that does
precisely what you need. This approach has a downside too, though. If you decide to incorporate another
module at a later point, you will need to recompile with appropriate switches. The good angle to this is, Nginx
has a fairly robust way of upgrading its live processes and it can be done without interrupting the service levels.
As of this writing, www.nginx.org hosts as many as 62 modules for very specific purposes. There are
plenty of other third-party Nginx modules available as well to make your job easier. The ecosystem is thriving
and helping Nginx to become even more powerful as time passes. You will learn more about modules in the
coming chapters in detail.

Asynchronous Web Server

Nginx gains much of its performance due to its asynchronous and event-based architecture whereas Apache
and IIS like to spin new threads per connection, which are blocking in nature. Both IIS and Apache handle
the threads using multithreaded programming techniques. Nginx differs in the approach completely. It does
not create a separate thread for each request. Instead it relies on events.

Reverse Proxy and Load Balancing Capability

Nginx analyzes the request based on its URI and decides how to proceed with the request. In other words,
itis not looking at the file system to decide what it has to do with it. Instead, it makes that decision based
on the URI. This differentiation enables Nginx to act as a very fast front end that acts as a reverse proxy and
helps balance the load on the application servers. It's no exaggeration to say that Nginx is a reverse proxy first
and a web server later.

Nginx can also fit very well in a hybrid setup. So, the front-end job is taken care of by Nginx, and
everything else gets delegated to the back end (to Apache, for instance).

Low Resource Requirement and Consumption

Small things that go a long way, define Nginx. Where other web servers typically allow a simple plug-and-
play architecture for plug-ins using configuration files, Nginx requires you to recompile the source with
required modules. Every module that it requires is loaded directly inside of an Nginx process. Such tweaks

www.it-ebooks.info

http://www.nginx.org/
http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION TO NGINX WEB SERVER

along with smart architectural differences ensure that Nginx has a very small memory and CPU footprint
on the server and yields a much better throughput than its competition. You will learn about the Nginx
architecture with granular details in the coming chapters.

Unparalleled Performance

Nginx is probably the best server today when it comes to serving static files. There are situations where it
cannot be considered the best (like dynamic files), but even then, the fact that it plays well as a reverse proxy
ensures that you get the best of both worlds. If configured well, you can save a lot of cost that you typically
incur on caching, SSL termination, hardware load balancing, zipping/unzipping on the fly, and completing
many more web-related tasks.

Multiple Protocol Support: HTTP(S), WebSocket, IMAP, POP3, SMTP

As a proxy server, Nginx can handle not only HTTP and HTTPS requests, but also mail protocols with equal
grace. There are modules available that you can use while compiling your build and Nginx will proxy your
mail-related traffic too.

SSL Termination

Secure Sockets Layer is a necessity for any website that deals with sensitive data. And, just like any other
necessity, there is a cost involved. When it comes to web traffic, SSL also induces an extra processing
overhead on the server side where it has to decrypt the request every time. There lies a catch-22 situation: If
you remove the SSL, you are opening yourself up for attacks and if you use SSL, you end up losing a little bit
on speed (or additional cost due to scaling out)!

Since Nginx has the capability of acting as a load balancer, you can give it additional work as well.
Essentially, the idea of an SSL termination (Figure 1-3) is that the request will come to the load balancer on
a secure channel but will be sent to the other web servers without SSL. This way, your web server acts faster
and eventually your requests go out to the clients in a secure manner as well.

Internet /
A o) -o— mmm
HTTPS HTTPS Nginx Load Balancer

(SSL Terminates here)

Web Server Farm

Figure 1-3. Nginx as a Load Balancer and SSL Terminator

HTTP Video Streaming Using MP4/FLV/HDS/HLS

You have already learned that the Input/Output (I0) in Nginx doesn’t block if the client is slow. Video
streaming is typically a very IO-intensive process, and Nginx does a great job here. It has multiple modules
that help you provide streaming services. To give a little perspective as to what is special about video
streaming, imagine watching YouTube. You can easily skip the video from one position to another and it
almost immediately starts serving the content. The key here is to not download the entire file at one shot.
The request, hence, should be created in such a way that it has certain markers in the query string, like this:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © INTRODUCTION TO NGINX WEB SERVER

http://www.yoursite.com/yourfile.mp4?start=120.12

The preceding request is asking the server to send the content of yourfile.mp4 starting from (notice the
start query string) 120.12 seconds. This allows random seeking of a file in a very efficient way.

Extended Monitoring and Logging

Failure to log and finding the problems in production farm is extremely crucial if you are to run a successful
web service. Monitoring a web server, however, on a regular basis is a challenging and time-consuming task
for any IT pro.

The more servers you have, and the more traffic you get, the harder it becomes. There are all sorts of nasty
people out there who have ulterior motives to bring the website down and disrupt your web service. The best way
to ensure safety, hence, is to be cautious and alert. Log as much as possible and ensure that you react proactively.

Nginx writes information about issues it encounters to a file called an error log. Windows users may
consider it similar to an event log. You can configure it to log based on its levels. For example, if you tell
Nginx to write anything above error severity, it will not log warning logs at all.

It also has an access log that is similar to W3C logs created by other web servers. You can change the
fields that you would like to log, and even configure it to ignore common status codes like 2xx and 3xx. This
is a pretty neat feature, since it ends up creating much smaller log files instead of huge ones that may get
created if you are managing busy servers.

Graceful Restarting

The way Nginx is designed, you can easily upgrade Nginx. You can also update its configuration while the
server is running, without losing client connections. This allows you to test your troubleshooting approach,
and if something doesn’t work as desired, you can simply revert the settings.

Nginx brings a very interesting way of controlling your processes. Instead of bringing the entire service
down, you can send signal values to the master process by using an Nginx command with a switch. You
will learn about it in detail in upcoming chapters, but for now you can imagine saying something like nginx
-s reload, a command that will simply reload the configuration changes without recycling the worker
processes. Simple, but effective!

Upgrades without Downtime Using Live Binaries

This is probably one of the most powerful features of Nginx. In the IIS or Apache worlds, you can’t upgrade
your web server without bringing the service down. Nginx spawns a master process when the service starts.
Its main purpose is to read and evaluate configuration files. Apart from that, the master process starts one or
more worker processes that do the real work by handling the client connections.

If you need to upgrade the binary, there are simple steps and commands that you need to issue in order to
make the new worker processes run at tandem with the older ones. The new requests will be sent to the newer
worker processes that have the latest configuration loaded in it. If by any chance, you find out that the upgrade
is causing issues, you can simply issue another set of commands that will gracefully return the requests to the
older process that already has the previous working configuration loaded in it. How neat is that?

Enterprise Features of Nginx Plus

Nginx has two versions. The basic version is free, and the paid option is called Nginx Plus. Nginx Plus has
quite a few important features that are very helpful for managing busy sites. Choosing Nginx Plus helps you
save a lot of time. It has features like load balancing, session persistence, cache control, and even health
checks out of the box. You will be learning about the overall differences shortly in this chapter.

8

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION TO NGINX WEB SERVER

Support Available with Nginx Plus

Community support is free for Nginx, but e-mail and phone support are not. Nginx Plus comes packaged
with support options. You can buy different kinds of support options based on your need and criticality of
the business. Nginx Plus contains many additional benefits as you will see in the next section.

Advantages of Nginx Plus

Nginx is a reliable solution for any website or service that is looking for scalability, high performance, and
reliable solutions. You can download it directly from the website and build the binaries yourself as discussed
earlier. However, there are a few modules that are not available unless you licence Nginx Plus. The key
difference here is that while Nginx is available in source form that you can compile according to your needs,
Nginx Plus is available only in binary form.

The core features (HTTP server, core worker process architecture, SPDY, SSL termination,
authentication, bandwidth management, reverse proxy options for HTTP, TCP, and Mail) are available in
both Nginx and Nginx Plus.

Load balancing and application delivery is not available in the same capacity, though. Nginx Plus
provides features, discussed in this section, which are not available in Nginx.

Advanced HTTP and TCP Load Balancing

Nginx Plus enhances the reverse proxy capabilities of Nginx. Imagine Nginx Plus as Nginx running on
steroids. There are four methods ofload balancing in Nginx that are common to both versions: Round-
Robin, Least Connections, Generic Hash, and IP Hash.

Nginx Plus adds the least time method in its stack (more on these methods later). The load balancing
methods in Nginx Plus are extended to support multicore servers in an optimized way. The worker processes
share the load balancing state among each other so that traffic can be distributed more evenly.

Session Persistence

HTTP is a stateless protocol. You make a request, the server responds, and that’s it. But you may argue that
this is not what it feels like. For instance, you go to your mail server, log in, and check your mail. If you right-
click a message and open it in a new window, it doesn’t reauthenticate you. If the request was stateless, how
would such a thing be possible?

The logging-in behavior makes it appear that the server knows you. To make this happen, plenty of
things have to happen in the background. Cookies, sessions, and timeouts typically govern how the websites
behave for logged-on users.

This implies that if your session or cookie is lost or tampered with, you will be logged out automatically.
It also implies that there is “some” work done at the server side for every user. It would make a lot of sense,
that if the request has gone to Server 1 for a User A, the subsequent requests from User A go to the same
Server 1. If this doesn’t happen, and the request ends up at Server 2, it would ask the user to reauthenticate.
This behavior is referred to as session persistence. Nginx Plus load balancer identifies and pins all requests in
a session to the same upstream server. It also provides a feature called session draining, which allows you to
take a server down without interrupting established sessions.

Content Caching Enhanced Capabilities

Caching is an activity by the server to temporarily hold a static resource, so that it doesn’t need to be
retrieved from the back end every time a request is made for the same resource. It improves speed and
reduces load on the back end servers.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © INTRODUCTION TO NGINX WEB SERVER

Nginx Plus can cache content retrieved from the upstream HTTP servers and responses returned by
FASTCgi, SCGI, and uwsgi services. The cached object is persisted in the local disk and served as if it is
coming from the origin.

However, there is a caveat to caching. What if the content in the back end has changed? The server will
keep sending older files to the client, which is not what you would like. To avoid such scenarios, Nginx Plus
allows purging of cache. You will need to use one of the many tools available to purge the cache. You can
purge selected subset of requests or everything if you need to.

Application Health Checks

Nobody likes to visit a site that is down. If your site suffers frequent outages, it is likely that people will lose
trust soon. Health check is a way where you let Nginx handle failures gracefully. Who wouldn't like a self-
healing and self-servicing robot? Health check is like a robot that goes to the service station automatically
when it thinks it is not performing well.

Health checks continually test the upstream servers and instruct Nginx Plus to avoid servers that have
failed. This simply implies that the servers will be “taken care of” by itself, and your end users won't see the
error pages that they might have, in case there was no real person monitoring the servers.

If yours is a very busy site, this feature can be considered as one of the biggest reasons why you should
go with Nginx Plus!

HTTP Live Streaming (HLS) and Video on Demand (VOD)

Before learning about HTTP live streaming, let us explain the differences between streaming, progressive

downloads, and adaptive streaming. This will help you understand why Nginx plays a special role in this arena.
With increasing bandwidth every day and reduced costs, delivering rich content has never been easier.

Technically, there is a media file that you have sent to the browser or mobile device, so that it just plays.

The problem is that the size can be overwhelming to download. Clients want the content to play as soon as

possible and there are multiple ways to do this.

Streaming

When you stream content, you typically mean that the viewer clicks on a button and video/audio starts
playing after an initial amount of buffering. At the back end, you will need to use dedicated streaming
software. This software will ensure that the data rate of the encoded file is less than that of the bandwidth.
It ensures that the encoded file is small enough to be streamed through the limited bandwidth at disposal.
Keep in mind that every streaming software has its own set of requirements of media files so that it can
function as expected.

Progressive Download

In contrast to streaming, progressive download enables you to use simple HTTP web servers. The video that
is delivered using this technique is typically stored at the client side and played directly from the hard drive.
This is a big difference, since streaming media is not stored locally at all! From a user experience perspective,
the software takes care of playing the file as soon as enough content is downloaded. Sites like YouTube, CNN,
and many other video sites don’t use streaming servers. They deliver it using progressive download. Since
the data is stored locally before playing, the user experience is a lot better than streaming.

10

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION TO NGINX WEB SERVER

Adaptive Streaming

As the name suggests, this is streaming with a twist. It automatically adapts to the client’s bandwidth. It uses
streams in such a way, that when the connection is good the viewer gets a higher-quality content. As you can
guess, if the connection quality deteriorates, a lower data rate is opted for. This also means that the video
quality might get too blurry at times and the users will blame the service rather than their own network
connection. You will need dedicated streaming software to do adaptive streaming.

That little detour should have given you a reasonably decent understanding of where Nginx fits. Nginx is
widely used to deliver MP4 and FLV video content using progressive downloads. It is very efficient in delivering
content due to its non-blocking I/O architecture and support for huge number of concurrent connections.

Nginx Plus takes it even further. It allows you to support adaptive streaming functionality for video-on-
demand services. This way, the bitrate is automatically adjusted in real time. It also has bandwidth throttling
capabilities so that the fast clients and download accelerators don’t suck up your entire bandwidth.

Nginx Plus uses HLS/VOD module to provide even more flexibility and support for H.264/AAC. This
helps a lot, since you don’t have to repackage the MP4 content for adaptive streaming. It provides real-time
transformations from mp4 to HLS/MPEG-TS. There are other modules that you can use together so that the
intellectual property is not compromised.

HTTP Dynamic Streaming (HDS/VOD)

It is an alternative method for delivering adaptive streaming media to your clients. It uses different file
formats that are prepared initially using Adobe’s fAfpackager tool. This tool generates the files that are
necessary for the clients. Nginx f4f handler simply delivers it to the clients.

Bandwidth Management for MP4 Media

With Nginx Plus, you have multiple directives that can be used to limit the rate of download. Essentially, it
defines limits that activate after a specified time. It saves you from denial of service attacks because users
who are putting more loads on the servers are automatically identified and throttled.

Another smart thing it does is to allow the content to stream without any limit for the first N seconds so
that the data is buffered appropriately. After that the limit automatically applies. On one hand it helps clients
with quicker play time, and on the other hand it discourages download accelerators.

Live Activity Monitoring

Nginx Plus comes with a real-time activity monitoring interface (Figure 1-4). It is quite friendly and easy to
use. For a live view of a demo website to see how it looks, try http://demo.nginx.com/status.html.

11

www.it-ebooks.info

http://demo.nginx.com/status.html
http://www.it-ebooks.info/

CHAPTER 1 © INTRODUCTION TO NGINX WEB SERVER

NGINX+ Dashboard Serverzones (%) Upstreams TcPZones () TCP Upstreams Caches

Version 1.9.4 Connections Accepted: B189658 Requests 7

Address 127.0.0.1

PID 18208 Current Accepted/s Active Idle Dropped Current Reg/s
Uptime 1d 15h 21m A4 1 12 32 0 12 30
|
Server zones @ Upstreams @ TCP Zones @ TCP Upstreams @ Caches
Total Problems Total Problems Conn total: 1885590 Total Problems Total Problems
Conn current: 0
3 /08 2/ Connis:0 1 /9 2/
Traffic Servers Traffic Servers Caches states
In: 10.4 KiB/s All: 11/Up:6 In: 0 All: 4/ Up: 3 Warm: 2
Out: 141 KiB/s Failed: 4 Out: 0 Failed: 0 # Cold: 0

® NGINX, Inc. All rights reserved.

Figure 1-4. Live activity monitoring using Nginx Plus

Asyou can see in Figure 1-4, information about current connections, requests, and many other counters
are listed here. Notice how clearly it shows that there are a couple of problems in the upstream servers. This
interface is exposed through HTTP and it implies that you can access it using a browser without logging on
your server.

Nginx Commercial Support

Sometimes, when you face a challenge in a production farm and your team is not able to resolve issues, you
can rely on community support. However, there is no direct accountability and guarantee that your issue will
be resolved.

At that point, having a commercial support option offered by Nginx Plus comes to rescue. You will have
the experts from Nginx support team covering your back. Standard support covers you during the business
hours (9 a.m. to 5 p.m.), whereas premium support covers you 24/7. With premium support you get phone
support as well.

In case it is found that the issue is due to a bug in the software, premium support can help you get the
bug fixed as soon as possible. In short, premium support is the best and fastest support you can get from
Nginx Inc.

Differences between Apache and Nginx

Nginx and Apache are both versatile and powerful web servers. Together they serve more than 70 percent of
the top million websites. At times they compete, but often they are found complementing each other. One
important thing to point out here is that they are not entirely interchangeable. You will need to pick them up
carefully according to your workload.

12

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION TO NGINX WEB SERVER

History

Apache Software Foundation (ASF) is the umbrella under which Apache is developed. Apache has been
around since 1995 and developed under ASF since 1999. It is the clear winner today in terms of overall
market share. Apache has widespread support, and you will find plenty of expertise to hire and solve your
hosting needs. Nginx is the new kid in the block and seen widespread adoption since 2008. Between June
2008 and June 2015, it has grown from 2 percent to 21 percent among the top million sites. For the top 10,000
websites, the story is even better. It has grown mostly at the cost of Apache, which saw its market share drop
from 66 percent to 49 percent in the same time period.

Performance

For Apache users, there is a choice of multiprocessing modules (MPM) that control the way the requests are

handled. You can choose between mpm_prefork, mpm worker, mpm event. Basically mpm_prefork spawns

processes for every request, mpm_worker spawns processes, which in turn spawn threads and manages the

threads, mpm_event is further optimization of mpm_worker where Apache juggles the keep alive connections

using dedicated threads. If you haven’t already noted, these changes are all for the better and evolutionary.
Nginx was created to solve the concurrency problem and it did by using a new design altogether.

It spawns multiple worker processes that can handle thousands of connections each! It is completely

asynchronous, non-blocking, and event-driven. It consumes very little resources and helps in reducing

cost of scaling out of a web server. The web server can be upgraded on the fly without losing the connected

visitors and reduces downtime of your service.

Resource Requirements

Nginx needs fewer resources than Apache because of its new architecture. Fewer resources = Lower cost =
More profit.

Availability

Apache is present more widely across operating systems whereas Nginx is not. Most of the famous Linux
distros have Nginx, which can be downloaded using rpm, yum, or apt-get butitis almost always an extra
step. Consider this, for installing Apache (on CentOS 7), you can run the following command and everything
is all set (there is a dedicated chapter for that coming up with all the details).

yum install httpd

For Nginx, you will need to do something like the following:
1. vi /etc/yum.repos.d/nginx.repo
2. Add the following text:
[nginx]
name=nginx repo
baseurl=http://nginx.org/packages/centos/$releasever/$basearch/

gpgcheck=0
enabled=1

13

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © INTRODUCTION TO NGINX WEB SERVER

3. Use the following code:
yum install nginx

It is not that it is hard; it is just that it needs some extra little steps to make it work. With more popularity,
itis possible that in the coming time it will become more generally available.

Proxy and Load Balancing Server

Nginx was designed as a reverse proxy that doubles up as a web server. This is quite different than Apache
since it was designed as a general purpose web server. This feature gives an edge to Nginx since it is more
effective in dealing with a high volume of requests. It also has good load balancing capability. Quite often,
Nginx acts as a web accelerator by handling the request in the front end and passing the request to the back-
end servers when required. So, Nginx in the front end and Apache in the back end gives you the best of both
worlds. They are more complementing than competing from this perspective.

Static vs. Dynamic Content

As mentioned earlier, Nginx has a clear advantage when serving static content. The dynamic content story

is quite different though. Apache has a clear, early mover advantage here. It has built-in support for PHP,
Python, Perl], and many other languages. Nginx almost always requires extra effort to make it work with these
languages. If you are a Python or Ruby developer, Apache might be a better choice since it will not need CGI
to execute it. Even though PHP has good support on Nginx, you still need to dedicate a little time to get PHP-
based solutions that work directly on Nginx. For example, installing WordPress on LAMP stack is super easy,
and even though it can be easily done on a LEMP stack, you will still need to configure some nuts here, and
some bolts there. You get the idea!

Configuration

Apache’s basic configuration ideology is drastically different from Nginx. You can have a .htaccess file in
every directory (if you like) using which you can provide additional directions to Apache about how to
respond to the requests of that specific directory. Nginx on the other hand interprets the requests based on
the URL, instead of a directory structure (more on this later). It doesn’t even process the .htaccess file. It has
both merits (better performance) and demerits (lesser configuration flexibility). Although for static files the
requests are eventually mapped to the file, the core power of parsing the URI comes to play when you use it
for scenarios like mail and proxy server roles.

If you come from an Apache background, you will need to unlearn a lot of concepts while migrating
to Nginx. The differences are many from a configuration perspective, but most people who migrate from
either side say that once you learn the nuances, you will find the Nginx configuration quite simple and
straightforward!

Modules (or Plug-Ins)

Both Apache and Nginx have a robust set of modules that extend the platform. There is still a stark difference
in the way these extensions are added and configured. In Apache, you can dynamically load/unload the
modules using configuration, but in Nginx you are supposed to build the binaries using different switches
(more on this in the next chapter). It may sound limiting and less flexible (and it is), but it has its own
advantages. For example, the binaries won’t have any unnecessary code inside it. It requires and forces you
to have a prior understanding of what you need the specific web server to do.

14

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION TO NGINX WEB SERVER

It is also good in a way, because mostly it is seen that even though the modular software has modules,
web administrators end up installing much more than what they need. Any unnecessary module that is
loaded in the memory is extra CPU cycles getting wasted. Obviously, if you are wasting those cycles due to
lack of planning, it all adds up eventually and you will get poorer performance from the same hardware!

Documentation

Due to the early mover advantage, Apache has a lot to offer when it comes to documentation. The web is full
of solid advice, books, blogs, articles, trainings, tools, use cases, forum support, configuration suggestions,
and pretty much everything you will need from an Apache web-administration perspective.

The documentation for Nginx has been evolving and getting better rapidly but is still way less compared
to Apache. That doesn’t mean it is bad, it just means that it is competing in this area; and most likely, it will
become better as more and more people join in.

Support

The support system for Apache is very mature. There are a lot of tools available to help you maintain your
web server well. There are plenty of third-party companies that support Apache by providing different
support levels. There are IRC channels available as well, which makes community support easier.

Nginx does have support as mentioned earlier, but lacks the richness and maturity because of its late
entry. The fact that it is straightforward, simple to configure, and robust helps Nginx to a great extent. In a
way, simplicity is where Nginx wins and with time and adoption, it can only get better!

Summary

In this chapter, you have learned about the basics of a web server and where Nginx fits. You now know the
most common reasons why Nginx is preferred over other web servers. It is extremely important that you use
the right tool for the right kind of project, and we believe that this chapter has helped you in understanding
the use cases more suitable for Nginx. You should also be comfortable with the differences of Nginx and
Nginx Plus and if you have already deployed it in production, you would be more than happy to know that
there are multiple support levels available with Nginx.

In the next chapter, you will learn about setting up an Nginx web server.

15

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

Installing Nginx

You don’t learn to walk by following rules. You learn by doing, and by falling over.

—Richard Branson

Based on your requirements, you can choose to download the precompiled packages or compiled binaries
with their components from the Nginx website. If the basic and default set of binaries do not suit your needs,
you can choose to download the packages from source and compile it yourself. Both the methods have its
pros and cons, and in this chapter you will learn the details in a step-by-step manner. Quite often, you will
need to use modules that are not a part of the default setup. In such cases, there is no other way than to
compile the binaries accordingly.

Before you start your first deployment of Nginx, you will need to prepare your environment to perform the
steps mentioned in this chapter. In today’s world, there are a variety of choices when it comes to configuring
your infrastructure. For ease of demonstration and cross-platform support, we have chosen to go with
VirtualBox for virtualization, and two famous Linux distributions of the Fedora (CentOS) and Debian (Ubuntu)
family. We will make sure to provide you the commands for each distros so you can practice on either of them.

Preparing Your Environment

Here is what is required:

e Aspare physical machine or virtualization software like VirtualBox. You can
download Oracle VirtualBox from https://www.virtualbox.org.

e Based on your choice, you can download either or both of the Linux distributions
CentOS or Ubuntu Server.

e Download CentOS from https://www.centos.org/download or Ubuntu Server from
http://www.ubuntu.com/download/server. You can also download the ready-to-use
VirtualBox VM images from http://www.virtualboxes.org. The server versions
used in this book are CentOS 7 and Ubuntu Server 14.04.

e For a detailed step-by-step direction to install and configure CentOS on VirtualBox,
you can visit http://www.attosol.com/centos-setup-and-networking-using-
virtual-box.

e Once your VMs are up and running, the first step is to update the packages that
are installed on the server by default. You will require root access to update the
packages. The steps to update the packages are the following:

© Rahul Soni 2016 17
R. Soni, Nginx, DOI 10.1007/978-1-4842-1656-9_2

www.it-ebooks.info

https://www.virtualbox.org/
https://www.centos.org/download
http://www.ubuntu.com/download/server
http://www.virtualboxes.org/
http://www.attosol.com/centos-setup-and-networking-using-virtual-box
http://www.attosol.com/centos-setup-and-networking-using-virtual-box
http://www.it-ebooks.info/

CHAPTER 2 * INSTALLING NGINX

e On CentOS:

su -
yum update
On Ubuntu:

sudo apt-get update
sudo apt-get upgrade

e You will also need some basic utilities on the servers to enable you to perform steps
mentioned throughout this book. Again you will require root access to install these
packages.

On CentOS:

Install Lynx (a text based browser):
yum install lynx

Install Nano (a text editor in case you are not comfortable using vi):
yum install nano

Install wget (a text based downloader that will help download files):
yum install wget

Install ssh (a secure shell to sllow remote login):
ssh is installed by default on Cent0S

Tip Since you will find many different configuration steps, it is better to save a snapshot of the server. This
way, you can play around and revert back safely if anything goes wrong. Open VirtualBox, click the server name,
change the tab by clicking the Snapshots button, and click the Camera button. For the purpose of this book, a
snapshot is created called Basic.

On Ubuntu:

Install Lynx:
sudo apt-get install lynx

Install Nano:
nano is installed by default on Ubuntu

Install wget:
wget is installed by default on Ubuntu

Install ssh:
sudo apt-get install ssh

18

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 " INSTALLING NGINX

Installing Nginx Using Pre-Built Packages

Using Package Manager is the easiest way of installing, updating, upgrading, and removing software
packages in Linux. You can download the package from the source by adding the Nginx repository
configuration in the repository files on the server.

Nginx product releases are of two types: namely, stable (even version numbers) and mainline or
development (odd version numbers). The “stable” versions are tried and tested versions. It consists of major
bug fixes but no new features are added in the stable version. The “mainline” version includes new features
and bug fixes and usually is good for testing future versions of the product. In our examples we will be using
the stable version but the steps to implement and configure mainline version is the same.

Install Nginx Pre-Built Package

In this section, you will learn about installing Nginx on two different distros of Linux, namely, CentOS and
Ubuntu. It is recommended that you follow along.

On Cent0S

e Login as root, or open the terminal window and use su to change to root user.

e Add Nginx repository to the server repository list. There are two ways of performing
this step:

Method 1:

e Create the Nginx repository file in the yum. repos.d directory and then add the
repository configuration by editing the nginx.repo file.

nano /etc/yum.repos.d/nginx.repo

e Add the below text in nginx.repo file.
[nginx]
name=nginx repo
baseurl=http://nginx.org/packages/centos/7/$basearch/
gpgcheck=0
enabled=1

e Save thefile.
Method 2:

e Download the nginx-release package from Nginx servers.

wget http://nginx.org/packages/centos/7/noarch/RPMS/nginx-release-
centos-7-0.el7.ngx.noarch.rpm

e Now install the Package Manager repository.

rpm -Uvh nginx-release-centos-7-0.el7.ngx.noarch.rpm

19

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

INSTALLING NGINX

Now that the package repository is in place, you can install Nginx using this
command:

yum install nginx
You can verify the Nginx installed version using the -v command option:

nginx -v
nginx version: nginx/1.8.0 (expected output)

On Ubuntu Server

Ubuntu PPA, which is maintained by volunteers, has Nginx in their package repository list and may include
some additional modules, but it is not the latest version as what is found on http://nginx.org. To ensure
that you have the latest version installed on your server, you will need to add the Nginx repository in the
sources.list file.

1.

20

Open terminal window and open the sources.list file using the command
sudo nano /etc/apt/sources.list

You can add the Nginx repository links at the bottom of the file. Scroll down to
the very bottom of the file and add the two lines below:

deb http://nginx.org/packages/ubuntu/ trusty nginx
deb-src http://nginx.org/packages/ubuntu/ trusty nginx

Save the file.

Now you can download the package lists from the repositories and update
them with the information for the newest versions of the packages and their
dependencies. You can do that by typing the following command:

sudo apt-get update

You will get the following error regarding the missing signature key. It is

happening because gpg is trying to sign the nginx release and check its signature.

But the signing key is missing on the server and hence gpg is not able to validate

the nginx package:

Reading package lists... Done

W: GPG error: http://nginx.org trusty Release: The following signatures couldn't
be verified because the public key is not available: NO_PUBKEY ABF5BD827BD9BF62

Download and add the nginx signature key using the command below:

wget http://nginx.org/keys/nginx_signing.key
sudo apt-key add nginx_signing.key

www.it-ebooks.info

http://nginx.org/
http://www.it-ebooks.info/

CHAPTER 2 " INSTALLING NGINX

7. Now try re-synchronizing the package index from the sources:
#sudo apt-get update

8. Now that the package list is updated and indexed, you can install Nginx:
sudo apt-get install nginx

9. You can verify Nginx installed the version:

nginx -v

Nginx Folder Structure

Itis important to understand how the Package Manager-based Nginx installation folder structure looks.

It will help you to locate the configuration files if you want to make any configuration changes such as
changing the user account under which Nginx process executes, enables, or disables mime types for your
website; modify FastCGI execution parameters; identify the default document root and error logs directory;
or understand where the error logs files and Nginx executable are.

e You can get the complete list of all Nginx configuration details and its version by
using the -V command option with nginx. Here is a sample output of the command:

nginx -V

nginx version: nginx/1.8.0

built by gcc 4.8.2 20140120 (Red Hat 4.8.2-16) (GCC)

built with OpenSSL 1.0.1e-fips 11 Feb 2013

TLS SNI support enabled

configure arguments:
--prefix=/etc/nginx
--sbin-path=/usr/sbin/nginx
--conf-path=/etc/nginx/nginx.conf
--error-log-path=/var/log/nginx/error.log
--http-log-path=/var/log/nginx/access.log
--pid-path=/var/run/nginx.pid

. output trimmed ...

The Package Manager-based installation installs Nginx under /etc/nginx directory. It
installs all necessary configuration files like nginx. conf file, which has the web server
configuration details. It has amine.types and fastcgi_params file that contains all
the mime types that are enabled on the web server and fastcgi configuration details.
All these default configurations enable the Nginx server to start:

1s -F /etc/nginx/
conf.d/ koi-utf mime.types scgi params win-utf
fastcgi_params koi-win nginx.conf uwsgi_params

21

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * INSTALLING NGINX

e The Nginx executable nginx is located in the system executable directory /usx/sbin/
nginx. Since it is executing using the root user, you will need to be a root user or
need to do su or sudo to start or stop the process:

1s -1 /usr/sbin/nginx
-IWXT-Xr-x. 1 root root 890992 Apr 21 21:06 /usr/sbin/nginx

e Bydefault, the document root directory is located at /usr/share/nginx/html/. It
consists of a sample index.html and 50x. html file. You can deploy your application
in the same document root directory and Nginx will serve the content:

1s /usr/share/nginx/html/
50x.html index.html

e The default error files and HTTP logfiles are located at /var/log/nginx/. By default,
there are two files: access.log and error.log. You will have to implement some sort
of log file rotation mechanism such that your logfiles don’t grow up too large. You
will learn more about these files and its configuration details in chapter 10.

e TryLynxto browse to the http://localhost and you should be presented with the
default index page. (If you get an alert saying Unable to connect to remote host,
simply start the Nginx server using systemctl start nginx):

lynx http://localhost

Tip You can edit the nginx.conf file to make any configuration changes. You have to be a root user or
sudo the command to make the changes (i.e., sudo nano /etc/nginx/nginx.conf).You will need to restart
nginx processes to ensure the configuration changes takes effect.

You now have a working version of Nginx on the server. In this section you understood the steps
required to perform the Package Manager-based Nginx installation. You also learned what the default Nginx
installation directory structure looks like and identified some of the configuration parameters that are
available in an nginx.conf file. You will learn about all the configuration details in depth in chapter 5.

Uninstall Nginx

Before you continue with the next section of installing Nginx from source, you would want to remove Nginx
that you just installed using Package Manager. The steps to uninstall Nginx are given in this section.

On Cent0S

yum remove nginx nginx-common

On Ubuntu

sudo apt-get purge nginx nginx-common

22

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1656-9_10
http://dx.doi.org/10.1007/978-1-4842-1656-9_5
http://www.it-ebooks.info/

CHAPTER 2 " INSTALLING NGINX

The preceding command removes all the traces of Nginx installation. On CentOS, though, the log and
cache directories are not deleted, which are located at /var/log/nginx and /var/cache/nginx respectively.
You will have to manually remove them.

Note Uninstalling Nginx using the commands just described does not remove the yum repository nginx.
repo and source.lists entry for Nginx. You will have to remove it manually if you do not want Package Manager-
based installation.

Downloading Nginx from Source

Installing Nginx is easy as you have seen. However, there are multiple scenarios where you may need extra
functionality or drop an existing one. The way Nginx is architected, you cannot make configuration changes
and pull in or plug out the modules (as you typically do in Apache or IIS). In these cases, you will need to
rebuild Nginx from source.

Another reason why you may want to build from source is when you would like to have a fresh
installation of Nginx with all the customization built in. This way, you won’t have to configure Nginx on each
of your servers separately.

To configure Nginx with third-party modules, this also requires you to build from source. Sometimes,
you may hit a bug and would like to patch your Nginx source code with customization that serves your
particular requirement. Overall, it is extremely important that you understand why you need to learn
building Nginx from source.

Downloading Nginx

You can download the source code of Nginx by visiting the website www.nginx.org/en/download.html. The
stable version available as of this writing is nginx 1.8.0. The package is in GNU zip format (i.e., tar.gz). You
can download the package directly on the server using the wget command as shown:

wget http://nginx.org/download/nginx-1.8.0.tar.gz

Extracting the Nginx Archive

After having downloaded the package you will need to extract the nginx-1.8.0.tar.gz. You can unpack

the source code directly in your home directory. When you unpack the package, it will by default create the
nginx-1.8.0 folder. This is the directory from where you will be compiling and configuring Nginx. To extract
the package, type this:

tar xzf nginx-1.8.0.tar.gz

Understanding the Nginx Source Directory

After the package is extracted you will find some directories and files in the source directory. You will now
see what is included in the source directory. Table 2-1 shows the structure of Nginx source code and here is
the output of the source directory:

1s -al
23

www.it-ebooks.info

http://www.nginx.org/en/download.html
http://www.it-ebooks.info/

CHAPTER 2 * INSTALLING NGINX

-IW-T--T--. 1 1001 1001 249124 Apr 21 19:42 CHANGES
-IW-T--1--. 1 1001 1001 379021 Apr 21 19:42 CHANGES.ru
-IW-T--T--. 1 1001 1001 1397 Apr 21 19:41 LICENSE
-IW-I--T--. 1 1001 1001 49 Apr 21 19:41 README
drwxr-xr-X. 6 1001 1001 4096 Sep 26 12:44 auto
drwxr-xr-Xx. 2 1001 1001 4096 Sep 26 12:44 conf
-YWXY-Xr-X. 1 1001 1001 2478 Apr 21 19:41 configure
drwxr-xr-x. 4 1001 1001 68 Sep 26 12:44 contrib
drwxr-xr-x. 2 1001 1001 38 Sep 26 12:44 html
drwxr-xr-x. 2 1001 1001 20 Sep 26 12:44 man
drwxr-xr-x. 8 1001 1001 71 Sep 26 12:44 src

Table 2-1. The different directories included in the Nginx source

Directories/Files What Is Included

Auto Contains different configuration options, like modules file for modules
those will be installed by default, options file that include different
configuration options, etc.

confls Contains Nginx configuration files like nginx.conf and fastcgi.conf.

configure This file contains all the configuration details and parameters that are
required to compile Nginx. The output of the configure file will create a
Makefile.

contrib Contains the geo2nginx module.

Html Contains the default index.html and 50x.html file that will be
configured on the root website location.

Src Contains the source code of nginx, html, mail, etc.

Man Contains all the manual pages for Nginx.

Installing Nginx Binaries

Now that you have Nginx downloaded and extracted, you will need compiling tools and dependent packages
before you start compiling Nginx. To begin with, you will need to prepare the server with all the compilation
tools. Compiling a package requires a GCC compiler. After compiling you will need a utility, make, that will
build all the programs from the source and then finally install the build on the server.

Note Most of these compilation tools are already available in the CentOS and Ubuntu repositories. When
you use the compilers from the repository, it ensures all the dependent packages are installed along with the
package. If you choose to go with a different version of GCC compiler, you will have to take care of lot of other
dependent packages, which is out of the scope of this book.

Build Tools for Compilation
If you choose to build Nginx according to your requirements, you will need to follow the steps in this section

based on your Linux distro.

24

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 " INSTALLING NGINX

On Cent0S

CentOS with its yum-based package management enables you to install packages individually, like yum
install nginx or use the group install option with yum to install a group of packages together.

e You can list the group of packages by using the group 1ist command option with
yum.

yum group list
Sample output of yum group list:

... output trimmed ...

Available Groups:
Compatibility Libraries
Console Internet Tools
Development Tools
Graphical Administration Tools
Legacy UNIX Compatibility
. output trimmed ...

e You will need the Development Tools package group to install all the required
compilation and build packages. You can check the list of packages that are available
in a particular package by using the group info command.

yum group info "Development Tools"
e Sample output of the group info of Development Tools:

Group: Development Tools
Group-Id: development
Description: A basic development environment.
Mandatory Packages:

+autoconf
+automake
binutils
+bison
+flex
+gcc
+gcc-cHt
gettext
+libtool
make
. output trimmed ...

e Ifyou are curious to know about the different packages that are included in the
“Development Tools” and their versions, you can use the following command:

yum group install "Development Tools" --assumeno

25

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * INSTALLING NGINX

¢ You can use the command below to install Development Tools without prompting
you for confirmation:

yum group install "Development Tools" --assumeyes

e Once you are done installing the Development Tools, it is always a good idea to run
the update command to update your system:

yum update
e You can check GCC and Make versions by using the following command:

gcc --version
gce (GCC) 4.8.3 20140911 (Red Hat 4.8.3-9)

make --version
GNU Make 3.82
Built for x86_64-redhat-linux-gnu

On Ubuntu

e To check for a list of packages that are available with Ubuntu, you will need to use
this command:

sudo apt-cache search all | more

"apt-cache search" command lists all available packages from the repositories
added in the /etc/apt/sources.list file. It is different from the "yum group list"
command we used in CentOS as "yum group list"lists all the available groups
where as "apt-cache search" shows all the packages, not the groups.

e Toinstall Development Tools in Ubuntu the command is this:
sudo apt-get install build-essential
"build essential" package contain the list of packages that are essential for

building packages on Ubuntu servers. When you install "build-essential" package
it will check for all the dependent packages and will install them for you.

e You must also update the system after the packages are installed to ensure all
components are up to date:

sudo apt-get update
sudo apt-get upgrade

e You can verify the GCC and Make version:

gcc -version
gcc (Ubuntu 4.8.4-2ubuntul~14.04) 4.8.4

make -version
GNU Make 3.81

26

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 " INSTALLING NGINX

Install Dependent Packages

With the development components installed and available on the system, you can now start installing the
dependent packages that will enable features in the Nginx web server.

PCRE Library

PCRE is an abbreviation of Perl Compatible Regular Expression. PCRE is used to implement regular expression
pattern matching. You will need PCRE to enable using regular expressions when configuring different Nginx
directives and the URL Rewrite or HTTP Rewrite module. CentOS and Ubuntu already have a PCRE-compiled
version installed on the server. If your server is missing the compiled package, you will need to install both the
compiled and development libraries. The command to install is given in the following sections.

On CentOS:

yum install pcre
Package pcre-8.32-14.el7.x86_64 already installed and latest version

Install the development libraries for PCRE:
yum install pcre-devel
Installed:

pcre-devel.x86 64 0:8.32-14.el7
On Ubuntu:

sudo apt-get install libpcre3
libpcre3 is already the newest version.

Install the development libraries for PCRE

sudo apt-get install libpcre3-dev

OpenSSL

OpenSSL is used to establish a secure channel between the web server and the client over SSL or TLS. You will
need OpenSSL libraries for Nginx SSL modules. OpenSSL is installed by default on most of the new build Linux
servers. In case your server is missing the package, you can refer to the command below to install OpenSSL.
You can check the version of OpenSSL using the version command. To get detailed information about an
OpenSSL configuration and certificate directory you can use -a command with openssl version command:

On CentOS

yum install openssl
openssl version -a
OpenSSL 1.0.1e-fips 11 Feb 2013

27

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * INSTALLING NGINX

built on: Mon Jun 29 12:45:07 UTC 2015
platform: linux-x86_ 64

... output trimmed. ...

OPENSSLDIR: "/etc/pki/tls"
engines: rdrand dynamic

Install OpenSSL development libraries:

yum install openssl-devel
Installed:

openssl-devel.x86 64 1:1.0.1le-42.el7.9
On Ubuntu
sudo apt-get install openssl
openssl version -a
OpenSSL 1.0.1f 6 Jan 2014
built on: Thu Jun 11 15:28:12 UTC 2015
platform: debian-amd64

. output trimmed ...
OPENSSLDIR: "/usr/lib/ssl"

Install development libraries:

sudo apt-get install libssl-dev

zlib Library

The zlib library is used for compression. Compression is implemented on the web servers to improve data
transfer speed and lower bandwidth utilization. Nginx uses zlib libraries in gzip module for compression.

zlib-devel is one of the dependencies of OpenSSL-devel. So, you will have it installed already. To install
zlib-devel individually you can use the following command:

On CentOS

yum install zlib
Package z1ib-1.2.7-13.el7.x86_64 already installed and latest version

Development libraries for zlib:

yum install zlib-devel
Package zlib-devel-1.2.7-13.e17.x86_64 already installed and latest version

28

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 " INSTALLING NGINX

On Ubuntu

You can install both the compiled and development libraries using the command below. You can assign
multiple packages together to install:

sudo apt-get install zlibig zlibig-dev

Compiling Nginx

Great! You have the server prepared with all the compilation tools. The dependent development packages
are installed and configured, too. Next you will be using these to compile Nginx.

Understanding the ./configure Script

The source directory has a configure file that is used to scan for all the dependent packages on the server
for Nginx. The configure script for Nginx checks for machine architecture, defines the Nginx root directory
(/usr/local/nginx by default), threads, modules, and various different configuration and temporary paths.
It will then create a Makefile that contains various steps that need to be taken. To have a closer look at what
are different configuration parameters available with the configure script for Nginx you will need to use --
help option. If you have been following the instructions in this book, ensure that you are in the nginx-1.8.0
directory before you run this command. You can use pwd command to know where you are. Below is a
sample output of the configure --help:

./configure --help

--help print this message
--prefix=PATH set installation prefix
--sbin-path=PATH set nginx binary pathname
--conf-path=PATH set nginx.conf pathname
--error-log-path=PATH set error log pathname
--pid-path=PATH set nginx.pid pathname
--lock-path=PATH set nginx.lock pathname
--user=USER set non-privileged user for
worker processes
- -group=GROUP set non-privileged group for

worker processes
... output trimmed ...

Compile-Time Options
In this section you will see the different compilation options available with . /configure script and

their uses. This section offers a brief description of various options; the more detailed and compressive
explanation with examples can be found in subsequent chapters.

29

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * INSTALLING NGINX

Nginx Users and Groups

Using these parameters, you will ensure Nginx worker process executes under a particular user. It is necessary
to create a non-privileged user with a strong password. This configuration parameter can be changed by
editing the nginx.conf file. Table 2-2 shows you more information about the user and group parameters.

Table 2-2. Illustrates the Nginx user and group parameter of nginx.conf

Command Parameter Description

--user=USER Used to specify non-privileged user for Nginx worker processes.
Default is empty and Package Manager-based installation will create
a user named nginx or www.

--group=GROUP Used to specify non-privileged group for Nginx worker processes.
Default is empty and Package Manager-based installation will create
a group named nginx or www.

Syntax example:

./configure --user=nginx --group=nginx

Nginx Configuration Paths Options

These configure command option contains all the various Nginx configuration paths details. You can always
change any of these paths by editing the nginx.conf file. Various parameters are shown in Table 2-3.

Table 2-3. Illustrates the Nginx configuration paths

Command Parameter ~ Description

--prefix=PATH Nginx server path, all files except configuration and libraries.
Default path is /usr/local/nginx and Package Manager-based installation uses
the /etc/nginx directory.

--sbin-path=PATH Nginx executable path, this path hosts the nginx executable file.
Default path is /usr/local/nginx/sbin/nginx and Package Manager-based
installation uses the /usr/sbin/nginx directory.

--conf-path=PATH Nginx configurations path, this path will host the nginx.conf, mime.type and
various other configuration files.
By default, the file is located at /usr/local/nginx/conf/ and the Package
Manager installation hosts the file at /etc/nginx/.

--pid-path=PATH Nginx process nginx.pid file, this file will store the process ID of the Nginx
process.
By default, the file is located at /usr/local/nginx/logs/ and the Package
Manager uses the path /var/run/.

--lock-path=PATH Nginx lock file nginx.lock file, this file contains the lock information of the
resources already in use by a particular process.
By default, the file is located at /usr/local/nginx/logs and the Package
Manager uses the path /var/run/.

30

www.it-ebooks.info

http://www.it-ebooks.info/

Syntax example:

./configure --prefix=/etc/nginx

Nginx Log Path Options

CHAPTER 2 " INSTALLING NGINX

These parameters are used to configure log files locations for error files, HTTP access file, temporary paths
for FastCGI, and other applications. Table 2-4 shows you the parameters that can be tweaked to change the

path for various log files.

Table 2-4. Illustrates the log file locations for Nginx log files and applications

Command Parameter

Description

--error-log-path=PATH

--http-log-path=PATH

--http-client-body-temp-path=PATH

--http-fastcgi-temp-path=PATH
--http-uwsgi-temp-path=PATH
--http-scgi-temp-path=PATH

Nginx server error log path, this file will contain the filename
that will contain errors, warnings, and diagnostic error output.

Nginx server access log path, this file will contain the HTTP
request log details of Nginx hosted web site.

By default, the HTTP access and error log file directory is /

usr/local/nginx/logs/ and the Package Manager installs
log files at /var/log/nginx/.

Temporary file location for HTTP requests. It holds the client
request bodies.

Temporary file location for HTTP FastCGI, uWSGI, SCGI
applications. This location stores temporary files with data
received from FastCGI, uWSGI, and SCGI servers.

By default, the temporary path folders are created under
the /usr/local/nginx/logs/ and the Package Manager
configures /var/cache/nginx/ directory.

Syntax example:

./configure --error-log-path=/var/log/nginx/error.log --http-log-path=/var/log/nginx/

access.log

Enabling Nginx Modules

Table 2-5 shows a list of all the http modules that can be enabled when installing Nginx. These modules

are not enabled by default when configuring Nginx from source. These http modules can be enabled using
--with-http<module-name> options. It is highly recommended to install these modules during a compile-
time option. You should enable the module that you would be using and as per the role of your Nginx server.
If you need to enable a particular module after Nginx is configured the only option left is to recompile
Nginx. Though Nginx update and upgrade has zero impact on your website, it is recommended to take extra

precautions when recompiling from source.

31

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * INSTALLING NGINX

Table 2-5. Illustrates different modules that can be enabled for Nginx

Command Parameter

Description

--with-http_ssl module
--with-http_realip module
--with-http_addition_module
--with-http_sub_module

--with-http_dav_module

--with-http_flv_module
--with-http_mp4_module
--with-http_gunzip_module
--with-http_gzip_static_module
--with-http_random_index_module
--with-http_secure_link_module

--with-http_stub_status_module
--with-http_auth_request_module

--with-http_spdy module
--with-http_xslt_module
--with-http_image filter_module
--with-http_geoip module

--with-http_degradation_module

This module provides support for HTTPS websites; this module
requires OpenSSL to be enabled.

This module is used to get the real IP address of the client that is
specified in the HTTP header.

This module is a filter module that is used to add text before and
after a response.

This module is a substitution filter, and it is used to replace one
specified string by another.

This module is used to enable WebDAV feature for file
management using PUT, DELETE, MKCOL, COPY, and MOVE
methods.

This module enables pseudo-streaming functionality for flash
video file.

This module enables pseudo-streaming functionality for .mp4,
.m4v, or .m4a files.

This module is used to decompress content for clients that do not
a support gzip encoding method.

This module allows sending precompressed files with the .gz
filename extension.

This module picks a random file in a directory to serve as an
index file.

This module is used to authenticate the requested link using the
hash to protect resource from unauthorized access.

This module provides access to basic status information.

This module implements client authorization based on response
code.

This module provides support for Googles SPDY protocol. This is
now a deprecated and is replaced by the newer HTTP/2 module.

This is a filter module that transforms XML responses using XSLT
stylesheets.

This is a filter module that is used to process JPEG, GIF and PNG
images.

This module is used for geo-targeting, it looks for client IP and
compares it with the precompiled MaxMind database.

This module is used to serve a particular error message when the
server faces a low memory issue.

Syntax example:

./configure --with-http _ssl module

stub_status_module

32

--with-openss1=${BUILD DIR}/openssl-1.0.1e --with-http_

www.it-ebooks.info

http://www.it-ebooks.info/

Disabling Nginx Modules

CHAPTER 2

Table 2-6 shows a list of some of the common modules that are enabled by default. You may choose to
disable them when you have a server with a specific role. For example: if you want your server to be a

dedicated web server, you don’t want a proxy or mail module on your server. These http modules that can be
disabled using the - -without-http<module-name> options.

Table 2-6. Illustrates different modules that can be disabled for Nginx

Command Parameter

Description

--without-http charset module
--without-http_gzip module
--without-http ssi module
--without-http_userid module
--without-http access module

--without-http_auth_basic_module

--without-http_autoindex_module

--without-http_geo_module

--without-http_map_module
--without-http_split_clients_module

--without-http_referer module

--without-http rewrite module

--without-http_proxy module

--without-http fastcgi module
--without-http_uwsgi module
--without-http scgi module
--without-http_memcached_module

--without-http_limit_conn_module
--without-http_limit_req_module
--without-http_empty gif module
--without-http_browser module

--without-http_upstream_hash_module

--without-http upstream ip hash module

Disables re-encoding Charset to another.
Disables gzip compression module.

Disable Server Side Include module.

Disables cookie-based client identification.
Disables client IP address based access filtering.

Disables HTTP Basic Authentication module that is used
to validate user access.

Disables directory listing of the website.

Disables geo-module allowing you to define variables
with values depending on the client IP address.

Disables map module that is used to define map blocks.
Disables split testing module.

Disables blocking access to sites for requests with invalid
“Referer” header.

Disables HTTP rewrite module.

Disables HTTP proxy module used to redirect to another
server.

Disables FastCGI module.
Disables uWSGI module.
Disables SCGI module.

Disables memcached module that is used to obtain
responses from memcached server.

Disables connection limit set as per the defined key rule.
Disables request processing limit set as per the defined key.
Disables transferring single pixel transparent gif.

Disables identifying User Agent from request header field.

Disables HTTP load balancing method for server group
where the client-server mapping is based on the hashed
key value.

Disables HTTP load balancing where requests are
distributed across group of servers based on client IP
address.

INSTALLING NGINX

(continued)

33

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * INSTALLING NGINX

Table 2-6. (continued)

Command Parameter Description
--without-http_upstream least_conn_ Disables HTTP load balancing where a request is passed
module to the server with the least number of active connections.

--without-http_upstream_keepalive module Disables cache for connections to upstream servers.

--without-mail_pop3_module Disables POP3 module for mail server proxy.

--without-mail imap_module Disables IMAP module for mail server proxy.

--without-mail_smtp_module Disabled SMTP module for mail server proxy.
Syntax example:

./configure --without-http proxy module --without-mail pop3_module

Optimization Modules

This section discusses some of the optimization options that can be used during compilation such as using
a specific C compiler or compiling Nginx for a specific CPU architecture. There, parameters are not required
for default installation, but you can use them for optimizing your Nginx server build or to build Nginx for a
particular CPU architecture. Table 2-7 lists the different optimization parameters available for Nginx.

Table 2-7. Illustrates different optimization parameters for Nginx

Command Parameter Description

--with-cc=PATH Used to specify alternate location for C compiler.

--with-cpp=PATH Used to specify alternate location for C preprocessor.
--with-cc-opt=0PTIONS Used to add parameters that will be added to the CFLAGS variable.
--with-1d-opt=0PTIONS Used to define additional parameters that will be used during linking.
--with-cpu-opt=CPU Used to specify different processor architecture.

Prerequisite Modules

This section covers some of the list of prerequisite modules that can be enabled or disabled on an as-needed
basis. Table 2-8 lists the options available for the PCRE module.

34

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 " INSTALLING NGINX

PCRE Options

Table 2-8. Illustrates different PCRE module options

Command Parameter Description

--without-pcre Disables PCRE libraries that are used for regular expression-based Nginx
directive configuration and rewrite modules.

--with-pcre Force PCRE libraries usage.

--with-pcre=DIR Specifies path of the PCRE libraries, used when using specific version of
PCRE libraries.

--with-pcre-opt=OPTIONS Used to specify additional build options for PCRE.
--with-pcre-jit Used to build PCRE with JIT compilation support.

MD5 Options

Table 2-9 lists the various options available to configure the MD5 module.

Table 2-9. Illustrates different MD5 module options

Command Parameter Description

--with-md5=DIR Specifies the path to md5 library sources.
--with-md5-opt=0PTIONS Used to specify additional build options for md5.
--with-md5-asm Uses md>5 assembler sources.

SHA1 Options

Just like the MD5 module, SHA1 module can also be tweaked using various parameters as can be seen in
Table 2-10.

Table 2-10. Illustrates different SHA1 module options

Command Parameter Description

--with-sha1=DIR Specifies the path to shal library sources.
--with-sha1-opt=0PTIONS Used to specify additional build options for shal.
--with-shai-asm Uses shal assembler sources.

zlib Options

To tweak compression-related aspects of the web server, use the parameters listed in Table 2-11 to configure

the zlib module.

www.it-ebooks.info

35

http://www.it-ebooks.info/

CHAPTER 2 * INSTALLING NGINX

Table 2-11. Illustrates different zlib module options

Command Parameter Description

--with-z1ib=DIR Specifies path of the zlib libraries, used when using specific version
of zlib libraries.

--with-z1ib-opt=0PTIONS Used to specify additional build options for zlib.

--with-zlib-asm=CPU Uses zlib assembler sources that are optimized for Pentium or

Pentiumpro CPU architecture.

OpenSSL Options

Table 2-12 highlights a couple of options used for OpenSSL.

Table 2-12. Illustrates different OpenSSL module options

Command Parameter Description

--with-openss1=DIR Specifies path of the OpenSSL libraries, used when using
specific version of OpenSSL libraries.

--with-openssl-opt=0PTIONS Used to specify additional build options for OpenSSL.

Libatomic Options

Table 2-13 shows you the different parameters available for libatomic module.

Table 2-13. Illustrates different libatomic module options

Command Parameter Description

--with-1libatomic Forces libatomic libraries.

--with-1ibatomic=DIR Specifies path of the libatomic libraries, used when using specific version
of libatomic libraries.

Other Options

There are yet another set of common parameters that can be used as can be seen in Table 2-14.

36

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 " INSTALLING NGINX

Table 2-14. Illustrates other options

Command Parameter Description

--without-http Disables HTTP server.

--without-http-cache Disables HTTP cache.

--with-threads Enables thread pool support.

--with-file-aio Enables support for asynchronous disk IO operations.

--with-ipvé Enables ipv6 support.

--build=NAME Sets the build name.

--builddir=DIR Sets the build location.

--add-module=PATH Used to add third-party modules during compiling Nginx. You will specify

the path of the module in this parameter.

--with-debug Enables debug logging.

Third-Party Modules

As you saw in chapter 1, one of the many features of Nginx is its modular nature. It has a very extensible
architecture that enables support for plug-ins. The open source developer community has been very active
and has been contributing in the development and enhancement of Nginx functionality.

e You can find a list of all the third-party modules currently available at
https://www.nginx.com/resources/wiki/modules/.

e You will need to patch Nginx in case of some third-party modules

e Youwill need to configure Nginx using the . /configure command with the --add-
module command. Like the example shown below (ensure that you have downloaded
the module):

./configure --add-module=../ngx_http_healthcheck module
make
make install

Yes, it is that simple to enable any third-party module in Nginx.

Compiling and Installing Nginx

Before you start configuring Nginx, you will need to implement some mechanism to identify if the installed
version of Nginx on your server is indeed the compiled version. The first method is by using the nginx -V
command from the terminal, but that will give you the configuration settings of your Nginx server. Imagine
a scenario where you would have to compile and install Nginx on tens of servers and you need to know if

all those servers have the compiled version of Nginx serving the request. An easy way to get this done is by
having some sort of customization done in the source itself such that it can be accessed from a browser from
external machines. For example, you can edit the default index.html page, which is available in the Nginx
source folder under the path nginx-1.8.0/html.

37

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1656-9_1
https://www.nginx.com/resources/wiki/modules/
http://www.it-ebooks.info/

CHAPTER 2 * INSTALLING NGINX

After having looked at all the different configuration options, you are now armed to create your own
binary as it fits your requirement. Since you are looking for installing a web server, your Nginx configuration
would like something like the one below. You have complete freedom to add or remove any module you
wish. The command discussed next is identical for both CentOS and Ubuntu.

Tip Change the user to root using su on CentOS. In Ubuntu you will have to sudo every command.

Prerequisites
There are a few prerequisites tasks that you need to do, before you can manually configure Nginx.

e Create a group named ‘nginx’:
groupadd -r nginx
e Create a user name ‘nginx’:

useradd -r nginx -g nginx

Manual Configuration

Here are the commands that you will have to run separately in the terminal window:

./configure --prefix=/etc/nginx \
--user=nginx \
--group=nginx \
--sbin-path=/usr/sbin/nginx \
--conf-path=/etc/nginx/nginx.conf \
--pid-path=/var/run/nginx.pid \
--lock-path=/var/run/nginx.lock \
--error-log-path=/var/log/nginx/error.log \
--http-log-path=/var/log/nginx/access.log \
--with-http_gzip static_module \
--with-http_stub_status_module \
--with-http_ssl module \
--with-pcre \
--with-file-aio \
--with-http_realip module \
--without-http_scgi_module \
--without-http_uwsgi module \
--without-http_proxy module \

Below is the sample output of the above command. Here you can see that a Makefile was created in objs
directory in the source folder. You can also see that configure was able to identify the PCRE, OpenSSL, and
zlib libraries that we installed. You can also see that Nginx is showing you the exact location and log path
directory as we mentioned.

.. output trimmed ...
creating objs/Makefile

38

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 " INSTALLING NGINX

Configuration summary
+ using system PCRE library
+ using system OpenSSL library
+ md5: using OpenSSL library
+ shal: using OpenSSL library
+ using system zlib library

nginx path prefix: "/etc/nginx"

nginx binary file: "/usr/sbin/nginx"

nginx configuration prefix: "/etc/nginx"

nginx configuration file: "/etc/nginx/nginx.conf"

nginx pid file: "/var/run/nginx.pid"

nginx error log file: "/var/log/nginx/error.log"

nginx http access log file: "/var/log/nginx/access.log"

nginx http client request body temporary files: "client body temp"
nginx http fastcgi temporary files: "fastcgi temp"

Now, you will need to execute the make command, which will compile all the code of the libraries to
create a binary executable. Use the following command:

make
Once the make command is executed successfully, the command ends with the following output:

... output trimmed ...
make[1]: Leaving directory °/home/nginx-1.8.0'
make -f objs/Makefile manpage
make[1]: Entering directory °/home/nginx-1.8.0'
sed -e "s|%%PREFIX%%|/etc/nginx|" \
-e "s|%%PID_PATH%%|/var/run/nginx.pid|" \
-e "s|%%KCONF_PATH%%| /etc/nginx/nginx.conf|" \
-e "s|%%ERROR_LOG_PATH%% | /var/log/nginx/error.log|" \
< man/nginx.8 > objs/nginx.8

Now that the compilation is successful and the executable created, you can install Nginx using the
command as shown:

sudo make install
The make install command executes the install part of the Makefile. The command essentially

makes directories that do not exist and copies the configuration files and binaries to the specific folder. The
output clearly shows the steps followed.

Scripted Configuration

Alternately, you can create a configuration script that you can use across multiple servers without having
to worry about any human error while commanding input. Below is a sample script file that contains
everything that you have used earlier with individual commands. Here the assumption is that you are
creating the file under the source nginx directory that is under nginx-1.8.0.

nano scripted

39

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * INSTALLING NGINX

Add the script in the file:

export BUILD DIR=/{path of the source directory}
export NGINX DIR=/etc/nginx

export SBIN DIR=/usr/sbin

export PID_DIR=/var/run

export LOCK DIR=/var/run

export LOG DIR=/var/log/nginx

export RUN_DIR=/var/run

export CACHE_DIR=/var/cache

cd ${BUILD DIR}
./configure \
--prefix=${NGINX_DIR} \
--sbin-path=${SBIN DIR}/nginx \
--conf-path=${NGINX_DIR}/nginx.conf \
--pid-path=${PID _DIR}/nginx.pid \
--lock-path=${LOCK_DIR}/nginx.lock \
--error-log-path=${L0G DIR}/error.log \
--http-log-path=${L0G DIR}/access.log \
--http-client-body-temp-path=${CACHE DIR}/client body temp \
--http-fastcgi-temp-path=${CACHE_DIR}/fastcgi temp \
--with-http_gzip_static_module \
--with-http_stub_status_module \
--with-http_ssl module \
--with-pcre \
--with-file-aio \
--with-http_realip module \
--without-http_scgi_module \
--without-http_uwsgi module \
--without-http_proxy module \
--user=nginx \
--group=nginx \

Convert the script into an executable using the following command:
chmod u+x scripted

Now, you can configure Nginx using a single command and then complete the installation with make
and make install commands:

./scripted
make
make install

Note Nginx does not start automatically when you do source-based installation. You will have to start the
Nginx by manually running the nginx process like the case above /usr/sbin/nginx in the terminal window.

40

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 " INSTALLING NGINX

Enable Nginx Service on Reboot

Installing Nginx from source does not create the init script that will autostart the Nginx process after server
reboot. Instead of reinventing the wheel, you can use the script that’s available online. Visit https://goo.
gl/3XufgG to access the script.

e You can download the script directly on the server as /etc/init.d/nginx file:

sudo wget -0 /etc/init.d/nginx https://gist.githubusercontent.com/
sairam/5892520/raw/b8195a71e944d46271c8a49f2717f70bcdo4bf1a/etc-init.d-nginx

e Once the script is downloaded you will need to make it as an executable:
sudo chmod +x /etc/init.d/nginx

e You can now set the service to start automatically when the server reboots.

On CentOS:

chkconfig --add nginx
chkconfig --level 345 nginx on

On Ubuntu:
sudo update-rc.d nginx defaults

* You can verify if you are able to start Nginx using a basic service <process> start
command:

service nginx start

Troubleshooting Service Start

It happens that once you have followed the steps as mentioned, there is a possibility of facing an issue of not
being able to start the service. You may come across an issue like the following:

journalctl -xn

-- Logs begin at Sun 2015-09-27 20:16:54 IST, end at Sun 2015-09-27 21:00:50 IST. --

Sep 27 20:57:37 ncentos.local systemd[1]: Unit nginx.service entered failed state.

Sep 27 21:00:44 ncentos.local systemd[1]: Reloading.

Sep 27 21:00:44 ncentos.local systemd[1]: [/usr/1lib/systemd/system/dm-event.socket:10]
Unknown lvalue 'RemoveOnStop' in section 'So

Sep 27 21:00:44 ncentos.local systemd[1]: [/usr/1ib/systemd/system/lvm2-lvmetad.socket:9]
Unknown lvalue 'RemoveOnStop' in section

Sep 27 21:00:50 ncentos.local systemd[1]: Starting SYSV: Nginx is an HTTP(S) server, HTTP(S)
reverse proxy and IMAP/POP3 proxy server

-- Subject: Unit nginx.service has begun with start-up

-- Defined-By: system

-- Support: http://lists.freedesktop.org/mailman/listinfo/systemd-devel

41

www.it-ebooks.info

https://goo.gl/3XufgG
https://goo.gl/3XufgG
http://www.it-ebooks.info/

CHAPTER 2 * INSTALLING NGINX

-- Unit nginx.service has begun starting up.

Sep 27 21:00:50 ncentos.local nginx[4971]: Starting nginx: nginx: [emerg] getpwnam("nginx")
failed

Sep 27 21:00:50 ncentos.local nginx[4971]: [FAILED]

Sep 27 21:00:50 ncentos.local systemd[1]: nginx.service: control process exited, code=exited
status=1

Sep 27 21:00:50 ncentos.local systemd[1]: Failed to start SYSV: Nginx is an HTTP(S) server,
HTTP(S) reverse proxy and IMAP/POP3 pro

-- Subject: Unit nginx.service has failed

-- Defined-By: system

-- Support: http://lists.freedesktop.org/mailman/listinfo/systemd-devel

-- Unit nginx.service has failed.

-- The result is failed.
Sep 27 21:00:50 ncentos.local systemd[1]: Unit nginx.service entered failed state.

That error clearly shows that an Nginx user does not exist. You will need the Nginx user account to
execute the Nginx process as that is what our configuration step contains. You can add the user using the
command shown below to resolve the above error:

groupadd -r nginx
useradd -r nginx -g nginx

User Group

You now have a working version Nginx running on the server. The next and final step for this chapter is
to verify whether the website is working.

Verifying Web Server Installation

The simplest way to verify if Nginx is working on the server is to check it locally. We already have lynx
installed on the server, so we will use the same to verify the Nginx website.

lynx http://localhost

Figure 2-1 shows that request has been served by the compiled version of Nginx.

42

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 " INSTALLING NGINX

Welcome to nginx!

Welcome to nginx! Com
This is a Compiled version of Nginx < °©

20d version

If you see this page, the nginx web server is successfully installed and working.
Further configuration is required.

For online documentation and support please refer tofjnginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

Figure 2-1. Compiled version of Nginx seen using Lynx
You can check the Nginx process that is executing on the server using the following command:
ps aux | grep nginx

The output is as follows:

root 5034 0.0 0.1 47156 1072 ? Ss 21:05 0:00 nginx: master process /usr/
sbin/nginx -c /etc/nginx/nginx.conf

nginx 5036 0.0 0.2 47612 2088 ? S 21:05 0:00 nginx: worker process

root 5075 0.0 0.0 112612 740 pts/0 S+ 21:26 0:00 grep --color=auto nginx

Firewall Configuration

You will need to open port 80 on the server such that you can access the website from outside of the
local server. You will need to configure the firewall for the same, as CentOS has port 80 blocked by default on
the server.

On Cent0S

The command to add port 80 in the firewall rules, you will need to execute the command below:
firewall-cmd --permanent --add-port=80/tcp
Success

firewall-cmd --reload
success

On Ubuntu

To open port 80 on Ubuntu, the command is iptables.

sudo iptables -A INPUT -p tcp --dport 80 -j ACCEPT

43

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * INSTALLING NGINX

You can verify the port by checking the firewall rules, which is done by using this command:
sudo iptables -L

Now the website is accessible from outside of the CentOS server.

Nginx in Amazon Elastic Compute Cloud (EC2)

Nginx is equally easy to set up in the cloud. In this section you will learn about how easily you can get up
and running with your own web server using Amazon Web Services (AWS) EC2 instance. The first step in the
sign-up in this direction is to sign up for an account at http://aws.amazon.com/free. The sign-up is free of
cost, but be mindful of the fact that you get only limited hours for free. Hence, you need to read the terms
and conditions carefully. At the time of writing, you can host one 2.micro server free for one year using your
credit card.

Creating an Amazon EC2 instance with Nginx installed is fairly simple and straightforward:

e Signin using your user name at http://aws.amazon.com
e Inthe Compute section, click EC2.

e (lick the Launch Instance button and you will be redirected to a UI with a wizard.
You can use any Linux version. Choosing a 64-bit server is generally a better idea
since it can address a wider memory address space. Figure 2-2 shows how the launch
wizard looks like at the time of writing this book. For the purpose of this book, the
first instance (Amazon Linux AMI) will be used.

1. Choose AMI 2. Choose Instance Type 3. Configure Instance 4. Add Storage 5. Tag Instance 6. Configure Security Group

Step 1: Choose an Amazon Machine Image (AMI) e

An AMI is a template that contains the software configuration (operating system, application server, and applications) required to launch
your instance. You can select an AMI provided by AWS, our user community. or the AWS Marketplace; or you can select one of your
own AMIs.

Quick Start 1to 22 of 22 AMIs

My AMis i Amazon Linux AMI 2015.09.2 (HVM), SSD Volume m
: T Type - ami-63b25203 —

i e o The Amazon Linux AMI is an EBS-backed, AWS-supported

- A image. The default image includes AWS command line tools,
Al et Python, Ruby, Perl, and Java. The repositories include

Docker, PHP, MySQL, PostgreSQL, and other packages.
“)Free tieronly (i’

Root device type: ebs Virtualization type: hvm

) Red Hat Enterprise Linux 7.2 (HVM), SSD Volume m
Red Hat Type - ami-775e4f16 —
Red Hat Enterprise Linux version 7.2 (HVM), EBS General

Purpose (SSD) Volume Type

Root device type: ebs Virtualization type: hvm

Q SUSE Linux Enterprise Server 12 SP1 (HVM), SSD
Volume Type - ami-d2627db3

SUSE Li
o 64-bit

Figure 2-2. Amazon AWS EC2 Wizard - Step 1
44

www.it-ebooks.info

http://aws.amazon.com/free
http://aws.amazon.com/
http://www.it-ebooks.info/

CHAPTER 2 " INSTALLING NGINX

e Instep 2 of the wizard (see Figure 2-3), select t2.micro and click the Next: Configure
Instance Details button.

1. Choose AMI 2. Choose Instance Type 3. Configure Instance 4. Add Storage 5. Tag Instance 6. Configure Security Group

Step 2: Choose an Instance Type

Amazon EC2 provides a wide selection of instance types optimized to fit different use cases. Instances are virtual servers that can run
applications. They have varying combinations of CPU, memory, storage, and networking capacity, and give you the flexibility to choose
the appropriate mix of resources for your applications. Learn more about instance types and how they can meet your computing
needs.

Filter by: All instance types v Current generation ¥ Show/Hide Columns
Currently selected: t2.micro (Variable ECUs, 1 vCPUs, 2.5 GHz, Intel Xeon Family, 1 GiB memory, EBS only)

Memory Instance Storage EBS-Optimized

Famiy o) oL (ciB) (cg) (0 Available (i)
General purpose t2.nano 1 0.5 EBS only -
@ General purpose 1 1 EBS only :
General purpose 12.small 1 2 EBS only a
General purpose 2.medium 2 4 EBS only i
General purpose t2.large 2 8 EBS only -
General purpose ma.large 2 8 EBS only Yes

Cancel Previous Review and Launch MNext: Configure Instance Details

Figure 2-3. Amazon AWS EC2 Wizard - Step 2

¢ You can leave the defaults in steps 3 through 5 of the wizard. There are plenty
of options to choose from, a discussion of which is beyond the scope of this
book. However, they are quite simple to understand, and I urge you to read the
documentation while you follow along with the steps.

e Step 6is very crucial, since this is where you make your web server public. Click Add
Rule and make the changes so that it looks similar to Figure 2-4. Basically, you will be
adding one more rule to the firewall and allowing this server to be accessible on port
80 from anywhere.

45

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = INSTALLING NGINX

1. Choose AMI 2. Choose Instance Type 3. Configure Instance 4, Add Storage 5. Tag Instance 6. Configure Security Group

Step 6: Configure Security Group

A security group is a set of firewall rules that control the traffic for your instance. On this page, you can add rules to allow specific traffic
to reach your instance. For example, if you want to set up a web server and allow Internet traffic to reach your instance, add rules that
allow unrestricted access to the HTTP and HTTPS ports. You can create a new security group or select from an existing one below.
Learn more about Amazon EC2 security groups.

Assign a security group: @Create a new security group

“Select an existing security group

Security group name:
launch-wizard-1

Description:
launch-wizard-1 created 2016-02-26T17:15:53.747+05:30

Type (i) Protocol (i) Port Range (i) Source (i)

SSH B TCP 22 Anywhere B 0.0.0.0/0 9
HTTP B TCP 80 Anywhere [0.0.0.0/0 (%]
Add Rule

A Warning

Rules with source of 0.0.0.0/0 allow all IP addresses to access your instance. We recommend setting security group
rules to allow access from known IP addresses only.

Cancel Previous Review and Launch

Figure 2-4. Amazon AWS EC2 Wizard - Step 6

e Once the server is launched, you need to click EC2 Dashboard » Running
Instances » Your Server Name.

e You can now click on the connect button and the pop-up will tell you how to connect
to your server using SSH. For the demo server we set up, it asked to use the following
command:
ssh -i "mykey.pem" ec2-user@ec2-xx-XxX-Xx-XX.us-west-2.compute.amazonaws.com
e Oncelogged on the server, the steps were exactly how it has been explained earlier
in this chapter. It took just two commands to get Nginx up and running. Point your

browser to the IP address and you will find your web server running smoothly.

sudo yum install nginx
sudu service nginx start

46

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 " INSTALLING NGINX

Summary

In this chapter, you learned about various ways of installing Nginx in different Linux distros. You should
now be comfortable with making a decision regarding installation using pre-built packages or building your
own set of binaries. Both of these methods are useful in different scenarios, and it is important that you are
comfortable with either option. While picking an option you should be mindful about the maintenance
aspects of Nginx as well. You have also learned about some troubleshooting basics and automating tasks
such as restarting Nginx whenever the server is rebooted. In the upcoming chapters, you will learn that
Nginx can be reconfigured just as easily.

47

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

Nginx Core Directives

By now, your Nginx server should be up and running. It is time to go ahead and take control over it! You can
consider the directives as the nuts and bolts of your web server, using which ones you tweak by the way your
web server performs. Nginx has a lot of directives and it is important that you know the basic semantics, so
that you can fine-tune your server according to your requirements. You will learn about directives in detail in
this chapter.

Location of Configuration Files

The Nginx configuration file is named nginx.conf. Depending on how you have installed Nginx, you can
find the configuration in /etc/nginx, /usr/local/etc/nginx, or /usr/local/nginx/conf.You canrun
the following command to get the configuration path currently in use by Nginx:

ps -ax | grep nginx

For more concise output, use the following:

ps -ax -o command | grep nginx

The output will be something like this:
nginx: master process /usr/sbin/nginx -c /etc/nginx/nginx.conf
nginx: worker process

The -c switch above tells you the active configuration that is loaded in the process /usr/sbin/nginx

What Are Directives?

“Directive” is defined as an instruction or to direct. Directives define how Nginx runs on your server. As you
already know from chapter 1, Nginx is modular. You can compile Nginx with the modules that you need in
your environment and configure the modules using directives. Directives are of two types: simple directives
and block directives.

e Simple directive - A simple directive can be as straightforward as a set of names and
parameters separated by spaces, and ending with a semicolon. For example, the
directive for worker processes looks like this:

worker processes 1;

© Rahul Soni 2016 49
R. Soni, Nginx, DOI 10.1007/978-1-4842-1656-9_3

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1656-9_1
http://www.it-ebooks.info/

CHAPTER 3 " NGINX CORE DIRECTIVES

This tells Nginx to spawn only one worker process. You will learn in the upcoming
chapters about why you should make this value equal to the number of processors
on your server. For now, the core idea is to understand that this directive is giving
direction to the master process of Nginx about how to spawn worker processes.

e Block directive - As the name suggests, it looks like a block of text enclosed by curly
braces { } and contains a set of simple directives.

A typical Nginx configuration file is comprised of blocks as you can see in Figure 3-1. You can refer to
the blocks as contexts. The outermost context is called the main context and contains simple directives along
with other contexts like Context A and Context B. The contexts, in turn, contain a set of related directives.

Main Context

Simple Directive 1
Simple Directive 2

Block Directive a1 Block Directive b1
Block Directive a2 Block Directive b2
Context A Context B

Figure 3-1. Structure of Nginx Configuration file

Tip You can add comments in your configuration file by using a pound (#) sign.

Context Types

Every module in Nginx has a very discrete purpose and is controlled by the directives. The documentation
clearly informs you about the context in which the directives can be used. Understanding this convention is
helpful when configuring a specific module according to your needs.

There are quite a few different contexts available in Nginx: for example, main, events, HTTP, server,
location, upstream, if, stream, mail, etc. Out of these, HTTP, events, server, and location are most commonly
used. The contexts could be nested as well. This is what the basic overall structure of the configuration looks
like:

main block is not explicitly called as main, it is implied
main {
simple_directives parameters;
events{
event directives parameters;

}
http{

50

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * NGINX CORE DIRECTIVES

http_directives parameters;

server{
server_directives parameters;

location{
location directives parameters;

Let's configure the server so that you can see the directives and contexts in action.

Understanding the Default Configuration

The default configuration of Nginx looks similar to the following:

user nginx;
worker_processes 1;
error_log /var/log/nginx/error.log warn;

pid /var/run/nginx.pid;
events {
worker _connections 1024;
}
http {
include /etc/nginx/mime.types;
default_type application/octet-stream;
log format main '$remote addr - $remote_user [$time_local] "$request” '
"$status $body bytes sent "$http referer"
""$http_user_agent" "$http_x_forwarded for"';
access_log /var/log/nginx/access.log main;
sendfile on;
#tcp_nopush on;
keepalive timeout 65;
#gzip on;
include /etc/nginx/conf.d/*.conf;
}

Simple Directives

The whole body could be referred to as the main context. There are a few simple directives defined in the
main block:

e user directive has a default value of nobody. You can add user directive to define the
account under which Nginx worker process will be executed on the server. The syntax
for user directive is like user <user_name> <group_name>. The user should exist on the
server before Nginx starts or else there will be an error while starting Nginx services.

51

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 " NGINX CORE DIRECTIVES

Tip Nginx should be executed under a least-privileged account.

e worker process directive has a default value of 1 and it implies the number of
worker processes that will be spawned by Nginx. Setting the value to auto is also
permitted and in that case Nginx tries to autodetect the number of cores.

e error_log directive can be applied in multiple contexts like main, http, mail,
stream, server, and location.Here, you see it applied in the main context. The
first parameter /var/log/nginx/error.log tells you the the name of the file where
the log file will be created, whereas the second parameter warn informs you that
anything above the warning level will be logged.

The logging levels are defined in increasing order as you can see from the list below
and it is important to note that if you set the level to error, then the logs of type
warning, notice, and info will be ignored. Keeping it to info is not recommended in
production since the logs may become massive if your website is hit very frequently.
The logs should be periodically analyzed to verify if it contains anything alarming.

e info - Information
e notice - Notice

e warn - Warnings
o error - Error

e crit- Critical

e alert - High Alert

e emerg - Emergency

Tip You should always set the log level to either warn or error.

e pid directive has a parameter that defines the file name that stores the process ID
of the master process /var/run/nginx.pid. You may be thinking why does nginx
log the PID to a file? Glad you asked! Imagine a scenario where you are supposed
to check the uptime of a process. Running a command like ps -ax | grep nginx
will help you get the current status and process id (PID), but you cannot really tell
how long the process has been alive. To get this duration you may use a couple of
commands like the following:

ps -ax | grep nginx
30212 ? Ss 0:00 nginx: master process /usr/sbin/nginx -c /etc/nginx/nginx.conf
30213 ? S 0:00 nginx: worker process

° The first column contains the PID. In this case, 30212 is the PID of the master
process.

ps -p 30212 -o etime=
15:00 <<< Process uptime

52

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * NGINX CORE DIRECTIVES

e You can now write a script or command to get the result like the following:

ps -p “cat /var/run/nginx.pid” -o etime=
15:40 <<< Process uptime

e This one liner is enough to get you the uptime and as you can guess, it can come
in handy when you have to automate the monitoring of processes.

Events Context

After the simple directives in the default configuration, you will find a context called events. The events
context can be declared only in the main context and there can be only a single events context defined
within the Nginx configuration. With the use of directives in the event context, you can fine-tune the way
Nginx behaves. There are just six different event directives.

e worker connections directive allows a maximum of 1024 concurrent worker
connections. The defaults in Nginx usually suffice. The number of concurrent
connections you may get on a web server can be calculated roughly using the
following (N = average number of connections per request):

(worker_processes x worker_connections x N) / Average Request Time

e usedirective does not need to be applied explicitly since Nginx tries to use the most
efficient method automatically. Basically, the use directive allows Nginx to support a
variety of connection methods depending on the platform.

e use select is the worst performing and is used when more efficient methods
are not available on a platform. If you run Nginx in a Windows environment,
this is what will get used. This reason alone should be a big deterrent for you to
use Nginx on a Windows platform.

e The other modes are poll (standard method), kqueue (efficient method on
FreeBSD, OpenBSD, NetBSD and Max OSX), epoll (Linux), /dev/poll (Solaris,
IRIX) and eventport (efficient method on Solaris 10).

e multi_accept is set to off by default. It means that a worker process will accept
only one new connection at a time by default. It is a generally a good idea
to enable multi_accept so that Nginx can accept as many connections
as possible.

e accept_mutexis set to on by default, and it is generally left untouched. Basically, it
means that the worker processes will get the requests one by one. This implies that
the worker processes will not jump up for every request and go back to sleep if the
number of requests is low.

e accept mutex_delay comes into effect only when accept_mutex is enabled. As
the name implies it is the maximum time to wait for the existing worker process
to accept the new connection before initiating a new process to execute the
request.

53

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 " NGINX CORE DIRECTIVES

HTTP Context

The HTTP context (or block) can be considered the heart of the configuration system for an Nginx web
server. In the default configuration you will notice the following directives:

e include /etc/nginx/mine.types - The include directive keeps the core
configuration file clean. You can use this directive to keep related configurations in
a separate file. Nginx will ensure that the file is loaded in-place when loading the
configuration. At the same time, it will keep the main configuration readable and
manageable.

If you view /etc/nginx/mime.types you will find a block of text that is nothing
but another directive called types. It maps file name extension to MIME types of
responses. The extensions are case insensitive and there can be many extensions
mapped to one type. The following snippet shows the structure of this file. Notice
how html htm shtml extensions are all mapped to text/html MIME type.

types {
text/html html htm shtml;
text/css CSS;
text/xml xml;
image/gif gif;
image/jpeg jpeg jpg;
application/javascript js;
audio/midi mid midi kar;
audio/mpeg mp3;
video/x-flv flv;
video/x-m4v m4v;

}

Tip MIME types describe the media type of content and guides the browser so that it renders the content
appropriately in the browser instead of downloading the file. Assume you want to serve a file called myfile.
data. If you simply create a file called myfile.data in your root folder (/etc/nginx/html), you might think
that the browser will be able to render it when you type http://localhost/myfile.data. However, you will
notice that the browser simply downloads the file since it doesn't know what kind of data it contains! MIME type
completes this story. If you know that your file is a text file, you can simply modify the MIME type for text/plain
so that it reads as the following:

text/plain txt data;

By doing this, Nginx guides the browser that the extension of this file is data, but the content is plain text
and could be displayed inside the browser. The browser obliges and renders the content right away, instead of
downloading it!

54

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * NGINX CORE DIRECTIVES

MIME types can be helpful in other scenarios where you create a custom content with a new MIME type
altogether. You can then create a client that understands the specific extension. Example: application/pdf is a
MIME type that helps the clients like Adobe or Foxit Reader to read the PDF content directly from the web server.

e default_type directive has a value of application/octet-stream. It specifies the
default MIME type if Nginx fails to find a specific one in the /etc/nginx/mine.types.
It is this MIME type that guides the browser that it has to download the file directly.

e log format directive configures the ngx_http log module. It writes the log in a
specified format. The first parameter is the name of the format, in this case main.
The second parameter is a series of variables (you will learn about it in detail soon)
that will contain a different value for every request. Once you have named a log_
format, you will need to use it.
log format main '$remote addr - $remote user [$time local] "$request"” '
"$status $body bytes sent "$http_referer" '
""$http_user_agent" "$http_x_forwarded_for"';

e access_log directive requires a path (/var/log/nginx/access.log) and name
of a format (main). There is much more to access_log that you will learn in the
upcoming chapters, but for now you can simply understand that every request you
make from the server can be logged to a file so that you can analyze it later. A good
web administrator takes very good care of these logs, and analyzes it periodically
to find out issues that sometimes go unnoticed. These logs also prove to be helpful
during troubleshooting scenarios.

e The default value for sendfile directive is off if the directive is not present. Nginx
default configuration hence, turns it on. It is generally a good idea to enable it,
since it ensures that the function is called with SF_NODISKIO. In simple words, it
means that the call will not block on disk I/0. The data is loaded in chunks and sent
appropriately to the client. As you can guess, it has a huge advantage and enables
Nginx to scale very well, especially while serving large files.

e tcp_nopush directive is commented by default and the default value is off. This
comes into effect only when you are using sendfile and basically directs the Nginx
server to send the packets in full. Typically, you can leave it disabled.

e keepalive_timeout directive has a value of 65. Normally, when a connection is
made to the server, you need not disconnect the connection straightaway. That is
because a web page normally comprises of a lot of assets. It will not be very effective
to create a new connection for every asset that is sent to the client.

Hence, the first few connections are made to the server and then, they are kept
alive. The idea is to deliver the rest of the assets on the same set of connections
one after the other. Now, let's say there were 125 assets (css, js, html, images, etc.)
in a page. When the client accesses the URL, it might create 2 connections or
more (modern browsers open a lot more connections!). Assuming 5 connections
were made, those assets will be delivered one by one to the client in parallel over
5 different connections! What do you think will happen to the open connections
if the page is delivered in just 3 seconds? Well, they will continue to live and,

as you can guess, will waste resources on the server. This is the reason why

55

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 " NGINX CORE DIRECTIVES

this directive exists. It allows the server to close the connection in 65 seconds
automatically if the client doesn't return and the connection is idle. On a busy
server, you may choose to reduce this timeout.

e gzip directive compresses the output so that lesser bandwidth is consumed per
request. By default it is turned off, and it is recommended to turn it on.

e Thelastline in the configuration is yet another include and it is an interesting one!
You can see that it accepts wild cards (include /etc/nginx/conf.d/*.conf;)and it
implies that it will load all the configuration file sat once from the folder /etc/nginx/
conf.d. In the next section you will see what is included in the conf.d folder.

The conf.d Folder

The /etc/nginx/conf.d folder contains two files, default.conf and example_ssl.conf. The example_ssl.
conf file is fully commented out and not used until you have a requirement to host SSL. You will learn about
SSL in chapter 13. In this section you will learn about the directives in default.cont.

The default configuration file looks like the following:

server {

56

listen 80;
server_name localhost;

#charset koi8-r;
#access_log /var/log/nginx/log/host.access.log main;

location / {
root /etc/nginx/html;
index index.html index.htm;

}
#error_page 404 /404.html;

redirect server error pages to the static page /50x.html
#
error_page 500 502 503 504 /50x.html;
location = /50x.html {
root /usr/share/nginx/html;
}

proxy the PHP scripts to Apache listening on 127.0.0.1:80
#

#location ~ \.php$ {

proxy pass http://127.0.0.1;

#}

pass the PHP scripts to FastCGI server listening on 127.0.0.1:9000

#
#location ~ \.php$ {

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1656-9_13
http://www.it-ebooks.info/

CHAPTER 3 * NGINX CORE DIRECTIVES

root html;

fastcgi pass 127.0.0.1:9000;

fastcgi index index.php;

fastcgi_param SCRIPT FILENAME /scripts$fastcgi script name;
include fastcgi_params;

#}

deny access to .htaccess files, if Apache's document root
concurs with nginx's one

#

#location ~ /\.ht {

deny all;

#}

Please keep in mind that even though you see this section starting with server { } block, it is nested
inside http!

Server Context

The server block can be set in multiple contexts to configure various modules (you will learn about modules
in chapter 4), as shown in Table 3-1.

Table 3-1. Server directive in different modules

Module Name Context Details

ngx_http_core_module http Sets the configuration for a virtual server using
server_name directives.

ngx_http_upstream_module upstream Sets the address and other parameters of a server.
Useful in reverse proxy and load balancing scenarios.

ngx_mail_core_module mail Sets the configuration for a mail server.

ngx_stream_core_module stream Sets the configuration for a streaming server.

ngx_stream_upstream_module upstream Similar to ngx_http_upstream_module.

As you can imagine, it wouldn't be effective to have just one application per server. This is where the
concept of virtual server comes in to play. Nginx has a mechanism that allows it to select a specific server
and location block based on the request. Every request gets handled based on the configuration in a single
server context.

Another interesting thing about the server directive is that it allows for multiple declarations adjacent to
each other. In the configuration mentioned earlier, you can see one server block being configured such that
it 1istens to port 80 with the server_name as localhost. You can override the access_log directive here if
you wish. By default, it is commented out along with a charset directive.

Setting up a virtual server and its location context is one of the most common tasks when using Nginx;
hence it is strongly adviced to do the following exercise to get the feel of it and play around.

57

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1656-9_4
http://www.it-ebooks.info/

CHAPTER 3

NGINX CORE DIRECTIVES

HOW TO SET UP A BASIC SERVER TO SERVE STATIC CONTENT

You can leave the defaults at the global level (/etc/nginx/nginx. conf) untouched for the purpose of
this exercise. Start with navigating to the conf.d directory. cd /etc/nginx/conf.d.

Take a backup of the default.conffile (so that it doesn't get loaded due to the include
directive in nginx.conf) sudo mv default.conf default.backup

The idea is to keep the configuration as organized as possible. Create a file called
virtual_servers.conf with the following content. The intention is to host 2 different
applications that should be browsable using

http://appl.com or http://www.appl.com
http://app2.com or http://www.app2.com

server {
listen 80;

}

server {
listen 80;

server_name appl.com www.appl.com;

location / {

root /etc/nginx/html/appl;
}

server_name app2.com Www.app2.com;

location / {

root /etc/nginx/html/app2;
}

Tip Itis important to keep the port as 80 for a public-facing website, or else the end user will have to type

the port explicitly in the URL (ex. http://app1.com:8080), and it won't be a good idea!

58

Notice that there are 2 server blocks and both of them are listening on port 80 using
the listen directive.

There are 2 different directories called /etc/nginx/html/app1 and /etc/nginx/html/app2.
Both are mapped inside the location block, using the root directive.

Set up your applications by navigating to the web root folder by executing cd /etc/
nginx/html.

Create 2 directories by executing mkdir app1 app2.

Create an index.htmlfile in both folders with text “Index for App1,” and “Index for
App2.” This will make it easy for you to identify if you are hitting the right file.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * NGINX CORE DIRECTIVES

e Let Nginx know that the configuration has changed. You can either restart Nginx by
using systemctl restart nginx or reload the configuration without killing the nginx
service using nginx -s reload. (-s stands for signal. The upcoming chapters will
explain the signals in detail.)

e |f you browse to http://Iocalhost using curl http://localhost the output will be
Index for App1. Why? Basically, Nginx tries to match the host name (localhost here) to
the values in server name directive for each server block. In this case, it was not able to
match either app1.com, app2.com, www. app1.com, 0r www.app2.com. Since it failed, it
defaulted to the FIRST server block it countered that was listening on default port (80).

e Change the port to 81 for the first server block and execute nginx -s reload.Try curl
http://locahost now, and you will see the output as /ndex for App2. This is because
the default port is 80, and as per the previous point, the fallback happens to the first
server block listening on port 80. Change the port back to 80.

¢ Now, you have two blocks with the same port. How can you explicitly tell Nginx that
the second server block is the default server block? To do this, you will have to add a
directive called default_server to the listen directive. Change the listen directive of the
second server block so that it reads 1isten 80 default_ server;

e Try curl http://localhost again, and you will find the output as /ndex for App2.

Note The default server property is set on the listen port and not on the server name as you might guess!

e You have a hawkeye if you found a problem with default_server already! What if
you wouldn't want the first block or any server block to be the default block? In other
words, you may want to NOT serve the request if the host header field is empty.

e Add the following text at the start of the virtual_servers.conffile and reload nginx
configuration.

server {
listen 80;
server_name "" localhost 127.0.0.1;
return 444;

e Ifyoutry curl http://localhost or curl http://127.0.0.1 you should get a
non-standard output like this:

Empty reply from server

59

www.it-ebooks.info

http://www.app1.com/
http://www.app2.com/
http://127.0.0.1/
http://www.it-ebooks.info/

CHAPTER 3 " NGINX CORE DIRECTIVES

e [Nginx is listening on different IPs, Nginx first reads the IP address and port, and then
tests the host header fields. This means that if you have a structure like the following,
and a request is received for app3.com on 10.0.0.1, you will see the output from app1.
com instead! This happens because Nginx couldn't find app3.com on 10.0.0.1 and
hence defaulted to the first server block.

server{
listen 10.0.0.1:80;
server _name appl.com www.appl.com;

}
server{
listen 10.0.0.1:80;
server_name app2.com Www.app2.com;
}
server{

listen 10.0.0.2:80;
server _name app3.com www.app3.com;

e You can use default_server on multiple ports. But on one IP and port, you cannot
have two default servers. If you try doing that, you will get an emergency error
message similar to the following:

nginx: [emerg] a duplicate default server for 0.0.0.0:80 in /etc/nginx/conf.d/
virtual servers.conf:15

Visualizing Routing Rules

You can visualize the request flow in Nginx as shown in Figure 3-2.

60

www.it-ebooks.info

http://www.it-ebooks.info/

Request
Arrives

IP+Port = Listen 7

Host header =

server_name?

Host header =

wildcard +
server_name?

Host header =

server_name +
wildcard?

Host header =

No
Y
Find server block based on
Listening ports
Yes
Yes oA
.l
Yes o
»~
Yes -
»~

wildcard?

default_server exists?

Deliver the page from the
FIRST Server block that matches

Find the server
block that has
default_server

Figure 3-2. Request flow in Nginx

www.it-ebooks.info

CHAPTER 3 * NGINX CORE DIRECTIVES

61

http://www.it-ebooks.info/

CHAPTER 3 " NGINX CORE DIRECTIVES

Wildcards Names

Wildcards are allowed in Nginx configuration with few rules. An asterisk is allowed only on the name's start
and end and has to be suffixed or prefixed by a dot respectively. Hence *.app.com and www.app.* are valid.
On the contrary, www.*.app.com and www.app.*.org are not valid. For more complicated strings, you can
use valid (Perl) regular expressions, if required.

The good thing is that *.app.com matches www.app . com, blog.app.com, www.blog.app.com, etc.!

Tip Try to keep your configuration file organized. In cases where you may have multiple values, it is
generally a good idea to split the line like this:

server{
listen 80;
server_name app.com
WWW . app . com
*.app.com;

Location Context

You have already seen the usage of root directive inside a location block. The root directive tells Nginx to
return /image/myimage.jpg instead of fully qualified path /etc/nginx/html/appl/image/myimage.jpg.

Another important directive in location block is index, which specifies the name of default files that
is sent to the client if the file name is not specified. For example, if you add index index.html index.htm
default.htm; inside location directive, you are telling Nginx to return the index.html or index.htm or default.
htm if the URL is simply http://www.app.com. In other words, if index.html is not found, it will search for
index.htm, and so on.

Location directive points to the actual content on the web server. You can point to different locations
using different location directives and include regular expressions as well. When a request is received, the
text in the URI is decoded and the adjacents slashes (if any) are replaced with a single slash. To find the
appropriate location, Nginx then goes through its locations defined in the configuration.

Based on the requested UR], it selects and remembers the longest matching prefix. Then it proceeds to
match regular expressions (if any). If one regular expression doesn't match, it proceeds with the next one. It
stops processing the next regular expressions at the first match!

The location directive has four different modifiers: =, ~, ~*, and ~~. These prefixes have the meanings
given in Table 3-2.

Table 3-2. Location Modifiers

Modifier Meaning

~* Case insensitive search. Ideal for most cases.
~ Case sensitive search.
A~ Do not check any regular expressions if the matching prefix location has A~

= Directs Nginx to do an exact match of URI and location. It is a good idea to provide exact
matches for every URL that is frequently used so that Nginx doesn't need to do a search.

62

www.it-ebooks.info

http://www.app.com/
http://www.blog.app.com/
http://www.app.com/
http://www.it-ebooks.info/

configurations in Nginx and it is extremely important that you master it.

CHAPTER 3 * NGINX CORE DIRECTIVES

It is very crucial that you follow along in this section. The more you play with the configuration
the better you will be able to handle it. Location directive happens to be one of the most important

LOCATION CONFIGURATION

Prepare Server with some files

In your /etc/nginx/html create a folder called common and a file called common/index.html. Before you
proceed, please ensure that you have the following structure. If there is a file missing, simply create that
and key in some text so that you can identify the file. For the png files, you can download a couple of

png files from the Internet and save it inside the common folder.

- 50x.html
- app?l
“-- index.html
- app2
|-- home.html
“-- index.html
- common
|-- app.Js
|-- index.html
|-- nginx.png
"-- nginx.PNG
- index.html

Tip You can use wget http://image_url command to download any image from the Internet using a
command line.

Load different configuration based on location directive

e Replace the content of the file you created earlier /etc/nginx/conf.d/virtual_server.conf

with the following:

server {

listen 80;

server_name 127.0.0.1 localhost;

location /app1/ {
root /etc/nginx/html;
index index.html;

}

location /app2/ {
root /etc/nginx/html;
index home.html;

www.it-ebooks.info

63

http://www.it-ebooks.info/

CHAPTER 3 " NGINX CORE DIRECTIVES

e Execute nginx -s reload and try accessing the pages:
e lynx http://localhost/app1 > Should work and you will see index.html
e lynx http://localhost/app2 > Should work and you will see home.html

e Asyou can see, different sections and configurations can be loaded based on your
configuration. You will also notice that there are certain elements that are repeated and
have the same value, like root attribute. Since the root directory is allowed in server
context, you can restructure your configuration like the following:

server {
listen 80;
server_name 127.0.0.1 localhost;
root /etc/nginx/html;

location /app1/ {
index index.html;
}

location /app2/ {
index home.html;
}

e Assume that the common folder contains a lot of assets that are common to
both applications. Also assume that the files don't need to be changed often.
In that case, you may decide to change the configuration for this section such
that the file is cached at the client side for a much longer duration using certain
directives.

e Modify your configuration file so that you have two additional location tags as
follows. Notice the subtle prefixes. The first location block contains ~ prefix and
matches the URIs that have png, jpg, or jpeg. If it matches, it adds an expires
directive. In the second location block, the expires directive is set to 10 days. The
expires directive adds some special headers to the files so that the browser caches
it and serves it from the local cache. Expires max will set the value to Thu, 31 Dec
2037 23:55:55 GMT.

64

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * NGINX CORE DIRECTIVES

server {
listen 80;
server name 127.0.0.1 localhost;
root /etc/nginx/html;

location ~ \.(png|jpg|jpeg)$ {
expires max;
}

location ~* \.(png|jpg|jpeg)$ {
expires 10d;
}

e Once you have reloaded the configuration access the files: http://localhost/
common/nginx.png & http://localhost/common/nginx.PNG

e Look at Figures 3-3 and 3-4 and notice how the headers got added.

€« = C & [} localhost:8888/common/nginx.png %ff_ ® =
NG Mx Q [| Elements | Network | Sources Timeline Profiles Resources Audits Console > B E X
l . ® | W Y | View: IE = Preserve log ("I Disable cache | No throttling
_::._It_t_-:_ - IHudedataunu@ XHR J5 CS5 Img Media Font Doc WS Other

50000ms 100000ms 150000ms 200000ms 250000ms 300000ms 350000ms 400000ms 450000ms 500000 ms SSI

Name Mer... Status Type Initiator Size Time Timeline - Start Time "

B nginx.png GET [200 |document |0(her

_| content.min.css CET 200 xhr contentmin.... (from cache) 1ms |

: 2 requests | 2.4 KB transferred | Finish: 64 ms | DOMContentLoaded: 42 ms | Load: 41 ms

X Headers Preview Response Cookies Timing
¥ General
Remote Address: 127.0.0.1:8888
Request URL: http://localhost:8888/common/nginx. png
Request Method: GET
Status Code: @ 200 0K
¥ Response Headers view source
Accept-Ranges: bytes
Cache-Control: max-age=315360000
Connection: keep-alive
Content-Length: 21983
Content-Type: image/png
Date: Sun, 13 Sep 2015 10:19:18 GMT
ETag: “542d6700b-837"
Expires: Thu, 31 Dec 2837 23:55:55 GMT
Last-Modified: Thu, @2 Oct 2014 14:54:03 GMT
Server; nginx/1.8.0

Figure 3-3. Response for http://localhost/common/nginx.png

65

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * NGINX CORE DIRECTIVES

& C fi [3 localhost:8888/common/nginx.PNG 9% ® =
Q [] Elements | Network | Sources Timeline Profiles Resources Audits » 01> B QL X
® © ™Y View: i= = | [Preserve log [Disable cache = No throttling v

| @ Hide data UrLs () XHR JS CSS Img Media Font Doc WS Other

50000 ms 100000 ms 150000 ms 200000 ms 250000 ms 300000 ms 3$[:
NGINX
Name Met Status Type Initiator Size Time Timeline - Start Time "
[] nginx.PNG GET 200 document Other 33.4KB 2ms
|_| content.min.css GET 200 xhr content.min.... (from cache) 1ms |
|| favicon.ico GET 404 text/html| Other 724B S5ms |

3 requests | 34.1 KB transferred | Finish: 60 ms | DOMContentLoaded: 35ms | Load: 35ms
* Headers Preview Response Cookies Timing
¥ General
Remote Address: 127.9.0.1:8888
Request URL: http://localhost:BBBS8/common/nginx, PNG
Request Method: GET
Status Code: @ 200 0K
¥ Response Headers view source
Accept-Ranges: bytes
Cache-Control: max-age=864009
Connection: keep-alive
Content-Length: 33852
Content-Type: image/png
Date: Sun, 13 Sep 2015 10:16:19 GMT
ETag: “5601b948-843c"
Expires: Wed, 23 Sep 2015 10:16:19 GMT
Last-Modified: Sat, 03 Oct 2015 11:17:28 GMT
Server: nginx/1.8.9

Figure 3-4. Response for http://localhost/common/nginx.PNG

¢ Notice how the headers have been added based on different location URIs. This gives
you a very robust way of handling different kind of files.

Avoid Reqular Expression Matching

e You have already seen case sensitive (~) and insensitive (~*) search. What if you would
like to avoid regular expressions completely for some unique cases? You can prefix the
URI with (A~).

e Change your configuration file as follows and access http://localhost/common/
nginx.PNG (Figure 3-5) and notice that max-age = 172800 seconds (2 days). The
interesting thing to note here is that the other two locations still exist and they are
unchanged. Essentially, when you have a A~ prefix before the longest matching URIs in
the location directive, Nginx will skip checking the other regular expressions.

66

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * NGINX CORE DIRECTIVES

& C f [localhost:8888/common/nginx.PNG 9 ® =
. | Q _|j Elements | Network | Sources Timeline Profiles Resources Audits » 01 > «_ﬁ = |57
I ® © ™Y View I= == [Preserve log [|Disable cache No throttling v
Filter | @Hide data urLs ([} | XHR J5 €SS Img Media Font Doc WS Other
200000 ms 400000 ms 600000 ms. 800000 ms 1000000ms 1200000ms 1400000 ms 1 O 3 18 |

Neinx| || | |

Name Met... Status Type Initiator Size Time Timeline - Start Time "
| [] nginx.PNG GET 200 document Other 33.4KB 3ms

|_| content.min.css CET 200 xhr content.min.... (fromcache) 2ms ||

[] favicon.ico CET 404 text/htmi Other 7248 18ms |d

3 requests | 34.1 KB transferred | Finish: 68 ms | DOMContentLoaded: 33 ms | Load: 33 ms

* | Headers Preview Response Cookies Timing
¥ General
Remote Address: 127.0.0.1:8888
Request URL: http://localhost:8888/common/nginx. PNG
Request Method: GET
Status Code: @ 200 OK
¥ Response Headers view source
Accept-Ranges: bytes
Cache-Control: max-age=17280@
Connection: keep-alive
Content-Length: 33852
Content-Type: image/png
Date: Sun, 13 Sep 2015 10:44:21 GMT
ETag: "5601b948-843c"
Expires: Tue, 15 Sep 2015 18:44:21 GMT
Last-Modified: Sat, 83 Oct 2015 11:17:28 GMT
Server: nginx/1.8.0

Figure 3-5. Response for http://localhost/common/nginx.PNG

server {
listen 80;
server name 127.0.0.1 localhost;
root /etc/nginx/html;

location *~ /common/nginx.PNG {

expires 2d;

location ~ \.(png|ipg|ipeg)$ {
expires max;

location ~* \.(png|jpg|jpeg)$ {
expires 10d;

67

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 " NGINX CORE DIRECTIVES

e Last, but not the least, there is an Exact modifier (=). Before you see it in action,
it will be helpful to take a little detour and change the configuration so that you can
visualize it easily. Update your /etc/nginx/nginx.conf so that your log_format looks
similar to the following:

log format main '$remote addr - $remote user [$time local] "$document root$document uri
"$request"’
"$status $body bytes sent "$http referer"';

e Basically, you are telling Nginx to log the information like $document_root and
$document_uri (you will learn about it in detail later).

e Update your conf.d/virtual_server.conf as follows:

server {
listen 80;
server_name 127.0.0.1 localhost;

location = / {
root /etc/nginx/html/app2;
index home.html;

e Reload your configuration using nginx -s reload.

¢ In this block you are telling Nginx that http://localhost implies that it should
consider /etc/nginx/html/app2 as the root path and home.htm/ as its default page.

e Try executing curl http://localhost and you will be surprised to find a 404! Why?

e Take a look at the access log using tail /var/log/nginx/access.log

"/etc/nginx/html/home.html" "GET / HTTP/1.1"404 168 "-"

e Notice that it is not pointing to /etc/nginx/html/app2/home.html. Instead! Does it mean
that Nginx didn't catch the location directive? Of course not, it did catch it, but it did an
internal redirect to the / page and since there was no location defined, it failed with a
404. To fix this, change the configuration as follows and retry:

server {
listen 80;
server_name 127.0.0.1 localhost;
location = / {

root /etc/nginx/html/app2;
index home.html;

68

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * NGINX CORE DIRECTIVES

location / {
root /etc/nginx/html/app2;
}

¢ In other words, the exact modifier will speed up your processing even more, since
Nginx will not need to parse other regular expressions. It will terminate its search as
soon as it finds an exact match and does an internal redirect to the page that you are
looking for!

Location Context Special Cases

You have already seen an interesting internal redirection case using index directive. As discussed earlier,
there are two location blocks in play at tandem, and that is what makes it interesting and confusing at times.
There are other directives as well that cause some special redirections.

try_files

This directive checks if the file exists in a specified order. If it finds a file among a predefined list, it is
processed and the files next in the list are ignored. If you would like to check a directory, you need to suffix
a slash (/) at the end of the name. If none of the files are found, an internal redirect happens as per the last
parameter in the list. try_files directive allows you to get rid of if directive since you no longer have to
check if the file exists or not. if directive is extremely inefficient since it is evaluated every time for every
request. A good rule of thumb is to avoid if directive completely (you will learn more about if directive in
coming chapters).

An example should clarify this. Take a look at the configuration and notice that the root is set to /etc/
nginx/html. The two location blocks are pretty similar to each other. Both of them are applying similar rules
to jpg, jpeg, and png files. The only difference is that the second location block has a try_files block while the
first one doesn't. The try_files directive is set such that it will look for the file ($uri), and if it doesn't find
the file, it looks for the folder called ($uri/). If it doesn't find the folder either, it returns /nginx.png from the
root that is defined in this location context (/etc/nginx/html/common).

server {
listen 80;
server_name 127.0.0.1 localhost;
root /etc/nginx/html;

location ~* \.(jpg|jpeg)$ {
root /etc/nginx/html/common;
}

location ~* \.(png)$ {
root /etc/nginx/html/common;
try files $uri $uri/ /nginx.png;

69

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 " NGINX CORE DIRECTIVES

This implies that if you browse:
http://localhost/common/nginx.png > It will work.

http://localhost/common/file.png > Returns /nginx.png since file.png doesn't
exist.

http://localhost/nginx.PNG > It will work and return the actual nginx.PNG file
since it exists.

http://localhost/nginx.png > It will work too!

http://localhost/non_existent.png > It will return the fallback image file /
nginx.png.
http://localhost/non_existent.jpg > ERROR! 404, since there are no files to try!

http://localhost/existingfile. jpg > Works if you have the file in the defined
root folder.

If you replace the line below,
try files $uri $uri/ /nginx.png;
with
try files $uri $uri/ /nginx.png =404;

it will mean that if the fallback file (/nginx.png) doesn't exist, Nginx will return a 404 code.

There is yet another interesting thing you can do with try_files! You can give it a named location and
have it handled in a different location block altogether.

location ~* \.(png)$ {

root /etc/nginx/html/common;

try files $uri $uri/ /nginx.png @mylocation;
}

location @mylocation{

#do something here

rewrite

rewrite directive is another very flexible directive. It takes regex as an input and redirects (or terminates if
needed) the requests. It supports four flag parameters:

e last - Stops the current processing and starts a search for a new location matching
the changed URI.

e break -Stops processing using break directive.
e redirect - A temporary redirection using status code 302.

e permanent - A permanent redirection using status code 301.

70

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * NGINX CORE DIRECTIVES

The bigger question is this: why would you redirect your traffic?

A small but clichéd answer is this: change is the only constant. Sometimes, even after a lot of planning
the content location changes due to myriad reasons like change in framework, reorganization of assets,
back-end change, etc. In these cases, the rewrite directive comes in really handy. Imagine that the folder
structure you have been working with has changed, and common is now called vendor_assets.

server {
listen 80;
server_name 127.0.0.1 localhost;
root /etc/nginx/html;

location /common/ {
rewrite ~(/common/)(.*) /vendor_assets/$2 last;
}

Writing good Perl regular expressions is beyond the scope of this book, but basically what is happening
in the rewrite directive above is no rocket science. Parenthesis implies groups and it gets extracted in
variables like $1, $2, and so on. In the group, the expression says to extract everything that starts with /
common/ into a group ($1) and everything after that (.*) in another variable $2. This regular expression is
now replaced with a constructed string, /vendor_assets/$2 (where $2 implies the rest of the URI originally
sent to the server). The attribute last, as discussed earlier, tells Nginx to stop processing the current request
and start a new search for this new location.

In short, it tells Nginx to redirect the current URL http://localhost/common/nginx.png to a new url
http://localhost/vendor_assets/nginx.png.

error_page

error_page directive is a another straightforward directive that helps Nginx to return a specific error page
using internal redirect. You can customize your error pages to your liking and make it more meaningful for
the end users. It can be used inside http, server, location, and if blocks.

error_page 404 /404_not_found.html; #Applies to status code 404.
error_page 500 502 503 504 /50x_server error.html; #Applies to status code 500, 502, 503 & 504.
error_page 404 =200 /funnypic.png; #Instead of sending 404, it will send a png

with status code 200.

An error_page block like the following can be used to handle the errors in an elegant way. As you can
see, an exact modifier is used for 50x.html so that no other location expressions are evaluated in case of
erTors.
error_page 500 502 503 504 /50x.html;

location = /50x.html {
root /usr/share/nginx/html;
}

71

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 " NGINX CORE DIRECTIVES

Verify the Correctness of Configuration

When you make changes to the configuration file, it is a good idea to check if the configuration file
has any issues. You can execute the following command to check it. The -t switch tells Nginx to
test the configuration without loading it and -c is the path of the configuration that has to be
checked.

A success looks like this:

nginx -t -c /etc/nginx/nginx.conf
nginx: the configuration file /etc/nginx/nginx.conf syntax is ok
nginx: configuration file /etc/nginx/nginx.conf test is successful

In case of failure, it points you to the precise line where there is an issue:

[root@wsfel ~]# nginx -t -c /etc/nginx/nginx.conf
nginx: [emerg] unknown directive "xx_junk_directive" in
/etc/nginx/conf.d/virtual_server.conf:8

nginx: configuration file /etc/nginx/nginx.conf

Allow Directory Listing

Athough it is not considered a good idea to allow listing of a directory, at times it is required to enable
directory listing of specific areas of your website. Nginx has directory listing disabled by default, and to
enable it you will need to use autoindex directive. This is how you can use it:

server {
listen 80;
server_name 127.0.0.1 localhost;
root /etc/nginx/html;

location /common/ {
root /etc/nginx/html;
index NON_EXISTENT FILE;
autoindex on;

If you recall, the directory structure for common has index.html file existing already. If you access
http://localhost/common now, it will show you the index file instead. To enure that you see a directory
listing, set the index directive so that the file that doesn't exist. If Nginx finds there are no index files, and
autoindex is turned on, it will automatically generate a page for you showing the directory listing as can be
seen in Figure 3-6.

72

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * NGINX CORE DIRECTIVES

®

€ =>CH localhost:8888/common/ i

Index of /common/

gﬁ

app.is 13-Sep-2015 04:42 22
index.html 13-Sep-2015 04:30 18
nginx.PNG 03-0ct-2015 11:17 33852
nginx.png 02-0ct-2014 14:54 2103

Figure 3-6. Directory listing of a folder in Nginx

Deny Access to Any Specific Location

A common request for a web server is to block access to specific folders for authorization or stopping the
configuration file from being downloaded, etc. As you can guess, this is fairly easy to do as well.

server {
listen 80;
server_name 127.0.0.1 localhost;
root /etc/nginx/html;

location /vendor_assets/ {
deny all;
}

If you try to accees http://localhost/vendor_assets/ now, you will get a 403 forbidden
message from Nginx.

Proxy the Requests to Apache

You will learn about proxying in detail in the coming chapters. For now, you can simply take a quick look at
the configuration file (conf.d/default. conf) that has been renamed earlier to conf.d/default.backup.

Assume that you want to use Apache for listening to PHP requests, you can use the following block for
location so that the requests for *.php will get proxied to Apache:

proxy the PHP scripts to Apache listening on 127.0.0.1:80
#

location ~ \.php$ {
proxy pass http://127.0.0.1;
}

Proxy the Requests to FastCGI

For the reasons similar to the previous section, you can choose to redirect the traffic using the following to
FastCGl listening on a different port.

pass the PHP scripts to FastCGI server listening on 127.0.0.1:9000

73

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 " NGINX CORE DIRECTIVES

#
location ~ \.php$ {
root html;
fastcgi_pass 127.0.0.1:9000;
fastcgi_index index.php;
fastcgi param SCRIPT_FILENAME /scripts$fastcgi script name;
include fastcgi params;
}

Nginx Variables

Nginx has a concept of variables that comes in quite handy at times. You have already seen a few predefined
variables like $document_root and $document_uri in action.

Even though they look very convenient, it should be used sparingly. The reason is that they get
evaluated at runtime. In other words, every request where you encounter a variable will be evaluated at
runtime taking extra CPU cycles! As you can guess, if you are using too many variables, it can toll on the
server. Don't use variables as template macros. Think about using an include directive instead whereever
you can. With that little bit of caution, lets take a look at a practical situation where variables can help you.

e Open your /etc/nginx/nginx.confand change the log format to a string like this:

log format main '$remote addr - $remote user [$time local] "$request
"$status $body bytes sent "$http referer"';
e Reload your configuration, and make a request using curl http://localhost/
e Take alook at your access.log using tail command.

e tail /var/log/nginx/access.log
127.0.0.1 - - [14/Sep/2015:06:18:22 -0400] "GET / HTTP/1.1" 200 23 "-"

e Thelogis helpful, but can you tell where exactly it is serving the file from?

e While configuring the Nginx server, it makes sense to extend the logging so that it
logs a little more information. This way, you can check your path and troubleshoot
your location expressions quite easily.

e Open your nginx.conf again, and change the log_format so that it contains a couple
of extra variables, like this:

log_format main '$remote_addr - $remote_user [$time_local] "$document_root$document_uri"’

$request” $status $body bytes sent "$http referer"';
e Reload your configuration, make a new request, and check your acess logs using tail
again. Notice the presense of the document path and file name. You can clearly see

where the page is being served from!

127.0.0.1 - - [14/Sep/2015:06:25:48 -0400] "/home/nginx_new_home/index.html""GET / HTTP/1.1"
200 23 nw_n

4

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * NGINX CORE DIRECTIVES

Make sure that you remove these variables once your troubleshooting is done. There is more to
variables than what you have seen just now and we will cover that in appropriate chapters.

A Quick Note about Nginx Official Documentation

Nginx is pretty well documented, and there are a couple of links you should keep handy. We have made
conscious efforts of not replicating what can be easily found online in the official documentation. The book
is written in a conversational tone with practical situations in mind. Here are the links that we just talked
about:

e Nginx official documentation page - http://nginx.org/en/docs/
e Alphabetical index of directives - http://nginx.org/en/docs/dirindex.html
e Alphabetical index of variables - http://nginx.org/en/docs/varindex.html

If you go the index of directives, you will see every directive listed there. Take a look at the
documentation of gzip, for example, in Figure 3-7.

Syntax: gzip on | off;
Default: gzip off;
Context: nttp, server, location, if in location

Enables or disables gzipping of responses.

Figure 3-7. Gzip documentation on the official site

Notice that the first line talks about syntax followed with the default value, and ends with Context where
it tells you that you can use gzip in http, server, location, and if blocks! Once you understand the meaning of
directives, context, and Nginx configuration structure, it gets really easy to read through the documentation
and find out more about the directives and different variables.

Summary

This chapter has introduced you to configuring Nginx primarily as a web server. You have learned about
the modular nature of the configuration files. By now, you should be pretty comfortable with the way the
default configuration files have been created for you during installation time. Try reading the /etc/nginx/
conf.d/default.backup (or default.confif you haven't already renamed it) file and you should be able to grasp
everything that's going on there. The core focus of this chapter was to configure Nginx in order to serve static
files and give you a decent idea of the jargon used in Nginx.

You have also learned about the routing principles used in Nginx, and how to use different directives
in appropriate contexts. You can now configure Nginx for common tasks like serving static files, allowing
directory listing, denying access to files/folders, and handling or rewriting requests using location directive.

If you take a look at Nginx documentation now, you should feel right at home since you will be able to
decipher the different terminology commonly used in Nginx esoteric circles.

In the next chapter, you will learn about Nginx modules.

75

www.it-ebooks.info

http://nginx.org/en/docs/
http://nginx.org/en/docs/dirindex.html
http://nginx.org/en/docs/varindex.html
http://www.it-ebooks.info/

CHAPTER 4

Nginx Modules

Modules are those little pieces of code that give a specific feature or functionality in Nginx. It is because

of these modules that you can identify if Nginx is behaving as a web server, reverse proxy server, or a load
balancing server. Hence, it is important to understand what modules are and how they formulate the Nginx
HTTP request processing structure.

What Are Modules?

The Oxford dictionary defines a module as “any of a number of distinct but interrelated units from which a
program may be built up or into which a complex activity may be analyzed.” In simpler words, you can say
amodule is an independent piece of code that has its own functionality, its own requirement, and its own

unique identity that works in conjunction with other pieces of code to build a wholistic structure.

As mentioned earlier, Nginx is modular. It is so much so that right from the initial request, the pieces
of code that are executed are all defined in modules. For example, when Nginx is serving you a static index.
html file, or when you are requesting for an HTTPS page, or even when your request is proxied to another
server, every function is carried out through various modules. These modules are independent packages or
software that are included within the “nginx” binary when you compile Nginx. It is a significant difference
between Nginx and Apache, since you cannot dynamically add modules in Nginx. You will need to
recompile Nginx to load or unload a particular module.

Note Apache uses the Dynamic Shared Objects (DSO) concept in which you can load or unload modules
at runtime after Apache has been compiled. Using DSO, modules are not included in the main Apache (httpd)
process; and hence it allows you to dynamically load or unload modules.

Module Installation

After installing Nginx you can verify which modules are installed on your server using the Nginx -V
command. Below you can see the default installation of different modules on CentOS and Ubuntu Server.

Default Installation

The steps for default installation of Nginx are mentioned in chapter 2’s section “Install Nginx Pre-Built
Package.” The next section covers a list of modules that are included during default installation of Nginx.

© Rahul Soni 2016 77
R. Soni, Nginx, DOI 10.1007/978-1-4842-1656-9_4

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1656-9_2
http://www.it-ebooks.info/

CHAPTER 4 © NGINX MODULES

On CentOS Server

On CentOS you can see that the installation is a clean installation and there are no third-party modules
included by default.

$ nginx -V

nginx version: nginx/1.8.0

built by gcc 4.8.2 20140120 (Red Hat 4.8.2-16) (GCC)

built with OpenSSL 1.0.1e-fips 11 Feb 2013

TLS SNI support enabled

configure arguments: --prefix=/etc/nginx --sbin-path=/usr/sbin/nginx
--conf-path=/etc/nginx/nginx.conf --error-log-path=/var/log/nginx/error.log
--http-log-path=/var/log/nginx/access.log --pid-path=/var/run/nginx.pid
--lock-path=/var/run/nginx.lock --http-client-body-temp-path=/var/cache/nginx/client_temp
--http-proxy-temp-path=/var/cache/nginx/proxy_temp
--http-fastcgi-temp-path=/var/cache/nginx/fastcgi_temp
--http-uwsgi-temp-path=/var/cache/nginx/uwsgi_temp
--http-scgi-temp-path=/var/cache/nginx/scgi temp --user=nginx --group=nginx
--with-http_ssl module --with-http_realip_module --with-http_addition_module
--with-http_sub_module --with-http_dav_module --with-http_flv_module
--with-http_mp4_module --with-http_gunzip module --with-http_gzip static_module
--with-http_random_index_module --with-http_secure_link_module
--with-http_stub_status_module --with-http auth _request module --with-mail
--with-mail_ssl module --with-file-aio --with-ipv6 --with-http_spdy module
--with-cc-opt="-02 -g -pipe -Wp,-D_FORTIFY_SOURCE=2 -fexceptions -fstack-protector
--param=ssp-buffer-size=4 -m64 -mtune=generic'

On Ubuntu Server

Ubuntu Server includes few third-party modules in the default installation of Nginx:

$ nginx -V

nginx version: nginx/1.8.0

built with OpenSSL 1.0.1f 6 Jan 2014

TLS SNI support enabled

configure arguments: --with-cc-opt='-g -02 -fPIE -fstack-protector
--param=ssp-buffer-size=4 -Wformat -Werror=format-security -D_FORTIFY_SOURCE=2'
--with-1d-opt="-W1l,-Bsymbolic-functions -fPIE -pie -Wl,-z,relro -Wl,-z,now’
--prefix=/usr/share/nginx --conf-path=/etc/nginx/nginx.conf
--http-log-path=/var/log/nginx/access.log --error-log-path=/var/log/nginx/error.log
--lock-path=/var/lock/nginx.lock --pid-path=/run/nginx.pid
--http-client-body-temp-path=/var/1ib/nginx/body
--http-fastcgi-temp-path=/var/lib/nginx/fastcgi
--http-proxy-temp-path=/var/lib/nginx/proxy --http-scgi-temp-path=/var/lib/nginx/scgi
--http-uwsgi-temp-path=/var/lib/nginx/uwsgi --with-debug --with-pcre-jit --with-ipv6
--with-http_ssl module --with-http_stub status module --with-http realip module
--with-http_auth request module --with-http_addition module --with-http_dav_module
--with-http_geoip_module --with-http_gunzip module --with-http_gzip static_module
--with-http_image filter_module --with-http_spdy module --with-http_sub_module
--with-http_xslt_module --with-mail --with-mail_ssl module
--add-module=/build/buildd/nginx-1.8.0/debian/modules/nginx-auth-pam

78

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © NGINX MODULES

--add-module=/build/buildd/nginx-1.8.0/debian/modules/nginx-dav-ext-module
--add-module=/build/buildd/nginx-1.8.0/debian/modules/nginx-echo
--add-module=/build/buildd/nginx-1.8.0/debian/modules/nginx-upstream-fair
--add-module=/build/buildd/nginx-1.8.0/debian/modules/ngx_http_substitutions_filter_module

Module Categories

Nginx modules can be split into five different catagories based on their functionality. When you build Nginx
binary, the Core and Event modules are included by default. The HTTP, Mail, and Stream modules enable
Web Server, Mail Proxy, and Reverse Proxy or Load Balancer functionality repectively into Nginx.

Out-of-Box Modules

Nginx source has some modules that are included by default and they can be enabled or disabled during
compile time using - -with or --without options. The core modules cannot be disabled; they are the
required components of Nginx. You can modify the rest of the modules depending on your requirement and
functionality expected. There are some OOB modules that have dependencies on third-party components
like PCRE, OpenSSL that can be included during compile time. Table 4-1 lists all the different categories of
modules and the key modules included in the Nginx source.

Table 4-1. Nginx module types

Module Types Module Name Description

Core ngx_core_module This includes modules that enable network and
ngx_error_log_module application protocols. It includes modules that
ngx_conf_module handle logging, encryption, etc.

It includes CPU architecture-specific Nginx
configuration, it takes care of CPU affinity, thread
pool allocation, memory management api, file and
sockets IO, etc.

Event ngx_events_module This includes connection processing methods that
ngx_events_core_module are event driven. Example connection pooling, etc.

HTTP ngx_http_module This includes websServer functionality in Nginx and
ngx_http_core_module takes care of all HTTP requests.

ngx_http_log_module
ngx_http_upstream_module

Mail ngx_mail_module This includes mail proxy modules.
ngx_mail_core_module

Stream ngx_stream_module This includes modules that enable proxy, load
ngx_stream_core_module balance functionality in Nginx.

ngx_stream_proxy_module
ngx_stream_upstream_module

Third-Party Modules

Third-party or external modules extend Nginx functionality. Nginx has over 100 different third-party modules and
the list is growing fast. Nginx has a huge and active community that keeps contributing in extending Nginx. You
will look at some of the most popular and highly recommended third-party modules later in the chapter.

79

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © NGINX MODULES

How Does a Module Work?

When you run the ./configure script when compiling Nginx, a list of pointers to the Nginx modules are
made available. This list of all modules can be found in the ngx_modules.c file in objs directory. It defines the
order in which modules are registered: that is, the order in which various handlers are called.

Module Structure

In the simplest form, modules consist of module information, module configuration, handlers, filters,

and load balancer functions (refer to Figure 4-1). The module information contains details about the
handlers that are provided by the module. The module configuration contains the structure of the module
and different commands or directives that are exposed by the module. Handlers consist of the functions
that do that actual work on the input and provide the output. Filters contain functions that do different
manipulations that are possible on the output of the handler. Load balancer function comes into the picture
when different upstream or downstream servers are defined.

Nginx Module Structure

Module Information

A
} Module Configuration Handlers Filters Load balancer

[[(
: " Load balance
Handler functions Filter :
Module Commands ki U ‘ u ‘ functions u

Command Handlers

V.

Figure 4-1. Nginx Module Structure

How Modules Fit in Nginx

Here are the steps in which a request is processed in Nginx (Figure 4-2 illustrates this graphically):
1. Start Nginx web server.

Nginx master process gets initiated.

Read nginx.conf.

Eal N

Creates worker process(es), memory allocation, and other architectural specific
configuration as per the CPU architecture.

5. Based on the context like HTTP, MAIL, and STREAM, it creates a list of module
handlers and maps them as per their location in the nginx.conf.

6. Ifarequestis http://abc.com, the request is processed in http context.

7. Ttwill check for the content module handler need to process the request and the
respective handler grabs the request and starts working on it.

8. Once the request is processed, the output is handed over to the filters like gzip,
headers, rewrite, etc. The filters will manipulate the output further depending on
their order of execution.

80

www.it-ebooks.info

http://abc.com/
http://www.it-ebooks.info/

CHAPTER 4 © NGINX MODULES

9. Ifthere is anyload balancer or proxy module, the respective module will further
handle the output.

10. Finally, the response is sent over to the client.

Start master
process

|

Start worker
process

—lf: i HTTP handler > HTTP filter

% Stream " :

handler Stream filter
% Mail Proxy ; y

— handlor Mail Proxy filter

Figure 4-2. Nginx module process

Load Balance
or Proxy

Response to client

Load Balance
or Proxy

Y

Configuring Default Modules for Optimal Performance

Now that you know a bit about the internal working of Nginx, it is important to configure modules such
that you get optimum performance from your server. You will see some configuration that helps reduce
performance overhead on the web server. You will see some of the core, event, and HTTP modules that are
configured on the web servers. Modules are implemented in nginx. conf file in the form of directives or
module commands. Some of the directives can be implemented at multiple context and you will find them
mentioned along with the commands below.

Core Module

Table 4-2 lists some of the frequently used commands in the core modules. The list describes different
directives and its configuration parameter. The list of core modules lies in the main context ahead of event,
HTTP, mail, stream, and other context.

81

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © NGINX MODULES

Table 4-2. ngx_core_module directives

Command: user

Syntax

Default value
Context

Description

Command: worker_processes

Syntax

Default value
Context

Description

Command: error_log

Syntax

Default value
Context

Description

user <username>;
User <username> <groupname>;

user nobody nobody;
main

This defines the identify under which Nginx process is started. It is
recommended to use least privileged user.

worker_processes <number>;
worker processes auto;

worker_processes = 1;

main

This defines the number of worker processes started by Nginx. It is
recommended to set the value to the number of CPU cores on the
server. You can also use the value auto, which lets Nginx select an
appropriate value. The optimal value depends on multiple factors

and you should test the performance impact in your setup before and
after making changes.

error_log <path/filename> <level>;
error_log memory:size debug;

error_log logs/error.log error;
main, http, mail, stream, server, location

This defines the location and level of error logs that are captured. The
different levels of error logging are as below (starting from detailed to
specific error):

debug: detailed information; used for debugging.

info: information message, lot of details; not very useful.
notice: only notices will be logged; not very useful.

warn: warning messages; indicates some kind of problem.
error: error logs; errors while serving pages.

crit: only critical problem that needs attention.

alert: alert messages of important issues.

emerg: emergency messages when the system is unstable.

82

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Table 4-2. (continued)

CHAPTER 4 © NGINX MODULES

Command: pid
Syntax

Default value
Context

Description

Command: worker_rlimit_nofile

pid <path/filename>;

pid logs/nginx.pid;

main

This stores the process ID of the master process. You may think, why
save a value of a process identifier in a file?

It serves multiple purposes, especially signaling that the process
has at least started successfully. It is also a cheaper way to poll a file
in contrast to getting the output of the ps -ax | grep command.
However, please be mindful that this approach is not fail-safe. It is
possible that the process is dead for long, and the PID file contains
stale information.

In general, the PID files are created by daemons that should only
be run once on a system. When the process starts, it also creates
the lock file. As long as the lock file exists, it won't start another
process. If the lock file exists, but the process id mentioned in
the PID file is not running, the daemon can be considered as
dead. It may also imply a crash or improper shutdown of the
daemon, in which case it might initiate a special startup or
restart scenario.

Syntax worker rlimit_nofile <number>;

Default value none

Context main

Description This defines the maximum number of open files for the worker
processes. You can increase the limit without restarting the main
process.

Events Module

Commands in events context (shown in Table 4-3) determine how Nginx handles connections at a general
level. Many times you may not need to configure most of the commands as they are configured by default by

Nginx. But you may want to configure a couple of directives for better performance.

83

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © NGINX MODULES

Table 4-3. Event module directives

Command: worker_connections

Syntax worker_connections <number>;

Default value worker_connections 512;

Context events

Description This defines the maximum number of simultaneous connections

that can be treated by the worker process. Keep in mind that worker_
connections cannot exceed worker_rlimit_nofile if configured.

Command: debug_connections

Syntax debug_connections <address>;
debug connections <CIDR>;
Default value none
Context events
Description This defines debug logging for selected client connection. You can

specify IPv4 or IPv6 address of a client.

HTTP Module

This context holds configuration parameters for web server that define how Nginx handles HTTP and HTTPS
connections (see Table 4-4). This context also includes server context that can occur multiple times as it
defines a specific virtual server.

Table 4-4. HTTP module directives

Command: include

Syntax include <username>;
include <mask>;
Default value none
Context any
Description This defines including syntactically correct files or mask. Instead of making a

long and cluttered nginx. conf file, you can define a virtual server in a specific
configuration file and include them directly in the nginx.conf file.
Example:

include conf/mime.types;

include /etc/nginx/proxy.conf;
include vhost/abc.com.conf;
include /etc/nginx/vhosts/*.conf;

(continued)

84

www.it-ebooks.info

http://www.it-ebooks.info/

Table 4-4. (continued)

CHAPTER 4 © NGINX MODULES

Command: default_type

Syntax

Default value

Context

Description

Command: log _format
Syntax

Default value

Context

Description

Command: access_log

Syntax

Default value
Context

Description

default_type <mime.types>;
default_type text/plain;

http, server, location

This defines the default mime type of a response.
Example:

default_type text/plain;
default_type application/octet-stream;

log_format <name>;

log_format combined '$body bytes sent “$http_referer” “$http user_
agent” $remote_addr $remote_user “$request” $time_local $status’;

http

This defines the log format that defines variables that are used only at the
time of writing the log. Some of the variables that can be used are as follows:

$body bytes sent: number of bytes sent to a client as the response body, this
does not include response header.

$http_referer: identifies the URL of the page that is requested.
$http_user_agent:identifies the agent or browser that requested the resource.
$remote_addr: IP address of the client making the request.

$remote_user: Username specified if basic authentication is used.

$request: raw HTTP request URL.

$time_local:local server time that served the request.

$status: A numeric value of the HTTP Statuc Code during the response.
Example:

log format combined '$remote addr - $remote user [$time local]
"$request” $status $bytes sent "$http_referer" "$http_user agent”

"$gzip ratio"’';

access_log <path/filename> [format];
access_log off;

access_log logs/access.log combined;
http, server, location

This defines the path where logs are captured for the requests that are served
by the server. When set to off, no logs are captured. The name combined
implies the format of the log to be used while logging. In the log_format
section previously mentioned you have seen how the log_format is named as
combined with appropriate fields.

(continued)

85

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © NGINX MODULES

Table 4-4. (continued)

Command: sendfile
Syntax

Default value
Context

Description

Command: tcp_nopush
Syntax

Default value

Context

Description

Command: tcp_nodelay
Syntax

Default value

Context

Description

sendfile on | off;
sendfile off;
http, server, location

This defines enabling Nginx to send static content directly from the kernel
instead of looking for the resource on disk again. This prevents context
switching and enabling a speedy delivery of resources. If you are serving
static content, enabling this is essential where as if you are using the server as
areverse proxy this setting does not make any sense.

tcp_nopush on | off;
tcp_nopush off;
http, server, location

This enables sending response header and the full file in one packet rather
then sending it in chunks. This parameter should be enabled with the
sendfile option.

tcp_nodelay on | off;
tcp_nodelay on;
http, server, location

This enables Nginx to send data in chunks, hence avoiding network
conjunction. This option is uses keepalive option that allows you to send
data without initiating a new connection. This option is the exact opposite of
tcp_nopush option you saw earlier.

Command: keepalive_timeout

Syntax keepalive timeout <number>;
Default value keepalive timeout 75s;
Context http, server, location
Description This option sets a timeout value for a connection to stay alive. If you set
keepalive_timeout to zero it will disable keep_alive.
(continued)
86

www.it-ebooks.info

http://www.it-ebooks.info/

Table 4-4. (continued)

CHAPTER 4 © NGINX MODULES

Command: listen

Syntax

Default value
Context

Description

Command: server_name

Syntax

Default value
Context

Description

Command: root
Syntax

Default value
Context

Description

listen <address>;
listen <ip_address>:<port>;

listen *:80;
server

This option sets address, IP address, or port on which the server will
accept the request. You can use both IP address and port or port or
address (i.e., URL or hostname). If you set a default_server with an IP
address or address, it will become the default server for the specified
address or port.

Example:

listenwww.abc.com;
listen 127.0.0.1:8080;
listen localhost default_server;

server_name <address>;
server_name *.<address>;
server name _;
server_name

“»,
)

Server

This option allows you to set the address using either an exact name

or wildcard or a hash table to the listen port. Setting up a hash table
enables quick processing of static data like server name, MIME types,
request header strings, etc. Hash table uses the ngx_http_map module.
Using a wildcard enables having multiple URL's using the same domain
name. The catch-all server parameter “_" is used when no valid domain
name exists.

Example:

server_name www.abc.comone.abc.com;
server_name *.abc.com;
server_name _;

root <path>;
root html;
http, server, location

This option specifies the root location of the web content.

(continued)

87

www.it-ebooks.info

http://www.example.com/
http://www.example.com/
http://www.it-ebooks.info/

CHAPTER 4 © NGINX MODULES

Table 4-4. (continued)

Command: error_page
Syntax

Default value

Context

Description

Command: try _files
Syntax

Default value
Context

Description

error_page code uri;
none
http, server, location

This option allows you to set the URI for a specific error.
Example:

error_page 403 www.abc.com/forbidden.html;
error_page 500 501 502 /50x.html;

try_files file uri;
none
server, location

This option tries to look for the existence of the file specified order or looks
at the literal path you specified in the root directive and sets the internal file
pointer. In the below example, when a request is made a try_files directive
will look for index.html, index.php in the /website/root_directory. If it fails
to find it, it will look into the $document_root directory specified at the root
directive and serve the request.

Example:

try files /website/root_directory/ $uri;

Enabling Optional Modules

There are number of other modules that can be enabled and they have their own directives. You will see in
this section how to enable gzip, FastCGI, and Basic Auth directives. These are optional and need not exist on

all servers.

Gzip Module

The gzip modules help in compressing the responses. Table 4-5 lists the directives.

Table 4-5. Gzip directives

Command: gzip

Syntax gzip on | off;
Default value gzip off;
Context HTTP, server, location
Description This defines if Nginx will compress the responses.
(continued)
88

www.it-ebooks.info

http://www.abc.com/forbidden.html
http://www.it-ebooks.info/

Table 4-5. (continued)

CHAPTER 4 © NGINX MODULES

Command: gzip_comp_level
Syntax

Default value

Context

Description

Command: gzip_types
Syntax

Default value

Context

Description

gzip_comp_level <level>;
gzip_comp_level 1;
HTTP, server, location

This defines how compressed the response should be on a scale of 1 to
9 where 9 is the most compressed. The higher the compression level the
longer it takes to compress and decompress the data. Setting a higher
compression level can actually result in slow performance on a website
with high volume.

gzip_types <mime.type>;
gzip_types text/html;
HTTP, server, location

This option enables compressing content with the specified mime type. It
is very helpful to filter down the type of files that should be compressed.
For example, it makes a lot of sense to compress files that are of type text
(like JavaScript, CSS, html, etc.), but it doesn't usually help compressing
aJPG or MPEG file. On the contrary, trying to compress an already
compressed file ends up wasting CPU cycles, and often results in poor
performance of a web server.

FastCGI Module

This module allows passing the requests to a FastCGI server for further processing. Table 4-6 shows the basic

semantics of this directive.

Table 4-6. FastCGI directives

Command: fastcgi_pass

Syntax fastcgi pass <address>;

Default value none

Context location

Description This option enables address of FastCGI server. The address can be a URI or

Unix socket. Nginx is not capable of handling CGI requests itself, so it hands
it over to components that are better suited for the job. Typically, a web
application like WordPress that uses PHP is configured using fastcgi.
Example:

fastcgi pass http://localhost:9000;
fastcgi pass unix:/fastcgi.socket;

(continued)

89

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © NGINX MODULES

Table 4-6. (continued)

Command: fastcgi_index
Syntax

Default value

Context

Description

fastcgi_index <name>;
none
http, server, location

This option sets a file name that will be appended after a URI.
Example:

fastcgi_index index.php;

Command: fastcgi_split_path_info

Syntax
Default value
Context

Description

Command: fastcgi_param

fastcgi_split path_info <regex>;
none
location

This option defines a regular expression that captures a value of the FastCGI
path.
Example:

fastcgi_split _path_info ~(.+\.php)(/.+)$;

Syntax fastcgi_param <parameter> <value>;
Default value none
Context location
Description This option sets a parameter that should be passed to the FastCGI server. The
value can contain text, variables, and other combinations.
Example:
fastcgi param SCRIPT_FILENAME $document root$fastcgi script name;
Basic Authentication

This directive enables authentication by the web server using the basic authentication technique, which is a
cleartext (Base 64 encoded) way of authenticating a client. Table 4-7 shows the details.

90

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © NGINX MODULES

Table 4-7. Basic Authentication directives

Command: auth_basic

Syntax auth_basic <string> | off;

Default value auth_basic off;

Context http, server, location

Description This enables validation of users’ credentials using basic authentication

protocol. When set to off, your website will be accessible to everyone without
any authentication taking place.

Command: auth_basic_user_file

Syntax auth _basic_user file <file>;

Default value none

Context http, server, location

Description This option uses a file that will keep username and password of the users that

will be allowed access to website with basic auth enabled.
The file should be in the following format:
usernamel:passwordl

username2:password2:comment

username3:password3

Enabling Third-Party Modules

There are various sources on the Internet from where you can to get third-party Nginx modules. You can look
for modules at the official Nginx website https://www.nginx.com/resources/wiki/modules/. Extending
your server purely depends on the kind of services you are expecting off your Nginx server. There is no
recommended or standard process you need to follow to install modules and use them. You will find most of
the modules include README file that will guide you on the steps required to install the module.

Before you extend Nginx with any third-party module, you need to know about its dependencies. You
will see an example of installing and implementing PAM Authentication Module on the server. The idea here
is to show how you can identify and address dependencies of a module.

PAM Authentication

Let's assume that Basic Authentication module doesn't suit your requirement as well as you would have
liked, and you want something more robust.

In such scenarios, it would be a pain to develop a module of your own. Thankfully, there is a module
that is a great alternative for implementing a flexible authentication mechanism on your website.
PAM is used for implementing various authentication methods like User, LDAP, SQL, and SSO-based
authentication. You will see how to implement PAM Auth for non-root users on the server.

91

www.it-ebooks.info

https://www.nginx.com/resources/wiki/modules/
http://www.it-ebooks.info/

CHAPTER 4 © NGINX MODULES

Compiling the Module with Nginx
Here are the steps you need to follow:

1. Begin by downloading the module from the author’s Github repository. Download
the latest version of the module; as of this writing the module version is 1.4.

wget https://github.com/stogh/ngx_http_auth_pam module/archive/vi.4.tar.gz
2. Extract the files:

tar xzvf vi.4.tar.gz

ngx_http_auth_pam module-1.4/
ngx_http_auth_pam_module-1.4/Changelog

ngx_http auth_pam module-1.4/LICENSE

ngx_http_auth_pam module-1.4/README.md
ngx_http_auth_pam_module-1.4/config
ngx_http_auth_pam_module-1.4/ngx_http_auth_pam module.c

As you can see, the module contains a README.md file that contains all the
instruction for installing and configuring the module. The only file that is the
core of the module is the C source file (ngx_http_auth_pam_module.c).

3. Openthe scripted file that we used in chapter 2 and add the lines below at the
bottom of the file.

--add-module=/home/username/ngx_http_auth_pam_module-1.4

4. Execute the file using ./scripted command.

5. The configure output will have an output like shown below:

configuring additional modules
adding module in /home/username/ngx_http_auth_pam module-1.4
+ ngx_http_auth_pam module was configured

6. Run the make command.

Below is an example of missing dependency while actual compiling the module.
In this case, your server is missing the PAM development package on the server:

/home/username/ngx_http_auth_pam module-1.4/ngx_http_auth_pam module.c:13:31: fatal error:
security/pam_appl.h: No such file or directory

#include <security/pam_appl.h>

compilation terminated.

make[1]: *** [objs/addon/ngx_http_auth_pam module-1.4/ngx_http_auth_pam module.o] Error 1
make[1]: Leaving directory °/home/username/nginx-1.8.0'

make: *** [build] Error 2

7. To eliminate the error, you will need to install PAM module on Ubuntu Server;
here is the command

92

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1656-9_2
http://www.it-ebooks.info/

CHAPTER 4 © NGINX MODULES

sudo apt-get install libpam-dev (or yum install pam-devel on CentOS)

8. Runmake command. This time the module is able to find the required
component on the server and compilation is successful.

9. Runthe sudo make install command.

10. Just to be sure, restart Nginx service and ensure the website is working as
expected:

service nginx start

Verifying Installation

Once you are done installing Nginx, you can verify the module installation. This shows you all the modules
that are included during your scripted installation:

nginx version: nginx/1.8.0

built by gcc 4.8.4 (Ubuntu 4.8.4-2ubuntu1l~14.04)

built with OpenSSL 1.0.1f 6 Jan 2014

TLS SNI support enabled

configure arguments: --prefix=/etc/nginx --sbin-path=/usr/sbin/nginx
--conf-path=/etc/nginx/nginx.conf --pid-path=/var/run/nginx.pid
--lock-path=/var/run/nginx.lock --error-log-path=/var/log/nginx/error.log
--http-log-path=/var/log/nginx/access.log
--http-client-body-temp-path=/var/cache/client_body temp
--http-fastcgi-temp-path=/var/cache/fastcgi_temp

--with-http_gzip_static_module --with-http_stub_status module --with-http_ssl module
--with-pcre --with-file-aio --with-http_realip module --without-http scgi module
--without-http_uwsgi module --without-http_proxy module --user=nginx --group=nginx
--add-module=/home/johndoe/ngx_http_auth_pam module-1.4

Implementing the Module in Nginx
Now that the module is compiled in, follow these steps to configure it:

1. PAM includes two directives auth_pam and auth_pam_service_name. To
implement PAM Auth with Nginx you will need to edit the nginx.conf file.
You can insert the below two lines under the location directive as shown
below:

location / {

root html;
index index.html index.htm;
auth_pam "Authentication Required...";

auth_pam_service_name "nginx";
2. Youwill need to reload nginx configuration after the changes are saved:

sudo nginx -s reload

93

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © NGINX MODULES

3. PAM uses pam_unix. so file for authentication and will be authenticating local
users on the server. You need to ensure the Nginx worker process has read
access to the /etc/shadow file. You can achieve this by adding the account to the
“shadow” group, which is the default group for /etc/shadow file. The command to
achieve the same is below:

sudo usermod -a -G shadow nginx

Validating the Module

You are almost set. To validate, do what follows:

1. You can now validate if the module is able to authenticate the user. You can use a
Chrome extension called Postman.

2. Figure 4-3 shows request status without entering any credentials.

GET v http://127.0.0.1:8811 Params

Path variable key Value '
URL Parameter Key Value ra
Authorization Headers (1) Body Pre-request script Tests
Basic Auth v
Body Cookies Headers(6) Tests Status 401Unauthorized Time 18ms

Connection — keep-alive
Content-Length — 596

Content-Type — text/html

Date — Fri, 04 Dec 2015 10:52:11 GMT
Server — nginx/1.8.0

WWW-Authenticate — Basic realm="Authentication Required..."

Figure 4-3. Nginx requesting valid credentials

3. Now, after you enter a valid username and credential, as shown in Figure 4-4, the
request is processed successfully.

94

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © NGINX MODULES

GET v http://127.0.0.1:8811 Params ‘

Authorization Headers (1) Body Pre-request script Tests

Basic Auth v

Username : johndoe The authorization header will be generated

and added as a custom header.
Password : esessssssses
Show Password
Save helper data to request
Clear Update request
Body Cookies Headers(8) Tests Status 2000K Time 26ms

Connection — keep-alive

Content-Encoding — gzip

Content-Type — text/html

Date — Fri, 04 Dec 2015 10:54:25 GMT

ETag — W/"56616244-264"

Last-Modified — Fri, 04 Dec 2015 09:52:04 GMT
Server — nginx/1.8.0

Transfer-Encoding — chunked

Figure 4-4. Nginx processes the request with valid credentials

Note In CentOS 7 “shadow” group is missing and for security reasons /etc/shadow file does not have
access to anybody except root. It is recommended that you do not fiddle around with “shadow” file. It is a very
sensitive file and has passwords of local users, which are stored in encrypted format.

Summary

In this chapter you have learned about the modules in Nginx and how they define the core purpose of the
web server. You should now be comfortable with setting up your server with custom modules based on
your needs. You have also learned about the different categories of modules, and how it gets hooked in the
request processing pipeline.

Nginx has good support for pluggable modules, and it is in your best interest to check them out
regularly so that you don't end up reinventing the wheel by creating something that is is already present.

95

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

Nginx Core Architecture

Nginx was designed to get a very high throughput from your server, and the man behind the software was an
exceptionally smart engineer, Igor Sysoev. Nginx solved a lot of performance problems in a very unique way
because of the way it was architected. In this chapter, you will learn about the architecture in detail and how
Nginx is able to work as well under the hood.

I'will start with an analogy so that it is easier to understand and remember why things work the way
they do, and how Nginx is different from other web servers.

A Quick Analogy

Question: What do powerful people want in general? Answer: More power!

Now, imagine yourself managing a very busy restaurant. You are famous and attract a huge number of
guests. What will you want? If you said more guests, you are on the right track and your business will grow.
However, relocating your restaurant is not an option, and your motto is to serve as many guests as possible
without any deterioration in service.

Problem 1: Your restaurant has 100 seats and there is a gatekeeper that allows people to come and sit on
a first-come first-serve basis. They order food and wait. Can it be handled better?

Problem 2: You have discovered that almost every guest who comes looks for water. Would you rather
have one guy taking care of all water requirements (and also serve a welcome drink), or will you ask every
waiter to take care of his own clients?

Problem 3: Your chef might be able to context switch in order to prepare different food for different
people. But what if there was just one burner in your stove? As you can guess, he will now have to load/
unload the utensils from the burner in order to get more done. And if he tries to cook way too many recipes
at the same time, he will end up throttling and due to the lack of enough burner time, none of the dishes will
cook properly.

Problem 4: What if you have a few waiters, but they don't talk to each other very much? Will it make
sense that they don't do anything while the chef is actually cooking the dish? “I can't do much...” they say,
since “I am blocked by the chef”!

Problem 5: What if the number of chefs or waiters you have is inadequate and they are getting burned
out due to the never-ending series of requests?

Problem 6: If you have more than, say, 100 guests, the other guests remain outside in a queue and you
may lose them to your competition.

Problem 7: Your staff is tired, not performing well, or it just might be an end of a shift. What happens
to those customers who were being served by him? It won't be nice if they just pack up their bags when the
clock hits 7 p.m. and go home. Right?

Problem 8: There are holidays ahead and you decide to renovate your restaurant. You know that it might
take a few days. Will you close it down and lose revenue? What if the clients didn't like the new ambience;
will you be willing to revert the renovation?

© Rahul Soni 2016 97
R. Soni, Nginx, DOI 10.1007/978-1-4842-1656-9_5

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © NGINX CORE ARCHITECTURE

Managing a good restaurant is not an easy task. Since we don't have much expertise in it, we will not try
to solve these problems for them either. Instead, the idea is to compare these problems from a web server
perspective. The problems will be fixed in a different order as we go along so that it makes more sense and
you can grasp the concepts easily.

The Master Process

Think of the master process as the owner of the restaurant described in the preceding section. The master
process of Nginx is the one who performs privileged operations like reading from the configuration files, binding
to ports, and spawning child processes when required. The worker processes are almost analogous to waiters in
the restaurant. They do the running around and manage the show. Notice that the guests at the restaurant don't
come to visit the owner. They are there to have food that the chefs make in the kitchen. The guests don't need to
know who does the hard work behind the scenes. The chefs work in a dedicated manner to make the dish, and
play a role analogous to slow input/output (I/O) or long-running networking calls in this story.

The worker processes are spawned as soon as the service is restarted, and you can change the number
of worker processes inside your configuration file /etc/nginx/nginx.conf by using the worker_processes
directive. It defaults to 1. The basic rule of thumb suggests keeping this value equal to the number of cores
you have on your server. You can also set this attribute to auto and Nginx will try to auto-detect it. Once it is
set, you can save your configuration and reload the configuration using nginx -s reload.

If you execute the following ps command, you will be able to see all your worker processes along with
the master process. Notice that the process id (PID) for the master process in the output is 30921. All the
child processes have a different PID but the parent process for all of them is 30921.

ps -ef --forest | grep nginx

root 30930 13588 0 01:58 pts/1 00:00:00 _ grep --color=auto nginx

root 30921 1 0 01:58 ? 00:00:00 nginx: master process /usr/sbin/nginx -c /
etc/nginx/nginx.conf

nginx 30922 30921 0 01:58 ? 00:00:00 _ nginx: worker process

nginx 30923 30921 0 01:58 ? 00:00:00 _ nginx: cache manager process

nginx 30924 30921 0 01:58 ? 00:00:00 _ nginx: cache loader process

After updating the worker_processes directive to 4 (in nginx.conf file) and reloading the configuration,
the output appears as follows. You will notice that the master process didn't recycle since the PID is still
30921. On the contrary, the child processes have been recycled by the master process and all of them now
have different PIDs.

root 30940 13588 0 02:00 pts/1 00:00:00 _ grep --color=auto nginx

root 30921 1 0 01:58 ? 00:00:00 nginx: master process /usr/sbin/nginx -c /
etc/nginx/nginx.conf

nginx 30934 30921 0 02:00 ? 00:00:00 _ nginx: worker process

nginx 30935 30921 0 02:00 ? 00:00:00 _ nginx: worker process

nginx 30936 30921 0 02:00 ? 00:00:00 _ nginx: worker process

nginx 30937 30921 0 02:00 ? 00:00:00 _ nginx: worker process

nginx 30938 30921 0 02:00 ? 00:00:00 _ nginx: cache manager process

The way the master process orchestrates the child worker processes solves Problem #5. Just like you would
need to hire more chefs to handle more requests simultaneously, you might need to scale up and increase the
total number of CPUs on your server, and tweak the worker_processes directive appropriately. Another way
would be to better the disk or network throughput. Every bit that you can do to make the I/O better will help the
overall performance of the web server. I/O happens to be the roadblock mostly, and adding other resources like
CPU might not help if the I/O or network itself is slow. Careful analysis of your hardware is paramount!

98

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 " NGINX CORE ARCHITECTURE

In Figure 5-1 you will find multiple worker processes running along with the cache manager and cache
loader. (You will learn more about caching in coming chapters.) Master Process is a very effective manager. It
manages the resources that, in turn, carry on the actual work of serving the client requests.

| Cache Manager | | Cache Loader |

A A

[Master Process]

Y Y

l Worker Process #1] [Worker Process #2] [Worker Process #3]

Figure 5-1. Master Process with its child processes

This effectively solves Problem #2 so that dedicated processes execute their own jobs (just like you
would ask a dedicated waiter to take care of the water needs in the restaurant!). The cache loader and cache
manager are two dedicated resources that have been given a specific job of managing cache. The loader
runs at the startup to load disk-based cache into memory and exits. It is smartly scheduled so that it doesn’t
consume unnecessary resources.

A cache manager, on the other hand, stays up if you have caching configured. It is in charge of cleaning
up the cache files so that the cached files are pruned periodically, and it complies with the configured
values. If you have carefully read the outputs mentioned earlier, you might have noticed the presence and
absence of the following line in the two outputs. Essentially, the cache loader appeared in the first one, did
its job and automatically exited:

nginx 30924 30921 0 01:58 ? 00:00:00 _ nginx: cache loader process

Processes vs. Threads

Fundamentally, from the OS perspective, the work is done inside a process using one or many threads.

The processes can be considered as a boundary created by the memory space. Threads reside inside a
process. They are objects that load the instructions and are scheduled to run on a CPU core. Most server
applications run multiple threads or processes in parallel so that they can use the CPU cores effectively. As
you can guess, both processes and threads consume resources and having too many of either of them leads
to Problem #3 where the OS does a lot of context switching and starts throttling.

Tip Simply bumping up the number of worker processes doesn't help much since you will be simply
increasing the number of threads or process without increasing the CPU cores. If you increase the value of
worker processes directive to a large number, you will end up reducing the performance instead! When in
doubt, keep the value of number of worker processes equal to the number of CPU cores on your web server.

99

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © NGINX CORE ARCHITECTURE

Software like IIS and Apache use a multithreading approach to handle connections. In simple words,
every thread takes care of a connection. As you can easily guess, there will always be a problem when you
try to scale for thousands of simultaneous connections. This problem aggravates if the client has a slow
connection speed. This situation is analogous to Problem #1, and the core issue is that people eat at a
different pace and mostly it is slower than the rate a master chef cooks!

In a similar way, a typical web server often creates the pages quickly. Unfortunately, it doesn't have
control on the clients' network speed. This means that in a blocking architecture the server resources get tied
down because of slow clients. Bring a lot of slow clients, and eventually you will find a client that complains
that the server is slow. What an irony! Nginx handles the requests in such a way that its resources are not
blocked.

The Worker Process

Each worker process in Nginx is single threaded and runs independently. Their core job is to grab new
connections and process them as quickly as possible (in our example, the worker process is analogous to
the waiters)! When the worker processes are launched, they are initialized with the configuration and the
master process tells them to listen to the configured sockets. Once active, they read and write content to
disk, and communicate with the upstream servers. Figure 5-2 should help in understanding the high-level
architecture.

[Master Process]
A
Y A 4 Y
. Application Servers
Worker Worker Worker
Requests Process Process Process
>
3 H : > H - Web Servers
e
Cache nE
— Mail Servers
Lt uWSGI, FastCGl, SCGI
Cache Loader Cache Manager

Figure 5-2. Inside a worker process

Since they are all forked from the master process, they can use the shared memory for cached data,
session persistence data, and other shared resources.

100

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 " NGINX CORE ARCHITECTURE

Note InWindows, a thread is comparatively much lighter than a process. Luckily, this is not the case in
Linux. On the contrary, synchronizing shared memory is expensive and Linux developers have managed to find
a way to ensure that switching tasks is very fast and cheap. This is important, since in Nginx, they decided
not to create multiple threads per process. You can use thread pools in special use cases where you can have
multiple threads per process.

With the restaurant analogy, imagine that the waiters are not allowed to sit back and relax while the
chefs are cooking the meal. Just like an effective manager would have liked, Nginx follows a callback system.
Here the chefs call the waiters back to let them know that the meal is ready! So, basically the order is given to
the chef, and the waiter is back in business. He takes orders from other customers, and if possible helps with
the takeaway orders as well. This callback method works very well in serving a lot of customers and helps
solve Problems #4 and #6.

With an effective worker processes non-blocking callback mechanism in place, the server is able to
handle a lot more requests since the worker threads do not get blocked on slow I/0. They are neither waiting
on the slow I/0 from a back-end application server, nor they are waiting on a slow client!

Technically speaking, there is a run loop and it relies heavily on the idea of asynchronous task handling.
It assumes that the tasks will be as non-blocking as possible. Figure 5-3 illustrates a typical run loop. These
events can be about sockets being ready for read/write, or other system-related events that happen due to
the way Nginx works with the files. Overall, the biggest issue with this approach is the assumption that the
calls will be non-blocking, which is easier said than done!

Event queue
empty?

Process Event

Dequeue Event

Figure 5-3. Arunloop

101

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © NGINX CORE ARCHITECTURE

If the call happens to be a blocking type, (for example, fetching a large file from a disk, a CPU-intensive
process, or a synchronous database call from a back end, etc.), there is nothing much that the worker process
can do during the meantime, except finish the job at hand, and attend to the system queue once done. This
happens because of the fact that by default the Nginx worker process has only one thread to take care of the
task. To take care of this issue, thread pools have been introduced in the later versions of Nginx (>1.7.11).
Using thread pools, this issue is taken care of. For long-running blocking calls, a new thread is spun while the
primary thread continues to serve other requests.

Remember that blocking calls are your biggest enemy from a web server administrator perspective.

Try to remove the blocking wherever possible. Just because you have an option of thread pool shouldn't
imply that you use it. There are places where it makes perfect sense, but careful analysis of the workload is
paramount. Blocking has a tendency to degrade the performance in a BIG way!

State Machines

Nginx has different state machines. A state machine is nothing but a set of instructions that tell it how to
handle a particular request. A HTTP state machine is the most commonly used, but you also have other state
machines for processing streams (TCP traffic), mails (POP3, SMTP, IMAP), and so on.

When incoming requests hit the server, the kernel triggers the events. The worker processes wait for
these events on the listen sockets and happily assigns it to an appropriate state machine.

Processing an HTTP request is a complicated process and every web server has a different way of
handling its own state machines. With Nginx, the server might have to think whether it has to process the
page locally, or send it to the upstream or authentication servers. Third-party modules go one step further by
bending or extending these rules.

Primarily, one worker process can cater to hundreds (even thousands!) of requests at the same time
even though it has just one thread internally. It is all made possible due to the never-ending event loop that
is non-blocking in nature. Unlike other web servers (like IIS & Apache), the threads in Nginx don't wait till
the end of the request. It accepts the request on the listen socket, and the moment it finds a new request, it
creates a connection socket. Figure 5-4 should help clarify this process.

102

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 " NGINX CORE ARCHITECTURE

443 N 443 C

Look!!!
A Request...

Look!!!
A Request...

Accept new connection = Accept new c ion
Y v
Read UNTIL Request
completes Create connection socket
Y Y
Write UNTIL Response Look!!! i i
Add it to the socket list
completes No An Event...
Y
'Wait if the connection is kept
alive using KeepAlive Dat ilab}
ata available
for Reading? flead
Report ve @
Data available .
for Writing? Willa
Close connection Any Error or

Timeout?

Close connection & Remove
from socket list

Figure 5-4. Traditional web server request processing (left) and Nginx (right)

Notice that in the traditional way (Figure 5-4, left), the threads or worker process is not freed up until the
client consumes the data completely. If the connection is made to stay alive by using the keepalive setting,
the resources allocated to this thread/process remains alive until the timeout of the connection.

Compare this to Nginx, and you will find that the newly created connection socket keeps listening for
the events of the ongoing requests at its own pace. So, the kernel will let Nginx know that the partial data
that is sent to the client has been received, and the server can send additional data. This non-blocking event
mechanism helps to achieve high scalability on the web server. In the meantime, the listen sockets are free to
serve additional requests!

103

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © NGINX CORE ARCHITECTURE

Update Configuration

Recall problem #7. You just found out that there is an issue with the worker process and the worker process
needs to be restarted. Or maybe you just want the worker processes to be aware of the new configuration
change you just made.

One way would be to kill the worker processes and respawn them so that the configuration is loaded
again. Updating a configuration in Nginx is a very simple, lightweight, and reliable operation. All you need to
doisrunnginx -s reload. This command will ensure that the configuration is correct, and if it is all set, it
will send the master process a SIGHUP signal.

The master process obliges by doing two things:

1. Itreloads the configuration and forks a new set of worker processes. This means,
that if you have two worker processes running by default, it will spawn two more!
These new worker processes will start listening for connections and process
them with new configuration settings applied.

2. TItwill signal the old worker processes to gracefully exit. This implies that the
older worker processes will stop taking new requests. They will continue working
on the requests that they are already handling, and once done will gracefully shut
down after all the connections are closed.

Notice that due to new worker processes being spawned, there will be additional load on the server for a
few seconds, but the key idea here is to ensure that there is no disruption in service at all.

From our restaurant analogy point of view, it is somewhat like having waiters for the next shift take
charge. They start catering to new customers, while the existing waiters complete their orders and simply
pack up for the day.

Upgrade

Let’s look at Problem #8 now. This is a much tougher situation. How do you ensure that there is no service
disruption while the restaurant is getting painted or refurnished? As you can guess, in a real world it would
be an extremely difficult (or probably impossible) situation to handle! For simplicity let's assume that the
restaurant owner is a rich guy, and there is an empty facility just next to the restaurant. They might decide to
rent the new facility, modify it as per the requirements, and have the new customers come to the new facility
instead under the same brand name! All this while, the staff remains the same. So, they share the resources
(staff) and once the existing customers from the older facility are done with their meals, the restaurant is
shut down. Not too bad, huh? This is probably not as easy as it sounds realistically, but you get the idea.

Nginx has a somewhat similar approach. Here instead of spawning new worker processes with new
configurations, it starts the newer version of the web server, which shares the resources with the older
version. These keep running in parallel and their worker processes continue to handle traffic. If you find that
your application is doing well with the newer version, you can send signals to kill the older version or vice
versa!

This approach is amazingly efficient and is an ingenious solution to handle live upgrades of an entire
web server. You will learn more about it with hands-on examples in chapter 9.

HTTP Request Processing in Nginx

Now that you know the overall architecture of Nginx, it will be easier to understand how a typical request
is served end-to-end. Figure 5-5 should give you an overall idea about the request processing in Nginx.
Consider that you have a website that requires a valid user to access the site and wants to compress every
request that is served by the web server. You will see how different components of Nginx work together to
serve a request.

104

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1656-9_9
http://www.it-ebooks.info/

CHAPTER 5 " NGINX CORE ARCHITECTURE

HTTP Request

A
[Parse URI } ----------------- ikl Al { Type check]
If Valid If Va|1lid
Reads location |)' 3R (- All modules: Insert
configuration ! filters
If Valid E If Valid

[AII modules: Header } .

el [FastCGlI handler]

If Invalid

K vad or Error

[AII modules: Check } i

Y
{ Gzip handler]

access
If Valid :
: \
[Check UserID } ---------------- > [Output filter]
If Valid '
E \
[Auihorization Check} ---------------- > [Reset handler]
T H
If Valid :
| \
A
' All modules: Log
! transaction
Y
Send HTTP Error
Message

|—> HTTP Response

Figure 5-5. Nginx HTTP Request processing

The order in which modules are initiated can be found in the modules files under auto directory.
The order is defined during when the . /configure script is executed.
You can take a look at Figure 5-5 to understand the flow:

1. After reading the main context from the nginx.conf, the request is passed to http
context.

2. The first step is to parse the Request URI to a filename.

105

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © NGINX CORE ARCHITECTURE

3. Read the location configuration and determine the configuration of a requested
resource.

4. All modules parse the header and gather module specific information.

5. Checksif the client can access of the requested the resource. It is at this step that
Nginx determines if any specific IP addresses are allowed or denied, etc.

6. Checks if the credentials supplied by the client are valid. This involves looking
at the back-end system for validation. It can be a back-end database or accounts
configured elsewhere.

7. Checksif the client credentials validated in the earlier step is authorized to
access the resource.

8. Determines the MIME type of the requested resources. This step helps to
determine the content handler.

9. Inserts modules filters in the output filter chain.

10. Inserts content handler, in this example its FastCGI and gzip handler. This will
generate the response for the requested resource. The response is forwarded to
the output filter chain for further manipulation.

11. Each module logs a message after processing the request.

12. The response is served to the client or any other resource in the chain (load
balancer or proxy).

13. Ifthereis any error in either of the processing cycles, a HTTP error message is
generated and the client is responsed with the message.

Summary

As a web administrator, it is important that you understand the underlying architecture to get the best
throughput. In this chapter you have learned about the core architecture of Nginx and why it tends to be as
efficient as it is. You have explored the relationship between the master and worker processes. You also now
know about the kind of bottlenecks Nginx removes so that you can cater to a large number of requests.

We hope that the analogy presented in this chapter has helped you to better understand the concepts.

106

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

Hosting Web Sites on Nginx

I started it as an experiment to boost the delivery of static content (my reference examples
of that time were things like thttpd). But as soon as other people tried it in production, they
immediately requested the proxy component, and the whole “web acceleration” direction
had started. In short, NGINX evolved from a simple experiment with the idea of solving
the C10k problem, to a complete solution for proxying, load balancing, SSL, static content
acceleration, and a few unique capabilities.

—Igor Sysoev, http://bit.1ly/nginx_interview

The above excerpt from an interview implies that Nginx never really started as a server for dynamic
languages like PHP, etc. It evolved from being a static-only server to web accelerator, and so on. In short,
Nginx is used for the goodness it provides from static files point of view, and uses its proxy capabilities to
hand off the request to the back-end server or processes in order to handle dynamic requests. This gives
you the best of both worlds. In this chapter, the focus is on serving the static content only. For brevity, only
CentOS servers will be used on a virtual machine using VirtualBox.

Every website is different, not only from the content perspective, but also from the technology
perspective. Primarily, you can categorize the applications as static or dynamic. It actually makes a lot of
sense to host multiple websites on the same server if the server can handle it.

The static sites contain a lot of resources like images, stylesheets, JavaScript files, html, text, PDF, and
so on. The basic nature of the content is that it is made once and served multiple times to the visitors. If you
have to change the content, you will need to edit the file appropriately and update the server so that new
content gets served to the audience.

The dynamic sites, on the other hand, have scripts and programming languages working at the back end
emitting pages that your browser can understand and render directly. The key difference is that the page you
view is never really saved on the server’s disk. It also possible that what you are seeing on a page could be
completely different from what others would see (for example, Facebook). These websites are very flexible in
nature. However, keep in mind that even the most dynamic websites would still use a lot of resources that are
static in nature. Nginx is not a programming language or framework that allows you to create dynamic pages.
But it does help in front ending the dynamic applications with grace by serving static pages, scripts, style
sheets, images, and other static content, while offloading the dynamic content generation to the back-end
servers.

You don’t always need to spin multiple servers in order to serve multiple websites. That would be a
huge waste of server resources, especially if the websites are not attracting a lot of hits. It is often a good idea
to host the website and scale up and scale out as needed.

© Rahul Soni 2016 107
R. Soni, Nginx, DOI 10.1007/978-1-4842-1656-9_6

www.it-ebooks.info

http://bit.ly/nginx_interview
http://www.it-ebooks.info/

CHAPTER 6 © HOSTING WEB SITES ON NGINX

SCALE UP VS. SCALE OUT

Scale Up: If you have a web server that attracts a lot of hits, it is possible that adding more CPU or RAM
might help depending on the workload. An activity where you add more resources to the existing server
is called scaling up the server.

Scale Out: Scaling up has its limitations, since you can only scale up as much as your hardware allows
you to. Scaling out is the activity where you add more servers in order to keep up with the traffic. Most
popular websites use scaled-out servers.

Server blocks in Nginx help you to map the website content and ensure that each domain points to the
appropriate content only. You can host multiple websites on the same server and differentiate them using
server blocks. If you are coming from an Apache background, the server directive is similar to a virtual host.

Web Server Setup

It is important that you practice as we go along. In this chapter, you will need to start afresh with two servers.
You can use VirtualBox to create the CentOS servers. Before you create the servers, read through the article at
http://attosol.com/centos-setup-and-networking-using-virtual-box. It will guide you in a step-by-step
manner regarding the installation steps. Remember, you will need to set up the servers using different variables
as discussed below.

We will call our servers WFE1 and WFEZ2. In chapter 8, you will learn about load balancing these servers.
For now, creating two servers with hostname wfe1.localdomain and wfe2.localdomain should suffice.

Once your servers are provisioned, execute ip addr on both the servers and you will notice that the output
is exactly the same (similar to Figure 6-1). In simple words, this implies that they are in their own isolated
networks and will not be able to ping each other. Let’s change this so that both the servers have different IPs.

[rootBufel “I# ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 gdisc nogueue state UNKNOWN
linksloopback BH:88:88:6868:88:88 brd H0:80:0868:80:86:88
inet 127.8.8.1-8 scope host lo
valid_1ft forever preferred_Ift forever
ineté ::1-128 scope host
valid_I1ft forever preferred_Ift forever
Z: enpBs3: <{BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1588 gdisc pfifo_fast state UP
glen 1888
linksether 88:88:27:98:7e:9a brd fF:ff:ff:fF:FF:TF
inet 18.8.2.15-24 brd 18.8.2.255 scope global dynamic enpBs3
valid_1ft 85185sec preferred_Ift 85185sec
ineth feBB::aBB:27ff :fe98:7e9%a,64 scope link
valid_Ift forever preferred_Ift forever
[rootBufel ~I _

Figure 6-1. Output of ip addr

108

www.it-ebooks.info

http://attosol.com/centos-setup-and-networking-using-virtual-box
http://dx.doi.org/10.1007/978-1-4842-1656-9_8
http://www.it-ebooks.info/

CHAPTER 6 © HOSTING WEB SITES ON NGINX

VirtualBox creates the VMs in such a way that they are not interconnected by default due to security
reasons. You can change this by changing the preferences for VirtualBox. The idea is to simply create a NAT
network called CentOSFarm (see Figure 6-2).

VirtualBox - Network

2o s B

Update Language Display Proxy
‘ 2 Enable Network
Active Name Network Name: | CentOSFarm| |]
/1 Na I e
Network CIDR: 10.0.2.0/24 P

Network Options: Supports DHCP
| Supports IPv6
Advertise Default IPv6 Route

Port Forwarding

? T Cancel | OK

Figure 6-2. Creating a NAT network

Now that the NAT network is created, you need to change the server settings for both WFE1 and WFE2
as shown in Figure 6-3.

wfe1 - Network

mEE Qe -

General System Display Storage Audio Shared Foiders User Interface

Adapter 2 Adapter 3 Adapter 4

v Enable Network Adapter

Attached to: NAT Network <]
Name: = CentOSFarm B
¥ Advanced
Adapter Type: Intel PRO/1000 MT Desktop (82540EM) 2
Promiscuous Mode: | Deny i
MAC Address: 080027907E9A >
Cable Connected
Port Forwarding

Cancel OK
Figure 6-3. Changing NAT network settings for WFE1 and WFE2

109

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © HOSTING WEB SITES ON NGINX

Once you are done making these changes, you can run ip addr again on both terminals and you will
find that they now have different IPs. If you try to use the ping command, you will find that both these servers
are now connected and able to ping each other. Your lab setup, when complete, should have values as shown
in Table 6-1. It is possible that you get a different set of IPs while creating your virtual machines. Write them
down, so that you can make the necessary changes in the upcoming sections based on your own IPs.

Table 6-1. Server Naming Convention

Server Name WFE1 WFE2
IP Address 10.0.2.6 10.0.2.7
HostName wfel.localdomain wfe2.localdomain

Connecting Host and Guest Servers

So far you have your servers talking to each other using a NAT network. It is helpful to connect to the server’s
terminal from the host machine so that you can copy files over and perform multiple management activities
directly from your host. To ensure you are able to do this, you will need to set up port forwarding so that
VirtualBox allows your request to reach the guest servers.

You can click the port-forwarding button (shown in Figure 6-2) and configure the rules as per Figure 6-4.
Notice that there are rules created for both WFE1 and WFE2. The rules are created for HTTP and SSH as well,
so that you can use a terminal (on Mac/Linux) or PuTTY (on Windows) to login using SSH. Also notice the IPs,
since they are the same as for Table 6-1.

= re

Name Protocol HostlP HostPot GuestlP GuestPort | &
HTTP - WFE1 TcP | 127.001 |8006 | 10026 |80 S
HTTP - WFE2 ‘TcP | 127001 8007 | 10027 |80
SSH - WFE1 TcP 127.00.1 | 3026 10026 |22 |
| SSH - WFE2 TP | 127004 (3027 | 10027 |22 |

Cancol (D

Figure 6-4. Setting up port-forwarding rules

Once the rules are set up, you can connect to WFE1 and WFE2 using the following commands on OSX
and Linux (for Windows, you can use PuTTY):

#ssh -p 3026 root@127.0.0.1
#ssh -p 3027 root@127.0.0.1

110

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © HOSTING WEB SITES ON NGINX

Let’s do a basic Nginx install now on both these servers. Execute the following commands on both
servers sequentially (you have already learned what they do in chapter 2):

vi /etc/yum.repos.d/nginx.repo

Add the following text to the file:
[nginx]
name=nginx repo
baseurl=http://nginx.org/packages/centos/7/$basearch/
gpgcheck=0
enabled=1

Save and exit. Run the following command on both servers:

yum install -y nginx
nginx

At this point, if you try browsing from your host machine using the following URIs (the port-forwarding
rules for HTTP were set in Figure 6-4), you should be able to view the pages hosted on your servers (Figure 6-5):

http://127.0.0.1:8006
http://127.0.0.1:8007

[welcome to nginx! ®

€ & C f [127.0.0.1:8006 %t 9 =

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

Figure 6-5. Browsing an Nginx website using port forwarding from a host machine

User Creation

So far, you have installed Nginx and connected the two servers using NAT network. You have also been able
to use the secure shell (ssh) to connect to the servers using ssh -p 3026 root@127.0.0.1. However, there is
a problem.

111

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1656-9_2
http://www.it-ebooks.info/

CHAPTER 6 © HOSTING WEB SITES ON NGINX

Connecting to the server using root account is not considered a secure web practice. Besides, in
today’s world where everything is going to the cloud, you often don’t have a root access to begin with. If you
are using AWS EC2 instance or Azure for hosting your virtual servers, an account will be provisioned for
you automatically, and you would use that account to access your servers. Since you are working locally at
the moment on your virtual machines hosted on VirtualBox, you have full liberty to play with all different
accounts. You will be following good practices nevertheless.

Putting that small detour aside, let’s start by creating normal users. Use the commands below (on both
WFE1 and WFE2) to create a user and assign a password:

#useradd user1
#passwd user1

You can log out from the root prompt by using (logout command) and log back in using the following
command:

ssh -p 3026 user1@127.0.0.1.

At the prompt, type pwd and you should see /home/user1.

Sample Applications

Now it’s time to upload the website content to the web server. Instead of creating sample applications from
scratch, you can visit https://github.com/attosol/nginx and download the zipped version of the repository.
This repository is made only for the purpose of this book and contains various samples curated from the
open source community.

Once downloaded, extract the zip file and navigate to the folder called static. It contains two
subfolders called sitel and site2. Both of them contain different website samples created using static
content only. In this chapter, you will deal only with the static content.

Uploading Content

You can use copy command or an FTP client on your host server or desktop to make the data transfer easy.
One of the popular tools is FileZilla; you can download it from https://filezilla-project.org/. It is open source
and is extremely powerful. You can use Site Manager in FileZilla to set up your connection so that it is easy
for you to upload content easily. Figure 6-6 will show you the details required to be filled in order to connect
to the virtual server.

112

www.it-ebooks.info

https://github.com/attosol/nginx
http://www.it-ebooks.info/

CHAPTER 6 © HOSTING WEB SITES ON NGINX

[BN] Site Manager

Select Entry:
[eCIEIN Advanced Transfer Settings Charset
¥ .) My Sites

4 Host: 127.0.0.1 Port: 13026

L wrE2 Protocol: SFTP - SSH File Transfer Protocol i
Logon Type: = Normal B
User: userl

Password: ssscscene

Comments:

New Site New Folder
MNew Bookmark Rename
Delete Duplicate

ok || canca

Figure 6-6. Using Site Manager to create connections for frequent use

Notice the use of port and protocol. Also notice that you can add multiple entries to store all your
connections at once. Once you connect you will land inside /home/user1 by default.

Let’s assume that you are working on some server that you have not provisioned yourself. It may be a bit
tricky initially to figure out the default web path and configuration file location for your server. In the Linux
world, there are a wide variety of distros available and the default location varies a lot. When stuck, you can
use the following method to find the default configuration path of any Nginx server:

Step 1: Execute nginx -V and take a look at the --conf-path:

nginx version: nginx/1.8.1

built by gcc 4.8.3 20140911 (Red Hat 4.8.3-9) (GCC)

built with OpenSSL 1.0.1e-fips 11 Feb 2013

TLS SNI support enabled

configure arguments: --prefix=/etc/nginx --sbin-path=/usr/sbin/nginx --conf-path=/etc/
nginx/nginx.conf --error-log-path=/var/log/nginx/error.log --http-log-path=/var/log/nginx/
access.log --pid-path=/var/run/nginx.pid --lock-path=/var/run/nginx.lock --http-client-body-
temp-path=/var/cache/nginx/client_temp --http-proxy-temp-path=/var/cache/nginx/proxy_temp
--http-fastcgi-temp-path=/var/cache/nginx/fastcgi temp --http-uwsgi-temp-path=/var/cache/
nginx/uwsgi_temp --http-scgi-temp-path=/var/cache/nginx/scgi_temp --user=nginx --group=nginx
--with-http_ssl module --with-http realip module --with-http_addition_module --with-http_
sub_module --with-http _dav_module --with-http flv_module --with-http _mp4 module --with-http_
gunzip_module --with-http_gzip stati

113

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © HOSTING WEB SITES ON NGINX

Step 2: Open the config file (/etc/nginx/nginx.conf), and locate the server block. By default, the root
configuration file will not have the server block. Instead, it will be structured like the following:

user nginx;
http {
include /etc/nginx/conf.d/*.conf;

Step 3: Open default. conf file inside /etc/nginx.conf.d and locate the root directive. That location
will be your default root for the web server.

root /usr/share/nginx/html;

Once the root is determined, you would want to start uploading the content. Well, there is another issue
that you need to fix before you could do that. Recall that you are not using the root account any more. The
useri account that you added doesn’t have write access and FileZilla will not be able to upload the content
directly to the server. You can fix this in multiple ways:

¢ Youmay be tempted to use chmod 777 /usr/share/nginx/html. NEVER do that, period!
Most people who use chmod 777 on a web server don't realize what they are doing.
Basically, it will open up your web server for full access by anyone. You don’t everyone in
the world to come over and mess around with your servers. If you have already done that
by mistake, use chmod 755 /usr/share/nginx/html to fix the permissions.

e You can change the ownership of the root folder so that the allowed users can upload
the file. Assuming user1 is one of the allowed users, you can use the following
command to allow access to useri:

chown user1l /usr/share/nginx/html.
e The previous approach doesn’t scale well if you have multiple members uploading to

the same directory (which is often the case). To fix that, you can create a group and
add users to that group instead.

e Create a new group called www by using this command:
groupadd www
e Modify the user1 information such that it belongs to this group www.

usermod -a -G www useril

e Make this group an owner (similar to chown command that is used for a user)
of the root path /usr/share/nginx/html. -R switch is used to ensure that all
permissions are set recursively.

chgrp -R www /usr/share/nginx/html

e Now, grant write permission to this group on the root directory.

chmod -R g+w /usr/share/nginx/html
114

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © HOSTING WEB SITES ON NGINX

Almost done! This group exercise may appear a bit cumbersome, but it will keep your web server in
good shape from a security perspective. After all this exercise, you should be ready to upload the folder to the
root path. Upload the content that you downloaded earlier so that the structure looks like Figure 6-7. Please
note that none of the files or directory names have been modified.

Local site: /Users/rahulsoni/DocumentsBitbuckdi | Remote site: /usr/share/nginx/html
> B .git ¥ ¥ nginx
\ N | \ N
v B sitel ¥ B sitel
P> 9 Shield Theme » B Shield Theme
v B site2 ¥ B site2
W css g ¥ css
> W img ' > W img
»js »is
¥ landy-icons ¥ landy-icons
> B nikkul 2 omf
o — 2 os-prober

Figure 6-7. Uploading files

You can see the website named Shield Theme hosted inside a subdirectory under site1, whereas site2
contains another website called Landy along with its dependencies.

Hosting Websites

Your servers are now up and ready to host the websites. But there are still issues that you should be aware
of. If you browse to http://localhost:8006/site2/index.html, you will find the website being rendered as
Figure 6-8 depicts.

Asyou can see, the URI is still localhost and there is a path /site2/index.html that is being rendered in
the browser. Even though the site is rendering, it is not an individual website. An isolated website should be
such that when you type http://localhost:8006 as your URI, you should be able to see this page as in Figure 6-8.
Not only that, but the content of the site2 should not be rendered from the root site at all. At the moment, the
root site is the only website for Nginx, and the configuration needs to be fixed.

115

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6~ HOSTING WEB SITES ON NGINX

€ © C f [localhost:8006/site2/index.html o L=

Figure 6-8. Website rendering as a relative path

As you have already learned, the default configuration file of Nginx (/etc/nginx/nginx.conf), contains
an include directive (include /etc/nginx/conf.d/*.conf;) at the end of the configuration file, and it
ensures that all the conf inside conf.d directory gets loaded as part of the Nginx configuration.

Itis a good idea to rename the default.conf file as a template (say, default.template) and create
other websites based on the default.template. The reason why this renaming is done is to ensure that this
template doesn’t get included from the nginx.conf due to the include directive. To rename, use the following
command:

mv /etc/nginx/conf.d/default.conf /etc/nginx/conf.d/default.template

Follow the renaming with a configuration reload (use nginx -s reload) and refresh your browser
(http://localhost:8006/). The page wouldn’t load, and this is fine.

From here on in this book, wherever you read reload configuration, it would mean executing the command
nginx -s reload.Also, most commands here would work without sudo, but a few need sudo before that. If
any of the commands do not work without sudo, try it again with sudo.

116

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © HOSTING WEB SITES ON NGINX

Itis a good practice to keep the name of the configuration similar to your domain name. In this chapter,
you will make two websites hosted at sitel.comand site2.com. These websites should render if someone
uses Www.sitel.comor www.site2.com as well. Start by making a copy of the template using the command
that follows:

cp /etc/nginx/conf.d/default.template /etc/nginx/conf.d/sitel.conf
After that, edit the site.conf file so that it looks like the following
server {
listen 80;
server_name localhost;
root /usr/share/nginx/html/site1/Shield\ Theme;
location / {

index index.html index.htm;
}

error_page 500 502 503 504 /50x.html;
location = /50x.html {

root /usr/share/nginx/html;
}

Reload configuration and browse http://localhost:8006. Contrary to what you might have guessed, it
throws a 404 error. What went wrong?

TROUBLESHOOTING TIPS

Try listing the directory and sure enough, it is there:

#ls /usr/share/nginx/html/site1/Shield\ Theme
assets index.html

Instead of guessing around, you can take a few approaches to troubleshoot such issues without wasting
time.

Approach 1: The first one is accessing the tail of the access logs like so:

#tail /var/log/nginx/access.log
/usr/share/nginx/html/site1/Shield\x5C Theme - / - GET / HTTP/1.1 - 404 - 570 -

Approach 2: Sometimes, you might find that a plain status code doesn't help as much. In that case, you
can use a command-line utility called strace. If it is not available on the CentOS version you are using,
download it using yum.

#sudo yum install -y strace

117

www.it-ebooks.info

http://www.site1.com/
http://www.site1.com/
http://www.site2.com/
http://www.it-ebooks.info/

CHAPTER 6 © HOSTING WEB SITES ON NGINX

1. strace needs process id (PID) of the process you need to hook into. Use the
following command to get the PID of the worker process.

ps -aux | grep nginx

root 28524 0.0 0.2 48236 2052 ? Ss 14:15 0:00 nginx: master process /usr/
sbin/nginx -c /etc/nginx/nginx.conf
nginx 28534 0.0 0.2 48240 2184 ? S 14:18 0:00 nginx: worker process

2. After you get the PID, use strace as follows and refresh the URI again in your
browser:

strace -p 28534 -e trace=file -f
3. Once you refresh the browser, strace should output a few lines like so:

Process 28534 attached

stat("/usr/share/nginx/html/site1/Shield\\ Theme/index.html", ox7fffd772cb90) = -1 ENOENT
(No such file or directory)

stat("/usr/share/nginx/html/site1/Shield\\ Theme", ox7fffd772cb90) = -1 ENOENT (No such file
or directory)

As you can see, this gives you a much clearer picture of what is going on. It seems like Nginx has issues
with parsing path with space.

Once you know the reason, fixing it is easy. Fix the sitel.conf by changing it like so:
server {

listen 80;

server_name localhost;

root "/usr/share/nginx/html/site1/Shield Theme";

location / {

index index.html index.htm;
}

error_page 500 502 503 504 /50x.html;
location = /50x.html {

root /usr/share/nginx/html;
}

Now, the browser should be happy and it should render the site well (see Figure 6-9).

118

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © HOSTING WEB SITES ON NGINX

[} SHIELD - Free Bootstrap = %

c# localhost:8006 - O =

Figure 6-9. Sitel rendered using localhost:8006 as URI

Websites Using Different Names

Try to host site2 using the same concept, and with site2.conf (create a copy of site1.conf if you like and
make the changes required) file as follows:

server {

listen 80;
server_name localhost;

root "/usr/share/nginx/html/site2";
location / {

index index.html index.htm;
}

error_page 500 502 503 504 /50x.html;
location = /50x.html {

root /usr/share/nginx/html;
}

119

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © HOSTING WEB SITES ON NGINX

It might look simple, but when you try reloading the configuration, it won’t work and throw an error
message instead:

#nginx -s reload
nginx: [warn] conflicting server name "localhost" on 0.0.0.0:80, ignored

What went wrong?

Reading the warning carefully reveals that the name localhost was used multiple times with the same
port and Nginx ignored it. In other words, it means that you cannot use the same server _name to distinguish
different websites for obvious reasons. Open site2.conf again and change server_name directive from
localhost to 127.0.0.1. Leave everything as is.

server {
listen 80;
server_name 127.0.0.1;

root "/usr/share/nginx/html/site2";

location / {
index index.html index.htm;
}

error_page 500 502 503 504 /50x.html;
location = /50x.html {

root /usr/share/nginx/html;
}

Reload the configuration and you will find that this time, both websites work (see Figure 6-10). You
now have an interesting configuration here! It might confuse you, especially if you are coming from an
IIS background. When you access localhost:8006 you get sitel but when you use 127.0.0.1, you get site2.
Butisn’t localhost the same as 127.0.0.1? The answer lies in the fact that for Nginx, the look up and name
matching happens in a little different manner. You will learn about it shortly in an upcoming section.

120

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © HOSTING WEB SITES ON NGINX

[™ SHIELD - Free Bootstrap = % 3.‘:% [Landy - Parallax App Lanc X GA:':,‘\

,]\

C f localhost:8006 Al il & C f 127.0.0.1:8006 Sal il 7

A Bootstrap:3‘One Page
Theme.

Figure 6-10. Both sitel and site2 running in parallel

Websites Using Domain Name

A typical web site will have a domain name like www.sitel.com, but you can find many people type sitel.
com as well. From search engine optimization perspective (SEO), it is often considered better to have just one
address. It can either be www.sitel.comor sitel.com, but it should be consistent and assuming sitel.com
is the chosen one, www.sitel.comshould redirect to sitel.com. In this section, you start with making a basic
change like the following for sitel.conf:

server {
listen 80;
server name sitel.com, www.sitel.com;

root "/usr/share/nginx/html/site1/Shield Theme";

...output trimmed...

Reload the configuration and try browsing to the following URI:

http://sitel.com
http://www.site.com

Did it work?

Well, it won’t because sitel.com is not a valid domain name and your operating system tried to fetch
the address for sitel.com thinking it actually exists. In reality, you will need to buy a domain name called
sitel.comfrom a domain registrar and map it directly to the public IP of your server. For testing purposes,
you can create host entries to fool your operating system into thinking that site1.comand site2.com points
t0 127.0.0.1.

121

www.it-ebooks.info

http://www.site1.com/
http://www.site1.com/
http://www.site1.com/
http://www.it-ebooks.info/

CHAPTER 6 © HOSTING WEB SITES ON NGINX

In Windows, start Notepad as administrator and open the hosts file located here:
C:\Windows\System32\drivers\etc\hosts

Mac/Linux users should modify the following file:
/etc/hosts

Modify the file by adding two lines:

127.0.0.1 site1l.com
127.0.0.1 site2.com

Try browsing the site again, and it should work now. As mentioned earlier, it doesn’t really mean that
your website is accessible publicly using the domain name, but for your machine and test purpose this
should suffice.

Internal Redirects

You now have both site.comand www.sitel.com pointing to the correct website. As pointed out in the
previous section, it is better that we redirect if someone types www.sitel.com. Let’s fix that now. Instead of
setting explicit locations, you can use two server blocks in the site1.conf file as follows:

server {

listen 80;

server_name www.sitel.com;

return 301 http://sitel.com$request uri;
}
server {

listen 80;

server_name sitei.com;
root "/usr/share/nginx/html/site1/Shield Theme";

location / {
index index.html index.htm;
}

error_page 500 502 503 504 /50x.html;
location = /50x.html {

root /usr/share/nginx/html;
}

The first server block simply returns a 301, which in HTTP means “Moved Permanently.” Once the
browser gets this output, it knows that it has to make another request, which in this case is this:

http://sitel.com$request uri.
The $request_uri is a variable and is present there to ensure that if someone asks for http://www.
sitel.com/abc/foo, they get redirected to http://sitel.com/abc/foo. If you don’t add $request_uri, you

will end up redirecting the request to http://sitel.comand this can confuse your visitors.

122

www.it-ebooks.info

http://www.site1.com/
http://www.site1.com/
http://www.site1.com/abc/foo
http://www.site1.com/abc/foo
http://site1.com/abc/foo
http://site1.com/
http://www.it-ebooks.info/

CHAPTER 6 © HOSTING WEB SITES ON NGINX

To make it even more robust, you can use $scheme://sitel.com/$request_uri. $scheme is another
variable that will ensure that the request gets routed to HTTP or HTTPS. The way it is configured now, if the
page requested is https://www.sitel.com/abc, it will get redirected to http://sitel.com/abc, which is not
good from a security perspective.

Note The redirection set like this might not work in port-forwarding solutions that you have set up
using VirtualBox. In the real world, where your public IPs are exposed and mapped to the domain name, the
redirection will work just fine.

Sites Using Different Ports

In specific cases, you can have different parts of your application exposed on different ports. In that case, you
can configure server blocks in a way that multiple server blocks with the same name exist, but are listening
on different ports.

To enable this capability, you will need to use the listen port and do some extra tasks. First of all, update
your sitel.conf file so that it looks similar to the following

server {
listen 8080;
server name sitel.com, www.sitel.com;

root /usr/share/nginx/html/site3;
location / {

index index.html index.htm;
}

error_page 500 502 503 504 /503.html;
location = /50x.html{
root /usr/share/nginx/html;

}
}
server {
listen 80;
server_name sitel.com, www.sitel.com;
root "/usr/share/nginx/html/site1/Shield Theme";
location / {
index index.html index.htm;
}
error_page 500 502 503 504 /50x.html;
location = /50x.html {
root /usr/share/nginx/html;
}
}

123

www.it-ebooks.info

https://www.site1.com/abc
http://site1.com/abc
http://www.it-ebooks.info/

CHAPTER 6 © HOSTING WEB SITES ON NGINX

Notice the subtle change in the 1isten directive. In the first server block, it is bound to port 8080, where
as in the second block it is bound to port 80, which is the default port. Also notice that the first server block
points to a different root (/usr/share/nginx/html/site3). You can have a totally different application
hosted here. For now, simply create a directory called site3 (at /usr/share/nginx/html), and create a
text file called index.html with some text.

Before you check it from your host server, check it locally from the guest using curl:

#curl localhost:8080
hello from site 3!

If you get an output locally, you have done well, and you can now expose your website outside your
guest server. But before you do that, open port 8080 using the following command:

#firewall-cmd --permanent --zone=public --add-port=8080/tcp
#firewall-cmd --reload

With firewall ports opened, it is time to add one more forwarding rule to forward a request to the
internal port. Use Figure 6-11 to ensure you have added the new rule correctly.

E re

Name Protocol Host IP Host Port Guest IP Guest Port | 62
HTTP - WFE1 TCP 127.00.1 | 8006 10.0.2.6 80 <&
HTTP - WFE1 - Site 3 |tcp | 127001 |e016 | 10026 8080
HTTP - WFE2 'TCP | 127.001 | 8007 | 10027 80
SSH - WFE1 |TcP | 127.001 [3026 | 10026 |22
| SSH - WFE2 TP | 127004 (3027 | 10027 |22

concel (D

Figure 6-11. Adding port-forwarding rule for Site3 (HTTP - WFEI - Site 3)

Once the rules are set, you should be able to browse to http://sitel.com:8016 and get your page back
from site3.

Wildcard Mapping

You can also have server blocks set up with wildcards. In simple words, you can have a server block handle
request to blog.site1l.com, mobile.site1.com, etc. by changing the server_name to *.site1.com. You can
even use wildcard (*) as a prefix or a suffix. Hence, *.site1.com or www.sitel.* will equate to blog.sitel.
comor www.sitel.co.us respectively.

124

www.it-ebooks.info

http://site1.com:8016/
http://blog.site1.com/
http://blog.site1.com/
http://www.site1.co.us/
http://www.it-ebooks.info/

CHAPTER 6 © HOSTING WEB SITES ON NGINX

Blocking Access

Right now if you try accessing the site using 127.0.0.1 or sitel.com, both will work and you will get the same
website. If you want to block access to 127.0.0.1 but allow access to sitel.com, you can add additional blocks
to take care of it like so:

server {
listen 80;
server name 127.0.0.1;
return 444;
}
server {
listen 80;

server_name sitel.com;

root "/usr/share/nginx/html/site1/Shield Theme";
...output trimmed...

Return code 444 is a special part of Nginx’s nonstandard code that closes the connection.

Domain Name Mapping

You have already seen that adding a host header helps you resolve a name like www. site.comto your Nginx
server. This approach wouldn’t be of help if you really want to take your website online. If you really want to
take your web server online, you will need to buy a domain name from one of the domain name registrars.
There are plenty of them available and a simple Internet search will take you to the most famous ones.
Typically, you buy the name for a year (or multiple years) and map the name on the portal of the website you
purchased it from. For example, if you use GoDaddy.com to buy your domain, you can log in at their portal
and configure the domain name so that it points to your public IP (Figure 6-12).

© Al Domains » ATTOSOL.COM Y

ATTOSOL.COM -

Status: Active | | Folder: None | Profile: None

O Renew O Upgrade % Buy&Sel ~ & Account Change £ Delete

SETTINGS DNS ZONE FILE CONTACTS

ZONE FILE@ 29 records in this zone

Last updated 14-02-2016 07:04:25 MST

[Add Record B Bulk Actions @ More Filter List
A (Host) @
2 Records (0 Selected)
+ Host Points To oL Actions
@ 182.50.151.36 600 seconds &

Figure 6-12. GoDaddy's portal for managing a domain name. Try pinging attosol.com
125

www.it-ebooks.info

http://www.site.com/
http://www.it-ebooks.info/

CHAPTER 6 © HOSTING WEB SITES ON NGINX

A lot goes behind the scene when you type a name in your browser and hit enter. Here is the very
simplistic gist of it:

1. Your browser asks the Operating System to resolve the hostname.

a. Operating system checks what the name resolves to using the hosts files.
If the host files don’t have an entry, it checks your locally configured DNS
servers.

b. Operating system returns the IP address corresponding to the hostname to
the browser. So far, by creating the entries for sitel.com point to 127.0.0.1,
you have been using host files to your advantage. This is to ensure that your
operating system doesn’t search the DNS servers at all, since it is able to find
the entries in the host file.

2. The browser creates an HTTP request with information like host header.
3. The browser then sends the HTTP request.

4. The server at the IP address receives the request from the browser (including the
hostname).

5. The server then processes the request and sends the response back to the client.

IP-Based Hosting

So far in this chapter, you have been using server_name to distinguish between server blocks. This
approach is the most common approach since it allows you to share the IP address of the server. There
is another kind of configuration that can be classified into IP-based hosting. Table 6-2 differentiates and
highlights the differences between them.

Table 6-2. Difference between Name-based and IP-based hosting

Name-Based IP-Based

No dedicated IP address is required. Dedicated IP address is required.

Configured using server_name directive. Configured using the listen directive.

Multiple websites use same port and ip address. Multiple websites use individual port and
IP addresses.

Works Application layer in the OSI model. Works at Network and Transport layer in
the OSI model.

Since all websites are hosted on a single IP address and NIC, Dedicated IP address and NIC helps

there could be performance impact. isolation of website traffic.

Example: Example:

server_name www.appl.com*.appl.com someapp.appl.com; listen 80;
listen 10.0.2.4:80;
listen 10.0.2.5:8080;

126

www.it-ebooks.info

http://www.app1.com/
http://www.it-ebooks.info/

CHAPTER 6 © HOSTING WEB SITES ON NGINX

Mixed Name-Based and IP-Based Servers

Take a look at a more practical example where both name-based and IP-based addresses are used. In the
following configuration, Nginx first tests the IP address and port of the request against the 1isten directive.
It then matches the host header of the request with the server_name. If the server name is not found, the
request is mapped to the default_server. If the default_server is not mentioned, the first server block
takes care of the request.

server {
listen 10.0.2.6:80;
server_name sitel.net www.sitel.net;

}

server {
listen 10.0.2.6:80 default_server;
server_name sitel.org www.sitel.org;

}

server {
listen 10.0.3.6:80 default_server;
server_name sitel.com www.sitel.com;

}

server {
listen 10.0.3.6:80;
server_name sitel.biz www.sitel.biz;

}

Common Configuration Mistakes

This section goes over some common errors many users make and then offers suggestions on how to avoid
or fix them.

Let’s Use 777

When a configuration doesn’t work as it is expected to, some administrators take a shortcut (i.e., chmod
777).NO, just don’t do that ever! It has been already explained earlier in the chapter that it is better to not
troubleshoot by the trial-and-error method. Try to find out what is wrong by using logs and tools that are
suitable to the situation.

Root Inside Location Block

Notice the use of multiple root directives in the following configuration. It is a perfectly valid configuration,
but it is not a good configuration. It creates two problems. The first problem is that you now have to add
aroot to every location block you add, which adds a lot of unnecessary lines in your configuration. The
second problem is that if you don’t provide a root block to the location block, it will not have any root.

127

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © HOSTING WEB SITES ON NGINX

server {
server_name www.sitel.com;
location / {
root /usr/share/nginx/html;
#[...]
}
location /somewhere {
root /usr/share/nginx/html;

#1...]

You should refactor the previous configuration like so:

server {
server_name www.sitel.com;
root /usr/share/nginx/html;
location / {
#[...]
}

location /somewhere {

#[...]
}

Monolithic Configuration Files

If you like, you can keep adding your server blocks to the default. conf file. It is perfectly okay if you intend
to host only one application on the server. However, it is often not the case. Hence it is strongly advised to
keep different configuration files for different domain names. It will make your administration tasks a lot
easier and will eventually save you a lot of time scrolling up and down finding the correct server blocks.

Unnecessary Complications

There are multiple ways to achieve the same result in Nginx. Whenever you have to use if directives or
redirections, evaluate if your approach is correct and determine if there is a better way. Ask questions and
visit forums if there is any confusion. There might be easier and more efficient solutions that might not cross
your mind. A lot of times it is found that the configuration contains unnecessary processing blocks inside a
server block that could have been easily avoided using another server block. For instance, if you take a look
at the following configuration, you will find two server blocks. The primary task of the first server block is
to redirect to the second server block. You may ask how is it more efficient?

server {

server_name www.sitei.com;

return 301 $scheme://sitel.com$request uri;
server {

server_name sitei.com;

#0...]

128

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © HOSTING WEB SITES ON NGINX

To answer the efficiency question, take a look at the larger picture about how a request actually reaches
your server. Primarily, outside visitors are likely to use a search engine to reach your website. While indexing,
search engines will easily understand that you prefer sitel.com over www.sitel.com. Thus, most people will
not hit the first server block at all. It also implies that the redirection code is not executed to process your
request at all!

Contrast this situation to an alternate configuration where location blocks are used in the second
server block and there is just one server block taking care of all requests. Now, your redirection code is
evaluated EVERY time any request comes in. This leads to unnecessary evaluation of a URI that could have
been easily avoided by using two server blocks as shown in this example.

Listening on Hostname

You should never listen on hostname. It can cause binding issues during the restarts of the server. Use IP
instead of hostnames.

server {
Bad > listen sitel.com:80;
#Good > listen 127.0.0.1:80;

#0...]

Summary

Nginx is very flexible and there are often multiple ways of achieving a task. It can be both good and bad,
depending on your knowledge about the subject. Luckily, the community is vibrant and all you have to do
when, in doubt, is to ask!

In this chapter you have learned the finer nuances about hosting multiple websites on the same Nginx
server. You should be fairly comfortable now about the name-based and IP-based hosting options. Hopefully
the common tasks and configurations mentioned in this chapter will help you configure your server with
ease. Last but not least, you should now be aware of some of the most common configuration mistakes made
by web administrators. Knowing the dangers, as they sayj, is the first step in order to avoid them.

129

www.it-ebooks.info

http://www.site1.com/
http://www.it-ebooks.info/

CHAPTER 7

Nginx and Dynamic Content

This chapter will take your knowledge level deeper by providing insights into serving dynamic content.
Please keep in mind that hosting dynamic content directly with Nginx is not possible. This is to say that
Nginx worker processes will not load the processing modules in its own memory address space to serve the
pages. The idea is to proxy the content to the components that do the actual processing of your requests.
As limiting as it sounds, it has its own good side effects. The primary benefit is that the slowness caused
by dynamic sites cannot directly affect Nginx. It has powerful routing and proxy capabilities that will
tremendously benefit you as a web administrator.

This chapter might not appeal to you if you are not familiar with developer technologies and you can
skip it if you like. However, you don't need to be intimidated by the code and other details if you choose
to read through, since the samples will be fairly straight forward for you to understand. The idea is not to
dive too much into code but instead to show you just a few samples so that you get the gist of how Nginx
can be helpful in accelerating your applications. For brevity, only CentOS-related directions are provided.
Conceptually, it won't be very different for other distros. Without further ado, let us begin.

Sudo Scare

In chapter 6 one of the things you learned about was not using the root account due to multiple reasons. To
that effect, you created a user called user1. But this user is quite powerless at the moment. Check it out by
doing the following:

e Start by logging in as user1 like so: ssh -p 3026 user1@127.0.0.1.

e Tryrunning the following command and notice how it tries to scare you:

[useri@wfel ~]$ sudo yum -y install phps56
[sudo] password for useri:
userl is not in the sudoers file. This incident will be reported.

e Itbasically says that user1 is not allowed to do sudo.

e Sinceyou know you can trust useri, you can add him to the sudoers list by using
visudo.

e Type suand hit enter to get into the root prompt.

e Type visudo and hit enter again. It will open the file (/etc/sudoers) in vi editor and
allow you to edit it.

© Rahul Soni 2016 131
R. Soni, Nginx, DOI 10.1007/978-1-4842-1656-9_7

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1656-9_6
http://mailto:user1@127.0.0.1/
http://www.it-ebooks.info/

CHAPTER 7 © NGINX AND DYNAMIC CONTENT

Caution Even though you can edit the file directly, you should avoid doing it, since visudo validates the file
when you exit. If you choose to use any other editor, you may end up making a bad mistake and locking yourself
out of the server. It is extremely important that you exercise caution while adding users to the sudoers list.

e After the file is open, look for a line that says root ALL=(ALL) ALL and add your user
in the next line.

Allow root to run any commands anywhere
root ALL=(ALL) ALL
userl ALL=(ALL) ALL
e Save the file and type exit to get back from the root prompt to the user1 prompt.

e sudo should now work for the commands.

Installing MySQL

Now that the user is in the sudoers list, you can install some software to complete the LEMP (Linux,
eNginx, MySQL, and PHP) stack. Let us start with MySQL. MySQL is an open source relational database
management system (RDBMS). In July 2013, it was the second most widely used RDBMS, just behind SQLite.

Note SQLite is deployed with every Android and iPhone device along with the Chrome and Firefox
browsers. In the second quarter of 2013 alone, 213 million smartphones shipped, of which 200 million were
Android and i0S.

Log in on to your wfel.localdomain server using ssh -p 3026 user1@127.0.0.1. To install MySQL
server, you need to first download the Yum repository. The following link contains information about
different versions that are available: http://dev.mysql.com/downloads/repo/yum/. Visit the link and find
the version you are interested in. For CentOS, you can pick RHEL 7’s download link which can be found
here: http://dev.mysql.com/downloads/file.php?id=450705.

Note that these links might change over a period of time, and in future you will most likely have later
versions, so it would be better to visit the page and get the latest links before you execute the commands that
follow.

1. Install wget so that you can download anything from the server directly instead of
uploading the file using FTP.

sudo yum install -y wget

132

www.it-ebooks.info

http://mailto:user1@127.0.0.1/
http://dev.mysql.com/downloads/repo/yum/
http://dev.mysql.com/downloads/file.php?id=450705
http://www.it-ebooks.info/

CHAPTER 7 © NGINX AND DYNAMIC CONTENT

2. Now, use wget to download the repository and use the rpm (RPM Package
Manager) utility to manage the file you just downloaded as follows:

sudo wget http://dev.mysql.com/get/mysql57-community-release-el7-7.noarch.rpm
sudo rpm -Uvh mysql57-community-release-el7-7.noarch.rpm

3. Time to install MySQL. Execute the following command:

sudo yum install -y mysql-community-server

4. A bunch of files will be downloaded and installed for you due to the yum (and
other package managers’) goodness that comes with Linux.

5. Once the setup is done, you can start the MySQL service like so:

sudo service mysqld start
sudo service mysqld status

6. During the installation the server is initialized and an SSL certificate and key
files are generated in the data directory. Along with that, a superuser account
'root'@'localhost is created. If you try to connect using mysql -u root
command, you will get the following error (and you can easily figure out that it is
because you haven't provided any password):

ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: NO)

7. Since the install never really asked for a password, how would you know what
the password is? The answer to this is simple. It is because there is a temporary
password allocated during the installation process. You can retrieve that and
as you can guess, change it immediately so that you have a strong password in
place. To retrieve the password, use the following command:

sudo grep 'temporary password' /var/log/mysqld.log
--- 1 [Note] A temporary password is generated for root@localhost: gj>jwax<uorT

8. Connectto MySQL usingmysql -u root -pand type in the temporary
password. This will allow you to enter the MySQL console. To change the
temporary password, use the following command:

mysql> ALTER USER 'root'@'localhost’ IDENTIFIED BY 'P@sswordi!’;
Query OK, 0 rows affected (0.00 sec)

133

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NGINX AND DYNAMIC CONTENT

9. Try typing simple commands and you can start talking to your MySQL server.

mysql> show databases;

| information_schema |
| mysql |
| performance_schema |
| sys |

4 rows in set (0.00 sec)

10. Type quit; at the prompt and you will be back to your user prompt.

Before you proceed with installing PHP and other Nginx configuration on WFE1, you may want to clean up
what you might have done in the previous chapter. This is simply to avoid any confusion:

sudo rm -rf sitel site2 site3
sudo rm -f /etc/nginx/conf.d/site*.conf

Also remove the host name entries from your host file that you might have created during the previous
chapter.

Installing PHP

Let us install PHP next. PHP originally stood for Personal Home Page, but of late it is referred to as Hypertext
Preprocessor. It is a server-side scripting language designed for web development. It is one of the core
standing pillars for the LAMP (Linux, Apache, MySQL, and PHP) or LEMP (Linux, Nginx, MySQL, and PHP)
stack. Please keep in mind that there are multiple options for running PHP. The most common options
available to you are mod_php, FastCGI, and PHP-FPM.

e mod_php is the built-in version available only for Apache. Installing it is easy, and
its ease of use coupled with tight integration is probably the most common reason
to deploy mod_php. However, it forces every Apache child to use more memory and
needs a restart of Apache to read an updated php.ini file.

e FastCGl is a pretty generic protocol available on most platforms including Windows
IIS. It is an improvisation over the earlier variation of Common Gateway Interface
(CGI) that reduces the overheads by spinning up one process for multiple requests.
You might be already aware that CGI used one process per request and it was not
as scalable for extremely busy sites. FastCGI has a smaller memory footprint than
mod_php and has more configuration options.

e PHP-FPM is an alternative for PHP FastCGI implementation and is the newest kid
on the block. It can be used with any web server that is compatible with FastCGI
and plays well with Nginx too. It gives you a lot of configuration options and it really
shines in multiple areas, especially related to availability. You can start different
processes with different settings and different php.ini options. This means you can
have multiple processes serving different versions of PHP in case your application is
not compatible with a specific PHP version.

134

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NGINX AND DYNAMIC CONTENT

In this book, you will be using PHP-FPM. To install it, you will need to first add the yum repository
followed with yum install like so:

sudo rpm -Uvh https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm
sudo rpm -Uvh https://mirror.webtatic.com/yum/el7/webtatic-release.rpm
sudo yum install -y php56w-fpm php56w-opcache php56w-mysql

This will install your php-fpm service, and you can start using it for applications that are written in PHP.
To start, stop, or restart the service use the commands respectively:

sudo service php-fpm start
sudo service php-fpm stop
sudo service php-fpm restart

To view the status, run the following command and notice how it shows a green circle to the left of
service name:

sudo service php-fpm status
Redirecting to /bin/systemctl status php-fpm.service
ephp-fpm.service - The PHP FastCGI Process Manager
Loaded: loaded (/usr/lib/systemd/system/php-fpm.service; disabled; vendor preset:
disabled)
Active: active (running) since Tue 2016-03-08 02:10:35 EST; 1s ago
Main PID: 2665 (php-fpm)
Status: "Ready to handle connections"
CGroup: /system.slice/php-fpm.service
2665 php-fpm: master process (/etc/php-fpm.conf)
2666 php-fpm: pool www
2667 php-fpm: pool www
2668 php-fpm: pool www
2669 php-fpm: pool www
2670 php-fpm: pool www

To view the version of PHP, you can use the following command:

php -v
PHP 5.6.18 (cli) (built: Feb 4 2016 22:08:11)
Copyright (c) 1997-2016 The PHP Group
Zend Engine v2.6.0, Copyright (c) 1998-2016 Zend Technologies
with Zend OPcache v7.0.6-dev, Copyright (c) 1999-2016, by Zend Technologies

Tip Even though Nginx+Apache+mod_php combination works, Nginx+PHP-FPM happens to be more
performant due to architectural differences of PHP-FPM. It is a good idea to evaluate your application against
the latter technology combination to gain high performance from your web servers.

135

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NGINX AND DYNAMIC CONTENT

Let’s configure Nginx to test if PHP works by default. As discussed in chapter 6, start by creating a
configuration file for the test site by copying the /etc/nginx/conf.d/default.template:

sudo cp /etc/nginx/conf.d/default.template /etc/nginx/conf.d/test.conf
Modify the test.conf file so that it looks like the following:

server {
listen 80;
server _name localhost;

root /usr/share/nginx/html;

location / {
index index.html index.htm;
}

pass the PHP scripts to FastCGI server listening on 127.0.0.1:9000
location ~ \.php$ {
fastcgi pass 127.0.0.1:9000;
fastcgi_index index.php;
fastcgi_param SCRIPT_FILENAME $document root$fastcgi script name;
include fastcgi params;

In the previous configuration block, the last location block is what does the real magic from PHP
perspective.

e The location route matches all routes that end with a . php.

e The fastcgi_pass directive tells Nginx to pass on the request to the specified
address. If you like, you can have another server just to serve PHP requests. In this
configuration however, since the php_fpm service is running locally, the request gets
routed to that process on the same server instead on port 9000.

e fastcgi index directive sets a file name that will be appended after a URI that ends
with a slash, in the value of the $fastcgi_script_name variable.

e fastcgi_paramsets the parameter for the SCRIPT_FILENAME. In the current block if
the request is for /page.php the SCRIPT_FILENAME variable will be $document_root/
page.php, butif the request is just for / the SCRIPT_FILENAME will be $document_
root/index.php. $document_root variable is equal to the root directive set inside
your location or server block.

e The include directives initialize a bunch of other parameters and is set in a file
located at /etc/nginx/fastcgi_params. It is a good idea to keep all parameters
related to fastcgi grouped in a single file.

136

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1656-9_6
http://www.it-ebooks.info/

fastcgi_param
fastcgi param
fastcgi_param
fastcgi_param

fastcgi param
fastcgi_param
fastcgi param
fastcgi_param
fastcgi_param
fastcgi_param

fastcgi_param
fastcgi param

fastcgi_param
fastcgi_param
fastcgi_param
fastcgi_param
fastcgi param

PHP only, required if PHP was built with --enable-force-cgi-redirect

fastcgi_param

QUERY_STRING
REQUEST METHOD
CONTENT_TYPE
CONTENT_LENGTH

SCRIPT NAME
REQUEST URI
DOCUMENT URT
DOCUMENT_ROOT
SERVER_PROTOCOL
HTTPS

GATEWAY_INTERFACE

SERVER_SOFTWARE

REMOTE_ADDR
REMOTE_PORT
SERVER_ADDR
SERVER_PORT
SERVER_NAME

REDIRECT_STATUS

CHAPTER 7

$query string;
$request_method;
$content_type;
$content_length;

$fastcgi_script name;
$request uri;
$document_uri;
$document_root;
$server_protocol;
$https if _not_empty;

CGI/1.1;
nginx/$nginx_version;

$remote_addr;
$remote_port;
$server_addr;
$server port;
$server name;

200;

NGINX AND DYNAMIC CONTENT

Now it’s time to test if PHP is working. Create a file at /usr/share/nginx/html/test.php and paste the
following code in it. The first line reads the server variables and the second line displays tabular information

about PHP itself.

<?php var_export($_SERVER)?>
<?php phpinfo() ?>

Browse to http://localhost:8006/test.php and you should be able to see a page that looks similar to

Figure 7-1.

www.it-ebooks.info

137

http://www.it-ebooks.info/

CHAPTER 7 © NGINX AND DYNAMIC CONTENT

[phpinfo() X

€ - C A [J localhost:8006/test.php et 8 =
array ('USER' => 'apache', 'HOME' => "Yusr/share/httpd', 'FCGI_ROLE' => 'RESPONDER!, D
'SCRIPT_FILENAME' => ‘fusr/share/nginx/htmi/test.php’, '‘QUERY_STRING' => ", .

'REQUEST_METHOD' => 'GET', 'CONTENT_TYPE' => ", '"CONTENT_LENGTH' =>",
'SCRIPT_NAME' => 'test.php', 'REQUEST_URI' => 'test.php', ' DOCUMENT_URI' => 'test.php’,
'DOCUMENT_ROOT' => "Yusr/share/nginx/html', 'SERVER_PROTOCOL' => 'HTTP/1.1,
'GATEWAY_INTERFACE' => 'CGI/1.1', 'SERVER_SOFTWARE' => 'nginx/1.8.1', 'REMOTE_ADDR' =>
10.0.2.2', 'REMOTE_PORT' => '63562', 'SERVER_ADDR' => '10.0.2.6', 'SERVER_PORT' => '80',
'‘SERVER_NAME' => 'localhost', 'REDIRECT_STATUS' => '200', 'HTTP_HOST' => 'localhost:8006",
'HTTP_CONNECTION' => keep-alive', 'HTTP_ACCEPT' =>
‘text/html,application/xhtml+xml,application/xml;qg=0.9,image/webp,*/*;q=0.8',
'HTTP_UPGRADE_INSECURE_REQUESTS' =>'1', ' HTTP_USER_AGENT' => 'Mozilla/5.0
(Macintosh; Intel Mac OS X 10_11_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/51.0.2679.0
Safari/537.36', 'HTTP_ACCEPT_ENCODING' => 'gzip, deflate, sdch', 'HTTP_ACCEPT_LANGUAGE'
=> 'en-US,en;q=0.8', 'PHP_SELF' => 'ftest.php', 'REQUEST_TIME_FLOAT' => 1457429212.3725331,
'‘REQUEST_TIME' => 1457429212,)#

System Linux wie1.localdomain 3.10.0-229.el7.x86_64 #1 SMP Fri Mar 6 11:36:42 UT(

Build Date Feb 4 2016 22:11:16

Server API FPM/FastCGI

Virtual Directory Support disabled

Configuration File (php.ini) Path Jetc

Loaded Configuration File fetc/php.ini

Scan this dir for additional .ini files Jetc/php.d

Additional .ini files parsed fetc/php.d/bz2.ini, fetc/php.dicalendar.ini, /etc/php.dictype.ini, /etc/php.dicurl.in
Jetc/php.diileinfo.ini, /etc/php.diftp.ini, /etc/php.d/gettext.ini, /etc/php.d/gmp.ini,
Jetc/php.dijson.ini, fetc/php.diopcache.ini, fetc/php.diphar.ini, fetc/php.d/shmop
fetc/php.disockets.ini, /etc/php.dftokenizer.ini, /etc/php.dixml.ini, /etc/php.d/zip.

Figure 7-1. Output of test.php

This is great! Your server can now host PHP pages and output dynamic pages for you.

Notice the USER is Apache in Figure 7-4. Why would that be so? Well, the reason is that by default the
configuration file for php-fpm is configured so that the process is executed as apache. Run the command
ps -aux | grep php and you will find that the php-fpm process is running as apache.

ps -aux | grep php

root 2665 0.0 1.9 393584 20292 ? Ss 02:10 0:00 php-fpm: master process
(/etc/php-fpm.conf)

apache 2666 0.0 0.4 393584 4908 ? S 02:10 0:00 php-fpm: pool www
apache 2667 0.0 0.4 393584 4908 ? S 02:10 0:00 php-fpm: pool www
apache 2668 0.0 0.4 393584 4908 ? S 02:10 0:00 php-fpm: pool www
apache 2669 0.0 0.4 393584 4908 ? S 02:10 0:00 php-fpm: pool www
apache 2670 0.0 0.4 393584 4908 ? S 02:10 0:00 php-fpm: pool www
useri 2702 0.0 0.0 112612 736 pts/0 S+ 02:17 0:00 grep --color=auto php
138

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NGINX AND DYNAMIC CONTENT

In contrast ps -aux | grep nginx will tell you that the process for Nginx is running as nginx.

ps -aux | grep nginx
nginx 953 0.0 0.1 48268 1904 ? S Mar07 0:00 nginx: worker process
useri 2705 0.0 0.0 112612 736 pts/0 R+ 02:20 0:00 grep --color=auto nginx

To change the user, you can edit the configuration file sudo vi /etc/php-fpm.d/www.conf and change
the line that reads user = apache to user = nginx and group = apache to group = nginx. Restart the service by
typing the following command.

sudo service php-fpm restart

If you refresh the page, you will now see that the settings have taken affect and you are being served a
page with '"USER'=>"nginx'. You can also check the output of ps -aux | grep php and confirm that the
process is indeed running as nginx.

Your wfel.localdomain server can be considered fully setup as a LEMP stack server. You can now set
up dynamic applications on it.

Caution Once you have tested the test.php, it is a good practice to remove the file since it can be used by
malicious users for gathering system information.

Configure Nginx for WordPress

WordPress is the world's most commonly used content management system based on PHP and MySQL.
More than 60 million websites use WordPress as their content management system. It is open source and the
application files are installed on a web server. You can also host your blog or site using WordPress.com, but
in our context we will be dealing only with the self-hosting option of WordPress.

In the previous chapter you have already downloaded the zipped version of the repository from Github
located at https://github.com/attosol/nginx. You will find a folder called /dynamic/wordpress-4.4.2.
This folder contains version 4.4.2 of WordPress. WordPress is known for easy installation steps. So, let us
quickly install WordPress and see it in action by following these steps:

1. Login to the MySQL prompt usingmysql -u root -p.

2. To create a database, use the following command where wpsite is the name of
the database:

CREATE DATABASE wpsite

3. Grant all privileges to a user account using the following command where wpuser
is the name of the user and P@ssword1! is your strong password. Change the
password as you deem fit and run the command:

GRANT ALL PRIVILEGES on wpsite.* TO wpuser@localhost IDENTIFIED BY "P@sswordi!";

4. Upload the files using an FTP client as shown in Figure 7-2. Create a new folder
called WordPress and upload all the content from /dynamic/wordpress-4.4.2.

139

www.it-ebooks.info

http://www.conf/
https://github.com/attosol/nginx
http://www.it-ebooks.info/

CHAPTER 7 © NGINX AND DYNAMIC CONTENT

Local site: ,J'Users.frahuIsonilDocumentszitbuck Remote site: /usr/share/nginx/html/wordpress

¥ 9 nginx ¥ ¥ nginx
> B gt Y % html
¥ 9 dynamic L't
s . ® omf
» 9 wp-admin \ @ os-prober
» ' wp-content 2 p1-kit
> B wp-includes 2 php
- 2 pixmaps

Figure 7-2. Uploading content to WFEI server

5. Remove your test.conf file that you created from the default.template a while ago
in this chapter:

sudo rm -f /etc/nginx/conf.d/test.conf

6. Create a copy of the default.template file like so:

sudo cp /etc/nginx/conf.d/default.template /etc/nginx/conf.d/wpsite.conf

7. Make your look as follows and reload using sudo nginx -s reload:

server {
listen 80;
server_name localhost;

root /usr/share/nginx/html/wordpress;

location / {
index index.php index.html index.htm;
}

pass the PHP scripts to FastCGI server listening on 127.0.0.1:9000
location ~ \.php$ {
fastcgi pass 127.0.0.1:9000;
fastcgi_index index.php;
fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
include fastcgi params;

140

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NGINX AND DYNAMIC CONTENT

8. Although not mandatory, it is a good idea to check if your database is up and
connecting well from PHP. It is actually fairly simple. Create a file in your /
usr/share/nginx/html/wordpress directory called dbtest.php and write the
following text:

<?php
$db=mysql _connect('localhost', 'wpuser', 'P@sswordi!');
if (!$db) echo "connection failed";
else echo "connection succeeded";

?>

9. Ifyoubrowse to http://localhost:8006/dbtest.php you should see
"connection succeeded" message. If you don't see it, something is missing and
you are advised to cross check before proceeding ahead.

10. Time for some cool stuff. Type http://localhost:8006/index.php in your
browser. It should take you to the famous 5-minute WordPress installation page,
which looks similar to Figure 7-3:

Welcome to WordPress. Before getting started, we need some information on the database. You will need
to know the following items before proceeding.

1. Database name

2. Database username

3. Database password

4. Database host

5. Table prefix (if you want to run more than one WordPress in a single database)

We're going to use this information to create a wp-config.php file. If for any reason this automatic file
creation doesn’'t work, don't worry. All this does is fill in the database information to a configuration

file. You may also simply open wp-config-sample.php in a text editor, fill in your information, and save
it as wp-config.php. Need more help? We got it.

In all likelihood, these items were supplied to you by your Web Host. If you don’t have this information,
then you will need to contact them before you can continue. If you're all ready...

Let's go!

Figure 7-3. WordPress installation page. Click Let's go!

141

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NGINX AND DYNAMIC CONTENT

11. You will be presented a screen that will ask for the parameters that you have
already set up. Provide the details as you see in Figure 7-4 and click Submit.

Below you should enter your database connection details. If you're not sure about these, contact your host.

Database Name wpsite The name of the database you want to run
WP in.

User Name wpuser Your MySQL username

Password P@ssword1! ...and your MySQL password.

Database Host localhost You should be able to get this info from

your web host, if localhost doesn't work.

Table Prefix wp. If you want to run multiple WordPress
= installations in a single database, change
this.
Submit

Figure 7-4. WordPress installation parameters

12. 'When you click on Submit, a config file text will be created for you with the
details you have previously filled in (see Figure 7-5).

142

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NGINX AND DYNAMIC CONTENT

Sorry, but | can’t write the wp-config. php file.

You can create the wp-config.php manually and paste the following text into it.

<?php
e
* The base configuration for WordPress

The wp-config.php creation script uses this file during the
installation. You don't have to use the web site, you can
copy this file to "wp-config.php” and fill in the values.

This file contains the following configurations:

* MySQL settings

* Secret keys

* Database table prefix
* ABSPATH

LR I I

After you've done that, click “Run the install.”

Run the install

Figure 7-5. Configuration file created by WordPress installation

13. Copy the entire text and paste it in a file created at /usr/share/nginx/html/
wordpress/wp-config.php.

Tip There is another way in which you can do the previous few steps related to WordPress. All you will
need is to create a copy of the wp-config-sample.php as wp-config.php and make the necessary changes in
the file. If you do that, your WordPress setup will start with the step you see in Figure 7-5.

14. After that, click on Run the install button (Figure 7-5). And you will be presented
the final screen for WordPress setup. It is that simple!

15. Click on Install WordPress and you are all set with your website. To login to your
website, you now have to go to http://localhost:8006/wp-admin/index.php
and type in the Username and Password that you have configured in Figure 7-6.

143

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NGINX AND DYNAMIC CONTENT

Welcome

Welcome to the famous five-minute WordPress installation process! Just fill in the information below and
you'll be on your way to using the most extendable and powerful personal publishing platform in the world.

Information needed

Please provide the following information. Don’t worry, you can always change these settings later.

Site Title My Sitelll

Username Rahul
Usernames can have only alphanumeric characters, spaces, underscores, hyphens, penods, and the
@ symbol.

Password HIOp2RZQX2*5j#Q0Su @ Hide

Strong |

Important: You will need this password to log in. Please store it in a secure location.

Your Email rahul@attosol.com

Double-check your email address before continuing.

Search Engine ~| Discourage search engines from indexing this site
Visibility Itis up to search engines to honor this request.

Install WordPress
Figure 7-6. WordPress setup - Final Step
Create your posts and try browsing to http://localhost:8006 and you will be glad to see your

website online. Often the WordPress administrators change the Settings » Permalink in the WordPress
Administration Dashboard to Post Name or one of the other options as shown in Figure 7-7.

144

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NGINX AND DYNAMIC CONTENT

) A MySitell O1 P + New

DEse Permalink Settings
Posts WordPress offers you the ability to create a custom URL structure for your permalinks and archives. Custom URL structures

are available, and here are some examples to get you started.
Media

Common Settings

Pages

Comments

Appearance

¢ Plugins @

Plain

Day and name

Month and name

Numeric

Post name

Custom Structure

http://localhost:

http://localhost:

http://localhost:

http://localhost:

http://localhost:

http://localhost

8006/ ?p=123

8006/2016/03/08/sample-post/

8006/2016/83/sample-post/

8086/archives/123

8006/sample-post/

18006 /XpostnameX/

Permalinks

Optional

Figure 7-7. Changing Settings to get cleaner URL in WordPress

The moment you change the settings here, your home will continue to work but the cleaner URIs (for
example, http://localhost:8006/test-post-1) will fail. This is because of the way the URI is mapped
in the Nginx configuration. To fix such issues, change your /etc/nginx/nginx. conf file to look like the
following:

user nginx;
worker_processes 1;
error_log /var/log/nginx/error.log warn;

pid /var/run/nginx.pid;
events {

worker_connections 1024;
}
http {

include /etc/nginx/mime.types;
default_type application/octet-stream;
log_format main '$remote_addr - $remote user - [$time_local] - $document root -
$document_uri -
'$request - $status - $body bytes sent - $http referer’';

145

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NGINX AND DYNAMIC CONTENT

access_log /var/log/nginx/access.log main;
sendfile on;
keepalive timeout 65;
client_max_body size 13m;
index index.php index.html index.htm;
upstream php {
server 127.0.0.1:9000;
}

include /etc/nginx/conf.d/*.conf;

In your /etc/nginx/conf.d/wpsite.conf make the necessary changes so it looks like the following (the
following text is courtesy of http://codex.wordpress.org/Nginx):

server{
listen 80;
server_name localhost;
root /usr/share/nginx/html/wordpress;

This order might seem weird - this is attempted to match last if rules below fail.
http://wiki.nginx.org/HttpCoreModule
location / {
try files $uri $uri/ /index.php?$args;
}

Add trailing slash to */wp-admin requests.
rewrite /wp-admin$ $scheme://$host$uri/ permanent;

Directives to send expires headers and turn off 404 error logging.
location ~* ~.+\.(ogg|ogv|svg|svgz|eot|otf|woff|mp4|ttf|rss|atom|jpg|jpeg|gif|png|ico|zip
|tgz|gz|rar|bz2|doc|x1ls|exe|ppt|tar|mid|midi|wav|bmp|rtf)$ {

access_log off;

log_not_found off;

expires max;

}

Uncomment one of the lines below for the appropriate caching plugin (if used).
#include global/wordpress-wp-super-cache.conf;
#include global/wordpress-w3-total-cache.conf;

#Pass all .php files onto a php-fpm/php-fcgi server.
location ~ [*/]1\.php(/|$) {
fastcgi_split_path_info ~(.+?\.php)(/.*)$;
if (!-f $document root$fastcgi script name) {
return 404;
}

include fastcgi_params;
fastcgi_index index.php;

fastcgi_param SCRIPT_FILENAME $document root$fastcgi script name;
fastcgi pass php;

146

www.it-ebooks.info

http://codex.wordpress.org/Nginx
http://www.it-ebooks.info/

CHAPTER 7 © NGINX AND DYNAMIC CONTENT

Quite a number of new directives have come to play in the configuration just covered. In Table 7-1, let
us look at the ones that have not yet been discussed.

Table 7-1. Important Directives at play in the mysite.conf file

Directive

Description

worker_connections

default_type

client_max_body_size

upstream

try_files

rewrite

log_not_found

expires

fastcgi_split_path_info

fastcgi_pass

Sets the maximum number of simultaneous connections that can be opened
by a worker process. This number includes all connections like connection
with proxied servers as well as clients. Also remember that simultaneous
connections cannot exceed the current limit on the maximum number of open
files (worker_rlimit_nofile).

This directive defines the default MIME type of a response. It is set to
application/octet-stream by default in this case. This implies that the server

can send any binary file. For example, the server can emit a zip file and it will

be appropriately handled by the client since it knows that the type of the file is
binary.

Defines the maximum size allowed for the request body. If the size increases the
configured limits, it sends an error code 413, which means Request Entity Too
Large. In this configuration it is set to 13MB. Depending on your content type,
you should tweak it.

This directive is used to group servers in a block making your configuration
more readable and manageable. If you provide multiple servers, the requests get
distributed in a round-robin load balanced fashion. In this configuration, a php
upstream is defined with just one server inside it.

Tells Nginx to try finding the files in specified order. In the current configuration
it searches for $uri, $uri/, /index.php?$args.

Checks for a specific regular expression and redirects if found. Here, it
checks for /wp-admin$ and appends a forward slash ($scheme://$host$uri/
permanent;) whenever the URI contains wp-admin.

Since it turned to off in this configuration, Nginx won't log errors if files are not
found.

This directive enables Nginx to send an Expires and Cache-Control response
header. This is a very crucial directive since you can save a lot of bandwidth
if the directive is enabled and set to max. By setting it max, you are effectively
telling the client and proxy servers to cache the files for as long as possible.

This directive defines a regular expression based on which the request gets split.
The former part of the split string becomes $fastcgi_script name and the
latter becomes $fastcgi path parameter, which can be subsequently used. If
the URI is /page.php/post/001, $fastcgi_script_name will contain /page.php
while $fastcgi_path_info will be equal to /post/001.

This directive sets the address of a FastCGI server. It can be a domain name or
an IP address. In this case it sets it to php, which is the name of the upstream
block.

147

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NGINX AND DYNAMIC CONTENT

The MEAN Stack

A stack called MEAN (Mongo, Express, Angular, and Node) is becoming increasingly popular among the
full-stack web developers. These web developers are often called full-stack developers because the entire
technology stack, from database (MongoDB) to back end (Node.JS + Express.]S) to front end (Angular.]S)
uses JavaScript. Even though they can use the MEAN stack to handle all requests, it often makes sense to
accelerate the entire application using Nginx as front end. In the remainder of this chapter you will see how
to set up a MEAN stack and start a sample web application.

Installing MongoDB

MongoDB is a very popular database choice these days. It is a cross-platform and document-oriented
database. In the NoSQL database world, MongoDB absolutely shines. Since WFE1 has been allocated for
MySQL, you can use WFE2 for MongoDB. In production, you will most likely have dedicated database
servers. For the lab setup however, you should be good to go. To install MongoDB, use the following steps:

1. Create afile called /etc/yum.repos.d/mongodb-org-3.2.repo and write the
following text in it:

[mongodb-org-3.2]

name=MongoDB Repository
baseurl=https://repo.mongodb.org/yum/redhat/$releasever/mongodb-org/3.2/x86_64/
gpgcheck=0

enabled=1

2. Execute the following command to install MongoDB:
sudo yum install -y mongodb-org

Again, covering all topics about Mongo, or MEAN for that matter, is outside the scope of this
book, but there is a bare minimum you need to know so that at least you can start up the server
and fire away some commands.

3. MongoDB comprises of multiple components, but for testing the waters, you
need to learn just a couple of them. mongod is the daemon that can be considered
as the Mongo server. The mongo command, often known as mongo shell, is the
client that connects to the mongo server and is very similar to MySQL command
line conceptually. You can start the mongo server using this:

sudo service mongod start

4. Now, simply type mongo and you should be able to connect to the server. Typing
mongo invokes the mongo shell, which is fairly simple to use once you learn it.

Tip Note that it is possible that you get the following error while trying to invoke Mongo. The error happens
if your locale settings are broken.

Failed global initialization: BadValue Invalid or no user locale set. Please ensure LANG
and/or LC_* environment variables are set correctly.

You can fix this error by manually setting the variable (export LC_ALL=C) before you start the Mongo shell.

148

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NGINX AND DYNAMIC CONTENT

5. You can view the version of MongoDB by typing version() in the mongo shell. Try
the following commands in order and you can see how intuitive it is:

> use foo

switched to db foo

> db

foo

> db.users.insert({"name":"mongo", "about":"rocks!"})

WriteResult({ "nInserted" : 1 })

> db.users.find()

{ "_id" : ObjectId("56e7f53b569a00edf1c98a9b"), "name" : "mongo", "about" : "rocks!" }
> quit()

You can learn more about MongoDB at http://www.mongodb.org. In fact, they even run regular courses
for free where you can learn about it and get certified if you wish to. For more information about their
courses, please visit http://university.mongodb.com/courses.

Installing Node.JS

Node.js is an extremely powerful, open source, cross-platform runtime environment for developing
server-side web applications. Although it is not a JavaScript framework, many of its modules are written in
JavaScript. The runtime environment interprets JavaScript using Google's V8 JavaScript engine. Of late, it has
become very popular among web developers. Learn more at http://nodejs.org.

Installing Node is much more straightforward. Run the following command one by one, and by the end
of the third command, you will have Node]S installed on your server.

sudo curl --silent --location https://rpm.nodesource.com/setup 4.x | sudo bash -
sudo yum -y install nodejs
sudo yum -y install gcc-c++ make

You can test if Node is installed correctly by running the following command:

node -v
V4.4.0

Installing Express.JS

They say Express and Node are like twins that are joined at the hip. Technically though, consider Express.
js as a Node.js web application server framework. It serves as the back end for Node.js and comes with a
plethora of plug-ins for various aspects, like parsing a cookie or a request body, authentication and much
more. It can be installed by executing npm (Node Package Manager) commands. To install it globally on the
server, type sudo npm install express -g. Learn more athttp://expressjs.com.

Installing Angular.JS

This portion is usually done in the application side using the npm install command. The npm install
command reads the dependencies and installs everything that is needed by the server. Angular, as such,

is not something that is installed. Consider it a JavaScript framework for the client side. It is simply
downloaded at the client side and provides a huge amount of functionality like data binding, routing and a
lot more. To learn more about it visit http://angularjs.org.

149

www.it-ebooks.info

http://www.mongodb.org/
http://university.mongodb.com/courses
http://nodejs.org/
http://expressjs.com/
http://angularjs.org/
http://www.it-ebooks.info/

CHAPTER 7 © NGINX AND DYNAMIC CONTENT

Creating a MEAN Application

Building a MEAN application is fun. So, instead of giving you a sample, this section will show you how you
can type a few more commands and set up an application with basic scaffolding.

1. To ensure that npm is the latest version, install it using the following command:
sudo npm -g install npm

2. Next, install express generator. This will help you start an application quickly
with basic scaffolding.

sudo npm install express-generator -g

3. Create an application and run using the following commands. Yes, it is that
simple!

express myapp
cd myapp
npm install

4. You can very well run the application using npm start at this moment. But that is
not a good idea since the process runs as a foreground application. Running this
application using a package called pm2 helps in production scenarios. Install it by
using the following command:

sudo npm install pm2 -g

5. Once done, you can now execute your application using the following:

pm2 start bin/www.
[PM2] Starting bin/www in fork mode (1 instance)
[PM2] Done.

e Toview all applications hosted using pm2, you can use pm2 1ist. (see Figure 7-8).

[userl@wfe2 myappl$ pm2 list

App name id mode pid status restart uptime memory watching

WW 0 fork 12927 online 1 77m 43.590 MB

Figure 7-8. PM?2 List

6. The App name can be used to view details about the application. As you can
see in Figure 7-9, the PID is 12927 and the application name is www. You can
redeploy your code and simply run pm2 restart www to restart this application.
It keeps running the application in background mode.

7. To view the application details, use pm2 show www.

150

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NGINX AND DYNAMIC CONTENT

8. To stop the application, use pm2 stop www.
9. Tolearn more about pm2, visit http://pm2.keymetrics.io/.

Okay, so now that the application is running in the background, you can do curl localhost:3000 to
view the output. It will be a very html output on the command line.

Configure Nginx for MEAN Stack

The Node application that is running needs to be exposed using Nginx. Recall that this application is just
the beginning of the MEAN stack. It doesn't even use MongoDB or Angular yet. But for the purpose of this
book, it should suffice. You simply need to know the pattern for managing and hosting such applications.
Typically, the application files will be given to you just like you have them in the myapp directory.

1. For simplicity clean up any other conffile in /etc/nginx/conf.d and create a
new configuration file as follows:

sudo cp /etc/nginx/conf.d/default.template /etc/nginx/conf.d/node.conf
2. Edit the node.conf file so that it looks like so:

upstream nodeapp {
server 127.0.0.1:3000;

}
server {
listen 80;
server_name localhost;
root /usr/share/nginx/html;
location / {
proxy_pass http://nodeapp;
}

Notice the usage of upstream directive. The Express application was listening on
port 3000, hence server directive inside upstream will route the traffic there.

Inside the server block, there is location directive that uses proxy_pass to
redirect the traffic upstream using the http://nodeapp address. You will learn
more about these directives in chapter 8.

Try browsing http://localhost:8007 and instead of getting the page you might
get an error saying 502 Bad Gateway. The error in the error.log is typically like
the following:

[crit] 13535#0: *43 connect() to 127.0.0.1:3000 failed (13: Permission denied) while
connecting to upstream, client: 127.0.0.1, server: localhost, request: "GET / HTTP/1.1",
upstream: "http://127.0.0.1:3000/", host: "localhost"

If you don't get this error, you are good to go! However, in case you get the
error, most likely it is happening due to SELinux. To troubleshoot this, install
setroubleshoot, using: sudo yum install setroubleshoot.

151

www.it-ebooks.info

http://pm2.keymetrics.io/
http://nodeapp/
http://dx.doi.org/10.1007/978-1-4842-1656-9_8
http://www.it-ebooks.info/

CHAPTER 7 © NGINX AND DYNAMIC CONTENT

3. After the package installs, execute the following command:
sudo cat /var/log/audit/audit.log | grep nginx | grep denied | audit2allow -M mynginx

Finally, execute sudo semodule -i mynginx.pp and the problem should be
resolved. Check by browsing http://localhost:8007.

Summary

In this chapter you have learned various important things about hosting dynamic applications with
Nginx. The chapter started with setting up a LEMP stack by installing the appropriate packages for MySQL
and PHP. Post that, you learned about installation, configuration, and some finer nuances of WordPress
administration on Nginx. Later in this chapter, you learned about the basics of MEAN stack and how easy
it is to configure it using Nginx. You will be learning more about performance fine-tuning for dynamic
applications and load balancing in the coming chapters.

152

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

Load Balancing with Nginx

So far in this book, you have seen the power of Nginx as a web server. However, Nginx is much more than
that. It is frequently used as a proxy server. A proxy server's job is to front end the request and pass it on to
the proxied server, which is also known as an upstream server. The upstream server processes the request
and sends the response back to the Nginx server, which further relays the response to the clients who made
the request. You may think, why do you need to complicate things as much? Wouldn't it make the processing
slower because of the number of hops? This chapter focuses on answers to similar questions, and you will
learn about setting up servers based on different scenarios.

Defining High Availability

Let's begin with the fundamentals of high availability. A system can be considered highly available if it is
continuously operational as long as desired. That is easier said than done. There are basically three main
aspects that you need to consider while designing a highly available system.

1. Eliminate a single point of failure. In simple words, it means that you should
design your system such that failure at a specific point doesn't bring down the
entire system. In a web server context, it means that having just one server,
serving your requests for www.yoursite.comis not recommended. Even though
you can have multiple worker processes for Nginx, it doesn't take care of
scenarios where a server has to be patched for security and rebooted. Also, it
doesn't take care of hardware or network failures. Having a single server serving
your web pages, hence, can become a single point of failure and should be
avoided.

2. Reliable failover. In simplistic terms, a failover implies that if one of the servers
goes down, another one takes its place without the end user noticing the
disruption in service. Consider a car. If one of the tires gets punctured, even
though you have an extra tire , it takes a while to manually change it. You can
say that the failover is reliable, but it isn't quick. In today's world, for a busy
e-commerce website, slow failover means revenue loss that could run in millions.
It is to be noted that the revenue loss here is not only from the lost business, but
also due to the lack of trust that ensues following a major failure.

3. Failure detection at run time. No system is 100 percent perfect. Although, if
monitored well, it can appear to be 100 percent reliable. High-availability design
suggests that you create the system in such a way that failure could be detected
and fixed with time in hand. However, it is easier said than done.

© Rahul Soni 2016 153
R. Soni, Nginx, DOI 10.1007/978-1-4842-1656-9_8

www.it-ebooks.info

http://www.yoursite.com/
http://www.it-ebooks.info/

CHAPTER 8 © LOAD BALANCING WITH NGINX

All the three points mentioned above sound pretty obvious, but designing such a system is hard. In fact,
very hard! As an engineer or architect, you will be often asked to maintain a Service Level Agreement (SLA)
in terms of percentage of uptime. Take a look at Table 8-1.

Table 8-1. Service Level Agreement Chart

Availability % Downtime per year Downtime per day
99% (two nines) 3.65 days 14.4 mins

99.9% (three nines) 8.76 hours 1.44 mins

99.99% (four nines) 52.56 mins 8.66 seconds
99.999% (five nines) 5.26 mins 864.3 milliseconds
99.9999% (six nines) 31.5 seconds 86.4 milliseconds

That's right: it is just 31.5 seconds per year for a six niner SLA. In today's world, 4 nines and 5 nines have
almost become a norm for major cloud providers, and 100 percent is not farfetched either. See Figure 8-1.

~ & Compute
Service Name Status 30 Day Avallability Iblock =1mins Outages Reglons =« Downtime/Region Total
Amazon EC2 +* 100% 0 10 None None
Rackspace Cloud Servers * 100% 0 6 None None
StratoGen VMware Cloud * 100% 1 5 None None
Joyent Cloud +* 100% 0 4 None None
UpCloud + 100% 0 4 None None
Gandi Cloud VPS * 100% 0 2 None None
GeoDaddy Cloud * «100% 0 2 None None
Hosting.com * 100% 0 2 None None
Liquid Web Storm Servers * 100% 0 2 None None
Phoenix NAP Cloud A 100% 0 2 None None
Cloudhelix VMWare Cloud * 100% 0 1 None None
Hosting
Colosseum Cloud + 100% 0 1 None None
GMO Cloud - US * 100% 0 1 None None
KT ucloud e 3 100% 0 | None None
M9 Systems * 100% 0 1 None None
NetHosting Cloud * 100% 0 : | None None

Figure 8-1. Service status by different cloud providers (courtesy: https://cloudharmony.com/status-group-
by-regions)

154

www.it-ebooks.info

https://cloudharmony.com/status-group-by-regions)
https://cloudharmony.com/status-group-by-regions)
http://www.it-ebooks.info/

CHAPTER 8 " LOAD BALANCING WITH NGINX

Load Balancing for High Availability

When you manage web servers, one of your primary duties is to maintain a specific SLA. As discussed in the
previous section, keeping a server running 24x7x365 becomes crucial. At the same time, patching the server
regularly is equally important. Sometimes, patching requires you to reboot the server before the settings take
effect. During the rebooting process, the website remains down. Ask yourself, what if the server doesn't come
up after the reboot or a system failure occurs due to hardware? Scary, right? To avoid such scenarios, you set
up a load balancer. Figure 8-2 shows what the network would look like.

lg) -
-

Clients coming from the Intemet

_— E%D] —>» Web Servers
Load Balancer
Firewall @ @

Figure 8-2. A typical network load balancer in action

As you can see, this setup doesn't have web server as a single point of failure any more. You now have
four web servers handling the load from various clients. It is the responsibility of the load balancer to
appropriately route the Internet traffic to one of the web servers, retrieve the response from the web server,
and return it back to the client. It takes care of bullet #1 discussed in the high-availability section.

Regarding bullet #2, if your application is designed in such a way that the entire application is deployed
in one web server, you are good to go and will not have to worry about failover. This is because, if one server
goes down, the Network Load Balancer (NLB) will detect it, and won't route the traffic to the server that is
down. Quite often, the "entire application in one server" is not practical and the servers have to be created
based on the role that it serves. So, in effect, you will have a set of database servers, another set of application
servers, and yet another set of front-end servers. The front end in this case doesn't have a single point of
failure (the rest of the system has not been drawn in the figure for brevity). The idea is to avoid single point of
failures at all levels.

Bullet #3, that is, failure detection, is what helps the load balancer determine which server is down.
Ideally, you should have a monitoring solution that keeps monitoring the logs, service levels, and other
server vitals to ensure everything runs smoothly in a production farm. The monitoring solution typically has
an alerting mechanism that alerts the administrators when the server starts showing signs of stress.

Note The network diagram in Figure 8-2 might look robust, but it is not. That is because the load balancer
and firewall has now become a single point of failure. You can design them to be fault tolerant by making them
failover smoothly in case of issues. However, this won't be covered in this book since it is out of its scope.

155

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © LOAD BALANCING WITH NGINX

Hardware Load Balancer

As the name suggests, a hardware load balancer is a device that is installed in a datacenter and does the
job of splitting traffic. Since the decision is made at the electronics level, it happens to be extremely fast.
Moreover, the failure rates are low, too. There are multiple vendors like F4, Cisco, Citrix, etc., who provide
the hardware. Typically, the configuration is done through a console or a web interface.

Some benefits of using a hardware load balancer include the following:

e Ithelps generate excellent statistics out of the box. Since the devices are made
primarily for one purpose, they do it really well. It is a mature solution and comes in
various flavors for different needs.

e You canrely on a specific vendor and call for support when the need arises. In worst-
case scenarios, you have to simply replace the device with a new one and reconfigure
from backup.

e Lower maintenance costs since the appliance just works, and there is not much to
manage once it is configured.

There are some disadvantages too. Here are a few important ones:

e Notall devices have lower maintenance costs, since every device has its nuances.
You might need to hire a consultant or employee who understands these devices
well. That eventually bumps up the cost of ownership.

e Hardware load balancers are mostly black boxes, and you can only do as much as the
console or the API allows. Beyond that, you might have to evaluate another device
that has bigger/better feature sets.

e The devices are generally quite costly, and needs you to have a datacenter that
you control. In today's world, a lot is being migrated to the cloud and if you have a
solution that is deployed mostly in the cloud, a hardware NLB is out of the race.

Software Load Balancer

With time, the load balancers have evolved. They are often referred to as Application Delivery Controllers
(ADC) and they do much more than traffic routing. The load balancer is not just a black box as it once was,
and it has to be a lot more scalable due to the goals of today's massively scalable applications. The future is
software, and right from servers, to switches, firewalls, routers, and load balancers, the inclination has been
toward a software solution due to various reasons. With the advent of cloud computing this inclination is
turning even more toward a software solution. Primarily, it helps in the long run if you are not stuck with a
proprietary hardware and its limitations.

Nginx can help you load balance your traffic and much more. There are some very good reasons why
you should use Nginx as a software load balancer.

Flexibility

This is the most important reason why you may want to use a software load balancer. Please keep in mind
that installing a hardware load balancer requires a lot more work than a software load balancer. A software
load balancer can be used anywhere including containers, hypervisors, commodity hardware, and even in
the cloud!

156

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 " LOAD BALANCING WITH NGINX

Cost

Nginx provides a software-based application delivery platform that load balances HTTP and TCP
applications at a fraction of the cost compared to hardware solutions. The open source version is free, and
the paid version Nginx PLUS offers 24x7 support at a much lower cost factor.

Sizing

You buy what you need in case of a software LB, whereas, you have to appropriately size for the requirements
and often keep an additional buffer for growth. In effect, when it comes to hardware LB, you buy more than
what you need to begin with. Sizing correctly is not an easy task and you often undersize or oversize, and
this leads to complications in the running deployment. Even if you have purchased it just right, you will have
to make the payment up front for the need that you might have had after three or five years, based on your
initial estimate.

Application vs. Network

The guiding force behind the purchase of a hardware LB is often the network setup. In comparison, software
LB is often preferred if you think more about your application and its scalability. This becomes even more
important if your application is modern and geared toward cloud deployment.

Elasticity

A software LB is elastic in the sense that you can easily provision bigger servers or spawn additional ones
during the spikes. With hardware LB, you will always have to consider the spikes in your sizing calculation
and buy appropriately. In effect, it means more resources blocked than you would need on average, and you
will end up paying for the resources that you never really utilized.

Consider Figure 8-3. Assume that the average number of hits you anticipate is around 5K per minute
throughout the year. Due to a marketing campaign or any other reason you happened to see a spike that
took the number of requests to 8K+ per minute. In this case, a hardware LB might start throttling or might
even fail to respond appropriately. The solution is to buy the device appropriately considering the maximum
throughput that you anticipate. This also implies that you will end up paying for a device that handles more
concurrent requests (8K per min), whereas your average is much less (just 5K per minute).

10K
9K
8K
7K

6K

5K

Jan Feb Mar Apr May Jun Jul

Figure 8-3. Sales spike between Jan to May

157

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © LOAD BALANCING WITH NGINX

Easy Deployment

Setting up a software LB is much simpler and easier than hardware LB. Additionally, a software LB is same
whether it runs on a bare metal server, virtual server, container, or cloud. The functionality and configuration
method doesn't change. This is not the case with hardware load balancers. Every device is different and has
different requirements and capacities. Maintenance requires specific knowledge of the given hardware and
the variety of choices makes it even more difficult to evaluate different devices.

Multi-Tenancy

If you have multiple applications, buying a different hardware LB for each application might be too
expensive. To counter that, sharing the LB between multiple applications also means that one noisy
application can negatively impact others. Software LB can be easily multi-tenanted, and it turns out to be a
lot more effective in the long run since it doesn't suffer from a noisy-neighbor issue.

Load Balancing in Nginx

Now that you have learned about the basics of load balancing and advantages of using a software load
balancer, let's move forward and work on the Nginx servers you already created in the previous chapters.

Clean Up the Servers

Before setting up anything new, clean up the previous applications so that you can start afresh. This is to
keep things simpler. You will be settings up applications in different ways in the upcoming sections of this
chapter. The idea is to give you information about different scenarios from a practical perspective.

1. Logon to the WFE1 using ssh -p 3026 user1@127.0.0.1

2. Remove everything from the Nginx home directory.
sudo rm -rf /usr/share/nginx/html/*

3. Resetyour configuration (sudo vi /etc/nginx/nginx.conf) to the following:
user nginx;

worker processes 1;
error_log /var/log/nginx/error.log warn;

pid /var/run/nginx.pid;
events {

worker_connections 1024;
}
158

www.it-ebooks.info

http://mailto:user1@127.0.0.1/
http://www.it-ebooks.info/

CHAPTER 8 " LOAD BALANCING WITH NGINX

http {
include /etc/nginx/mime.types;
default_type application/octet-stream;
log format main '$remote_addr - $remote user - [$time_local] - $document_root -

$document_uri -
'$request - $status - $body bytes sent - $http referer’;

access_log /var/log/nginx/access.log main;
sendfile on;

keepalive timeout 65;

index index.html index.htm;

include /etc/nginx/conf.d/*.conf;

4. Now, remove the entries in conf.d by using the following command:
sudo rm -f /etc/nginx/conf.d/*.conf

5. Repeat the steps for WFE2.

Create Web Content

Let's create some content so that it is easy to identify which server served the request. In practical situations,
the content on the WFE1 and WFE2 will be same for the same application. Run the following command on
both WFE1 and WFE2:

uname -n | sudo tee /usr/share/nginx/html/index.html
This command is pretty straightforward. It uses the output of uname -n and dumps it in a file called
index.html in the default root location of Nginx. View the content and ensure that the output is different on

both the servers.

$cat /usr/share/nginx/html/index.html
wfel.localdomain

Tip The tee command reads from the standard input and writes to standard output as well as files. It is
handy, since it shows you the output along with creating the file at the same time.

Configure WFE1 and WFE2

The content is available on both servers now, but since you have already cleaned up the configuration you
will need to re-create the configuration file by using the following command:

sudo cp /etc/nginx/conf.d/default.template /etc/nginx/conf.d/main.conf

159

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © LOAD BALANCING WITH NGINX

The command will create a copy of the configuration for a default website. If you recall, the default.
template contained the following text:

server {
listen 80;
server_name localhost;

location / {
root /usr/share/nginx/html;
index index.html index.htm;
}
error_page 500 502 503 504 /50x.html;
location = /50x.html {
root /usr/share/nginx/html;

}
}

e Restart the service: sudo systemctl restart nginx.

e Repeat the steps on WFE2.

e Once done, you should be able to execute curl localhost on both servers, and you
should get output as wfel.localdomain and wfe2.localdomain respectively. Notice
that even though the request is same (curl localhost), the output is different. In
practice, the output will be the same from both servers.

Set Up NLB Server

Setting up an NLB server is no different than setting up a regular web server. The installation steps are
similar to what you have learned already. The configuration, however, is different and you will learn about it
in the upcoming sections.

1. Create a new virtual machine called NLB.

2. Setup a NAT configuration as you have learned in previous chapters. It should
look similar to Figure 8-4.

160

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 " LOAD BALANCING WITH NGINX

Pve L

Name Protocol Host IP Host Port Guest IP Guest Port é
HTTP - NLB TCP 127.00.1 | 8008 10029 80 B
HTTP - WFE1 TCP | 127001 (8006 | 10026 80 '
| HTTP - WFE2 'TcP | 127001 (8007 | 10027 |80
SSH - NLB TCP | 127001 |3028 | 10029 |22
SSH - WFE1 [TcP | 127001 3026 | 10026 |22
| SSH - WFE2 TcP | 127001 (3027 | 10027 |22

corcer | (NG

Figure 8-4. Network configuration for NLB with two WFEs

3. Install Nginx (refer to chapter 2) on the NLB server.

4. Since it is a new server, when you execute curl localhost, you will see the
default welcome page. You can ignore it for the time being.

5. Open the configuration file (/etc/nginx/conf.d/default.conf) and make the
changes as follows:

upstream backend{
server 10.0.2.6;
server 10.0.2.7;

}
server {
listen 80;
location / {
proxy_pass http://backend;
}

6. Restart the service.

7. Try the following command a few times and notice how it gives you output from
WFE1 and WFE2 in an alternate fashion.

[root@nlb ~]# curl localhost
wfel.localdomain
[root@nlb ~]# curl localhost
wfe2.localdomain
[root@nlb ~]# curl localhost
wfel.localdomain
[root@nlb ~]# curl localhost
wfe2.localdomain

www.it-ebooks.info

161

http://dx.doi.org/10.1007/978-1-4842-1656-9_2
http://www.it-ebooks.info/

CHAPTER 8 © LOAD BALANCING WITH NGINX

So, what just happened? Basically, you have set up a load balancer using Nginx and what you saw was
the load balancer in action. It was extremely simple, right? There are a couple of directives at play here.

e upstream directive: The upstream directive defines a group of servers. Each server
directive points to an upstream server. The server can listen on different ports if
needed. You can also mix TCP and UNIX-domain sockets if required. You will learn
more about it in the upcoming scenarios.

e proxy_pass directive: This directive sets the address of a proxied server. Notice that
in this case, the address was defined as back end, and in turn contained multiple
servers. By default, if a domain resolves to several addresses, all of them will be used
in a round-robin fashion.

Load Balancing Algorithms

When a load balancer is configured, you need to think about various factors. It helps if you know the
application and its underlying architecture. Once you have found the details, you will need to configure
some parameters of Nginx so that you can route the traffic accordingly. There are various algorithms that you
can use based on your need. You will learn about it next.

Round Robin

This is the default configuration. When the algorithm is not defined, the requests are served in round-robin
fashion. At a glance, it might appear way too simple to be useful. But, it is actually quite powerful. It ensures
that your servers are equally balanced and each one is working as hard.

Let's assume that you have two servers, and due to the nature of your application you would like three
requests to go to the first server (WFE1) and one request to the second server (WFE2). This way, you can
route the traffic in a specific ratio to multiple servers. To achieve this, you can define weight to your server
definitions in the configuration file as follows.

upstream backend{
server 10.0.2.6 weight=3;
server 10.0.2.7 weight=1;

}
server {
listen 80;
location / {
proxy_pass http://backend;
}

Reload Nginx configuration and try executing curl localhost multiple times. Note that three requests
went to the WFE1 server, whereas one request went to WFE2.

[root@nlb ~]# curl localhost
wfel.localdomain
[root@nlb ~]# curl localhost
wfel.localdomain
[root@nlb ~]# curl localhost
wfel.localdomain
[root@nlb ~]# curl localhost
wfe2.localdomain

162

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 " LOAD BALANCING WITH NGINX

Least Connected, Optionally Weighted

In scenarios where you cannot easily determine the ratio or weight, you can simply use the least connected
algorithm. It means that the request will be routed to the server with the least number of active connections.
This often leads to a good load-balanced performance. To configure this, you can use the configuration file
like so:

upstream backend{
least_conn;
server 10.0.2.6 weight=1;
server 10.0.2.7 weight=1;

Without a load testing tool, it will be hard to determine the output using command line. But the idea is
fairly simple. Apart from the least number of active connections, you can also apply weight to the servers,
and it would work as expected.

IP Hash

There are quite a few applications that maintain state on the server: especially the dynamic ones like PHP,
Node, ASP.NET, and so on. To give a practical example, let's say the application creates a temporary file

for a specific client and updates him about the progress. If you use one of the round-robin algorithms, the
subsequent request might land on another server and the new server might have no clue about the file
processing that started on the previous server. To avoid such scenarios, you can make the session sticky, so
that once the request from a specific client has reached a server, Nginx continues to route the traffic to the
same server. To achieve this, you must use ip_hash directive like so:

upstream backend{
ip_hash;
server 10.0.2.6;
server 10.0.2.7;

The configuration above ensures that the request reaches only one specific server for the client based
on the client's IP hash key. The only exception is when the server is down, in which case the request can land
on another server.

Generic Hash

A hash algorithm is conceptually similar to an IP hash. The difference here is that for each request the load
balancer calculates a hash that is based on the combination of text and Nginx variables that you can specify.
It sends all requests with that hash to a specific server. Take a look at the following configuration where hash
algorithm is used with variables $scheme (for http or https) and $request_uri (URI of the request):

upstream backend{
hash $scheme$request uri;

server 10.0.2.6;
server 10.0.2.7;

163

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © LOAD BALANCING WITH NGINX

Bear in mind that a hash algorithm will most likely not distribute the load evenly. The same is true
for an IP hash. The reason why you still might end up using it is because of your application's requirement
of a sticky session. Nginx PLUS offers more sophisticated configuration options when it comes to session
persistence. The best use case for using hash is probably when you have a dynamic page that makes data
intensive operations that are cachable. In this case, the request to that dynamic page can go to one server
only, which caches the result and keeps serving the cache result, saving the effort required at the database
side and on all the other servers.

Least Time (Nginx PLUS), Optionally Weighted

Nginx PLUS has an additional algorithm that can be used. It is called the least time method where the load
balancer mathematically combines two metrics for each server—the current number of active connections
and a weighted average response time for past requests —and sends the request to the server with the lowest
value. This is a smarter and more effective way of doing load balancing with heuristics.

You can choose the parameter on the least_time directive, so that either the time to receive the response
header or the time to receive the full response is considered by the directive. The configuration looks like so:

upstream backend{
least _time (header | last byte);
server 10.0.2.6 weight=1;
server 10.0.2.7 weight=1;

Most Suitable Algorithm

There is no silver bullet or straightforward method to tell you which method will suit you best. There are
plenty of variables that need to be carefully determined before you choose the most suitable method. In
general, least connections and least time are considered to be best choices for the majority of the workloads.

Round robin works best when the servers have about the same capacity, host the same content, and the
requests are pretty similar in nature. If the traffic volume pushes every server to its limit, round robin might
push all the servers over the edge at roughly the same time, causing outages.

You should use load testing tools and various tests to figure out which algorithm works best for you. One
thing that often helps you make good decision is the knowledge of the application's underlying architecture.
If you are well aware about the application and its components, you will be more comfortable in doing
appropriate capacity planning.

You will learn about load testing tools, performance, and benchmarking in the upcoming chapters.

Load Balancing Scenarios

So far in this chapter you have seen an Nginx load balancer routing to the back-end Nginx servers. This is not
a mandatory requirement. You can choose Nginx to route traffic to any other web server. As a matter of fact,
that is what is done mostly in practical scenarios and as far as the request is HTTP based, it will just work.
Nginx routes the request based on the mapped URI. You can use Nginx easily to front end the PHP, ASP.

NET, Node.js, or any other application for that matter and enjoy the benefits of Nginx as you will see in the
upcoming scenarios.

164

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 " LOAD BALANCING WITH NGINX

Nginx Routing Request to Express/Node.js

If you recall, in the previous chapter you configured Nginx for MEAN stack. Assuming WFE1 and WFE2 are
hosting applications based on MEAN stack and the application is running on port 3000, your NLB server's
configuration will look like the following:

upstream nodeapp {
server 10.0.2.6:3000;
server 10.0.2.7:3000;

}
server {
listen 80;
server_name localhost;
location / {
proxy_pass http://nodeapp;
}
}

A common mistake that usually happens is that the additional ports are not opened in the firewall. So,
you need to ensure that ports are opened explicitly by using the following command on both WFE1 and
WEFE2:

[user1@wfel ~]$ sudo firewall-cmd --permanent --add-port=3000/tcp
success

[useri@wfel ~]$ sudo firewall-cmd --reload

success

Once you have opened the ports, Nginx will start routing the request successfully. Note that the opened
ports are not exposed to the Internet. It is just for Nginx that is load balancing the requests.

Passing the HOST Header

Since everything has been working in these simple demos, it might mislead you into thinking that all

you need to pass to the back-end server is the URI. For real world applications you might have additional
information in request headers that—if missed—will break the functionality of the application. In other
words, the request coming from Nginx to the back-end servers will look different than a request coming
directly from the client. This is because Nginx makes some adjustments to headers that it receives from the
client. It is important that you are aware of these nuances.

e Nginx gets rid of any empty headers for performance reasons.

e Any header that contains an underscore is considered invalid and is eventually
dropped from the headers collection. You can override this behavior by explicitly
setting underscores_in_headers on;

e The “HOST” header is set to the value of $proxy_host, which is a variable that
contains the domain name of IP address grabbed from the proxy_pass definition. In
the configuration that follows, it will be backend.

e Connection header is added and set to close.

165

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © LOAD BALANCING WITH NGINX

You can tweak the header information before passing on by using the proxy_set_header directive.
Consider the following configuration in the NLB:

upstream backend{
server 10.0.2.6;
server 10.0.2.7;

}
server {
listen 80;
location / {
proxy_set_header HOST $host;
proxy_pass http://backend;
}

In the previous configuration, an explicit HOST header has been set using proxy_set_header directive.
To view the effect, follow these steps:

e Ensure that your NLB configuration appears as the previous configuration block.
Restart Nginx service.

e On WFE], change the nginx.conf (sudo vi /etc/nginx/nginx.conf)such that the
log format has an additional field called $host as follows:

log_format main '$host - $remote addr - $remote user - [$time local] - $document
root - $document uri - $request - $status - $body bytes sent - $http_referer’;

e Save the file and exit. Restart Nginx service.
e Switch back to NLB and make a few requests using curl localhost

e View the logs on the WFE1 using sudo tail /var/log/nginx/access.log -n 3.

[useri@wfel ~]$ sudo tail /var/log/nginx/access.log -n 3

localhost - 10.0.2.9 - - - - /usr/share/nginx/html - /index.html - GET / HTTP/1.0 - 200 - 17 - -
localhost - 10.0.2.9 - - - - /usr/share/nginx/html - /index.html - GET / HTTP/1.0 - 200 - 17 - -
localhost - 10.0.2.9 - - - - /usr/share/nginx/html - /index.html - GET / HTTP/1.0 - 200 - 17 - -

e Asyoucan see, the requests had localhost as the hostname and it is because you
have used proxy_set_header HOST $host.

e To view what the result would have looked like without this header change, comment
the line in NLB's configuration:

location / {
proxy_set_header HOST $host;
proxy pass http://backend;

166

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 " LOAD BALANCING WITH NGINX

Restart Nginx on NLB and retry curl localhost a few times.

If you view the logs on WFE1 using the tail command, you should see an output
similar to this:

localhost - 10.0.2.9 - - - - /usr/share/nginx/html - /index.html - GET / HTTP/1.0 - 200 - 17 - -
backend - 10.0.2.9 - - - - /usr/share/nginx/html - /index.html - GET / HTTP/1.0 - 200 - 17 - -
backend - 10.0.2.9 - - - - /usr/share/nginx/html - /index.html - GET / HTTP/1.0 - 200 - 17 - -

Notice the last couple of lines where the hostname appears as back end. This is
the default behavior of Nginx if you don't set the HOST header explicitly. Based on
your application, you might need to set explicitly or ignore this header in the NLB
configuration.

Forwarding IP Information

Since the requests are forwarded to the back end, it has no information about where the requests have
actually come from. To the back-end servers, it knows the NLB as the client. There are scenarios where you
might want to log information about the actual visitors. To do that, you can use proxy-set-header just as you
did in the previous example but with different variables like so:

location / {

}

proxy set header HOST $proxy host;

proxy_set header X-Real-IP $remote addr;

proxy_set _header X-Forwarded-For $proxy add x_ forwarded for;
proxy_pass http://backend;

In this configuration apart from setting HOST header, you are also setting the following headers:

X-Real-IP is set to $remote_addr variable that contains the actual client IP.

X-Forwarded-For is another header set here, which contains $proxy_add_x_
forwarded_for. This variable contains a list of $remote_addr - client IPs - separated
by a comma.

To log the actual client IP, you should now modify the log_format to include $http_x_
real_ip variable that contains the real client IP information.

By default, X-Real-IP is stored in $http_x_real_ip. You can change this behavior
by using - real_ip_header X-Forwarded-For; - in your http, location or server
directive in order to save the value of X-Forward-For header instead of X-Real-IP
header.

167

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © LOAD BALANCING WITH NGINX

Buffering

As you can guess, with an NLB in between the real back-end server, there are two hops for every request.
This may adversely affect the client's experience. If the buffers are not used, data that is sent from the
back-end server immediately gets transmitted to the client. If the clients are fast, they can consume this
immediately and buffering can be turned off. For practical purposes, the clients will typically not be as fast as
the server in consuming the data. In that case, turning buffering on will tell Nginx to hold the back-end data
temporarily, and feed that data to the client. This feature allows the back ends to be freed up quickly since
they have to simply work and ensure that the data is fed to Nginx NLB. By default, buffering is on in Nginx
and controlled using the following directives:

e proxy_buffering: Default value is on, and it can be set in http, server, and location blocks.

e proxy_buffers number size: proxy_buffers directive allows you to set the number of
buffers along with its size for a single connection. By default, the size is equal to one
memory page, and is either 4K or 8K depending on the platform.

e proxy_buffer_size size: The headers of the response are buffered separately from the
rest of the response. This directive sets that size, and defaults to proxy_buffers size.

e proxy_max_temp_file_size size: If the response is too large, it can be stored in a
temporary file. This directive sets the maximum size of the temporary file.

e proxy_temp_file_write_size size: This directive governs the size of data written to the
file at a time. If you use 0 as the value, it disables writing temporary files completely.

e proxy_temp_path path: This directive defines the directory where temporary files are
written.

Nginx Caching

Buffering in Nginx helps the back-end servers by offloading data transmission to the clients. But the request
actually reaches the backend server to begin with. Quite often, you will have static content, like 3" party
JavaScript libraries, CSS, Images, PDFs, etc. that doesn't change at all, or rarely changes. In these cases, it
makes sense to make a copy of the data on the NLB itself, so that the subsequent requests could be served
directly from the NLB instead of fetching the data every time from the backend servers. This process is called
caching.

To achieve this, you can use the proxy_cache_path directive like so in the HTTP block:

proxy_cache_path path levels=1:2 keys_zone=my cache:10m max_size=10g inactive=60m
Before you use this directive, create the path as follows and set appropriate permissions:

mkdir -p /data/nginx/cache
chown nginx /data/nginx/cache
chmod 700 /data/nginx/cache

e Levels define the number of subdirectories Nginx will create to maintain the cached
files. Having a large number of files in one flat directory slows down access, so it is
recommended to have at least a two-level directory hierarchy.

e keys_zone defines the area in memory which contains information about cached file
keys. In this case a 10MB zone is created and it should be able to hold about 80,000
keys (roughly).

168

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 " LOAD BALANCING WITH NGINX

max_size is used to allocate 10GB space for the cached files. If the size increases,
cache manager process trims it down by removing files that were used least recently.

inactive=60m implies the number of minutes the cache can remain valid in case it is
not used. Effectively, if the file is not used for 60 minutes, it will be purged from the
cache automatically.

By default, Nginx caches all responses to requests made with the HTTP GET and HEAD methods. You
can cache dynamic content too where the data is fetched from a dynamic content management system, but
changes less frequently, using fastcgi_cache. You will learn about caching details in chapter 12.

Server Directive Additional Parameters

The server directive has more parameters that come in handy in certain scenarios. The parameters are fairly
straightforward to use and simply require you to use the following format:

server address [parameters]

You have already seen the server address in use with weight. Let's learn more about some additional

parameters.

max_fails=number: Sets the number of unsuccessful attempts before considering the
server unavailable for a duration. If this value is set to 0, it disables the accounting of
attempts.

fail_timeout=time: Sets the duration in which max_fails should happen. For
example, if max_fails parameter is set to 3, and fail_timeout is set to 10 seconds, it
would imply that there should be 3 failures in 10 seconds so that the server could be
considered unavailable.

backup: Marks the server as a backup server. It will be passed requests when the
primary servers are unavailable.

down: Marks the server as permanently unavailable.

max_conns=number: Limits the maximum number of simultaneous active
connections. Default value of 0 implies no limit.

Configure Nginx (PLUS) for Heath Checks

The free version of Nginx doesn't have a very important directive, and it is called health_check. This feature
is available in Nginx PLUS, and enabling it gives you a lot of options related to health of the upstream servers.

interval=time: Sets the interval between two health checks. The default value is 5
seconds and it implies that the server checks the upstream servers every 5 seconds.

fails=number: If the upstream server fails x number of times, it will be considered
unhealthy. The default value is 1.

passes=number: Once considered unhealthy, the upstream server needs to pass the
test x number of times before it could be considered healthy. The default value is 1.

uri = path: Defines the URI that is used to check requests. Default value is /.

169

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1656-9_12
http://www.it-ebooks.info/

CHAPTER 8 © LOAD BALANCING WITH NGINX

e match=name: You can specify a block with its expected output in order the test to
succeed. In the following configuration, the test is to ensure that the output has a
status code of 200, and the body contains "Welcome to nginx!"

http {
server {
location / {
proxy_pass http://backend;
health_check match=welcome;
}
}

match welcome {
status 200;
header Content-Type = text/html;
body ~ "Welcome to nginx!";

e Ifyou specify multiple checks, any single failure will make the server be considered
unhealthy.

Activity Monitoring in Nginx (PLUS)

Nginx PLUS includes a real-time activity monitoring interface that provides load and performance metrics.
It uses a RESTful JSON interface, and hence it is very easy to customize. There are plenty of third-party
monitoring tools that take advantage of JSON interface and provide you a comprehensive dashboard for
performance monitoring.

You can also use the following configuration block to configure Nginx PLUS for status monitoring.

server {
listen 8080;
root /usr/share/nginx/html;
Redirect requests for / to /status.html
location = / {
return 301 /status.html;
}
location = /status.html { }
location /status {
allow x.x.x.x/16; # permit access from local network

deny all; # deny access from everywhere else

status;

170

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 " LOAD BALANCING WITH NGINX

Status is a special handler in Nginx PLUS. The configuration here is using port 8080 to view the detailed
status of Nginx requests. To give you a better idea of the console, the Nginx team has set up a live demo page
that can be accessed at http://demo.nginx.com/status.html.

Summary

In this chapter, you have learned about the basic fundamentals of high availability and why it matters. You
should also be comfortable with the basic concepts about hardware and software load balancing. Nginx is
an awesome product for software load balancing and you have learned about how easily you can set it up in
your web farm. The architecture of Nginx allows you to have a very small touch point for front-end servers,
and the flexibility ensures that you can customize it precisely based on your requirements. You can scale out
your farm easily with Nginx, and use Nginx PLUS to achieve even more robustness in your production farm
when the need arises.

171

www.it-ebooks.info

http://demo.nginx.com/status.html
http://www.it-ebooks.info/

CHAPTER 9

Log Analysis, Monitoring, and
Automation

If you are a web hosting provider, setting up web servers will be a fairly repetitive task to the extent that
you might want to automate the whole process of creating and configuring the website. However, if you
have a few websites to manage, setting up a web server and hosting your application will often be relatively
straightforward. Once you have set up the web server, the changes in the configuration will be rare and
only on a need basis. A typical web administrator spends far more time maintaining the web farm than
configuring it. This chapter focuses on maintaining the web server. You will learn about log gathering,
analysis, monitoring, and automation.

Error Log

While processing the requests, it is possible that the request is not honored for several reasons. As a visitor,
these error messages can be pretty generic. Most browsers have an in-built error messages template that
is used regardless of the web server it requested from. So, in case your (any) web server responds with
status code 404, it is possible that the browser shows an in-built custom error message. This is done for
consistency, so that even the layman can understand what the error message means.

As an administrator though, the generic error message doesn’t help much. If you find errors while
browsing your website, you will have to troubleshooting using error logs. Nginx writes information about
the issues it encountered while processing a request in an error log. The logging mechanism is smart and
has various levels. The levels ensure that you log only as much as needed on a regular basis. You must
understand that logging is a cost, and it uses resources.

Itis a good idea to log at higher level in production and lower levels during development. Take a look
at Figure 9-1 to understand about levels. Emergency (emerg) is the highest level of error message that you
shouldn't ignore at all. Most emerg level errors will cause service issues and the Nginx service will not even
start. Alert (alert) is the second highest level of error followed by critical (crit), error, warning (warn), notice,
information (info), and debugging (debug).

© Rahul Soni 2016 173
R. Soni, Nginx, DOI 10.1007/978-1-4842-1656-9_9

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © LOG ANALYSIS, MONITORING, AND AUTOMATION

Figure 9-1. Error levels in Nginx

If you set the error logging to warn, you are telling Nginx to log any error message that has a level of
warning or above. In essence, warn, error, crit, alert, and emerg messages will all be logged if you choose
warn as the error logging method.

To configure error log, you will need to use the error_log directive in main, HTTP, mail, stream, server,
or location block as follows:

error_log /var/log/nginx/error.log info;

If you restart the Nginx service now, you should be able to see logs in /var/log/nginx/error.log.
Try doing as follows so that you learn about different entries that get logged during reload of a
configuration (sudo nginx -s reload).

1. Edit your Nginx configuration file and ensure that the error_log directive is set to
infolevel.

2. Readthelogfile using sudo tail /var/log/nginx/error.log:

3. Note the time stamp so that you can compare the additional logs that have
appeared after you have entered the following command:

sudo nginx -s reload
4. Read the log again, using sudo tail /var/log/nginx/error.log -n 50:

[notice] 13300#0: signal process started
[notice] 13281#0: signal 1 (SIGHUP) received, reconfiguring
[notice] 13281#0: reconfiguring
[notice] 13281#0: using the "epoll" event method
[notice] 13281#0: start worker processes
[notice] 13281#0: start worker process 13301
[notice] 13285#0: gracefully shutting down
[notice] 13285#0: exiting
[notice] 13285#0: exit
[notice] 13281#0: signal 17 (SIGCHLD) received
[notice] 13281#0: worker process 13285 exited with code 0
[notice] 13281#0: signal 29 (SIGIO) received
Notice, that the log entry is marked [notice] as the log levels, and it emits a bunch of lines telling
exactly what Nginx has done. Try running different commands, and check the logs again to see various
entries being logged. It is a good way of learning and understanding the underlying concepts.

174

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © LOG ANALYSIS, MONITORING, AND AUTOMATION

Note By default, you can use all levels except debug. For debug level to work, you must use --with-
debug while building Nginx. Refer to chapter 2 for more information about setting up Nginx using different
switches. You can use nginx -V to determine if your Nginx binary was built with debug module.

The configuration file can have multiple error_log directives, and the one declared at the lowest level of
hierarchy overrides the configuration on the higher level. If there are multiple error_log directives at a level,
the logs are written to all specified log files.

Access Log

Access log is another log that Nginx creates while serving requests. Where error logs contain service-related
information, access logs contain information about client requests. Every request is logged right after it is
processed.

1. Start by typing nginx -V to view the path of access logs and error logs and find the
values of --error-log-path (for error logs) and --http-log-path (for access logs):

$nginx -V

nginx version: nginx/1.8.1

built by gcc 4.8.3 20140911 (Red Hat 4.8.3-9) (GCC)

built with OpenSSL 1.0.1e-fips 11 Feb 2013

TLS SNI support enabled

configure arguments: --prefix=/etc/nginx --sbin-path=/usr/sbin/nginx --conf-path=/etc/
nginx/nginx.conf --error-log-path=/var/log/nginx/error.log --http-log-path=/var/log/nginx/
access.log --pid-path=/var/run/nginx.pid --lock-path=/var/run/nginx.lock --http-client-body-
temp-path=/var/cache/nginx/client_temp --http-proxy-temp-path=/var/cache/nginx/proxy temp
--http-fastcgi-temp-path=/var/cache/nginx/fastcgi temp --http-uwsgi-temp-path=/var/cache/
nginx/uwsgi_temp --http-scgi-temp-path=/var/cache/nginx/scgi_temp --user=nginx --group=nginx
--with-http_ssl module --with-http_realip module --with-http_addition_module --with-http_
sub_module --with-http _dav_module --with-http flv_module --with-http mp4 module --with-
http_gunzip module --with-http gzip static_module --with-http_random_index _module --with-
http_secure link module --with-http stub status module --with-http auth_request module
--with-mail --with-mail ssl module --with-file-aio --with-ipv6 --with-http_spdy module
--with-cc-opt="-02 -g -pipe -Wall -Wp,-D_FORTIFY_SOURCE=2 -fexceptions -fstack-protector-
strong --param=ssp-buffer-size=4 -grecord-gcc-switches -m64 -mtune=generic'

2. Open nginx.conf file, and remove log_format related lines if any.
3. Reload the configuration and execute curl http://localhost.

4. View the access logs, by using the following command:

$sudo tail /var/log/nginx/access.log
127.0.0.1 - - [actual request time] "GET / HTTP/1.1" 200 17 "-" "curl/7.29.0"

175

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1656-9_2
http://www.it-ebooks.info/

CHAPTER 9 © LOG ANALYSIS, MONITORING, AND AUTOMATION

5. This format is the default format and is referred to as combined format that
appears automatically if you do not specify any specific log format. The
combined format contains information about $remote_addr $remote_user
[$time_local] $request $status $body_bytes_sent $http_referer $http_user_agent.
In the previous command you can see that the request is a GET request for the
root (/) location and was done using curl.

If you need to, you can change the format using log format and specify more or less variables based on
your requirement. A list of all variables in Nginx can be viewed at http://nginx.org/en/docs/varindex.
html. The following snippet shows how you can declare a log_format as per your need, followed by access_
log directive. Note that the log_format has a name called main, and this is the name provided in the access_
log directive in addition to the file name.

log_format main '$remote_addr - $remote_user [$time_local] "$request” '
'$status $body bytes sent "$http_referer" '
""$http user agent" "$http x_forwarded for"';

access_log /var/log/nginx/access.log main;

Some of the important variables used in log_format are as follows:
e $bytes_sent: Total number of bytes sent to a client.

e $request_time: Total time taken to process a request. If a request is taking longer
time, you should try to figure out the root cause for it. This variable contains
information about time elapsed since the first bytes were read by the client, until the
time the last byte was consumed.

e $status: Contains the status code of the response. It is important that you scan your
log files periodically to check if the requests are being served as per your application
design. 5xx related errors are the ones that should be fixed as soon as possible,
since it implies that your server (or application) was not able to handle the request
gracefully. In general:

e 2xx means success
° 3xx means redirection

e 4xxmeans errors due to client

e 5xxmeans errors due to the server

What to Log?

The logging configuration is so simple that it is easy to goof up. It might seem productive to log as much as
possible, but in production scenarios where thousands of connections are handled every second, logging
more can slow your web server down. This slowness is not because of the actual writing process, but more
because of the evaluation of variables. Bear in mind that the variables in Nginx are evaluated at runtime for
every request.

Your application, budget, and other requirements determine what to log and what not to. For example,
if bandwidth is costly and of concern to you, it would be prudent to log compression ratio, so that you can
log the details and analyze it later.

176

www.it-ebooks.info

http://nginx.org/en/docs/varindex.html
http://nginx.org/en/docs/varindex.html
http://www.it-ebooks.info/

CHAPTER 9 © LOG ANALYSIS, MONITORING, AND AUTOMATION

In simple words, every field that is logged using log_format will have a cost and you should think about
how you plan to consume the log in future. If you can't imagine a reason for logging a counter, you should
not log it to begin with. This will save you both disk space and processing time.

Because you can configure logging in http, server and location blocks, you can fine tune it at various
levels as per your requirement.

A common mistake that is often committed is to log at a much lower level than necessary. If you are
running an application in production after thorough testing, you might want to log errors at a higher level,
like error or crit. That way, you can safely ignore the logs at lower levels. During the development and
troubleshooting process, it makes a lot of sense to keep the logging level low, so that you can minutely
analyze the logs.

To summarize, be wise while logging and don't log for logging sake.

Log Buffers

You can buffer the logs in memory before it is written to the disk. The access_log directive allows you to set
the buffer size. If the logs are buffered, data is written to the file when one of the following conditions is true:

e The nextline doesn't fit the buffer.

e The buffered data is older than the flush parameter. (the flush parameter in the
access_log specifies how frequently the logs should be flushed to the disk).

e The worker process is shutting down or reopening the log files.

Conditional Log

If the traffic to your website is huge, you may not want to log the successes at all. It is possible in Nginx to do
conditional logging. Once enabled, the request will not be logged if the condition evaluates to 0 or an empty
string. The following configuration snippet is pretty smart if you think about it.

map $status $loggable{
~[23] o;
default 1;

}

access_log /var/log/nginx/access.log combined if=$loggable;

At first, the map directive creates variables whose values depend on certain factors. In this case, $status
is taken as input and $loggable is the output. The regular expression is used to match $status and evaluate
if the status starts with 2xx or 3xx, in which case it sets the $loggable to 0. Otherwise, the $loggable is set to
1. In the access_log directive, $1oggable variable is evaluated using the if directive. If the value is 0, it is not
logged and vice versa.

Log Compression

access_log directive provides a very neat way to compress the logs. It is as easy as appending another
parameter to the directive like so:

access_log /log_path/log.gz combined gzip=1 flush=10m

177

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © LOG ANALYSIS, MONITORING, AND AUTOMATION

In this case, the logs are compressed before being written to the file. gzip=1 implies that the level of
compression is at least 1, and hence it is fastest. You can change the level to a maximum of 9, which would
imply best compression but slowest. Generally, the higher the compression level, the more CPU Nginx
consumes. The gzipped files get saved in the same location as access log and can be viewed with zcat like so:

sudo zcat /var/log/nginx/access.log-XXXXxX.gz
If the file is large, you can pipe the output to more or less as follows:

sudo zcat /var/log/nginx/access.log-xxxxxx.gz | more
sudo zcat /var/log/nginx/access.log-xxxxxx.gz | less

Tip more is an older command that allows only forward scrolling and is available on most platforms. Less,
on the other hand, is a newer command with a lot of functionality including backward scrolling. Read more
about them in the main pages.

Syslog

If you have multiple servers emitting logs, it can be quite painful to individually log in on every server and
analyze the logs. Syslog is a widely accepted utility that provides a way for networked servers to send event
messages to a central logging server. Nginx can take advantage of syslog by using syslog: prefix in error_log
and access_log directives.

In the following example, the access log is written to a syslog server using an IPv6 address on port 8080.
The entries are tagged with text nginx_fe1l so that every line has this text. This will help you isolate logs from
various servers even though they are stored in the same file.

access_log syslog:server=[xxx:xx::1]:8080,facility=1ocal7,tag=nginx_fe1,severity=info;

Syslog protocol utilizes numerical facility listed below (default value is local7 as used in the previous
configuration block):

kernel messages

user-level messages

mail system

system daemons
security/authorization messages
messages generated internally by syslogd
line printer subsystem

network news subsystem

UUCP subsystem

clock daemon
security/authorization messages
FTP daemon

NTP subsystem

log audit

log alert

clock daemon

OwoKo~NOoOUVT PN~ WN R O

[O
ahWN R

178

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © LOG ANALYSIS, MONITORING, AND AUTOMATION

16 local use 0 (localo)
17 local use 1 (local1)
18 local use 2 (local2)
19 local use 3 (local3)
20 local use 4 (locals)
21 local use 5 (locals)
22 local use 6 (local6)
23 local use 7 (local7)

Analyze Logs

Analyzing a log is a time-consuming process, and you have multiple tools and utilities that can help in faster
log analysis. One of the simplest and least effective ways is to cat the log file, simply because the log files are
usually big. There are various free and commercial tools available for this job. You will learn about some of
the free tools in this section.

tail

You have been already using tail so far in this book so you must be pretty familiar with the basic syntax
already. By default, tail command prints the last 10 lines of the file to a standard output. There are some
interesting parameters that you should be aware of:

e tail /access.log -c 500: will read the last 500 bytes of the log file
e tail /access.log -n 50: will read the last 50 lines of the log file

e tail /access.log -f: will keep listening to the log file and emit the latest lines as they
appear. This comes in handy when you want to troubleshoot an issue in production.
You can run this command before you try to reproduce the issue. Since the
command keeps emitting the output as it appears, it will make your troubleshooting
experience a lot smoother because you will not have to repeat the command again
and again to view the latest entries.

ngxtop

Available as an open source project, ngxtop parses your access log and outputs useful metrics from your web
server. It is very similar to top command.
A sample output of top command:

$top

top - 05:31:06 up 14 days, 19:48, 2 users, load average: 0.00, 0.01, 0.05
Tasks: 91 total, 2 running, 89 sleeping, 0 stopped, 0 zombie

%Cpu(s): 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem : 1017160 total, 140920 free, 309768 used, 566472 buff/cache

KiB Swap: 839676 total, 839252 free, 424 used. 483480 avail Mem

179

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © LOG ANALYSIS, MONITORING, AND AUTOMATION

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

1 root 20 0 208216 6948 2540 S 0.0 0.7 0:43.27 systemd

2 root 20 0 0 0 0S 0.0 0.0 0:00.14 kthreadd

3 root 20 0 0 0 0S 0.0 0.0 0:04.41 ksoftirqd/o
5 root 0 -20 0 0 0S 0.0 0.0 0:00.00 kworker/0:0H
6 root 20 O 0 0 0S 0.0 0.0 0:02.72 kworker/u2:0
7 root rt 0 0 0 0S 0.0 0.0 0:00.00 migration/0
8 root 20 © 0 0 0S 0.0 0.0 0:00.00 rcu bh

9 root 20 O 0 0 0S 0.0 0.0 0:00.00 rcuob/0

If you have been following along in this book so far, you must be working on CentOS, and it doesn't have
pip installed by default. pip is a package management system (just like yum) used to install and manage
software packages written in Python. Ngxtop is written in Python and you need to install it.

1. Use the following command to download it:
sudo curl "https://bootstrap.pypa.io/get-pip.py" -o "get-pip.py" -k
2. Installit:
sudo python get-pip.py
3. Checkifitisinstalled properly by executing pip --help
4. You can view the version by executing the following:

pip -V
pip 8.1.2 from /usr/1lib/python2.7/site-packages (python 2.7)

5. Now that pip is installed, use it to install ngxtop:
sudo pip install ngxtop

Time to execute ngxtop!
If you execute it locally, you will see the output that follows in Figure 9-2.

[userl@wfel ~]$ sudo ngxtop
running for 102 seconds, @ records processed: 0.00 req/sec
Summary:

| count | avg_bytes_sent | 1 3xx | 4xx |
| ==——————— Fmmm——————————————— o ————— mm————— |

| 0 | 0 | e | 2] e |

Detailed:
| request_path | count | avg_bytes_sent (X | 3xx
| ---------------- Fmm——————— Fmm e —————————————— Fmm————— Fmm———— Fmm————— Fm————— |

Figure 9-2. Nginx top output

180

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © LOG ANALYSIS, MONITORING, AND AUTOMATION

In a production box, you will see a more comprehensive output. To get a feel of it, let it run locally and
hit the website using a browser from your host machine (http://127.0.0.1:8006).

Soon, you will start seeing additional information as you can see in Figure 9-3. This can be very helpful
in production scenarios if you have long-running requests. You can quickly fire up the ngxtop command
and get a gist of what's going on. Keep in mind though that this utility is designed to run for shorter periods
of time just like the top command for troubleshooting and monitoring purposes. You will need to use other
software in case you want to do detailed analysis for a longer period of time.

[userl@wfel ~]$ sudo ngxtop

running for 556 seconds, 25 records processed: 8.04 reqg/sec

Summary:
count | avg_bytes_sent | 2xx | 3xx | 4xx |

Detailed:

| request_path count | avg_bytes_sent | 2xx
| ________________

| / 15.938 |

| /favicon.ico 570.000 |

Figure 9-3. Nginx top output with data

Official home page: https://github.com/lebinh/ngxtop
There is some output taken directly from their home page, to give you a gist of what kind of information
you can get using this tool.

e View top source IPs of clients:
$ ngxtop top remote addr

running for 20 seconds, 3215 records processed: 159.62 req/sec
top remote_addr

| remote addr | count |
R beeeeeeees |
| 118.173.177.161 | 20 |
| 110.78.145.3 | 16 |
| 171.7.153.7 | 16 |
| 180.183.67.155 | 16 |
| 183.89.65.9 | 16 |
| 202.28.182.5 | 16 |
| 1.47.170.12 | 15 |
| 119.46.184.2 | 15 |
| 125.26.135.219 | 15 |
| 125.26.213.203 | 15 |

e List4xx or 5xx responses with HTTP referrer

$ ngxtop -i 'status >= 400" print request status http_referer
running for 2 seconds, 28 records processed: 13.95 req/sec

181

www.it-ebooks.info

http://127.0.0.1:8006/
https://github.com/lebinh/ngxtop
http://www.it-ebooks.info/

CHAPTER 9 © LOG ANALYSIS, MONITORING, AND AUTOMATION

request, status, http referer:

| request

| status | http referer |

GoAccess

GoAccess is another web log analyzer and much more functional than ngxtop. It is an open source project
that allows you to view logs interactively and runs directly in the terminal. Apart from view the logs in the
terminal, it also allows you to create HTML reports for the logs. You can read more about it at https://
github.com/allinurl/goaccess. The list of features it provides is pretty impressive:

General statistics, bandwidth, etc.

Time taken to serve the request (useful to track pages that are slowing down your
site)

Metrics for cumulative, average, and slowest running requests
Top visitors

Requested files and static files

404 or Not Found

Hosts, Reverse DNS, IP Location

Operating Systems

Browsers and Spiders

Referring Sites and URLs

Key Phrases

Geo Location - Continent/Country/City

Visitors Time Distribution

HTTP Status Codes

Metrics per Virtual Host

Ability to output HTML, JSON, and CSV

Tailor GoAccess to suit your own color taste/schemes
Incremental log processing

Support for large datasets and data persistence
Support for HTTP/2 and IPv6

Output statistics to HTML

It supports nearly all web log formats:

182

Amazon CloudFront (Download Distribution)
AWS Elastic Load Balancing
Combined Log Format (XLF/ELF) Apache | Nginx

www.it-ebooks.info

https://github.com/allinurl/goaccess
https://github.com/allinurl/goaccess
http://www.it-ebooks.info/

CHAPTER 9 © LOG ANALYSIS, MONITORING, AND AUTOMATION

e Common Log Format (CLF) Apache
e Google Cloud Storage

e Apache virtual hosts

e Squid Native Format

e W3C format (IIS)

You can view the details in a colored format directly on the terminal or create HTML reports as can be
seen in Figures 9-4 and 9-5 respectively.

[Active Panel: ¥

18718

Total: :

4 - Not

5 - Visitor Hostnames and IPs

q) '
[F1lHelp [X el 0 - Mon Feb

Figure 9-4. goaccess output in a terminal (courtesy: https://github.com/allinurl/goaccess)
183

www.it-ebooks.info

https://github.com/allinurl/goaccess)
http://www.it-ebooks.info/

CHAPTER 9 © LOG ANALYSIS, MONITORING, AND AUTOMATION

@ Dashboard
Overall Analyzed Requests (18/Dec/2010 - 18/Dec/2010)
| Valid Rieque. \d Failed Requ. l#d Processed T. i Unique Visit | Unigue Files | Exci. IP Hits
3/3 0 0 secs 2
f \d Reterrers B L Unigue 404 . \d Static Files E ’..u Log Sze i .-l.u Bandwidth ; "Lu Log File
2 1 2 692.0B 2.62 KiB .flogs/on...
Unique visitors per day - Including spiders
2 3 262KB | 18/Deci2010

Requested Files (URLs)

p requests sorted by hits [, avgts, cumts, maxts, mthd, proto]

Visitors Hits % Bandwidth Requests .

Static Requests

Top siatic requests sorted by hits [, avgis, cumts, maxts, mihd, proto]
Visitors Hits Bandwidth Static Requests s
1 1 | 3333 1.68 KiB nterval_masksAhumb/1651184765.jpg

23.97%

Not Found URLSs (404s)

Top not found URLs sored by hits [, avgts, cumts, maxts, mthd,

Genorated by
GoAccess 0.9.8 =

20160512 21:17:57 Visitors Hits % Bandwidth Not Found

Figure 9-5. goaccess HTML report sample (courtesy: https://goaccess.io/qoaccess_html_report.html)

Custom Error pages

If your visitors request a page that doesn't exist, by default, a plain looking and boring error message is
displayed like the one you see in Figure 9-6.

r 3 .
e © Y [404 Not Found x % Y

F C A [) 127.0.0.1:8006/00ppss

404 Not Found

Kl

nginx/1.8.1

Figure 9-6. Default error messages

184

www.it-ebooks.info

https://goaccess.io/goaccess_html_report.html
http://www.it-ebooks.info/

CHAPTER 9 © LOG ANALYSIS, MONITORING, AND AUTOMATION

There are other scenarios where it could be a lot more cryptic. To view it in practice, follow along these
steps to learn how you can customize and show a much more informative error messages when something
goes wrong.

1. Start by modifying the config file so that you can reproduce errors easily. In the
following config, there is a path setup (http://localhost/testing) that would
error out on purpose since the path doesn't exist.

server {
listen 80;
server _name localhost;

location / {
root /usr/share/nginx/html;
index index.html index.htm;

}

location /testing {
fastcgi_pass unix:ooops;
}

2. Reload configuration and execute curl localhost/testing.

$ curl localhost/testing

<html>

<head><title>502 Bad Gateway</title></head>
<body bgcolor="white">

<center><h1>502 Bad Gateway</h1></center>
<hr><center>nginx/1.8.1</center>

</body>

</html>

3. Ifthis error was thrown to your visitor, he would hardly understand what it
means. Try another request with curl localhost/nopage, and you will see
another message similar to this with a different code.

4. Inthe following configuration error_page directive has been used. The
directives talk about the error code and the corresponding route that should take
care of the particular status code. For instance, when a page could not be found,
a 404 error would be thrown and eventually handled by /custom_4xx.html route.
Similarly, any server-related error (5xx) will be handled by /custom_5xx.html
route.

server {
listen 80;
server_name localhost;
location / {

root /usr/share/nginx/html;
index index.html index.htm;

185

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © LOG ANALYSIS, MONITORING, AND AUTOMATION

location /testing {
fastcgi pass unix:ooops;
}

error_page 404 /custom_4xx.html;
error_page 500 502 503 504 /custom 5xx.html;

location = /custom 4xx.html {
root /usr/share/nginx/html;
}

location = /custom 5xx.html {
root /usr/share/nginx/html;
}

5. Once this configuration is saved, you must create the files custom_4xx.html and
custom_5xx.html in the root specified (the files must have read permissions for
the Nginx process account). Here is what the text looks like:

$ sudo cat /usr/share/nginx/html/custom_4xx.html

<h1>Sorry, the page could not be found</h1>

<p>Please ensure that you have typed the address correctly.</p>

$ sudo cat /usr/share/nginx/html/custom 5xx.html

<h1>Sorry, we couldn't process the request</hi>

<p>There seems to be an error. Please report it at contact@oursite.com if you continue to
see this.</p>

6. The error details are still bland and you can definitely customize it further. Be
creative! With the error pages in place, try to repeat the following commands:

$ curl localhost/foo

<h1>Sorry, the page could not be found</h1>

<p>Please ensure that you have typed the address correctly.</p>

$ curl localhost/testing

<h1>Sorry, we couldn't process the request</hi>

<p>There seems to be an error. Please report it at contact@oursite.com if you continue to
see this.</p>

7. Thisis pretty great. But there is a small catch. Try hitting the following URI:
$ curl localhost/custom 5xx.html
<h1>Sorry, we couldn't process the request</hi>

<p>There seems to be an error. Please report it at contact@oursite.com if you continue to
see this.</p>

186

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © LOG ANALYSIS, MONITORING, AND AUTOMATION

8. This route now functions as if it was a normal page. This behavior is normally
not desired. To avoid these routes from working directly, you should mark these
locations with an additional directive called internal like so:

location = /custom 4xx.html {
root /usr/share/nginx/html;
internal;

}

location = /custom 5xx.html {
root /usr/share/nginx/html;
internal;

9. Reload the configuration and try again:

curl localhost/custom 5xx.html
<h1>Sorry, the page could not be found</h1>
<p>Please ensure that you have typed the address correctly.</p>

10. Wait. The page requested was custom_5xx.html, but the result is from
custom_4xx.html. Don't let this confuse you. What basically happened was that
because of the internal directive, Nginx refused to return the page custom_5xx.
html directly and errored out. To refuse it, Nginx threw error 404 and lied to
the visitor that the page doesn't exist. Since 404 status code was mapped to
custom_4xx.html, you saw the result from that page instead.

Benchmark

If you run a web server, it helps to know how it is performing. Even more, you need to know how much load
it can possibly handle under stress. If your website appears on the news headlines for good reasons, you will
definitely not want it to crash when all eyes are on it. To put the problem in simpler words, how would you
plan the deployment in a predictable way?

Benchmarking tests help you derive conclusions and make business decisions. It should provide you
performance-related numbers from multiple perspectives. The benchmarking exercise is comprised of
various tests that yield results that can later be analyzed. It can be a pretty extensive process depending on
how complex your application is. At the minimum, you should be informed about the following:

e Average Number of Users: You must find out the average number of users the servers
can handle easily. If you expect 1000+ concurrent users, you should ensure that the
tests put the appropriate load and the server stays up for a considerable amount of
time.

e Performance Under Load: You must find out how does your server behave under
stress? Are there areas of your application that show slowness? If the service goes
down, does it come back up automatically? Do the requests hang and don’t respond
at all? What kind of errors do the end users see when there is a lot of load on the
server?

187

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © LOG ANALYSIS, MONITORING, AND AUTOMATION

e Hard Limits: This is something that is better known in advance than discovered late
in production. For example, if you have an application that deals with file paths, itis
better if you know well in advance that there is a limit to the path name length. Not
knowing limitations of the hardware or software may become a recipe for disaster. It
is possible that you don't hit the hard limits, but it helps if you are aware of it, so that
you can plan the architecture appropriately. Load testing increases the load until
the point the servers start failing. In that case, if you know the numbers you become
aware of the hard limits of your server (or application) and you can plan well in
advance, should such a need arise.

Apache Benchmark

Apache Benchmark (ab) is a nifty utility used for benchmarking. It is free, open source, and quite powerful.
Follow these steps in order to use it:

1. Installitusingyum install ab.

2. Itisbetter to run ab from a different server than the server that is being tested.
You can run it on your host server as well. A sample command and its output
can be seen in the following code listing. (k parameter tells ab to use keep alive
connections, ¢ implies the number of requests to make concurrently. In this case
90 keep alive concurrent connections are to be used for a total of 10000 requests).

$ ab -kc 90 -n 10000 http://127.0.0.1:8006/index.htm

This is ApacheBench, Version 2.3 <$Revision: 1663405 $>

Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/
Licensed to The Apache Software Foundation, http://www.apache.org/

Benchmarking 127.0.0.1 (be patient)
Completed 1000 requests
Completed 2000 requests
Completed 3000 requests
Completed 4000 requests
Completed 5000 requests
Completed 6000 requests
Completed 7000 requests
Completed 8000 requests
Completed 9000 requests
Completed 10000 requests
Finished 10000 requests

Server Software: nginx/1.8.1
Server Hostname: 127.0.0.1
Server Port: 8006
Document Path: /index.htm
Document Length: 108 bytes
188

www.it-ebooks.info

http://www.it-ebooks.info/

Concurrency Level:
Time taken for tests:
Complete requests:
Failed requests:
Non-2xx responses:
Keep-Alive requests:
Total transferred:
HTML transferred:
Requests per second:
Time per request:
Time per request:
Transfer rate:

Connection Times (ms)

CHAPTER 9 © LOG ANALYSIS, MONITORING, AND AUTOMATION

90

1.900 seconds

10000

0

10000

9902

2829510 bytes

1080000 bytes

5262.02 [#/sec] (mean)

17.104 [ms] (mean)

0.190 [ms] (mean, across all concurrent requests)
1454.00 [Kbytes/sec] received

min mean[+/-sd] median max

Connect: 0 1 25.1 0 1135
Processing: 0 15 120.6 1 1471
Waiting: 0 15 120.6 0 1471
Total: 0 16 133.6 1 1892

Percentage of the requests served within a certain time (ms)

50% 1
66% 1
75% 1
80% 1
90% 1
95% 1
98% 35
99% 781
100%

1892 (longest request)

Some observations that you should notice:

e 5262 requests were served every second.

e The output shows connection times split into four areas: connect, processing,
waiting, and total.

e There is no good or bad result, since it is primarily based on your requirements.
e You should repeat this test with different parameters to find out the results.

e [tisagood practice to test various pages under different loads.

e When in doubt, test again.

e Test, test, test... is the basic mantra when it comes to benchmarks. Test as much as
possible and make judicious decisions based on your requirement.

189

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © LOG ANALYSIS, MONITORING, AND AUTOMATION

JMeter

The ab utility simply downloads the file. It is good for testing pages in silos and will give you results about
how many of those requests could be served from a page download perspective. You can run the test for
static file, images, PHP. and pretty much any URL However, if the HTML page contains certain scripts, ab will
not be able to tell you how long the page took to render.

Although this book will not cover load testing it is worth mentioning that JMeter is another fantastic tool
that can help you a lot. It is a pure Java application designed to load test functional behavior and measure
performance. You can record tests and execute them later with various load parameters. You can learn more
about it from http://jmeter.apache.org.

Cloud-Based Benchmarking

While doing load testing it is often found that the server is way more powerful than the client, and the client
is not able to make as many requests as the server is able to serve. To test such massive web servers and
farms, you need to have equally powerful test servers. With the advent of cloud computing, this has become
a lot simpler. There are many service providers who provide a cloud-based testing approach if your website
is public. You schedule a test and the cloud service takes care of the rest. It makes a number of requests

to your servers from different locations and returns informative results. http://loader.io is one good
example of such a kind of service and has a free option as well. Quite a few cloud-based testing services have
come up to make your job easier from a load testing perspective.

Baseline

People often confuse between benchmark and baseline since they are actually similar but distinct activities.
You can consider baselining as an activity that yields result that you can refer to at a later point. Let's assume
your server takes 110 seconds to boot up on a regular day. After a patch, you reboot it and it takes a much
longer time, say, 200 seconds. If you haven't baselined the server on a regular day and already knew that
110 seconds is your baseline, it would become difficult for you to say that 200 seconds is longer. Baseline
provides that reference point.

In contrast you benchmark your servers to compare the results. For instance, you can use results from
a benchmark on a server to compare to another server and comment “this server is slower than the other by
factor X

In essence, baseline is about identifying an approved state, where as benchmarking is assessing the
relative performance.

Monitoring

Even after all the preparation, gathering logs, baselining, and benchmarking, when your application is

in production it might just crash. Monitoring of a web server is paramount and apparently you can never
monitor enough. A web server is like a mid-air flight. If you don't monitor the vitals constantly, major
accidents can happen. Aggressive monitoring and alert mechanism helps you in fixing the issues during the
flight. It is impossible to monitor the servers manually, and you should choose your tools wisely.

190

www.it-ebooks.info

http://jmeter.apache.org/
http://loader.io/
http://www.it-ebooks.info/

CHAPTER 9 © LOG ANALYSIS, MONITORING, AND AUTOMATION

Nginx PLUS

While configuring load balancing in chapter 8, you have already learned about Nginx PLUS and its
monitoring capabilities. Nginx team has provided a sample configuration that can be download using curl
directly. Run the following command:

curl https://www.nginx.com/resource/conf/status.conf | sudo tee status.conf
sudo mv status.conf /etc/nginx/conf.d/

The commands will create a status.conf file that will work only if you have Nginx PLUS binaries.

The status.conf that was downloaded looks as follows and is well commented (for further details refer to
https://www.nginx.com/blog/live-activity-monitoring-nginx-plus-3-simple-steps). You will learn
about basic authentication in chapter 10:

+*

server {

This is an example of Live Activity Monitoring (extended status) feature configuration
Created by NGINX, Inc. for nginx-plus-16

Documentation: http://nginx.org/r/status

In order to enable this configuration please move this file to /etc/nginx/conf.d
and reload nginx:

mv /etc/nginx/conf.d/status.conf.example /etc/nginx/conf.d/status.conf

nginx -s reload

Note #1: enable status_zone directive for http and tcp servers.
For more information please see http://nginx.org/r/status_zone

Note #2: enable zone directive for http and tcp upstreams.
For more information please see http://nginx.org/r/zone

Status page is enabled on port 8080 by default.
listen 8080;

Status zone allows the status page to display statistics for the whole server
block.

It should be enabled for every server block in other configuration files.
status_zone status-page;

In case of nginx process listening on multiple IPs you can restrict status page
to single IP only
listen 10.2.3.4:8080;

HTTP basic Authentication is enabled by default.

You can add users with any htpasswd generator.

Command line and online tools are very easy to find.

You can also reuse your htpasswd file from Apache web server installation.
#auth_basic on;

#auth_basic_user_file /etc/nginx/users;

191

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1656-9_8
https://www.nginx.com/blog/live-activity-monitoring-nginx-plus-3-simple-steps
http://dx.doi.org/10.1007/978-1-4842-1656-9_10
http://www.it-ebooks.info/

CHAPTER 9 © LOG ANALYSIS, MONITORING, AND AUTOMATION

It is recommended to 1limit the use of status page to admin networks only
Uncomment and change the network accordingly.

#allow 10.0.0.0/8;

#deny all;

NGINX provides a sample HTML status page for easy dashboard view

root /usr/share/nginx/html;

location = /status.html { }

Standard HTTP features are fully supported with the status page.
An example below provides a redirect from "/" to "/status.html"
location = / {

return 301 /status.html;
}

Main status location. HTTP features like authentication, access control,
header changes, logging are fully supported.
location /status {

status;

status_format json;

Automation

There are many manual tasks that are supposed to be executed repeatedly (or in a fixed frequency) in a web
farm. They say, to err is human, and human errors can only be avoided if you can avoid the use of humans!
As web administrators, you wouldn't want to err either by forgetting to back up periodically, or archiving the
logs, or any similar mundane but important task. If you know something is important, it is a good idea to
automate it.

Let's say you want to delete log files older than 10 days. To achieve this, you can use the following
command:

find /var/log/nginx -type f -mtime +10
The command finds all files that are older than 10 days:

/var/log/nginx/access.log-20160306.gz
/var/log/nginx/error.log-20160306.gz
/var/log/nginx/access.log-20160307.gz
/var/log/nginx/error.log-20160307.gz
/var/log/nginx/access.log-20160308.gz
/var/log/nginx/error.log-20160308.gz
/var/log/nginx/access.log-20160309.gz
/var/log/nginx/error.log-20160309.gz

If you are satisfied with the output, you can add an -exec parameter and process it appropriately. Hence,
to delete this, you can use the following command:

sudo find /var/log/nginx -type f -mtime +10 -exec rm {} \;

192

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © LOG ANALYSIS, MONITORING, AND AUTOMATION

In this command, you are trying to find files (-type f) that are older than 10 days and remove that file.
You can do additional things such as using bash script if you like. The core idea is to finalize the activity that
you would like to do every day (or at any specific interval for that matter).

Once the script is ready, you will need to schedule it so that it is executed automatically as per your
requirements. crontab can be of great help here, since it contains a list of commands that you want to be
executed. crontab stands for cron table, since it uses the scheduler called cron. You need to do the following
to register this command so that it is executed automatically.

1. Type crontab -e. This will open vi editor and you can edit it as you would edit any
other file. Every line is an additional task and lines prefixed with # are considered
comments.

2. There are six distinct pieces of information that have to be included in every line
separated by a space. The first five pieces of information tell cron when to run
it, and the last one tells what to run. The pieces are as follows in order (* in the
crontab entry signifies every):

a. A number alist of numbers (ex. 10, 20, 30) or a range of numbers (ex. 10-20)
that represents minutes of the hour.

b. A number, a list of numbers, or a range that represents hour of the day.

c. Anumber, alist of numbers, or a range that represents days of the month.
d. Anumber, alist of numbers, or a range that represents months of the year.
e. Anumber, alist of numbers, or a range that represents days of the week.

f. Actual command or bash script that needs to be executed.

3. Ifyouwrite the following line as one of the entries, it will execute the command
and delete the older logs every night at 1 a.m.:

01 * * * /path/to/script/remove_old logs.sh

4. Exit the editor and create a new file at path that you have mentioned in the
crontab list entry, and cron will take care of the rest.

Some additional sample entries:

Run something every minute
*¥ X ¥ x % /path/to/script/every minute.sh

Run something every hour starting 9AM and ending at 6PM every day
0 9-18 * * * /path/to/script/every hour.sh

Run something every night at 11:30PM
30 23 * * * /path/to/script/every night_at_specific_time.sh

Run something every Sunday at 1 AM
0 1 * * Mon /path/to/script/every monday morning.sh

193

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © LOG ANALYSIS, MONITORING, AND AUTOMATION

Summary

In this chapter you have learned about the usage of error logs and access logs. You should be able to
comfortably analyze what kind of information you need to log and how much to log. You have also learned
about log analysis using tools. Do ensure that you baseline your servers and benchmark new servers
appropriately whenever you need to scale up or scale out. Don't forget to customize your error pages and use
the monitoring tools pragmatically in production. Automation is good, and you should try to automate as
much as possible to reduce human errors.

194

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10

SSL, Security, and Authentication/

The only truly secure system is one that is powered off, cast in a block of concrete and sealed
in a lead-lined room with armed guards.

—Gene Spafford

If your public website is completely static, your exposure is less. But the moment you step in the world of
dynamic web applications, complexities arise. How would you authenticate your clients? How would you
authorize them? How will your customers know that the website they are viewing is actually coming off
your web servers and there is nobody between you and your client playing the spoilsport? How will you
ensure that nobody sees the password while the packets are en route? This chapter deals with some of these
questions and talks about how and why you should secure the website.

Tools to Protect Network Traffic

Before you learn about how to fix the problem, you should be aware of the complexity of the problem. Your
requests that get routed from your browser to the destined server have multiple parties in between. Anyone
who has access to these servers can run certain tools and capture the network traffic. If the connection is
not private, they can read the packets pretty easily. The tools might have a complex interface to the non-
informed audience, but for the network experts the output is pretty easy to read. There are a variety of tools
available to sniff network traffic.

Capturing Network Traffic with Wireshark

One of the most famous tools for capturing network traffic is Wireshark. It is available on most platforms and
can be downloaded from www.wireshark.org. Once you have downloaded and installed it, you can start
sniffing data packets sent on the network. Figure 10-1 shows a snapshot of what it looks like. You should try
capturing real traffic and play around to get a better grasp of the tool.

When you start a basic network capture using Wireshark, it presents a dialog box showing the interfaces
installed on your system. Figure 10-1 shows the interfaces found on a MacBook Pro. For your practice, you
can capture Loopback interface so that your requests to http://127.0.0.1:8006/ can be captured. Using an
interface like WiFi will capture everything going to your WiFi router and the output may be overwhelming to
start with.

© Rahul Soni 2016 195
R. Soni, Nginx, DOI 10.1007/978-1-4842-1656-9_10

www.it-ebooks.info

http://www.wireshark.org/
http://127.0.0.1:8006/
http://www.it-ebooks.info/

CHAPTER 10 © SSL, SECURITY, AND AUTHENTICATION

® 0 Wireshark - Capture Interfaces
Output Options
Interface A Traffic Link-layer Header Promi: Snap
» awdi0 - Ethernet enabled default
» Loopback: lo0 : BSD loopback enabled default|
p2p0 - Raw IP enabled default
Thunderbolt 1: en1 - Ethernet enabled default
Thunderbolt 2: en2 - Ethernet enabled default
Thunderbolt Bridge: bridge0 ~ Ethernet enabled default
» Wi-Fi: en0 - Ethernet enabled default

Enable promiscuous mode on all interfaces —

Capture Filter for selected Interfaces: | Enter a capture filter ... v] Compile BPFs _

Figure 10-1. Wireshark - Capture Interfaces

After the capture was started, an HTTP request was sent using a browser for http://127.0.0.1:8006
(WFE1). Figure 10-2 gives you a glimpse of what it looks like.

196

www.it-ebooks.info

http://127.0.0.1:8006/
http://www.it-ebooks.info/

CHAPTER 10 I SSL, SECURITY, AND AUTHENTICATION

[N] M Loopback: 100
- - N - . = —
AN @ mNR Qes=F o jHaaar
[i?|hﬂ9 X = -J Expression...
No. Time Source Destination Protocol Lengtr Info
13 2. 127.0.8.1 127.90.0.1 HTTP 483 GET / HTTP/1.1
17 2. 127.0.0.1 127.0.0.1 HTTP 73 HTTP/1.1 200 OK (text/html)
19 2. 127.0.0.1 127.0.0.1 HTTP 426 GET /favicon.ico HTTP/1.1
23 2. 127.0.0.1 127.0.0.1 HTTP 164 HTTP/1.1 4@4 Not Found (text/html)

Request Method: GET
Request URI: /
Request Version: HTTP/1.1
Host: 127.0.0.1:8006\r\n
Connection: keep-alive\r\n
Pragma: no-cache\r\n
Cache=Control: no-cache\r\n
Accept: text/html,application/xhtml+xml,application/xml;q=0.9, image/webp,*/+;q=0.8\r\n
Upgrade-Insecure-Requests: 1\r\n
User-Agent: Mozilla/5.@ (Macintosh; Intel Mac 0S5 X 18_11_0) AppleWebKit/537.36 (KHTML, like Gecko) Chr..
Accept-Encoding: gzip, deflate, sdch\r\n
Accept-Language: en-US,en;q=08.8\r\n
\r\n
[Full request URI: http://127.0.0.1:8006/]
[HTTP request 1/2]
[Response_in_frame: 171
032 46 79 @4 2b 46 78 d4 42 47 45 54 20 2f 20 48 54 Fy.+Fx.B GET / HT
2042 54 50 2f 31 2e 31 @d @a 48 6f 73 74 3a 20 31 32 TP/1.1.. Host: 12

2050 2e 30 2e 30 2e 31 3a 38 30 30 36 Od @a 43 6f 7.0.8.1: 8006..Co
eece 6e 65 63 74 69 6f 6e 3a 20 6b 65 65 70 2d 61 nnection : keep-a
ee7e 69 76 65 ©d @a 50 72 61 67 6d 61 3a 20 6e 6f live..Pr agma: no
ee8e 63 61 63 68 65 @d Pa 43 61 63 68 65 2d 43 6f -cache.. Cache-Co

e0a0
e0be
00ce

41 63 63 65 70 74 3a 20 74 65 78 74 2f 68 74 .Accept: text/ht
6c 2c 61 70 7@ 6c 69 63 61 74 69 6f 6e 2f 78 ml,appli cation/x

37
6e
6c
2d
2092 6e 74 72 6f 6¢c 3a 20 6e 6f 2d 63 61 63 68 65 @d ntrol: n o-cache.
Ba
6d
68 74 6d 6¢c 2b 78 6d 6c 2c 61 70 7@ 6c 69 63 61 html+xml ,applica

Figure 10-2. Wireshark - Sample Output

If you notice carefully, you can easily read the packets as if it was normal text. The packets shown in
Figure 10-2 show that the request is made to http://127.0.0.1:8006. It also shows all the request headers.
The subsequent packets show that the response was a Status code HTTP/1.1 200 OK. This information might
look trivial at first glance, since the page is a static web page. However, if the page was in HTML form, you
could have seen all the fields (including password) in clear text!

Needless to say, that would be a very risky proposition. So, the real danger is that your traffic on the wire
is not safe. There are many hops between your operating system and the web servers and anyone capturing
a network trace poses risk for your data.

Using Secure HTTP

When an end user browses the Internet, he may or may not have noticed the S in HTTPS:// in the URL. It
would be rather hard to educate everyone about the secure (HTTPS = HTTP Secure) protocol. In general,
the browsers behave a certain way to alarm or not alarm the users based on conditions that you will learn
about shortly. Consider Figure 10-3. It shows https in green color. If a user clicks and views the detail of the
certificate, he will find out more details about the website (Figure 10-4). Based on this information, he may
or may not want to proceed to the website, especially if it is a bank's website or anything private. It is difficult
to remember the URIs for each bank and hence the certificates instill a trust factor in the visitor’s mind.

197

www.it-ebooks.info

http://127.0.0.1:8006/
http://www.it-ebooks.info/

CHAPTER 10 © SSL, SECURITY, AND AUTHENTICATION

m

¢« - CH https://en.wikipedia.org/wiki/Main_Page

Main Page Talk

WIKIPEDIA O
The Free Encyclopedia

Figure 10-3. Wikipedia - A typical valid SSL Certificate

EJ GlobalSign Root CA
w [Z] GlobalSign Organization Validation CA - SHA256 - G2

*wikipedia.org

ey *.wikipedia.org
e plifeetle
Clhandond Issued by: GlobalSign Organization Validation CA - SHA256 - G2

|l Expires: Sunday, 11 December 2016 at 4:16:04 AM India
— standard Time

@ This certificate is valid

» Details

Figure 10-4. Wikipedia - Certificate details

If you go to www. godaddy . com, you will find that the certificate reveals even more details (Figure 10-5)
about it and the address bar itself shows the name of the website. Fundamentally, both the certificates (the one
for Wikipedia and GoDaddy) do the same stuff from encryption perspective. The difference lies in the trust
factor and ease of use for the end users. The companies who sell certificates price their products according to

the verification they do before they provide a certificate.

198

www.it-ebooks.info

http://www.godaddy.com/
http://www.it-ebooks.info/

CHAPTER 10 I SSL, SECURITY, AND AUTHENTICATION

& Domain Names | The Worl: X

€ - C f |8 Gobaddy INC. [US]|https://in.godaddy.com

@ India-Englishv INRv

Figure 10-5. GoDaddy - Certificate Details with green bar in the browser

The documentation required varies for different kinds of certificates that you intend to buy for your
website. A basic certificate that verifies your domain name is the cheapest one to buy. But the other options
require more documentation and are costlier depending on your choice.

Notice the missing green padlock that you found in Figures 10-4 and 10-5. Figure 10-6 shows a site
without any certificate.

- Y 127.0.0.1:8006 x ! -

€« - C f [)127.0.0.1:8006

wfel .localdomain

Figure 10-6. WFEI without certificate

Contrast the situation to the one in Figure 10-7. If you visit a bank's site that looks like the one in
Figure 10-7, you will most likely not proceed. Technically, there is no issue with the website. If you click on
Advanced and proceed, the website will render just fine. Still, the trust factor is completely missing here.
Even to the less informed this kind of message is a deterrent.

199

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © SSL, SECURITY, AND AUTHENTICATION

m

€ - C A (X hitps://localhost:9006 Pl =

Your connection is not private

Attackers might be trying to steal your information from
localhost (for example, passwords, messages, or
credit cards). NET::ERR_CERT_AUTHORITY_INVALID

ADVANCED Back to safety

Figure 10-7. Non-Trusted certificate

The point that can be summarized from the discussion so far is that the web is an insecure place and the
green padlock brings a little order to the chaos. The secret sauce is an SSL certificate, which you will learn
about next.

SSL Encryption

SSL stands for Secure Socket Layer and helps in establishing an encrypted connection between the
client browser (or any other client application) and the server. This secure connection ensures that the
conversation remains private and integral. Please note that HTTPS simply adds an additional layer to the
commonly understood HTTP protocol. It has two primary purposes:

e Verify and ensure that you are talking to the server that you think you are talking to.
(Recall the trust section discussed just prior to this section.)

e Ensure that only the server can read what you send and only you can read what the
server has sent back.

Behind the scenes, very clever public key algorithm ensures that the two purposes are met and the
shared information is never leaked. If somebody tries to capture network traces for SSL traffic, he will be
disappointed since it won't capture anymore cleartext traffic.

200

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 I SSL, SECURITY, AND AUTHENTICATION

Enabling SSL Nginx

You can enable SSL for Nginx using openssl command. For a production scenario you will need to create a
certificate request and follow a different procedure that will be detailed in a later section. In this section, you
will create a self-signed certificate for testing purposes.

A self-signed certificate is a special kind of certificate issued by the entity to identify itself. A certificate
can be created for free, but since it is trusted only by itself, it defeats the overall purpose of certification and
identification of the correct server publicly. Hence, it is not recommended to use a self-signed certificate in
production at all. That said, they come in handy during testing of different scenarios. You can create as many
as you like and you have full control over it. Once you are satisfied with the self-signed certificate, you can
proceed toward buying an actual certificate from a renowned certificate provider.

To create a self-signed certificate, do as follows:

e Logonto WFE1
ssh -p 3026 user1@127.0.0.1
e Create a directory to hold all SSL-related files
sudo mkdir /etc/nginx/ssl
e Use the following command to create a private key and a certificate:

sudo openssl req -nodes -days 3650 -x509 -newkey rsa:2048 -keyout /etc/nginx/ssl/private.key
-out /etc/nginx/ssl/cert.crt
Generating a 2048 bit RSA private key

..

o

writing new private key to '/etc/nginx/ssl/private.key’

You are about to be asked to enter information that will be incorporated
into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [XX]:IN

State or Province Name (full name) []:

Locality Name (eg, city) [Default City]:

Organization Name (eg, company) [Default Company Ltd]:Rahul Soni
Organizational Unit Name (eg, section) []:

Common Name (eg, your name or your server's hostname) []:localhost

Email Address []:

e The previous command starts by creating a private.key followed with a self-
signed certificate stored in cert.crt.

e reqimplies that it is a request.
e -nodes tells openssl to avoid using a passphrase for the certificate.

e -days 3650 requests a self-signed certificate for 10 years.

201

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 * SSL, SECURITY, AND AUTHENTICATION

e -x5009 tells it to create a self-signed certificate instead of a certificate request.

e -newkey rsa:2048 implies that you want to create a new certificate and a key file
at the same time. rsa switch tells it to keep the key at 2048 bits long.

e -out decides the location where the certificate will be created.

e Setup SSL using your config file. Modify your /etc/nginx/conf.d/main.conf file as
follows:

server {
listen 80;
server_name localhost;

listen 443 ssl;
ssl_certificate /etc/nginx/ssl/cert.crt;
ssl _certificate _key /etc/nginx/ssl/private.key;

location / {
root /usr/share/nginx/html;
index index.html index.htm;

e The cert.crt file is the public component that is sent to every client that
connects to the server.

e Theprivate.key file should be restricted since it is private to the server.
However, Nginx's master process must have read access to the file.

e Setup Port Forwarding so that the requests can be routed to your WFE1. See

Figure 10-8.
W22 pvs

Name Protocol Host IP Host Port Guest IP GuestPort @
HTTP - NLB TCP 127.0.0.1 8008 10.0.2.9 80 e
HTTP - WFE1 TCP 127.0.0.1 8006 10.0.2.6 80
HTTP - WFE2 TCP 127.0.0.1 8007 10.0.2.7 80
HTTPS - WFE1 TCP 127.0.0.1 9006 10.0.2.6 443
SSH - NLB TCP 127.0.0.1 3028 10.0.2.9 22
SSH - WFE1 TCP 127.0.0.1 3026 10.0.2.6 22
SSH - WFE2 TCP 127.0.0.1 3027 10.0.2.7 22

Figure 10-8. Port forwarding for WFEI (Notice the new entry with Guest Port 443)
202

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 I SSL, SECURITY, AND AUTHENTICATION

e Open the firewall ports on WFEL1 for outside access:
sudo firewall-cmd --permanent --add-port=443/tcp

e Restart firewall:
sudo systemctl restart firewalld

e Restart your Nginx services and try accessing the website using
https://127.0.0.1:9006 and you will be shown an error like the one in Figure 10-7.
Click on Advanced and then click “Proceed to localhost (unsafe).” Viewing the details
of the certificate will reveal why this error happened. Figure 10-9 clearly exposes the
fact that the root certificate is not trusted. This goes on to say that just having an SSL
certificate is not enough. You should buy certificates from renowned authorities that
are globally trusted on all operating systems.

P% localhost

: localhost
(6 ertifiectle o ;
o Root certificate authority

w1 Expires: Thursday, 19 March 2026 at 6:48:39 PM India Standard
Time
€ This root certificate is not trusted

p Details

Figure 10-9. Certificate appears bad since the root is not trusted

Optimizing HTTPS Servers

Encrypting and decrypting traffic is a CPU-consuming operation and hence adds overhead to the
processing, especially from a CPU perspective. You must enable keepalive connections to send several
requests over one connection since SSL handshake is among the most intensive operation. If you

turn off the keepalive option, every request will require an addition SSL handshake, which would be
counterproductive.

Similarly, the SSL sessions are stored in a cache that is shared between workers. It is a good idea to use
ssl_session_directive and increase the default value of 5 minutes. 1MB of the cache contains about 4000
sessions, so you can increase the allocated value as well. The following directives can be used in the http block
of the config file. As can be seen, the memory is increased to 10MB and timeout is increased to 15 minutes.

203

www.it-ebooks.info

https://127.0.0.1:9006/
http://www.it-ebooks.info/

CHAPTER 10 © SSL, SECURITY, AND AUTHENTICATION

ssl session_cache shared:SSL:10m;
ssl session timeout 15m;

Another fantastic tool you can use is SSL Config Generator, found at https://mozilla.github.io/

server-side-tls/ssl-config-generator/. You can create an SSL config easily and tweak the details as you
find fit. A sample Nginx configuration taken from the website looks as follows:

server {

listen 80 default_server;
listen [::]:80 default_server;

Redirect all HTTP requests to HTTPS with a 301 Moved Permanently response.
return 301 https://$host$request _uri;

}

server {
listen 443 ssl http2;
listen [::]:443 ssl http2;
certs sent to the client in SERVER HELLO are concatenated in ssl certificate
ssl_certificate /path/to/signed cert plus_intermediates;
ssl _certificate _key /path/to/private key;
ssl _session_timeout 1d;
ssl session_cache shared:SSL:50m;
ssl session tickets off;
Diffie-Hellman parameter for DHE ciphersuites, recommended 2048 bits
ssl_dhparam /path/to/dhparam.pem;
intermediate configuration. tweak to your needs.
ssl _protocols TLSvl TLSvi.1 TLSv1.2;
ssl_ciphers 'ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-CHACHA20-POLY1305 : ECDHE-ECDSA-
AES128-GCM-SHA256: ECDHE-RSA-AES128-GCM-SHA256 : ECDHE -ECDSA-AES256-GCM-SHA384 : ECDHE -
RSA-AES256-GCM-SHA384 : DHE-RSA-AES128-GCM-SHA256 : DHE-RSA-AES256-GCM-SHA384 : ECDHE -
ECDSA-AES128-SHA256: ECDHE-RSA-AES128-SHA256 : ECDHE-ECDSA-AES128-SHA: ECDHE-RSA-AES256-
SHA384 :ECDHE-RSA-AES128-SHA: ECDHE-ECDSA-AES256-SHA384 : ECDHE-ECDSA-AES256-SHA : ECDHE -
RSA-AES256-SHA:DHE-RSA-AES128-SHA256 : DHE-RSA-AES128-SHA : DHE-RSA-AES256-SHA256 : DHE-RSA-
AES256-SHA: ECDHE-ECDSA-DES-CBC3-SHA: ECDHE-RSA-DES-CBC3-SHA: EDH-RSA-DES-CBC3-SHA:AES128-
GCM-SHA256 : AES256-GCM-SHA384 : AES128-SHA256 : AES256-SHA256 : AES128-SHA: AES256-SHA: DES-CBC3-
SHA: IDSS';
ssl prefer server ciphers on;
HSTS (ngx_http_headers_module is required) (15768000 seconds = 6 months)
add_header Strict-Transport-Security max-age=15768000;
OCSP Stapling ---
fetch OCSP records from URL in ssl certificate and cache them
ssl_stapling on;
ssl_stapling verify on;

204

www.it-ebooks.info

https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
http://www.it-ebooks.info/

CHAPTER 10 © SSL, SECURITY, AND AUTHENTICATION

verify chain of trust of OCSP response using Root CA and Intermediate certs
ssl trusted certificate /path/to/root CA cert plus_intermediates;

resolver <IP DNS resolver>;

Creating a Certificate Request

A Certificate Request (CSR) is a file containing the information that is required to request a certificate—both
public information that anyone browsing your website will be able to see, as well as private information, like
a private key, that only you will have access to.

You can use the openssl command to create a certificate request based on your needs. Be extremely
careful about the files it generates. You need to properly back it up and copy on all servers where you
want SSL to work. This is because running the following command generates a private key only on one
server. If you have a web farm, you will need to ensure that the private key is appropriately copied and that
permissions are explicitly granted on all servers.

sudo openssl req -new -newkey rsa:2048 -nodes -keyout /etc/nginx/ssl/mydomain.key -out /etc/
nginx/ssl/mydomain.csr

[sudo] password for useri:

Generating a 2048 bit RSA private key

You are about to be asked to enter information that will be incorporated
into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [XX]:IN

State or Province Name (full name) []:WB

Locality Name (eg, city) [Default City]:KK

Organization Name (eg, company) [Default Company Ltd]:Attosol Technologies
Organizational Unit Name (eg, section) []:

Common Name (eg, your name or your server's hostname) []:*.attosol.com
Email Address []:contact@attosol.com

Please enter the following 'extra' attributes
to be sent with your certificate request

A challenge password []:

An optional company name []:

Most certificate providers will ask you to open the file in a text editor or simply send the public key
to them in order for them to create a certificate for you. The rest of it is mostly paperwork. Once they are
sure that you are who you say you are, they will certify you and provide a globally recognizable and trusted
certificate that will be made available for download. Installation and configuration of the certificate is the
same as for a self-signed certificate.

205

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © SSL, SECURITY, AND AUTHENTICATION

You can buy certificates from many authorities. The top four combined, however, make up about 94
percent of the total market share as listed in Table 10-1 (as per the W3Techs Survey 2015).

Table 10-1. Top Certificate Providers

Name Website Market Share

Comodo https://ssl.comodo.com 41%

Symantec (acquired Verisign) https://www.symantec.com/website- 30%
security

GoDaddy https://www.godaddy.com/web-security 13%

GlobalSign https://www.globalsign.com/en/ 10%

There is a new authority called Let's Encrypt that provides free certificates and is worth checking out.
More details can be found at https://letsencrypt.org.

Web Server Security

Typically, applications have their own authentication and authorization methods and are used to restrict
access to certain areas of the application. The web server also has ways to restrict access.

Authorization An operation to ensure that you can only do as much as it is allowed. For example, the
server knows that you are X, but it might have a constraint that you are not authorized to modify a file.
Authorization comes into effect after you are authenticated.

Creating the Password File

Nginx requires you to use a password file in the following format:

namel:passwordl
name2:password2

and so on. The names can be cleartext, but the password needs to be in an encrypted state. You can use
openssl command line to create the file as follows:

e -nensures that the user name (userl) is written on the same line without a new line
character.

sudo sh -c "echo -n 'useri:' >> /etc/nginx/.pwd"

e You can add your password now:
sudo sh -c "openssl passwd -apri >> /etc/nginx/.pwd"

Password:
Verifying - Password:

206

www.it-ebooks.info

https://letsencrypt.org/
http://www.it-ebooks.info/

CHAPTER 10 © SSL, SECURITY, AND AUTHENTICATION

e To view the output, use the following command:

cat /etc/nginx/.pwd
useri:$apr1$/X48F1lid$dohTdQqWPyMMmFR2m/Nh/0

e You can add more users as needed using the same set of commands.

Configuring Nginx Password Authentication

Now that the password file is set up, you can edit your Nginx configuration file like the following. Notice
how the location block now mentions auth_basic and auth_basic_user file directives. Reload the
configuration and your website should now be protected. See Figure 10-10. If the password is entered
incorrectly, or if you click cancel, the page results in an error as you can see in Figure 10-11.

server {
listen 80;
server name localhost;

listen 443 ssl;
ssl _certificate /etc/nginx/ssl/cert.crt;
ssl_certificate key /etc/nginx/ssl/private.key;

location / {
root /usr/share/nginx/html;
index index.html index.htm;
auth_basic "Authentication Required";
auth_basic_user_file /etc/nginx/.pwd;

}
}
(F C A [} https://localhost:9006 *dI

Authentication Required

https://localhost:9006 requires a username and password.

User Name: “

Password:

Cancel LogIn

Figure 10-10. Authentication Prompt after the configuration
207

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © SSL, SECURITY, AND AUTHENTICATION

401 Authorization Required

nginx/1.8.1

Figure 10-11. Failure to provide a valid password results in an error message

Summary

Security should be taken very seriously. In this chapter, you have learned about how network sniffing can
lead to security attacks and data theft. Based on your business you must decide on the kind of certificate
you want to purchase. People trust a website based on its certificate, and a broken or expired certificate

can create unnecessary hassles for your visitors. You must configure the certificates carefully and keep
proper backups of the private keys. Last but not least, if your application doesn't have an authentication and
authorization module, you can quickly restrict specific portions of your website using basic authentication.

208

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11

Upgrading and Migrating

Web technologies are evolving at a rapid pace and so is Nginx. Upgrading server-side software can be tricky,
especially if the server is currently in use. If you have a web farm, you might not feel comfortable with the
idea of upgrading the web servers while the visitors are still connected to it. However, with upgrades you get
new features and bug fixes, and quite often the pain of upgrading is worth the effort. In this chapter you will
learn about upgrading your web server in ways that shorten or remove the downtime. You will learn about
the options available to you so that you can exercise them in different scenarios.

Controlling Nginx

To quickly reiterate, Nginx has one master process and one or more worker processes. If caching is enabled,
the cache loader and cache manager processes also run at startup. The master process reads and evaluates
the configuration files, and also maintains the worker processes. It is the worker process that does the actual
processing of the requests. To stop or start Nginx, you send signals to the master process. When you run a
command like nginx -s signal you basically tell the master process about your intentions.

There are four signals allowed:

1. quit: Shut down Nginx gracefully.

2. reload: Reload the configuration file in case you have made any changes
and want them to come into effect. If the master process is not running, this
command will simply error out because there is no process to honor this
command. The reload command ensures a smooth completion of the old
connections.

3. reopen: Reopen the log files is useful in scenarios where you have want to move
the write cursor to the end of the file. Now, why would you do that? There are
utilities that regularly truncate the log files and create archives of what's been
truncated. So, if you use one such utility or you have edited the logs directly, you
should reopen the log files to avoid any log corruption. Reopening puts the write
marker to the end of the log file.

4. stop: Shut down Nginx immediately. The difference between stop and quit is
that quit is graceful but stop is not. When you say quit, Nginx finishes serving
the open connections before it is shut down. stop, on the other hand, terminates
all connections immediately.

© Rahul Soni 2016 209
R. Soni, Nginx, DOI 10.1007/978-1-4842-1656-9_11

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © UPGRADING AND MIGRATING

The process id (PID) is written in a file called nginx.pid, usually located in /var/run/nginx.pid.
Execute a cat command as follows and notice that the PID is same the running process.

$ cat /var/run/nginx.pid

9920

$ ps -aux | grep nginx

root 9920 0.0 0.1 57792 1280 ? Ss 06:55 0:00 nginx: master process /usr/
sbin/nginx -c /etc/nginx/nginx.conf

nginx 9922 0.0 0.1 58176 1964 ? S 06:55 0:00 nginx: worker process

nginx 9923 0.0 0.1 57960 1708 ? S 06:55 0:00 nginx: cache manager process

If you stop nginx (nginx -s stop), the nginx.pid file gets deleted. But if you reload the configuration
(nginx -s reload), you will find that the file keep showing the old PID, proving that the master process was
not recycled.

Command-Line Parameters

Before you could send a signal to Nginx, you must ensure that it is started. In the previous code block, you
can see that nginx binary is located at /usr/sbin/nginx. To start Nginx use one of these methods:

e /usr/sbin/nginx or nginx
e /usr/sbin/nginx -t -c /some/other/config.conf -g "worker_ processes 2;"

e This command tells Nginx to test the configuration (-t) and load some other
configuration file (-c). Apart from that, it also sets the worker_processes to 2
using the -g switch.

e -? -hprints the help.

e -v prints the version information.
e -V prints the version information along with compiler information and configuration
parameters.

If you try to use a global parameter that already exists in the configuration file, you will get an error
message like this:

sudo /usr/sbin/nginx -g "worker_processes 4;"
nginx: [emerg] "worker processes" directive is duplicate in /etc/nginx/nginx.conf:2

The error message tells you the file due to which it failed. Edit the file and remove the worker_processes
directive. Try the commands now:

$ sudo kill nginx

$ sudo /usr/sbin/nginx -g "worker_processes 4;"

$ ps -aux | grep nginx

root 10846 0.0 0.1 57796 1244 ? Ss 12:02 0:00 nginx: master process /usr/sbin/
nginx -g worker processes 4;

12:02 0:00 nginx: worker process

12:02 0:00 nginx: worker process

12:02 0:00 nginx: worker process

12:02 0:00 nginx: worker process

12:02 0:00 nginx: cache manager process

12:02 0:00 nginx: cache loader process

nginx 10847 0.0 0.1 58176 1924 ?
nginx 10848 0.0 0.1 58176 1924 ?
nginx 10849 0.0 0.1 58176 1924 ?
nginx 10850 0.0 0.1 58176 1924 ?
nginx 10851 0.0 0.1 57960 1676 ?
nginx 10852 0.0 0.1 57960 1676 ?

nunuvmoumoumon

210

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © UPGRADING AND MIGRATING

Sure enough, it works and you can see all the processes. You can send signals to the master process or
worker process in special cases:

sudo kill -SIGNAL $(cat /var/run/nginx.pid)

The -SIGNAL can be one of the following:
e TERM, INT: Fast Shutdown
e QUIT: Graceful Shutdown

e HUP: Start new worker processes with a new configuration, and gracefully shut
down the existing worker processes. Notice the following commands. The command
spawns 2 worker processes and the HUP signal kills all processes except master
process. The PID 2405 doesn't change, but every other PID changes.

$ sudo kill nginx

$ sudo /usr/sbin/nginx -g "worker processes 2;"

$ ps -aux | grep nginx

root 2405 0.0 0.1 57796 1140 ? Ss 22:29 0:00 nginx: master process /usr/
sbin/nginx -g worker_ processes 2;

nginx 2406 0.0 0.1 58176 1920 ? S 22:29 0:00 nginx: worker process
nginx 2407 0.0 0.1 58176 1920 ? S 22:29 0:00 nginx: worker process
nginx 2408 0.0 0.1 57960 1672 ? S 22:29 0:00 nginx: cache manager process
nginx 2409 0.0 0.1 57960 1672 ? S 22:29 0:00 nginx: cache loader process

$ sudo kill -HUP $(cat /var/run/nginx.pid)

$ ps -aux | grep nginx

root 2405 0.0 0.2 57920 2692 ? Ss 22:29 0:00 nginx: master process /usr/
sbin/nginx -g worker_processes 2;

nginx 2415 0.0 0.2 58300 2048 ? S 22:29 0:00 nginx: worker process
nginx 2416 0.0 0.2 58300 2048 ? S 22:29 0:00 nginx: worker process
nginx 2417 0.0 0.1 58084 1796 ? S 22:29 0:00 nginx: cache manager process
nginx 2418 0.0 0.1 58084 1796 ? S 22:29 0:00 nginx: cache loader process

You should note that this behavior happens only when the new configuration is found valid. To test this,
edit your nginx.conf file and purposely introduce some junk text so that the configuration file is corrupt.
Try sending the HUP signal again followed with ps -aux as shown below. The kill command appeared to
have worked correctly, but the ps command shows that all the worker processes has the same PID as before.
Clearly, the kill command didn't kill the running worker processes and this is good. The reason is because
the configuration file is faulty and you wouldn't want a faulty configuration bringing the existing processes
down. Nginx is smart and it kills the existing set of worker processes only when it is convinced that the new
worker processes have spun and started taking requests.

$ sudo kill -HUP $(cat /var/run/nginx.pid)
$ ps -aux | grep nginx

root 2405 0.0 0.2 57920 2700 ? Ss 22:29 0:00 nginx: master process /usr/
sbin/nginx -g worker_processes 2;
nginx 2415 0.0 0.2 58300 2048 ? S 22:29 0:00 nginx: worker process
nginx 2416 0.0 0.2 58300 2048 ? S 22:29 0:00 nginx: worker process
nginx 2417 0.0 0.1 58084 1796 ? S 22:29 0:00 nginx: cache manager process
211

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11

UPGRADING AND MIGRATING

There is a small problem with the approach, though. Since the kill command didn't throw any error
message, it becomes tricky to find out whether it actually worked and did what was intended. You can test the
configuration with nginx -t before sending signals. Another approach would be to use nginx -s reload:

$ sudo nginx -s reload
nginx: [emerg] unknown directive "aslkdj" in /etc/nginx/nginx.conf:6

USRI1: Reopen log files.

USR2: You can upgrade to a new binary on the fly using USR2 signal. This approach
is quite fascinating and effective. It is good that Nginx has this feature since the Nginx
binaries are monolithic. If you remember, you have to compile the binaries with different
switches since Nginx cannot load the modules dynamically. If you need to add a new
module or upgrade to a later version, it becomes easier to test with this approach.

Note Ensure that you have fixed the invalid configuration you introduced just a while ago.

$ sudo kill -USR2 $(cat /var/run/nginx.pid)

$ ps -aux
root

sbin/nginx -g worker processes 2;
0.

nginx
nginx
nginx
root

nginx
nginx
nginx
nginx

212

At first, replace the old binary with a new one after taking the backup of the
existing one.

Send USR2 signal sudo kill -HUP $(cat /var/run/nginx.pid):

If you run the ps command again, you will find an output similar to the following.
Notice how the previous configuration was used to launch another set of master
processes and worker processes. The previous master process with the PID 2405
continues to run in parallel with PID 2519. The second master process launches another
set of worker process, cache manager and the cache loader. This makes it possible to run
two instances of Nginx in parallel, handling the incoming requests together.

| grep nginx
2405 0.0 0.2 57920 2700 ?

2415
2416
2417
2518

2519
2520
2521
2522

o O O
o O O

o O O o
o O © o

0

0.

o O O
w =N

o O O O
B R R R

2

58300
58300
58084
57796

58176
58176
57960
57960

2048
2048
1796
3700

1920 ¢

1920

1672 ?
1672 ?

?
?
?
?

?
?
?
?

Ss

wv nn nn n

w"v N n n

22:

22:
22:
22:
22:

22:
22:
22:
22:

29

29
29
29
58

58
58
58
58

0:00 nginx: master process /usr/

0:00 nginx: worker process
0:00 nginx: worker process
0:00 nginx: cache manager process
0:00 nginx: master process /usr/
sbin/nginx -g worker_processes 2;
0:00 nginx: worker process
0:00 nginx: worker process
0:00 nginx: cache manager process
0:00 nginx: cache loader process

WINCH: Now that you have a new instance running, you can check the requests and
test the new configuration. If all is well, you may proceed to kill the original set of
worker processes by sending the WINCH signal. Notice how the worker processes
are killed but the master process is not. At this point only the new worker processes

are running with the new configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © UPGRADING AND MIGRATING

$ sudo kill -WINCH 2405
$ ps -aux | grep nginx

root 2405 0.0 0.2 57920 2700 ? Ss 22:29 0:00 nginx: master process /usr/
sbin/nginx -g worker processes 2;

root 2518 0.0 0.3 57796 3700 ? S 22:58 0:00 nginx: master process /usr/
sbin/nginx -g worker_processes 2;

nginx 2519 0.0 0.1 58176 1920 ? S 22:58 0:00 nginx: worker process

nginx 2520 0.0 0.1 58176 1920 ? S 22:58 0:00 nginx: worker process

nginx 2521 0.0 0.1 57960 1672 ? S 22:58 0:00 nginx: cache manager process

e Butwhat about the old master process - PID 24052 Well, it still exists because
Nginx allows you to thoroughly test the new configuration before you kill the
older one, which served you well.

e Successfully Upgraded: In this case, you can safely send the QUIT signal: sudo
kill -QUIT 2405. Shortly, you will be left with only one master process that will
be your upgraded Nginx binary.

e Upgraded with Issues: Revert back to the original configuration. Send the HUP
signal: sudo kill -HUP 2405 and the previous configuration will come back to
life. You should now have the previous configuration back up and running. You
can send TERM or QUIT signal to the new one: sudo kill -QUIT 2518. You
should remove the new binary and replace with the older one now and you will
be good.

Migrating from Apache to Nginx

There is a stark difference between the architectures of Nginx and Apache. From the configuration files

to the underpinning of processes and threads, the architectural differences make Nginx shine. The Nginx
configuration files are simpler to manage and read. Generally, you can get more throughputs from the same
hardware using Nginx.

If you are running Apache, you can adopt Nginx in two different ways. The first way is to use Nginx as a
reverse proxy and gradually move toward full adoption. The other way is to migrate the configuration from
Apache to Nginx at one shot. The second approach requires more planning and work, but gives the dividend
right away. Based on the complexity of your setup, you may choose to take one route or the other.

Feature Comparison

In Table 11-1, you can find the core functional differences between Nginx and Apache. Before even trying to
migrate, you must be aware of all functionalities required by your application and what is available in Nginx
out of the box. If everything that you use in Apache is available in Nginx, then it is a no-brainer and a full
configuration migration is more suitable. However, if there are certain components that are available only in
Apache, it makes more sense to use Nginx as a reverse proxy and get the best of both worlds.

213

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11

UPGRADING AND MIGRATING

Table 11-1. Feature comparision of Nginx and Apache

Feature Apache Nginx

Architecture Synchronous: Each request is Event based: Asynchronous sockets listen for
handled by a separate thread or the requests and the resources are released as
process and uses synchronous quickly as possible. Once the client is ready
sockets. It is a blocking for more data, another event triggers and the
architecture. The resources are processing resumes. Inherently, Nginx doesn't
not released unless the data is like blocking its resources due to client's
consumed by the client. If there are slowness. The intention is to serve as many
alot of clients connected, Apache requests, as quickly as possible.
will need to spawn more threads in
order to process the requests.

Performance Response times are slower and Response times are much faster than Apache
with more requests, it tends to get ~ and wins hands down. It is one of the primary
even slower. reasons why people switch to Nginx.

Portability Apache is more portable and Nginx is less portable than Apache. It shines
runs under almost all major OS, best on *nix platform. It is available on
including Linux, OSX, Windows, Windows but not suitable for production.
Unix, BSD, Solaris, and more.

Created 1994 2002

Language used C C&C++

Module Modules can be loaded Modules require a recompile of the binary.
dynamically in Apache and it Before version 1-9-11, it couldn’t be
makes it easier to add/remove/test dynamically loaded, but this is changing fast.
different modules. With the latest versions of Nginx, you will have

more support for dynamic modules. You can
read about it at waw.nginx.com/blog/dynamic-
modules-nginx-1-9-11/.

Hardware Due to the architecture, lesser RAM requirement is comparatively lower due

Requirement RAM can create a bottleneck for to more efficient request handling. You can get
processing requests since the a lot more mileage from commodity hardware.
requests are not released quickly.

CGI Support Most CGI protocols work with Supports FastCGI, uWSGI, SCGI via modules

Configuration Files

Apache because of module
architecture.

XML based.

that are included by default at compile time.

Text based.

Application Allows individual configuration No support for .htaccess files. The
Configuration file per folder using .htaccess. This configuration is done using server blocks.
has its benefits as well as problems As discussed eatlier in this book, you can
since the .htaccess files have tobe create and load multiple server blocks from
individually managed. the main configuration file. This approach is
very effective, since every server block can be
maintained as a separate file with as much
configuration details as needed. It makes
portability easier.
(continued)
214

www.it-ebooks.info

http://www.nginx.com/blog/dynamic-modules-nginx-1-9-11/
http://www.nginx.com/blog/dynamic-modules-nginx-1-9-11/
http://www.it-ebooks.info/

CHAPTER 11 I UPGRADING AND MIGRATING

Table 11-1. (continued)

Feature Apache Nginx

Modules Ecosystem Apache has been around for a Nginx has around 100+ modules available
longer time and has a definite edge for your use. But there is still room for
here. It has hundreds of modules. ~ improvement.

General Ecosystem Apache has the edge here too. It requires a little extra work to set up and

and Documentation It has a large number of useful configure most third-party software that
software that is extremely became wildly successful, like WordPress.
straightforward to use for Apache. Although possible, the process is sometimes
An example is WordPress. painful due to a variety of platforms available

and lack of documentation.

Support Apache is a wildly successful Nginx is becoming more popular every day and
product and the community is the community is growing. The overall support,
vibrant. There is hardly anything however, is still weaker in comparison to Apache
that you can ask and not get a due to the sheer number of Apache users out
decent answer. there. Don't let this discourage you, since there

is an official support available with Nginx PLUS
and the community is growing every day.

Configuration Comparison

You have already been working with Nginx configuration files in this book. A typical Apache configuration
file, in contrast, looks similar to the following:

Listen 80
Listen 8080

<VirtualHost 172.20.30.40:80>
ServerName www.example.com
DocumentRoot "/www/domain-80"
</VirtualHost>

<VirtualHost 172.20.30.40:80>
ServerName www.example.org
DocumentRoot "/www/otherdomain-80"
</VirtualHost>

Based on the previous code, you must have already noticed that Apache uses XML format. The XML
files are not very human readable, especially if it gets nested. Nginx provides a welcome change to this.

VirtualHost in Apache can be migrated to the server blocks with ease. PHP is handled in a different
manner in Nginx and has been already explained in chapter 7. The glaring absence that causes the most
amount of work during migration is .htaccess. Apache allows you to set folder level settings using a file that
is called .htaccess. This file can be found at various levels and the last ones read are given precedence.
Consider Figure 11-1. The .htaccess at /app/images will be read after /app. If the same setting is defined at
both /app and /app/images, the latter would be given priority.

215

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1656-9_7
http://www.it-ebooks.info/

CHAPTER 11 © UPGRADING AND MIGRATING

/app
. file1.html
L0y file2.html
V .htaccess
/app/images
a img1.png
W img2.png
V .htaccess
lappfis
' script.js
" .htaccess

Figure 11-1. Directory heirarchy with .htaccess files

In Apache, the .htaccess file is used for multiple purposes:
e Access and authentication rules for specific directories
e Setting flags for various modules
e Define rewriting rules

There is no equivalent to .htaccess in Nginx. That said, you can always find solutions by using different
directives in different Nginx blocks.

Summary

Nginx has a very effective and robust upgrade method. If you plan properly you can have zero downtime
for your web servers. When it comes to migrating, there is unfortunately no direct path available to migrate
from Apache. But the thumb rule of migration is quite simple. Migrate whatever you can, and use Nginx

to augment the rest. It doesn't matter if you use Apache, Express.js, Node.js, or IIS. Nginx can easily do

the front-end job and route the traffic as per your requirements to the back end using its reverse proxy
capabilities. With respect to comparing with Apache, let's wrap up with a famous quote from Chris Lea,
"Apache is like Microsoft Word, it has a million options but you only need six. NGINX does those six things,
and it does five of them 50 times faster than Apache."

216

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12

Troubleshooting Tips and FAQ -

Troubleshooting a web server is not fun, and this is mostly because of the pressure of the time ticking by
while it’s offline. The pressure mounts even further if the server remains down for a longer period. No
business likes to suffer losses due to hardware or configuration issues. It is imperative that you baseline
your servers and make yourself aware of the traffic when the going is good. That way, it makes it simpler to
troubleshoot when the going gets tough. In this chapter, you will learn about the troubleshooting mindset
and how isolation helps in troubleshooting.

First, What You Should Not Do

Often, when the server acts up, one of the common mistakes is to check the browser's (or client-side)
error message. The errors that you see in a browser are usually generic messages sent by the server. It is
considered good practice to hide detailed error messages from the public, and so those generic messages
are not usually helpful for troubleshooting a server side issue. The server normally hides the details in logs,
which should be your starting point.

Moreover, following a direction that you don't understand might apparently fix your problem but in
most likelihood is not going to instill the confidence that you have taken the right steps.

First Commandment of Troubleshooting: Isolate the Issue

While troubleshooting, it is best to start by isolating the issue, identifying the root cause, and then fixing the
problem by introducing changes. Depending on the situation this can be a very easy or a very difficult thing
to do. A few scenarios should help in learning some basic troubleshooting skills.

Scenario 1: Page Cannot Be Displayed in the Browser

Let's set up a new server block and troubleshoot the issues one by one until the problem is fixed.
The server block in this case is not actually wrong. It is just that it needs additional actions on your side so
that it starts working.
Start by logging on to WFE1 server (ssh -p 3026 user1@127.0.0.1) and change the main.conf
(sudo vi /etc/nginx/conf.d/main.conf) file like this:

server {

listen 90;
server _name localhost;

© Rahul Soni 2016 217
R. Soni, Nginx, DOI 10.1007/978-1-4842-1656-9_12

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © TROUBLESHOOTING TIPS AND FAQ

location / {

root /usr/share/nginx/html;
index index.html index.htm;

Save the configuration and reload using sudo nginx -s reload. Ensure that you can browse the
website locally after changes:

$ curl localhost:90
wfel.localdomain

Now, try http://127.0.0.1:8006/ using your host machine. Does it work? Ideally, it shouldn't. But why
is that so, and how can you ascertain the root cause?

You might notice that the request fails almost immediately and appears that the
request is not even reaching the server. To ensure that is the case, check the access
logs and you will find that the request is not even reaching the server. (You can tail
the logs and make requests. If you don't see anything in the logs, it will give you a
clue that the request is not really making it to the server.)

So, if the request is not reaching, could it be that the port is not allowed (the server
block is fairly simple and doesn't really have too many variables)? To test it, you can
use telnet like this:

telnet 127.0.0.1 8006

Trying 127.0.0.1...

Connected to localhost.

Escape character is '~]'.
Connection closed by foreign host.

Asyou can see, the connection gets closed immediately. The conclusion is that there is something
wrong with the connection, and your host is not even allowing the connection to the WFE1 server. A quick
look at the network configuration and you can see that the guest port is 80 whereas the configuration says 90.
Change the port as you can see in Figure 12-1 and try again.

218

www.it-ebooks.info

http://127.0.0.1:8006/
http://www.it-ebooks.info/

CHAPTER 12 I TROUBLESHOOTING TIPS AND FAQ

P WD

Name Protocol Host IP Host Port Guest IP Guest Port e
| HTTP - NLB TCP 127.0.0.1 8008 10.0.2.9 80 &
TCP | 127001 (8006 | 10026 |90
|HTTP - WFE2 |TcP | 127001 [8007 | 10027 |80
|HTTPS - WFE TcP 127.001 | 9006 10026 | 443
|SSH-NLB [TcP | 127001 (3028 | 10029 |22
| SSH - WFE1 |TcP | 127.001 [3026 | 10026 |22
| SSH - WFE2 TCP 127.001 | 3027 10027 |22

corcer | (NG

Figure 12-1. Change the guest port to 90 for WFE1

e telnet will now work and the connection won't close automatically.

telnet 127.0.0.1 8006
Trying 127.0.0.1...
Connected to localhost.
Escape character is '~]'.

To get out of the telnet prompt, type "] and hit enter.

Try browsing to localhost:8006 from the host again. The behavior will now be different. The page will
take a long time before it errors out. What does this imply? Telnet works on port 90 and you have checked it
already. So, why does the page not render? If you make a quick educated guess about what all things can be
in between, you will know that a proxy server or a firewall can make this happen. Since there is no proxy in
this setup, let’s check the firewall.

Just for testing (this is not recommended in production), let's disable the firewall by running sudo
systemctl stop firewalld.Refresh localhost:8006 and this time it should work. Great! So, you know it
is because of firewall. Issue is isolated. Start the firewall service again by running sudo systemctl start
firewalld. Now, instead of stopping the firewall, a better solution would be to create a firewall rule that
allows port 90. Do that using sudo firewall-cmd --zone=public --add-port=90/tcp --permanentand
your website will start working as expected.

Isolation, as you can see, has helped tremendously in giving a direction to this troubleshooting session.
Not only that, you can remain confident of what you have done, since you have not shot an arrow in the dark
after a random search.

219

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © TROUBLESHOOTING TIPS AND FAQ

Scenario 2: Conflicting Ports

In this scenario you will learn about troubleshooting conflicting ports. Change your configuration like this:

server {
listen 3306;
server_name localhost;

location / {
root /usr/share/nginx/html;
index index.html index.htm;

After saving the configuration, execute sudo kill nginx to stop nginx. Try starting nginx and you will
an error message like this:

$ sudo nginx

nginx: [emerg] bind() to 0.0.0.0:3306 failed (98: Address already in use)
nginx: [emerg] bind() to 0.0.0.0:3306 failed (98: Address already in use)
nginx: [emerg] bind() to 0.0.0.0:3306 failed (98: Address already in use)
nginx: [emerg] bind() to 0.0.0.0:3306 failed (98: Address already in use)
nginx: [emerg] bind() to 0.0.0.0:3306 failed (98: Address already in use)
nginx: [emerg] still could not bind()

The error message is evidently telling you that it doesn't like the port. To figure out which application
has grabbed that port, you can run the netstat command:

$ sudo netstat -nlp | grep 3306
tcpb 0 0 :::3306 Dok LISTEN 1264/mysqld

netstat is a built-in tool that can show you a lot of information about the network connections, routing
tables, interface statistics, and more. The output reveals the application (mysqld) that has been listening on
3306. One way to resolve this issue is to change the port in your configuration. Another way would be to stop
and remove mysqld from WFE1. Based on your requirement, you can decide which way is better.

A key lesson that needs to be highlighted in this scenario is that a good web administrator knows a lot
about tools that are at his disposal. The more tools and utilities you know, the easier it would be for you to
isolate the issue. Explore the tools in advance so that you can use it when needed.

Scenario 3: Bad Permissions

Bad permissions on the folder can lead to a variety of errors that are hard to troubleshoot. Typically, the
end result would be 404 and it would mean that the file was not found. When you check out server, your
file might already be existing. In these cases, it is recommended to check out your access logs (use nginx
-V to find your access log path) and file permissions of the directory. The following command will give you
permissions in a recursive fashion:

$ namei -om /etc/nginx/conf.d/main.conf
f: /etc/nginx/conf.d/main.conf

dr-xr-xr-x root root /
drwxr-xr-x root root etc

220

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 I TROUBLESHOOTING TIPS AND FAQ

drwxr-xr-x root root nginx
drwxr-xr-x root root conf.d
-TW-1--1r-- Yoot root main.conf

In times of distress, logs are your best friends. Ensure that you are logging at the highest level during
your troubleshooting session. Reproduce the error; read the logs; and more often than not, you will have
decent pointers to act upon.

Scenario 4: Bad Configuration

Nginx command line has a switch -t that tests the configuration for any syntactical error. Keep in mind that
this switch only takes care of syntax issues. There are a few things that it cannot test. For example, if you have
a typo in your hostname, the switch will have no way to figure out if the name is correct or not.

nginx -tisone of the things that you take with a grain of salt. Run it to ensure that there are
no syntactical and other common errors. But don't bet all you have on it. Certain settings related to
configuration might not kick in when you say nginx -s reload. If you have any doubts, restart Nginx and
test your expected output appropriately.

Scenario 5: Rewrite Rules

Rewrites happen all the time in Nginx and yet they are not logged by default. This can create a lot of
confusion while troubleshooting. When you are seeing 404 or unexpected pages, ensure that the rewrite
log directive is set to on.

server {
#snipped
error_log /var/logs/nginx/site.com.error.log;
rewrite log on;
#snipped

rewrite_log directive just sets a flag. When turned on, it will send rewrite related log messages with
[notice] level and can help you tremendously in understanding what is going on within the hoods. Once you
turn it on, look for messages in the configured log file.

Scenario 6: Log Only Your Requests

When you set the log level to debug, your error logs will log tremendous amounts of information and it might
become overwhelming to troubleshoot if yours is a public facing website with a lot of traffic. To avoid it,

you can set debug_connection directive to your public IP. This way, only your requests will be logged. The
debug_connection directive is configured in your events block and looks like so:

events{
debug_connection x.x.x.x;

221

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © TROUBLESHOOTING TIPS AND FAQ

Important Tools for Web Administrators

As mentioned earlier, a web administrator should explore and learn about as many tools as possible. The
tools help in isolating the issues quicker. In this section you will find a list of tools that could prove useful in
different scenarios.

ping
Send ICMP ECHO_REQUEST packets to network hosts. Useful to check if the host is reachable and which IP
itis pointing to.

traceroute

It displays the route and measures the delay in packets across a network. To use it, simply type
traceroute sitename.com

top

The top program provides a dynamic real-time view of a running system. It can display system summary
information as well as a list of processes or threads currently being managed by the Linux kernel.

htop

It is a much more advanced version of top and a lot more configurable. It gives you an overall picture
(Figure 12-2), and it is easily configurable. Use sudo yum install htop to install.

4763 userl
1340
615
2439
1264
1
444
453

coo0

--deserialize 24
ystemd-journald

s oo
sooo

/sbin/auditd -n
flib/systemd/systemd-logind

fusr/bin/python -Es /usr/sbin/tuned -1 -P

8.9
8.9
2.9
8.9
8.9
8.9
8.0
8.0
1]

]

/bin/dbus-daemon --system --address=systemd: --nofork --nopidfile --s

fusr/sbin/rsyslogd -n
fusr/sbin/crond -n
/sbin/agetty lear ttyl linux

OO0

r/sbin/NetworkManager --no-

coooooo oS

Figure 12-2. htop. Notice the function keys available in the bottom row

222

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 I TROUBLESHOOTING TIPS AND FAQ

atop

Similar to top and htop, but has logging functionality for long-term evaluation and analysis. Use sudo yum
install atop to install.

uptime

uptime gives a one-line display of the following information: the current time; how long the system has been
running; how many users are currently logged on; and the system load averages for the past 1, 5, and 15
minutes.

free

This command displays the total amount of free and used physical and swap memory in the system, as well
as the buffers and caches used by the kernel.

ifconfig or ip addr

This is used to get more details and configure the network interfaces.

$ ifconfig
enp0s3: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 10.0.2.6 netmask 255.255.255.0 broadcast 10.0.2.255
inet6 fe80::a00:27ff:fe90:7e9a prefixlen 64 scopeid 0x20<link>
ether 08:00:27:90:7e:9a txqueuelen 1000 (Ethernet)
RX packets 19143 bytes 13860101 (13.2 MiB)
RX errors 0 dropped 0 overruns 0 frame O
TX packets 15411 bytes 3249752 (3.0 MiB)
TX errors 0 dropped O overruns O carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x10<host>
loop txqueuelen 0 (Local Loopback)
RX packets 128 bytes 10250 (10.0 KiB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 128 bytes 10250 (10.0 KiB)
TX errors 0 dropped O overruns O carrier 0 collisions O

ulimit
It is not usual, but what if a single user starts too many processes so that the system becomes unusable for

everyone else? The ulimit command can be helpful in getting and setting the limits of a system.
Use ulimit -ato know the current limits:

$ ulimit -a

core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
scheduling priority (-e) 0

223

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © TROUBLESHOOTING TIPS AND FAQ

file size (blocks, -f) unlimited
pending signals (-1) 3899

max locked memory (kbytes, -1) 64

max memory size (kbytes, -m) unlimited
open files (-n) 1024

pipe size (512 bytes, -p) 8

POSIX message queues (bytes, -q) 819200
real-time priority (-r) o

stack size (kbytes, -s) 8192

cpu time (seconds, -t) unlimited
max user processes (-u) 3899
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited

nslookup

Nslookup is a program to query Internet domain name servers. You can use it to get the IP address of the
hostname:

$ nslookup google.in
Server: 192.168.1.1
Address: 192.168.1.1#53

Non-authoritative answer:

Name: google.in
Address: 216.58.197.68

powertop

powertop (Figure 12-3) is a program that helps to diagnose various issues with power consumption and
power management. It also has an interactive mode allowing one to experiment with various power
management settings. Use sudo yum install powertop to install.

224

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 I TROUBLESHOOTING TIPS AND FAQ

Idle stats Frequency stats Device stats Tunables
2.8 GPU ops/seconds, ©.8 VFS ops/sec and 8.6% CPU use

Events/s Category Description
Process Jusrfsbin/mysqld --daemonize --pid-file=/var/run/mysqld/mysqld.pid
Timer tick_sched_timer
Process
Process
Process [kswapde]
Process powertop
Timer hrtimer_wakeup
kWork flush_to_ldisc
kWork
Interrupt [21] SATA controller
Process sshd:
Process [migration/@]
Process [rcuos/@]
Process / fbin/python -Es /usr/sbin/tuned
Interrupt [3] net_rx{softirg)
Interrupt [21] snd_intel8x@
Interrupt [19] enp@s3
Interrupt [4] block(softirg)
Interrupt [1] timer(softirg)
Timer process_timeout
Process [kworker/9:3]
Timer delayed_work_timer_fn
kWork vmstat_update
Timer cfg_idle_slice_timer
Process [kworker/@:1H]
Interrupt [9] RCU(softirqg)
Timer tcp_write_timer
dev_watchdog
[2] net
blk_rq_t
USB device: USB Tablet (VirtualBox)
Device USE devic OHCI PCI host controller

Figure 12-3. powertop. Use tabs to switch between different screens

iotop

iotop (Figure 12-4) is helps to diagnose issues with IO. Use sudo yum install iotop to install.

225

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © TROUBLESHOOTING TIPS AND FAQ

Total DISK READ : 9.00 B/s | Total DISK WRITE : 0.00 B/s
Actual DISK READ: .00 B/s | Actual DISK WRITE: 0.00 B/s
TID PRIO USER DISK READ DISK WRITE SWAPIN
4785 be/4
1 be/4
2 be/4
3 be/4
5 be/@
6 be/d
7
B

[kworker/0:3]
systemd --switched-root --system --deserialize 24

s [kthreadd]
[ksoftirqd/e@]
[kworker/@:@H]

s [kworker/u2:@]
[migration/@]

s [rcu_bh]
[rcuob/@]
[rcu_sched]

s [rcuos/el
[watchdog/@)
[khelper]

% [kdevtmpfs]
[netns]

% [writeback]
[kintegrityd]
[bioset]

s [kblockd]
[khubd]

s [md]
[khungtaskd]

% [kswapde]

s [ksmd]
[khugepaged]
[fsnotify_mark]

s [crypto]
[xfsaild/sdal]
[kthrotld]

s [kmpath_rdacd]
[kpsmoused]

rt/4
be/4
be/4
be/4
be/4
rt/4
be/@
be/4
be/@
be/@
be/@
be/@
be/®@
be/4
be/@
be/4
be/4
be/5
be/7
be/4
be/@
542 be/4
38 be/@
4@ be/®
41 be/@

'*‘
%
%
%
%
%
5
%
‘i
%
%
%
5
%
%
%
%
5
%
%
%
't
%
%
%
5
%
%
%
"
5

Figure 12-4. iotop is useful in analyzing IO related issues

iptraf

iptraf is an IP LAN monitor that generates various network statistics including TCP info, UDP counts, ICMP,
and OSPF information, Ethernet load info, node stats, IP checksum errors, and others. You can install it using
sudo yum install iptraf.To execute it, use sudo iptraf-ng

tcpdump

Tcpdump prints out a description of the contents of packets on a network interface. It can be run with the -w
flag, which causes it to save the packet data to a file for later analysis. The following command, for instance,
would print all passing packets:

sudo tcpdump

WireShark

WireShark is one of the most famous network protocol analyzers and has a GUI that makes visualizing
network traffic a lot easier. It can be downloaded from https://www.wireshark.org/

Nagios

Nagios is monitoring software that helps you monitor many servers together. It can also alert you when
things go wrong. It is one of the most famous monitoring solutions available, is open sourced, and has a
plethora of plug-ins available.

226

www.it-ebooks.info

https://www.wireshark.org/
http://www.it-ebooks.info/

CHAPTER 12 I TROUBLESHOOTING TIPS AND FAQ

zabbix

Zabbix is an open source infrastructure monitoring solution. It can use most databases out there to store the
monitoring statistics. The Core is written in C and has a front end in PHP. If you don’t like installing an agent,
Zabbix might be an option for you.

w

A seemingly simple, but important command is w. It joins the output of uptime, along with the information
about everyone logged on to the server.

16:33:16 up 8:03, 1 user, load average: 0.00, 0.01, 0.05
USER TTY FROM LOGIN®@ IDLE JCPU PCPU WHAT
userl pts/0 10.0.2.2 08:44 4.00s 0.19s 0.00s w

Isof

Another built-in super powerful tool is 1sof. It is an acronym for List Open Files and as the name suggests, it
gives you a list of all open files and network connections. One of the main reasons for using this command is
when a disk cannot be unmounted and displays the error that files are being used or opened.

With this command you can easily identify which files are in use. You can use grep or other similar filters
to narrow your list to show only files opened by any process or user. You can then kill the process if needed.

Common Pitfalls to Avoid

New and old users alike can run into pitfalls. Nginx administrators have been often found making some of the
following mistakes. Read the following section carefully to avoid common configuration issues and mistakes.

Chmod 777

Don't use 777, ever. It has been mentioned earlier in the book as well, but it is worth cautioning you again.
If you ever feel like using it, most likely you are not aware of what's going on. Try to isolate, identify, and
fix the problem instead of doing chmod 777. You can use the following command to check the directory
hierarchy for missing permissions:

namei -om /path/of/directory

Having Root Inside Location Block

If you have a configuration file that looks like the following, think again. Syntactically, there is nothing wrong
here. But, having a root directive in each location block will imply that if there is a location block without
root directive, there will be no root path for that location.

server {
server_name www.site.com;
location / {
root /var/www/nginx-default/;
#[...]
}

227

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © TROUBLESHOOTING TIPS AND FAQ

location /foo {
root /var/www/nginx-default/;
#[...]

}

location /bar {
root /var/www/nginx-default/;

#...]

Instead, have a common root directive and override where necessary, like so:

server {
server_name www.site.com;
root /var/www/nginx-default/;
location / {

#[...]
}

location /foo {

#...]
}

location /bar {

#[...]
}

This caution also applies to index directive.

Using if Blocks

It is one of those blocks in Nginx that are more frequently misused than used. An if block creates a block
similar to location block, and if the condition matches, the inner block is executed. This execution helps in
assigning the configuration inside the if configuration for the designated request. In general, it is better to
avoid an if directive. That said, there are a couple of things that are 100 percent safe inside the if directive.

e return..;
e rewrite... last;

A couple of problematic configurations to drive the point home:

only second header will be present in response
not really bug, just how it works
location /only-one-if {
set $true 1;
if ($true) {
add_header X-First 1;
}

if ($true) {
add_header X-Second 2;
}

return 204;

228

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 I TROUBLESHOOTING TIPS AND FAQ

Consider the following configuration. In this configuration if is evaluated every time there is a request to
site.com or *.site.com. This is inefficient since the evaluation will happen for each and every request:

server {
server_name site.com *.site.com;
if ($host ~* ~www\.(.+)) {
set $raw_domain $1;
rewrite */(.*)$ $raw _domain/$1 permanent;

#...]

To avoid evaluation on every request, you can split the configuration into two like so and get the
same result:

server {
server_name www.site.com;
return 301 $scheme://site.com$request_uri;

}

server {
server name site.com;
#[...]

}

You should also avoid using if to check the existence of files or directories. try _files directive is a
more suitable choice in these cases. The following is an example of if block that you should avoid:

server {
root /var/www/site.com;
location / {
if (!-f $request filename) {

break;
}
}
}
Replace such blocks with:
server {
root /var/www/site.com;
location / {
try files $uri $uri/ /index.html;
}
}

229

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © TROUBLESHOOTING TIPS AND FAQ

Passing Uncontrolled Requests to PHP

If you pass all your PHP requests directly to the FastCGI back end, you are at risk. This is because the default
PHP configuration tries to guess which file you want executed in case the actual file doesn't exist. For
example, a request to /path/to/url/malicious.jpg/file.php mightlead to execution of embedded code
inside amalicious. jpg file. A lot of sites allow uploading pictures, so it is easy to upload a picture and get
your own code to run on the server using this vulnerability. A typical configuration that leads to this

looks as follows:

location ~* \.php$ {
fastcgi pass backend;
more config ...;

}

The preceding code block allows all requests ending with PHP to be sent directly to the FastCGI back
end. To avoid this pitfall, you can do the following:

e Set cgi.fix_pathinfo=0 in php.ini (this will tell PHP to avoid processing the files if
not found)

e Pass only the application's PHP file to Nginx like the following:

location ~* (file_a|file_b|file_c)\.php$ {
fastcgi pass backend;
#[...]

}

e Disable execution of any code from the upload directories:

location /uploaddirectory {
location ~ \.php$ {return 403;}
#[...]

}

e Usetry_files directives:

location ~* \.php$ {
try files $uri =404;
fastcgi pass backend;
#[...]

Rewrite Issues

You should avoid writing complex regular expressions. Try to keep them as neat and clean as possible. Also
be aware that rewrites are relative by default, so it becomes important to rewrite using an absolute path. Add
http:// wherever necessary and intended.

230

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 I TROUBLESHOOTING TIPS AND FAQ

Using Hostname in Configuration

Never use a hostname in a 1isten directive since it might not be able to resolve during boot time. It is
preferable to use IP addresses that need to be bound. This will help Nginx even more since it will not have to
look up the address.

Frequently Asked Questions

This section will answer some of the frequently asked questions across popular websites. Instead of
replicating the entire content, you will be pointed to those links for further reading. A small summary will be
presented with links wherever appropriate.

“Is there an option to compare Nginx and Nginx Plus?”

To summarize: You use Open Source Nginx for any site or service that is yearning for the best web server.
Nginx Plus, in comparison, offers support and extra functionality that is often required by organizations.
You can find a feature matrix available at https://www.nginx.com/products/feature-matrix/

“Is there a location for sample configurations?”

Yes. In fact, Nginx has a wiki that contains a plethora of samples that might assist you with various common
configurations. These include configuration samples for WordPress, FastCGI, Caching, Log Rotation, and
more. Read about it here:

https://www.nginx.com/resources/wiki/start/

Scroll a bit to the Pre-canned Configurations section and you will find a huge list of configurations to get
you up to speed instantly. See Figure 12-5.

231

www.it-ebooks.info

https://www.nginx.com/products/feature-matrix/
https://www.nginx.com/resources/wiki/start/
http://www.it-ebooks.info/

CHAPTER 12 © TROUBLESHOOTING TIPS AND FAQ

Pre-canned Configurations

As you learned in the tutorials, most NGINX configuration files are very similar. You can apply the
same logic to most web applications and achieve the desired result. There are some applications
that have weird little quirks that tend to throw a wrench in things.

NGINX happens to have a very well rounded community that has worked to first address these
quirks and then share the resulting configurations. This has resulted in many “copy and paste”
configurations that are almost guaranteed to work.

ActiveColab
Chive

CMS Made Simple
Codeigniter

Dokuwiki

Drupal

Elgg
ExpressionEngine
Feng Office

iRedMail
Joomla

Mailman
MediaWiki

* MoinMoin
MyBB
Omeka

Figure 12-5. A partial list of pre-canned configurations on Nginx website

“How can I redirect from www to no-www and vice versa?”

This is one of the most common requests and it is an important one. Your SEO depends on this and web
administrators often like to stick with just one of the URLs. There is no right or wrong approach here, since
alot depends on various factors. There are famous examples like http://twitter.com where they don't
use www prefix and others like http://www.facebook.com. To configure it, read the following discussion on
StackOverflow:

http://stackoverflow.com/questions/7947030/nginx-no-www-to-www-and-www-to-no-www

“How can I write all http requests to https while
maintaining a sub-domain?”

You can read more about this here:

http://serverfault.com/questions/67316/in-nginx-how-can-i-rewrite-all-http-requests-to-
https-while-maintaining-sub-dom

232

www.it-ebooks.info

http://twitter.com/
http://www.facebook.com/
http://www.it-ebooks.info/

CHAPTER 12 I TROUBLESHOOTING TIPS AND FAQ

“How can I find which flags Nginx was compiled with?”

This one is easy and has been discussed throughout the book. Simply execute nginx -V. There are other
variations that will help you compare different configuration files:

http://serverfault.com/questions/223509/how-can-i-see-which-flags-nginx-was-compiled-with

“Is there any mechanism for detailed debugging?”

Yes. Nginx provides extensive debugging support. By default, it is turned off but it can be activated if you have
compiled Nginx with --with-debug argument. Read more about detailed debugging at the following site:

https://www.nginx.com/resources/wiki/start/topics/tutorials/debugging/

“How many third-party modules does Nginx have?”

Plenty! There are a lot of third-party modules listed at the Nginx website, and new ones keep popping up.
You can find the detailed list here:

https://www.nginx.com/resources/wiki/modules/

“What happens if have Nginx Plus and the license expires?”

After your support contract expires, you are no longer licensed to use Nginx Plus or obtain support from
Nginx, Inc. Access to Nginx Plus updates will be prohibited, and you must stop and delete your Nginx Plus
instances. In short, you should contact them and renew in order to continue using Nginx Plus.

“Is there design or consulting help available?”

Yes. You can seek help in architecture, design or configuration using the Professional Services team at Nginx.
Details can be found here:

https://www.nginx.com/services/

Summary

This chapter dealt with some troubleshooting scenarios and also a typical troubleshooting approach should
you need help in case of desperate situations. You must keep adding various tools to your support toolbelt
so that you can use them when the time is right. During pressure scenarios the thing that helps most is
your knowledge about the infrastructure and how things are placed overall. The better you know your
infrastructure, the better suited you will be to fix the issue. Keep baselining, learn new tools, engage with the
community, and push the limits.

Happy learning!

233

www.it-ebooks.info

http://www.it-ebooks.info/

Index

A

Accept-Encoding, header, 3
Access log
buffers, 177
client requests, 175-176
compression, 177
conditional, 177
configuration, 176
service-related information, 175
access.log file, 22
Adobe’s fafpackager tool, 11
Amazon AWS EC2 Wizard, 44-46
Amazon Elastic Compute Cloud (EC2),
Nginx in, 44-46
Amazon Web Services (AWS) EC2 instance, 44
Apache, 3-6, 8
vs. Nginx web server, 12
availability, 13-14
configuration, 14
documentation, 15
history, 13
modules/plug-ins, 14
performance, 13
proxy and load balancing server, 14
resource requirements, 13
static vs. dynamic content, 14
support system, 15
Apache Benchmark, 188-189
Apache Software Foundation (ASF), 13
Application Delivery Controllers (ADC), 156
Automation, 192-193

Bandwidth management for MP4 media, 11
Baseline, 190
Benchmark

Apache, 188-189

cloud-based, 190

extensive process depending, 187

© Rahul Soni 2016
R. Soni, Nginx, DOI 10.1007/978-1-4842-1656-9

JMeter, 190
performance-related numbers, 187
Blocking access, 125

C

C10K problem, 5
Caching activity, server, 9
CentOS
download, 17
installing Apache on, 7, 13
Nginx uninstallation, 22
Certificate request (CSR), 205
Cloud-based benchmarking, 190
Compilation of Nginx, 29
compile-time options, 29
configuration paths options, 30-31
disabling modules, 33-34
enable service on reboot, 41
enabling modules, 31-32
and installing, 37
log paths options, 31
manual configuration, 38-39
optimization modules, 34
prerequisite modules (see Prerequisite
modules)
scripted configuration, 39-40
third-party modules, 37
troubleshooting service start, 41-42
understanding ./configure script, 29
users and groups, 30
Compiler, GCC, 24
Concurrent connections, 5
Conditional log, 177
Configure script for Nginx, 29
Content-Encoding, 3
Core architecture
HTTP request processing, 104-105
master process (see Master process)
state machines, 102-103
update configuration, 104

235

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX

Core architecture (cont.) application vs. network, 157
upgrade, 104 cost, 157
worker process, 100-101 easy deployment, 158
CSR. See Certificate Request (CSR) elasticity, 157
-c switch, 49 flexibility, 156
Custom error pages hardware load balancer, 156
configuration, 186-187 multi-tenancy, 158
curl localhost/nopage and testing, 185 sizing, 157
custom_5xx.html, 187 software load balancer, 156
default error messages, 184 typical network, 155
error_page directive, 185 Hosting websites
internal directive, 187 blocking access, 125
modifying, config file, 185 command, 117
configuration file, 116
D domain name mapping, 125-126
errors, fix
Denial of service (DoS) attacks, 5 chmod 777, 127
Documentation, Nginx vs. Apache, 15 listen on hostname, 129
Domain name mapping, 125-126 monolithic configuration files, 128
root inside location block, 127
E unnecessary complications, 128
internal redirects, 122-123
error_log directive, 52 sitel.com and site2.com, 117
Error log, 8 using different names, 119-121
configuration, 174-175 using different ports, 123-124
in-built error messages template, 173 using domain name, 121-122
levels, 174 website rendering, 116
status.code 404, 173 wildcard mapping, 124
errorlog file, 22 HTTP Dynamic Streaming (HDS/VOD), 11
error_page directive, 71 HTTP Live Streaming (HLS), 10
Event-based reverse proxy server, 5 HyperText Transfer Protocol (HTTP), 1-2,7,9
Event log, 8
F |
Full-stack developers, 148 IMAP/POP3 proxy server, 1, 7
Input/Output (I0) in Nginx, 7
Installation of Nginx
G binaries, 24
GCC compiler, 24 build tools for compilation, 24-26
GoAccess, 182-184 install dependent packages, 27
GoDaddy's portal, 125 OpenSSL library, 27-28
Google Chrome, 1 PCRE library, 27
Gzip directive, 56 zlib library, 28
Gzip documentation, 75 compiling, 29
Gzip modules, 88 compile-time options, 29
configuration paths options, 30-31
H disabling modules, 33-34
enable service on reboot, 41
Hardware load balancer enabling modules, 31-32
application vs. network, 157 and installing, 37
benefits, 156 log paths options, 31
disadvantages, 156 manual configuration, 38-39
Hardware load balancer, setting up, 4 optimization modules, 34

Health check, Nginx, 10
High availability, load balancing, 153-154

236

www.it-ebooks.info

http://www.it-ebooks.info/

prerequisite modules (see Prerequisite
modules, Nginx)
scripted configuration, 39-40
third-party modules, 37
troubleshooting service start, 41-42
understanding ./configure script, 29
users and groups, 30
downloading from source, 23
extracting Nginx archive, 23
understanding source directory, 23-24
preparing environment, 17-18
using pre-built packages, 19
folder structure, 21-22
on CentOS, 19
on Ubuntu server, 20
uninstall, 22
verifying web server installation, 42-43
Internet Explorer, 1
Internet Information Services (IIS), 3-6, 8
IP-based hosting
and mixed name-based, 127
and name-based, 126
server_name, 126
IP Hash, 163
iptraf, 226

J, K

JMeter, 190

L

Least time method, 164
Linux, 13
Linux distributions CentOS, 17
Linux, eNginx, MySQL, and
PHP (LEMP) stack, 132, 139
MySQL installing, 132-133
PHP installing, 134, 136, 139
Live activity monitoring, Nginx Plus, 11-12
Load balancing
in Nginx
clean up, servers, 158
generic hash, 163
IP hash, 163
least connected algorithm, 163
load balancing algorithms, 162
NLB server, set up, 160-162
round-robin, 162
web content, create, 159
WEFEI and WFE2, configure, 159
scenarios
buffering, 168
forwarding IP information, 167
HOST Header, passing, 165-166

Nginx caching, 168

INDEX

Nginx routing request, express/node.js, 165

server directive parameters, 169
Load balancing
algorithms, 162
IN NGINX
NGINX PLUS, 164
Log analysis
GoAccess
features, 182
HTML reports, 182, 184
terminal output, 183
Nginx top output, 180-181
ngxtop, 179-180
tail, 179
time-consuming process, 179
Log buffers, 177
Log compression, 177
Log file rotation mechanism, 22
Longest matching prefix, 62
Isof, 227

Mainline version, Nginx, 19
Master process
cache loader and cache manager, 99
child processes, 99
configuration files, 98
PID, 98
processes vs. threads, 99
run loop, 101
spawning child processes, 98
state machines, 102-103
worker processes, 98-100
MEAN stack
Angular.JS installing, 149
application creation, 150
Express.JS installing, 149
MongoDB installing, 148-149
Nginx configure, 151
Node.JS installing, 149
pm2, 150
Mixed name-based and IP-based servers, 127
Modules
authentication directives, 90-91
catagories, 79
configuration parameter, 81
default installation, 77
directives, 82
events context, 83
FastCGI server, 89
gzip modules, 88
HTTP, 77, 81
HTTP module directives, 84

www.it-ebooks.info

237

http://www.it-ebooks.info/

INDEX

Modules (cont.)

installation, 77

module installation, 93

On CentOS Server, 78

Out-of-Box, 79

PAM authentication, 91

process, 81

structure, 80

validate, 94

valid username and credential, 94
Mongo, Express, Angular, and Node (MEAN), 148
Monitoring, Nginx PLUS, 190-191
Mozilla Firefox, 1
MP4 media, bandwidth management for, 11
mpm_event, 13
mpm_prefork spawns processes, 13
mpm_worker spawns processes, 13
Multiprocessing modules (MPM), 13
Multithreaded programming techniques, 6
myfile.data, 54
MySQL installing, 132-133

N

Name-based and IP-based hosting, 126
netstat, 220
Network Load Balancer (NLB), 155
Network traffic protect tool
Wireshark, capture interfaces, 196
nginx.conffile, 21
Nginx Core Directives
block directive, 50
configuration file, 49, 51
documentation, 50
HTTP context, 54
logging levels, 52
MIME types, 55
request flow, 61
server block, 57
simple directive, 49
structure, 50
try_files directive, 69
variables, 74
wildcards, 62
worker_connections directive, 53
worker_process, 52
Nginx HTTP Request processing, 104-105
nginx.pid, 210
Nginx Plus, 8, 164
activity monitoring, 170
advantages of, 9
adaptive streaming, 11
advanced HTTP and TCP load balancing, 9
application health checks, 10

bandwidth management for MP4 media, 11

238

content caching enhanced capabilities, 9
HDS/VOD, 11
HLS and VOD, 10
live activity monitoring, 11-12
monitoring, 190-191
Nginx commercial support, 12
progressive download, 10
session persistence, 9
streaming software, 10
enterprise features of, 8
heath checks, 169
support available with, 9
nginx-s reload command, 8, 212
nginx-t, 221
Nginx web server, 1, 3
in Amazon Elastic Compute
Cloud (EC2), 44-46
vs. Apache, 12
availability, 13-14
configuration, 14
documentation, 15
history, 13
modules/plug-ins, 14
performance, 13
proxy and load balancing server, 14
resource requirements, 13
static vs. dynamic content, 14
support system, 15
compiled version using Lynx, 43
features, 5
asynchronous, 6
HTTP video streaming, 7
low resource requirement and
consumption, 6
modular design, 6
monitoring and logging, 8
multiple protocol support, 7
restarting, 8
reverse proxy and load balancing
capability, 5-6
SSL termination, 7
unparalleled performance, 7
upgrades without downtime using
live binaries, 8
installing (see Installation of Nginx)
as load balancer and SSL terminator, 7
reasons for using, 4
affordable to install and maintain, 5
can accelerate application, 4
easy to use, 5
fast, 4
load balancer, 4
scalability, 4
upgradation, 5
nginx-V command, 37

www.it-ebooks.info

http://www.it-ebooks.info/

(0

One t2.micro server, 44

Open Source Nginx, 231
OpenSSL library, 27-28
Optimization modules, Nginx, 34
Oracle VirtualBox, 17
Out-of-Box Modules, 79

PQ

Package Manager-based Nginx, 21-22
Perl Compatible Regular Expression
(PCRE), 27
PHP installing
apache, 138
FastCGI, and PHP-FPM, 134
fastcgi_index directive, 136
fastcgi_param, 136
fastcgi_pass directive, 136
mod_php, 134
output, test.php, 138
ps-aux | grep nginx, 139
service status, 135
test.conffile, 136
wfel.localdomain server, 139
PID. See Process id (PID)
POP3 protocol, 7
powertop, 225
Prerequisite modules, Nginx, 34
libatomic options, 36
MD?5 options, 35
OpenSSL options, 36
other options, 36
PCRE options, 35
SHA1 options, 35
zlib options, 35
Process id (PID), 52, 98
Proxy server, 6
and load balancing server, 14
pwd command, 29

R

Real-time activity monitoring interface, 11

Relational database management system
(RDBMS), 132

Remote address, HTTP request, 3

Response headers, 3

Reverse proxy, 5

and load balancing capability, 6
rewrite directive, 70-71
Round Robin, 162

INDEX

S

Secure HTTP
GoDaddy, certificate details, 199
non-trusted certificate, 200
WEFE1 without certificate, 199
Wikipedia, typical valid SSL Certificate, 198
Secure socket layer (SSL) encryption, 7
CSR, creation, 205
HTTP protocol, 200
optimizing HTTPS servers, 203-204
port forwarding, WFEL, 202
public key algorithm, 200
root certificate, not trusted, 203
self-signed certificate, 201
set up, config file, 202
top certificate providers, 206
Session draining, 9
Session persistence, 9
SF_NODISKIO, 55
Sniff network traffic, 195
Software load balancer
ADC, 156
elasticity, 157
flexibility, 156
sizing, 157
Source directory
configure file, 29
Nginx, 23-24
Stable versions, Nginx, 19
Streaming software, 10
sudo kill nginx, 220
sudo systemctl start firewalld, 219
Switch command, 8
Syslog
error_log and access_log directives, 178
IPv6 address, 178
protocol, 178

T

tcp_nopush directive, 55
Third-party modules, 37, 79, 91
Troubleshooting, 8

atop, 223

configuration, 218, 229, 233

ICMP ECHO_REQUEST packets, 222

Isof, 227

Nagios, 226

Nslookup, 224

PHP requests, 230

powertop, 224

server block, 217

239

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX

Troubleshooting (cont.)
sudo yum install htop, 222
Tcpdump, 226
top program, 222
traceroute sitename.com, 222
uptime, 223
web administrator, 222
WireShark, 226
Zabbix, 227

try_files directive, 69

U

Ubuntu
Nginx uninstallation, 22
PPA, 20
Ubuntu Server, 17
Uninstallation of Nginx, 22
Upgrading and migrating
cache loader, 212
command-line parameters, 210
configuration files, 210, 215
error message, 210
HUP signal, 211
Nginx and Apache, 213-214
PID, 210
QUIT signal, 213
signals, 209
WINCH signal, 212
User interface (UI), 5

Vv

V command option with nginx, 21
vendor_assets, 71

Video on Demand (VOD), 10
Video streaming process, 7
VirtualBox software, 17
VirtualHost, 215

Virtual server, 57

W, X, Y

W3Clogs, 8
Web front-end server, 3

240

Web server, 3
monitoring, 8

“Web Server of the Year Award’, 4

Web server security
authentication prompt, 207
error message, 208
Nginx password authentication, 207
password file, 206

Web server setup
CentOS servers, 108
connecting host and guest

servers, 110-111

NAT network, 109, 111
output, ip addr, 108
port-forwarding rules, 110-111
sample applications, creation, 112
server naming convention, 110
site manager, 113
uploading content, 112, 114-115
user creation, 111
VirtualBox, 108-109
WFE1 and WFE2, 109

Websites, busy, 3

WebSocket protocol, 7

Wildcard mapping, 124

WINCH signal, 212

Wireshark, 195-196, 226

WordPress, installation
changing settings, cleaner URL, 145
configuration file, 143
CREATE DATABASE wpsite, 139
dbtest.php, 141
directives, mysite.conf file, 147
/etc/nginx/conf.d/wpsite.conf, 146
installation page, 141
parameters, 142
setup, 144
sudo nginx-s reload, 140
uploading content, WFEL1 server, 140

Y4

Zabbix, 227
zlib library, 28

www.it-ebooks.info

http://www.it-ebooks.info/

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Introduction to Nginx Web Server
	HTTP Basics
	What Is a Web Server?
	Seven Reasons Why You Should Be Using Nginx
	It’s Fast
	It Can Accelerate Your Application
	It Has a Straightforward Load Balancer
	It Scales Well
	You Can Upgrade It On the Fly
	It’s Affordable to Install and Maintain
	It’s Easy to Use

	Main Features of Nginx
	More Than Just a Web Server
	Modular Design
	Asynchronous Web Server
	Reverse Proxy and Load Balancing Capability
	Low Resource Requirement and Consumption
	Unparalleled Performance
	Multiple Protocol Support: HTTP(S), WebSocket, IMAP, POP3, SMTP
	SSL Termination
	HTTP Video Streaming Using MP4/FLV/HDS/HLS
	Extended Monitoring and Logging
	Graceful Restarting
	Upgrades without Downtime Using Live Binaries
	Enterprise Features of Nginx Plus
	Support Available with Nginx Plus

	Advantages of Nginx Plus
	Advanced HTTP and TCP Load Balancing
	Session Persistence
	Content Caching Enhanced Capabilities
	Application Health Checks
	HTTP Live Streaming (HLS) and Video on Demand (VOD)
	Streaming
	Progressive Download
	Adaptive Streaming

	HTTP Dynamic Streaming (HDS/VOD)
	Bandwidth Management for MP4 Media
	Live Activity Monitoring
	Nginx Commercial Support

	Differences between Apache and Nginx
	History
	Performance
	Resource Requirements
	Availability
	Proxy and Load Balancing Server
	Static vs. Dynamic Content
	Configuration
	Modules (or Plug-Ins)
	Documentation
	Support

	Summary

	Chapter 2: Installing Nginx
	Preparing Your Environment
	Installing Nginx Using Pre-Built Packages
	Install Nginx Pre-Built Package
	On CentOS
	On Ubuntu Server

	Nginx Folder Structure
	Uninstall Nginx
	On CentOS
	On Ubuntu

	Downloading Nginx from Source
	Downloading Nginx
	Extracting the Nginx Archive
	Understanding the Nginx Source Directory

	Installing Nginx Binaries
	Build Tools for Compilation
	On CentOS
	On Ubuntu

	Install Dependent Packages
	PCRE Library
	On CentOS:
	On Ubuntu:

	OpenSSL
	On CentOS
	On Ubuntu

	zlib Library
	On CentOS
	On Ubuntu

	Compiling Nginx
	Understanding the ./configure Script
	Compile-Time Options
	Nginx Users and Groups
	Nginx Configuration Paths Options
	Nginx Log Path Options
	Enabling Nginx Modules
	Disabling Nginx Modules
	Optimization Modules
	Prerequisite Modules
	PCRE Options
	MD5 Options
	SHA1 Options
	zlib Options
	OpenSSL Options
	Libatomic Options
	Other Options

	Third-Party Modules

	Compiling and Installing Nginx
	Prerequisites
	Manual Configuration
	Scripted Configuration

	Enable Nginx Service on Reboot
	Troubleshooting Service Start

	Verifying Web Server Installation
	Firewall Configuration
	On CentOS
	On Ubuntu

	Nginx in Amazon Elastic Compute Cloud (EC2)
	Summary

	Chapter 3: Nginx Core Directives
	Location of Configuration Files
	What Are Directives?
	Context Types
	Understanding the Default Configuration
	Simple Directives
	Events Context
	HTTP Context
	The conf.d Folder
	Server Context
	Visualizing Routing Rules
	Wildcards Names

	Location Context
	Location Context Special Cases
	try_files
	rewrite
	error_page

	Verify the Correctness of Configuration
	Allow Directory Listing
	Deny Access to Any Specific Location
	Proxy the Requests to Apache
	Proxy the Requests to FastCGI

	Nginx Variables
	A Quick Note about Nginx Official Documentation
	Summary

	Chapter 4: Nginx Modules
	What Are Modules?
	Module Installation
	Default Installation
	On CentOS Server
	On Ubuntu Server

	Module Categories
	Out-of-Box Modules
	Third-Party Modules

	How Does a Module Work?
	Module Structure
	How Modules Fit in Nginx

	Configuring Default Modules for Optimal Performance
	Core Module
	Events Module
	HTTP Module

	Enabling Optional Modules
	Gzip Module
	FastCGI Module
	Basic Authentication

	Enabling Third-Party Modules
	PAM Authentication
	Compiling the Module with Nginx
	Verifying Installation
	Implementing the Module in Nginx
	Validating the Module

	Summary

	Chapter 5: Nginx Core Architecture
	A Quick Analogy
	The Master Process
	Processes vs. Threads
	The Worker Process
	State Machines
	Update Configuration
	Upgrade
	HTTP Request Processing in Nginx

	Summary

	Chapter 6: Hosting Web Sites on Nginx
	Web Server Setup
	Connecting Host and Guest Servers
	User Creation
	Sample Applications
	Uploading Content
	Hosting Websites
	Websites Using Different Names
	Websites Using Domain Name
	Internal Redirects
	Sites Using Different Ports
	Wildcard Mapping
	Blocking Access
	Domain Name Mapping

	IP-Based Hosting
	Mixed Name-Based and IP-Based Servers

	Common Configuration Mistakes
	Let’s Use 777
	Root Inside Location Block
	Monolithic Configuration Files
	Unnecessary Complications
	Listening on Hostname

	Summary

	Chapter 7: Nginx and Dynamic Content
	Sudo Scare
	Installing MySQL
	Installing PHP
	Configure Nginx for WordPress
	The MEAN Stack
	Installing MongoDB
	Installing Node.JS
	Installing Express.JS
	Installing Angular.JS
	Creating a MEAN Application

	Configure Nginx for MEAN Stack
	Summary

	Chapter 8: Load Balancing with Nginx
	Defining High Availability
	Load Balancing for High Availability
	Hardware Load Balancer
	Software Load Balancer
	Flexibility
	Cost
	Sizing
	Application vs. Network
	Elasticity
	Easy Deployment
	Multi-Tenancy

	Load Balancing in Nginx
	Clean Up the Servers
	Create Web Content
	Configure WFE1 and WFE2
	Set Up NLB Server
	Load Balancing Algorithms
	Round Robin
	Least Connected, Optionally Weighted
	IP Hash
	Generic Hash
	Least Time (Nginx PLUS), Optionally Weighted

	Most Suitable Algorithm

	Load Balancing Scenarios
	Nginx Routing Request to Express/Node.js
	Passing the HOST Header
	Forwarding IP Information
	Buffering
	Nginx Caching
	Server Directive Additional Parameters

	Configure Nginx (PLUS) for Heath Checks
	Activity Monitoring in Nginx (PLUS)
	Summary

	Chapter 9: Log Analysis, Monitoring, and Automation
	Error Log
	Access Log
	What to Log?
	Log Buffers
	Conditional Log
	Log Compression

	Syslog
	Analyze Logs
	tail
	ngxtop
	GoAccess

	Custom Error pages
	Benchmark
	Apache Benchmark
	JMeter
	Cloud-Based Benchmarking

	Baseline
	Monitoring
	Nginx PLUS

	Automation
	Summary

	Chapter 10: SSL, Security, and Authentication
	Tools to Protect Network Traffic
	Capturing Network Traffic with Wireshark

	Using Secure HTTP
	SSL Encryption
	Enabling SSL Nginx
	Optimizing HTTPS Servers
	Creating a Certificate Request

	Web Server Security
	Creating the Password File
	Configuring Nginx Password Authentication

	Summary

	Chapter 11: Upgrading and Migrating
	Controlling Nginx
	Command-Line Parameters

	Migrating from Apache to Nginx
	Feature Comparison
	Configuration Comparison

	Summary

	Chapter 12: Troubleshooting Tips and FAQ
	First, What You Should Not Do
	First Commandment of Troubleshooting: Isolate the Issue
	Scenario 1: Page Cannot Be Displayed in the Browser
	Scenario 2: Conflicting Ports
	Scenario 3: Bad Permissions
	Scenario 4: Bad Configuration
	Scenario 5: Rewrite Rules
	Scenario 6: Log Only Your Requests

	Important Tools for Web Administrators
	ping
	traceroute
	top
	htop
	atop
	uptime
	free
	ifconfig or ip addr
	ulimit
	nslookup
	powertop
	iotop
	iptraf
	tcpdump
	WireShark
	Nagios
	zabbix
	w
	lsof

	Common Pitfalls to Avoid
	Chmod 777
	Having Root Inside Location Block
	Using if Blocks
	Passing Uncontrolled Requests to PHP
	Rewrite Issues
	Using Hostname in Configuration

	Frequently Asked Questions
	“Is there an option to compare Nginx and Nginx Plus?”
	“Is there a location for sample configurations?”
	“How can I redirect from www to no-www and vice versa?”
	“How can I write all http requests to https while maintaining a sub-domain?”
	“How can I find which flags Nginx was compiled with?”
	“Is there any mechanism for detailed debugging?”
	“How many third-party modules does Nginx have?”
	“What happens if I have Nginx Plus and the license expires?”
	“Is there design or consulting help available?”

	Summary

	Index

