Stephen G. Kochan
Patrick Wood Fourth Edition

Shell
Programmin

in Unix, Linux and

An iconic symbol of the American West, Monument Valley

is one of the natural wonders of the world. The red-sand desert
region is located within the range of the Navajo Nation on the
Arizona-Utah border and is host to towering sandstone rock
formations that have been sculpted over time and soar

400 to 1,000 feet above the valley floor. Three of the valley’s
most photographed peaks are the distinctive East and West
Mitten Buttes and Merrick Butte.

From the Library of shannon powell

Shell Programming
iIn Unix, Linux
and OS X

Fourth Edition

’ -
Developer’s Library
ESSENTIAL REFERENCES FOR PROGRAMMING PROFESSIONALS

Developer’s Library books are designed to provide practicing programmers with unique,
high-quality references and tutorials on the programming languages and technologies
they use in their daily work.

All books in the Developer’s Library are written by expert technology practitioners who
are especially skilled at organizing and presenting information in a way that’s useful for
other programmers.

Key titles include some of the best, most widely acclaimed books within their
topic areas:

PHP & MySQL Web Development Python Essential Reference
Luke Welling & Laura Thomson David Beazley

ISBN-13: 978-0-321-83389-1 ISBN-13: 978-0-672-32862-6
MySQL Programming in Objective-C
Paul DuBois Stephen G. Kochan
ISBN-13: 978-0-672-32938-8 ISBN-13: 978-0-321-56615-7
Linux Kernel Development Programming in C

Robert Love Stephen G. Kochan
ISBN-13: 978-0-672-32946-3 ISBN-13: 978-0-321-77641-9

Developer’s Library books are available at most retail and online bookstores, as well as
by subscription from Safari Books Online at safari.informit.com

Developer’s
Library

informit.com/devlibrary

From the Library of shannon powell

Shell Programming
iIn Unix, Linux
and OS X

Fourth Edition

Stephen G. Kochan
Patrick Wood

vvAddison-Wesley

800 East 96th Street, Indianapolis, Indiana 46240

From the Library of shannon powell

Shell Programming in Unix, Linux and OS X, Fourth Edition
Copyright © 2017 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent liability is assumed with respect to
the use of the information contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of the informa-
tion contained herein.

ISBN-13: 978-0-13-4449600-9
ISBN-10: 0-13-449600-0

Printed in the United States of America
First Printing: August 2016

The Library of Congress Control Number is on file.

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks

have been appropriately capitalized. The publisher cannot attest to the accuracy of this
information. Use of a term in this book should not be regarded as affecting the validity of
any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
author and the publisher shall have neither liability nor responsibility to any person or entity
with respect to any loss or damages arising from the information contained in this book.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com
For questions about sales outside the U.S., please contact

international@pearsoned.com

Editor
Mark Taber

Copy Editor
Larry Sulky

Technical Editor
Brian Tiemann

Designer
Chuti Prasertsith

Page Layout
codeMantra

From the Library of shannon powell

Contents at a Glance

o a A W N B

10

11

12

13

14

Introduction 1

A Quick Review of the Basics 5
What Is the Shell? 39

Tools of the Trade 51

And Away We Go 93

Can | Quote You on That? 105
Passing Arguments 121
Decisions, Decisions 131
'Round and 'Round She Goes 163
Reading and Printing Data 185
Your Environment 209

More on Parameters 239
Loose Ends 255

Rolo Revisited 273

Interactive and Nonstandard Shell Features

Shell Summary 321
For More Information 359

Index 363

289

From the Library of shannon powell

Table of Contents

Introduction 1
How This Book Is Organized 2
Accessing the Free Web Edition 3

1 A Quick Review of the Basics 5

Some Basic Commands 5
Displaying the Date and Time: The date Command 5
Finding Out Who's Logged In: The who Command 5
Echoing Characters: The echo Command 6

Working with Files 6
Listing Files: The 1s Command 7
Displaying the Contents of a File: The cat Command 7
Counting the Number of Words in a File: The wec Command 7
Command Options 8
Making a Copy of a File: The cp Command 8
Renaming a File: The mv Command 8
Removing a File: The rm Command 9

Working with Directories 9
The Home Directory and Pathnames 10
Displaying Your Working Directory: The pwd Command 12
Changing Directories: The cd Command 12
More on the 1s Command 15
Creating a Directory: The mkdir Command 17
Copying a File from One Directory to Another 18
Moving Files Between Directories 19
Linking Files: The 1n Command 20
Removing a Directory: The rmdir Command 23

Filename Substitution 24
The Asterisk 24
Matching Single Characters 25

Filename Nuances 27
Spaces in Filenames 27
Other Weird Characters 28

Standard Input/Output, and 1/0 Redirection 28
Standard Input and Standard Output 28

From the Library of shannon powell

Contents Vii

Output Redirection 30
Input Redirection 32

Pipes 33
Filters 35

Standard Error 35

More on Commands 36
Typing More Than One Command on a Line 36
Sending a Command to the Background 36
The ps Command 37

Command Summary 37

2 What Is the Shell? 39

The Kernel and the Utilities 39

The Login Shell 40

Typing Commands to the Shell 43

The Shell’'s Responsibilities 44
Program Execution 45
Variable and Filename Substitution 47
/0 Redirection 48
Hooking up a Pipeline 49
Environment Control 49
Interpreted Programming Language 50

3 Tools of the Trade 51

Regular Expressions 51
Matching Any Character: The Period (.) 51
Matching the Beginning of the Line: The Caret (*) 53
Matching the End of the Line: The Dollar Sign $ 53
Matching a Character Set: The [...] Construct 55
Matching Zero or More Characters: The Asterisk (*) 57
Matching a Precise Number of Subpatterns: \{...\} 59
Saving Matched Characters: \ (...\) 61

cut 64
The -d and -£f Options 66

paste 68
The -d Option 69
The -s Option 70

From the Library of shannon powell

viii

Contents

sed 70
The -n Option 72
Deleting Lines 73
tr 74
The -s Option 76
The -d Option 77
grep 78
Regular Expressions and grep 81
The -v Option 82
The -1 Option 82
The -n Option 83
sort 84
The -u Option 84
The -r Option 85
The -o Option 85
The -n Option 86
Skipping Fields 87
The -t Option 87
Other Options 88
unigq 88
The -d Option 89
Other Options 90

And Away We Go 93

Command Files 93
Comments 96

Variables 97
Displaying the Values of Variables 98
Undefined Variables Have the Null Value 100
Filename Substitution and Variables 101
The ${variable} Construct 102

Built-in Integer Arithmetic 103

Can | Quote You on That? 105
The Single Quote 105

The Double Quote 109

The Backslash 111

From the Library of shannon powell

Contents ix

Using the Backslash for Continuing Lines 112

The Backslash Inside Double Quotes 112
Command Substitution 114

The Back Quote 114

The $(...) Construct 115

The expr Command 119

Passing Arguments 121

The s# Variable 122

The $* Variable 123

A Program to Look Up Someone in the Phone Book 124

A Program to Add Someone to the Phone Book 125

A Program to Remove Someone from the Phone Book 127
${n} 128

The shift Command 128

Decisions, Decisions 131
Exit Status 131
The $? Variable 132
The test Command 135
String Operators 135
An Alternative Format for test 139
Integer Operators 140
File Operators 142
The Logical Negation Operator ! 143
The Logical AND Operator -a 143
Parentheses 144
The Logical OR Operator -o 144
The else Construct 145
The exit Command 147
A Second Look at the rem Program 147
The elif Construct 148
Yet Another Version of rem 151
The case Command 153
Special Pattern-Matching Characters 155
The -x Option for Debugging Programs 157
Back to the case 159

From the Library of shannon powell

X

Contents

The Null Command : 160
The && and | | Constructs 161

8 'Round and 'Round She Goes 163
The for Command 163
The s@ Variable 166
The for Without the List 167
The while Command 168
The until Command 170

Mo

re on Loops 174

Breaking Out of a Loop 174

Skipping the Remaining Commands in a Loop 176
Executing a Loop in the Background 177

/0 Redirection on a Loop 177

Piping Data into and out of a Loop 178

Typing a Loop on One Line 179

The getopts Command 180

9 Reading and Printing Data 185
The read Command 185
A Program to Copy Files 185

Special echo Escape Characters 187

An Improved Version of mycp 188

A Final Version of mycp 190
A Menu-Driven Phone Program 193
The $$ Variable and Temporary Files 198
The Exit Status from read 199
The printf Command 202

10 Your Environment 209
Local Variables 209

Subshells 210

Exported Variables 211

export -p 215

PS1 and PS2 216
HOME 217
PATH 217

From the Library of shannon powell

11

12

Contents

Your Current Directory 225
CDPATH 226
More on Subshells 227
The .Command 227
The exec Command 230
The (...) and { ...; } Constructs 231
Another Way to Pass Variables to a Subshell 234
Your .profile File 235
The TERM Variable 236
The TZ Variable 237

More on Parameters 239
Parameter Substitution 239
${parameter} 239

${parameter:-value} 240
${parameter:=value} 241
${parameter:?value} 241

${parameter:+value} 242
Pattern Matching Constructs 242
${#variable} 244

The $0 Variable 245

The set Command 246
The -x Option 246
set with No Arguments 247
Using set to Reassign Positional Parameters 247
The -- Option 248
Other Options to set 251

The IFS Variable 251

The readonly Command 254

The unset Command 254

Loose Ends 255
The eval Command 255
The wait Command 257
The $! Variable 257
The trap Command 258
trap with No Arguments 259

From the Library of shannon powell

Xi

Xii

Contents

13

14

Ignoring Signals 260
Resetting Traps 261
More on I/O 261
<&- and >&- 262
In-line Input Redirection 262
Shell Archives 264
Functions 268
Removing a Function Definition 271
The return Command 271
The type Command 271

Rolo Revisited 273

Data Formatting Considerations 273
rolo 274

add 277

lu 278

display 278

rem 280

change 281

listall 283

Sample Output 284

Interactive and Nonstandard Shell Features 289
Getting the Right Shell 289
The ENV File 290
Command-Line Editing 291
Command History 292
The vi Line Edit Mode 292

Accessing Commands from Your History 294
The emacs Line Edit Mode 296

Accessing Commands from Your History 298
Other Ways to Access Your History 300

The history Command 300

The £c Command 301

The r Command 301
Functions 303

Local Variables 303

Automatically Loaded Functions 303

From the Library of shannon powell

Contents Xiii

Integer Arithmetic 303
Integer Types 304
Numbers in Different Bases 305
The alias Command 307
Removing Aliases 309
Arrays 309
Job Control 315
Stopped Jobs and the £g and bg Commands 316
Miscellaneous Features 317
Other Features of the cd Command 317
Tilde Substitution 318
Order of Search 319
Compatibility Summary 319

Shell Summary 321

Startup 321

Commands 321

Comments 322

Parameters and Variables 322
Shell Variables 322
Positional Parameters 322
Special Parameters 323
Parameter Substitution 324

Command Re-entry 326
The £c Command 326
vi Line Edit Mode 326

Quoting 329
Tilde Substitution 329
Arithmetic Expressions 330

Filename Substitution 331

1/0 Redirection 331

Exported Variables and Subshell Execution 332
The (...) Construct 332
The { ...; } Construct 332
More on Shell Variables 333

Functions 333

Job Control 333

From the Library of shannon powell

Xiv Contents

Shell Jobs 333
Stopping Jobs 334
Command Summary 334
The : Command 334
The . Command 334
The alias Command 335
The bg Command 335
The break Command 336
The case Command 336
The ¢d Command 337
The continue Command 338
The echo Command 338
The eval Command 339
The exec Command 339
The exit Command 340
The export Command 340
The false Command 341
The £c Command 341
The £g Command 342
The for Command 342
The getopts Command 343
The hash Command 344
The if Command 344
The jobs Command 347
The kill Command 347
The newgrp Command 347
The pwd Command 348
The read Command 348
The readonly Command 349
The return Command 349
The set Command 350
The shift Command 352
The test Command 352
The times Command 354
The trap Command 355
The true Command 356
The type Command 356

From the Library of shannon powell

Contents XV

The umask Command 356
The unalias Command 356
The unset Command 357
The until Command 357
The wait Command 358
The while Command 358

B For More Information 359
Online Documentation 359
Documentation on the Web 360
Books 360

O’Reilly & Associates 360
Pearson 361

Index 363

From the Library of shannon powell

About the Authors

Stephen Kochan is the author or co-author of several best-selling titles on Unix and the

C language, including Programming in C, Programming in Objective-C, Topics in C Programming,
and Exploring the Unix System. He is a former software consultant for AT&T Bell Laboratories,
where he developed and taught classes on Unix and C programming.

Patrick Wood is the CTO of the New Jersey location of Electronics for Imaging. He was a
member of the technical staff at Bell Laboratories when he met Mr. Kochan in 1985. Together
they founded Pipeline Associates, Inc., a Unix consulting firm, where he was vice president.
They co-authored Exploring the Unix System, Unix System Security, Topics in C Programming,

and Unix Shell Programming.

From the Library of shannon powell

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we’re doing right, what we could do better, what areas you’'d
like to see us publish in, and any other words of wisdom you're willing to pass our way.

We welcome your comments. You can email or write directly to let us know what you did or
didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book, and that
due to the high volume of mail we receive, we might not be able to reply to every message.

When you write, please be sure to include this book’s title and author, as well as your name and phone
or email address.

Email: feedback@developers-library.info

Mail: Reader Feedback
Addison-Wesley Developer’s Library
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at www.informit.com/register for convenient access
to any updates, downloads, or errata that might be available for this book.

From the Library of shannon powell

http://www.informit.com/register

This page intentionally left blank

From the Library of shannon powell

Introduction

It’s no secret that the family of Unix and Unix-like operating systems has emerged over the last
few decades as the most pervasive, most widely used group of operating systems in computing
today. For programmers who have been using Unix for many years, this came as no surprise:
The Unix system provides an elegant and efficient environment for program development.
That’s exactly what Dennis Ritchie and Ken Thompson sought to create when they developed
Unix at Bell Laboratories way back in the late 1960s.

Note

Throughout this book we’ll use the term Unix to refer generically to the broad family of
Unix-based operating systems, including true Unix operating systems such as Solaris
as well as Unix-like operating systems such as Linux and Mac OS X.

One of the strongest features of the Unix system is its wide collection of programs. More than
200 basic commands are distributed with the standard operating system and Linux adds to it,
often shipping with 700-1000 standard commands! These commands (also known as tools)
do everything from counting the number of lines in a file, to sending electronic mail, to
displaying a calendar for any desired year.

But the real strength of the Unix system comes not from its large collection of commands but
from the elegance and ease with which these commands can be combined to perform far more
sophisticated tasks.

The standard user interface to Unix is the command line, which actually turns out to be a
shell, a program that acts as a buffer between the user and the lowest levels of the system itself
(the kernel). The shell is simply a program that reads in the commands you type and converts
them into a form more readily understood by the system. It also includes core programming
constructs that let you make decisions, loop, and store values in variables.

The standard shell distributed with Unix systems derives from AT&T’s distribution, which
evolved from a version originally written by Stephen Bourne at Bell Labs. Since then,

the IEEE has created standards based on the Bourne shell and the other more recent shells.
The current version of this standard, as of this writing, is the Shell and Utilities volume

of IEEE Std 1003.1-2001, also known as the POSIX standard. This shell is what we use as the
basis for the rest of this book.

The examples in this book were tested on a Mac running Mac OS X 10.11, Ubuntu Linux 14.0,
and an old version of SunOS 5.7 running on a Sparcstation Ultra-30. All examples, with the

From the Library of shannon powell

Introduction

exception of some Bash examples in Chapter 14, were run using the Korn shell, although all of
them also work fine with Bash.

Because the shell offers an interpreted programming language, programs can be written, modified,
and debugged quickly and easily. We turn to the shell as our first choice of programming
language and after you become adept at shell programming, you will too.

How This Book Is Organized

This book assumes that you are familiar with the fundamentals of the system and command
line; that is, that you know how to log in; how to create files, edit them, and remove them;
and how to work with directories. In case you haven’t used the Linux or Unix system for a
while, we’ll examine the basics in Chapter 1, “A Quick Review of the Basics.” In addition,
filename substitution, I/O redirection, and pipes are also reviewed in the first chapter.

Chapter 2, “What Is the Shell?,” reveals what the shell really is, how it works, and how it ends
up being your primary method of interacting with the operating system itself. You'll learn
about what happens every time you log in to the system, how the shell program gets started,
how it parses the command line, and how it executes other programs for you. A key point
made in Chapter 2 is that the shell is just another program; nothing more, nothing less.

Chapter 3, “Tools of the Trade,” provides tutorials on tools useful in writing shell programs.
Covered in this chapter are cut, paste, sed, grep, sort, tr, and unig. Admittedly, the
selection is subjective, but it does set the stage for programs that we’ll develop throughout the
remainder of the book. Also in Chapter 3 is a detailed discussion of regular expressions, which
are used by many Unix commands, such as sed, grep, and ed.

Chapters 4 through 9 teach you how to put the shell to work for writing programs. You'll
learn how to write your own commands; use variables; write programs that accept arguments;
make decisions; use the shell’s for, while, and until looping commands; and use the read
command to read data from the terminal or from a file. Chapter 5, “Can I Quote you on
That?”, is devoted entirely to a discussion of one of the most intriguing (and often confusing)
aspects of the shell: the way it interprets quotes.

By that point in the book, all the basic programming constructs in the shell will have been
covered, and you will be able to write shell programs to solve your particular problems.

Chapter 10, “Your Environment,” covers a topic of great importance for a real understanding
of the way the shell operates: the environment. You’ll learn about local and exported variables;
subshells; special shell variables, such as HOME, PATH, and CDPATH; and how to set up

your .profile file.

Chapter 11, “More on Parameters,” and Chapter 12, “Loose Ends,” tie up some loose ends, and
Chapter 13, “Rolo Revisited,” presents a final version of a phone directory program called
rolo that is developed throughout the book.

From the Library of shannon powell

Accessing the Free Web Edition 3

Chapter 14, “Interactive and Nonstandard Shell Features,” discusses features of the shell that
either are not formally part of the IEEE POSIX standard shell (but are available in most
Unix and Linux shells) or are mainly used interactively instead of in programs.

Appendix A, “Shell Summary,” summarizes the features of the IEEE POSIX standard shell.

Appendix B, “For More Information,” lists references and resources, including the Web sites
where different shells can be downloaded.

The philosophy this book uses is to teach by example. We believe that properly chosen
examples do a far better job of illustrating how a particular feature is used than ten times as
many words. The old “A picture is worth ...” adage seems to apply just as well to coding.

We encourage you to type in each example and test it on your own system, for only by doing
can you become adept at shell programming. Don't be afraid to experiment. Try changing
commands in the program examples to see the effect, or add different options or features to
make the programs more useful or robust.

Accessing the Free Web Edition

Your purchase of this book in any format includes access to the corresponding Web Edition,
which provides several special features to help you learn:

= The complete text of the book online

= Interactive quizzes and exercises to test your understanding of the material

= Updates and corrections as they become available
The Web Edition can be viewed on all types of computers and mobile devices with any modern
web browser that supports HTMLS.

To get access to the Web Edition of Shell Programming with Unix, Linux, and OS X all you need to
do is register this book:

1. Go to www.informit.com/register.

2. Sign in or create a new account.

3. Enter ISBN: 9780134496009.

4. Answer the questions as proof of purchase.

The Web Edition will appear under the Digital Purchases tab on your Account page. Click the
Launch link to access the product.

From the Library of shannon powell

http://www.informit.com/register

This page intentionally left blank

From the Library of shannon powell

1

A Quick Review
of the Basics

This chapter provides a review of the Unix system, including the file system, basic commands,
filename substitution, I/O redirection, and pipes.

Some Basic Commands
Displaying the Date and Time: The date Command

The date command tells the system to print the date and time:

S date
Thu Dec 3 11:04:09 MST 2015
$

date prints the day of the week, month, day, time (24-hour clock, the system’s time zone),
and year. Throughout the code examples in this book, whenever we use boldface type like
this, it’s to indicate what you, the user, type in. Normal face type like this is used to
indicate what the Unix system prints. Italic type is used for comments in interactive sequences.

Every Unix command is submitted to the system with the pressing of the Enter key. Enter
says that you are finished typing things in and are ready for the Unix system to do its thing.

Finding Out Who'’s Logged In: The who Command

The who command can be used to get information about all users currently logged in to the
system:

$ who

pat tty29 Jul 19 14:40
ruth tty37 Jul 19 10:54
steve tty25 Jul 19 15:52
$

From the Library of shannon powell

Chapter 1 A Quick Review of the Basics

Here, three users are logged in: pat, ruth, and steve. Along with each user ID is listed the
tty number of that user and the day and time that user logged in. The tty number is a unique
identification number the Unix system gives to each terminal or network device that a user is
on when they log into the system.

The who command also can be used to get information about yourself:

$ who am i
pat tty29 Jul 19 14:40
$

who and who am i are actually the same command: who. In the latter case, the am and i are
arguments to the who command. (This isn’t a good example of how command arguments work;
it’s just a curiosity of the who command.)

Echoing Characters: The echo Command

The echo command prints (or echoes) at the terminal whatever else you happen to type on the
line (there are some exceptions to this that you'll learn about later):

S echo this is a test
this is a test
$ echo why not print out a longer line with echo?
why not print out a longer line with echo?
$ echo
A blank line is displayed
$ echo one two three four five
one two three four five

$

You will notice from the preceding example that echo squeezes out extra blanks between
words. That’s because on a Unix system, the words are important while the blanks are only
there to separate the words. Generally, the Unix system ignores extra blanks (you'll learn more
about this in the next chapter).

Working with Files

The Unix system recognizes only three basic types of files: ordinary files, directory files, and
special files. An ordinary file is just that: any file on the system that contains data, text,
program instructions, or just about anything else. Directories, or folders, are described later in
this chapter. Finally, as its name implies, a special file has a special meaning to the Unix system
and is typically associated with some form of I/O.

A filename can be composed of just about any character directly available from the keyboard
(and even some that aren’t) provided that the total number of characters contained in the
name is not greater than 255. If more than 255 characters are specified, the Unix system
simply ignores the extra characters.

From the Library of shannon powell

Working with Files 7

The Unix system provides many tools that make working with files easy. Here we’ll review
some of the basic file manipulation commands.

Listing Files: The 1s Command
To see what files you have stored in your directory, you can type the 1s command:

S ls
READ ME
names
tmp

$

This output indicates that three files called READ ME, names, and tmp are contained in the
current directory. (Note that the output of 1s may vary from system to system. For example,
on many Unix systems 1s produces multicolumn output when sending its output to a
terminal; on others, different colors may be used for different types of files. You can always
force single-column output with the -1 option—that’s the number one.)

Displaying the Contents of a File: The cat Command

You can examine the contents of a file by using the cat command. (That’s short for “concatenate,”
if you're thinking feline thoughts.) The argument to cat is the name of the file whose contents
you want to examine.

$ cat names
Susan

Jeff

Henry
Allan

Ken

$

Counting the Number of Words in a File: The wc Command

With the we command, you can get a count of the total number of lines, words, and characters
contained in a file. Once again, the name of the file is expected to be specified as the argument
to this command:

$ wc names
5 7 27 names

$

The we command lists three numbers followed by the filename. The first number represents the
number of lines in the file (5), the second the number of words (7), and the third the number
of characters (27).

From the Library of shannon powell

Chapter 1 A Quick Review of the Basics

Command Options

Most Unix commands allow the specification of options at the time a command is executed.
These options generally follow the same format:

-letter

That is, a command option is a minus sign followed immediately by a single letter. For
example, to count just the number of lines contained in a file, the option -1 (that’s the letter 1)
is given to the we command:

$ wec -1 names
5 names

$

To count just the number of characters in a file, the -c option is specified:

$ wc -c names
27 names

$

Finally, the -w option can be used to count the number of words contained in the file:

$ wC -w names
7 names

$

Some commands require that the options be listed before the filename arguments. For example,
sort names -r is acceptable, whereas we names -1 is not. Still, the former is unusual and
most Unix commands are designed for you to specify command options first, as exemplified by

wc -1 names.

Making a Copy of a File: The cp Command

To make a copy of a file, use the cp command. The first argument to the command is the name
of the file to be copied (known as the source file), and the second argument is the name of the
file to place the copy into (known as the destination file). You can make a copy of the file names
and call it saved names as follows:

$ cp names saved names

$

Execution of this command causes the contents of the file names to be copied into a new file
named saved_names. As with many Unix commands, the fact that no output other than a
command prompt was displayed after the cp command was typed indicates that the command
executed successfully.

Renaming a File: The mv Command

A file can be renamed with the mv (“move”) command. The arguments to the mv command
follow the same format as the cp command. The first argument is the name of the file to be

From the Library of shannon powell

Working with Directories 9

renamed, and the second argument is the new name. So, to change the name of the file
saved_names to hold it, for example, the following command would do the trick:

$ mv saved names hold it

$

Be careful! When executing an mv or cp command, the Unix system does not care whether the
file specified as the second argument already exists. If it does, the contents of the file will be
lost. For example, if a file called o1d_names exists, executing the command

cp names old names
would copy the filenames to old_names, destroying the previous contents of o1d names in the
process. Similarly, the command

mv names old names

would rename names to old_names, even if the file o1d names existed prior to execution of
the command.

Removing a File: The rm Command

Use the rm command to remove a file from the system. The argument to rm is simply the name
of the file to be removed:

$ rm hold it
$

You can remove more than one file at a time with the rm command by simply specifying all
such files on the command line. For example, the following would remove the three files wb,
collect, and mon:

S rm wb collect mon

$

Working with Directories

Suppose that you had a set of files consisting of various memos, proposals, and letters.
Further suppose that you had another set of files that were computer programs. It would seem
logical to group this first set into a directory called documents and the latter into a directory
called programs. Figure 1.1 illustrates such a directory organization.

documents programs

plan dact sys.A new.hire no.JSK AMG.reply wb collect mon

Figure 1.1 Example directory structure

From the Library of shannon powell

10

Chapter 1 A Quick Review of the Basics

The file directory documents contains the files plan, dact, sys.A, new.hire, no.JsK, and
AMG.reply. The directory programs contains the files wb, collect, and mon. At some point,
you may decide to further categorize the files in a directory. This can be done by creating
subdirectories and then placing each file into the appropriate subdirectory. For example,
you might want to create subdirectories called memos, proposals, and letters inside your
documents directory, as shown in Figure 1.2.

documents programs
| i |
memos proposals letters wb collect mon

plan dact sys.A new.hire no.JSK AMG.reply

Figure 1.2 Directories containing subdirectories

documents contains the subdirectories memos, proposals, and letters. Each of these
subdirectories in turn contains two files: memos contains plan and dact; proposals contains
sys.A and new.hire; and letters contains no.JSK and AMG. reply.

Although each file in a given directory must have a unique name, files contained in different
directories do not. So you could have a file in your programs directory called dact, even
though a file by that name also exists in the memos subdirectory.

The Home Directory and Pathnames

The Unix system always associates each user of the system with a particular directory. When
you log in to the system, you are placed automatically into your own directory (called your
home directory).

Although the location of users’ home directories can vary from one system to the next,

let’s assume that your home directory is called steve and that this directory is actually a
subdirectory of a directory called users. Therefore, if you had the directories documents and
programs, the overall directory structure would actually look something like Figure 1.3.

A special directory named / (pronounced “slash”) is shown at the top of the directory tree.
This directory is known as the root.

Whenever you are “inside” a particular directory (called your current working directory), the
files contained within that directory are immediately accessible, without specifying any path
information. If you want to access a file from another directory, you can either first issue a
command to “change” to the appropriate directory and then access the particular file, or you
can specify the particular file by its pathname.

From the Library of shannon powell

Working with Directories 11

users
|
plat stl,ve ru|tr; B
documents programs
merlnos proplosals Iettlers wb collect mon

plan dact sys.A new.hire no.JSK AMG.reply

Figure 1.3 Hierarchical directory structure

A pathname enables you to uniquely identify a particular file to the Unix system. In the
specification of a pathname, successive directories along the path are separated by the slash
character /. A pathname that begins with a slash character is known as a full or absolute
pathname because it specifies a complete path from the root. For example, the pathname
/users/steve identifies the directory steve contained within the directory users. Similarly,
the pathname /users/steve/documents references the directory documents as contained

in the directory steve within users. As a final example, the pathname /users/steve/
documents/letters/AMG.reply identifies the file AMG. reply contained along the appropriate
directory path.

To help reduce the typing that would otherwise be required, Unix provides certain notational
conveniences. A pathname that does not begin with a slash is known as a relative pathname:
the path is relative to your current working directory. For example, if you just logged in to the
system and were placed into your home directory /users/steve, you could directly reference
the directory documents simply by typing documents. Similarly, the relative pathname
programs/mon could be typed to access the file mon contained inside your programs directory.

By convention, .. always references the directory that is one level higher than the current
directory, known as the parent directory. For example, if you were in your home directory
/users/steve, the pathname .. would reference the directory users. If you had issued

the appropriate command to change your working directory to documents/letters, the
pathname .. would reference the documents directory, ../ .. would reference the directory
steve, and . ./proposals/new.hire would reference the file new.hire contained in the
proposals directory. There is usually more than one way to specify a path to a particular
file, a very Unix-y characteristic.

From the Library of shannon powell

12

Chapter 1 A Quick Review of the Basics

Another notational convention is the single period., which always refers to the current
directory. That'll become more important later in the book when you want to specify a shell
script in the current directory, not one in the PATH. We'll explain this in more detail soon.

Displaying Your Working Directory: The pwd Command

The pwd command is used to help you “get your bearings” by telling you the name of your
current working directory.

Recall the directory structure from Figure 1.3. The directory that you are placed in after you log
in to the system is called your home directory. You can assume from Figure 1.3 that the home
directory for the user steve is /users/steve. Therefore, whenever steve logs in to

the system, he will automatically be placed inside this directory. To verify that this is the

case, the pwd (print working directory) command can be issued:

$ pwd
/users/steve

$

The output from the command verifies that steve’s current working directory is /users/
steve.

Changing Directories: The cd Command

You can change your current working directory by using the cd command. This command
takes as its argument the name of the target or destination directory.

Let’s assume that you just logged in to the system and were placed in your home directory,
/users/steve. This is depicted by the arrow in Figure 1.4.

You know that two directories are directly “below” steve’s home directory: documents and
programs. This can be easily verified at the terminal by issuing the 1s command:

S ls
documents
programs

$

The 1s command lists the two directories documents and programs the same way it listed
other ordinary files in previous examples.

From the Library of shannon powell

Working with Directories

/
I
users
I

pat —>steve ruth

documents programs

I
memos proposals letters wb collect mon
plan dact sys.A new.hire no.JSK AMG.reply

Figure 1.4 Current working directory is steve

To change your current working directory, issue the cd command, followed by the name of the

new directory:

$ cd documents

$

After executing this command, you will be placed inside the documents directory, as depicted

in Figure 1.5.

/
I
users
|

pat steve ruth

—>documents programs

|
memos proposals letters wb collect mon
plan dact sys.A new.hire no.JSK AMG.reply

Figure 1.5 cd documents

From the Library of shannon powell

13

14

Chapter 1 A Quick Review of the Basics

You can verify at the terminal that the working directory has been changed by using the pwd

command:

$ pwd
/users/steve/documents

$

The easiest way to move up one level in a directory is to reference the .. shortcut with the

command

cd ..

because by convention .. always refers to the directory one level up (see Figure 1.6).

S ecd ..
$ pwd
/users/steve
$
/
users
|
pat —psteve
documents
|
memos proposals letters

plan dact sys.A new.hire no.JSK AMG.reply

Figure 1.6 cd

ruth

mon

If you wanted to change to the letters directory, you could get there with a single cd
command by specifying the relative path documents/letters (see Figure 1.7):

$ cd documents/letters
$ pwd
/users/steve/documents/letters

$

From the Library of shannon powell

Working with Directories 15

/
uslers
I
plat stclave ru|th. B
documents programs
merlnos proplosals Iettlers<j: wb collect mon

plan dact sys.A new.hire no.JSK AMG.reply

Figure 1.7 cd documents/letters

You can get back up to your home directory by using a single cd command to go up two
directories as shown:

Sed ../..

$ pwd
/users/steve
$

Or you can get back to the home directory using a full pathname rather than a relative one:

$ c¢d /users/steve
$ pwd
/users/steve

$

Finally, there is a third way to get back to the home directory that is also the easiest. Typing the
command cd without an argument always moves you back to your home directory, no matter
where you are in the file system:

S cd
$ pwd
/users/steve

$

More on the 1s Command

When you type the 1s command, the files contained in the current working directory are
listed. But you can also use 1s to obtain a list of files in other directories by supplying an
argument to the command. First let’s get back to your home directory:

S cd
$ pwd
/users/steve

$

From the Library of shannon powell

16

Chapter 1 A Quick Review of the Basics

Now let’s take a look at the files in the current working directory:

S 1ls
documents
programs

$

If you supply the name of one of these directories to the 1s command, you can get a list of
the contents of that directory. So you can find out what’s contained in the documents directory
by typing the command 1s documents:

$ 1ls documents
letters

memos
proposals

$

To take a look at the subdirectory memos, you can follow a similar procedure:

$ 1ls documents/memos
dact

plan

$

If you specify a nondirectory file argument to the 1s command, you simply get that filename
echoed back at the terminal:

$ 1ls documents/memos/plan
documents/memos/plan

$

Confused? There’s an option to the 1s command that lets you determine whether a particular
file is a directory, among other things. The -1 option (the letter 1) provides a more detailed
description of the files in a directory. If you were currently in steve’s home directory, here’s
what the -1 option to the 1s command produces:

S 1s -1

total 2

drwxr-xr-x 5 steve DP3725 80 Jun 25 13:27 documents
drwxr-xr-x 2 steve DP3725 96 Jun 25 13:31 programs
$

The first line of the display is a count of the total number of blocks (1,024 bytes) of storage that
the listed files use. Each successive line displayed by the 1s -1 command contains detailed
information about a file in the directory. The first character on each line indicates what type of
file it is: d for a directory, - for a file, b, ¢, 1, or p for a special file.

The next nine characters on the line define the access permissions of that particular file or
directory. These access modes apply to the file’s owner (the first three characters), other users in

From the Library of shannon powell

Working with Directories 17

the same group as the file’s owner (the next three characters), and finally all other users on the
system (the last three characters). Generally, they indicate whether the specified class of user
can read the file, write to the file, or execute the contents of the file (in the case of a program
or shell script).

The 1s -1 command then shows the link count (see “Linking Files: The 1n Command,” later
in this chapter), the owner of the file, the group owner of the file, how large the file is (that is,
how many characters are contained in it), and when the file was last modified. The information
displayed last on the line is the filename itself.

Note

Many modern Unix systems have gone away from using groups, so while those permissions are
still shown, the group owner for a specific file or directory is often omitted in the output of the
Is command.

You should now be able to glean a lot of information from the 1s -1 output for a directory full
of files:

$ ls -1 programs

total 4

-TWXYr-XY-X 1 steve DP3725 358 Jun 25 13:31 collect
-ITWXI-Xr-X 1 steve DP3725 1219 Jun 25 13:31 mon
-TWXY-XY-X 1 steve DP3725 89 Jun 25 13:30 wb

$

The dash in the first column of each line indicates that the three files collect, mon, and wb are
ordinary files and not directories. Now, can you figure out how big are they?

Creating a Directory: The mkdir Command

Use mkdir to create directories. The argument to this command is simply the name of the
directory you want to create. For example, assume that you are still working with the directory
structure depicted in Figure 1.7 and that you want to create a new directory called misc at the
same level as the directories documents and programs. If you were currently in your home
directory, typing the command mkdir misc would achieve the desired effect:

$ mkdir misc
$

Now if you run 1s, you will have the new directory listed:
S 1s

documents

misc

programs

$

From the Library of shannon powell

18

Chapter 1 A Quick Review of the Basics

The directory structure now appears as shown in Figure 1.8.

steve

documents programs misc
| i |
memos proposals letters wb collect mon

plan dact sys. A new.hire noJSK AMG.reply

Figure 1.8 Directory structure with newly created misc directory

Copying a File from One Directory to Another

The cp command can be used to copy a file from one directory into another. For example, you
can copy the file wb from the programs directory into a file called wbx in the misc directory
as follows:

$ cp programs/wb misc/wbx

$
Because the two files are in different directories, they can safely have the exact same name:

$ cp programs/wb misc/wb

$

When the destination file is going to have the same name as the source file (in a different
directory, of course), it is necessary to specify only the destination directory as the
second argument:

$ cp programs/wb misc

$

When this command gets executed, the Unix system recognizes that the second argument is a
directory and copies the source file into that directory. The new file is given the same name
as the source file.

You can copy more than one file into a directory by listing the files to be copied prior to
the name of the destination directory. If you were currently in the programs directory, the
command

$ cp wb collect mon ../misc

$

would copy the three files wb, collect, and mon into the misc directory, with the same
filenames.

From the Library of shannon powell

Working with Directories 19

To copy a file from another directory into your current location in the file system and give the
file the same name, use the handy “.” shortcut for the current directory:

$ pwd

/users/steve/misc

$ cp ../programs/collect .
$

The preceding command copies the file collect from the directory . ./programs into the
current directory (/users/steve/misc).

Moving Files Between Directories

You recall that the mv command can be used to rename a file. Indeed, there is no “rename”
command in Unix. However, when the two arguments reference different directories, the file is
actually moved from the first directory into the second.

To demonstrate, go from the home directory to the documents directory:
$ cd documents

$

Suppose that now you decide that the file plan contained in the memos directory is really a
proposal so you want to move it from the memos directory into the proposals directory. The
following would do the trick:

$ mv memos/plan proposals/plan

$

As with the cp command, if the source file and destination file have the same name, only the
name of the destination directory need be supplied, so there’s an easier way to move this file:
$ mv memos/plan proposals

$

Also like the cp command, a group of files can be simultaneously moved into a directory by

simply listing all files to be moved before the name of the destination directory:

$ pwd
/users/steve/programs
$ mv wb collect mon ../misc

$
This would move the three files wb, collect, and mon into the directory misc.

You can also use the mv command to change the name of a directory, as it happens. For
example, the following renames the programs directory to bin.

$ mv programs bin

$

From the Library of shannon powell

20

Chapter 1 A Quick Review of the Basics

Linking Files: The 1n Command

So far everything we’ve talked about with file management has assumed that a given collection
of data has one and only one filename, wherever it may be located in the file system. It turns
out that Unix is more sophisticated than that and can assign multiple filenames to the same
collection of data.

The main command for creating these duplicate names for a given file is the 1n command.

The general form of the command is

In from to
This links the file from to the file to.

Recall the structure of steve’s programs directory from Figure 1.8. In that directory, he has
stored a program called wb. Suppose that he decides that he’d also like to call the program
writeback. The most obvious thing to do would be to simply create a copy of wb called
writeback:

$ cp wb writeback
$

The drawback with this approach is that now twice as much disk space is being consumed by
the program. Furthermore, if steve ever changes wb, he may forget to duplicate the change
in writeback, resulting in two different, out of sync copies of what he thinks is the same
program. Not so good, Steve!

By linking the file wb to the new name, these problems are avoided:

$ 1ln wb writeback

$

Now instead of two copies of the file existing, only one exists with two different names: wb and
writeback. The two files have been logically linked by the Unix system.

As far as you're concerned, it appears as though you have two different files. Executing an 1s
command shows the two files separately:

S ls

collect

mon

wb

writeback

$

Where it gets interesting is when you use 1s -1:

$ 1s -1

total 5

-TWXYr-XY-X 1 steve DP3725 358 Jun 25 13:31 collect
-TWXT-Xr-X 1 steve DP3725 1219 Jun 25 13:31 mon
-TWXY-Xr-X 2 steve DP3725 89 Jun 25 13:30 wb
-YWXY-XY-X 2 steve DP3725 89 Jun 25 13:30 writeback

$

From the Library of shannon powell

Working with Directories 21

Look closely at the second column of the output: The number shown is 1 for collect and mon
and 2 for wb and writeback. This is the number of links to a file, normally 1 for nonlinked,
nondirectory files. Because wb and writeback are linked, however, this number is 2 for these
files (or, more correctly, this file with two names).

You can remove either of the two linked files at any time, and the other will not be removed:

$ rm writeback

$ 1ls -1

total 4

-TWXY-XY-X 1 steve DP3725 358 Jun 25 13:31 collect
-TWXT-Xr-X 1 steve DP3725 1219 Jun 25 13:31 mon
-TWXT-XY-X 1 steve DP3725 89 Jun 25 13:30 wb

$

Note that the number of links on wb went from 2 to 1 because one of its links was removed.

Most often, 1n is used to allow a file to appear in more than one directory simultaneously. For
example, suppose that pat wanted to have access to steve’s wb program. Instead of making

a copy for himself (subject to the same data sync problems described previously) or including
steve’s programs directory in his PATH (which has security risks as described in Chapter 10,
“Your Environment”), he can simply link to the file from his own program directory:

$ pwd

/users/pat/bin pat’s program directory
$ ls -1

total 4

-IWXY-XI-X 1 pat DP3822 1358 Jan 15 11:01 lcat
-IWXr-Xr-x 1 pat DP3822 504 Apr 21 18:30 xtr
$ 1n /users/steve/wb . link wb to pat’s bin

$ 1ls -1

total 5

-ITWXTY-XT-X 1 pat DP3822 1358 Jan 15 11:01 lcat
-IWXY-XTr-X 2 steve DP3725 89 Jun 25 13:30 wb
-IWXr-Xr-x 1 pat DP3822 504 Apr 21 18:30 xtr
$

Note that steve is still listed as the owner of wb, even when viewing the contents of pat’s
directory. This makes sense, because there’s really only one copy of the file and it's owned
by steve.

The only stipulation on linking files is that for ordinary links the files to be linked together
must reside on the same file system. If they don’t, you’ll get an error from 1n when you try to
link them. (To determine the different file systems on your system, execute the df command.
The first field on each line of output is the name of a file system.)

To create links to files on different file systems (or on different networked systems), you can
use the -s option to the 1n command. This creates a symbolic link. Symbolic links behave a lot
like regular links, except that the symbolic link points to the original file; if the original file is
removed, the symbolic link no longer works.

From the Library of shannon powell

22

Chapter 1 A Quick Review of the Basics

Let’s see how symbolic links work with the previous example:

S rm wb

$ 1ls -1

total 4

-TWXI-Xr-X 1 pat DP3822 1358 Jan 15 11:01 lcat
-ITWXI-Xr-X 1 pat DP3822 504 Apr 21 18:30 xtr

$ 1n -s /users/steve/wb ./symwb Symbolic link to wb
$ 1ls -1

total 5

-TWXT-Xr-X 1 pat DP3822 1358 Jan 15 11:01 lcat
lrwxr-Xr-x 1 pat DP3822 15 Jul 20 15:22 symwb -> /users/steve/wb
-ITWXI-Xr-X 1 pat DP3822 504 Apr 21 18:30 xtr

$

Note that pat is listed as the owner of symwb, and the file type shown as the very first character
in the 1s output is 1, which indicates a symbolic link. The size of the symbolic link is 15

(the file actually contains the string /users/steve/wb), but if we attempt to access the
contents of the file, we are presented with the contents of the file it’s linked to, /users/

steve/wb:

$ we symwb
5 9 89 symwb
$

The -L option to the 1s command can be used with the -1 option to get a detailed list of
information on the file the symbolic link points to:

$ ls -L1

total 5

-IWXY-XIr-X 1 pat DP3822 1358 Jan 15 11:01 lcat
-TWXY-Xr-X 2 steve DP3725 89 Jun 25 13:30 wb
-TWXT-Xr-X 1 pat DP3822 504 Apr 21 18:30 xtr
$

Removing the file that a symbolic link points to invalidates the symbolic link (because
symbolic links are maintained as filenames), but it doesn’t remove it:

$ rm /users/steve/wb Assume pat can remove this file

$ ls -1

total 5

-ITWXI-Xr-X 1 pat DP3822 1358 Jan 15 11:01 lcat

lrwxr-xr-x 1 pat DP3822 15 Jul 20 15:22 wb -> /users/steve/wb
-IWXr-Xr-X 1 pat DP3822 504 Apr 21 18:30 xtr

S we wb

Cannot open wb: No such file or directory

$

From the Library of shannon powell

Working with Directories 23

This type of file is called a dangling symbolic link and should be removed unless you have a
specific reason to keep it around (for example, if you intend to replace the removed file).

One last note before leaving this discussion: The 1n command follows the same general format
as cp and mv, meaning that you can create links to a bunch of files within a specific target
directory using the format

1n files directory

Removing a Directory: The rmdir Command

You can remove a directory with the rmdir command. Rather than let you accidentally
remove dozens or hundreds of files, however, rmdir won’t let you proceed unless the specified
directory is completely empty of files and subdirectories.

To remove the directory /users/pat, we could use the following:

$ rmdir /users/pat
rmdir: pat: Directory not empty

$

Phew! That would have been a mistake! Instead, let’s remove the misc directory that you
created earlier:

$ rmdir /users/steve/misc

$
Once again, the preceding command works only if no files or directories are contained in the
misc directory; otherwise, the following happens, as also shown earlier:

$ rmdir /users/steve/misc
rmdir: /users/steve/misc: Directory not empty

$

If you still want to remove the misc directory, you would first have to remove all the files
contained in that directory before reissuing the rmdir command.

As an alternative method for removing a directory and its contents, you can use the -r option
to the rm command. The format is simple:

rm -r dir
where dir is the name of the directory that you want to remove. rm removes the

indicated directory and all files (including directories) in it, so be careful with this
powerhouse command.

Want to go full turbo? Add the -£ flag and it forces the action without prompting you on
a command-by-command basis. It can completely trash your system if you're not careful,
however, so many admins simply avoid rm -rf entirely!

From the Library of shannon powell

24

Chapter 1 A Quick Review of the Basics

Filename Substitution
The Asterisk

One powerful feature of the Unix system that is handled by the shell is filename substitution.
Let’s say that your current directory has these files in it:

S ls

chaptl

chapt2

chapt3

chapt4

$

Suppose that you want to display their contents en masse. Easy: cat allows you to display the
contents of as many files as you specify on the command line. Like this:

$ cat chaptl chapt2 chapt3 chapt4

$

But that’s tedious. Instead, you can take advantage of filename substitution by simply typing:

S cat *

$

The shell automatically substitutes the names of all the files in the current directory that match
the pattern *. The same substitution occurs if you use * with another command too, of course.
How about echo?

S echo *
chaptl chapt2 chapt3 chapt4
$

Here the * is again replaced with the names of all the files contained in the current directory,
and the echo command simply displays that list to you.

Any place that * appears on the command line, the shell performs its substitution:
S echo * : *

chaptl chapt2 chapt3 chapt4 : chaptl chapt2 chapt3 chapt4
$

The = is part of a rich file substitution language, actually, and it can also be used in
combination with other characters to limit which filenames are matched.

For example, let’s say that in your current directory you have not only chapt1 through chapt4
but also files a, b, and c:

S ls
a
b

From the Library of shannon powell

Filename Substitution 25

c
chaptl
chapt2
chapt3
chapt4
$

To display the contents of just the files beginning with chap, you can type in

$ cat chap*

$

The chap* matches any filename that begins with chap. All such filenames matched are
substituted on the command line before the specified command is even invoked.

The = is not limited to the end of a filename; it can be used at the beginning or in the middle
as well:

S echo *tl

chaptl

S echo *t*

chaptl chapt2 chapt3 chapt4
$ echo *x

*X

$

In the first echo, the *t1 specifies all filenames that end in the characters t1. In the second
echo, the first * matches everything up to a t and the second everything after; thus, all
filenames containing a t are printed. Because there are no files ending with x, no substitution
occurs in the last case. Therefore, the echo command simply displays *x.

Matching Single Characters

The asterisk (*) matches zero or more characters, meaning that x* matches the file x as well

as x1, x2, xabe, and so on. The question mark (?) matches exactly one character. So cat? will
display all files that have filenames of exactly one character, just as cat x? prints all files with
two-character names beginning with x. Here we see this behavior illustrated again with echo:

S ls
a

aa
aax
alice

bb

cc

From the Library of shannon powell

26

Chapter 1 A Quick Review of the Basics

reportl
report2
report3

$ echo ?
abec

$ echo a?
aa

S echo ??
aa bb cc

$ echo ??%
aa aax alice bb cc reportl report2 report3

$

In the preceding example, the ?? matches two characters, and the * matches zero or more
characters up to the end. The net effect is to match all filenames of two or more characters.

Another way to match a single character is to give a list of characters to match within square
brackets [1. For example, [abc] matches the letter a, b, or c. It’s similar to the 2, but it allows
you to choose which characters are valid matches.

You can also specify a logical range of characters with a dash, a huge convenience! For
example, [0-9] matches the characters O through 9. The only restriction in specifying a range of
characters is that the first character must be alphabetically less than the last character, so that
[z-£] is not a valid range specification, while [£-z] is.

By mixing and matching ranges and characters in the list, you can perform complicated
substitutions. For example, [a-np-z]* matches all files that start with the letters a through n or
p through z (or more simply stated, any filename that doesn’t start with the lowercase letter o).

If the first character following the [is a !, the sense of the match is inverted. That is, any
character is matched except those enclosed in the brackets. So

[ta-z]

matches any character except a lowercase letter, and

*[lo]

matches any file that doesn’t end with the lowercase letter o.

Table 1.1 gives a few more examples of filename substitution.

Table 1.1 Filename Substitution Examples

Command Description

echo ax Print the names of the files beginning with a
cat *.c Print the contents of all files ending in .c
rm k. % Remove all files containing a period

1s x* List the names of all files beginning with x

From the Library of shannon powell

Filename Nuances 27

rm * Remove all files in the current directory (No??? Be careful when you
use this.)

echo a*b Print the names of all files beginning with a and ending with b

cp ../programs/* . Copy all files from ../programs into the current directory

1s [a-z]*[!10-9] List files that begin with a lowercase letter and don’t end with a digit

Filename Nuances

Spaces in Filenames

A discussion of command lines and filenames wouldn’t be complete without talking about
the bane of old-school Unix people and very much the day-to-day reality of Linux, Windows,
and Mac users: spaces in filenames.

The problem arises from the fact that the shell uses spaces as delimiters between words.
In other words the phrase echo hi mom is properly parsed as an invocation to the command
echo, with two arguments hi and mom.

Now imagine you have a file called my test document. How do you reference it from the
command line? How do you view it or display it using the cat command?

$ cat my test document

cat: my: No such file or directory

cat: test: No such file or directory
cat: document: No such file or directory

That definitely doesn’t work. Why? Because cat wants a filename to be specified and instead of
seeing one, it sees three: my, test, and document.

There are two standard solutions for this: Either escape every space by using a backslash, or
wrap the entire filename in quotes so that the shell understands that it’s a single word with
spaces, rather than multiple words.

S cat "my test document"

This is a test document and is full
of scintillating information to edify
and amaze.

$ cat my\ test\ document

This is a test document and is full
of scintillating information to edify
and amaze.

That solves the problem and is critical to know as you proceed with file systems that quite
likely have lots of directories and files that contain spaces as part of their filenames.

From the Library of shannon powell

28

Chapter 1 A Quick Review of the Basics

Other Weird Characters

While the space might be the most difficult and annoying of special characters that can
appear in filenames, occasionally you'll find others show up that can throw a proverbial
monkey-wrench into your command line efforts.

For example, how would you deal with a filename that contains a question mark? In the

next section, you'll learn that the character “?” has a specific meaning to the shell. Most
modern shells are smart enough to sidestep the duplication of meaning, but, again, quoting
the filename or using backslashes to denote that the special character is part of the filename is
required:

$ 1ls -1 who\ me\?
-rw-r--r-- 1 taylor staff 0 Dec 4 10:18 who me?

Where this really gets interesting is if you have a backslash or quote as part of the filename,
something that can happen inadvertently, particularly for files created by graphically oriented
programs on a Linux or Mac system. The trick? Use single quotes to escape a filename that
includes a double quote, and vice versa. Like this:

$ 1s -1 "don't quote me" 'She said "yes"'
-rw-r--r-- 1 taylor staff 0 Dec 4 10:18 don't quote me
-rw-r--r-- 1 taylor staff O Dec 4 10:19 She said "yes"

This topic will come up again as we proceed, but now you know how to side-step problems
with directories or files that contain spaces or other non-standard characters.

Standard Input/Output, and 1/0 Redirection
Standard Input and Standard Output

Most Unix system commands take input from your screen and send the resulting output back
to your screen. In Unix nomenclature, the screen is generally called the terminal, a reference
that harkens back to the earliest days of computing. Nowadays it’s more likely to be a terminal
program you're running within a graphical environment, whether it’s a Linux window manager,
a Windows computer, or a Mac system.

A command normally reads its input from standard input, which is your computer keyboard

by default. It’s a fancy way of clarifying that you “type in” your information. Similarly, a
command normally writes its output to standard output, which is also your terminal or terminal
app by default. This concept is depicted in Figure 1.9.

standard input standard output
—————— ez command SaraTo .

Figure 1.9 Typical Unix command

From the Library of shannon powell

Standard Input/Output, and I/0 Redirection 29

As an example, recall that executing the who command results in the display of all users that
are currently logged-in. More formally, the who command writes a list of the logged-in users to

standard output. This is depicted in Figure 1.10.

7
7
7/
7
7/
7/
7
7
7/
7
7
ai tty01
oko tty36
who pat tty21
ruth tty24
steve tty25

Figure 1.10 who command

Sep 12
Sep 12
Sep 12
Sep 12
Sep 12

07:30
13:32
10:10
13:07
13:03

It turns out that just about every single Unix command can take the output of a previous
command or file as its input too, and can even send its output to another command or
program. This concept is hugely important to understanding the power of the command line
and why it’s so helpful to know all of these commands even when a graphical interface might

be also available for your use.

Before we get there, however, consider this: if the sort command is invoked without a filename
argument, the command takes its input from standard input. As with standard output, this is

your terminal (or keyboard) by default.

When input is entered this way, an end-of-file sequence must be specified after the last line is
typed, and, by Unix convention, that's Ctrl+d; that is, the sequence produced by simultane-
ously pressing the Control (or Ctrl, depending on your keyboard) key and the d key.

As an example, let’s use the sort command to sort the following four names: Tony, Barbara,
Harry, Dirk. Instead of first entering the names into a file, we’ll enter them directly from the

terminal:

$ sort
Tony
Barbara
Harry
Dirk
Ctrl+d

From the Library of shannon powell

30

Chapter 1 A Quick Review of the Basics

Barbara
Dirk
Harry
Tony

$

Because no filename was specified to the sort command, the input was taken from standard
input, the terminal. After the fourth name was typed in, the Ctrl and d keys were pressed

to signal the end of the data. At that point, the sort command sorted the four names and
displayed the results on the standard output device, which is also the terminal. This is
depicted in Figure 1.11.

Tony Barbara
Barbara Dick
Harry sort Harry
Dick Tony

Figure 1.11 sort command

The we command is another example of a command that takes its input from standard input
if no filename is specified on the command line. The following shows an example of this
command used to count the number of lines of text entered from the terminal:
S we -1
This is text that
is typed on the
standard input device.
Ctrl+d
3
$

Note that the ctrl+d that is used to terminate the input is not counted as a separate line
by the we command because it’s interpreted by the shell, not handed to the command.
Furthermore, because the -1 flag was specified to the we command, only the count of the
number of lines (3) is presented as the output of the command.

Output Redirection

The output from a command normally intended for standard output can be easily “diverted”
to a file instead. This capability is known as output redirection and is also essential to
understanding the power of Unix.

From the Library of shannon powell

Standard Input/Output, and I/0 Redirection 31

If the notation > file is appended to any command that normally writes its output to standard
output, the output of that command will be written to the file £ile instead:

$ who > users

$

This command causes the who command to be executed and its output to be written into
the file users. Notice that no output appears. This is because the output has been redirected
from the default standard output device (the terminal) into the specified file. We can check
this, of course:

$ cat users

oko tty0l Sep 12 07:30
ai ttyl5 Sep 12 13:32
ruth tty2l Sep 12 10:10
pat tty24 Sep 12 13:07
steve tty25 Sep 12 13:03
$

If a command has its output redirected to a file and the file already contains some data, that
data will be overwritten and lost.

$ echo line 1 > users
S cat users
line 1

$

But now consider this example, remembering that users already contains the output of the
earlier who command:

S echo line 2 >> users
$ cat users

line 1

line 2

$

If you're paying close attention you’ll notice that this echo command uses a different type
of output redirection, indicated by the characters >>. This character pair causes the standard
output from the command to be appended to the contents of the specified file. The previous
contents are not lost; the new output simply gets added to the end.

By using the redirection append characters >>, you can use cat to append the contents of one
file onto the end of another:

$ cat filel

This is in filel.

$ cat file2

This is in file2.

$ cat filel >> file2 Append filel to file2
$ cat file2

This is in file2.

This is in filel.

$

From the Library of shannon powell

32

Chapter 1 A Quick Review of the Basics

Recall that specifying more than one filename to cat results in the display of the first file
followed immediately by the second file, and so on. This means there’s a second way to
accomplish the same result:

$ cat filel

This is in filel.
$ cat file2

This is in file2.
S cat filel file2
This is in filel.
This is in file2.
$ cat filel file2 > file3 Redirect it instead
$ cat file3

This is in filel.
This is in file2.

$

In fact, that’s where the cat command gets its name: When used with more than one file, its
effect is to concatenate the files together.

Input Redirection

Just as the output of a command can be redirected to a file, so can the input of a command be redi-
rected from a file. And as the greater-than character > is used for output redirection, the less-than
character < is used to redirect the input of a command. Of course, only commands that normally
take their input from standard input can have their input redirected from a file in this manner.

To redirect input, type the < character followed by the name of the file that the input is to be
read from. To count the number of lines in the file users, for example, you already know that
you can execute the command we -1 users:

S we -1 users
2 users

$

It turns out that you can also count the number of lines in the file by redirecting standard
input for the we command:

S we -1 < users
2
$

Note that there is a difference in the output produced by the two forms of the we command.
In the first case, the name of the file users is listed with the line count; in the second case, it
is not.

This points out a subtle distinction between the execution of the two commands. In the first
case, we knows that it is reading its input from the file users. In the second case, it only sees
the raw data which is being fed to it via standard input. The shell redirects the input so that it
comes from the file users and not the terminal (more about this in the next chapter). As far as
we is concerned, it doesn’t know whether its input is coming from the terminal or from a file,
so it can't report the filename!

From the Library of shannon powell

Pipes 33

Pipes

As you will recall, the file users that was created previously contains a list of all the users
currently logged in to the system. Because you know that there will be one line in the file for
each user logged in to the system, you can easily determine the number of login sessions by
counting the number of lines in the users file:

$ who > users

S we -1 < users
5

$

This output indicates that currently five users are logged in or that there are five login sessions,
the difference being that users, particularly administrators, often log in more than once. Now
you have a command sequence you can use whenever you want to know how many users are
logged in.

Another approach to determine the number of logged-in users bypasses the intermediate file.
As referenced earlier, Unix lets you “connect” two commands together. This connection is
known as a pipe, and it enables you to take the output from one command and feed it directly
into the input of another. A pipe is denoted by the character |, which is placed between the
two commands. To create a pipe between the who and we -1 commands, you type
who | wc -1:
$ who | we -1

5
$

The pipe that is created between these two commands is depicted in Figure 1.12.

AN i
/ N /7
’ N 7
/ A 7
/ N ’
7 N\ 7
7 N /
7 N 7
Ve N 7
/7 N 7
/ N /
ai tty01 Sep 12 07:30
oko tty36 Sep 12 13:32
who pat tty21 Sep 12 10:10 we -l 5
ruth tty24 Sep 12 13:07
steve tty25 Sep 12 13:03
S 7 \
\ y \
\ Y \
N s N
N 7 N
\\ ,/ \\
N , \
N i \
\\ 7 \\
4.7 4

Figure 1.12 Pipeline process: who | wc -1

From the Library of shannon powell

34

Chapter 1 A Quick Review of the Basics

When a pipe is established between two commands, the standard output from the first command
is connected directly to the standard input of the second command. You know that the who
command writes its list of logged-in users to standard output. Furthermore, you know that if

no filename argument is specified to the we command, it takes its input from standard input.
Therefore, the list of logged-in users that is output from the who command automatically becomes
the input to the we command. Note that you never see the output of the who command at the
terminal because it is piped directly into the we command. This is depicted in Figure 1.13.

who wc -l 5

Figure 1.13 Pipeline process

A pipe can be made between any two programs, provided that the first program writes its
output to standard output, and the second program reads its input from standard input.

As another example, suppose you wanted to count the number of files contained in your
directory. Knowledge of the fact that the 1s command displays one line of output per
file enables you to use the same type of approach as before:
$1ls | we -1

10
$

The output indicates that the current directory contains 10 files.

It is also possible to create a more complicated pipeline that consists of more than two
programs, with the output of one program feeding into the input of the next. As you become
a more sophisticated command line user, you'll find many situations where pipelines can be
tremendously powerful.

From the Library of shannon powell

Standard Error 35

Filters

The term filter is often used in Unix terminology to refer to any program that can take input
from standard input, perform some operation on that input, and write the results to standard
output. More succinctly, a filter is any program that can be used to modity the output of other
programs in a pipeline. So in the pipeline in the previous example, wc is considered a filter. 1s
is not because it does not read its input from standard input. As other examples, cat and sort
are filters, whereas who, date, cd, pwd, echo, rm, mv, and cp are not.

Standard Error

In addition to standard input and standard output, there is a third virtual device known as
standard error. This is where most Unix commands write their error messages. And as with the
other two “standard” places, standard error is associated with your terminal or terminal app by
default. In most cases, you never know the difference between standard output and standard
error:

$ 1ls n* List all files beginning with n
n* not found
$

Here the “not found” message is actually being written to standard error by the 1s command.
You can verify that this message is not being written to standard output by redirecting the 1s
command’s output:

$ 1s n* > foo
n* not found

$

As you can see, the message is still printed out at the terminal and was not added to the file
foo, even though you redirected standard output.

The preceding example shows the raison d’étre for standard error: so that error messages will
still get displayed at the terminal even if standard output is redirected to a file or piped to
another command.

You can also redirect standard error to a file (for instance, if you're logging a program'’s
potential errors during long-term operation) by using the slightly more complex notation

command 2> file

Note that no space is permitted between the 2 and the >. Any error messages normally intended
for standard error will be diverted into the specified £ile, similar to the way standard output
gets redirected.

$ ls n* 2> errors
$ cat errors
n* not found

$

From the Library of shannon powell

36

Chapter 1 A Quick Review of the Basics

More on Commands

Typing More Than One Command on a Line

You can type more than one command on a line provided that you separate them with a
semicolon. For example, you can find out the current time and your current working directory
by typing in the date and pwd commands on the same line:

$ date; pwd

Sat Jul 20 14:43:25 EDT 2002
/users/pat/bin

$

You can string out as many commands as you want on the line, as long as each command is
delimited by a semicolon.

Sending a Command to the Background

Normally, you type in a command and then wait for the results of the command to be
displayed at the terminal. For all the examples you have seen thus far, this waiting time is
typically short—a fraction of a second.

Sometimes, however, you may have to run commands that require a few minutes or longer to
complete. In those cases, you'll have to wait for the command to finish executing before you
can proceed further, unless you execute the command in the background.

It turns out that while your Unix or Linux system seems like it’s focused completely on what
you're doing, all systems are actually multitasking, running multiple commands simultane-
ously at any given time. If you're on an Ubuntu system, for example, it might have the window
manager, a clock, a status monitor and your terminal window all running simultaneously. You
too can run multiple commands simultaneously from the command line. That’s the idea of
putting a command “into background,” letting you work on other tasks while it completes.

The notational convention for pushing a command or command sequence into background
is to append the ampersand character &. This means that the command will no longer tie

up your terminal, and you can then proceed with other work. The standard output from the
command will still be directed to your terminal, though in most cases the standard input will
be dissociated from your terminal. If the command does try to read from standard input, it
will stop and wait for you to bring it to the foreground (we’ll discuss this in more detail in
Chapter 14, “Interactive and Nonstandard Shell Features”).

Here’s an example:

$ sort bigdata > out & Send the sort to the background

[1] 1258 Process id

$ date Your terminal is immediately available to do other work
Sat Jul 20 14:45:09 EDT 2002

$

From the Library of shannon powell

Command Summary 37

When a command is sent to the background, the Unix system automatically displays two
numbers. The first is called the command’s job number and the second the process ID, or PID. In
the preceding example, 1 is the job number and 1258 the process ID. The job number is used
as a shortcut for referring to a specific background job by some shell commands. (You'll learn
more about this in Chapter 14.) The process ID uniquely identifies the command that you sent
to the background and can be used to obtain status information about the command. This is
done with the processor status—ps—command.

The ps Command

The ps command gives you information about the processes running on the system. Without
any options, it prints the status of just your processes. If you type in ps at your terminal, you'll
get a few lines back describing the processes you have running:

$ ps
PID TTY TIME CMD
13463 pts/16 00:00:09 bash
19880 pts/16 00:00:00 ps
$

The ps command (typically; your system might vary) prints out four columns of information:
PID, the process ID; TTY, the terminal number that the process was run from; TIME, the
amount of computer time in minutes and seconds that process has used; and cMD, the name of
the process. (The bash process in the preceding example is the shell that was started when we
logged in, and it’s used 9 seconds of computer time.) Until the command is finished, it shows
up in the output of the ps command as a running process, so process 19880 in the preceding
example is the ps command itself.

When used with the -£ option, ps prints out more information about your processes,
including the parent process ID (PPID), the time the process started (STIME), and the command
arguments:

S ps -f

UID PID PPID C STIME TTY TIME CMD

steve 13463 13355 0 12:12 pts/16 00:00:09 bash

steve 19884 13463 0 13:39 pts/16 00:00:00 ps -f

$

Command Summary

Table 1.2 summarizes the commands reviewed in this chapter. In this table, £ile refers to a file,
file(s) to one or more files, dir to a directory, and dir (s) to one or more directories.

From the Library of shannon powell

38

Chapter 1 A Quick Review of the Basics

Table 1.2 Command Summary

Command

Description

cat file(s)

cd dir

cp file, file,
cp file(s) dir
date

echo args

In file, file,
In file(s) dir
ls file(s)

ls dir(s)
mkdir dir(s)

mv file, file,

mv file(s) dir
ps

pwd

rm file(s)
rmdir dir(s)
sort file(s)

wc file(s)

who

Display contents of file(s) or standard input if not supplied
Change working directory to dir

Copy file, to file,

Copy file(s) into dir

Display the date and time

Display args

Link file, to file,

Link file(s) into dir

List file(s)

List files in dir(s) or in current directory if dir (s) is not specified
Create directory dir (s)

Move file, to file, (simply rename it if both reference the
same directory)

Move file (s) into directory dir

List information about active processes

Display current working directory path

Remove files (s)

Remove empty directory dir(s)

Sort lines of file (s) or standard input if file (s) not supplied

Count the number of lines, words, and characters in file (s) or standard
input if file(s) not supplied

Display who's logged in

From the Library of shannon powell

2
What Is the Shell?

In this chapter you’ll learn what the Unix command shell is, what it does and why it’s a vital
part of every power user’s toolbox.

The Kernel and the Utilities

The Unix system is logically divided into two different areas: the kernel and the utilities
(see Figure 2.1). Or, if you prefer, the kernel and everything else, generally all accessed through
the shell.

|
|
|
|
: Unix
i system
[kernel |
|
|
| i disks
| ____)
Memory

Figure 2.1 The Unix system

The kernel is the heart of the Unix system and resides in the computer’s memory from the time
the computer is turned on and booted until the time it is shut down.

The various tools and utilities that make up the full Unix system experience reside on the
computer’s disk and are only brought into memory and executed as requested. Virtually every
Unix command you know is a utility; therefore, the program resides on the disk and is only
brought into memory at your request. So, for example, when you execute the date command,
the Unix system loads the program called date from the computer’s disk into memory and
begins reading its code to take the specified action or actions.

The shell is also a utility program and is loaded into memory for execution as part of your
login sequence. In fact, it's worth learning the precise sequence of events that occurs when the
first shell on a terminal or window starts up.

From the Library of shannon powell

40

Chapter 2 What Is the Shell?

The Login Shell

In the old days, terminals were physical devices that were connected to the Unix hardware
through a direct wire. Nowadays, however, terminal programs let you stay within your Linux,
Mac or Windows environment and interact with the system over the network in a managed
window. Generally you launch a program such as Terminal or xterm, then connect to remote
systems as needed using programs such as ssh, telnet, or rlogin.

For each physical terminal on a system, a program called getty will be active. This is depicted
in Figure 2.2.

— getty

Unix
system [— getty
kernel

—| getty

Figure 2.2 The getty process

The Unix system—more precisely a program called init—automatically starts up a getty
program on each terminal port whenever the system is allowing users to log in. getty is
essentially a device driver, letting the login program display the message login: at its
assigned terminal and wait for someone to type in something.

If you connect via a program like ssh, you'll be assigned a pseudo-terminal or pseudo-tty, in
Unix parlance. That’s why when you typed in who you saw entries like ptty3 or ptyl.

In both instances, there is the program that reads your account and password information,
and the program that validates it and invokes whatever login programs are needed for you to
“log in” if everything checks out and is correct.

As soon as someone types in some characters followed by the Enter key, the login program
finishes the process of logging in (see Figure 2.3).

From the Library of shannon powell

The Login Shell 41

—| login

Unix
system — getty
kernel

— getty

Figure 2.3 1login started on sue’s terminal

When login begins execution, it displays the string Password: at the terminal and then waits
for you to type your password. After you have typed it and pressed Enter (you won't see any
output as you type, for security reasons), login then proceeds to verify your login name and
password against the corresponding entry in the file /etc/passwd. This file contains an entry
for each user account that specifies, among other things, the login name, home directory, and
program to start up when that user logs in. The last bit of information (the login shell) is stored
after the last colon of each line. If nothing follows the last colon, the standard shell /bin/sh is
assumed by default.

If you log in through a terminal program, the data handshake might involve a program like ssh on
your system and sshd on the server, and if you're opening up a window on your Unix computer, it
will likely just instantly log you in without you having to again type in your password. Handy!

But back to the password file. The following three lines show typical lines from /etc/passwd
for three users of the system: sue, pat, and bob:

sue:*:15:47::/users/sue:
pat:*:99:7::/users/pat:/bin/ksh
bob:*:13:100::/users/data:/users/data/bin/data_entry

After login validates an encrypted version of the password you typed in against the encrypted
password for the specified account as stored in /etc/shadow, it then checks for the name of
the login program to execute. In most cases, this will be /bin/sh, /bin/ksh, or /bin/bash.

In other cases, it may be a special custom-designed program or /bin/nologin for accounts that
don’t include interactive access (common for file ownership management). The idea underlying
them all is that you can set up a login account to automatically run any program whatsoever
whenever someone logs in to the system. The shell is the program most often selected because
of its general utility, but it’s not the only game in town.

From the Library of shannon powell

42

Chapter 2 What Is the Shell?

Back to Sue. Once she’s validated, 1ogin essentially kills itself, handing off control of Sue’s
terminal connection to the standard shell and then vanishing from memory (see Figure 2.4).

Unix
system
kernel

/usr/bin/sh

getty

getty

—_— e e e e e e — g

login: sue

Figure 2.4 login executes /usr/bin/sh

Password:
Welcome.

According to the other entries from /etc/passwd shown previously, pat gets the program ksh
stored in /bin (this is the Korn shell), and bob gets the specialized program data_entry

(see Figure 2.5).

/data_entry

—_——— e e e e e e e

I

|

|

|

: —| /usr/bin/sh
I

|

|

|

: Unix

| system [—| /usr/bin/ksh
: kernel

|

|

|

: || /usr/data/bin
|

|

|

|

login: sue

login: pat

login: bob

data:

Figure 2.5 Three users logged in

Password:

Password:

Password:

From the Library of shannon powell

Typing Commands to the Shell 43

As mentioned earlier, the init program runs programs similar to getty for networked
connections. For example, sshd, telnetd, and rlogind answer connection requests via ssh,
telnet, and rlogin, respectively. Instead of being tied directly to a specific, physical terminal
or modem line, these programs connect users’ shells to pseudo-ttys. You can see this whether
you're logged in to your system over a network, on an X Windows screen, or through a
networked terminal connection program with the who command:

$ who
phw pts/0 Jul 20 17:37 Logged in with rlogin
$

Typing Commands to the Shell

When the shell starts up, it displays a command prompt—typically a dollar sign s—at your
terminal and then waits for you to type in a command (Figure 2.6, Steps 1 and 2). Each time
you type in a command and press the Enter key (Step 3), the shell analyzes what you typed
and proceeds to carry out your request (Step 4).

If you ask the shell to invoke a particular program, it searches the disk, stepping through all the
directories you've specified in your PATH until it finds the named program. When the program
is found, the shell creates a clone of itself (known as a subshell) and asks the kernel to replace the
subshell with the specified program; then the login shell “goes to sleep” until the program has
finished (Step 5). The kernel copies the specified program into memory and begins its execution.
This copied program is called a process; in this way, the distinction is made between a program
that is kept in a file on the disk and a process that is in memory and being executed, line by line.

If the program writes output to standard output, that output will appear at your terminal unless
redirected or piped into another command. Similarly, if the program reads input from standard
input, it will wait for you to type in that input unless redirected from a file or piped from
another command (Step 6).

When the command finishes execution, it vanishes and control once again returns to the login
shell, which prompts for your next command (Steps 7 and 8).

shell |-

Figure 2.6 Command cycle

From the Library of shannon powell

44

Chapter 2 What Is the Shell?

Note that this cycle continues as long as you're logged in. When you log off the system,
execution of the shell then terminates and the system starts up a new getty (or rlogind, and
so on) and waits for someone else to log in. This cycle is illustrated in Figure 2.7.

Figure 2.7 Login cycle

It’s important to recognize that the shell is just a program. It has no special privileges on the
system, meaning that anyone with sufficient expertise and enthusiasm can create their own
shell. That’s why so many different variations or “flavors” of the shell exist today, including the
older Bourne shell, developed by Stephen Bourne; the Korn shell, developed by David Korn;
the “Bourne again shell,” mainly used on Linux systems; and the C shell, developed by Bill Joy.
They were all designed to serve specific purposes and have their own unique capabilities and
personalities.

The Shell’s Responsibilities

Now you know that the shell analyzes (to use proper computer parlance, it parses) each line
you type in and initiates execution of the selected program. It’s during the parsing phase that
filename expansion special characters like * are expanded, as discussed in the previous chapter.

The shell also has other responsibilities, as outlined in Figure 2.8.

From the Library of shannon powell

The Shell’'s Responsibilities 45

program
execution

interpreted
programming
language

variable and
filename
substitution

environment
control

/0
redirection

pipeline
hookup

Figure 2.8 The shell’s responsibilities

Program Execution

The shell is responsible for the execution of all programs that you request from your terminal.

Each time you type in a line to the shell, the shell analyzes the line and then determines what
to do. As far as the shell is concerned, each line follows the same basic format:

program-name arguments

The line that is typed to the shell is known more formally as the command line. The shell
scans this command line and determines the name of the program to be executed and what
arguments to pass to the program.

The shell uses special characters to determine where the program name starts and ends,
and where each argument starts and ends. These characters are collectively called whitespace
characters, and are the space character, the horizontal tab character, and the end-of-line
character, known more formally as the newline character. Multiple occurrences of whitespace
characters are ignored by the shell. When you type the command

mv tmp/mazewars games

From the Library of shannon powell

46

Chapter 2 What Is the Shell?

the shell scans the command line and takes everything from the start of the line to the first
whitespace character as the name of the program to execute: mv. Subsequent whitespace

(the extra spaces) are ignored and the set of characters up to the next whitespace character

is the first argument to mv: tmp/mazewars. The characters up to the next whitespace charac-
ter—in this case, the newline character—is the second argument to mv: games. After parsing the
command line, the shell then proceeds to execute the mv command, giving it the two specified
arguments tmp/mazewars and games (see Figure 2.9).

my arguments tmp/mazewars
€---——-—-——-—-——-—

Figure 2.9 Execution of mv with two arguments

As mentioned, multiple occurrences of whitespace characters are ignored by the shell. This
means that when the shell processes this command line:

echo when do we eat?

it passes four arguments to the echo program: when, do, we, and eat? (see Figure 2.10).

when

arguments do

echo I
< we

eat?

Figure 2.10 Execution of echo with four arguments

Because echo takes its arguments and simply displays them at the terminal, adding an individ-
ual space between each argument, the output from the following becomes a lot more legible:

$ echo when do we eat?
when do we eat?

$

It turns out the echo command never sees those blank spaces; they have been “gobbled up” by
the shell. When we discuss quotes in Chapter 5, you’ll see how you can include blank spaces in
arguments to programs, but usually having extras vanish is exactly the behavior you want.

We mentioned earlier that the shell searches the disk until it finds the program you want to
execute and then asks the Unix kernel to initiate its execution. This is true most of the time.
However, there are some commands that are actually built into the shell itself. These built-in
commands include cd, pwd, and echo. Before the shell searches the disk for a command, it first
determines whether it’s a built-in command, and if so executes the command directly.

From the Library of shannon powell

The Shell’'s Responsibilities 47

But there’s a bit more the shell does before individual programs are invoked, so let’s talk about
those for just a moment too.

Variable and Filename Substitution

Like a more formal programming language, the shell lets you assign values to variables.
Whenever you specify one of these variables on the command line preceded by a dollar sign,
the shell substitutes the value assigned to the variable. This topic is covered in much more
detail in Chapter 4.

The shell also performs filename substitution on the command line. In fact, the shell scans the
command line looking for filename substitution characters *, ?, or [...] before determining
the name of the program to execute and its arguments.

Suppose that your current directory contains these files:
S ls

mrs.todd

progl

shortcut

sweeney

$

Now let’s use filename substitution (*) for the echo command:

$ echo * List all files
mrs.todd progl shortcut sweeney

$

How many arguments were passed to the echo program, one or four? Because the shell
performs the filename substitution, the answer is four. When the shell analyzes the line

echo *

it recognizes the special character * and substitutes the names of all files in the current
directory (it even alphabetizes them for you):

echo mrs.todd progl shortcut sweeney

Then the shell determines what arguments to pass to the actual command. So echo never sees

the asterisk and as far as it’s concerned, four arguments were typed on the command line
(see Figure 2.11).

mrs.todd
echo arguments prog1
. shortcut
sweeney

Figure 2.11 Execution of echo

From the Library of shannon powell

48

Chapter 2 What Is the Shell?

I/0 Redirection

It is also the shell’s responsibility to take care of input and output redirection. It scans each
entered command line for occurrences of the special redirection characters <, >, or >> (in case
you're curious, there is a << redirection sequence, as you'll learn in Chapter 12).

When you type the command

echo Remember to record The Walking Dead > reminder

the shell recognizes the special output redirection character > and takes the next word on the
command line as the name of the file to which the output should be redirected. In this case,
the file is called reminder. If reminder already exists and you have write access, the previous
contents are overwritten. If you don’t have write access to the file or its directory, the shell will
produce an error message.

Before the shell starts execution of the desired program, it redirects the standard output of the
program to the indicated file. In almost every case, the program never knows that its output is
being redirected. It just goes on its merry way writing to standard output (which is normally
your terminal, you'll recall), unaware that the shell has redirected that information to a file.

Let’s take another look at two nearly identical commands:

S we -1 users
5 users

$ we -1 < users
5

$

In the first case, the shell parses the command line and determines that the name of the
program to execute is we and passes it two arguments: -1 and users (see Figure 2.12).

arguments -l

wcC €--———-——— == -
users

Figure 2.12 Execution of wc -1 users

When wc begins execution, it sees that it was passed the two arguments. The first, -1, tells it to
count the number of lines. The second argument specifies the name of the file whose lines are
to be counted. So wc opens the file users, counts its lines, and then prints the resultant count
along with the filename.

Operation of we in the second case is slightly different. The shell spots the input redirection
character < when it scans the command line. The word that follows on the command line
is therefore interpreted as the name of the file from which input is to be redirected. Having
“gobbled up” the < users from the command line, the shell then starts execution of the wc
program, redirecting its standard input from the file users and passing it only the single
argument -1 (see Figure 2.13).

From the Library of shannon powell

The Shell’'s Responsibilities 49

Figure 2.13 Execution of wc -1 < users

When wc begins execution this time, it sees that it was passed the single argument -1. Because
no filename was specified, we decides that the number of lines coming in from standard input
should be counted instead. So we -1 counts the number of lines, unaware that it’s actually
counting the number of lines in the file users. The final tally is displayed as usual, but without
the name of a file because wc wasn’t given one.

The difference in execution of the two commands is important for you to understand. If you're
still unclear on this point, review the preceding section one more time before proceeding.

Hooking up a Pipeline

Just as the shell scans the command line looking for redirection characters, it also looks for
the pipe character |. For each match, it connects the standard output from the preceding
command to the standard input of the subsequent one, then initiates execution of both
programs.

So when you type
who | we -1

the shell finds the pipe symbol separating the commands who and wc. It connects the standard
output of the former command to the standard input of the latter, then initiates execution

of both. When the who command executes, it produces a list of who's logged in and writes

the results to standard output, unaware that this is not going to the terminal but to another
command instead.

When the we command executes, it recognizes that no filename was specified and counts the
lines on standard input, unaware that standard input is not coming from the terminal but from
the output of the who command.

As we proceed, you'll see that not only can you have two-command pipelines; you can string
together three, four, five, or more commands in really complicated pipelines too. It’s a bit tricky
to figure out, but that’s really where some of the greatest power of the Unix system hides.

Environment Control

The shell provides certain commands that let you customize your environment. Your
environment includes your home directory, the characters that the shell displays to prompt you
to type in a command, and a list of the directories to be searched whenever you request that a
program be executed. You'll learn more about this in Chapter 10.

From the Library of shannon powell

50

Chapter 2 What Is the Shell?

Interpreted Programming Language

The shell has its own built-in programming language. This language is inferpreted, meaning

that the shell analyzes each statement as encountered, then executes any valid commands
found. This differs from programming languages like C++ and Swift, in which the programming
statements are typically compiled into a machine-executable form before they are executed.

Programs developed in interpreted programming languages are typically easier to debug and
modify than compiled ones. However, they can take longer to execute than their compiled
equivalents.

The shell programming language provides features you’d find in most other programming
languages. It has looping constructs, decision-making statements, variables, and functions,
and is procedure-oriented. Modern shells based on the IEEE POSIX standard have many other
features including arrays, data typing, and built-in arithmetic operations.

From the Library of shannon powell

3
Tools of the Trade

This chapter provides detailed descriptions of some commonly used shell programming tools.
Covered are cut, paste, sed, tr, grep, uniqg, and sort. The more proficient you become
at using these tools, the easier it will be to write efficient shell scripts.

Regular Expressions

Before getting into the tools, you need to learn about regular expressions. Regular expressions are
used by many different Unix commands, including ed, sed, awk, grep, and, to a more limited
extent, the vi editor. They provide a convenient and consistent way of specifying patterns to

be matched.

Where this gets confusing is that the shell recognizes a limited form of regular expressions with
filename substitution. Recall that the asterisk (*) specifies zero or more characters to match, the
question mark (?) specifies any single character, and the construct [...] specifies any character
enclosed between the brackets. But that’s not the same thing as the more formal regular expres-
sions we'll explore. For example, the shell sees ? as a match for any single character, while a
regular expression—commonly abbreviated regex—uses a period (.) for the same purpose.

True regular expressions are far more sophisticated than those recognized by the shell and there
are entire books written about how to assemble really complex regex statements. Don’t worry,
though, you won’t need to become an expert to find great value in regular expressions!

Throughout this section, we assume familiarity with a line-based editor such as ex or ed.
See Appendix B for more information on these editors if you're not familiar with them, or
check the appropriate man page.

Matching Any Character: The Period (.)

A period in a regular expression matches any single character, no matter what it is. So the
regular expression

r.

matches an r followed by any single character.

From the Library of shannon powell

52

Chapter 3 Tools of the Trade

The regular expression

X
matches an x that is surrounded by any two characters, not necessarily the same.

We can demonstrate a lot of regular expressions by using the simple ed editor, an old-school
line-oriented editor that has been around as long as Linux have been around.

For example, the ed command
/e

searches forward in the file you are editing for the first line that contains any three characters
surrounded by blanks. But before we demonstrate that, notice in the very beginning of this
example that ed shows the number of characters in the file (248) and that commands like print
(p) can be prefixed with a range specifier, with the most basic being 1, $, which is the first
through last line of the file:

$ ed intro

248

1,$p Print all the lines
The Unix operating system was pioneered by Ken
Thompson and Dennis Ritchie at Bell Laboratories
in the late 1960s. One of the primary goals in
the design of the Unix system was to create an
environment that promoted efficient program
development.

That’s our working file. Now let’s try some regular expressions:

/ e/ Look for three chars surrounded by blanks
The Unix operating system was pioneered by Ken

/ Repeat last search

Thompson and Dennis Ritchie at Bell Laboratories

1,$s/p.o/XXX/g Change all p.os to XXX

1,$p Let’s see what happened

The Unix operating system was XXXneered by Ken
ThomXXXn and Dennis Ritchie at Bell Laboratories
in the late 1960s. One of the primary goals in
the design of the Unix system was to create an
environment that XXXmoted efficient XXXgram
development.

In the first search, ed started searching from the beginning of the file and found that the
sequence “was” in the first line matched the indicated pattern and printed it.

Repeating the search (the ed command /) resulted in the display of the second line of the file
because “and” matched the pattern. The substitute command s that followed specified that all
occurrences of the character p, followed by any single character, followed by the character o
were to be replaced by the characters xxx. The prefix 1, $ indicates that it should be applied
to all lines in the file, and the substitution is specified with the structure s/old/new/g, where s

From the Library of shannon powell

Regular Expressions 53

indicates it’s a substitution, the slashes delimit the old and new values, and g indicates it should
be applied as many times as needed for each line, not just once per line.

Matching the Beginning of the Line: The Caret (*)

When the caret character * is used as the first character in a regular expression, it matches the
beginning of the line. So the regular expression

“George

matches the characters George only if they occur at the beginning of the line. This is actually
known as “left-rooting” in the regex world, for obvious reasons.

Let’s have a look:

$ ed intro

248

/the/

>>in the late 1960s. One of the primary goals in
>>the design of the Unix system was to create an

/"the/ Find the line that starts with the

the design of the Unix system was to create an

1,8s/"/>>/ Insert >> at the beginning of each line
1,$p

>>The Unix operating system was pioneered by Ken
>>Thompson and Dennis Ritchie at Bell Laboratories
>>in the late 1960s. One of the primary goals in
>>the design of the Unix system was to create an
>>environment that promoted efficient program
>>development.

The preceding example also shows how the regular expression * can be used to match the
beginning of the line. Here it is used to insert the characters >> at the start of each line.
A command like

1,$s/"/ /

is also commonly used to insert spaces at the start of each line (in this case four spaces would
be inserted).

Matching the End of the Line: The Dollar Sign $

Just as the * is used to match the beginning of the line, so the dollar sign $ is used to match
the end of the line. So the regular expression

contents$

matches the characters contents only if they are the last characters on the line. What do you
think would be matched by the regular expression

-$

From the Library of shannon powell

54

Chapter 3 Tools of the Trade

Would this match a period character that ends a line? No. Recall that the period matches any
character, so this would match any single character at the end of the line (including a period).

So how do you match a period? In general, if you want to match any of the characters that
have a special meaning in regular expressions, precede the character by a backslash (\) to
override its special meaning. For example, the regular expression

\.$

matches any line that ends in a period, and the regular expression
A\

matches any line that starts with a period.

Want to specify a backslash as an actual character? Use two backslashes in a row: \\.

$ ed intro

248

/\.8/ Search for a line that ends with a period
development.

1,8s/%/>>/ Add >> to the end of each line

1,%p

The Unix operating system was pioneered by Kens>>
Thompson and Dennis Ritchie at Bell Laboratoriesss
in the late 1960s. One of the primary goals in>>
the design of the Unix system was to create an>>
environment that promoted efficient programs>>
development.>>

1,8s/..%// Delete the last two characters from each line
1,%p

The Unix operating system was pioneered by Ken
Thompson and Dennis Ritchie at Bell Laboratories
in the late 1960s. One of the primary goals in
the design of the Unix system was to create an
environment that promoted efficient program
development.

A common use of * and s is the regular expression

°$

which matches any line that contains no characters at all. Note that this regular expression is
different from

~ %

which matches any line that consists of a single space character.

From the Library of shannon powell

Regular Expressions 55

Matching a Character Set: The [...] Construct

Suppose that you are editing a file and want to search for the first occurrence of the characters
the. In ed, this is easy: You simply type the command

/the/
This causes ed to search forward in its buffer until it finds a line containing the indicated
sequence. The first line that matches will be displayed by ed:

$ ed intro

248

/the/ Find line containing the
in the late 1960s. One of the primary goals in

Notice that the first line of the file also contains the word the, except it begins with a capital
T. A regular expression that searches for either the or The can be built using a character set:
the characters [and] can be used to specify that one of the enclosed character set is to be
matched. The regular expression

[tT]he
would match a lower- or uppercase t followed immediately by the characters he:

$ ed intro

248

/[tTlhe/ Look for the or The
The Unix operating system was pioneered by Ken

/ Continue the search
in the late 1960s. One of the primary goals in

/ Once again

the design of the Unix system was to create an
1,$s/[aeiouAEIOU] //g Delete all vowels
1,%p

Th nx prtng systm ws pnrd by Kn
Thmpsn nd Dnns Rtch t Bll Lbrtrs
n th 1t 1960s. n £ th prmry gls n
th dsgn £ th nx systm ws t crt n
nvrnmnt tht prmtd ffcnt prgrm
dvlpmnt.

Notice the example in the above of [aeiouAEIOU] which will match a single vowel, either
uppercase or lowercase. That notation can get rather clunky, however, so a range of characters
can be specified inside the brackets instead. This can be done by separating the starting and
ending characters of the range by a dash (-). So, to match any digit character o through 9, you
could use the regular expression

[0123456789]

or, more succinctly, you could write

[0-9]

From the Library of shannon powell

56

Chapter 3 Tools of the Trade

To match an uppercase letter, use

[a-z]

To match an upper- or lowercase letter, you write
[A-Za-z]

Here are some examples with ed:

$ ed intro

248

/10-91/ Find a line containing a digit

in the late 1960s. One of the primary goals in

/" [a-21/ Find a line that starts with an uppercase letter
The Unix operating system was pioneered by Ken

/ Again

Thompson and Dennis Ritchie at Bell Laboratories

1,$s/[A-21/*/g Change all uppercase letters to *s

1,$p

*he *nix operating system was pioneered by *en
*hompson and *ennis *itchie at *ell *aboratories
in the late 1960s. *ne of the primary goals in
the design of the *nix system was to create an
environment that promoted efficient program
development.

As you'll learn below, the asterisk is a special character in regular expressions. However, you
don’t need to put a backslash before it in the replacement string of the substitute command
because the substitution’s replacement string has a different expression language (we did
mention that this can be a bit tricky at times, right?).

In the ed editor, regular expression sequences such as *, ., [...], $, and * are only meaningful
in the search string and have no special meaning when they appear in the replacement string.

If a caret (*) appears as the first character after the left bracket, the sense of the match is
inverted. (By comparison, the shell uses the ! for this purpose with character sets.) For example,
the regular expression

["A-2]

matches any character except an uppercase letter. Similarly,
["A-Za-z]

matches any non-alphabetic character. To demonstrate, let’s remove all non-alphabetic charac-
ters from the lines in our test file:

$ ed intro

248

1,$s/["a-zA-21//g Delete all non-alphabetic characters
1,%p

TheUnixoperatingsystemwaspioneeredbyKen
ThompsonandDennisRitchieatBellLaboratories

From the Library of shannon powell

Regular Expressions 57

InthelatesOneoftheprimarygoalsin
ThedesignoftheUnixsystemwastocreatean
Environmentthatpromotedefficientprogram
development

Matching Zero or More Characters: The Asterisk (*)

The asterisk is used by the shell in filename substitution to match zero or more characters.
In forming regular expressions, the asterisk is used to match zero or more occurrences of the
preceding element of the regular expression (which may itself be another regular expression).

So, for example, the regular expression

X*

matches zero, one, two, three, ... capital x’s while the expression

XX*

matches one or more capital X’s, because the expression specifies a single x followed by zero
or more X’s. You can accomplish the same effect with a + instead: it matches one or more of the
preceding expression, so xx* and X+ are identical in function.

A similar type of pattern is frequently used to match one or more blank spaces in a line:

$ ed lotsaspaces

85

1,%p

This is an example of a
file that contains a lot
of blank spaces Change multiple blanks to single blanks
1,88/ */ /g

1,%p

This is an example of a

file that contains a lot

of blank spaces

The ed command
1,8s/ */ /g

told the program to substitute all occurrences of a space followed by zero or more spaces with a
single space—in other words, to collapse all whitespace into single spaces. If it matches a single
space, there’s no change. But if it matches three spaces, say, they'll all be replaced by a single
space.

The regular expression

o *

is often used to specify zero or more occurrences of any characters. Bear in mind that a regular
expression matches the longest string of characters that match the pattern. Therefore, used by
itself, this regular expression always matches the entire line of text.

From the Library of shannon powell

58

Chapter 3 Tools of the Trade

As another example of the combination of . and =, the regular expression
e.*e
matches all the characters from the first e on a line to the last one.

Note that it doesn’t necessarily match only lines that start and end with an e, however, because it’s not
left- or right-rooted (that is, it doesn’t use * or $ in the pattern).

$ ed intro

248

1,8s/e.*e/+++/

1,%p

Th+++n

Thompson and D+++S

in th+++ primary goals in
th+++ an

+++nt program

d+++nt.

Here’s an interesting regular expression. What do you think it matches?

[A-Za-2z] [A-Za-z] *

This matches any alphabetic character followed by zero or more alphabetic characters. This
is pretty close to a regular expression that matches words and can be used as shown below to
replace all words with the letter X while retaining all spaces and punctuation.

$ ed intro

248

1,$s/[A-Za-z] [A-Za-z]*/X/g
1,%p
XX XXXXX

XX XXX

X 1960X. X X X XXX
XXXXXXXX

X XX

LT T
L

The only thing it didn’t match in this example was the numeric sequence 1960. You can
change the regular expression to also consider a sequence of digits as a word too, of course:

$ ed intro

248

1,$s/[A-Za-20-9] [A-Za-20-9] */X/g
1,%p

XXXXXXXX

XXX XXXX

XXXX XXXXXX
XXXXXXXXXX

XX XXX

X.

From the Library of shannon powell

Regular Expressions 59

We could expand on this to consider hyphenated and contracted words (for example, don’t),
but we'll leave that as an exercise for you. As a point to note, if you want to match a dash
character inside a bracketed choice of characters, you must put the dash immediately after
the left bracket (but after the inversion character * if present) or immediately before the right
bracket for it to be properly understood. That is, either of these expressions

[-0-9]
[0-9-]

matches a single dash or digit character.

In a similar fashion, if you want to match a right bracket character, it must appear after the
opening left bracket (and after the * if present). So

[la-z]

matches a right bracket or a lowercase letter.

Matching a Precise Number of Subpatterns: \ { ...\ }

In the preceding examples, you saw how to use the asterisk to specity that one or more
occurrences of the preceding regular expression are to be matched. For instance, the regular
expression

XX*
means match an x followed by zero or more subsequent occurrences of the letter x. Similarly,
XXX*

means match at least two consecutive Xx’s.

Once you get to this point, however, it ends up rather clunky, so there is a more general way to
specify a precise number of characters to be matched: by using the construct

\{min, max\}

where min specifies the minimum number of occurrences of the preceding regular expression to
be matched, and max specifies the maximum. Notice that you need to escape the curly brackets
by preceding each with a backslash.

The regular expression
x\{1,10\}

matches from one to 10 consecutive X’s. Whenever there’s a choice, the largest pattern is
matched, so if the input text contains eight consecutive x’s, that is how many will be matched
by the preceding regular expression.

As another example, the regular expression
[A-Za-z]1\{4,7\}

matches a sequence of alphabetic letters from four to seven characters long.

From the Library of shannon powell

60

Chapter 3 Tools of the Trade

Let’s try a substitution using this notation:

$ ed intro

248

1,$s/[A-za-z]1\{4,7\}/X/g

1,$p

The X Xng X was Xed by Ken

Xn and X X at X XX

in the X 1960s. One of the X X in
the X of the X X was to X an

XX X Xd Xnt X

XX.

This invocation is a specific instance of a global search and replace in ed (and, therefore, also in
vi): s/old/new/. In this case, we add a range of 1, $ beforehand and the g flag is appended to
ensure that multiple substitutions will occur on each line, as appropriate.

A few special cases of this special construct are worth noting. If only one number is enclosed by
braces, as in

\{10\}

that number specifies that the preceding regular expression must be matched exactly that many
times. So

[a-zA-2]1\{7\}

matches exactly seven alphabetic characters; and
-\{10\}

matches exactly 10 characters no matter what they are:

$ ed intro
248
1,$s/".\{10\}// Delete the first 10 chars from each line
1,%p
perating system was pioneered by Ken
nd Dennis Ritchie at Bell Laboratories
e 1960s. One of the primary goals in
of the Unix system was to create an
t that promoted efficient program
t.
1,$s/.\{5\}s// Delete the last 5 chars from each line
1,%p
perating system was pioneered b
nd Dennis Ritchie at Bell Laborat
e 1960s. One of the primary goa
of the Unix system was to crea
t that promoted efficient pr
t.

From the Library of shannon powell

Regular Expressions 61

Note that the last line of the file didn’t have five characters when the last substitute command
was executed; therefore, the match failed on that line and thus was left alone because we
specified that exactly five characters were to be deleted.

If a single number is enclosed in the braces, followed immediately by a comma, then at least
that many occurrences of the previous regular expression must be matched, but no upper limit
is set. So

+\{5,\}
matches at least five consecutive plus signs. If more than five occur sequentially in the input
data, the largest number is matched.

$ ed intro

248

1,$s/[a-zA-2]1\{6,\}/X/g Change words at least 6 letters long to X
1,$p

The Unix X X was X by Ken

X and X X at Bell X

in the late 1960s. One of the X goals in

the X of the Unix X was to X an

X that X X X

X.

Saving Matched Characters: \ (...\)

It is possible to reference the characters matched against a regular expression by enclosing those
characters inside backslashed parentheses. These captured characters are stored in pre-defined
variables in the regular expression parser called registers, which are numbered 1 through 9.

This gets a bit confusing, so take this section slowly!

As a first example, the regular expression

()

matches the first character on the line, whatever it is, and stores it into register 1.

To retrieve the characters stored in a particular register, the construct \n is used, where n is a
digit from 1 to 9. So the regular expression

“\(.\)\1

initially matches the first character on the line and stores it in register 1, then matches what-
ever is stored in register 1, as specified by the \1. The net effect of this regular expression is to
match the first two characters on a line if they are both the same character. Tricky, eh?

The regular expression
“N(\) L*\1$

matches all lines in which the first character on the line (*.) is the same as the last character
on the line (\1$). The .* matches all the characters in-between.

From the Library of shannon powell

62

Chapter 3 Tools of the Trade

Let’s break this one down. Remember * is the beginning of line and $ the end of line. The
simplified pattern is then . .* which is the first character of the line (the first .) followed by
the .+ for the rest of the line. Add the \ (\) notation to push that first character into register
1 and \1 to then reference the character, and it should make sense to you.

Successive occurrences of the \ (...\) construct get assigned to successive registers. So when
the following regular expression is used to match some text

NG DN

the first three characters on the line will be stored into register 1, and the next three characters
into register 2. If you appended \2\1 to the pattern, you would match a 12-character string

in which characters 1-3 matched characters 10-12, and in which characters 4-6 matched
characters 7-9.

When using the substitute command in ed, a register can also be referenced as part of the
replacement string, which is where this can be really powerful:

$ ed phonebook

114

1,%p

Alice Chebba 973-555-2015
Barbara Swingle 201-555-9257
Liz Stachiw 212-555-2298
Susan Goldberg 201-555-7776
Tony Iannino 973-555-1295
1,8s/\(.*\) \(.*\)/\2 \1/ Switch the two fields
1,%p

973-555-2015 Alice Chebba
201-555-9257 Barbara Swingle
212-555-2298 Liz Stachiw
201-555-7776 Susan Goldberg
973-555-1295 Tony Iannino

The names and the phone numbers are separated from each other in the phonebook file by a
single tab character. The regular expression

\(.*\) \ (L *\)

says to match all the characters up to the first tab (that’s the character sequence . * between the
\ (and the \) and assign them to register 1, and to match all the characters that follow the
tab character and assign them to register 2. The replacement string

\2 \1
specifies the contents of register 2, followed by a space, followed by the contents of register 1.

When ed applies the substitute command to the first line of the file:

Alice Chebba 973-555-2015

From the Library of shannon powell

Regular Expressions

it matches everything up to the tab (Alice Chebba) and stores it into register 1, and every-
thing after the tab (973-555-2015) and stores it into register 2. The tab itself is lost because
it’s not surrounded by parentheses in the regex. Then ed substitutes the characters that were
matched (the entire line) with the contents of register 2 (973-555-2015), followed by a space,
followed by the contents of register 1 (Alice Chebba):

973-555-2015 Alice Chebba

As you can see, regular expressions are powerful tools that enable you to match and manipu-
late complex patterns, albeit with a slight tendency to look like a cat ran over your keyboard at
times!

Table 3.1 summarizes the special characters recognized in regular expressions to help you
understand any you encounter and so you can build your own as needed.

Table 3.1 Regular Expression Characters

Notation Meaning Example Matches
Any character a.. a followed by any two characters
» Beginning of line “wood wood only if it appears at the
beginning of the line
$ End of line x$ x only if it is the last character on
the line
“INSERTS A line containing just the characters
INSERT
] A line that contains no characters
* Zero or more X* Zero or more consecutive x’s
occurrences of - One or more consecutive x’s
previous regular . Zero or more characters w followed
expression : by zero or more characters followed
w.*s by an s
+ One or more X+ One or more consecutive x’s
occurrences of x4 Two or more consecutive x's
previous regular One or more characters w followed
. .+
expression by one or more characters followed
W.+S by an s
[chars] Any character in [tT] Lower- or uppercase t
chars [a-z] Lowercase letter Lower- or uppercase
letter
[a-zA-7Z]
[“chars] Any character not [*0-9] Any non-numeric character Any
in chars [*a-zA-7] non-alphabetic character
(Continued)

From the Library of shannon powell

63

64

Chapter 3 Tools of the Trade

Notation Meaning Example Matches

\{min, max\} At least min and x\{1,5\} At least 1 and at most 5 x's
at most max [0-91\{3,9\} Anywhere from 3 to 9 successive
occurrences of previ- 0-51\{3\ digits Exactly 3 digits At least 3 digits
ous regular expres- f0-91\{3\}
sion [0-91\{3,\}

N\ Save characters N First character on the line; stores it
matched between A\ in register 1

parentheses in next

» First and second characters on the
register (1-9) NCAVANGRY

line if they're the same

First and second characters on the
line; stores first character in register
1 and second character in register 2

cut

This section teaches you about a useful command known as cut. This command comes in
handy when you need to extract (that is, “cut out”) various fields of data from a data file or the
output of a command. The general format of the cut command is

cut -cchars file

where chars specifies which characters (by position) you want to extract from each line of
file. This can consist of a single number, as in -c5 to extract the fifth character from each line
of input; a comma-separated list of numbers, as in -c1, 13,50 to extract characters 1, 13, and
50; or a dash-separated range of numbers, as in -c20-50 to extract characters 20 through 50,
inclusive. To extract characters to the end of the line, you can omit the second number of the
range so

cut -c5- data

extracts characters 5 through the end of the line from each line of data and writes the results
to standard output.

If £ile is not specified, cut reads its input from standard input, meaning that you can use cut
as a filter in a pipeline.

Let’s take another look at the output from the who command:

S who

root console Feb 24 08:54
steve tty02 Feb 24 12:55
george tty08 Feb 24 09:15
dawn ttylo Feb 24 15:55
$

From the Library of shannon powell

cut 65

As shown, four people are logged in. Suppose that you just want to know the names of the
logged-in users and don’t care about what terminals they are on or when they logged in. You
can use the cut command to cut out just the usernames from the who command’s output:

$ who | cut -cl-8 Extract the first 8 characters
root

steve

george

dawn

$

The -c1-8 option to cut specifies that characters 1 through 8 are to be extracted from each
line of input and written to standard output.

The following shows how you can tack a sort to the end of the preceding pipeline to get a
sorted list of the logged-in users:

$ who | cut -cl-8 | sort
dawn

george

root

steve

$

Note, this is our first three-command pipe. Once you get the concept of output connected to
subsequent input, pipes of three, four or more commands are logical and easy to assemble.

If you wanted to see which terminals were currently being used or which pseudo or virtual
terminals were in use, you could cut out just the tty field from the who command output:

$ who | cut -c10-16
console

tty02

ttyo0s

ttylo

$

How did you know that who displays the terminal identification in character positions 10
through 16? Simple! You executed the who command at your terminal and counted out the
appropriate character positions.

You can use cut to extract as many different characters from a line as you want. Here, cut is
used to display just the username and login time of all logged-in users:

$ who | cut -c1-8,18-
root Feb 24 08:54
steve Feb 24 12:55
george Feb 24 09:15
dawn Feb 24 15:55
$

From the Library of shannon powell

66

Chapter 3 Tools of the Trade

The option -c1-8, 18- specifies “extract characters 1 through 8 (the username) and also
characters 18 through the end of the line (the login time).”

The -d and - £ Options

The cut command with its -c flag is useful when you need to extract data from a file or
command, provided that file or command has a fixed format.

For example, you could use cut with the who command because you know that the usernames
are always displayed in character positions 1-8, the terminal in 10-16, and the login time in
18-29. Unfortunately, not all your data will be so well organized!

For instance, take a look at the /etc/passwd file:

$ cat /etc/passwd

root:*:0:0:The Super User:/:/usr/bin/ksh
cron:*:1:1:Cron Daemon for periodic tasks:/:
bin:*:3:3:The owner of system files:/:
uucp:*:5:5::/usr/spool/uucp: /usr/lib/uucp/uucico
asg:*:6:6:The Owner of Assignable Devices:/:
steve:*.:203:100::/users/steve: /usr/bin/ksh
other:*:4:4:Needed by secure program:/:

$

/etc/passwd is the master file that contains the usernames of all users on your computer
system. It also contains other information such as user ID, home directory, and the name of the
program to start up when that particular user logs in.

Quite clearly, the data in this file does not line up anywhere near as neatly as the who's output
does. Therefore extracting a list of all the users of your system from this file cannot be done
using the -c option to cut.

Upon closer inspection of the file, however, it’s clear that fields are separated by a colon charac-
ter. Although each field may not be the same length from one line to the next, you can “count
colons” to get the same field from each line.

The -d and - £ options are used with cut when you have data that is delimited by a particular
character, with -d specifying the field seperator delimiter and -£ the field or fields you want
extracted. The invocation of the cut command becomes

cut -ddchar -ffields file

where dchar is the character that delimits each field of the data, and fields specifies the
fields to be extracted from file. Field numbers start at 1, and the same type of formats can be
used to specify field numbers as was used to specify character positions before (for example,
-f1,2,8, -f1-3, -f4-).

To extract the names of all users from /etc/passwd, you could type the following:

$ cut -d: -fl /etc/passwd Extract field 1
root
cron
bin

From the Library of shannon powell

cut 67

uucp
asg
steve
other

$

Given that the home directory of each user is in field 6, you can match up each user of the
system with their home directory:

$ cut -d: -f1,6 /etc/passwd Extract fields 1 and 6
root:/

cron:/

bin:/

uucp: /usr/spool/uucp

asg:/

steve:/users/steve

other:/

$

If the cut command is used to extract fields from a file and the -d option is not supplied, cut
uses the tab character as the default field delimiter.

The following depicts a common pitfall when using the cut command. Suppose that you have
a file called phonebook that has the following contents:

$ cat phonebook

Alice Chebba 973-555-2015
Barbara Swingle 201-555-9257
Jeff Goldberg 201-555-3378
Liz Stachiw 212-555-2298
Susan Goldberg 201-555-7776
Tony Iannino 973-555-1295
$

If you just want to get the names of the people in your phone book, your first impulse would
be to use cut as shown:

$ cut -cl-15 phonebook
Alice Chebba 97
Barbara Swingle

Jeff Goldberg 2

Liz Stachiw 212
Susan Goldberg

Tony Iannino 97

$

Not quite what you want! This happened because the name is separated from the phone
number by a tab character, not a set of spaces. As far as cut is concerned, tabs count as a single
character when using the -c option. Therefore cut extracts the first 15 characters from each
line, producing the results shown.

From the Library of shannon powell

68

Chapter 3 Tools of the Trade

In a situation where the fields are separated by tabs, you should use the - £ option to
cut instead:

$ cut -£f1 phonebook
Alice Chebba
Barbara Swingle
Jeff Goldberg

Liz Stachiw

Susan Goldberg
Tony Iannino

$

Recall that you don’t have to specify the delimiter character with the -d option because
cut defaults to a tab character delimiter.

How do you know in advance whether fields are delimited by blanks or tabs? One way to find
out is by trial and error, as shown previously. Another way is to type the command

sed -n 1 file

at your terminal. If a tab character separates the fields, \t will be displayed instead of the tab:

$ sed -n 1 phonebook

Alice Chebba\t973-555-2015
Barbara Swingle\t201-555-9257
Jeff Goldberg\t201-555-3378
Liz Stachiw\t212-555-2298
Susan Goldber\t201-555-7776
Tony Iannino\t973-555-1295

$

The output verifies that each name is separated from each phone number by a tab character.
The stream editor sed is covered in more detail a bit later in this chapter.

paste

The paste command is the inverse of cut: Instead of breaking lines apart, it puts them
together. The general format of the paste command is

paste files

where corresponding lines from each of the specified files are “pasted” or merged together
to form single lines that are then written to standard output. The dash character - can also be
used in the files sequence to specify that input is from standard input.

Suppose that you have a list of names in a file called names:

$ cat names
Tony
Emanuel
Lucy

From the Library of shannon powell

paste 69

Ralph
Fred
$

Suppose that you also have a second file called numbers that contains corresponding phone
numbers for each name in names:

$ cat numbers

(307) 555-5356
(212) 555-3456
(212) 555-9959
(212) 555-7741
(212) 555-0040
$

You can use paste to print the names and numbers side-by-side as shown:

$ paste names numbers Paste them together
Tony (307) 555-5356

Emanuel (212) 555-3456

Lucy (212) 555-9959

Ralph (212) 555-7741

Fred (212) 555-0040

$

Each line from names is displayed with the corresponding line from numbers, separated by
a tab.

The next example illustrates what happens when more than two files are specified:

$ cat addresses

55-23 Vine Street, Miami

39 University Place, New York
17 E. 25th Street, New York

38 Chauncey St., Bensonhurst

17 E. 25th Street, New York

$ paste names addresses numbers

Tony 55-23 Vine Street, Miami (307) 555-5356
Emanuel 39 University Place, New York (212) 555-3456
Lucy 17 E. 25th Street, New York (212) 555-9959
Ralph 38 Chauncey St., Bensonhurst (212) 555-7741
Fred 17 E. 25th Street, New York (212) 555-0040
$

The -d Option

If you don’t want the output fields separated by tab characters, you can specity the -d option
to specify the output delimiter:

-dchars

From the Library of shannon powell

70

Chapter 3 Tools of the Trade

where chars is one or more characters that will be used to separate the lines pasted together.
That is, the first character listed in chars will be used to separate lines from the first file that
are pasted with lines from the second file; the second character listed in chars will be used to
separate lines from the second file from lines from the third, and so on.

If there are more files than there are characters listed in chars, paste “wraps around” the list
of characters and starts again at the beginning.

In the simplest form of the -d option, specifying just a single delimiter character causes that
character to be used to separate all pasted fields:

$ paste -d'+' names addresses numbers

Tony+55-23 Vine Street, Miami+(307) 555-5356
Emanuel+39 University Place, New York+ (212) 555-3456
Lucy+17 E. 25th Street, New York+(212) 555-9959
Ralph+38 Chauncey St., Bensonhurst+(212) 555-7741
Fred+17 E. 25th Street, New York+(212) 555-0040

Notice that it’s always safest to enclose the delimiter characters in single quotes. The reason
why will be explained shortly.

The -s Option

The -s option tells paste to paste together lines from the same file, not from alternate files. If
just one file is specified, the effect is to merge all the lines from the file together, separated by
tabs, or by the delimiter characters specified with the -d option.

$ paste -s names Paste all lines from names

Tony Emanuel Lucy Ralph Fred

$ 1ls | paste -d' ' -s - Pastels’s output, use space as delimiter
addresses intro lotsaspaces names numbers phonebook

$

In the former example, the output from 1s is piped to paste which merges the lines
(-s option) from standard input (-), separating each field with a space (-d' ' option). You'll
recall from Chapter 1 that the command

echo *

would have also listed all the files in the current directory, perhaps slightly less complicated
than 1s | paste.

sed

sed is a program used for editing data in a pipe or command sequence. It stands for stream
editor. Unlike ed, sed cannot be used interactively, though its commands are similar. The
general form of the sed command is

sed command file

From the Library of shannon powell

sed 71

where command is an ed-style command applied to each line of the specified file. If no file is
specified, standard input is assumed.

As sed applies the indicated command or commands to each line of the input, it writes the
results to standard output.

Let’s have a look. First, the intro file again:

$ cat intro

The Unix operating system was pioneered by Ken
Thompson and Dennis Ritchie at Bell Laboratories
in the late 1960s. One of the primary goals in
the design of the Unix system was to create an
environment that promoted efficient program
development.

$

Suppose that you want to change all occurrences of “Unix” in the text to “UNIX.” This can be
easily done in sed as follows:

$ sed 's/Unix/UNIX/' intro Substitute Unix with UNIX
The UNIX operating system was pioneered by Ken

Thompson and Dennis Ritchie at Bell Laboratories

in the late 1960s. One of the primary goals in

the design of the UNIX system was to create an
environment that promoted efficient program
development.

$

Get into the habit of enclosing your sed command in single quotes. Later, you’ll know when
the quotes are necessary and when it’s better to use double quotes instead.

The sed command s/Unix/UNIX/ is applied to every line of intro. Whether or not the line
is modified, it gets written to standard output. Since it’s in the data stream also note that
sed makes no changes to the original input file.

To make the changes permanent, you must redirect the output from sed into a temporary file
and then replace the original file with the newly created one:

$ sed 's/Unix/UNIX/' intro > temp Make the changes
$ mv temp intro And now make them permanent
$

Always make sure that the correct changes were made to the file before you overwrite the
original; a cat of temp would have been smart before the mv command overwrote the original
data file.

If your text included more than one occurrence of “Unix” on a line, the above sed would have
changed just the first occurrence to “UNIX.” By appending the global option g to the end of the
substitute command s, you can ensure that multiple occurrences on a line will be changed.

From the Library of shannon powell

72

Chapter 3 Tools of the Trade

In this case, the sed command would read

$ sed 's/Unix/UNIX/g' intro > temp

Now suppose that you wanted to extract just the usernames from the output of who. You
already know how to do that with the cut command:

$ who | cut -cl-8

root

ruth

steve

pat

$

Alternatively, you can use sed to delete all the characters from the first space (which marks the
end of the username) through the end of the line by using a regular expression:

$ who | sed 's/ .*$//!

root

ruth

steve

pat

$

The sed command substitutes a blank space followed by any characters up through the end of
the line (. *3$) with nothing (//); that is, it deletes the characters from the first blank to the end
of the line for each input line.

The -n Option

By default, sed writes each line of input to standard output, whether or not it gets changed.
Sometimes, however, you'll want to use sed just to extract specific lines from a file. That’s what
the -n flag is for: it tells sed that you don’t want it to print any lines by default. Paired with
that, use the p command to print whichever lines match your specified range or pattern. For
example, to print just the first two lines from a file:

$ sed -n 'l,2p' intro Just print the first 2 lines
The UNIX operating system was pioneered by Ken
Thompson and Dennis Ritchie at Bell Laboratories

$

If, instead of line numbers, you precede the p command with a sequence of characters enclosed
in slashes, sed prints just the lines from standard input that match that pattern. The following
example shows how sed can be used to display just the lines that contain a particular string:

$ sed -n '/UNIX/p' intro Just print lines containing UNLX
The UNIX operating system was pioneered by Ken
the design of the UNIX system was to create an

$

From the Library of shannon powell

sed 73

Deleting Lines

To delete lines of text, use the & command. By specifying a line number or range of numbers,
you can delete specific lines from the input. In the following example, sed is used to delete the
first two lines of text from intro:

$ sed '1,2d' intro Delete lines 1 and 2
in the late 1960s. One of the primary goals in
the design of the UNIX system was to create an
environment that promoted efficient program
development.

$

Remembering that by default sed writes all lines of the input to standard output, the remain-
ing lines in text—that is, lines 3 through the end—simply get written to standard output.

By preceding the d command with a pattern, you can used sed to delete all lines that contain
that text. In the following example, sed is used to delete all lines of text containing the
word UNIX:

$ sed '/UNIX/d' intro Delete all lines containing UNIX
Thompson and Dennis Ritchie at Bell Laboratories

in the late 1960s. One of the primary goals in

environment that promoted efficient program

development.

$

The power and flexibility of sed goes far beyond what we’ve shown here. sed has facilities that
enable you to loop, build text in a buffer, and combine many commands into a single editing
script. Table 3.2 shows some more examples of sed commands.

Table 3.2 sed Examples

sed Command Description

sed '5d’ Delete line 5

sed '/[Ttlest/d' Delete all lines containing Test or test

sed -n '20,25p' text Print only lines 20 through 25 from text

sed '1,10s/unix/UNIX/g' intro Change unix to UNIX wherever it appears in the
first 10 lines of intro

sed '/jan/s/-1/-5/" Change the first -1 to -5 in all lines containing jan

sed 's/...//' data Delete the first three characters from each line of
data

sed 's/...$//' data Delete the last 3 characters from each line of data

sed -n 'l' text Print all lines from text, showing non-printing

characters as \nn (where nn is the octal value of
the character), and tab characters as \t

From the Library of shannon powell

74

Chapter 3 Tools of the Trade

tr

The tr filter is used to translate characters from standard input. The general form of the
command is

tr from-chars to-chars

where from-chars and to-chars are one or more characters or a set of characters. Any
character in from-chars encountered on the input will be translated into the corresponding
character in to-chars. The result of the translation is written to standard output.

In its simplest form, tr can be used to translate one character into another. Recall the file
intro from earlier in this chapter:

$ cat intro

The UNIX operating system was pioneered by Ken
Thompson and Dennis Ritchie at Bell Laboratories
in the late 1960s. One of the primary goals in
the design of the UNIX system was to create an
environment that promoted efficient program
development.

$

The following shows how tr can be used to translate all letter e’s to x's:

S tr e x < intro

Thx UNIX opxrating systxm was pionxxrxd by Kxn
Thompson and Dxnnis Ritchix at Bxll Laboratorixs
in thx latx 1960s. Onx of thx primary goals in
thx dxsign of thx UNIX systxm was to crxatx an
xnvironmxnt that promotxd xfficixnt program
dxvxlopmxnt .

$

The input to tr must be redirected from the file intro because tr always expects its input to
come from standard input. The results of the translation are written to standard output, leaving
the original file untouched. Showing a more practical example, recall the pipeline that you
used to extract the usernames and home directories of everyone on the system:

$ cut -d: -f1,6 /etc/passwd
root:/

cron:/

bin:/

uucp: /usr/spool/uucp

asg:/

steve:/users/steve

other:/

$

You can translate the colons into tab characters to produce a more readable output simply by
tacking an appropriate tr command to the end of the pipeline:

From the Library of shannon powell

tr 75

$ cut -d: -f1,6 /etc/passwd | tr : ! !

root /

cron /

bin /

uucp /usr/spool/uucp
asg /

steve /users/steve
other /

$

Enclosed between the single quotes is a tab character (even though you can't see it—just take
our word for it). It must be enclosed in quotes to keep it from being parsed and discarded by
the shell as extraneous whitespace.

Working with characters that aren’t printable? The octal representation of a character can be
given to tr in the format

\nnn

where nnn is the octal value of the character. This isn’t used too often, but can be handy to
remember.

For example, the octal value of the tab character is 11, so another way to accomplish the
colon-to-tab transformation is to use the tr command

tr : '\11"

Table 3.3 lists characters that you'll often want to specify in octal format.

Table 3.3 Octal Values of Some ASCII Characters

Character Octal value
Bell 7
Backspace 10
Tab 11
Newline 12
Linefeed 12
Formfeed 14
Carriage Return 15
Escape 33

In the following example, tr takes the output from date and translates all spaces into newline
characters. The net result is that each field of output appears on a different line:

$ date | tr ' ' r\12' Translate spaces to newlines
Sun

From the Library of shannon powell

76

Chapter 3 Tools of the Trade

Jul

28
19:13:46
EDT

2002

$

tr can also translate ranges of characters. For example, the following shows how to translate all
lowercase letters in intro to their uppercase equivalents:

$ tr '[a-z]' '[A-Z]' < intro

THE UNIX OPERATING SYSTEM WAS PIONEERED BY KEN

THOMPSON AND DENNIS RITCHIE AT BELL LABORATORIES

IN THE LATE 1960S. ONE OF THE PRIMARY GOALS IN

THE DESIGN OF THE UNIX SYSTEM WAS TO CREATE AN

ENVIRONMENT THAT PROMOTED EFFICIENT PROGRAM

DEVELOPMENT .

$

The character ranges [a-z] and [A-Z] are enclosed in quotes to keep the shell from
interpreting the pattern. Try the command without the quotes and you'll quickly see that the
result isn’t quite what you seek.

By reversing the two arguments to tr, you can use the command to translate all uppercase
letters to lowercase:

$ tr '[A-Z]' '[a-z]' < intro

the unix operating system was pioneered by ken

thompson and dennis ritchie at bell laboratories

in the late 1960s. one of the primary goals in

the design of the unix system was to create an

environment that promoted efficient program

development.

$
For a more interesting example, try to guess what this tr invocation accomplishes:
tr '[a-zA-Z]' '[A-Za-z]'

Figured it out? This turns uppercase letters into lowercase, and lowercase letters into uppercase.

The -s Option

You can use the -s option to “squeeze” out multiple consecutive occurrences of characters in
to-chars. In other words, if more than one consecutive occurrence of a character specified
in to-chars occurs after the translation is made, the characters will be replaced by a single
character.

For example, the following command translates all colons into tab characters, replacing
multiple tabs with single tabs:

tr -g ':' '\11!'

From the Library of shannon powell

tr 77

So one colon or several consecutive colons on the input will be replaced by a single tab
character on the output.

Note that '\t' can work in many instances instead of '\11', so be sure to try that if you want
things to be a bit more readable!

Suppose that you have a file called lotsaspaces that has contents as shown:

$ cat lotsaspaces
This is an example of a
file that contains a lot
of blank spaces.

$

You can use tr to squeeze out the multiple spaces by using the -s option and by specifying a
single space character as the first and second argument:

$ tr -s ' ' ' ' < lotsaspaces
This is an example of a

file that contains a lot

of blank spaces.

$

This tr command in effect says, “translate occurrences of space with another space, replacing
multiple spaces in the output with a single space.”

The -d Option

tr can also be used to delete individual characters from the input stream. The format of tr in
this case is

tr -d from-chars

where any character listed in from-chars will be deleted from standard input. In the following
example, tr is used to delete all spaces from the file intro:

$ tr -d ' ' < intro
TheUNIXoperatingSystemwaspioneeredbyKen
ThompsonandDennisRitchieatBellLaboratories
inthelatel960s.0neoftheprimarygoalsin
thedesignoftheUNIXSystemwastocreatean
environmentthatpromotedefficientprogram
development.

$

You probably realize that you could have also used sed to achieve the same results:

$ sed 's/ //g' intro
TheUNIXoperatingsystemwaspioneeredbyKen
ThompsonandDennisRitchieatBellLaboratories
inthelatel960s.0neoftheprimarygoalsin
thedesignoftheUNIXsystemwastocreatean
environmentthatpromotedefficientprogram

From the Library of shannon powell

78

Chapter 3 Tools of the Trade

development .

$

This is not atypical for the Unix system; there’s almost always more than one approach to
solving a particular problem. In the case we just saw, either approach is satisfactory (that is, tr
or sed), but tr is probably a better choice because it is a much smaller program and likely to
execute faster.

Table 3.4 summarizes how to use tr for translating and deleting characters. Bear in mind that
tr works only on single characters. So if you need to translate anything longer than a single
character (say all occurrences of unix to UNIX), you have to use a different program, such as
sed, instead.

Table 3.4 tr Examples

tr Command Description
tr 'X' 'x! Translate all capital X’s to small x’s.
tr () o} Translate all open parentheses to open braces, all closed

parentheses to closed braces
tr '[a-z]' '[A-Z]' Translate all lowercase letters to uppercase

tr '[A-Z]' ' [N-ZA-M]' Translate uppercase letters A-M to N—Z, and N—-Z to A—M,
respectively

tr ! oo Translate all tabs (character in first pair of quotes) to spaces
tr -s ' ' ' Translate multiple spaces to single spaces

tr -d '\14' Delete all formfeed (octal 14) characters

tr -d '[0-9]" Delete all digits

grep
grep allows you to search one or more files for a pattern you specify. The general format of this
command is

grep pattern files

Every line of each file that contains pattern is displayed at the terminal. If more than one file
is specified to grep, each line is also preceded by the name of the file, thus enabling you to
identify the particular file that the pattern was found in.

Let’s say that you want to find every occurrence of the word shell in the file ed.cmd:

$ grep shell ed.cmd

files, and is independent of the shell.
to the shell, just type in a g.

$

This output indicates that two lines in the file ed.cmd contain the word shell.

From the Library of shannon powell

grep 79

If the pattern does not exist in the specified file(s), the grep command simply displays nothing:

$ grep cracker ed.cmd

$

You saw in the section on sed how you could print all lines containing the string UNIX from
the file intro with the command

sed -n '/UNIX/p' intro
But you could also use the following grep command to achieve the same result:

grep UNIX intro

Recall the phonebook file from before:

$ cat phonebook

Alice Chebba 973-555-2015
Barbara Swingle 201-555-9257
Jeff Goldberg 201-555-3378
Liz Stachiw 212-555-2298
Susan Goldberg 201-555-7776
Tony Iannino 973-555-1295
$

When you need to look up a particular phone number, the grep command comes in handy:

$ grep Susan phonebook
Susan Goldberg 201-555-7776
$

The grep command is particularly useful when you have a lot of files and you want to find
out which ones contain certain words or phrases. The following example shows how the grep
command can be used to search for the word shell in all files in the current directory:

$ grep shell *

cmdfiles:shell that enables sophisticated
ed.cmd:files, and is independent of the shell.
ed.cmd:to the shell, just type in a g.
grep.cmd:occurrence of the word shell:
grep.cmd:$ grep shell *

grep.cmd:every use of the word shell.

$

As noted, when more than one file is specified to grep, each output line is preceded by the
name of the file containing that line.

As with expressions for sed and patterns for tr, it’s a good idea to enclose your grep pattern
inside a pair of single quotes to “protect” it from the shell. Here’s an example of what can
happen if you don’t: say you want to find all the lines containing asterisks inside the file
stars; typing

grep * stars

From the Library of shannon powell

80

Chapter 3 Tools of the Trade

doesn’t work as you’d hope because the shell sees the asterisk and automatically substitutes the
names of all the files in your current directory!

S 1s

circles

polka.dots

squares

stars

stripes

$ grep * stars

$

In this case, the shell took the asterisk and substituted the list of files in your current directory.
Then it started execution of grep, which took the first argument (circles) and tried to find it
in the files specified by the remaining arguments, as shown in Figure 3.1.

circles
polka.dots
arguments squares
stars
stripes
stars

Figure 3.1 grep * stars

Enclosing the asterisk in quotes, however, blocks it from being parsed and interpreted by
the shell:

$ grep '*' stars

The asterisk (*) is a special character that
*kkkkkkkkkk

5% 4 =20
$

The quotes told the shell to leave the enclosed characters alone. It then started execution of
grep, passing it the two arguments * (without the surrounding quotes; the shell removes them
in the process) and stars (see Figure 3.2).

arguments
stars

Figure 3.2 grep '*' stars

From the Library of shannon powell

grep 81

There are characters other than * that have a special meaning to the shell and must be quoted
when used in a pattern. The whole topic of how quotes are handled by the shell is admittedly
tricky; an entire chapter—Chapter 5—is devoted to it.

grep takes its input from standard input if no filename is specified. So you can use grep as
part of a pipe to scan through the output of a command for lines that match a specific pattern.
Suppose that you want to find out whether the user jim is logged in. You can use grep to
search through who's output:

$ who | grep jim
jim ttyls Feb 20 10:25
$

Note that by not specifying a file to search, grep automatically scans standard input. Naturally,
if the user jim were not logged in, you would get a new command prompt without any
preceding output:

$ who | grep jim
$

Regular Expressions and grep
Let’s take another look at the intro file:

$ cat intro

The UNIX operating system was pioneered by Ken
Thompson and Dennis Ritchie at Bell Laboratories
in the late 1960s. One of the primary goals in
the design of the UNIX system was to create an
environment that promoted efficient program
development.

$

grep allows you to specify your pattern using regular expressions as in ed. Given this
information, it means that you can specify the pattern

[tT]he
to have grep search for either a lower- or uppercase T followed by the characters he.

Here’s how to use grep to list all the lines containing the characters the or The:

$ grep '[tTlhe' intro

The UNIX operating system was pioneered by Ken
in the late 1960s. One of the primary goals in
the design of the UNIX system was to create an

$

A smarter alternative might be to utilize the -i option to grep which makes patterns case
insensitive. That is, the command

grep -i 'the' intro

From the Library of shannon powell

82

Chapter 3 Tools of the Trade

tells grep to ignore the difference between upper and lowercase when matching the pattern
against the lines in intro. Therefore, lines containing the or The will be printed, as will lines
containing THE, THe, tHE, and so on.

Table 3.5 shows other types of regular expressions that you can specify to grep and the types of
patterns they’ll match.

Table 3.5 Some grep Examples

Command Prints

grep '[A-Z]' list Lines from 1ist containing a capital letter

grep '[0-9]' data Lines from data containing a digit

grep '[A-Z]...[0-9]' list Lines from list containing five-character patterns
that start with a capital letter and end with a digit

grep '\.pic$' filelist Lines from filelist that end with .pic

The -v Option

Sometimes you're interested not in finding the lines that contain a specified pattern, but those
that don’t. That’s what the -v option is for with grep: to reverse the logic of the matching task.
In the next example, grep is used to find all the lines in intro that don’t contain the

pattern UNIX.

$ grep -v 'UNIX' intro Print all lines that don't contain UNIX
Thompson and Dennis Ritchie at Bell Laboratories

in the late 19605. One of the primary goals in

environment that promoted efficient program

development.
$
The -1 Option

At times, you may not want to see the actual lines that match a pattern but just seek the names
of the files that contain the pattern. For example, suppose that you have a set of C programs

in your current directory (by convention, these filenames end with the filename suffix .c), and
you want to know which use a variable called Move_history. Here’s one way of finding

the answer:

$ grep 'Move history' *.c Find Move_history in all C source files
exec.c:MOVE Move history[200] = {0};

exec. cpymove (&Move_history [Number half moves -1],
exec.c: cpymove (&last move, &Move history[Number half moves-1]);

exec.

c
c
exec.c: undo_move (&Move_history [Number_half moves-1], ;
c
c: convert move (&Move history[Number half moves-1]),
c

exec. convert move (&Move_history[i-1]),

From the Library of shannon powell

grep 83

exec.c: convert_move (&Move_history[Number half moves-1]),
makemove.c:IMPORT MOVE Move historyl[];

makemove.c: if (Move history[j].from != BOOK (i,j,from) OR
makemove.c: Move history[j] .to != BOOK (i,j,to))
testch.c:GLOBAL MOVE Move history[100] = {0};

testch.c: Move history[Number half moves-1].from = move.from;
testch.c: Move_ history [Number half moves-1].to = move.to;

$

Sifting through the preceding output, you discover that three files—exec.c, makemove.c, and
testch.c—use the variable.

Add the -1 option to grep and you instead get a list of files that contain the specified pattern,
not the matching lines from the files:

$ grep -1 'Move history' *.c List the files that contain Move_history
exec.c

makemove.c

testch.c

$

Because grep conveniently lists the files one per line, you can pipe the output from grep -1
into wc to count the number of files that contain a particular pattern:
$ grep -1 'Move history' *.c | wec -1
3
$

The preceding command shows that precisely three C program files reference the variable
Move history. Now, just to make sure you're paying attention, what are you counting if you
use grep without the -1 option and pipe the output to we -1?

The -n Option

If the -n option is used with grep, each line from the file that matches the specified pattern
is preceded by its corresponding line number. From previous examples, you saw that the file
testch.c was one of the three files that referenced the variable Move_history; the following
shows how you can pinpoint the precise lines in the file that reference the variable:

$ grep -n 'Move history' testch.c Precede matches with line numbers
13:GLOBAL MOVE Move history[100] = {0};

197: Move_history [Number half moves-1].from = move.from;

198: Move_history[Number half moves-1].to = move.to;

$

As you can see, Move_history is used on lines 13, 197, and 198 in testch.c.

For Unix experts, grep is one of the most commonly used programs because of its flexibility
and sophistication with pattern matching. It's one well worth studying.

From the Library of shannon powell

84

Chapter 3 Tools of the Trade

sort

At its most basic, the sort command is really easy to understand: give it lines of input and it'll
sort them alphabetically, with the result appearing as its output:

$ sort names
Charlie
Emanuel

Fred

Lucy

Ralph

Tony

Tony

$

By default, sort takes each line of the specified input file and sorts it into ascending order.

Special characters are sorted according to the internal encoding of the characters. For example,
the space character is represented internally as the number 32, and the double quote as the
number 34. This means that the former would be sorted before the latter. Particularly for
other languages and locales the sorting order can vary, so although you are generally assured
that sort will perform as expected on alphanumeric input, the ordering of foreign language
characters, punctuation, and other special characters is not always what you might expect.

sort has many options that provide more flexibility in performing your sort. We'll just
describe a few of the options here.

The -u Option
The -u option tells sort to eliminate duplicate lines from the output.

$ sort -u names
Charlie

Emanuel

Fred

Lucy

Ralph

Tony

$

Here you see that the duplicate line that contained Tony was eliminated from the output.

A lot of old-school Unix people accomplish the same thing by using the separate program
uniq, so if you read system shell scripts you'll often see sequences like sort | unig. Those
can be replaced with sort -ul

From the Library of shannon powell

sort 85

The -r Option
Use the -r option to reverse the order of the sort:

$ sort -r names Reverse sort
Tony

Tony

Ralph

Lucy

Fred

Emanuel

Charlie

$

The -o Option

By default, sort writes the sorted data to standard output. To have it go into a file, you can use
output redirection:

$ sort names > sorted_names

$

Alternatively, you can use the -o option to specify the output file. Simply list the name of the
output file right after the -o:

$ sort names -o sorted names

$
This sorts names and writes the results to sorted names.

What's the value of the -o option? Frequently, you want to sort the lines in a file and have the
sorted data replace the original. But typing

$ sort names > names

$

won't work—it ends up wiping out the names file! However, with the -o option, it is okay to
specify the same name for the output file as the input file:

S sort names -0 names
$ cat names

Charlie

Emanuel

Fred

Lucy

Ralph

Tony

Tony

$

From the Library of shannon powell

86 Chapter 3 Tools of the Trade

Tip
Be careful if your filter or process is going to replace your original input file and make sure that

it’s all working as you expect prior to having the data overwritten. Unix is good at a lot of things,
but there’s no unremove command to recover lost data or lost files.

The -n Option
Suppose that you have a file containing pairs of (x, y) data points as shown:
$ cat data

5 27

2 12

3 33

23 2

-5 11

15 6

14 -9

$

And suppose that you want to feed this data into a plotting program called plotdata, but that
the program requires that the incoming data pairs be sorted in increasing value of x (the first
value on each line).

The -n option to sort specifies that the first field on the line is to be considered a number,
and the data is to be sorted arithmetically. Compare the output of sort used without
the -n option and then with it:

$ sort data
-5 11
14 -9
15 6

2 12
23 2

3 33

5 27

$ sort -n data Sort arithmetically
-5 11

2 12

3 33

5 27
14 -9
15 6

23 2

$

From the Library of shannon powell

sort 87

Skipping Fields

If you had to sort your data file by the y value—that is, the second number in each line—you
could tell sort to start with the second field by using the option

-k2n

instead of -n. The -k2 says to skip the first field and start the sort analysis with the second field

of each line. Similarly, -k5n would mean to start with the fifth field on each line and then sort
the data numerically.

$ sort -k2n data Start with the second field in the sort
14 -9

23 2

15 6

-5 11

2 12

5 27

3 33

$

Fields are delimited by space or tab characters by default. If a different delimiter is to be used,
the -t option must be used.

The -t Option

As mentioned, if you skip over fields, sort assumes that the fields are delimited by space or tab
characters. The -t option can indicate otherwise. In this case, the character that follows the -t
is taken as the delimiter character.

Consider the sample password file again:

$ cat /etc/passwd

root:*:0:0:The super User:/:/usr/bin/ksh
steve:*:203:100::/users/steve: /usr/bin/ksh

bin:*:3:3:The owner of system files:/:

cron:*:1:1:Cron Daemon for periodic tasks:/:
george:*:75:75::/users/george: /usr/lib/rsh
pat:*:300:300::/users/pat:/usr/bin/ksh
uucp:nc823ciSiLiZM:5:5: : /usr/spool/uucppublic: /usr/lib/uucp/uucico
asg:*:6:6:The Owner of Assignable Devices:/:
sysinfo:*:10:10:Access to System Information:/:/usr/bin/sh
mail:*:301:301::/usr/mail:

$

If you wanted to sort this file by username (the first field on each line), you could just issue the
command

sort /etc/passwd

From the Library of shannon powell

88

Chapter 3 Tools of the Trade

To sort the file instead by the third colon-delimited field (which contains what is known
as your user ID), you would want an arithmetic sort, starting with the third field (-k3), and
specifying the colon character as the field delimiter (-t:):

$ sort -k3n -t: /etc/passwd Sort by user id
root:*:0:0:The Super User:/:/usr/bin/ksh
cron:*:1:1:Cron Daemon for periodic tasks:/:
bin:*:3:3:The owner of system files:/:
uucp:*:5:5::/usr/spool/uucppublic: /usr/lib/uucp/uucico
asg:*:6:6:The Owner of Assignable Devices:/:
sysinfo:*:10:10:Access to System Information:/:/usr/bin/sh
george:*:75:75::/users/george: /usr/lib/rsh
steve:*:203:100::/users/steve: /usr/bin/ksh
pat:*:300:300::/users/pat:/usr/bin/ksh
mail:*:301:301::/usr/mail:

$

Here we’ve bolded the third field of each line so that you can easily verify that the file was
sorted correctly by user ID.

Other Options

Other options to sort enable you to skip characters within a field, specify the field to end the
sort on, merge sorted input files, and sort in “dictionary order” (only letters, numbers, and
spaces are used for the comparison). For more details on these options, look under sort in your
Unix User’s Manual.

unig

The unig command is useful when you need to find or remove duplicate lines in a file.
The basic format of the command is

uniq in file out file

In this format, unig copies in file to out file, removing any duplicate lines in the process.
uniqg’s definition of duplicated lines is consecutive lines that match exactly.

If out_file is not specified, the results will be written to standard output. If in file is also
not specified, uniq acts as a filter and reads its input from standard input.

Here are some examples to see how unig works. Suppose that you have a file called names with
contents as shown:

$ cat names
Charlie
Tony
Emanuel
Lucy

From the Library of shannon powell

uniqg 89

Ralph
Fred
Tony
$

You can see that the name Tony appears twice in the file. You can use unig to remove such
duplicate entries:

$ uniq names Print unique lines
Charlie

Tony

Emanuel

Lucy

Ralph

Fred

Tony

$

Oops! Tony still appears twice in the preceding output because the multiple occurrences are not
consecutive in the file, and thus unig’s definition of duplicate is not satisfied. To remedy this
situation, sort is often used to get the duplicate lines adjacent to each other, as mentioned
earlier in the chapter. The result of the sort is then run through unig:

$ sort names | uniq
Charlie

Emanuel

Fred

Lucy

Ralph

Tony

$

The sort moves the two Tony lines together, and then uniq filters out the duplicate line (but
recall that sort with the -u option performs precisely this function).

The -d Option

Frequently, you'll be interested in finding just the duplicate entries in a file. The -d option
to uniq can be used for such purposes: It tells unig to write only the duplicated lines to
out_file (or standard output). Such lines are written just once, no matter how many
consecutive occurrences there are.

$ sort names | uniq -d List duplicate lines
Tony
$

As a more practical example, let’s return to our /etc/passwd file. This file contains
information about each user on the system. It’s conceivable that over the course of adding and
removing users from this file that perhaps the same username has been inadvertently entered

From the Library of shannon powell

90

Chapter 3 Tools of the Trade

more than once. You can easily find such duplicate entries by first sorting /etc/passwd and
piping the results into unig -d as done previously:

$ sort /etc/passwd | uniq -d Find duplicate entries in /etc/passwd
$

There are no duplicate full line /etc/passwd entries. But you really want to find duplicate
entries for the username field, so you only want to look at the first field from each line (recall
that the leading characters of each line of /etc/passwd up to the colon are the username).
This can’t be done directly through an option to unig, but can be accomplished by using cut
to extract the username from each line of the password file before sending it to uniq.

$ sort /etc/passwd | cut -fl -d: | uniq -d Find duplicates
cem

harry

$

It turns out that there are multiple entries in /etc/passwd for cem and harry. If you wanted
more information on the particular entries, you could now grep them from /etc/passwd:

$ grep -n 'cem' /etc/passwd
20:cem:*:91:91::/users/cem:
166:cem:*:91:91::/users/cem:

$ grep -n 'harry' /etc/passwd
29:harry:*:103:103:Harry Johnson:/users/harry:
79:harry:*:90:90:Harry Johnson:/users/harry:

$

The -n option was used to find out where the duplicate entries occur. In the case of cem, there
are two entries on lines 20 and 166; in harry’s case, the two entries are on lines 29 and 79.

Other Options
The -c option to uniqg adds an occurrence count, which can be tremendously useful in scripts:

$ sort names | uniqg -c Count line occurrences
1 Charlie

Emanuel

Fred

Lucy

Ralph

Tony

P

$

One common use of unig -c is to figure out the most common words in a data file, easily
done with a command like:

tr '[A-Z]' '[a-z]' datafile | sort | unig -c | head

From the Library of shannon powell

uniqg 91

Two other options that we don’t have space to describe more fully let you tell uniqg to ignore
leading characters/fields on a line. For more information, consult the man page for your
particular implementation of unig with the command man unig.

We would be remiss if we neglected to mention the programs awk and perl, which can

be useful when writing shell programs too. They are both big, complicated programming
environments unto themselves, however, so we're going to encourage you to check out
Awk—A Pattern Scanning and Processing Language, by Aho, et al., in the Unix Programmer’s
Manual, Volume II for a description of awk, and Learning Perl and Programming Perl, both from
O'Reilly and Associates, offering a good tutorial and reference on the language, respectively.

From the Library of shannon powell

This page intentionally left blank

From the Library of shannon powell

4
And Away We Go

Based on our discussions in Chapter 2, “What Is the Shell?,” you should now realize that
whenever you type something like

who | we -1
you are actually programming in the shell. That’s because the shell is interpreting the

command line, recognizing the pipe symbol, connecting the output of the first command to
the input of the second, and initiating execution of both commands.

In this chapter, you'll learn how to write your own commands and how to use shell variables.

Command Files

A shell program can be typed directly, as in
$ who | we -1

or it can be typed into a file and then the file can be executed by the shell. For example,
suppose that you need to find out the number of logged-in users several times throughout
the day. It's not unreasonable to type in the preceding pipeline each time you want the
information, but for the sake of example, let’s type this pipeline into a file.

We'll call the file nu (for number of users), and its contents will be just the pipeline shown
previously:
S cat nu

who | we -1

$

To execute the commands contained inside the file nu, all you now have to do is type nu as the
command name to the shell:

S nu
sh: nu: cannot execute

$

From the Library of shannon powell

94

Chapter 4 And Away We Go

Oops! We forgot to mention one thing. Before you can execute a script from the command
line, you must change the file’s permission to make it executable. This is done with the change
mode command, chmod. To add execute permission to the file nu, you simply type

chmod +x file(s)
The +x indicates that you want to make the file (s) that follow executable. The shell requires

that a file be both readable and executable by you before you can invoke it directly on the
command line.

$ 1s -1 nu

-ITW-rw-r-- 1 steve steve 12 Jul 10 11:42 nu
$ chmod +x nu Make it executable
$ 1ls -1 nu

-TWXTWXY-X 1 steve steve 12 Jul 10 11:42 nu
$

Now that you've made it executable, try it again:

$ nu

$

This time it worked.

Warning

If you fix the permission issue and still get an error “Command not found,” try adding ./ before
the command, like . /nu to ensure the shell looks in the current directory for commands as
well as the usual system locations. To fix it long term, add . to the end of your PATH (typically
within your .profile file).

You can put any commands inside a file, make the file executable, and then execute its
contents simply by typing its name to the shell. It’s that simple and that powerful, and
everything you've learned about working on the command line therefore also applies to writing
shell scripts too.

The standard shell mechanisms such as I/O redirection and pipes can be used on your own
programs as well:

$ nu > tally

$ cat tally
8

$

Suppose that you're working on a proposal called sys.caps and the following command
sequence is needed every time you print the proposal:

tbl sys.caps | nroff -mm -Tlp | 1lp

From the Library of shannon powell

Command Files 95

You can save yourself some typing by placing this command sequence into a file—let’s call it
run—making it executable, and then just typing the name run whenever you want to print
a new copy of the proposal:

$ cat run

tbl sys.caps | nroff -mm -Tlp | 1lp

$ chmod +x run

$ run

request id is laserl-15 (standard input)

$
(The request id message in the example is from the 1p command.)

For the next example, suppose that you want to write a shell program called stats that prints
the date and time, the number of users logged in, and your current working directory. The
three command sequences you need to get this information are date, who | wec -1, and pwd:

$ cat stats
date
who | we -1
pwd
$ chmod +x stats
$ stats Try it out
Wed Jul 10 11:55:50 EDT 2002
13
/users/steve/documents/proposals

$
You can add some echo commands to stats to make the output a bit more informative:

$ cat stats

echo The current date and time is:

date

echo

echo The number of users on the system is:
who | we -1

echo

echo Your current working directory is:
pwd

$ stats Execute it
The current date and time is:

Wed Jul 10 12:00:27 EDT 2002

The number of users on the system is:
13

Your current working directory is:
/users/steve/documents/proposals

$

From the Library of shannon powell

Chapter 4 And Away We Go

Recall that echo without any arguments produces a blank line. Shortly, you'll see how to have
the message and command output displayed on the same line, like this:

The current date and time is: Wed Jul 10 12:00:27 EDT 2002

Comments

The shell programming language would not be complete without a comment statement. A
comment is a way for you to insert remarks or comments inside the program that otherwise
have no effect on its execution.

Whenever the shell encounters the special character #, it ignores whatever characters appear
starting with the # through to the end of the line. If the # starts the line, the entire line is
treated as a comment. Here are examples of valid comments:

Here is an entire commentary line

who | we -1 # count the number of users

#

Test to see if the correct arguments were supplied
#

Comments are useful for documenting commands or sequences of commands whose purposes
may not be obvious or are sufficiently complex that you might forget why they’re there

or what they do. Judicious use of comments can also help make shell programs easier to
debug and to maintain—both by you and by someone else who may have to support your
programs.

Let’s go back to the stats program and insert some comments and blank lines for legibility:

$ cat stats

#

stats -- prints: date, number of users logged on,
and current working directory

#

echo The current date and time is:
date

echo
echo The number of users on the system is:
who | we -1

echo

echo Your current working directory is:
pwd

$

The extra blank lines cost little in terms of program space yet add much in terms of program
readability. They’re simply ignored by the shell.

From the Library of shannon powell

Variables 97

Variables

Like virtually all programming languages, the shell allows you to store values into variables.
A shell variable begins with an alphabetic or underscore (_) character and is followed by zero or
more alphanumeric or underscore characters.

Note

The regular expression for a shell variable name is therefore [A-Za-z]
[a-2zA-Z0-9 1%, right?

To store a value inside a shell variable, you write the name of the variable, followed
immediately by the equals sign =, followed immediately by the value you want to store
in the variable:

variable=value

For example, to assign the value 1 to the shell variable count, you simply write

count=1

and to assign the value /users/steve/bin to the shell variable my bin, you write

my bin=/users/steve/bin

A few important points here. First, spaces are not permitted on either side of the equals sign.
Keep that in mind, especially if you’ve worked in other programming languages and you're in the
habit of inserting spaces around operators. In the shell language, you can’t put those spaces in.

Second, unlike most other programming languages, the shell has no concept of data types.
Whenever you assign a value to a shell variable, no matter what it is, the shell simply interprets
that value as a string of characters. So when you assigned 1 to the variable count, the shell
simply stored the character 1 inside the variable count, making no assumption that an integer
value was being stored in the variable.

If you're used to programming in a language such as C, Perl, Swift, or Ruby where all variables
must be declared, you're in for another adjustment: Because the shell has no concept of data
types, variables are not declared before they’re used; they're simply assigned values when you
want to use them.

The shell does support integer operations on shell variables that contain strings that are also
valid numbers through special built-in operations, but even then, the variable is continually
evaluated to ensure it’s a valid number.

Because the shell is an interpretive language, you can assign values to variables directly at your
terminal:

$ count=1 Assign character 1 to count
$ my bin=/users/steve/bin Assign /users/steve/bin to my_bin
$

So now that you know how to assign values to variables, what good is it? Glad you asked.

From the Library of shannon powell

98

Chapter 4 And Away We Go

Displaying the Values of Variables

The echo command—which we’ve used already to print values such as strings received from
standard input—is used to display the value stored inside a shell variable. To do this, you
simply write

echo S$Svariable

The s character is a special character to the shell when followed by one or more alphanumeric
characters. If a variable name follows the s, the shell takes this as an indication that the value
stored inside that variable is to be substituted at that point. So, when you type

echo S$count

the shell replaces scount with the value stored there; then it executes the echo command:

S echo $count
1

$

Remember, the shell performs variable substitution before it executes the command
(see Figure 4.1).

Figure 4.1 echo $count

You can have the value of more than one variable substituted at a time:

$ echo $my bin
/users/steve/bin

$ echo $my bin $count
/users/steve/bin 1

$

In the second example, the shell substitutes the values of my bin and count and then executes
the echo command (see Figure 4.2).

/users/steve/bin

Figure 4.2 echo $my bin Scount

From the Library of shannon powell

Variables 99

Variables can be used anywhere on any command line and will be replaced with their value by
the shell prior to the specific command being invoked, as the next examples illustrate:

$ 1ls $my bin

mon

nu

testx

$ pwd Where are we?
/users/steve/documents/memos

$ cd $my bin Change to my bin directory
$ pwd

/users/steve/bin

$ number=99

$ echo There are $number bottles of beer on the wall
There are 99 bottles of beer on the wall

$

Here are some more examples:

$ command=sort

S $command names

Charlie

Emanuel

Fred

Lucy

Ralph

Tony

Tony

$ command=wc

$ option=-1

$ file=names

$ $command $option $file
7 names

$

So you see, even the name of a command can be stored inside a variable. Because the shell
performs its substitution before determining the name of the program to execute and its
arguments, it parses the line

$command $option $file

then makes all the substitutions requested, turning the command it actually invokes into
wc -1 names

Then the shell executes we, passing the two arguments -1 and names.

Variables can even be assigned to other variables, as shown in the next example:

$ valuel=10
$ value2=valuel
$ echo $value2

From the Library of shannon powell

100

Chapter 4 And Away We Go

valuel Didn't do that right
$ value2=$valuel

S echo $value2

10 That's better

$

Remember that a dollar sign must always be placed before the variable name whenever you
want to use the value stored in that variable.

Undefined Variables Have the Null Value

What do you think happens when you try to display the value of a variable that has no value
assigned to it? Try it and see:

$ echo $nosuch Never assigned it a value
$

You don’t get an error message. Did the echo command display anything at all? Let’s see
whether we can more precisely determine that:

$ echo :$nosuch: Surround its value with colons
$
So you see no characters were substituted by the shell for the unspecified value of nosuch.

A variable that contains no value is said to be undefined and contain the null value. It is the
default case for variables that you never store values in. When the shell performs its variable
substitution, any values that are null are effectively just removed from the command line
(which makes sense if they have the null value):

$ we $nosuch -1 $nosuch $nosuch names
7 names

$

The shell scans the command line substituting the null value for the variable nosuch. After the
scan is completed, the line effectively looks like this:

wc -1 names
which explains why it works.

Sometimes you may want to initialize the value of a variable to be the value null. This can be
done by simply assigning no value to the variable, as in

dataflag=

Alternatively, and as a better practice, you can list two adjacent pairs of quotes after the =. So

dataflag=""

and

dataflag="'"

From the Library of shannon powell

Variables 101

both have the same effect of assigning the null value to dataflag and have the added benefit
that it looks like it’s deliberate, rather than in the first instance where it might be perceived
later as a mistake or typo.

Be advised that the assignment
dataflag=" "

is not equivalent to the three previous ones because it assigns a single space character to
dataflag; that’s different from assigning no characters to it.

Filename Substitution and Variables
Here’s a puzzle for you: If you type

x=%*

will the shell store the character * into the variable x, or will it store the names of all the files
in your current directory into the variable x? Let’s try it out and see:

$ 1s What files do we have?
addresses

intro

lotsaspaces

names

nu

numbers

phonebook

stat

§ x=*

$ echo $x

addresses intro lotsaSpaces names nu numbers phonebook stat

$

There’s a lot to be learned from this simple example. Was the list of files stored into the
variable x when

X=%*

was executed, or did the shell do the substitution when
echo $x

was executed?

It turns out that the shell does not perform filename substitution when assigning values to
variables. Therefore,

X=%*

assigns the single character * to x. This means that given the output shown, the shell must
have done the filename substitution when executing the echo command. In fact, the precise
sequence of steps that occurred when

echo $x

From the Library of shannon powell

102 Chapter 4 And Away We Go

was executed is as follows:
1. The shell scanned the line, substituting * as the value of x.

2. The shell rescanned the line, encountered the *, and then substituted the names of all
files in the current directory.

3. The shell initiated execution of echo, passing it the file list as arguments
(see Figure 4.3).

addresses

intro

echo < arguments lotsaspaces
names

nu
numbers

phonebook

stat

Figure 4.3 echo $x

This order of evaluation is important. Remember, first the shell does variable substitution, then
does filename substitution, and then parses the line into arguments.

The ${variable} Construct

Suppose that you have the name of a file stored in the variable filename. If you wanted to
rename that file so that the new name was the same as the old, except with an x added to the
end, your first impulse would be to type

mv $filename $filenameX

When the shell scans this command line, however, it substitutes the value of the variable
filename and also the value of the variable £ilenameX. The shell thinks filenameX is the full
name of the variable because it's composed entirely of valid characters.

To avoid this problem, delimit the variable by enclosing the entire name (but not the leading
dollar sign) in curly braces, as in

From the Library of shannon powell

Built-in Integer Arithmetic 103

${filename}x

This removes any ambiguity, and the mv command then works as desired:
mv $filename ${filename}X

Remember that the braces are necessary only if the last character of the variable name is
followed by an alphanumeric character or an underscore.

There are also quite a few functions applicable to variables within this curly brace notation,
including extracting subsets, assigning values if the variable is currently unassigned, and more.
Stay tuned for those!

Built-in Integer Arithmetic

The POSIX standard shell as included with all modern Unix and Linux variants (including Mac
OS X’s command shell) provides a mechanism for performing integer arithmetic on shell vari-
ables called arithmetic expansion. Note that some older shells do not support this feature.

The format for arithmetic expansion is

$ ((expression))

where expression is an arithmetic expression using shell variables and operators. Valid shell
variables are those that contain numeric values (leading and trailing whitespace is allowed).
Valid operators are taken from the C programming language and are listed in Appendix A,
“Shell Summary.”

$(()) Operators

There is a surprisingly extensive list of operators, including the basic six: +, -, *, /, ¥ and **,
along with more sophisticated notations including +=, -=, *=, /=, easy increment
and decrement with variable++ and variable--, and more.

Our favorite? You can work with different numerical bases and even convert from one
number base to another. For example, here are the answers to what 100 octal (base 8) and
101010101010101010 binary (base 2) are in decimal:

$ echo $((8#100))

64

$ echo $((2#101010101010101010))
174762

The result of computing expression is substituted on the command line. For example,

echo $(i+1)

adds one to the value in the shell variable i and prints the result. Notice that the variable
i doesn’t have to be preceded by a dollar sign because the shell knows that the only valid
elements that can appear in arithmetic expansions are operators, numbers, and variables. If the

From the Library of shannon powell

104

Chapter 4 And Away We Go

variable is not defined or contains a NULL string, its value is assumed to be zero. So if we have
not assigned any value yet to the variable a, we can still use it in an integer expression:

$ echo $a Variable a not set

$ echo $((a=a+ 1)) Equivalenttoa =0 + 1
S 1

$ echo $a

1 Now a contains 1

$

Note that assignment is a valid operator, and the value of the assignment is substituted in the
second echo command in the preceding example.

Parentheses may be used freely inside expressions to force grouping, as in
echo $((i = (i + 10) * J))

If you want to perform an assignment without echo or some other command, you can move
the assignment before the arithmetic expansion.

So to multiply the variable i by 5 and assign the result back to i you can write
i=$((1 * 5))

Note that spaces are optional inside the double parentheses, but are not allowed when the
assignment is outside them.

A more succinct way to multiply $i by 5 is the following common notation, which would
appear within another statement:

$((1i*=5))
If you're just adding 1 to the value, you can be even more succinct:
SO0 1++)

Finally, to test to see whether i is greater than or equal to 0 and less than or equal to 100, you
can write

result=$((i >= 0 && i <= 100))
which assigns result the value of 1 (true) if the expression is true or O (false) if it’s false:

$ i=$((100 * 200 / 10))

$ §=$((i < 1000)) Ifiis < 1000, set j = 0; otherwise 1
$ echo $i $j

2000 0 i is 2000, so j was set to 0

$

That concludes our introduction to writing commands and using variables. The next chapter
goes into detail on the various quoting mechanisms in the shell.

From the Library of shannon powell

o

Can I Quote You on That?

This chapter teaches you about a unique feature of the shell programming language: the way it
interprets quote characters. The shell recognizes four different types of quote characters:

= The single quote character '
= The double quote character "
= The backslash character \

= The back quote character ~

The first two and the last characters in the preceding list must occur in pairs, while the
backslash character can be used any number of times in a command as needed. Each of these
quotes has a distinct meaning to the shell. We’ll cover them in separate sections of this chapter.

The Single Quote

There are many reasons that you'll need to use quotes in the shell. One of the most common is
to keep character sequences that include whitespace together as a single element.

Here’s a file called phonebook that contains names and phone numbers:

$ cat phonebook

Alice Chebba 973-555-2015
Barbara Swingle 201-555-9257
Liz Stachiw 212-555-2298
Susan Goldberg 201-555-7776
Susan Topple 212-555-4932
Tony Iannino 973-555-1295
$

To look up someone in our phonebook file you could use grep:

$ grep Alice phonebook
Alice Chebba 973-555-2015
$

From the Library of shannon powell

106 Chapter 5 Can | Quote You on That?

Look what happens when you look up Susan:

$ grep Susan phonebook
Susan Goldberg 201-555-7776
Susan Topple 212-555-4932
$

There are two Susans in the datafile, hence the two lines of output—but suppose you only
wanted Susan Goldberg’s information. One way to overcome this problem would be to further
qualify the name. For example, you could specify the last name as well:

$ grep Susan Goldberg phonebook
grep: can't open Goldberg

Susan Goldberg 201-555-7776
Susan Topple 212-555-4932

$

But that’s not going to work, as you can see.

Why? Because the shell uses whitespace characters to separate the command arguments, the
preceding command line results in grep being passed three arguments: Susan, Goldberg, and
phonebook (see Figure 5.1).

Susan
arguments
«-------————— Goldberg

phonebook

Figure 5.1 grep Susan Goldberg phonebook

When grep is executed, it interprets the first argument as the search pattern and the remaining
arguments as the names of the files to search. In this case, grep thinks it’s supposed to look for
Susan in the files Goldberg and phonebook. It tries to open the file Goldberg, can’t find it,
and issues the error message:

grep: can't open Goldberg

Then it goes to the next file, phonebook, opens it, searches for the pattern susan, and prints
the two matching lines. Quite logical, really.

The problem is really about how to pass arguments that include whitespace characters to
programs.

The solution: enclose the entire argument inside a pair of single quotes, as in

grep 'Susan Goldberg' phonebook

When the shell sees the first single quote, it ignores any special characters that follow until it sees
the matching closing quote.

$ grep 'Susan Goldberg' phonebook
Susan Goldberg 201-555-7776
$

From the Library of shannon powell

The Single Quote

As soon as the shell encountered the first ' it stopped interpreting any special characters until
it found the closing '. So the space between Susan and Goldberg, which would have normally
delimited two separate arguments, was ignored by the shell. The shell then split the command
line into two arguments, the first Susan Goldberg (which includes the space character) and
the second phonebook. It then invoked grep, passing it these two arguments (see Figure 5.2).

arguments Susan Goldberg

phonebook

Figure 5.2 grep 'Susan Goldberg' phonebook

grep interpreted the first argument, Susan Goldberg, as a pattern that included an embedded
space and looked for it in the file specified by the second argument, phonebook. Note that the
shell removes the quotes and does not pass them to the program.

No matter how many space characters are enclosed between quotes, they are all preserved by
the shell.

$ echo one two three four
one two three four

$ echo 'one two three four!'
one two three four

$

In the first case, the shell removes the extra whitespace characters from the line (no quotes!)
and passes echo the four arguments one, two, three, and four (see Figure 5.3).

one
echo <~ - _alrg_uinfrlts_ - - two
three
four
Figure 5.3 echo one two three four

In the second case, the extra spaces are preserved and the shell treats the entire string
of characters enclosed in quotes as a single argument when executing echo (see Figure 5.4).

arguments
echo <--- guments _ one two three four

Figure 5.4 echo ‘'one two three four'

From the Library of shannon powell

107

108

Chapter 5 Can | Quote You on That?

Worth emphasizing is that all special characters are ignored by the shell if they appear within
single quotes. That explains how the following works:

$ file=/users/steve/bin/progl
S echo $file
/users/steve/bin/progl

$ echo '$file’ $ not interpreted

sfile

S echo *

addresses intro lotsaspaces names nu numbers phonebook stat
S echo '*!

*

$echo '« > | ; () {} > "a

<>|;(){}>>"&

$

Even the Enter key will be retained as part of the command argument if it’s enclosed in single
quotes:

$ echo 'How are you today,
> John'

How are you today,

John

$

After parsing the first line, the shell sees that the quote isn’t matched, so it prompts the user
(with >) to type in the closing quote. The > is known as the secondary prompt character and is
displayed by the shell whenever it’s waiting for you to finish typing a multi-line command.

Quotes are also needed when assigning values containing whitespace or special characters to
shell variables, though there are nuances, as demonstrated:

$ message='I must say, this sure is fun'

$ echo $message

I must say, this sure is fun

$ text='* means all files in the directory'

S echo $text

names nu numbers phonebook stat means all files in the directory

$
The quotes are needed in the first statement because the value being stored includes spaces.

The second sequence with the variable text highlights that the shell does filename substitution
after variable name substitution, meaning that the * is replaced by the names of all the files in
the current directory after the variable is expanded, but before the echo is executed. Annoying!

How do you fix these sort of problems? Through the use of double quotes.

From the Library of shannon powell

The Double Quote 109

The Double Quote

Double quotes work similarly to single quotes, except they’re less protective of their content:
single quotes tell the shell to ignore all enclosed characters, double quotes say to ignore most.
In particular, the following three characters are not ignored inside double quotes:

= Dollar signs
= Back quotes

= Backslashes

The fact that dollar signs are not ignored means that variable name substitution is done by the
shell inside double quotes.

$ filelist=*

$ echo $filelist

addresses intro lotsaspaces names nu numbers phonebook stat
S echo '$filelist!

$filelist

S echo "$filelist™

*

$

Here you see the major difference between no quotes, single quotes, and double quotes. In
the first instance, the shell sees the asterisk and substitutes all the filenames from the current
directory. In the second case, the shell leaves the characters enclosed within the single quotes
completely alone, which results in the display of $filelist. In the final case, the double
quotes indicate to the shell that variable name substitution is still to be performed inside the
quotes. So the shell substitutes * for $filelist. But because filename substitution is not done
inside double quotes, * is then safely passed to echo as the value to be displayed.

Note

While we’re talking about single versus double quotes, you should also be aware that the shell
has no idea what “smart quotes” are. Those are generated by word processors like Microsoft
Word and curl “inward” towards the material they surround, making it much more attractive
when printed. The problem is, that’ll break your shell scripts, so be alert!

If you want to have the value of a variable substituted, but don’t want the shell to then parse
the substituted characters specially, enclose the variable inside double quotes.

Here’s another example illustrating the difference between double quotes and no quotes:

$ address="39 East 12th Street

> New York, N. Y. 10003"

S echo $address

39 East 12th Street New York, N. Y. 10003
$ echo "$address"

39 East 12th Street

New York, N. Y. 10003

$

From the Library of shannon powell

110 Chapter 5 Can | Quote You on That?

Note that in this particular example, it makes no difference whether the value assigned to
address is enclosed in single quotes or double quotes. The shell displays the secondary
command prompt in either case to indicate it’s waiting for the corresponding close quote.

After assigning the two-line address to address, the value of the variable is displayed by echo.
Without the variable being quoted the address is displayed on a single line. The reason is the
same as what caused

echo one two three four

to be displayed as
one two three four
Because the shell removes spaces, tabs, and newlines (whitespace characters) from the

command line and then cuts it up into arguments before giving it to the requested command,
the invocation

echo $address
causes the shell to remove the embedded newline character, treating it as it would a space

or tab: as an argument delimiter. Then the shell passes the nine arguments to echo for display.
echo never sees that newline; the shell gets to it first (see Figure 5.5).

Figure 5.5 echo $address

When the command

echo "$address"

is used instead, the shell substitutes the value of address as before, except that the double
quotes tell it to leave any embedded whitespace characters alone. So in this case, the shell
passes a single argument to echo—an argument that contains an embedded newline. echo then
displays its single argument. Figure 5.6 illustrates this, with the newline character depicted by
the sequence \n.

From the Library of shannon powell

The Backslash 111

arguments
echo <-- - _gu —————— -| 39 East 12th Street\n New York, N.Y.10003 I

Figure 5.6 echo "$address"

Where this gets a bit weird is that double quotes can be used to hide single quotes from the
shell, and vice versa:

$ x="' Hello,' he said"

$ echo $x

'Hello, ' he said

$ article=' "Keeping the Logins from Lagging," Bell Labs Record'
$ echo $article

"Keeping the Logins from Lagging," Bell Labs Record

$

The Backslash

Functionally, the backslash (used as a prefix) is equivalent to placing single quotes around a
single character, though with a few minor exceptions. The backslash escapes the character that
immediately follows it. The general format is

\¢c

where c is the character you want to quote. Any special meaning normally attached to that
character is removed. Here is an example:

$ echo >

syntax error: 'newline or ;' unexpected
$ echo \>

>

$

In the first usage, the shell sees the > and thinks that you want to redirect echo’s output to a
file, so it expects a filename to follow. Because it doesn’t, the shell issues the error message.

In the next usage, the backslash escapes the special meaning of the >, so it is passed along to
echo as a character to be displayed.

$ x=*

$ echo \$x

Sx

$

In this case, the shell ignores the $ that follows the backslash, and as a result, variable
substitution is not performed.

From the Library of shannon powell

112

Chapter 5 Can | Quote You on That?

Because a backslash removes the special meaning of the character that follows, can you guess
what happens if that character is another backslash? It removes the special meaning of the
backslash:

$ echo \\
\
$

You could have also used single quotes to accomplish this task:

$ echo '\'
\
$

Using the Backslash for Continuing Lines

As mentioned at the start of this section, \ c is essentially equivalent to 'c'. The one exception
to this rule is when the backslash is used as the very last character on the line:

$ lines=one'

> 'two Single quotes tell shell to ignore newline
$ echo "$lines"

one

two

$ lines=one\ Try it with a \ instead

> two

S echo "$lines"

onetwo

$

When a backslash is the last character of a line of input, the shell treats it as a line continuation
character. It removes the newline character that follows and also does not treat the newline as
an argument delimiter (it’s as if it wasn’t even typed). This construct is often used for entering
long commands across multiple lines.

For example, the following is completely valid:

Longinput="The shell treats a backslash that's the \
last character of a line of input as a line \
continuation. It removes the newline too."

The Backslash Inside Double Quotes

We noted earlier that the backslash is one of the three characters interpreted by the shell inside
double quotes. This means that you can use the backslash inside these quotes to remove the
meaning of characters that otherwise would be interpreted inside double quotes (that is, other
backslashes, dollar signs, back quotes, newlines, and other double quotes). If the backslash

From the Library of shannon powell

The Backslash 113

precedes any other character inside double quotes, the backslash is ignored by the shell and
passed on to the program:

$ echo "\$x"

Sx

$ echo "\ is the backslash character"
\ is the backslash character

S x=5

$ echo "The value of x is \"$x\""

The value of x is "5"

$

In the first example, the backslash precedes the dollar sign so the shell ignores the dollar sign,
removes the backslash, and hands the result to echo. In the second example, the backslash
precedes a space, not interpreted by the shell inside double quotes. So the shell ignores the
backslash and passes it on to the echo command. The last example shows the backslash used to
enclose double quotes inside a double-quoted string.

As an exercise in the use of quotes, let’s say that you want to display the following line at the
terminal:

<<< echo $x >>> displays the value of x, which is $x

The intention here is to substitute the value of x in the second instance of $x, but not in the
first. Let’s first assign a value to x:

$ x=1
$

Now try displaying the line without using any quotes:

$ echo <<< echo $x >>> displays the value of x, which is $x
syntax error: '<' unexpected

$

The < signals input redirection to the shell, which lacks a subsequent filename, hence the
resultant error message.

If you put the entire message inside single quotes, the value of x won'’t be substituted at
the end. If you enclose the entire string in double quotes, both occurrences of $x will be
substituted. Tricky!

Here are two different ways to properly quote the string so that everything works as desired:

$ echo "<<< echo \$x >>> displays the value of x, which is $x"
<<< echo $x >>> displays the value of x, which is 1
$ echo '<<< echo $x >>> displays the value of x, which is' $x
<<< echo $x >>> displays the value of x, which is 1

$

In the first case, everything is enclosed in double quotes, and the backslash is used to prevent
the shell from performing variable substitution in the first instance of $x. In the second

case, everything up to the last $x is enclosed in single quotes but the variable that should be
substituted is added without quotes around it.

From the Library of shannon powell

114

Chapter 5 Can | Quote You on That?

There’s a slight danger to the latter solution, however: If the variable x contained filename
substitution or whitespace characters, they would be interpreted. A safer way of writing the
echo would have been

echo '<<< echo $x >>> displays the value of x, which is' "$x"

Command Substitution

Command substitution refers to the shell’s capability to replace a specified command with the
output of that command at any point in a command line. There are two ways in the shell to
perform command substitution: by enclosing the command in back quotes or surrounding it
with the $(...) construct.

The Back Quote

The back quote—often called “back tick”—is unlike any of the previously encountered types
of quotes because its purpose is not to protect characters from the shell but to tell the shell to
replace the enclosed command with its output. The general format for using back quotes is

~ command”™

where command is the name of the command to be executed and whose output is to be inserted
at that point.

Note

Using the back quote for command substitution is no longer the preferred method; however,
we cover it here because of the large number of older shell scripts that still use this construct.
You should also know about back quotes in case you ever need to write shell programs that
are portable to older Unix systems with shells that don’t support the newer, preferred s (.. .)
construct.

Here is an example:

$ echo The date and time is: “date”
The date and time is: Wed Aug 28 14:28:43 EDT 2002
$

When the shell does its initial scan of the command line, it recognizes the back quote and
expects a command to follow. In this case, the shell finds the date command so it executes
date and replaces the “date” sequence on the command line with the output from date.
After that, the shell divides the resultant command line into arguments in the normal manner
and then hands them all off to the echo command.

$ echo Your current working directory is “pwd”
Your current working directory is /users/steve/shell/ché

$

From the Library of shannon powell

Command Substitution 115

Here the shell executes pwd, inserts its output on the command line, and then executes the
echo. Note that in the following section, back quotes can be used in all the places where the
$(...) construct is used and, of course, vice-versa with the examples in this section.

The $(...) Construct

All modern Unix, Linux and any other POSIX-compliant shells support the newer and preferred
$(...) construct for command substitution. The general format is

$ (command)

where, just as with back quotes, command is the name of the command whose standard output
is to be substituted on the command line. For example:

$ echo The date and time is: $(date)
The date and time is: Wed Aug 28 14:28:43 EDT 2002
$

This construct is better than back quotes for a couple of reasons. First, complex commands
that use combinations of forward and back quotes can be difficult to read, particularly if the
typeface you're using doesn’t visually differentiate between single and back quotes; second,
$(...) constructs can be easily nested, allowing command substitution within command
substitution. Although nesting can also be performed with back quotes, it’s trickier. You'll see
an example of nested command substitution later in this section.

Let’s emphasize something important: you aren’t restricted to invoking a single command
between the parentheses. Several commands can be executed if separated by semicolons; and,
more commonly, you can also use command pipelines.

Here’s a modified version of the nu program that displays the number of logged-in users:

$ cat nu

echo There are $(who | wc -1) users logged in
$ nu Execute it
There are 13 users logged in

$

Because single quotes protect everything, the following output should be clear:

$ echo '$(who | we -1) tells how many users are logged in'
$(who | we -1) tells how many users are logged in

$

But command substitution is interpreted inside double quotes:

$ echo "You have $(ls | wc -1) files in your directory"
You have 7 files in your directory

$

From the Library of shannon powell

116 Chapter 5 Can | Quote You on That?

Remember that the shell is responsible for executing the command enclosed between the
parentheses. The only thing the echo command sees is the output that has been inserted by
the shell.

Note

Those leading spaces produced by the we command in the above example are a constant
source of annoyance for programmers. Can you think of a way to use sed to remove them?

Suppose that you're writing a shell program and want to assign the current date and time to a
variable called now.

Command substitution can be used for this:

$ now=$ (date) Execute date and store the output in now
$ echo $now See what got assigned

Wed Aug 28 14:47:26 EDT 2002

$

When you enter

now=§ (date)

the shell understands that the entire output from date is to be assigned to now. Therefore, you
don’t need to enclose $ (date) inside double quotes, though it’s a common practice.

Even commands that produce more than a single line of output can be stored inside a variable:

S filelist=$(1ls)
S echo $filelist
addresses intro lotsaspaces names nu numbers phonebook stat

$

What happened here? You end up with a horizontal listing of the files even though the
newlines from 1s were stored inside the filelist variable. The newlines got eaten up at
display time when the value of £ilelist was substituted by the shell in processing the
echo command line. Double quotes around the variable will preserve the newlines:

S echo "$filelist™"
addresses

intro

lotsaspaces

names

nu

numbers

phonebook

stat

$

From the Library of shannon powell

Command Substitution 117

Moving further into the world of shell scripting, let’s see how this works with file
redirection. For example, to store the contents of a file into a variable, you can use the
handy cat command:

$ namelist=$(cat names)
$ echo "$namelist"
Charlie

Emanuel

Fred

Lucy

Ralph

Tony

Tony

$

If you want to mail the contents of the file memo to all the people listed in the names file, you
can do the following:

$ mail $(cat names) < memo

$

Here the shell replaces the cat command with its output on the command line, so it looks
like this:

mail Charlie Emanuel Fred Lucy Ralph Tony Tony < memo

Then the shell executes mail, redirecting its standard input from the file memo and passing it to
the seven recipients specified.

Notice that Tony might receive the same mail twice because he’s listed twice in the names file.
You can remove any duplicate entries from the file by using sort with the -u option (remove
duplicate lines) rather than cat to ensure that each person only receives mail once:

$ mail $(sort -u names) < memo

$

Remember that the shell does filename substitution after it substitutes the output from
commands. Enclosing the commands inside double quotes prevents the shell from doing the
filename substitution on the output.

Command substitution is often used to change the value stored in a shell variable. For example,
if the shell variable name contains someone’s name, and you want to convert every character in
that variable to uppercase, you could use echo to send the variable to tr’s input, perform the
translation, and then assign the result back to the variable:

$ name="Ralph Kramden"

$ name=$(echo $name | tr '[a-z]' '[A-Z]') Translate to uppercase
$ echo $name

RALPH KRAMDEN

$

From the Library of shannon powell

118 Chapter 5 Can | Quote You on That?

The technique of using echo in a pipeline to write data to the standard input of the subsequent
command is simple but powerful, and is often used in shell programs.

The next example shows how cut can be used to extract the first character from the values
stored in a variable called filename:

$ filename=/users/steve/memos

$ firstchar=$(echo $filename | cut -cl)
$ echo $firstchar

/

$

sed is also often used to “edit” the value stored in a variable. Here it is used to extract the last
character from each line of the file specified by the variable file:

$ file=exec.o

$ lastchar=$(echo $file | sed 's/.*\(.\)$/\1/')
S echo $lastchar

o

$

The sed command replaces all the characters on the line with the last one (remember that
surrounding a pattern in parentheses causes it to be saved in a register[el] in this case register 1,
which is then referenced as \1). The result of the sed substitution is stored in the variable
lastchar. The single quotes around the sed command are important because they prevent
the shell from trying to interpret the backslashes. (Question: would double quotes also have
worked?)

Finally, command substitutions can be nested. Suppose that you want to change every
occurrence of the first character in a variable to something else. In a previous example,
firstchar=$ (echo $filename | cut -cl) gets the first character from filename, but
how would we use this character to change every occurrence of that character in filename?
A two-step process is one way:

$ filename=/users/steve/memos

$ firstchar=$(echo $filename | cut -cl)

$ filename=$ (echo $filename | tr "$firstchar" "*v) translate / to »
$ echo $filename

*users”steve”memos

$

But a single, nested command substitution can perform the same operation:

$ filename=/users/steve/memos

$ filename=$(echo $filename | tr "$(echo $filename | cut -cl)" ""n)
$ echo $filename

*users”steve”memos

$

If you have trouble understanding this example, compare it to the previous one: Note how the
firstchar variable in the earlier example is replaced by the nested command substitution;
otherwise, the two examples are the same.

From the Library of shannon powell

Command Substitution 119

The expr Command

Although the standard shell supports built-in integer arithmetic, older shells don’t have this
capability. In that situation, the mathematical equation solver expr can be used instead:

S expr 1 + 2
3
$

It’s easy to work with, but expr isn’t very good at parsing equations, so each operator and
operand given to expr must be separated by spaces to be properly understood. That explains
the following:

S expr 1+2
1+2
$

The usual arithmetic operators are recognized by expr: + for addition, - for subtraction, / for
division, * for multiplication, and % for modulus (remainder).

$ expr 10 + 20 / 2
20
$

Multiplication, division, and modulus have higher precedence than addition and subtraction,
as with standard mathematics. Thus, in the preceding example the division was performed
before the addition.

But what about this example?

S expr 17 * 6
expr: syntax error

$

The shell saw the * and substituted the names of all the files in your directory, which expr had
no idea how to interpret! In the case of multiplication especially, the expression given to expr
must be quoted to keep it away from the shell’s interference—but not as a single argument, as
in this example:

$ expr "17 * 6"

17 * 6

$

Remember that expr must see each operator and operand as a separate argument; the preceding
example sends the whole expression in as a single argument, which doesn’t give you the results
you want.

This is a job for the backslash!

$ expr 17 * 6
102
$

From the Library of shannon powell

120 Chapter 5 Can | Quote You on That?

Naturally, one or more of the arguments to expr can be the value stored inside a shell variable
because the shell takes care of the substitution first anyway:

$ i=1

S expr $i + 1

2

$

This is the older method for performing arithmetic on shell variables and is less efficient
than the shell built-in $ (...) construct. In the case of incrementing or otherwise modifying a
variable, you can use the command substitution mechanism to assign the output from expr
back to the variable:

$ i=1

$ i=$(expr $i + 1) Add 1toi

S echo $i

2

$

In legacy shell programs, you're more likely to see expr used with the back quotes discussed
earlier:

$ i="expr $i + 1° Add1toi

S echo $i

3

$

Similar to the shell’s built-in arithmetic, expr only evaluates integer arithmetic expressions.
You can use awk or be if you need to do floating point calculations. The difference? 17 is an
integer, while 13.747 is a floating point (that is, number with a decimal point) value.

Also note that expr has other operators. One of the most frequently used is the : operator,
which is used to match characters in the first operand against a regular expression given as the
second operand. By default, it returns the number of characters matched.

For example, the expr command
expr "$file" : ", ¥

returns the number of characters stored in the variable £ile, because the regular expression
.* matches all the characters in the string. For more details on expr and the powerful colon
construct, consult your Unix User’s Manual or the man page for expr on your system.

Table A.5 in Appendix A summarizes the way quotes are handled by the shell.

From the Library of shannon powell

0

Passing Arguments

Shell programs become far more useful after you learn how to process arguments passed to
them. In this chapter, you'll learn how to write shell programs that take arguments typed on
the command line. Recall the one-line program run that you wrote in Chapter 4 to run the file
sys.caps through tbl, nroff, and 1p:

$ cat run
tbl sys.caps | nroff -mm -Tlp | lp
$

Suppose that you need to run other files besides sys.caps through this same command
sequence. You could make a separate version of run for each such file; or, you could modify the
run program so that you could specify the name of the file to be run on the command line.
That is, you could change run so that you could type

run new.hire

for example, to specify that the file new.hire is to be printed through this command sequence, or

run sys.caps
to specify the file sys.caps.

Whenever you execute a shell program, the shell automatically stores the first argument in the
special shell variable 1, the second argument in the variable 2, and so on. (For convenience’s
sake, from now on we'll refer to these as $1, $2, and so on, even though the $ is actually

part of the variable reference notation, not the variable name.) These special variables—more
formally known as positional parameters because they’re based on the position of the value in
the command line—are assigned after the shell has done its normal command-line processing
(that is, I/O redirection, variable substitution, filename substitution, and so on).

To modify the run program to accept the name of the file as an argument, all you do to the
program is change the reference to the file sys.caps so that it instead references the first
argument typed on the command line:

$ cat run
tbl $1 | nroff -mm -Tlp | lp
$

From the Library of shannon powell

122

Chapter 6 Passing Arguments

$ run new.hire
request id is laserl-24 (standard input)

$

Execute it with new.hire as the argument

Each time you execute the run program, whatever word follows on the command line will be
stored inside the first positional parameter by the shell and then handed to the program itself.

In the first example, new.hire will be stored in this parameter.

Substitution of positional parameters is identical to substitution of other types of variables,

so when the shell sees

tbl $1

it replaces the $1 with the first argument supplied to the program: new.hire.

As another example, the following program, called ison, lets you know if a specified user is

logged on:

$ cat ison
who | grep $1

$ who See who’s on
root console Jul 7 08:37

barney tty03 Jul 8 12:28

fred tty04 Jul 8 13:40

joanne tty07 Jul 8 09:35

tony ttyl9 Jul 8 08:30

lulu tty23 Jul 8 09:55

$ ison tony

tony ttyl9 Jul 8 08:30

$ ison pat

$ Not logged on

The $# Variable

In addition to the positional variables, the special shell variable $# gets set to the number
of arguments that were typed on the command line. As you'll see in the next chapter, this
variable is often tested by programs to determine whether the correct number of arguments was

specified by the user.

The next program, called args, was written just to get you more familiar with the way
arguments are passed to shell programs. Study the output from each example and make sure

that you understand it:

$ cat args Look at the program
echo $# arguments passed

echo arg 1 = :$1: arg 2 = :$2: arg 3 = :$3:

$ args a b ¢ Execute it

3 arguments passed

arg 1 = :a: arg 2 = :b: arg 3 = :cC:

$ args a b Try it with two arguments

From the Library of shannon powell

The $* Variable 123

2 arguments passed

arg 1 = :a: arg 2 = :b: arg 3 = :: Unassigned args are null
$ args Try it with no arguments
0 arguments passed

arg 1 =:: arg 2 =:: arg 3 =

$ args "a b c" Try quotes

1 arguments passed

arg 1 = :a b c: arg 2 = :: arg 3 =

$ 1ls x¥* See what files start with x
Xact

Xtra

$ args x* Try filename substitution

2 arguments passed

arg 1 = :xact: arg 2 = :xtra: arg 3 =

$ my bin=/users/steve/bin

$ args $my bin And variable substitution
1 arguments passed

arg 1 = :/users/steve/bin: arg 2 = :: arg 3 =

$ args $(cat names) Pass the contents of names
7 arguments passed

arg 1 = :Charlie: arg 2 = :Emanuel: arg3 = :Fred:

$

As you can see, the shell does its normal command-line processing even when it’s executing
your shell programs. This means that you can take advantage of the normal niceties, such as
filename substitution and variable substitution, when specifying arguments to your programs.

The s$* Variable

The special variable $* references all the arguments passed to the program. This is often useful
in programs that take an indeterminate or variable number of arguments. You'll see some more
practical examples later. Here’s a program that illustrates its use:

$ cat args2

echo $# arguments passed

echo they are :$*:

$ args2 a b ¢

3 arguments passed

they are :a b c:

$ args2 one two
2 arguments passed

they are :one two:

$ args2

0 arguments passed

they are ::

$ args2 *

8 arguments passed

they are :args args2 names nu phonebook stat xact xtra:

$

From the Library of shannon powell

124 Chapter 6 Passing Arguments

A Program to Look Up Someone in the Phone Book

Here’s the phonebook file from previous examples:

$ cat phonebook

Alice Chebba 973-555-2015
Barbara Swingle 201-555-9257
Liz Stachiw 212-555-2298
Susan Goldberg 201-555-7776
Susan Topple 212-555-4932
Tony Iannino 973-555-1295
$

You know how to look up someone in the file by using grep:

$ grep Cheb phonebook
Alice Chebba 973-555-2015
$

And you know that if you want to look up someone by their full name, you need to put quotes
around the words to keep the argument together:

$ grep "Susan T" phonebook
Susan Topple 212-555-4932
$

It would be nice to write a shell program that you could use to look up someone. Let’s call
the program lu and have it take as its argument the name of the person to seek:

S cat lu

#

Look someone up in the phone book
#

grep $1 phonebook
$

Here’s a sample use of 1lu:

$ lu Alice

Alice Chebba 973-555-2015

$ lu Susan

Susan Goldberg 201-555-7776

Susan Topple 212-555-4932

$ lu "Susan T"

grep: can't open T

phonebook:Susan Goldberg 201-555-7776
phonebook: Susan Topple 212-555-4932
$

In the preceding example, you were careful to enclose Ssusan T in double quotes; so what
happened? Look again at the grep invocation in the 1u program:

grep $1 phonebook

From the Library of shannon powell

A Program to Add Someone to the Phone Book 125

See the problem? Enclosing Susan T inside double quotes results in its getting passed to 1u
as a single argument, but when the shell substitutes this value for $1 on grep’s command line
within the program itself, it then passes it as two arguments to grep.

You can fix this problem by enclosing $1 inside double quotes in the 1u program:

S cat lu

#

Look someone up in the phone book -- version 2
#

grep "$1" phonebook
$

Single quotes wouldn’t work in this instance. Why not?

Now let’s try that invocation again:

$ lu Tony

Tony Iannino 973-555-1295 This still works

$ lu "Susan T" Now try this again
Susan Topple 212-555-4932

$

A Program to Add Someone to the Phone Book

Let’s continue with the development of programs that work with the phonebook file. You'll
probably want to add someone to the file at some point, particularly because our phonebook
file is so small, so let’s write a program called add that takes two arguments: the name of the
person to be added and their phone number.

The add program simply appends the name and number, separated by a tab character, onto the
end of the phonebook file:

S cat add

#

Add someone to the phone book
#

echo "s1 $2" >> phonebook
$

Although you can't tell, there’s a tab character that separates the $1 from the $2 in the
preceding echo command. This tab must be quoted to make it to echo without getting gobbled
up by the shell.

Let’s try out the program:

$ add 'Stromboli Pizza' 973-555-9478
$ lu Pizza See if we can find the new entry
Stromboli Pizza 973-555-9478 So far, so good

From the Library of shannon powell

126

Chapter 6 Passing Arguments

$ cat phonebook

Alice Chebba 973-555-2015
Barbara Swingle 201-555-9257
Liz Stachiw 212-555-2298
Susan Goldberg 201-555-7776
212-555-4932
Tony Iannino 973-555-1295
Stromboli Pizza 973-555-9478
$

See what happened

Susan Topple

Stromboli Pizza was quoted so that the shell passed it along to add as a single argument
(what would have happened if it wasn’t quoted?). After add finished executing, 1u was run
to see whether it could find the new entry, and it did. The cat command was executed to
see what the modified phonebook file looked like. The new entry was added to the end, as
intended.

Unfortunately, the new file is no longer sorted. This won't affect the operation of the 1u
program but it’s a nice feature nonetheless. The solution? Add sorting to the program by using
the sort command:

$ cat add

#

Add someone to the phonebook file -- version 2
#

echo "$1 $2" >> phonebook

sort -o phonebook phonebook

$

Recall that the -o option to sort specifies where the sorted output is to be written, and that
this can be the same as the input file:

$ add 'Billy Bach' 201-555-7618
$ cat phonebook

Alice Chebba 973-555-2015
Barbara Swingle 201-555-9257
Billy Bach 201-555-7618

Liz Stachiw

Stromboli Pizza

Susan Goldberg
Susan Topple
Tony Iannino

$

212-555-2298
973-555-9478
201-555-7776
212-555-4932
973-555-1295

Each time a new entry is added, the phonebook file will get re-sorted so that multi-line matches

are always in alphabetical order.

From the Library of shannon powell

A Program to Remove Someone from the Phone Book

A Program to Remove Someone from the Phone Book

No set of programs that enable you to look up or add someone to the phone book would be
complete without a program to remove someone from the phone book too. We'll call this program
rem and let the user specify the name of the person to be removed as a command argument.

What should the strategy be for developing the program? Essentially, you want to remove the
line from the file that contains the specified name, which is a reverse pattern match. The -v
option to grep can be used here because it does exactly what we want, printing all lines from a
file that don’t match a pattern:

$ cat rem
#
Remove someone from the phone book

#

grep -v "$1" phonebook > /tmp/phonebook
mv /tmp/phonebook phonebook
$

The grep construct writes all lines that don’t match into the file /tmp/phonebook. (Tip: /tmp
is a directory designated in Unix systems for temporary files and is usually wiped clean every
time the system restarts.) After the grep command is done, the old phonebook file is replaced
by the new one from /tmp.

$ rem 'Stromboli Pizza' Remove this entry

$ cat phonebook

127

Alice Chebba

Barbara Swingle

Billy Bach
Liz Stachiw

Susan Goldberg

Susan Topple
Tony Iannino

973-555-2015
201-555-9257
201-555-7618
212-555-2298
201-555-7776
212-555-4932
973-555-1295

$ rem Susan

$ cat phonebook

Alice Chebba 973-555-2015
Barbara Swingle 201-555-9257
Billy Bach 201-555-7618
Liz Stachiw 212-555-2298
Tony Iannino 973-555-1295

$

The first case, where Stromboli Pizza was removed, worked fine. In the second case,
however, both Susan entries were removed because they both matched the pattern. Not good!
You can use the add program to add them back to the phone book:

$ add 'Susan Goldberg' 201-555-7776
$ add 'Susan Topple' 212-555-4932
$

From the Library of shannon powell

128

Chapter 6 Passing Arguments

In Chapter 7, you'll learn how to test the action prior to taking it so the program can
determine whether more than one matching entry is found. The program might want to alert
the user that more than one match has been found, for example, rather than just blindly
delete multiple entries. (This can be very helpful, because most implementations of grep will
match everything if an empty string is passed as the pattern, which would effectively delete the
phonebook entirely. Not good.)

Incidentally, note that sed could have also been used to delete the matching entry. In such a
case, the grep could be replaced with

sed "/$1/d" phonebook > /tmp/phonebook

to achieve the same result. The double quotes are needed around the sed command’s argument
to ensure that the value of $1 is substituted, while at the same time ensuring that the shell
doesn’t see a command line like

sed /Stromboli Pizza/d phonebook > /tmp/phonebook

and pass three arguments to sed rather than two.

${n}
If you supply more than nine arguments to a program, you cannot access the tenth and greater
arguments with $10, $11, and so on. If you try to access the tenth argument by writing

$10

the shell actually substitutes the value of $1 followed by a 0. Instead, the format
${n}

must be used. To directly access argument 10, you must write

{10}

in your program, and so on for arguments 11, 12, and so on.

The shift Command

The shift command allows you to effectively left-shift your positional parameters. If you
execute the command

shift

whatever was previously stored inside $2 will be assigned to $1, whatever was previously stored
in $3 will be assigned to $2, and so on. The old value of $1 will be irretrievably lost.

When this command is executed, $# (the number of arguments variable) is also automatically
decremented by one:

$ cat tshift Program to test the shift
echo S# $*

shift

echo S$# S$*

From the Library of shannon powell

The shift Command 129

shift

echo S# $*
shift

echo S$# S$*
shift

echo S# $*
shift

echo S# $*
tshift a b c d e
abcde
bcde
cde

de

e

v O K N W s o1 W»

If you try to shift when there are no variables to shift (that is, when $# already equals zero),
you'll get an error message from the shell (the error will vary from one shell to the next):

prog: shift: bad number

where prog is the name of the program that executed the offending shift.

You can shift more than one “place” at once by writing a count immediately after shift, as in
shift 3

This command has the same effect as performing three separate shifts:

shift
shift
shift

The shift command is useful when processing a variable number of arguments. You'll see it
put to use when you learn about loops in Chapter 8. For now, just remember that positional
parameters can be moved along the chain by using shift.

From the Library of shannon powell

This page intentionally left blank

From the Library of shannon powell

v

Decisions, Decisions

This chapter introduces the conditional statement, a construct that is present in almost every
programming language: if. It enables you to test a condition and then change the flow of
program execution based on the result of the test.

The general format of the if command is

if command,
then
command
command

fi

where command, is executed and its exit status is tested. If the exit status is zero, the commands
that follow between then and £i are executed; otherwise, they’re skipped.

Exit Status

To understand how conditional tests work, it’s important to know about how Unix works with
what’s called the exit status. Whenever any program completes execution, it returns an exit
status code to the shell. This status is a numeric value that indicates whether the program ran
successfully or failed. By convention, an exit status of zero indicates that a program succeeded,
and non-zero indicates that it failed, with different values indicating different kinds of failures.

Failures can be caused by invalid arguments passed to the program, or by an error condition
detected by the program. For example, the cp command returns a non-zero (fail) exit status if
the copy fails (for example, if it can’t find the source file or create the destination file), or if the
arguments aren’t correctly specified (for example, the wrong number of arguments, or more
than two arguments and the last one isn’t a directory).

What do we mean by non-zero? Simply, any integer value that isn’t 0. Most command man
pages list possible exit status values too, so possible error conditions for a file copy command
could be 1 for file not found, 2 for file not readable, 3 for destination folder not found, 4 for
destination folder not writeable, 5 for general error copying the file and, of course, O for success.

From the Library of shannon powell

132 Chapter 7 Decisions, Decisions

In the case of grep, an exit status of zero (success) is returned if it finds the specified pattern in
at least one of the files specified; a non-zero value is returned if it can’t find the pattern or if a
different error occurs, like failure to open a specified source file.

In a pipeline, the exit status reflects the last command in the pipe. So in

who | grep fred

the grep exit status is used by the shell as the exit status for the whole pipeline. In this case,
an exit status of zero (success) means that £red was found in who's output (that is, fred was
logged on at the time that this command was executed).

The s$? Variable

The shell variable $? is automatically set by the shell to the exit status of the last command
executed. Naturally, you can use echo to display its value at the terminal.

$ cp phonebook phone2

$ echo §?

0 Copy “succeeded”
$ cp nosuch backup

cp: cannot access nosuch

S echo $?

2 Copy “failed”

$ who See who's logged on
root console Jul 8 10:06

wilma tty03 Jul 8 12:36

barney tty04 Jul 8 14:57

betty ttyl5 Jul 8 15:03

$ who | grep barney
barney tty04 Jul 8 14:57

$ echo §? Print exit status of last command (grep)
0 grep "succeeded"

$ who | grep fred

S echo $?

1 grep "failed"

$ echo §?

0 Exit status of last echo

$

Note that the numeric result of a “failure” for some commands can vary from one version of
Unix to the next, but success is always signified by a zero exit status.

Let’s write a shell program called on that tells us whether a specified user is logged on to the
system. The name of the user to check will be passed to the program on the command line.

If the user is logged on, we’ll print a message to that effect; otherwise we’ll say nothing. Here is
the program:

From the Library of shannon powell

Exit Status 133

$ cat on
#
determine if someone is logged on

#
user="8$1"

if who | grep "$user"
then
echo "Suser is logged on"
fi
$

This first argument typed on the command line is stored in the shell variable user. Then the
if command executes the pipeline

who | grep "Suser"

and tests the exit status returned by grep. If the exit status is zero (success), grep found user
in who's output. In that case, the echo command that follows is executed. If the exit status is
non-zero (failure), the specified user is not logged on, and the echo command is skipped.

The echo command is indented from the left margin for aesthetic reasons only. In this case,
just a single command is enclosed between the then and £i. When more commands are
included, and when the nesting gets deeper, indentation can have a significant impact on the
program’s readability. Later examples will help illustrate this point.

Here are some sample uses of on:

$ who

root console Jul 8 10:37

barney tty03 Jul 8 12:38

fred tty04 Jul 8 13:40

joanne tty07 Jul 8 09:35

tony ttyl9 Jul 8 08:30

lulu tty23 Jul 8 09:55

$ on tony We know he's on
tony ttyl9 Jul 8 08:30 Where did this come from?
tony is logged on

$ on steve We know he's not on
$ on ann Try this one

joanne tty07 Jgul 8 09:35
ann is logged on

$

There are a couple of problems with the program as written, however. When the specified user
is logged on, the corresponding line from who's output is also displayed, courtesy of the call
to grep. This may not be such a bad thing, but the program requirements called for only the
informational “logged on” message to be displayed and nothing else.

From the Library of shannon powell

134 Chapter 7 Decisions, Decisions

This extra line is displayed because of the conditional test: not only does grep return an exit
status in the pipeline

who | grep "Suser"

but it also goes about its normal function of writing any matching lines to standard output,
even though we're really not interested in that.

Since we're not interested in seeing the result of the command, just testing the exit code, we
can dispose of grep’s output by redirecting it to the system’s “garbage can,” /dev/null. This
is a special file on the system that anyone can read from (and get an immediate end of file) or
write to. When you write to it, the bits vanish, as if it were a massive black hole!

who | grep "$user" > /dev/null
That'll solve the superfluous output problem.

The second problem with on appears when the program is executed with the argument ann.
Even though ann is not logged on, grep matches the characters ann for the user joanne. What
we need is a more restrictive pattern, which you learned how to do in Chapter 3 where we
talked about regular expressions. Because who lists each username in column one of the output,
we can anchor the pattern to match the beginning of the line by preceding the pattern with
the character *:

who | grep ""“$user" > /dev/null

But that’s still not enough. Search for a pattern like bob and grep still matches a line like
bobby tty07 Jul 8 09:35

What you need to do is also anchor the pattern on the right too. Realizing that who ends each
username with one or more spaces, the further modified pattern

u"suser [
now only matches lines for the specified user. Problem two fixed!

Let’s try the new and improved version of on:

$ cat on

#

determine if someone is logged on -- version 2
#

user="3$1"

if who | grep "“$user " > /dev/null

then
echo "Suser is logged on"
fi
$ who Who's on now?
root console Jul 8 10:37
barney tty03 Jul 8 12:38
fred tty04 Jul 8 13:40

From the Library of shannon powell

The test Command 135

joanne tty07 Jul 8 09:35

tony ttyl9 Jul 8 08:30

lulu tty23 Jul 8 09:55

$ on lulu

lulu is logged on

$ on ann Try this again

$ on What happens if we don't give any arguments?
$

If no arguments are specified, user will be null. grep will then look through who's output for
lines that start with a blank (why?). It won’t find any, and so just a command prompt will be
returned. In the next section, you'll see how to test whether the correct number of arguments
has been supplied to a program and, if not, take some action.

The test Command

Though the previous example program used a pipeline to test for the if statement, a built-in
shell command called test is much more commonly used for testing one or more conditions.
Its general format is

test expression

where expression represents the condition you're testing. test evaluates expression, and
if the result is true, it returns an exit status of zero, otherwise the result is false, and it returns
a nonzero exit status.

String Operators

As an example, the following command returns a zero exit status if the shell variable name
contains the characters julio:

test "$name" = julio

The = operator is used to test whether two values are identical. In this case, we're testing to see
whether the contents of the shell variable name are identical to the characters julio. If it is,
test returns an exit status of zero; nonzero otherwise.

Note that test must see all operands ($name and julio) and operators (=) as separate
arguments, meaning that they must be delimited by one or more whitespace characters.

Getting back to the if command, to echo the message “Would you like to play a game?”
if name contains the characters julio, you would write your if command like this:

if test "$name" = julio
then

echo "Would you like to play a game?"
fi

When the if command gets executed, the command that follows the if is executed, and its
exit status is evaluated. The test command is passed the three arguments $name (with its

From the Library of shannon powell

136

Chapter 7 Decisions, Decisions

value substituted, of course), =, and julio. test then evaluates whether the first argument is
identical to the third argument and returns a zero exit status if it is and a nonzero exit status if
it is not.

The exit status returned by test is then tested by the if statement. If it’s zero, the commands
between then and £1i are executed; in this case, the single echo command is executed. If the
exit status is nonzero, the echo command is skipped.

As demonstrated above, it’s good programming practice to enclose shell variables that are
arguments to test inside a pair of double quotes (to allow variable substitution). This ensures
that test sees the argument in the even if its value is null. For example, consider the following
example:

$ name= Set name null
S test $name = julio
sh: test: argument expected

$

Because name was null, only two arguments were passed to test: = and julio—because the
shell substituted the value of name before parsing the command line into arguments. In fact,
after sname was substituted by the shell, it was as if you typed the following:

test = julio

When test executed, it saw only two arguments (see Figure 7.1) and therefore issued the
error message.

st - 20UTENS

Figure 7.1 test S$name = julio with name null

By placing double quotes around the variable, you ensure that test sees the argument because
quotes act as a “placeholder” when the argument is null.

$ test "$name" = julio

$ echo $? Print the exit status
1

$

Even if name is null, the shell still passes three arguments to test, the first one being a null
value (see Figure 7.2).

null
test g BOUmeNts
julio
Figure 7.2 test "$name" = julio with name null

From the Library of shannon powell

The test Command 137

Other operators can be used to test character strings. There are a number of them, as
summarized in Table 7.1.

Table 7.1 test String Operators

Operator Returns TRUE (exit status of 0) if

string, = string, string, is identical to string,

string, != string, string, is not identical to string,

string string is not null

-n string string is not null (and string must be seen by test)
-z string stringis null (and string must be seen by test)

You've seen how the = operator is used. The ! = operator is similar, except it tests two strings
for inequality. That is, the exit status from test is zero if the two strings are not equal, and
nonzero if they are.

Let’s look at three similar examples.

$ day="monday"

$ test "$day" = monday

S echo $?

0 True
$

The test command returns an exit status of O because the value of day is equal to the
characters monday. Now look at the following:

$ day="monday"

$ test "$day" = monday

$ echo $?

1 False
$

Here we assigned the characters monday—including the space character that immediately
followed—to day. Therefore, when the previous test was made, test returned FALSE because
the characters "monday" were not identical to the characters "monday".

If you wanted these two values to be considered equal, omitting the double quotes around
the variable reference would have caused the shell to “eat up” the trailing space character, and
test would have never seen it:

$ day="monday"

$ test $day = monday

S echo $?

0

$ True

From the Library of shannon powell

138 Chapter 7 Decisions, Decisions

Although this seems to violate our rule about always quoting shell variables that are arguments
to test, it’s okay to omit the quotes if you're sure that the variable is not null (and not
composed entirely of whitespace characters).

You can test to see whether a shell variable has a null value with the third operator listed in
Table 7.1:

test "sday"

This returns TRUE if day is not null and FALSE if it is. Quotes are not necessary here because
test doesn’t care whether it sees an argument in this case. Nevertheless, you are better off
using them here as well because if the variable consists entirely of whitespace characters, the
shell will get rid of the argument if it’s not enclosed in quotes.

$ blanks=" "

$ test $blanks Is it not null?

$ echo $?

1 False—it's null

$ test "$blanks" And now?

S echo $?

0 True—it's not null
$

In the first case, test was not passed any arguments because the shell ate up the four spaces in
blanks. In the second case, test got one argument consisting of four space characters which is
not null.

In case we seem to be belaboring the point about blanks and quotes, realize that this is a
frequent source of shell programming errors. It’s good to really understand the principles here
to save yourself a lot of programming headaches in the future.

There is another way to test whether a string is null, and that’s with either of the last two
operators listed previously in Table 7.1. The -n operator returns an exit status of zero if the
argument that follows is not null. Think of this operator as testing for nonzero length.

The -z operator tests the argument that follows to see whether it is null and returns an exit
status of zero if it is. Think of this operator as testing to see whether the following argument
has zero length.

So the command

test -n "sday"

returns an exit status of O if day contains at least one character. The command
test -z "sdataflag"

returns an exit status of 0 if dataflag doesn’t contain any characters. That is, -n and -z are the
opposite of each other, and both exist just to make it easier to write clear, readable conditional
statements.

From the Library of shannon powell

The test Command 139

Be warned that both of the preceding operators expect an argument to follow, so get into the
habit of enclosing the argument within double quotes.

$ nullvar=

$ nonnullvar=abc

$ test -n "$nullvar" Does nullvar have nonzero length?
$ echo $?

1 No

$ test -n "$nonnullvar" And what about nonnullvar?
$ echo $?

0 Yes

$ test -z "$nullvar"” Does nullvar have zero length?
$ echo $?

0 Yes

$ test -z "$nonnullvar" And nonnullvar?

$ echo $?

1 No

$

Note that test can also be picky about its arguments. For example, if the shell variable symbol
contains an equals sign, look at what happens if you try to test it for zero length:

$ echo $symbol

$ test -z "$symbol"
sh: test: argument expected

$

The = operator has higher precedence than the -z operator, so test attempts to process the
command as an equality test, and expects an argument to follow the =. To avoid this sort of
problem, many shell programmers write their test commands as

test X"Ssymbol" = X

which will be true if symbol is null, and false if it’s not. The X in front of symbol prevents test
from interpreting the characters stored in symbol as an operator.

An Alternative Format for test

The test command is used so often by shell programmers that an alternative format of the
command is available and can make your programs a lot neater: [. This format improves the
readability of if statements and other conditional tests throughout your shell scripts.

You'll recall that the general format of the test command is

test expression

This can also be expressed in the alternative format as

[expression]

From the Library of shannon powell

140

Chapter 7 Decisions, Decisions

The [is actually the name of the command (who said anything about command names having
to be alphanumeric characters?). It still initiates execution of the same test command, but
when used this way it also expects to see a closing] at the end of the expression. Spaces must
appear after the [and before the].

You can rewrite the test command shown in a previous example with this alternative format
as shown:

$ [-z "$nonnullvar"]
$ echo $?
1
$
When used in an if command, the alternative format looks like this:
if ["$name" = julio]
then
echo "Would you like to play a game?"
fi
Which format of the 1£ command you use is up to you; we prefer the [...] format, which

coaxes shell programming into a syntax much more similar to other popular programming
languages, so that’s what we’ll use throughout the remainder of the book.

Integer Operators

test has a large assortment of operators for performing integer comparisons. Table 7.2
summarizes these operators.

Table 7.2 test Integer Operators

Operator Returns TRUE (exit status of 0) if
int, -eq int, int, is equal to int,

int, -ge int, int, is greater than or equal to int,
int, -gt int, int, is greater than int,

int, -le int, int, is less than or equal to int,
int, -1t int, int, is less than int,

int, -ne int, int, is not equal to int,

For example, the operator -eq tests to see whether two integers are equal. So if you had a shell
variable called count and you wanted to see whether its value was equal to zero, you would
write

["Scount" -eq 0]

From the Library of shannon powell

The test Command 141

Other integer operators behave similarly, so

["$choice" -1t 5]

tests to see whether the variable choice is less than 5.

The command

["$index" -ne "Smax"]

tests to see whether the value of index is not equal to the value of max.

Finally

["s#" -ne 0]

tests to see whether the number of arguments passed to the command is not equal to zero.

It’s important to note that the test command, not the shell itself, interprets the variable’s
value as an integer when an integer operator is used, so these comparisons work regardless of
the shell variable’s type.

Let’s have a closer look at the difference between test’s string and integer operators with a
few examples.

$ x1="005"

S x2=" 10"

$ ["$x1" = 5] String comparison
S echo $?

1 False

$ ["$x1" -eq 5 1] Integer comparison
$ echo §?

0 True

$ ["sx2" = 10] String comparison
S echo $?

1 False

$ ["$x2" -eq 10] Integer comparison
S echo $?

0 True

$

The first test
[l|$xll| =5]

uses the string comparison operator = to test whether the two strings are identical. They're
not, because the first string is composed of the three characters 005, and the second the single
character 5.

In the second test, the integer comparison operator -eq is used. Treating the two values as
integers (numbers), 005 is equal to 5, as verified by the test exit status.

From the Library of shannon powell

142

Chapter 7 Decisions, Decisions

The third and fourth tests are similar, but in these cases you can see how even a leading space
stored in the variable x2 can influence a test made with a string operator versus one made with
an integer operator.

File Operators

Virtually every shell program deals with one or more files. For this reason, a wide assortment of
operators are provided by test to enable you to ask various questions about files. Each of these
operators is unary in nature, meaning that they expect a single argument to follow. In all cases,
the second argument is the name of a file (and that includes a directory name, as appropriate).

Table 7.3 lists the common file operators.

Table 7.3 Commonly Used test File Operators

Operator Returns TRUE (exit status of 0) if
-d file file is a directory

-e file file exists

-f file file is an ordinary file

-r file file is readable by the process
-s file file has nonzero length

-w file file is writable by the process
-x file file is executable

-L file fileis a symbolic link

The command

[-f /users/steve/phonebook]

tests whether the file /users/steve/phonebook exists and is an ordinary file (that is, not a
directory or special file).

The command
[-r /users/steve/phonebook]
tests whether the indicated file exists and is also readable by you.

The command

[-s /users/steve/phonebook]

tests whether the indicated file has non-zero content (that is, isn’t an empty file). This is useful
if you create an error log file and later want to see whether anything was written to it:

if [-s SERRFILE]
then

From the Library of shannon powell

The test Command 143

echo "Errors found:"
cat SERRFILE
fi

A few more test operators, when combined with the previously described operators, enable
you to specify more complicated conditional expressions.

The Logical Negation Operator !

The unary logical negation operator ! can be placed in front of any other test expression to
negate the result of the evaluation of that expression. For example,

[! -r /users/steve/phonebook]

returns a zero exit status (true) if /users/steve/phonebook is not readable; and

[! -f "Smailfile"]

returns true if the file specified by $mailfile does not exist or is not an ordinary file. Finally,
[1 "gxin = "gx2n]

returns true if $x1 is not identical to $x2 and is obviously equivalent to (and the more
confusing cousin of) the clearer conditional expression

[u$X1u I= u$X2u]

The Logical AND Operator —a

The operator -a performs a logical AND of two expressions and returns TRUE only if the two
joined expressions are both true. So

[-f "Smailfile" -a -r "$mailfile"]
returns TRUE if the file specified by $mailfile is an ordinary file and is readable by you.

(An extra space was placed around the -a operator to aid in the expression’s readability and
obviously has no effect on its execution.)

The command
["Scount" -ge 0 -a "Scount" -1t 10]

will be true if the variable count contains an integer value greater than or equal to zero but less
than 10. The -a operator has lower precedence than the integer comparison operators (and the
string and file operators, for that matter), meaning that the preceding expression gets evaluated as

("Scount" -ge 0) -a ("$count" -1t 10)
as you would expect.

In some cases, it’s important to know that test immediately stops evaluating an AND
expression as soon as something is proven to be false, so a statement like

[V -f "$file" -a $(who > $file)]

From the Library of shannon powell

144

Chapter 7 Decisions, Decisions

will not run in the subshell with the who invocation if the | -f (non-existence) test fails,
because test already knows that the AND (-a) expression is false. Subtle, but something that
can trip up shell programmers if they try to jam too much into conditional expressions with
the assumption that everything is run prior to the conditional tests being applied.

Parentheses

You can use parentheses in a test expression to alter the order of evaluation as needed; just
make sure that the parentheses themselves are quoted because they have a special meaning to
the shell. So to translate the earlier example into a test command, you would write

[\("$Scount" -ge 0 \) -a \("$count" -1t 10 \) 1

As is typical, spaces must surround the parentheses because test expects to see every element
in the conditional statement as a separate argument.

The Logical OR Operator -o

The -o operator is similar to the -a operator, only it forms a logical OR of two expressions.
That is, evaluation of the expression will be true if either the first expression is true or the
second expression is true or both expressions are true.

[-n "$mailopt" -o -r SHOME/mailfile]

This command will be true if the variable mailopt is not null or if the file $SHOME/mailfile is
readable by you.

The -o operator has lower precedence than the -a operator, meaning that the expression
"$a" -eq 0 -o "$b" -eq 2 -a "$c" -eq 10

gets evaluated by test as

"$a" -eq 0 -0 ("sb" -eq 2 -a "$c" -eq 10)

Naturally, you can use parentheses to change this order if necessary:

\("$a" -eq 0 -0 "$b" -eq 2 \) -a "$c" -eq 10

Since precedence is critically important in complex conditional statements, you'll find that
a lot of shell programmers have nested if statements to side-step any issues, while others

use explicit parentheses to clarify order of interpretation. Certainly just assuming things are
interpreted left-to-right is dangerous!

You will see many uses of the test command throughout the book because it’s almost
impossible to write even simple shell programs without some sort of conditional statements
involved. Table A.11 in Appendix A summarizes all available test operators.

From the Library of shannon powell

The else Construct 145

The else Construct

A construct known as else can be added to the if command, with the general format as
shown:

if command,

then
command
command
else
command
command
fi

In the above, command, is executed and its exit status evaluated. If it’s true (zero), the then code
block (all the statements between then and else) is executed and the else block is ignored.

If the exit status is false (non-zero), the then code block is ignored and the else code block
(everything between else and £1i) is executed. In either case, only one set of commands gets
executed: the first set if the exit status is zero, and the second set if it’s nonzero.

This can be more succinctly explained:
if condition then statements-if-true else statements-if-false fi

Let’s now write a modified version of on. Instead of having no output if the requested user is
not logged on, we’ll have the program report that fact to the user.
Here is version 3 of the program:

$ cat on
#
determine if someone is logged on -- version 3

#
user="§1"

if who | grep "“$user " > /dev/null

then

echo "sSuser is logged on"
else

echo "$user is not logged on"
fi
$

If the user specified as the first argument to on is logged on, the grep will succeed and the
message user is logged on will be displayed; otherwise, the message user is not logged
on will be displayed.

From the Library of shannon powell

146

Chapter 7 Decisions, Decisions

$ who Who's on?
root console Jul 8 10:37
barney tty03 Jul 8 12:38
fred tty04 Jul 8 13:40
joanne tty07 Jul 8 09:35
tony ttyl9 Jul 8 08:30
lulu tty23 Jul 8 09:55
$ on pat

pat is not logged on

$ on tony

tony is logged on

$

To turn a quick prototype into a useful program for the long term, it’s a good practice to make
sure that the correct number of arguments is passed to the program. If the user specifies the
wrong number of arguments, an appropriate error message can be issued, along with a usage
message. Like this:

S cat on
#
determine if someone is logged on -- version 4

#

#
see if the correct number of arguments were supplied
#
if ["$#" -ne 1]
then
echo "Incorrect number of arguments"
echo "Usage: on user"

else
user="3$1"
if who | grep "“$user " > /dev/null
then
echo "suser is logged on"
else
echo "Suser is not logged on"
fi
fi
$

It seems like a lot of changes, but other than wrapping all the previous code within an
else-fi pair, the primary addition is an if command to evaluate whether the correct
number of arguments was supplied. If $# is not equal to 1, the required number of arguments,
the program prints two error messages; otherwise, the commands after the else clause are
executed. Note that two £i commands are required because two if commands are used.

From the Library of shannon powell

The exit Command 147

As you can see, indentation goes a long way toward making the program easy to read and
understand. Get into the habit of setting and following indentation rules in your own programs
and you'll definitely thank us later on as your programs become increasingly complicated.

The sophistication of the user experience is clearly improved over previous versions of the
program:

$ on No arguments

Incorrect number of arguments

Usage: on user

$ on priscilla One argument

priscilla is not logged on

$ on jo anne Two arguments
Incorrect number of arguments

Usage: on user

$

The exit Command

A built-in shell command called exit enables you’ to immediately terminate execution of your
shell program. The general format of this command is

exit n

where n is the exit status that you want returned. If none is specified, the exit status used is
that of the last command executed prior to the exit (that is, it's effectively exit $?).

Be advised that executing the exit command directly from your terminal will log you off the
system because it will have the effect of terminating execution of your login shell.

A Second Look at the rem Program

exit is frequently used as a convenient way to terminate execution of a shell program.
For example; let’s take another look at the rem program, which removes an entry from the
phonebook file:

S cat rem
#
Remove someone from the phone book

#

grep -v "$1" phonebook > /tmp/phonebook
mv /tmp/phonebook phonebook
$

As written, this program has the potential to create problems if unexpected situations arise,
potentially even corrupting or wiping out the entire phonebook file.

From the Library of shannon powell

148

Chapter 7 Decisions, Decisions

For example, suppose that you type in

rem Susan Topple

The shell will pass two arguments to rem because of the missing quotes. The rem program will
then remove all susan entries, as specified by $1, without ever seeing that there were too many
arguments specified by the user in the first place.

As a result, it’s always best to take precautions with any potentially destructive program and to
be certain that the action intended by the user is consistent with the action that the program is
poised to take.

One of the first checks that can be made in rem is for the correct number of arguments, as was
done earlier with the on program. This time, we’ll use the exit command to terminate the
program if the correct number of arguments isn’t supplied:

S cat rem
#
Remove someone from the phone book -- version 2

#

if ["$#" -ne 1]

then
echo "Incorrect number of arguments."
echo "Usage: rem name"
exit 1

fi

grep -v "$1" phonebook > /tmp/phonebook

mv /tmp/phonebook phonebook

$ rem Susan Goldberg Try it out
Incorrect number of arguments.

Usage: rem name

$

The exit command returns an exit status of 1, to signal failure, in case some other program
wants to check it in a conditional expression. How could you have written the preceding
program with an if-else instead of using the exit?

Whether you use the exit or an if-else is up to you. Sometimes the exit is a more
convenient way to get out of the program quickly, particularly if it’s done early in the program,
and it has the additional benefit of avoiding the need for deeply nested conditionals.

The elif Construct

As your programs become more complex, you may find yourself stuck writing nested if
statements like this:

if command,
then

From the Library of shannon powell

The elif Construct 149

command
command

else
if command,
then
command
command
else
if command,
then
command
command
else
command
command
fi
fi
fi

This type of command sequence can be useful when you need to make more than just a
two-choice decision. In this case, a multiway decision is made, with the last else clause
executed if none of the preceding conditions is satisfied.

As a relatively simple example, let’s write a program called greetings that prints a friendly
Good morning, Good afternoon, Or Good evening based on time of day. For purposes of
the example, consider any time from midnight to noon to be the morning, noon to 6 pm the
afternoon, and 6 pm to midnight the evening.

To write this program, you have to find out what time it is. date serves just fine for this
purpose. Take another look at the output from this command:

S date
Wed Aug 29 10:42:01 EDT 2002
$

The format of date’s output is fixed, a fact that you can use to your advantage because the
time will always appear in character positions 12 through 19. In fact, you really only need the
hour value in positions 12 and 13:

$ date | cut -cl2-13
10
$

From the Library of shannon powell

150 Chapter 7 Decisions, Decisions

Now the task of writing the greetings program is straightforward:

$ cat greetings
#
Program to print a greeting

#
hour=$ (date | cut -cl12-13)

if ["S$hour" -ge 0 -a "shour" -le 11]

then
echo "Good morning"
else
if ["$hour" -ge 12 -a "S$hour" -le 17]
then
echo "Good afternoon"
else
echo "Good evening"
fi
fi
$

If hour is greater than or equal to O (midnight) and less than or equal to 11 (up to 11:59:59),
Good morning is displayed. If hour is greater than or equal to 12 (noon) and less than or equal
to 17 (up to 5:59:59 pm), Good afternoon is displayed. If neither of the preceding conditions
is satistied, Good evening is displayed.

$ greetings
Good morning

$

Look at the program again, however, and you'll realize that the nested if command sequence
used in greetings is rather clumsy. To streamline these sorts of if-then-else sequences, the
shell also supports a special elif element that acts somewhat like else if condition, except
it doesn’t increase your nesting level. The general format is

if command,
then
command
command

elif command,

then
command
command
else
command
command
fi

From the Library of shannon powell

The elif Construct 151

command,, command,, ..., command, are executed in turn and their exit statuses tested. As soon as
one returns an exit status of TRUE (zero), the commands listed after the then that follows are
executed, up to another elif, else, or £i. If none of the conditional expressions is true, the
commands listed after the optional else are executed.

Now you can rewrite the greetings program using this new format as shown:

$ cat greetings
#
Program to print a greeting -- version 2

#
hour=$ (date | cut -cl12-13)

if ["S$hour" -ge 0 -a "S$hour" -le 11]

then
echo "Good morning"
elif ["$hour" -ge 12 -a "Shour" -le 17]
then
echo "Good afternoon"
else
echo "Good evening"
fi
$

A definite improvement. The program is easier to read, and it doesn’t have the tendency to
wander off the right margin due to progressively increasing indentation.

Incidentally, it’s very rare to see date | cut as a pipe because the date command itself has a
rich and complex set of output formats you can utilize to get just the information or value you
want. For example, to output just the current hour in 0-23 format, use $H with the necessary +
prefix to indicate it’s a formatting string:

S date +%H
10
$

As an exercise, you should change greetings to make use of this more streamlined way to
identify the current hour of the day.

Yet Another Version of rem

Let’s jump back to the phone number removal program rem. Earlier we mentioned that it was
dangerous because without checking the validity of its actions, it could blindly delete more
than the user desired.

One way to address this problem is to check the number of entries that match the user specified
pattern before doing the removal: If there’s more than one match, issue a message to that effect
and terminate execution of the program. But how do you determine the number of matching
entries?

From the Library of shannon powell

152

Chapter 7 Decisions, Decisions

One easy way is to do a grep on the phonebook file and count the number of resulting
matches with we. If the number of matches is greater than one, the appropriate message can be
issued. That logic can be coded like this:

S cat rem
#
Remove someone from the phone book -- version 3

#

if ["SH#" -ne 1]

then
echo "Incorrect number of arguments."
echo "Usage: rem name"
exit 1

fi

name=$1

#

Find number of matching entries

#

matches=$ (grep "$name" phonebook | wc -1)

#
If more than one match, issue message, else remove it

#

if ["$matches" -gt 1]
then

echo "More than one match; please qualify further"
elif ["Smatches" -eq 1]

then
grep -v "Sname" phonebook > /tmp/phonebook
mv /tmp/phonebook phonebook
else
echo "I couldn't find S$name in the phone book"
fi
$

To improve readability, the positional parameter $1 is assigned to the variable name after the
number of arguments is checked.

Assigning the output of a command sequence to a variable is very common in shell programs,
as demonstrated on the line

matches=$ (grep "$name" phonebook | wc -1)

With matches calculated, it’s easy to step through the if...elif...else command sequence
and see that it first tests to see whether the number of matches is greater than one. If it is, the

From the Library of shannon powell

The case Command 153

“more than one match” message is printed. If it’s not, a test is made to see whether the number
of matches is equal to one. If it is, the entry is removed from the phone book. If it’s not one or

greater than one, the number of matches must be zero, in which case a message is displayed to

alert the user to this fact.

Note that the grep command is used twice in this program: first to determine the number of
matches, then with the -v option to remove the matching entry after ensuring that only one
line matches.

Here are some sample runs of this version of rem:

S rem

Incorrect number of arguments.

Usage: rem name

$ rem Susan

More than one match; please qualify further

$ rem 'Susan Topple'

$ rem 'Susan Topple'

I couldn't find Susan Topple in the phone book She's history
$

Now you have a fairly robust rem program: it checks for the correct number of arguments,
printing the proper usage if the correct number isn’t supplied; it also checks to make sure that
precisely one entry is removed from the phonebook file.

In typical Unix fashion, also note that the rem script has no output when the requested action
succeeds.

The case Command

The case command allows you to compare a single value against a set of other values or
expressions and to execute one or more commands when a match is found. The general format
of this command is

case value in
pattern,) command
command

command; ;
pattern,) command
command

command; ;

pattern,) command
command

command; ;
esac

From the Library of shannon powell

154

Chapter 7 Decisions, Decisions

The word value is successively compared against the values pattern,, pattern,, ..., pattern,,
until a match is found. When a match is found, the commands listed after the matching

value are executed, up to the double semicolons, which serve as a “break” statement that
shows you’ve finished specifying commands for that particular conditional. After the double
semicolons are reached, the execution of the case is terminated. If a match is not found, none
of the commands listed in the case is executed.

As an example of the use of the case statement, the following program called number takes a

single digit and translates it to its English equivalent:

$ cat number
#

Translate a digit to English

#

if ["S#" -ne 1]

echo "Usage: number digit"

then
exit 1

fi

case "$1"

in
0) echo zero;;
1) echo one;;
2) echo two;;
3) echo three;;
4) echo four;;
5) echo five;;
6) echo six;;
7) echo seven;;
8) echo eight;;
9) echo nine;;

esac

$

Now to test it:

$ number 0

Zero

$ number 3

three

S number

Usage: number digit
$ number 17

$

Try no arguments

Try a two-digit number

The last case shows what happens when you type in more than one digit: $1 doesn’t match
any of the values listed in the case, so none of the echo commands is executed.

From the Library of shannon powell

The case Command

Special Pattern-Matching Characters

The case statement is quite powerful because instead of just specifying sequences of letters,
you can create complex regular expressions in the shell notation. That is, you can use the same
special characters for specifying the patterns in a case as you can with filename substitution.
For example, ? can be used to specify any single character; * can be used to specify zero

or more occurrences of any character; and [...] can be used to specify any single character
enclosed between the brackets.

Because the pattern * matches anything (just like how echo * matches all files in the current
directory), it’s frequently used at the end of the case as the “catch-all” or default value: if none
of the previous values in the case match, this one’s guaranteed to be a match.

With that in mind, here’s a second version of the number program that has such a catch-all
case statement.

$ cat number
#
Translate a digit to English -- version 2

#

if ["SH#" -ne 1]

then
echo "Usage: number digit"
exit 1
fi
case "$1"
in
0) echo zero;;
1) echo one;;
2) echo two;;
3) echo three;;
4) echo four;;
5) echo five;;
6) echo six;;
7) echo seven;;
8) echo eight;;
9) echo nine;;
*) echo "Bad argument; please specify a single digit";;
esac
$ number 9
nine
$ number 99
Bad argument; please specify a single digit
$

Let’s switch to another program, ctype, that identifies and prints the class of the single
character given as an argument. Character types recognized are digits, uppercase letters,

From the Library of shannon powell

155

156

Chapter 7 Decisions, Decisions

lowercase letters, and special characters (anything not in the first three categories). As an added
check, the program also ensures that only a single character is given as the argument.

$ cat ctype
#
Classify character given as argument

#

if [$# -ne 1]

then
echo Usage: ctype char
exit 1

fi

#

Ensure that only one character was typed
#

char="$1"

numchars=$ (echo "$char" | wc -c)

if ["$numchars" -ne 1]

then
echo Please type a single character
exit 1

fi

#

Now classify it

#

case "$Schar"

in
[0-9]) echo digit;;
[a-2z]) echo lowercase letter;;
[A-7]) echo uppercase letter;;
*) echo special character;;
esac
$
But when we try a few sample runs, something’s not right:
$ ctype a
Please type a single character
$ ctype 7
Please type a single character
$

From the Library of shannon powell

The case Command 157

The -x Option for Debugging Programs

A bug. Not uncommon at all in the process of developing programs, whether they’re 5 lines or
500 lines long. In this instance, it appears that the letter counting portion of our program isn’t
working properly. But how do you figure out what’s not working?

This is a good point to introduce the shell’s -x option. To debug any shell program—or learn
more about how it works—trace the sequence of its execution by typing in sh -x followed
by the regular invocation (name and arguments). This starts up a new shell to execute the
indicated program with the -x option enabled.

In this mode, commands are printed at the terminal as they are executed, preceded by a plus
sign. Let’s try it out!

$ sh -x ctype a Trace execution

+ [1 -ne1] $# equals 1

+ char=a Assignment of $1 to char

+ echo a

+ wc -c

+ numchars= 2 wc returned 2???

+ [2 -ne 1] That's why this test succeeded
+ echo please type a single character

please type a single character

+ exit 1

$

The trace output indicates that wec returned 2 when this command was executed:

echo "$char" | wc -c

But why the value 2 if the command was given the single letter a? It turns out that two
characters were actually given to wc: the single character a and the “invisible” newline
character that echo automatically prints at the end of each line. Oops. So instead of testing for
a single character by comparing it to 1, the conditional expressions should be comparing the
user input to 2: the character typed plus the newline added by echo.

Go back to the ctype program and update the i£ command that reads

if ["$numchars" -ne 1]

then
echo Please type a single character
exit 1

fi

to look like this

if ["$numchars" -ne 2]

then
echo Please type a single character
exit 1

fi

From the Library of shannon powell

158

Chapter 7 Decisions, Decisions

and try it again.

$ ctype a
lowercase letter
$ ctype abc
Please type a single character
$ ctype 9

digit

$ ctype K
uppercase letter
$ ctype :

special character
$ ctype

Usage: ctype char
$

Now it seems to work just fine.

In Chapter 11 you'll learn how you can turn this trace feature on and off at will from inside
your program too; but for now, we encourage you to try using sh -x on the various scripts

we’ve created so far.

Before leaving the ctype program, here’s a version that avoids the use of we and handles all

possible conditions with case statements:

$ cat ctype
#
Classify character given as argument -- version 2

#

if [$# -ne 1]

then
echo Usage: ctype char
exit 1

fi

#

Now classify char, making sure only one was typed
#

char=351

case "$Schar"

in

[0-9]) echo digit;;

[a-z]) echo lowercase letter;;

[A-Z]) echo uppercase letter;;

?) echo special character;;

*) echo Please type a single character;;
esac
$

From the Library of shannon powell

The case Command 159

Remember, the » matches any single character. Since we already have tested the character
against digits, and lowercase and uppercase letters, if this pattern is matched, the character
must be a special character. Finally, if this pattern isn’t matched, more than one character must
have been typed, so the catch-all case prints the appropriate error message.

$ ctype u

lowercase letter

$ ctype '>!'

special character

$ ctype xx

Please type a single character

$

Back to the case

The symbol | has the effect of a logical OR when used between two patterns. That is, the
pattern

pat, | pat,

specifies that either pat, or pat, is to be matched. For example,
-1 | -list

matches either the value -1 or -1ist, and

dmd | 5620 | tty5620

matches any of dmd or 5620 or tty5620.

Knowing about the case statement, there are a number of different programmatic flow
structures that can be more neatly and efficiently rewritten as case sequences.

For example, the greetings program that you saw earlier in this chapter can be rewritten to
use a case statement rather than the clunkier if-elif. This time, let’s take advantage of the
fact that date with the +%H option writes a two-digit hour to standard output.

$ cat greetings

#

Program to print a greeting -- case version

#

hour=$ (date +%H)

case "Shour"

in
0? | 1[01]) echo "Good morning";;
1[2-7]) echo "Good afternoon";;
*) echo "Good evening";;

esac

$

From the Library of shannon powell

160

Chapter 7 Decisions, Decisions

The two-digit hour obtained from date is assigned to the shell variable hour, then the case
statement is executed. The value of hour is compared against the first pattern:

0? | 1[01]

which matches any value that starts with a zero followed by any character (midnight through
9 am), or any value that starts with a one and is followed by a zero or one (10 or 11 am).

The second pattern

1[2-7]

matches a value that starts with a one and is followed by any one of the digits two through
seven (noon through 5 pm).

The last case, the catch-all, matches anything else (6 pm through 11 pm).

$ date

Wed Aug 28 15:45:12 EDT 2002
$ greetings

Good afternoon

$

The Null Command :

Every matching case statement needs a resulting command, and every if-then conditional
needs a resultant command too—but sometimes you don’t want to execute anything, just “eat”
the result. How do you do that? With the shell’s built-in null command. The format of this
command is simply

and the purpose of it is—you guessed it—to do nothing.

In most cases it’s used to satisfy the requirement that a command appear, particularly in if
statements. Suppose that you want to make sure that the value stored in the variable system
exists in the file /users/steve/mail/systems, and if it doesn’t, you want to issue an error
message and exit from the program. So you start by writing something like

if grep "“$system" /users/steve/mail/systems > /dev/null

then

but you don’t know what to write after the then because you want to test for the nonexistence
of the system in the file and don’t want to do anything special if the grep succeeds. The shell
requires that you write a command after the then, so here’s where the null command comes to
the rescue:

if grep "“$system" /users/steve/mail/systems > /dev/null

then

else
echo "Ssystem is not a valid system"
exit 1

fi

From the Library of shannon powell

The && and | | Constructs 161

If the conditional test is valid, nothing is done. If it’s not valid, the error message is issued and
the program exited.

To be fair, this particular example could be reversed by restructuring the grep statement
(remember the ‘!’ argument to test?) but sometimes it’s easier to test for a positive condition
and do nothing than a negative. In either case, this is where a well placed comment can do
wonders when the code is read weeks or months later.

The && and | | Constructs

The shell has two special constructs that enable you to execute a command based on whether
the preceding command succeeds or fails. In case you think this sounds similar to the if
command, well it is. Sort of. It’s a shorthand form of the if.

If you write

command, && command,

anywhere that the shell expects to see a command, command, will be executed, and if it returns
an exit status of zero (success), command, will be executed. If command, returns a non-zero exit
status (fail), command, is not invoked but is ignored.

For example, if you write

sort bigdata > /tmp/sortout && mv /tmp/sortout bigdata

then the mv command will be executed only if the sort is successful. Note that this is
equivalent to writing

if sort bigdata > /tmp/sortout
then

mv /tmp/sortout bigdata
fi
The command

[-z "SEDITOR"] && EDITOR=/bin/ed
tests the value of the variable EDITOR. If it’s null, /bin/ed is assigned to it.

The | | construct works similarly, except that the second command gets executed only if the
exit status of the first is nonzero. So if you write

grep "$name" phonebook || echo "Couldn't find $name"

the echo command will get executed only if the grep fails (that is, if it can’t find $name in
phonebook, or if it can’t open the file phonebook). In this case, the equivalent if command
would look like

if grep "$name" phonebook
then

From the Library of shannon powell

162

Chapter 7 Decisions, Decisions

else
echo "Couldn't find $name"
fi

You can use a complex sequence of commands on either or both the left- or right-hand side of
these constructs. On the left, the exit status tested is that of the last command in the pipeline;
thus

who | grep "“$name " > /dev/null || echo "$name's not logged on"
causes execution of the echo if the grep fails.

The && and | | can also be combined on the same command line:

who | grep "“$name " > /dev/null && echo "$name's not logged on" \
|| echo "$name is logged on"

(Recall that when \ is used at the end of the line it signals line continuation to the shell.)
The first echo gets executed if the grep succeeds; the second if it fails.

These constructs are also often used in if commands, as demonstrated in this snippet from
a system shell program (don’t worry if you don’t understand every command invoked):

if validsys "$sys" && timeok
then

sendmail "Suser@ssys" < Smessage
fi

If validsys returns an exit status of zero, timeok is executed and its exit status is then tested
for the if. If that status is zero, then sendmail is executed. If validsys returns a nonzero exit
status, however, timeok is not executed, and the failed exit status is then tested by the if, and
sendmail ends up not being executed.

The use of the && operator in the preceding case is a logical AND; both programs must return
an exit status of zero for the sendmail program to be executed. In fact, you could have written
the above if conditional as

validsys "$sys" && timeok && sendmail "Suser@$sys" < Smessage

By comparison, when the | | is used in an if, the effect is like a logical OR:

if endofmonth || specialrequest
then

sendreports
fi

If endofmonth returns a zero exit status, sendreports is executed; otherwise specialrequest
is executed and if its exit status is zero, sendreports is executed. The net effect is that
sendreports is executed if either endofmonth or specialrequest returns an exit status of zero.

In Chapter 8 you'll learn about how to write complex flow control loops in your programs.
But before you get there, try the exercises that follow using the if, case, && and | | notations
explained in this chapter.

From the Library of shannon powell

3

'Round and 'Round
She Goes

In this chapter you’ll learn how to set up program loops. These loops will enable you to execute
a set of commands either a specified number of times or until a specific end condition is met.

The three built-in looping commands for shell programming are
= for
= while

= until

You'll learn about each one of these loops in separate sections of this chapter.

The for Command

The for command is used to execute one or more commands a specified number of times.
Its basic format is as shown:

for var in word, word, ... word,
do

command

command
done

The commands enclosed between the do and the done are what’s known as the body of the
loop and are executed for as many items as are listed after the in. When the loop is executed,
the first word, word,, is assigned to the variable var, and the body of the loop is then executed.
Next, the second word in the list, word,, is assigned to var, and the body of the loop is
executed again.

From the Library of shannon powell

164 Chapter 8 'Round and 'Round She Goes

This process continues with successive words in the list being assigned to var and the
commands in the loop body being executed until the last word in the list, word,, is assigned

to var and the body of the loop executed. At that point, no words are left in the list, and
execution of the for command is then complete. Execution then continues with the command
that immediately follows the done.

If there are n words listed after the in, the body of the loop will have been executed a total of
n times when the loop has finished.

Here’s a loop that will be executed three times:

for i in 1 2 3
do

echo $i
done

To try it out, type this in directly at the terminal, just like any other shell command:

$ for i in 1 2 3
> do

> echo $i
done

>
1
2
3
$

While the shell is waiting for the done to be typed to complete the for command, it keeps
showing the secondary command prompt. When the user enters done, the shell then proceeds
to execute the loop. Because three items are listed after the in (1, 2, and 3), the body of the
loop—in this case a single echo command—will be executed a total of three times.

The first time through the loop, the first value in the list, 1, is assigned to the variable i. Then
the body of the loop is executed. This displays the value of i at the terminal. Then the next
word in the list, 2, is assigned to i and the echo command re-executed, resulting in the display
of 2 at the terminal. The third word in the list, 3, is assigned to i the third time through the
loop and the echo command executed. This results in 3 being displayed at the terminal. At that
point, no more words are left in the list, so execution of the for command is complete, and
the shell displays the command prompt to let you know it’s done.

Now let’s back up to Chapter 6 and recall the run program that enabled you to run a file
through tbl, nroff, and 1p:

$ cat run
tbl $1 | nroff -mm -Tlp | 1lp
$

If you wanted to run the files memo1 through memo4, you could type the following at the
terminal:

$ for file in memol memo2 memo3 memo4
> do

From the Library of shannon powell

The for Command 165

> run $file

> done

request id is laserl-33 (standard input)
request id is laserl-34 (standard input)
request id is laserl-35 (standard input)
request id is laserl-36 ()

$

standard input

The four values memo1, memo2, memo3, and memo4 will be assigned in turn to the variable file
and the run program will be executed with that value as the argument. Execution will be just
as if you typed in four commands:

$ run memol
request id is laserl-33 (standard input)
$ run memo2
request id is laserl-34 (standard input)
$ run memo3
request i1d is laserl-35 (standard input)
$ run memo4
request id is laserl-36 (standard input)

$

The shell permits filename substitution in the list of words in the for statement, so the
previous loop could have also been written this way:

for file in memo[1-4]
do

run sfile
done

If you wanted to print all the files in your current directory using the run program,
you could type

for file in *
do

run sfile
done

To do something more sophisticated, imagine filelist contains a list of the files that you
want to run through run. You can type

files=$(cat filelist)

for file in $files
do

run $file
done

to run each of the files, or, more succinctly,

for file in $(cat filelist)
do

run $file
done

From the Library of shannon powell

166 Chapter 8 'Round and 'Round She Goes

The better way to address this is to actually improve the run script itself, however, and it turns
out that the for statement is perfect for the job:

$ cat run
#
process files through nroff -- version 2
#
for file in S$*
do
tbl $file | nroff -rom -Tlp | 1lp
done

$

Recall that the special shell variable $* stands for all the arguments typed on the command
line. If you executed the new version of run by typing

run memol memo2 memo3 memo4

the $* in the for’s list would be replaced by the four arguments memol, memo2, memo3, and
memo4. Of course, you could also type

run memo [1-4]

to achieve the same results.

The s@ Variable

While we're utilizing $*, let’s have a closer look at how it and its cousin $@ work. To do that,
let’s write a program called args that displays all the arguments typed on the command line,
one per line.

$ cat args
echo Number of arguments passed is $#

for arg in $*
do

echo Sarg
done

$
Now to try it:

$ args a b ¢

Number of arguments passed is 3
a

b

c

$ args 'a b' ¢

From the Library of shannon powell

The for Command 167

Number of arguments passed is 2
a

b
c
$

Look closely at the second example: even though 'a b' was passed as a single argument

to args, it was split into two values within the for loop. That’s because the $+* in the for
command was replaced by the shell with a b ¢ and the quotes were lost. Thus the loop was
executed three times.

The shell replaces the value of $* with $1, $2, ..., but if you instead use the special shell
variable "$e" the values will be passed with "$1, "$2", ... The key difference is the double
quotes around the $e: without them this variable behaves just like $*.

Go back to the args program and replace the unquoted $* with "se":

$ cat args
echo Number of arguments passed is S$#

for arg in "se"

do
echo Sarg
done
$
Now try it:

$ args a b c

Number of arguments passed is 3
a

b

c

$ args 'a b' c

Number of arguments passed is 2
ab

c

$ args Try it with no arguments
Number of arguments passed is 0

$

In the last case, no arguments were passed to the program so the variable "$e" was replaced by
nothing. The net result is that the body of the loop was not executed at all.

The for Without the List

A special notation is recognized by the shell when writing for commands. If you omit the in
element and its subsequent list

From the Library of shannon powell

168 Chapter 8 'Round and 'Round She Goes

for var
do
command
command
done

the shell automatically sequences through all the arguments typed on the command line, just
as if you had written

for var in "s@"
do
command
command

done

With that in mind, here’s the third and last version of the args program:

$ cat args
echo Number of arguments passed is $#

for arg
do
echo Sarg
done
S args a b ¢
Number of arguments passed is 3
a
b
c
$ args 'a b' ¢
Number of arguments passed is 2
ab
c

$

The while Command

The second type of looping command is the while statement. The format of this command is

while command,
do
command
command

done

command, is executed and its exit status tested. If it’s zero, the commands enclosed between
the do and done are executed once. Then command, is executed again and its exit status tested.

From the Library of shannon powell

The while Command 169

If it’s zero, the commands enclosed between the do and done are once again executed. This
continues until command, returns a nonzero exit status. At that point, execution of the loop is
terminated. Execution then proceeds with the command that follows the done.

Note that the commands between the do and done might never be executed if command,
returns a nonzero exit status the first time it’s executed.

Here’s a program called twhile that simply counts to 5:

$ cat twhile
i=1

while ["$i" -le 5]

do
echo s$i
i=$((1i + 1))
done
$ twhile Run it
1
2
3
4
5
$

The variable i is initially set to the value 1. Then the while loop is entered, succeeding on
the conditional test so the code block is executed. The shell continues execution as long as
i is less than or equal to 5. Inside the loop, the value of i is displayed at the terminal, then
incremented by one.

The while loop is often used in conjunction with the shift command to process an unknown
number of arguments typed on the command line.

Consider the next program, called prargs, which prints each of the command-line arguments
out, one per line.

$ cat prargs
#
Print command line arguments one per line

#

while ["S$#" -ne 0]

do
echo "$1"
shift

done

$ prargs a b c

a

b

c

From the Library of shannon powell

170

Chapter 8 'Round and 'Round She Goes

$ prargs 'a b' ¢
ab

c

$ prargs *
addresses

intro
lotsaspaces
names

nu

numbers
phonebook

stat

$ prargs No arguments
$

While the number of arguments is not equal to zero, the value of $1 is displayed and then a
shift is invoked to shift down the variables (that is, $2 to $1, $3 to $2, and so on) and also
decrement $#. When the last argument has been displayed and shifted out, $# will equal zero,
at which point execution of the while will be terminated.

Note that if no arguments are given to prargs (as was done in the last case), the echo and
shift are never executed because $# is equal to zero as soon as the loop is entered.

The until Command

The while command continues execution as long as the test expression continues to return

a TRUE (zero) exit status. The until command is the opposite: It continues executing the
code block until the test expression returns a nonzero exit status and stops once a zero status is
produced.

Here is the general format of the until:

until command,
do
command
command

done

Like the while, the commands between the do and done might never be executed if command,
returns a zero exit status the first time it’s executed.

While the two commands are quite similar, the until command is useful for writing programs
that wait for a particular event to occur. For example, suppose that you want to see whether
sandy is logged on because you have to give her something important. You could send her
electronic mail, but you know that she usually doesn’t get around to reading her mail until late
in the day. You could use the on program from Chapter 7 to see whether sandy’s logged on:

$ on sandy
sandy is not logged on

$

From the Library of shannon powell

The until Command 171

Simple, but ineffective because it runs once and is done. You could run the program
periodically throughout the day (rather tedious), or, better, you could write your own program
to continually check until she does log in!

Let’s call the program waitfor and have it take a single argument: the name of the user you
want to monitor. Instead of having the program continually check for that user logging on,
however, let’s have it check only once every minute. To do this, we’ll have to use a command
called sleep, which suspends execution of a program for a specified number of seconds.

The command

sleep n
suspends execution of the program for n seconds. At the end of that interval, the program
resumes execution where it left off—with the command that immediately follows sleep.

S cat waitfor
#
Wait until a specified user logs on

#

if ["$#" -ne 1]

then
echo "Usage: waitfor user"
exit 1
fi
user="3$1"
#
Check every 60 seconds for user logging on
#

until who | grep "“Suser " > /dev/null
do

sleep 60
done

#

When we reach this point, the user has logged on
#

echo "Suser has logged on"

$

After checking that exactly one argument was provided, the program assigns $1 to user.
Then an until loop is entered that will be executed until the grep exit status is zero; that is,
until the specified user logs on. As long as the user isn’t logged on, the body of the loop—the
sleep command—is executed to suspend execution for 60 seconds. At the end of the minute,
the pipeline listed after the until is re-invoked and the process is repeated.

From the Library of shannon powell

172

Chapter 8 'Round and 'Round She Goes

When the until loop is exited—signaling that the monitored user has logged on—a message is
displayed at the terminal to that effect and the script is done.

$ waitfor sandy Time passes
sandy has logged on
$

Of course, running the program as shown here is not very practical because it ties up your
terminal until sandy logs on. A better idea is to run waitfor in the background so that you
can use your terminal for other work:

$ waitfor sandy & Run it in the background
[1] 4392 Job number and process id

$ nroff newmemo Do other work

sandy has logged on Happens sometime later

Now you can do other work and the waitfor program continues executing in the background
until sandy logs on, or until you log off the system.

Note

By default, all your processes are automatically terminated when you log off the system.

If you want a program to continue running after you've logged off, you can run it with the nohup
command, or schedule it to run with at or from cron. Consult your Unix User’s

Manual for more details.

Because waitfor only checks once per minute for the user logging on, it won’t consume many
system resources while it’s running (an important consideration when running programs in the
background).

Unfortunately, after the specified user logs on, there’s a chance you might miss the one-line
notification message. If you're editing a file with a screen editor such as vi, the notification
message could turn your screen into a mess, and you still might not be able to read it!

A better alternative might be to mail it to yourself instead. Heck, you can let the user choose
which they’d prefer by adding an option to the program that, if selected, indicates that the
message is to be mailed. If not selected, the message is then displayed at the terminal.

In the version of waitfor that follows, a -m option has been added for this purpose:

$ cat waitfor

#

Wait until a specified user logs on -- version 2
#

if ["$1" = -m]

then

mailopt=TRUE
shift

From the Library of shannon powell

The until Command 173

else
mailopt=FALSE
fi

if ["$#" -eq 0 -o "$#" -gt 1]

then
echo "Usage: waitfor [-m] user"
echo" -m means to be informed by mail"
exit 1

fi

user="8$1"

#

Check every minute for user logging on

#

until who | grep "“Suser " > /dev/null

do
sleep 60
done
#
When we reach this point, the user has logged on
#

if ["$mailopt" = FALSE]

then
echo "Suser has logged on"
else
echo "$user has logged on" | mail steve
fi
$

The first test checks to see whether the -m option was specified. If it was, mailopt is assigned
the value TRUE, and shift is executed to “shift out” the first argument (moving the name

of the user to be monitored to $1 and decrementing $#). If the -m option wasn’t specified,
mailopt is set to FALSE.

Execution then proceeds as in the previous version, except this time when the main block of
code completes, the mailopt variable is tested to determine whether to output the notification
via email or as an echo statement.

$ waitfor sandy -m
Usage: waitfor [-m] user
-m means to be informed by mail
$ waitfor -m sandy &
[1] 5435

From the Library of shannon powell

174 Chapter 8 'Round and 'Round She Goes

$ vi newmemo Work continues

you have mail

$ mail

From steve Wed Aug 28 17:44:46 EDT 2002
sandy has logged on

?d
$

Of course, we could have written waitfor to accept the -m option as either the first or second
argument, but that’s not how traditional Unix syntax works: all options are expected to precede
any other types of arguments on the command line.

Also note that the old version of waitfor could have been executed as follows:

$ waitfor sandy | mail steve &
[1] 5522
$

to achieve the same result as adding the -m option, but it’s considerably less elegant.

The program always sends mail to steve as it’s written now, which isn’t particularly useful if
someone else wants to run it. A better way is to determine the user running the program and
then send them the mail if they specify the -m option. But how do you do that? One way is
to execute the who command with the am 1 options and get the user name that comes back.
You can then use cut to extract the username from the who output and use that name as the
recipient of the mail.

All of this can be done in the last if command of waitfor if it’s changed to read as shown:

if [u$#u -eq 1]

then

echo "Suser has logged on"
else

runner=$ (who am i | cut -cl-8)

echo "$user has logged on" | mail $recipient
fi

Now the program can be run by anyone, and the mail notification will be sent to the correct
recipient.

More on Loops
Breaking Out of a Loop

Sometimes program logic dictates an immediate exit from a loop statement. To exit from the
loop but not from the program, use the break command:

break

From the Library of shannon powell

More on Loops 175

When the break is executed, control is immediately moved outside of the loop, where
execution then continues as normal.

One common way this is used is with an infinite loop, a block of code that is intended to go
around and around executing the same commands until break stops it.

In these situations the command true can be used to return an exit status of zero. The
command false can be used in the opposite situation too, as it returns a nonzero exit status.
If you write

while true
do

done
the while loop will be executed forever, because true always returns a zero exit status.

Because false always returns a nonzero exit status, the loop

until false
do

done
will also execute forever.

The break command is therefore used to exit from these sorts of infinite loops, usually when
an error condition or the end of processing is detected:

while true

do
cmd=$ (getcmd)
if ["$cmd" = quit]
then
break
else
processcmd "$cmd"
fi
done

Here the while loop will continue to execute the getcmd and processcmd programs until
cmd is equal to quit. At that point, the break command will be executed, causing the loop to
be exited.

If the break command is used in the form

break n

the n innermost loops are immediately exited, so in

for file
do

From the Library of shannon powell

176 Chapter 8 'Round and 'Round She Goes

while ["S$Scount" -1t 10]
do
if [-n "Serror"]
then
break 2
fi
done

done

both the while and the for loops will be exited if error is nonnull.

Skipping the Remaining Commands in a Loop

The continue command is similar to break, only it doesn’t cause the loop to be exited, just
the remaining commands in the current iteration of the loop to be skipped. The program
moves immediately to the next iteration of the loop and continues as normal. Like the break,
an optional number can follow the continue, so

continue n

causes the commands in the innermost n loops to be skipped, after which execution of the
program continues as normal.

for file
do
if [! -e "sfile"]
then
echo "$file not found!"
continue
fi
#
Process the file
#
done

Each value of f£ile is checked to make sure that the file exists. If it doesn’t, a message is
printed, and further processing of the file within the for loop is skipped. Execution continues
with the next value in the list.

The preceding example is equivalent to writing

for file

do
if [! -e "sfile"]
then

From the Library of shannon powell

More on Loops 177

echo "$file not found!"

else
#
Process the file
#

fi

done

Executing a Loop in the Background

An entire loop can be sent to the background for execution simply by placing an ampersand
after the done statement:

S for file in memo[1-4]

> do

> run $file

> done & Send it to the background
[1] 9932

$

request id is laserl-85 (standard input)
request id is laserl-87 (standard input)
request id is laserl-88 (standard input)
()

request i1d is laserl-92 (standard input

This—and subsequent examples—work because the shell treats loops as if they were
mini-programs of their own, so whatever appears after block closing statements like done, £i
and esac can have redirects, be put into background with the ampersand or even form part of
a pipeline of commands.

I/0 Redirection on a Loop

You can also perform I/O redirection on a loop. Input redirected into the loop applies to all
commands in the loop that read their data from standard input. Output redirected from the
loop to a file applies to all commands in the loop that write to standard output. And it all
happens at the loop closing statement done:

$ for 1 in 1 2 3 4

> do

> echo $i

> done > loopout Redirect loop’s output to loopout
$ cat loopout

1

2

3

4

$

From the Library of shannon powell

178

Chapter 8 'Round and 'Round She Goes

Individual statements can override block redirection, just as any other statements in your shell
programs can explicitly read from a specified source or send output to a specified destination.

To force input or output to come from or go to the terminal, utilize /dev/tty, which always
refers to your terminal program, whether you're on a Mac, Linux, or Unix system.

In the following loop, all output is redirected to the file output except the echo command’s
output, which is explicitly redirected to the terminal:
for file
do
echo "Processing file $file" > /dev/tty

done > output

You can also redirect the standard error output from a loop, simply by tacking on a 2> file
after the done:

while ["Sendofdata" -ne TRUE]
do

done 2> errors

Here output from all commands in the loop writing to standard error will be redirected to the
file errors.

A variation of the 2> format is commonly used to ensure that error messages go to the terminal
even when a script might have its output redirected into a file or pipe:

echo "Error: no file" 1>&2

By default, echo sends its output to standard output (file descriptor 1), while file descriptor 2
remains standard error and is not redirected on file redirection or pipes by default. So the
notation above means that the error message from echo should have its “file #1” output
redirected to “file #2”, that is, standard error. You can test this with code like this:

for i in "once"

do
echo "Standard output message"
echo "Error message" 1>&2

done > /dev/null

Try it yourself and see what happens.

Piping Data into and out of a Loop

A command’s output can be piped into a loop (by having the commands prior to the loop
command end with a pipe symbol), and the output from a loop can be piped into another
command too. Here’s an example of the output from a for command piped into wc:

$ for 1 in 1 2 3 4
> do

From the Library of shannon powell

More on Loops 179

> echo $i
> done | wec -1
4

Typing a Loop on One Line

If you find yourself frequently typing in loops directly at the command line, you might want
to try the following shorthand notation to type in an entire command on a single line: Put a
semicolon after the last item in the list and one after each command in the loop (but not after
the do).

Using this shorthand, the loop

for 1 in 12 3 4
do

echo $i
done

can be written
for i in 1 2 3 4; do echo $i; done

You can type it in directly on the command line this way:

S for 1 in 1 2 3 4; do echo $i; done
1

Ur B W N

The same rules apply to while and until loops.

if commands can also be typed on the same line using a similar format:

$ if [1 =1]1; then echo yes; fi

yes

$ if [1 = 2 1; then echo yes; else echo no; fi
no

$

Note that no semicolons appear after the then and the else.

Many shell programmers use a hybrid structure where if statements are structured thusly:

if [condition] ; then
command
fi

This simple usage of the semicolon can help increase the readability of your shell programs and
is worth considering as part of your own code formatting.

From the Library of shannon powell

180 Chapter 8 'Round and 'Round She Goes

The getopts Command

Let’s extend the waitfor program further by adding a -t option that specifies how frequently,
in seconds, to perform the check. Now waitfor takes both -m and -t options. We'll allow
these options to be specified in any order on the command line, as long as they appear before
the name of the user that we’re monitoring. So valid waitfor command lines look like this:

waitfor ann

waitfor -m ann
waitfor -t 600 ann
waitfor -m -t 600 ann
waitfor -t 600 -m ann

and invalid ones look like this:

waitfor Missing user name
waitfor -t600 ann Need a space after —t
waitfor ann -m Options must appear first
waitfor -t ann Missing argument after —t

As you start writing code to allow this sort of flexibility on the command line, you will soon
discover that it can become quite complicated!

Don't fret, though; the shell provides a built-in command called getopts that makes it easy to
process command line arguments. The general format of the command is

getopts options variable

We'll dig into the options string shortly. For now, just know that letter-only options are
specified as such and options that have a required argument have a trailing colon, so “ab:c”
means that -a and -c are allowed, as is -b, but -b requires an additional parameter to be
specified.

The getopts command is designed to be executed within a loop, however, because it makes
it easy to take whatever actions are required for each of the user specified options. Each time
through the loop, getopts examines the next command line argument and determines
whether it is a valid option by checking to see whether the argument begins with a minus
sign and is followed by any of the letters specified as options. If it does, getopts stores the
matching option letter inside the specified variable and returns a zero exit status. You'll see
what I mean in just a few lines ...

If the letter that follows the minus sign is not listed in options, getopts stores a question
mark inside variable before returning with a zero exit status. It also writes an error message to
standard error about the bad parameter that the user specified.

If no more arguments are left on the command line or if the current argument doesn’t begin
with a minus sign, getopts returns a nonzero exit status, allowing the script to then process
any subsequent arguments. Think of the command 1s -C /bin in this context: -C is a flag
that could be parsed and processed by getopts, while /bin is an argument to the the 1s
command itself, processed after all the starting arguments are dealt with.

From the Library of shannon powell

The getopts Command 181

Don’t get too anxious if this seems really confusing. The fact is, it is all very complicated, so
let’s look at an example so you can see how getopts works. Suppose for a script you're writing
you want to use getopts to recognize the options -a, -i, and -r. Your getopts call might
look like this:

getopts "air" option

Here the first argument—air—specifies the three acceptable command flags (-a, -1, and -r)
and option is the name of the variable that getopts will use to store each matching value
encountered.

The getopts command also allows options to be clustered or grouped together on the
command line. This is done by following a single minus sign with more than one consecutive
option. For example, our foo command can be executed like this:

foo -a -r -1
or like this:

foo -ari
using this simple grouping feature.

But wait, getopts is far more powerful than what we’'ve explained so far! For example, it can
also handle the case where an option requires an additional argument. For example, the new
-t option to be added to the waitfor command requires an argument too.

To properly parse arguments subsequent to a user-specified option, getopts requires that the
command be invoked with at least one space separating the option from the argument. In this
instance, options cannot be grouped together.

To indicate to getopts that an option has a required argument, add a colon character after the
option letter on the getopts command line. So the waitfor program, which allows both -m
and -t options, the latter of which has a required additional argument, should call getopts
like this:

getopts mt: option

If getopts doesn’t find an argument after an option that requires one, it stores a question
mark inside the variable and outputs an error message to standard error. Otherwise, it stores
the character in the variable and the user specified argument inside a special variable called
OPTARG.

One final note about getopts: Another special variable called OPTIND is initially set to 1 and is
updated each time getopts returns to reflect the number of the next command line argument
to be processed.

To make this clearer, here is the third version of waitfor that uses the getopts command to
process the command line arguments. It also incorporates the previously noted change to send
mail to the user running the program.

From the Library of shannon powell

182

Chapter 8 'Round and 'Round She Goes

$ cat waitfor
#

Wait until a specified user logs on -- version 3

#

Set up default values

mailopt=FALSE
interval=60

process command options

while getopts mt: option

do
case "soption"
in
m) mailopt=TRUE;;
t) interval=$SOPTARG; ;

\?) echo "Usage: waitfor [-m] [-t n] user"
echo " -m means to be informed by mail"
echo " -t means check every n secs."
exit 1;;

esac
done

Make sure a user name was specified

if ["SOPTIND" -gt "S$#" 1]

then
echo "Missing user name!"
exit 2

fi

shiftcount=$((OPTIND - 1))
shift $shiftcount
user=$1

#
Check for user logging on
#

until who | grep "“Suser " > /dev/null
do

sleep $interval
done

#

When we reach this point, the user has logged on

#

From the Library of shannon powell

The getopts Command 183

if ["$mailopt" = FALSE]

then

echo "$user has logged on"
else

runner=$ (who am 1 | cut -cl-8)

echo "Suser has logged on" | mail S$runner
fi

$ waitfor -m
Missing user name!

$ waitfor -x fred Illegal option
waitfor: illegal option -- x
Usage: waitfor [-m] [-t n] user

-m means to be informed by mail

-t means check every n secs.
$ waitfor -m -t 600 ann & Check every 10 min. for ann
[1] 5792
$

Let’s look at the last line more closely. When the line

waitfor -m -t 600 ann &

is executed, the following occurs inside the while loop: getopts is invoked and stores the
character m inside the variable option, sets OPTIND to 2, and returns a zero exit status.

The case command then determines what was stored inside option. A match on the character
m indicates that the “send mail” option was selected, so mailopt is set to TRUE. (Note that

the ? inside the case is quoted. This is to remove its special meaning as a pattern matching
character from the shell.)

The second time getopts is executed, getopts stores the character t inside option, stores the
next command line argument (600) inside OPTARG, sets OPTIND to 3, and returns a zero exit
status. The case command then matches the character t stored inside option. Then the code
associated with that case copies the value of 600 that was stored in OPTARG into the variable

interval.

The third time getopts is executed, getopts returns a nonzero exit status, indicating that it’s
reached the end of the user-specified command options.

The program then checks the value of OPTIND against $# to make sure that a username was
typed on the command line. If OPTIND is greater than $#, then no more arguments remain and
the user forgot the user name argument. Otherwise, the shift command is used to move the
user name argument into $1. The actual number of places to shift is one less than the value of
OPTIND.

From the Library of shannon powell

184 Chapter 8 'Round and 'Round She Goes

The rest of the waitfor program remains as before; the only change is the use of the interval
variable to specify the number of seconds to sleep.

If your head’s a bit awhirl with getopts and its use, don’t worry, it'll keep showing up in
subsequent shell programs, and you'll get the hang of it with more exposure. It is worth
studying for advanced shell programming too, because manually parsing anything more than
a single command flag is prohibitively inefficient otherwise.

From the Library of shannon powell

9

Reading and Printing Data

In this chapter you'll learn how to read data from the terminal or from a file using the read
command and how to write formatted data to standard output using the printf command.

The read Command

The general format of the read command is

read variables

When this command is executed, the shell reads a line from standard input and assigns the
first word to the first variable listed in variables, the second word to the second variable, and
so on. If there are more words on the line than there are variables listed, the excess words get
assigned to the last variable. For example, the command

read x y
reads a line from standard input, storing the first word in variable x, and the remainder of the
line in variable y. It follows from this that the command

read text

reads and stores an entire line into the shell variable text.

A Program to Copy Files

Let’s put the read command to work by writing a simplified version of the cp command.
We'll call it mycp, and we'll have it take two arguments: the source file and the destination file.
If the destination file already exists, the program will warn the user and ask them if they want
to proceed with the copy. If the answer is “yes,” we’ll proceed; otherwise the program will quit.
$ cat mycp

#

Copy a file
#

From the Library of shannon powell

186

Chapter 9 Reading and Printing Data

if ["$#" -ne 2] ; then
echo "Usage: mycp from to"
exit 1

fi

from="s1"
to="g2"

#
See if the destination file already exists

#

if [-e "sSto"] ; then
echo "Sto already exists; overwrite (yes/no)?"
read answer

if ["Sanswer" != yes] ; then
echo "Copy not performed"
exit 0

fi

#
Either destination doesn't exist or "yes" was typed

#

cp S$from Sto # proceed with the copy

$

Now let’s give the program a quick test:

$ 1s -C What files? -C forces multicolumn output too
Addresses intro lotsaspaces mycp

names nu numbers phonebook

stat

$ mycp No arguments

Usage: mycp from to
$ mycp names names2
$ 1ls -1 names*

-rwW-r--r-- 1 steve
-rwW-r--r-- 1 steve

$ mycp names numbers

Make a copy of names

Did it work?
steve 43 Jul 20 11:12 names
steve 43 Jul 21 14:16 names2

Try to overwrite an existing file

numbers already exists; overwrite (yes/no)?

no
Copy not performed
$

From the Library of shannon powell

The read Command 187

Notice that if the file already exists, the echo command that prompts for the yes/no response
is executed. The read command that follows causes the shell to wait for the user to type a
response. What this shows is that the shell doesn’t prompt the user when it’s waiting for data;
it’s up to the programmer to add a useful prompt to the program.

The data that is typed is stored in the variable answer and is then tested against the characters
ves to determine whether the copy process should proceed. The quotes around the reference to
the variable answer in the test

["Sanswer" != yes]

are necessary in case the user just presses the Enter key without typing any data. In that case,
the shell would store a null value in answer and, without the quotes, test would issue an
error message.

Also note the use of the semicolon to move the then statements onto the same line as the if
statement. This is a common shell programmer notational trick, as mentioned in the previous
chapter.

Special echo Escape Characters

A slight annoyance with mycp is that after the echo command is run, the response typed by the
user appears on the next line. This happens because the echo command automatically adds a
terminating newline character after the last argument.

Fortunately, this can be suppressed if the last two characters given to echo are the special escape
characters \c. This tells echo to omit the newline after displaying the last argument. If you
changed the echo command in mycp to read like this:

echo "Sto already exists; overwrite (yes/no)? \c"
The user’s input would be typed right after the message on the same line. Bear in mind that

the \c is interpreted by echo and not by the shell, meaning that it must be quoted so that the
backslash makes it to echo.

Note

Some Linux and Mac OS X systems have shells that don’t interpret these echo escape
characters, so the above would be shown as

newfile.txt already exists; overwrite (yes/no)? \c

If testing reveals that your shell works like that, change those specific invocations of echo to
the separate program /bin/echo and they’ll work fine. All your other echo statements can
remain as just regular echo commands, of course.

The echo command can also interpret other special characters (see note if yours doesn’t work
as expected). These must each be preceded by a backslash and are summarized in Table 9.1.

From the Library of shannon powell

188 Chapter 9 Reading and Printing Data

Table 9.1 echo Escape Characters

Character Prints

\b Backspace

\c The line without a terminating newline

\f Formfeed

\n Newline

\r Carriage return

\t Tab character

\N\ Backslash character

\0nnn The character whose ASCII value is nnn, where nnn

is a one- to three-digit octal number

An Improved Version of mycp

Suppose that you have a program called progl in your current directory and you want to copy
it into your bin directory. With the regular cp program, you could use the shortcut of just
specifying the destination directory to have the file copied there with its existing filename.
But take another look at the mycp program and determine what happens if you type in

mycp progl bin
The -e test on bin will succeed (because -e tests for existence of a file), and mycp will display

the “already exists” message and wait for a yes/no answer. That’s a dangerous mistake,
particularly if the user types yes!

If the second argument is a directory, mycp should instead check to see whether the from file
exists inside the specified directory.

The next version of mycp performs this check. It also has the modified echo command that
includes the \c to suppress the terminating newline.

$ cat mycp

#

Copy a file -- version 2

#

if ["$#" -ne 2] ; then
echo "Usage: mycp from to"
exit 1

fi

from="$1"

to="$2"

From the Library of shannon powell

The read Command 189

#
See if destination file is a directory
#
if [-d "$Sto"] ; then
to="$to/$ (basename $from)"
fi
#
See if the destination file already exists
#
if [-e "sSto"] ; then
echo "Sto already exists; overwrite (yes/no)? \c"
read answer
if ["Sanswer" != yes] ; then
echo "Copy not performed"
exit 0
fi
fi
#
Either destination doesn't exist or “yes” was typed
#
cp $from $to # proceed with the copy
$

If the destination file is a directory, the program changes the variable to to more precisely
identify the destination filename by including the directory name: $to/$ (basename $from).
This ensures that the subsequent test for the existence of the ordinary file $to will be done on
the file in the directory, not on the directory itself.

The basename command gives the base filename of its argument with all directory components
stripped away (for example, basename /usr/bin/troff produces troff; basename troff also
produces troff). This extra step ensures that the copy is made from and to the correct place.
(As an example, if mycp /tmp/data bin is typed, where bin is a directory, you want

to copy /tmp/data into bin/data and not into bin/tmp/data.)

Here’s some sample output. Note the effect of the \c escape characters.

$ 1s Check out current directory
bin

progl

$ 1s bin Look inside bin

lu

nu

progl

From the Library of shannon powell

190 Chapter 9 Reading and Printing Data

$ mycp progl prog2 Simple case

$ mycp progl bin Copy into directory
bin/progl already exists; overwrite (yes/no)? yes
$

A Final Version of mycp

The last modification to mycp makes the program virtually equivalent to the standard Linux
cp command by allowing a variable number of arguments. Recall that with the standard
command any number of files can precede the name of a directory, as in

cp progl prog2 greetings bin
To modify mycp to accept any number of files in a similar format, you can use this approach:

1. Get each argument but the last from the command line and store it in the shell variable
filelist.

2. Store the last argument in the variable to.
3. If $to is not a directory, test the argument count as there must be exactly two arguments.

4. If $to is a directory, for each file in $filelist, check whether the file already exists in
the destination directory. If it doesn’t, add the filename to the variable copylist.
If it does exist, ask the user whether the file should be overwritten. If the answer is yes,
add the filename to copylist.

5. If copylist is non-null, copy the files in it to $to.

If this algorithm seems a bit fuzzy, the program and a detailed explanation will help clear
things up. Note the modified command usage message.

$ cat mycp
#
Copy a file -- final version
#
numargs=S# # save this for later use
filelist=
copylist=
#
Process the arguments, storing all but the last in filelist
#
while ["$#" -gt 1] ; do
filelist="8filelist $1"
shift
done

From the Library of shannon powell

The read Command 191

to="g1"

#
If less than two args, or if more than two args and last arg
is not a directory, then issue an error message

#

if ["$numargs" -1t 2 -o "Snumargs" -gt 2 -a ! -d "S$to"] ; then
echo "Usage: mycp filel file2"
echo " mycp file(s) dir"
exit 1

fi

#

Sequence through each file in filelist

#

for from in $filelist ; do
#
See if destination file is a directory
#

if [-d "$Sto"] ; then
tofile="$to/$ (basename S$from)"
else
tofile="$to"
fi

#

Add file to copylist if file doesn't already exist
or if user says it's okay to overwrite

#

if [-e "Stofile"] ; then
echo "Stofile already exists; overwrite (yes/no)? \c"
read answer

if ["Sanswer" = yes] ; then
copylist="$copylist $from"
fi
else

copylist="S$copylist $from"
fi
done

From the Library of shannon powell

192 Chapter 9 Reading and Printing Data

#
Now do the copy -- first make sure there's something to copy
#
if [-n "Scopylist"™] ; then
cp Scopylist Sto # proceed with the copy
fi
$

Let’s look at some sample output before delving into the code itself.

$ 1s -C See what's around
bin lu names progl
prog2
$ 1ls bin And what’s in bin?
lu
nu
progl
$ mycp No arguments
Usage: mycp filel file2

mycp file(s) dir
$ mycp names progl prog2 Last arg isn't a directory
Usage: mycp filel file2

mycp file(s) dir
$ mycp names progl prog2 lu bin Legitimate use
bin/progl already exists; overwrite (yes/no)? yes
bin/lu already exists; overwrite (yes/no)? no

$ 1s -1 bin See what happened
total 5

-YW-r--r-- 1 steve steve 543 Jul 19 14:10 lu
-TW-r--r-- 1 steve steve 949 Jul 21 17:11 names
-IW-Ir--r-- 1 steve steve 38 Jul 19 09:55 nu
-rw-r--r-- 1 steve steve 498 Jul 21 17:11 progl
-Yw-r--r-- 1 steve steve 498 Jul 21 17:11 prog2

$
In the last case, progl was overwritten and 1u wasn't, as per the user’s request.

When the program starts execution, it saves the number of arguments in the variable numargs.
This is done because the argument variables are changed later in the program by the shift
command.

Next a loop is entered that is executed as long as the number of arguments is greater than
one. The purpose of this loop is to get the last argument on the line. While doing this, the
loop stashes away the other arguments into the shell variable £ilelist, which ultimately will
contain a list of all the files to be copied. The statement

filelist="$filelist $1"

From the Library of shannon powell

The read Command 193

says to take the previous value of filelist, add on a space followed by the value of $1, and
then store the result back into filelist. Then the shift command is executed to “move” all
the arguments over by one. Eventually, $# will be equal to one, and the loop will be exited.

At that point, £ilelist will contain a space-delimited list of all the files to be copied, and

$1 will contain the last argument, which is either the destination filename or destination
directory.

To see how this works, consider execution of the while loop when the command is executed as
mycp names progl prog2 lu bin

Figure 9.1 depicts the changing values of the variables through each iteration of the loop.
The first line shows the state of the variables before the loop is entered.

$# $1 $2 $3 $4 $5 filelist

5 names progl prog2 lu bin null

4 progl prog2 lu bin names

3 prog2 lu bin names prog1

2 lu bin names prog1 prog2

1 bin names prog1 prog2 lu

Figure 9.1 Processing command line arguments

After the loop is exited, the last argument contained in $1 is stored in the variable to. Next
a test is made to ensure that at least two arguments were typed on the command line and,

if more than two were typed, that the last argument is a directory. If either condition is not
satisfied, usage information is displayed to the user, and the program exits with a status of 1.

Following this, the for loop examines each file in the list to see whether it already exists
in the destination directory. If it does, the user is prompted as before. If the user wants to
overwrite the file—or if the file doesn’t exist—the file is added to the shell variable copylist.
The technique used here is the same used to accumulate the arguments inside filelist.

When the for loop is exited, copylist contains a list of all the files to be copied. In an
extreme case, notice that this list can be null if the user decided not to overwrite any files and
every file specified already existed in the destination directory too. Therefore a test is made to
ensure copylist is non-null, and if it is, the copy is performed.

Take some time to review the logic of the final version of mycp; it illustrates many of the
features you've learned so far in this book. Some exercises at the end of this chapter will also
test your understanding of this program.

A Menu-Driven Phone Program

One useful thing about the read command is that it enables you to write menu-driven shell
programs. As an example, let’s return to the three phone book programs we wrote earlier,

From the Library of shannon powell

194

Chapter 9 Reading and Printing Data

add, lu, and rem, and create what’s known as a wrapper, a program that makes other programs
easier to use. This time we’ll create the wrapper program rolo (“rolo” short for Rolodex, just in

case you remember what a Rolodex is!).

When invoked, rolo will display a list of choices to the user and then execute the appropriate
program depending on the selection after prompting for the necessary arguments:

$ cat rolo

#

rolo - rolodex program to look up, add, and
remove people from the phone book

#

#
Display menu
#

echo '
Would you like to:

1. Look someone up
2. Add someone to the phone book
3. Remove someone from the phone book

Please select one of the above (1-3): \c'

#
Read and process selection

#

read choice
echo nn
case "$choice"

in
1) echo "Enter name to look up: \c"
read name
lu "$Sname";;
2) echo "Enter name to be added: \c¢"
read name
echo "Enter number: \c"
read number
add "S$name" "$number";;
3) echo "Enter name to be removed: \c"
read name
rem "Sname";;
*) echo "Bad choice";;
esac
$

From the Library of shannon powell

The read Command 195

Notice how a single echo command is used to display the full multi-line menu, taking
advantage of the fact that the quotes preserve formatting and embedded newlines. Then read
gets the selection from the user and stores it in the variable choice.

A case statement determines what choice was made. If choice 1 was selected, the user wants to
look up someone in the phone book. In that case, the user is asked to enter the desired name,
and the 1u program is called with the specified argument. Note also that the double quotes
around name in

lu "$name"

are necessary to ensure that two or more words typed in by the user are handed to 1u as a
single argument.

A similar sequence occurs if the user selects menu items 2 or 3.
The programs 1u, rem, and add are from earlier chapters.

Here are some sample runs of rolo:

$ rolo
Would you like to:

1. Look someone up
2. Add someone to the phone book
3. Remove someone from the phone book

Please select one of the above (1-3): 2
Enter name to be added: El Coyote

Enter number: 212-567-3232

$ rolo Try it again

Would you like to:
1. Look someone up
2. Add someone to the phone book
3. Remove someone from the phone book
Please select one of the above (1-3): 1
Enter name to look up: Coyote
El Coyote 212-567-3232
$ rolo Once again
Would you like to:
1. Look someone up

2. Add someone to the phone book
3. Remove someone from the phone book

From the Library of shannon powell

196 Chapter 9 Reading and Printing Data

Please select one of the above (1-3): 4
Bad choice

$

When an invalid choice is entered, the program displays Bad choice and then terminates.

A friendlier approach would be to loop around and again prompt the user until a proper choice
is made. This can be done by enclosing the entire program inside an until loop that will be
executed until a valid selection is made.

Another change to rolo reflects its most likely usage: Because the most common operation will
be looking someone up, there will be a tendency to avoid typing rolo, then making selection
1, then typing the desired name. Instead, it’s a lot easier to just type in

lu name

directly. Given this, let’s give rolo some useful command line arguments so it can also be
used as efficiently. By default if any arguments are specified, rolo will assume that a lookup is
requested and call 1u directly, handing all the arguments along. If the user wants to perform
a quick lookup, they can type rolo followed by the name. If they want to get the full menu
interface, typing just rolo offers just that alternative too.

The preceding two changes (looping until a valid choice is selected and doing a quick lookup)
are added to version 2 of rolo:

$ cat rolo
#

rolo - rolodex program to look up, add, and

remove people from the phone book -- version 2
#
#
If arguments are supplied, then do a lookup
#
if ["$#" -ne 0] ; then
Ju " $@l|
exit
fi
validchoice="" # set it null
#
Loop until a valid selection is made
#
until [-n "$validchoice"]
do
#
Display menu
#

From the Library of shannon powell

The read Command 197

echo '
Would you like to:

1. Look someone up
2. Add someone to the phone book
3. Remove someone from the phone book

Please select one of the above (1-3): \c'

#

Read and process selection
#

read choice

echo

case "$choice"
in
1) echo "Enter name to look up: \c"
read name
lu "S$name"
validchoice=TRUE; ;
2) echo "Enter name to be added: \c"
read name
echo "Enter number: \c¢"
read number
add "Sname" "Snumber"
validchoice=TRUE; ;
3) echo "Enter name to be removed: \c"
read name
rem "Sname"
validchoice=TRUE; ;
*) echo "Bad choice";;
esac
done

$

If $# is non-zero, 1u is called directly with the arguments typed on the command line, then
the program exits. Otherwise, the until loop is executed until the variable validchoice is
non-null. Remember that the only way it will be assigned a value is if the command

validchoice=TRUE

is executed inside the case of either choice 1, 2, or 3. Otherwise, the program continues to
loop.

$ rolo Bill Quick lookup
Billy Bach 201-331-7618
$ rolo Let’s have the menu this time

From the Library of shannon powell

198

Chapter 9 Reading and Printing Data

Would you like to:

1. Look someone up
2. Add someone to the phone book
3. Remove someone from the phone book

Please select one of the above (1-3): 4
Bad choice

Would you like to:

1. Look someone up
2. Add someone to the phone book
3. Remove someone from the phone book

Please select one of the above (1-3): 0
Bad choice

Would you like to:

1. Look someone up
2. Add someone to the phone book
3. Remove someone from the phone book

Please select one of the above (1-3): 1

Enter name to look up: Tony
Tony Iannino 973-386-1295
$

The $s Variable and Temporary Files

If two or more people on your system use the rolo program at the same time, a potential
problem may occur. Look at the rem program and see whether you can spot it. The problem
occurs with the temporary file /tmp/phonebook that is used to create a new version of the
phone book file.

The specific statements in the rem program look like this:

grep -v "$name" phonebook > /tmp/phonebook
mv /tmp/phonebook phonebook

But here’s the problem: If more than one person uses rolo at the same time to remove an
entry, there’s a chance that the phone book file can get messed up because the same temporary
file will be simultaneously used more than once. To be fair the chance of this happening is
rather small, but it’s non-zero and that means it’s a problem.

From the Library of shannon powell

The read Command 199

There are two important concepts that this code raises, actually. The first is to do with how
computers actually implement multitasking, by swapping individual programs in and out of
the processor. The result is that at any point during execution, a program can be swapped out,
even half-way through a series of commands. Now you can see the problem with the above
code: because it's two statements, what happens if the program loses its place in line between
the two statements and another instantiation of the program happens to run the exact same
two lines of code? The second program overwrites the result of the first program’s grep
invocation. Not good for either user!

The second point relates to what’s known as a race condition, a situation where more than one
simultaneous invocation of a program can cause trouble. Most often that’s related to temporary
files, but it can also occur with sub-processes and lock files, as we’ll discuss later in the book.

For now, just keep in mind that when writing shell programs that can be run by more than one
person, make sure that each user’s temporary files are unique.

One solution is to create temporary files in the user’s home directory instead of /tmp. Another
way is to choose a temporary filename that will be unique and different for each invocation
of the program. A neat way to do this is to embed the unique process ID (PID) of the specific
invocation into the filename. This is easily accomplished by referring to the special $s shell
variable:

$ echo $%

4668

$ ps
PID TTY TIME COMMAND
4668 co 0:09 sh
6470 co 0:03 ps

$

When substituted by the shell, $$ becomes the process ID number of the login shell itself.
Because each process on the system is given a unique process ID, using the value of $$ in the
name of a file eliminates the possibility of a different process using the same name. To fix the
problem highlighted earlier, replace the two lines from rem with this improved sequence:

grep -v "$name" phonebook > /tmp/phonebooks$$
mv /tmp/phonebooks$$ phonebook

to side-step any potential race conditions. Each person using rolo will run it as a different
process, so the temporary file used in each instance will be different. Problem solved.

The Exit Status from read

read returns an exit status of zero unless an end-of-file condition is encountered. If the data is
coming from the terminal, this means that the user has pressed ctrl+d. If the data is coming
from a file, it means that there’s no more data to read from the file.

From the Library of shannon powell

200 Chapter 9 Reading and Printing Data

This makes it easy to write a loop that will read lines of data from either a file or the terminal.

The next program, called addi, reads in lines containing pairs of numbers, which are added
together; their sums are then written to standard output:

$ cat addi
#
add pairs of integers on standard input

#

while read nl n2
do

echo $((Snl + sn2))
done

$

The while loop is executed as long as the read command returns an exit status of zero, which
occurs as long as there’s still data to be read. Inside the loop, the two values read from the line
(presumably integers—no error checking is done here) are added up and the result written to
standard output by echo.

$ addi
10 25
35

-5 12
7

123 3
126
Ctrl+d
$

Standard input for addi can be redirected from a file, and standard output can be another file
(or a pipe, of course):

$ cat data
1234 7960
593 -595
395 304
3234 999
-394 -493
$ addi < data > sums
$ cat sums
9194

-2

699

4233

-887

From the Library of shannon powell

The read Command 201

The following program, called number, is a simplified version of the standard Unix nl
command: it accepts one or more files as arguments and displays their contents with each line
preceded by its line number. If no arguments are supplied, it reads standard input instead.

$ cat number

#

Number lines from files given as argument or from
standard input if none supplied

#
lineno=1

cat $* |
while read line
do
echo "$lineno: $line"
lineno=$((lineno + 1))
done

$

The variable 1ineno—the line number count—is initially set to 1. Then the arguments typed

to number are given to cat to be collectively written to standard output. If no arguments are

supplied, $* will be null, and cat will be passed no arguments. This will cause it to read from
standard input. The output from cat is piped into the while loop.

Each line encountered by read is echoed at the terminal, prefaced by the current value of
lineno, whose value is then incremented by one.

$ number phonebook

1: Alice Chebba 973-555-2015
2: Barbara Swingle 201-555-9257
3: Billy Bach 201-555-7618
4: E1 Coyote 212-555-3232
5: Liz Stachiw 212-555-2298
6: Susan Goldberg 201-555-7776
7: Teri Zak 201-555-6000
8: Tony Iannino 973-555-1295
$ who | number Try from standard input
1: root console Jul 25 07:55
2: pat tty03 Jul 25 09:26
3: steve tty04 Jul 25 10:58
4: george ttyl3 Jul 25 08:05
$

Note that number won’t work too well for lines that contain backslashes or leading whitespace
characters. The following example illustrates this point.

$ number
Here are some backslashes: \ *
1: Here are some backslashes: *

$

From the Library of shannon powell

202 Chapter 9 Reading and Printing Data

Leading whitespace characters are removed from any line that’s read. The backslash characters
are also interpreted by the shell when it reads the line. You can use the -r option of read to
prevent it from interpreting the backslash character. If we change the

while read line

in number to

while read -r line

the output will look better:

$ number
Here are some backslashes: \ *
1: Here are some backslashes: \ *

$

In Chapter 11 you'll learn how to preserve the leading whitespace characters and also how to
have some control over the parsing of the input data.

The printf Command

Although echo is quite adequate for displaying simple messages, sometimes you'll want to print
formatted output: for example, lining up columns of data. Unix systems provide the printf
command for these tasks. Those of you familiar with the C or C++ programming language will
notice many similarities with their function of the same name.

The general format of the printf command is

printf "format" argl arg2 ...

where format is a string that details how the subsequent values are to be displayed. Since the
format string is a single argument and is likely to contain special characters and spaces, it’s
always a good idea to enclose it in quotes.

Characters in the format string that are not preceded by a percent sign (%) are written directly
to standard output. At its most simple, then, printf can work like echo (as long as you
remember to end each line with \n for a newline, as shown):

$ printf "Hello world!\n"
Hello world!
$

Characters preceded by a percent sign are called format specifications and tell printf how the
corresponding argument should be displayed. For each percent sign in the format string there
should be a corresponding argument, except for the special specification %%, which causes a
single percent sign to be displayed.

Let’s start with a simple example of print¢:

$ printf "This is a number: %d\n" 10
This is a number: 10

$

From the Library of shannon powell

The printf Command 203

printf doesn’t automatically add a newline character to the end of its output like echo but it
does understand the same escape sequences (refer to Table 9.1 earlier in this chapter), so adding
\n to the end of the format string causes the newline character sequence to also be printed and
the command prompt to appear on the next line as expected.

Although the preceding is a simple example that could also be handled by echo, it helps to
illustrate how the conversion specification (%d) is interpreted by print£: the format string is
scanned and outputs each character in the string until it sees the percent sign. Then it reads
the d and tries to replace the $d with the next argument given to print£, which must be an
integer. After that argument (10) is sent to standard output, printf continues scanning the
format string, sees the \n, and outputs a newline.

Table 9.2 summarizes the different format specification characters.

Table 9.2 printf Format Specification Characters

Character Use for Printing

o°
Q

Integers

o°
c

Unsigned integers

o°
o

Octal integers

o
»

Hexadecimal integers, using a-f

o
>

Hexadecimal integers, using A-F

o
Q

Single characters

o
[0}

Literal strings

o
o

Strings containing backslash escape characters

o
o°

Percent signs

The first five conversion specification characters are all used for displaying integers. $d displays
signed integers, and %u displays unsigned integers; $u can also be used to display the positive
representation of a negative number. By default, integers displayed as octal or hexadecimal
numbers do not have a leading 0 or 0x, but you can fix that if needed, as we’ll show later in
this section.

Strings are printed using %s or %b. %$s is used to print strings literally, without any processing of
backslash escape characters; $b is used to force interpretation of the backslash escape characters
in the string argument.

Here are a few printf examples to clarify:

$ printf "The octal value for %d is %o\n" 20 20

The octal value for 20 is 24

$ printf "The hexadecimal value for %d is %x\n" 30 30
The hexadecimal value for 30 is le

From the Library of shannon powell

204 Chapter 9 Reading and Printing Data

$ printf "The unsigned value for %d is %u\n" -1000 -1000

The unsigned value for -1000 is 4294966296

$ printf "This string contains a backslash escape: %s\n" "test\nstring"
This string contains a backslash escape: test\nstring

$ printf "This string contains an interpreted

=backslash escape: %b\n" "test\nstring"

This string contains an interpreted backslash escape: test string

$ printf "A string: %s and a character: %c\n" hello A

A string: hello and a character: A

$

In the last print£, %c is used to display a single character. If the corresponding argument is
longer than one character, only the first is displayed:

$ printf "Just the first character: %c\n" abc
a

$

The general format of a conversion specification is

% [flags] [width] [.precision] type

The type is the conversion specification character from Table 9.2. As you can see, only the
percent sign and type are required; the other parameters are called modifiers and are optional.
Valid flags are -, +, #, and the space character.

- left-justifies the value being printed, which will make more sense when we discuss the width
modifier.

+ causes printf to precede integers with a + or - sign (by default, only negative integers are
printed with a sign).

causes printf to precede octal integers with 0 and hexadecimal integers with 0x or 0%,
specified as $#x or $#X, respectively.

The space character causes print£ to precede positive integers with a space and negative
integers with a - for alignment purposes.

A few more examples. Pay close attention to the format strings!

$ printf "%+d\n%+d\n%+d\n" 10 -10 20

+10

-10

+20

$ printf "% d\n% d\n% d\n" 10 -10 20
10

-10
20

$ printf "%#o %#x\n" 100 200

0144 0xc8

$

From the Library of shannon powell

The printf Command 205

As you can see, using + or space as the flag causes a column of positive and negative numbers
to align nicely.

The width modifier is a positive number that specifies the minimum field width for printing an
argument. The argument is right-justified within this field unless the - flag is used:

$ printf "%20s%20s\n" stringl string2
stringl string2
$ printf "%-20s%-20s\n" stringl string2

stringl string2

$ printf "%5d%5d%5d\n" 1 10 100
1 10 100

$ printf "%5d%5d%5d\n" -1 -10 -100
-1 -10 -100

$ printf "%-5d%-5d%-5d\n" 1 10 100
1 10 100
$

The width modifier can be useful for lining up columns of text or numbers (Tip: signs

for numbers and leading 0, 0x, and 0x characters are counted as part of the argument width).
The width specifies a minimum size for the field, but if the width of an argument exceeds
width, it can overflow or not be output at all. An easy way to test:

printf "%-15.15s\n" "this is more than 15 chars long"
What happens on your system when you try that command?

The .precision modifier is a positive number that specifies a minimum number of digits to be
displayed for %d, %u, %o, %%, and %$X. This results in zero-padding on the left of the value:

$ printf "%.5d %.4X\n" 10 27
00010 001B
$

For strings, the . precision modifier specifies the maximum number of characters to be
printed from the string. If the string is longer than precision characters, it is truncated on the
right. That’s important to realize as it lets you line up text across multiple lines, but with some
data missing if any individual value is wider than the specified field:

$ printf "%.6s\n" "Ann Smith"
Ann Sm

$

A width can be combined with . precision to specify both a field width and zero padding (for
numbers) or truncation (for strings):

$ printf ":%#10.5x:%5.4x:%5.4d\n" 1 10 100
0x00001: 000a: 0100
$ printf ":%9.5s:\n" abcdefg
abcde:
$ printf ":%-9.5s:\n" abcdefg
:abcde
$

From the Library of shannon powell

206 Chapter 9 Reading and Printing Data

Finally, in case all of this isn’t confusing enough, if a * is used in place of a number for
width or precision, the argument preceding the value to be printed must be a number and
will be used as the width or precision, respectively. If a * is used in place of both, two integer
arguments must precede the value being printed and are used for the width and precision:

$ printf "%*s%*.*s\n" 12 "test one" 10 2 "test two"

test one te
$ printf "%12s%10.2s\n" "test one" "test two"
test one te

$

As you can see, the two print£s in this example produce the same result. In the first printf,
12 is used as the width for the first string, 10 as the width for the second string, and 2 as the
precision for the second string. In the second printf, these numbers are specified as part of the
format specification.

While the format specification for printf is unquestionably complex, its power and capabili-
ties to turn the relatively unstructured output of echo into exactly what you want from your

own shell programs is darn helpful. It’s a command well worth studying more closely so you

know how to use it as you develop your own more sophisticated programs.

Table 9.3 summarizes the various format specification modifiers.

Table 9.3 printf Format Specification Modifiers

Modifier Meaning

Flags

- Leftjustify value.

+ Precede integer with + or -.

(space) Precede positive integer with space character.

Precede octal integer with 0, hexadecimal integer with 0x or 0X.
width Minimum width of field; * means use next argument as width.
precision Minimum number of digits to display for integers; maximum number of

characters to display for strings; * means use next argument as precision.

Let’s keep exploring print£f. Here’s a simple example that uses printf to align two columns of
numbers from a file:

$ cat align

#

Align two columns of numbers

(works for numbers up to 12 digits long, including sign)

From the Library of shannon powell

cat $* |
while read numberl number2
do
printf "%12d %12d\n" S$numberl $number2
done
$ cat data
1234 7960
593 -595
395 304
3234 999
-394 -493
$ align data
1234 7960
593 -595
395 304
3234 999
-394 -493
$

The printf Command 207

In Chapters 11, 13, and 14 you’ll see more examples of different uses for printt£.

From the Library of shannon powell

This page intentionally left blank

From the Library of shannon powell

10

Your Environment

When you log on to your system, whether it’s a shiny new Mac OS X Terminal app, a clean
Linux install, or a Unix server in the back office, you're effectively given your own copy of the
shell program. This login shell maintains what’s known as your environment—a configuration
that is distinct from other users on the system. This environment is maintained from the
moment you log on until the moment you log off. In this chapter you'll learn about the shell
environment and you’ll see how it relates to writing and running programs.

Local Variables

Type the following program called vartest into your computer:

$ cat vartest
echo :$x:

$

vartest consists of a single echo command that displays the value of the variable x
surrounded by colons.

Assign any value you want to the variable x from your terminal:
$ x=100
Question: What do you think will be displayed when vartest is now executed? Answer:

$ vartest
$
vartest doesn’t know about the value of x. Therefore, its value is the default: null. The

variable x that was assigned the value 100 in the login shell is known as a local variable.
The reason why it has this name will become clear shortly.

From the Library of shannon powell

210 Chapter 10 Your Environment

Here’s another example called vartest2:

$ cat vartest2

x=50

echo :$x:

$ x=100

$ vartest2 Execute it
:50:

$

Since the script changed the value of x from 100 to 50, the question is: What's the value of x
after the script completes?

S echo $x

100

$

You can see that vartest2 didn’t change the value of x, previously set to 100 in the interactive
shell.

Subshells

The seemingly weird behavior exhibited by vartest and vartest2 is due to the fact that these
programs are run within subshells by your login shell. A subshell is essentially an entirely new
shell just to run the desired program.

When you ask the login shell to execute vartest, it starts up a new shell to execute the
program. Whenever a new shell runs, it runs in its own environment, with its own set of local
variables. A subshell has no knowledge of local variables that were assigned values by the login
shell (the parent shell). Furthermore, a subshell cannot change the value of a variable in the
parent shell, as evidenced by vartest2.

Let’s review the process that goes on here so you can better understand what’s called the scoping
of variables in shell programs: Before executing vartest2, your shell has a variable called x
that has been assigned the value 100. This is depicted in Figure 10.1.

x =100
login local variables
shell Q€-—""""""""71

Figure 10.1 Login shell with x=100

When you invoke vartest2, your shell starts up a subshell to run it, giving it an empty list of
local variables to start with (see Figure 10.2).

From the Library of shannon powell

Exported Variables 211

x =100
login local variables
shel Q€---------- >

S

=

[0]

(7]

@

N

1

'S

| 9

N

'5

I3

1D

S

I'®

(Y]

|
[] []
[] []
[] []

Figure 10.2 Login shell executes vartest?2

After the first command in vartest2 is executed, assigning 50 to x, the local variable x that
exists in the subshell’s environment will have the value 50 (see Figure 10.3) but the value of x in
the parent shell will be unchanged.

login local variables
shell @<~~~ =7777°77

x
1l
-
o
o

I
1
| e o o
|
|
I
x =50
vartest2 local variables
(subshel) €= """""="""
e o o

Figure 10.3 vartest2 executes x=50

When vartest2 finishes execution, the subshell goes away, together with any variables assigned
values by the program.

This is less of a problem than it might seem. You just need to understand that the login shell
environment and the environment of subshells and their shell programs are very different.

Exported Variables

There is a way to make the value of a variable known to a subshell, and that’s by exporting it
with the export command. The format of this command is simply

From the Library of shannon powell

212

Chapter 10 Your Environment

export variables

where variables is the list of variable names that you want exported. For any subshells that
get executed subsequent to the export command, the value of the exported variables will
be passed to the subshell.

Here’s a program called vartest3 to help illustrate the difference between local and exported
variables:

$ cat vartest3
echo x = $x
echo y = Sy

$

Assign values to the variables x and y in the login shell, and then run vartest3:

x=100
y=10
vartest3

R T /o /S /%

x and y are both local variables, so their values aren’t passed down to the subshell that runs
vartest3. That'’s as expected.

But now let’s export the variable y and try the program again:

export y Make y known to subshells
vartest3

$
$
X =
Yy
$

This time vartest3 knew about y because it is an exported variable.

Conceptually, whenever a subshell is executed the exported variables get “copied down” to the
subshell, whereas the local variables do not (see Figure 10.4).

-10 exported local X = 100
Y variables login variables
""" > shel QfE€----->

[) I. [) e o o
: copied
Y
y=10 exported local
variables vartest3 variables
----- >| (subshel) g€~~~ ~>

Figure 10.4 Execution of vartest3

From the Library of shannon powell

Exported Variables 213

Now it’s time for another question: What do you think happens if a subshell changes the value
of an exported variable? That is, will the parent shell know about it after the subshell has
finished?

To answer this question, here’s a program called vartest4:

S cat vartest4
x=50

y=5

$

We'll assume that you haven’t changed the values of x and y, and that y is still exported from
the previous example.

$ vartest4

$ echo $x Sy
100 10

$

The subshell couldn’t change the value of either the local variable x (no surprise!) or the
exported variable y, it merely changed its local subshell copy of y that was instantiated when
it was executed (see Figure 10.5). Just as with local variables, when a subshell goes away, so
do the values of the exported variables. In fact, once they get to the subshell, they are local
variables.

That’s why this is true: There is no way to change the value of a variable in a parent shell from
within a subshell.

y=10 exp_orted . Io_cal X = 100
variables login variables
""" > shel QJ€----->

|
e o o : e o o
|
|
I
y=5 exported local X = 50
variables vartest4 variables
“““ > (subshell) <€<----->
e o o e o o

Figure 10.5 Execution of vartest4

From the Library of shannon powell

214 Chapter 10 Your Environment

In the case of a shell program invoking another shell program (for example, the rolo program
calling the 1u program), the process is repeated: the exported variables from the subshell are
copied to the new subshell. These exported variables may have been exported from the login
shell, or newly exported from within the subshell.

After a variable is exported, it remains exported to all subshells subsequently executed.

Consider a modified version of vartest4:

$ cat vartest4
x=50

y=5

z=1

export z
vartest5

$

and vartests:

$ cat vartest5
echo x = S$x

echo y = Sy
echo z = $z
$

When vartest4 gets executed, the exported variable y will be copied into the subshell’s
environment. vartest4 sets the value of x to 50, changes the value of y to 5, and sets the
value of z to 1. Then it exports z which makes the value of z accessible to any subsequent
subshell.

vartest5 is such a subshell and when it is executed the shell copies into its environment the
exported variables from vartest4: y and z.

This explains the following output:

vartest4

N KX
1
&)

This entire process is depicted in Figure 10.6.

From the Library of shannon powell

Exported Variables

215

y=10 exported local X = 100
variables login variables
""" shell Tt
° ? ° o o o
1 copied
y=5 exported local X =50
variables vartest4 variables
z=1 p€----- (subshell) <€~ ~===~
o o o e o o
1
1 copied
y=5 exported local
variables vartest5 variables
z=1 p€----- | (subshell) € -~~--~
e o o e o o

Figure 10.6 Subshell execution

To summarize the way local and exported variables work:

1. Any variable that is not exported is a local variable whose existence will not be known to
subshells.

2. Exported variables and their values are copied into a subshell’s environment, where they
may be accessed and changed. However, such changes have no effect on the variables in
the parent shell.

3. Exported variables retain this characteristic not only for directly spawned subshells, but
also for subshells spawned by those subshells (and so on down the line).

4. A variable can be exported any time before or after it is assigned a value but takes on its
value at the moment of export; subsequent changes aren’t tracked.

export -p
If you type export -p, you'll get a list of the variables and their values exported by your shell:

$ export -p

export LOGNAME=steve
export PATH=/bin:/usr/bin:.
export TIMEOUT=600

export TZ=ESTS5EDT

export y=10

$

From the Library of shannon powell

216

Chapter 10 Your Environment

As you can see, there are actually lots of exported variables in a typical login shell. On the
Mac, export -p produces a list of 22 variables. Note that in the example y shows up from our
earlier export experimentation, along with other variables that were exported when you logged
on and your login shell was started up.

But what are these all-capital-letter exported variables? Let’s have a closer look.

PS1 and PS2

The sequence of characters that the shell uses as your command prompt are stored in the
environment variable ps1. It turns out that you can change this to be anything you want and
as soon as you change it, the new value will be used by the shell from that point on.

S echo :$PSl:

:S

$ PSl="==> "
==> pwd
/users/steve

==> PS1="I await your next command, master: "
I await your next command, master: date

Wed Sep 18 14:46:28 EDT 2002

I await your next command, master: PSl="$ "

$ Back to normal

Your secondary command prompt, used when a command requires more than a single line of
input, defaults to > and is kept in the variable ps2. This too you can change to your heart’s
content:

$ echo :$PS2:

Once you log off the system, all the changes will vanish, just like modifications to any other
shell variables. If you change ps1, the shell will use the new value for the remainder of your
login session. Next time you log in, however, you'll get the old prompt unless you save the new
ps1 value by adding it to your .profile file (discussed later in this chapter).

From the Library of shannon powell

PATH 217

Tip
The ps1 prompt has a language all its own with special sequences that produce the command

count, current directory, time of day, and much more. Learn about it by reading the “Prompting”
section of the Bash or Sh man page!

HOME

Your home directory is where you're placed whenever you log on to the system. A special shell
variable called HOME is also automatically set to this directory when you log on:

$ echo $HOME
/users/steve

$

This variable can be used by your programs to identify your home directory and is widely
used by other programs in Unix for just this purpose. It’s also used by the cd command as the
desired destination when you type cd with no arguments:

$ pwd Where am I?
/usr/src/lib/libc/port/stdio
S cd

$ pwd
/users/steve There’s no place like home

$

You can change your HOME variable to anything you want, but be warned that doing so may
affect the operation of any programs that rely on it:

$ HOME=/users/steve/book Change it

$ pwd

/users/steve

S cd

$ pwd See what happened
/users/steve/book

$

You can change your HOME, but you really shouldn’t unless you're prepared to have a lot of
things go wonky rather quickly.

PATH

Let’s return to the rolo program from Chapter 9:

$ rolo Liz
Liz Stachiw 212-775-2298
$

From the Library of shannon powell

218 Chapter 10 Your Environment

To keep things neat and organized, the program was created in steve’s /bin subdirectory, as
shown:

$ pwd
/users/steve/bin

$

Change directory to anywhere else on the system:

$ cd Go home
$

And try to look up Liz in the phone book:

$ rolo Liz
sh: rolo: not found

$
Uh oh, that’s not good. What happened?

Whenever you type in the name of a program, the shell searches a list of directories until it
finds the requested program. When found, the program is started up. This list of directories
to search for user commands is stored in a shell variable called PATH and it’s automatically set
when you log on. To see what it’s set to at any point, use echo:

$ echo $PATH
/bin:/usr/bin:.
$

Chances are that your PATH has a somewhat different value, but don’t worry about that—
it’s just variations in system configuration. The important thing to notice is that directories
are separated by a colon (:) and that the shell searches them in order, left to right, to find
requested commands or programs.

In the preceding example, three directories are listed: /bin, /usr/bin, and ., (which, you'll
recall, stands for the current directory). So whenever you type in the name of a program, the
shell searches the directories listed in PATH until it finds a matching executable file. Type in
rolo and the shell first looks for /bin/rolo, then /usr/bin/rolo, then, finally, . /rolo in the
current directory. As soon as it finds a match the shell executes it, but if the shell doesn’t find
rolo in any of the directories specified in PATH, it issues a “not found” error.

To have the current directory searched before anything else, put the period at the start of PATH:
.:/bin:/usr/bin
Warning! For security reasons, it’s not a good idea to have your current directory searched

before the system ones.

This is to avoid a Trojan horse attack: Imagine that someone creates their own version of a
command like su (which allows you to switch to root or superuser status by prompting for the
admin password) in a directory then waits for another user to change to that directory and run
the command. If PATH specifies that the current directory be searched first, then the modified
version of su will be executed. The problem is, this version prompts for the password, emails

From the Library of shannon powell

PATH 219

it to the malicious user, deletes itself, and prints out an innocuous error message. Reinvoked,
password retyped, it all works fine and the administrator account has just been compromised
without the user realizing anything has occurred! Sneaky, eh?

The period . for specifying the current directory is optional but useful as a visible reminder.
For example, a PATH of
:/bin:/usr/bin

is equivalent to the previous one; however, throughout this text we’ll specify the current
directory with a period for clarity.

Worried about Trojan horses now? Don't fret, you can always override the search specified by
PATH by specifying an explicit path to the program to be executed. For example, if you type

/bin/date

the shell goes directly to /bin to execute date. PATH in this case is ignored, as it is if you type
in

../bin/lu

or

./rolo

This last case says to execute the program rolo in the current directory and is commonly used
while developing shell programs because it lets programmers omit . from their PATH.

Now you understand why you couldn’t execute rolo from your HOME directory: /users/
steve/bin wasn’t included in PATH so the shell couldn’t find rolo. A simple matter to rectify:
You can simply add this directory to PATH:

$ PATH=/bin:/usr/bin:/users/steve/bin:.
$

Now any program in /users/steve/bin can be executed regardless of your current directory
in the file system:

$ pwd Where am 1?
/users/steve

$ rolo Liz

grep: can't open phonebook

$

Oops. The shell finds rolo and executes it correctly, but the grep command can't find the
phonebook data file.

Look more closely at the rolo program and you’ll see that the grep error message must be
coming from lu. Here’s 1u, as it exists currently:

$ cat /users/steve/bin/lu

#

Look someone up in the phone book -- version 3
#

From the Library of shannon powell

220

Chapter 10 Your Environment

if ["$#" -ne 1]

then
echo "Incorrect number of arguments"
echo "Usage: lu name"
exit 1

fi

grep "$name" phonebook

$

grep is trying to open the phonebook file in the current directory—which is /users/steve—
and that’s the problem: where the program is being executed from has no relation to the
directory in which the program and its data file reside.

PATH only specifies the directories to be searched for programs invoked on the command line,
and not for any other types of files. So phonebook must be precisely located for 1u to make it
more useful.

There are several ways to fix this problem, which also exists with the rem and add programs.
One approach is to have the 1u program change directory to /users/steve/bin before it
invokes grep. That way, grep finds phonebook because it exists in the new current directory:

cd /users/steve/bin
grep "$1" phonebook

This approach is a good one to take when you're doing a lot of work with different files in a
particular directory. Simply cd to the directory first and then you can directly reference all the
files you need.

A second, more common approach is to list a full path to phonebook in the grep command:

grep "$1" /users/steve/bin/phonebook

Suppose that you want to let others use your rolo program (and associated 1u, add, and rem
helper programs). You can give them each their own copy, but then you’ll have several copies
on the system and what happens if you make a small change? Are you going to update all their
copies as well? Tedious.

A better solution is to have a single copy of rolo but to give other users access to it.

The problem should be obvious at this point: If you change all the references of phonebook
to explicitly reference your phone book, everyone else will be using your phone book too.

A smarter way to solve the problem is to require that everyone have a phonebook file in their
home directory and refer to the file as $HOME /phonebook.

To use a very common shell programming convention, define a variable inside rolo called
PHONEBOOK and set it to the multi-user friendly value $HOME/phonebook. If you export this
variable, 1u, rem, and add (which are executed as subshells by rolo) can also use the value of
PHONEBOOK to reference the individual user’s version of the file.

From the Library of shannon powell

PATH 221

One advantage of this approach is that if you change the location of the phonebook file, all
you'll have to do is change this one variable in rolo; the other three programs will continue to
work without a glitch.

With that in mind, here is the new rolo program, followed by modified 1u, add, and rem
programs.

$ cd /users/steve/bin

$ cat rolo

#

rolo - rolodex program to look up, add, and

remove people from the phone book

#

#

Set PHONEBOOK to point to the phone book file
and export it so other progs know about it

#

PHONEBOOK=$HOME /phonebook
export PHONEBOOK

if [! -f "$PHONEBOOK"] ; then
echo "No phone book file in SHOME!"
exit 1
fi
#
If arguments are supplied, then do a lookup
#
if ["$#" -ne 0] ; then
lu "Se"
exit
fi
validchoice="" # set it null
#
Loop until a valid selection is made
#
until [-n "$validchoice"]
do
#
Display menu
#

From the Library of shannon powell

222 Chapter 10 Your Environment

echo '
Would you like to:

1. Look someone up
2. Add someone to the phone book
3. Remove someone from the phone book

Please select one of the above (1-3): \c'

#
Read and process selection
#

read choice
echo

case "$choice"
in
1) echo "Enter name to look up: \c"
read name
lu "S$name"
validchoice=TRUE; ;
2) echo "Enter name to be added: \c"
read name
echo "Enter number: \c¢"
read number
add "Sname" "$number"
validchoice=TRUE; ;
3) echo "Enter name to be removed: \c"
read name
rem "Sname"
validchoice=TRUE; ;
*) echo "Bad choice";;
esac
done
$ cat add
#
Program to add someone to the phone book file
#

if ["$#"_ -ne 2] ;then
echo "Incorrect number of arguments"
echo "Usage: add name number"
exit 1

fi

echo "s1 $2" >> $PHONEBOOK

From the Library of shannon powell

sort -o $PHONEBOOK $PHONEBOOK

$ cat lu

#

Look someone up in the phone book
#

if ["$#" -ne 1] ; then

echo "Incorrect number of arguments"
echo "Usage: lu name"
exit 1

fi

name=$1
grep "$name" $SPHONEBOOK

if [$? -ne 0] ; then
echo "I couldn't find S$name in the phone book"
fi
$ cat rem
#
Remove someone from the phone book
#
if ["$#" -ne 1] ; then
echo "Incorrect number of arguments"
echo "Usage: rem name"
exit 1
fi
name=$1
#
Find number of matching entries
#

matches=$ (grep "$name" $PHONEBOOK | we -1)
#
If more than one match, issue message, else remove it

#

if ["$matches" -gt 1] ; then

echo "More than one match; please qualify further"

elif ["S$matches" -eq 1] ; then
grep -v "$name" $SPHONEBOOK > /tmp/phonebook$$
mv /tmp/phonebook$$ $PHONEBOOK

else

PATH 223

From the Library of shannon powell

224 Chapter 10 Your Environment

echo "I couldn't find $name in the phone book"
fi
$

Note that we added one more tweak: In an effort to be more user-friendly, a test was added to
the end of 1u to see whether the grep succeeded or not, and a fail message is now displayed if
the search doesn’t produce any results.

Now to test it:

$ ed Return home

$ rolo Liz Quick lookup

No phonebook file in /users/steve! Forgot to move it
$ mv /users/steve/bin/phonebook .

$ rolo Liz Try again
Liz Stachiw 212-775-2298
$ rolo Try menu selection

Would you like to:

1. Look someone up
2. Add someone to the phone book
3. Remove someone from the phone book

Please select one of the above (1-3): 2

Enter name to be added: Teri Zak
Enter number: 201-393-6000

$ rolo Teri

Teri Zak 201-393-6000

$

rolo, lu, and add are working fine. rem should also be tested to make sure that it’s okay as
well.

If you still want to run lu, rem, or add standalone, you can do it provided that you first define
PHONEBOOK and export it:

PHONEBOOK=$HOME /phonebook

export PHONEBOOK

lu Harmon

couldn't find Harmon in the phone book

wr H W»r »r W0

If you do intend to run these programs standalone, you’d better put checks in the individual
programs to ensure that PHONEBOOK is set to the correct value.

From the Library of shannon powell

Your Current Directory 225

Your Current Directory

Your current directory is also part of your shell environment. Consider this small shell program
called cdtest:

$ cat cdtest

cd /users/steve/bin
pwd

$

The program uses cd to move to /users/steve/bin and then invokes pwd to verify that the
change was made. Let’s run it:

$ pwd Get my bearings
/users/steve

$ cdtest

/users/steve/bin

$

Now for the $64,000 question: If you invoke pwd, will you be in /users/steve or

/users/steve/bin?

$ pwd
/users/steve

$

It turns out that the cd in cdtest had no effect on your current directory. Because the current
directory is part of the environment, when a cd is executed from a subshell, it only affects the
directory of the subshell. There is no way to change the current directory of a parent shell from a
subshell.

When cd is invoked, it changes your current directory and also sets the pwD variable to the full
pathname of the new current directory. As a result, the command

echo $PWD

produces the same output as the pwd command:

$ pwd
/users/steve

$ echo $PWD
/users/steve

$ cd bin

$ echo $PWD
/users/steve/bin

$

cd also sets OLDPWD to the full pathname of the previous current directory, which can be useful
in certain situations too.

From the Library of shannon powell

226 Chapter 10 Your Environment

CDPATH

The cDpPATH variable works like the PATH variable: it specifies a list of directories to be searched
by the shell whenever you execute a cd command. This search is done only if the specified
directory is not given by a full pathname and if CDPATH is not null. If you type in

cd /users/steve

the shell changes your directory directly to /users/steve; but if you type

cd memos

the shell looks at your CDPATH variable to find the memos directory. And if your CDPATH looks
like this:

S echo $CDPATH
.:/users/steve: /users/steve/docs

$

the shell first looks in your current directory for a memos directory, and if not found then looks
in /users/steve for a memos directory, and if not found there tries /users/steve/docs in a
last ditch effort to find the directory. If the directory that it finds is not relative to your current
one, the cd command prints the full path to the directory to let you know where it’s taking
you:

$ cd /users/steve

$ cd memos

/users/steve/docs/memos

$ cd bin

/users/steve/bin

$ pwd

/users/steve/bin

$

Like the pPATH variable, use of the period for specifying the current directory is optional, so
:/users/steve: /users/steve/docs

is equivalent to

.:/users/steve: /users/steve/docs

Judicious use of the CDPATH variable can save you a lot of typing, especially if your directory
hierarchy is fairly deep and you find yourself frequently moving around in it (or if you're
frequently moving into other directory hierarchies as well).

Unlike PATH, you'll probably want to put your current directory first in the cDPATH list. This
gives you the most natural use of CDPATH; if the current directory isn’t listed first, you may end
up in an unexpected directory!

Oh, and one more thing: CDPATH isn’t set when you log in; you need to explicitly set it to the
sequences of directories you'd like the shell to use when searching for the specified name.

From the Library of shannon powell

More on Subshells 227

More on Subshells

You know that a subshell can’t change the value of a variable in a parent shell, nor can it
change its current directory. Suppose that you want to write a program to set values for some
variables that you like to use whenever you log on. For example, assume that you have the
following file called vars:

$ cat vars
BOOK=/users/steve/book
UUPUB=/usr/spool/uucppublic
DOCS=/users/steve/docs/memos
DB=/usr2/data

$

If you invoke vars, the values assigned to these variables will essentially vanish after the
program has finished executing because vars is run in a subshell:

S vars
$ echo $BOOK
$

No surprise there.

The .Command

To address this dilemma, there’s a built-in shell command called . (pronounced “dot”) whose
general format is

. file
and whose purpose is to execute the contents of £ile in the current shell. That is, commands

from £ile are executed by the current shell just as if they were typed, not within a subshell.
The shell uses your PATH variable to find file, just like it does when executing other programs.

$. vars Execute vars in the current shell
$ echo $BOOK

/users/steve/book Hoorah!

$

Because a subshell isn’t spawned to execute the program, any variable that gets assigned a value
is retained even after the program completes.

If you have a program called db that has the following commands:

$ cat db
DATA=/usr2/data
RPTS=$DATA/rpts
BIN=$DATA/bin

cd $DATA
$

From the Library of shannon powell

228 Chapter 10 Your Environment

executing db with the “dot” command will do something interesting:

$ pwd
/users/steve
S . db

$

This time the shell program defines the three variables DATA, RPTS, and BIN in the current shell
and moves to the $DATA directory.

$ pwd
/usr2/data

$

If you work on multiple projects, you can create programs like db to customize your
environment as needed. In that program, you can also include definitions for other variables,
change prompts, and more. For example, you might want to change your pS1 prompt to
DB—to let you know that your database variables have been set up. You could change your
PATH to include a directory that has programs related to the database and your CDPATH so that
the related directories will be easily accessed with the cd command.

On the other hand, if you make these sorts of changes, you might want to execute db in a
subshell rather than the current shell because doing the latter leaves all the modified variables
around after you've finished your work.

The best solution is to start a new shell from inside the subshell, with all the modified variables
and updated environment settings. Then, when you’re finished working, you can “log out” the
new shell by pressing ctrl+d.

Let’s take a look at how this works with a new version of db:

S cat db
#
Set up and export variables related to the data base

#

HOME=/usr2/data
BIN=$HOME/bin
RPTS=$HOME/rpts
DATA=$HOME/rawdata

PATH=$PATHS$SBIN
CDPATH=: SHOME : SRPTS

PS1="DB: "

export HOME BIN RPTS DATA PATH CDPATH PS1

From the Library of shannon powell

More on Subshells 229

Start up a new shell
#

/bin/sh
$

The HOME directory is set to /usr2/data, and then the variables BIN, RPTS, and DATA are
defined relative to this HOME (a good idea in case you ever have to move the directory structure
somewhere else: all you'd have to change in the program is the variable HOME).

Next, PATH is modified to include the database bin directory and the CDPATH variable is set
to search the current directory, the HOME directory, and the RPTS directory (which presumably
contains subdirectories).

After exporting these variables, the standard shell, /bin/sh, is invoked. From that point on,
this new shell processes any user-entered commands until either the user types exit or uses the
ctrl+d sequence. Upon exit, control returns to db, which in turn returns control to your login
shell.

$ db Run it

DB: echo $HOME

/usr2/data

DB: cd rpts Try out CDPATH
/usr2/data/rpts It works

DB: ps See what processes are running
PID TTY TIME COMMAND

123 13 0:40 sh Your login shell

761 13 0:01 sh Subshell running db
765 13 0:01 sh New shell run from db
769 13 0:03 ps

DB: exit Done for now

S echo $HOME

/users/steve Back to normal

$

The execution of db is depicted in Figure 10.7 (where we've shown only the exported variables
of interest for simplicity’s sake, not all that exist in the environment).

From the Library of shannon powell

230 Chapter 10 Your Environment

exported

variables
PATH=/usr/bin:steve/bin ~ R<€----- >

HOME=/users/steve

login
shell

PS1=%

BIN=/usr2/data/bin

DATA=/usr2/data/rawdata

]
|
|
|
|
|
|
|
|
CDPATH=:/usr2/data:/usr2/data/rpts exported A4

HOME=/usr2/data variables >

PATH=/bin:/usr/bin:/users/steve/bin::usr2/data/bin

PS1=DB:

RPTS=/usr2/data/rpts

BIN=/usr2/data/bin

DATA=/usr2/data/rawdata

CDPATH=:/usr2/data:usr2/data/rpts exported A4

HOME=/usr2/data ‘iaila_b/_e‘i >»| /usr/bin/sh

PATH=/bin:/usr/bin:/users/steve/bin:/usr2/data/bin

PS1=DB:

RPTS=/usr2/data/plus

Figure 10.7 Executing db

The exec Command

Within the db program, once the shell process completed, you were done with everything,

as demonstrated by the fact that no commands followed /bin/sh in the program. Instead of
having db wait around for the subshell to finish, you can use the exec command to replace the
current program (db) with the new one (/bin/sh).

The general format of exec is

exec program

Because the exec’ed program replaces the current one, there’s one less process hanging around,
which helps the system run quickly. The startup time of an exec’ed program is quicker too, due
to how Unix systems execute processes.

To use exec in the db program, you simply replace the last line with

exec /bin/sh

From the Library of shannon powell

More on Subshells 231

After this statement is executed, db will be replaced by /bin/sh. This means that it would now
be pointless to have any commands follow the exec because they’ll never be executed.

exec can also be used to close standard input and reopen it with any file that you want to read.
To change standard input to infile, for example, use the exec command in the form

exec < infile
Any commands that subsequently read data from standard input will read from infile.

Redirection of standard output is done similarly. The command

exec > report

redirects all subsequent output written to standard output to the file report. Note in both of
the previous examples that exec is not used to start up execution of a new program, just used
to reassign standard input or standard output.

If you use exec to reassign standard input and later want to reassign it someplace else, you can
simply invoke exec again. To reassign standard input back to the terminal, you would write

exec < /dev/tty

The same concept also applies to reassignment of standard output.

The (...) and { ...; } Constructs

Sometimes you want to group a set of commands together. For example, you may want to push
a sort followed by your plotdata program into the background. Not connected with a pipe;
just two commands one after the other.

It turns out that you can group a set of commands together by enclosing them in parentheses
or braces. The first form causes the commands to be executed by a subshell, the latter form by
the current shell.

Here are some examples to illustrate how they work:

$ x=50

$ (x=100) Execute this in a subshell

$ echo $x

50 Didn’t change

$ { x=100; } Execute this in the current shell
S echo $x

100

$ pwd Where am 1?

/users/steve

$ (cd bin; 1s) Change to bin and do an 1s
add

greetings

lu

number

From the Library of shannon powell

232

Chapter 10 Your Environment

phonebook

rem

rolo

$ pwd

/users/steve No change

$ { cd bin; } This should change me
$ pwd

/users/steve/bin

$

If the commands enclosed in the braces are all going to be on the same line, a space must
follow the left brace, and a semicolon must appear after the last command. Look closely at the
statement above—{ cd bin; }—for an example.

Parentheses work differently. As the example

(cd bin; 1s)

demonstrates, parentheses are useful for executing commands without affecting the current
environment.

You can also use them for other purposes like pushing a set of commands into the background:

$ (sort 20l6data -0 20l6data; plotdata 20l6data) &
[1] 3421
$

The parentheses group the sort and plotdata commands together so that they can be sent to
the background with their order of execution preserved.

Input and output can also be piped to and from these constructs, and I/O can be redirected too,
which makes them darn helpful to shell programmers.

In the next example, a dot-prefaced nroff command—.1s 2— is effectively prepended to the
beginning of the file memo before being sent to nrof £ for processing.

$ { echo ".1s 2"; cat memo; } | nroff -Tlp | lp

In the command sequence

$ { progl; prog2; prog3; } 2> errors

all messages written to standard error by the three programs are collected into the file errors.

As a final example, let’s return to the waitfor program from Chapter 8. As you'll recall, this
program periodically checks for a user logging on to the system. You'll recall that it would be
nice if the program could somehow automatically “send itself” to the background. Now you
know how to do it: Simply enclose the until loop and the commands that follow within
parentheses and send the entire grouping into the background:

S cat waitfor

#

Wait until a specified user logs on -- version 4
#

From the Library of shannon powell

Set up default values
mailopt=FALSE
interval=60

process command options

while getopts mt: option

do
case "soption"
in
m) mailopt=TRUE; ;
t) interval=SOPTARG; ;

\?) echo "Usage: mon [-m] [-t n] user"
echo" -m means to be informed by mail"
echo" -t means check every n secs."
exit 1;;

esac
done

Make sure a user name was specified

if ["$OPTIND" -gt "$#"]

; then

echo "Missing user name!"

exit 2
fi

shiftcount=$((OPTIND - 1))

shift $shiftcount
user=$1

#

Send everything that follows into the background

#

#

Check for user logging on

#

until who | grep "“Suser " > /dev/null

do

sleep $interval

done

#

When we reach this point, the user has logged on

#

More on Subshells 233

From the Library of shannon powell

234 Chapter 10 Your Environment

if ["$mailopt" = FALSE] ; then
echo "suser has logged on"
else
runner=$ (who am i | cut -cl-8)
echo "Suser has logged on" | mail S$runner
fi
) &
$

The entire program could have been enclosed in parentheses, but we decided to do the
argument checking and parsing prior to moving the program into the background.

S waitfor fred
$ Prompt comes back so you can continue working

fred has logged on

Note that a process ID is not printed by the shell when a command is sent to the background
within a shell program.

Another Way to Pass Variables to a Subshell

If you want to send the value of a variable to a subshell, there’s another way to do it besides
exporting the variable. On the command line, precede the command with the assignment of
one or more variables. For example,

DBHOME=/uxn2/data DBID=452 dbrun

places the variables DBHOME and DBID, and their indicated values, into the environment of
dbrun, then dbrun gets executed. These variables will not be known to the current shell,
however, because they're only created for the execution of dbrun.

In fact, the preceding command behaves identically to typing

(DBHOME=/uxn2/data; DBID=452; export DBHOME DBID; dbrun)

Here’s a short example:

$ cat fool

echo :$x:

foo2

$ cat foo2

echo :$x:

$ fool

:: x not known to fool or foo2
$ x=100 fool Try it this way

:100: x is known to fool

:100: and to its subshells

$ echo :$x:

s Still not known to current shell
$

From the Library of shannon powell

Your .profile File 235

Variables defined this way otherwise behave as normal exported variables to the subshell but
don’t exist for the invoking shell once that line of code is executed.

Your .profile File

In Chapter 2 you learned about the login sequence completed before the shell displays your
command prompt, ready for you to type your first command. Before the prompt, the login
shell looks for and reads two special files on the system.

The first is /etc/profile, set up by the system administrator. It generally checks to see
whether you have mail (it’s where the “You have mail” message comes from), sets your
default file creation mask (your umask), establishes a default PATH, and anything else that the
administrator wants to have happen whenever a user logs in.

More interestingly, the second file that gets automatically executed is .profile in your home
directory. Most Unix systems set up a default .profile file when the account is created, so let’s
start by seeing what'’s in it:

$ cat $HOME/.profile
PATH="/bin:/usr/bin:/usr/lbin:.:"
export PATH

$

This is a pretty modest .profile that simply sets the PATH and exports it.

You can change your .profile file to include any commands that you want executed when-

ever you log in, including indicating which directory you start out in, a check of who's logged
in, and the instantiation of any system aliases you prefer. You can even put commands in your
.profile that override settings (usually environment variables) established in /etc/profile.

Since we’ve said you can change your current working directory within the .profile, it should
be no surprise that the login shell actually executes these files as if you typed in

$. /etc/profile
$. .profile
$

as soon as you logged in. This also means that changes to your environment made within the
.profile remain until you log out of the shell.

Most Unix users dabble with their .profile to change lots of aspects of their command line
environment. For example, here’s a sample .profile that sets PATH to include your own bin,
sets CDPATH, changes the primary and secondary command prompts, changes the erase charac-
ter to a backspace (ctrl+h) with the stty command, and prints a friendly message using the
greetings program from Chapter 7:

$ cat $HOME/.profile
PATH=/bin:/usr/bin:/usr/lbin:$HOME/bin:. :
CDPATH=. : SHOME : SHOME /misc : SHOME/documents

From the Library of shannon powell

236

Chapter 10 Your Environment

pPSl="=> "
PS2="====> "

export PATH CDPATH PS1 PS2
stty echoe erase CTRL-h

echo

greetings

$

Here’s what a login sequence would look like with this .profile:

login: steve

Password:
Good morning Output from greetings
=> New PS1

The TERM Variable

Though many of the programs in Unix are command-line based (like 1s and echo), there are a
number of full-screen commands (like the vi editor) that require a detailed knowledge of your
terminal settings and capabilities. The environment variable that holds that information is
TERM and usually it’s nothing you need to worry about: your Terminal or SSH program usually
sets it automatically to be the optimal value for things to work seamlessly.

However, some old-school users might find that TERM needs to have a specific value like ansi
or vt100 or xterm for the full-screen programs to behave properly. In those instances, setting
the value within .profile is recommended.

You can even prompt for a TERM value during the login sequence by having a simple code block
like this:

echo "What terminal are you using (xterm is the default)? \c"

read TERM
if [-z "STERM"]
then

TERM=xterm
fi

export TERM

Based on the terminal type entered, you may also want to do things such as set up the function
keys or the tabs on the terminal.

Even if you always use the same terminal type, you should set the TERM variable in your
.profile file.

From the Library of shannon powell

The TZ Variable 237

As a point of interest, Mac OS X and Ubuntu Linux users will find that the TERM type for the
Terminal program is xterm-256color, and Solaris Unix users have vt100 as their default TERM.
Many third party telnet/SSH (terminal) programs use ansi as their TERM value.

The TZ Variable

The Tz variable is used by the date command and some Standard C library functions to
determine the current time zone. Indeed, since users can log in remotely through the Internet,
it’s entirely possible that different users on a system are in different time zones. The simplest
setting for Tz is a time zone name of three or more alphabetic characters followed by a number
that specifies the number of hours that must be added to the local time to arrive at Coordinated
Universal Time, also known as Greenwich Mean Time. This number can be positive (local time
zone is west of 0 longitude) or negative (local time zone is east of O longitude). For example,
Eastern Standard Time can be specified as

TZ=EST5

The date command calculates the correct time based on this information and uses the time
zone name in its output, as necessary:

$ TZ=EST5 date

Wed Feb 17 15:24:09 EST 2016
$ TZ=xyz3 date

Wed Feb 17 17:46:28 xyz 2016
$

A second time zone name can follow the number and if this is specified, daylight saving time is
assumed to apply (date then automatically adjusts the time when daylight saving is in effect)
and is assumed to be one hour ahead of the standard time. If a number follows the daylight
saving time zone name, this value is used to compute the daylight saving time from the
Coordinated Universal Time in the same way as the number previously described.

Most commonly, you'll see a time zone specified as ESTSEDT or MST7MDT, though since some
areas of the world don’t actually switch for DST, that can be specified too, of course.

The Tz variable is usually set in either the /etc/profile file or your .profile file. If not set,
an implementation-specific default time zone is used, typically Coordinated Universal Time.

Also note that on many modern Linux systems the time zone can be set by specifying a
geographic region, so

TZ="America/Tijuana" date

will show the current time in Tijuana, Mexico.

From the Library of shannon powell

This page intentionally left blank

From the Library of shannon powell

11

More on Parameters

In this chapter, you'll learn more about variables and parameters. Technically, parameters
include the arguments passed to a program (the positional parameters), the special shell
variables such as $# and $?, and ordinary variables, also known as keyword parameters.

Positional parameters cannot be assigned values directly but they can be reassigned values with
the set command. As you know, variables are assigned values simply by writing

variable=value

The format is a bit more general than that shown, actually, because you can assign several
variables at once using the format

variable=value variable=value . . .

The following example illustrates:

$ x=100 y=200 z=50
$ echo $x $y $z
100 200 50

$

Parameter Substitution

In the simplest form, to have the value of a parameter substituted, precede the parameter with
a dollar sign, as in $1 or $9.

${parameter}

If there’s a potential conflict caused by the characters that follow the parameter name, you can
enclose the name inside curly braces, as in

mv $file ${file}x

This command would add an x to the end of the filename specified by $file. It could not be
written as

From the Library of shannon powell

240 Chapter 11 More on Parameters

mv $file $filex

because the shell would try to substitute the value of a variable named filex for the second
argument, not £ile plus the letter x.

As mentioned in Chapter 6, to access positional parameters 10 and above, you also must
enclose the number inside curly braces using the same notational format: ${11}.

But it turns out that once you wrap a variable name with curly braces, there’s quite a bit more
you can do...

${parameter:-value}

This construct says to use the value of parameter if it is not null, and to substitute value
otherwise. For example, in the command line

echo Using editor ${EDITOR:-/bin/vi}
the shell will use the value of EDITOR if it’s not null and the value /bin/vi otherwise. It has
the same effect as writing

if [-n "SEDITOR"]

then

echo Using editor S$EDITOR
else

echo Using editor /bin/vi
fi

The command line

${EDITOR:-/bin/ed} /tmp/edfile

starts up the program stored in the variable EDITOR (presumably a text editor), or /bin/ed if
EDITOR is null.

Important to note is that this doesn’t change the value of the variable, so even after the above
statement, if EDITOR started out as null, it would continue to have the null value.

Here’s a simple demonstration of this construct:

$ EDITOR=/bin/ed

$ echo ${EDITOR:-/bin/vi}

/bin/ed

$ EDITOR= Set it null
$ echo ${EDITOR:-/bin/vi}

/bin/vi

$

From the Library of shannon powell

Parameter Substitution 241

${parameter:=value}

This version is similar to the previous, but if parameter is null not only is value used, but it
is also assigned to parameter as well (note the = in the construct). You can’t assign values to
positional parameters this way, however, so that means that parameter can’t be a number.

A typical use of this construct would be in testing to see whether an exported variable has been
set and, if not, assigning it a default value:
$ { PHONEBOOK : =$HOME /phonebook }

This says that if PHONEBOOK already has an assigned value, leave it alone, otherwise set it to
$SHOME /phonebook.

Note that the preceding example could not stand alone as a command because after the
substitution is performed the shell would attempt to execute the result:

S PHONEBOOK=
$ ${PHONEBOOK : =$HOME/phonebook }
sh: /users/steve/phonebook: cannot execute

$

To use this construct as a stand-alone command, the null command can be employed. If you
write

: ${PHONEBOOK : =$HOME /phonebook }
the shell still does the substitution (it evaluates the rest of the command line), yet executes
nothing (the null command).

$ PHONEBOOK=
$: ${PHONEBOOK :=$HOME/phonebook}

$ echo $PHONEBOOK See if it got assigned
/users/steve/phonebook

$: ${PHONEBOOK:=foobar} Shouldn’t change it
S echo $PHONEBOOK

/users/steve/phonebook It didn’t

$

Just as commonly seen, however, are shell programs that use the : = notation on the first
reference to the variable in a conditional or echo statement. Same effect, but without the null
command.

${parameter:?value}

If parameter is not null, the shell substitutes its value; otherwise, the shell writes value to
standard error and then exits (don’t worry—if it’s done from your login shell, you won’t be
logged off). If value is omitted, the shell writes the default error message

prog: parameter: parameter null or not set

From the Library of shannon powell

242

Chapter 11 More on Parameters

Here’s an example:

$ PHONEBOOK=
$: ${PHONEBOOK:?"No PHONEBOOK file"}
No PHONEBOOK file

$: ${PHONEBOOK:?} Don’t give a value
sh: PHONEBOOK: parameter null or not set
$

With this construct, you can easily check to see whether variables needed by a program are all
set and not null:

: ${TOOLS:?} ${EXPTOOLS:?} ${TOOLBIN:?}

${parameter:+value}

This one substitutes value if parameter is not null; otherwise, it substitutes nothing. It’s the
opposite of : -, of course.

$ traceopt=T

$ echo options: ${traceopt:+"trace mode"}
options: trace mode

$ traceopt=

$ echo options: ${traceopt:+"trace mode"}
options:

$

The value part for any of the constructs in this section can be a command substitution because
it’s executed only if its value is required. This can get a bit complicated too. Consider this:

WORKDIR=${DBDIR:-$ (pwd) }

Here WORKDIR is assigned the value of DBDIR if it’s not null, or the pwd command is executed
and the result assigned to WORKDIR. pwd is executed only if DBDIR is null.

Pattern Matching Constructs

The POSIX shell offers four parameter substitution constructs that perform pattern matching.
Some really old shells do not support this feature, but it’s unlikely you'll encounter one of
them if you're on a modern Unix, Linux, or Mac system.

The construct takes two arguments: a variable name (or parameter number) and a pattern.

The shell searches through the contents of the specified variable to match the supplied pattern.
If matched, the shell uses the value of the variable on the command line, with the matching
portion of the pattern deleted. If the pattern is not matched, the entire contents of the variable are
used on the command line. In both cases, the contents of the variable remain unchanged.

The term pattern is used here because the shell allows you to use the same pattern matching
characters that it accepts in filename substitution and case values: * to match zero or more
characters, ?» to match any single character, [...] to match any single character from the
specified set, and [!...] to match any single character not in the specified set.

From the Library of shannon powell

Parameter Substitution 243

When you write the construct

${variablespattern}

the shell looks inside variable to see whether it ends with the specified pattern. If it does,
the contents of variable are used, with the shortest matching pattern removed from the

right.

If you use the construct

${variablesspattern}

the shell once again looks inside variable to see whether it ends with pattern. This time,

however, it removes the longest matching pattern from the right. This is relevant only if the * is
used in pattern. Otherwise, the $ and %% behave the same way.

The # is used in a similar way to force the pattern matching to start from the left rather than
the right. So, the construct.

${variabletpattern}

tells the shell to use the value of variable on the command line, with pattern removed from
the left.

Finally, the shell construct
${variableg#pattern}

works like the # form, except that the longest occurrence of pattern is removed from the left.

Remember that in all four cases, no changes are made to the variable itself. You are affecting
only what gets used on the command line. Also, remember that the pattern matches are
anchored. In the case of the ¢ and %% constructs, the values of the variable must end with the
specified pattern; in the case of the # and ## constructs, the variable must begin with it.

Here are some simple examples to show how these constructs work:

$ var=testcase
$ echo $var

testcase

$ echo ${varxe} Remove e from right

testcas

$ echo $var Variable is unchanged

testcase

$ echo ${var%s*e} Remove smallest match from right
testca

$ echo ${var%%s*e} Remove longest match

te

$ echo ${var#ze} Remove smallest match from left
stcase

$ echo ${var#*s} Remove smallest match from left
tcase

$ echo ${var##+s} Remove longest match from left

From the Library of shannon powell

244 Chapter 11 More on Parameters

e

$ echo ${var#test} Remove test from left
case

$ echo ${var#teas} No match

testcase

$

There are many practical uses for these constructs. For example, the following tests to see
whether the filename stored inside the variable £ile ends in the two characters .o:
if [${file%.o} != $file] ; then

file ends in .o

fi

As another example, here’s a shell program that works just like the Unix system’s basename
command:

$ cat mybasename
echo ${1##+/}
$

The program displays its argument with all the characters up to the last / removed:

$ mybasename /usr/spool/uucppublic
uucppublic

$ mybasename $HOME

steve

$ mybasename memos

memos

$

But wait, there are more constructs.

${#variable}

Need to figure out how many characters are stored in a variable? That’s just what this construct
offers:

$ text='The shell'
$ echo ${#text}

9

$

Tip

Each of the parameter constructs described in this chapter is summarized in Appendix A,
Table A.3.

From the Library of shannon powell

The $0 Variable 245

The $0 Variable

Whenever you execute a shell program, the shell automatically stores the name of the program
inside the special variable $0. This can be helpful in a number of situations, including when
you have a program accessible through different command names through hard links in the file
system. It lets you programmatically figure out which one was executed.

It’s more commonly used for displaying error messages because it is based on the actual
program file name, not whatever’s hardcoded in the program itself. If the name of the program
is referenced by $0, renaming the program will update the message without requiring the
program to be edited:

$ cat lu

#

Look someone up in the phone book

#

if ["$#" -ne 1] ; then
echo "Incorrect number of arguments"
echo "Usage: $0 name"
exit 1

fi

name=$1

grep "$name" $PHONEBOOK

if [$? -ne 0] ; then
echo "I couldn't find S$name in the phone book"
fi
$ PHONEBOOK=$HOME/phonebook
$ export PHONEBOOK
S lu Teri
Teri Zak 201-393-6000
$ lu Teri Zak
Incorrect number of arguments
Usage: lu name
$ mv lu lookup Rename it
$ lookup Teri Zzak See what happens now
Incorrect number of arguments
Usage: lookup name

$

Some Unix systems will automatically make $0 a full pathname including directories, which
can lead to some clunky error and usage messages. In that instance, use $ (basename $0) or
utilize the trick from earlier to chop out the path name:

s{o##*/}

From the Library of shannon powell

246

Chapter 11 More on Parameters

The set Command

The shell’s set command also serves two purposes: it’s used both to set various shell options
and to reassign the positional parameters $1, $2, and so on... .

The -x Option

Earlier, in Chapter 7 we briefly looked at using sh -x ctype as a way to help debug problems
in a shell program, but the set command lets you actually turn on and off trace mode for
specific portions of your program.

Within a program, the statement
set -x

enables trace mode, which means all subsequently executed commands will be printed to
standard error by the shell, after filename, variable, and command substitution, as well as I/O
redirection have been performed. The traced commands are preceded by plus signs.

$ x=*
$ set -x Set command trace option
S echo $x

+ echo add greetings lu rem rolo
add greetings lu rem rolo
$ cmd=wc
cmd=wc
1s | $cmd -1
1s
we -1
5

+ + W o+

$

You can turn off trace mode at any time simply by executing set with the +x option:

S set +x
+ set +x
$1ls | we -1
5 Back to normal
$

Note that the trace option is not passed down to subshells. But you can trace a subshell’s
execution either by invoking the program with the sh -x option followed by the name of the
program, as in

sh -x rolo

or you can insert a series of set -x and set +x commands within the program itself. In fact,
you can insert any number of set -x and set +x commands inside your program to turn
trace mode on and off as desired!

From the Library of shannon powell

The set Command 247

set with No Arguments

If you don’t give any arguments to set, you'll get an alphabetized list of all the variables that
exist in the current environment, local or exported:

$ set Show me all variables
CDPATH=: /users/steve: /usr/spool

EDITOR=/bin/vi

HOME=/users/steve

IFS=

LOGNAME=steve
MAIL=/usr/spool/mail/steve
MAILCHECK=600
PATH=/bin:/usr/bin:/users/steve/bin:.:
PHONEBOOK=/users/steve/phonebook
PS1=3

PS2=>

PWD=/users/steve/misc
SHELL=/usr/bin/sh

TERM=xterm

TMOUT=0

TZ=EST5EDT

cmd=wc

X=*

$

Using set to Reassign Positional Parameters

You'll recall that there’s no way to assign a new value to or reassign the value of a positional
parameter. Attempts to reassign $1 to be 100, for example, might be logically written like this:

1=100
But it won't work. Positional parameters are set upon invocation of the shell program.

However, there’s a sneaky trick: you can use set to change the value. If words are given as
arguments to set on the command line, the positional parameters $1, $2, ... will be assigned
to those words. The previous values stored in the positional parameters will be lost. Within a
shell program then, the command

set a b ¢

will assign a to $1, b to $2, and c to $3. $# also gets set to 3 as appropriate for the new
argument count.

Here’s a more involved example:

$ set one two three four
$ echo $1:82:83:%84

From the Library of shannon powell

248 Chapter 11 More on Parameters

one:two:three: four

$ echo $# This should be 4
4
$ echo §* What does this reference now?

one two three four

$ for arg; do echo $arg; done
one

two

three

four

$

After execution of the set, everything works as expected: $#, $*, and the for loop without a
list all reflect the change in positional parameter values.

set is often used in this fashion to “parse” data read from a file or the terminal. Here’s a
program called words that counts the number of words typed on a line (using the shell’s defini-
tion of a “word”):

$ cat words
#
Count words on a line

#

read line

set $line

echo S$#

$ words Run it
Here's a line for you to count.

7

$

The program reads the user input, storing the line read in the shell variable 1ine, then executes
the command

set $line
This causes each word stored in 1ine to be assigned to the appropriate positional parameter.

The variable $# is also set to the number of words assigned, which is also the number of words
on the line.

The - - Option
The above works fine, but what happens if for some reason the user input starts with a
- symbol?

S words
-1 +5=4
words: -1: bad option(s)

$

From the Library of shannon powell

The set Command 249

Here’s what happened: After the line was read and assigned to line, the command

set $line

was executed and after the shell did its substitution, the command looked like this:

set -1 + 5 =4

When set executed, it saw the - and thought that an invalid option, -1, was being selected.

That explains the error message.

Another problem with words occurs if you give it a line consisting entirely of whitespace

characters, or if the line is null:

$ words

Just Enter is pressed

CDPATH=. : /users/steve: /usr/spool
EDITOR=/bin/vi

HOME=/users/steve

IFS=

LOGNAME=steve
MAIL=/usr/spool/mail/steve
MAILCHECK=600

PATH=/bin:/usr/bin:/users/steve/bin:.:

PHONEBOOK=/users/steve/phonebook
PS1=3

PS2=>
PWD=/users/steve/misc
SHELL=/usr/bin/sh
TERM=xterm

TMOUT=0

TZ=EST5EDT

cmd=wc

X=*

0

$

In the latter case the shell saw the set command, but no arguments, so it output a list of all

variables in the shell.

To protect against both of these problems occurring, use the -- option to set. This tells
set not to interpret any subsequent dashes or argument-format words it encounters on the
command line as options. It also prevents set from displaying all your variables if no other

arguments follow, as was the case when you typed a null line.

Reflecting this, the set command in words should be changed to read

set -- S$line

From the Library of shannon powell

250 Chapter 11 More on Parameters

With the addition of a while loop and some integer arithmetic, the words program can now
be modified to count the total number of words from standard input, essentially offering you
your own version of we -w:

$ cat words
#
Count all of the words on standard input

#

count=0
while read line
do
set -- $line
count=$((count + S$#))
done

echo Scount

$

After each line is read, the set command assigns all the positional parameters to the new line
of information, which resets $# to the number of words on the line. The - - option is included
in case any of the lines begins with a - or is blank or lacks any alphanumeric characters.

The value of $# is then added to the variable count, and the next line is read. When the loop
is exited due to the end of file being encountered, the value of count is displayed; that is, the
total number of words read.

$ words < /etc/passwd

567

$ we -w < /etc/passwd Check against wc
567

$

We admit, this is a rather weird way to figure out how many words are in a file, but as you can
see, the set command is more versatile than most Unix users realize.
Here’s a quick way to count the number of files in your directory:

S set *

$ echo $#
8

$

This is much faster than
1s | we -1

because the first method uses only shell built-in commands. In general, your shell programs
run much faster if you try to get as much done as you can using the shell’s built-in commands.

From the Library of shannon powell

The IFS Variable 251

Other Options to set

set accepts several other options, each enabled by preceding the option with a -, and disabled
by preceding it with a +. The -x option that we have described here is the most commonly
used but others are summarized in Appendix A, Table A.9.

The IFS Variable

There is a special shell variable called 1Fs, which stands for internal field separator. The

shell uses the value of this variable when parsing input from the read command, output

from command substitution (the back-quoting mechanism), and when performing variable
substitution. Succinctly, IFS contains a set of characters that are used as whitespace separators.
If it’s typed on the command line, the shell treats it like a normal whitespace character (that is,
as a word delimiter).

See what it’s set to now:

$ echo "$IFS"

$

Well, that wasn’t very illuminating! To determine the actual characters stored in there, pipe the
output from echo into the od (octal dump) command with the -b (byte display) option:

$ echo "$IFS" | od -b
0000000 040 011 012 012
0000004

$

The first column of numbers shown is the relative offset from the start of the input.

The following numbers are the octal equivalents of the characters read by od. The first such
number is 040, which is the ASCII value of the space character. It’s followed by 011, the tab
character, and then by 012, the newline character. The next character is another newline which
was added by echo. This set of characters for IFs should come as no surprise; they're the
whitespace characters we've talked about throughout the book.

Where this gets interesting is the fact that you can change IFs to any character or character
set desired. This can be particularly useful when you want to parse a line of data whose fields
aren’t delimited by the normal whitespace characters.

For example, we noted that the shell normally strips leading whitespace characters from the
beginning of any line that you read with the read command. Change IFs to just a newline
character before the read is executed, however, and it will preserve the leading whitespace
(because the shell won’t consider it a field delimiter):

$ read line Try it the “old” way
Here's a line
S echo "$line"

Here's a line

From the Library of shannon powell

252 Chapter 11 More on Parameters

$ IFS="
> Set it to a just a newline
$ read line Try it again

Here's a line
$ echo "$line"

Here's a line Leading spaces preserved
$

To change IFs to just a newline, an open quote was typed, followed immediately by pressing
the Enter key, followed by the closing quote on the next line. No additional characters can be
typed inside those quotes because they’ll be stored inside IFs and then used by the shell.

Now let’s change IFs to something more visible, the colon:

S IFS=:

S read x y z
123:345:678

S echo $x

123

$ echo $z

678

$ list="one:two:three"
$ for x in $list; do echo $x; done
one

two

three

$ var=a:b:c

S echo "$var"

a:b:c

$

Because IFs was changed to a colon, when the line was read, the shell divided it into three
words: 123, 345, and 678, which were then stored into the three variables %, vy, and z. In

the next-to-last example, the shell used 1¥s when substituting the value of 1ist in the for
loop. The last example demonstrates that the shell doesn’t use IFs when performing variable
assignment.

Changing 1Fs is often done in conjunction with the set command:

line="Micro Logic Corp.:Box 174:Hackensack, NJ 07602"

IFS=:

set $line

echo $# How many parameters were set?

Ur W W»r »r »r

for field; do echo $field; done
Micro Logic Corp.

Box 174

Hackensack, NJ 07602

$

From the Library of shannon powell

The IFS Variable 253

This technique is a powerful one because it uses all built-in shell commands which makes
it very fast. This technique is used in the final version of the rolo program as presented in
Chapter 13.

The following program, called number2 is a final version of the line numbering program
presented in Chapter 9. This program prints the input lines to standard output, preceded by
a line number, modifying IFs to ensure that leading spaces and other whitespace characters
on each line of input are faithfully stored and reproduced, unlike the earlier version of the
program. Notice also the use of printf to right-align the line numbers.

$ cat number2

#

Number lines from files given as argument or from
standard input if none supplied (final version)

#

Modify the IFS to preserve leading whitespace on input

IFS="
! # Just a newline appears between the quotes

lineno=1

cat $* |

while read -r line

do
printf "%5d:%s\n" $lineno "$line"
lineno=$((lineno + 1))

done

Here’s a sample execution of number:

$ number2 words
1:#
:# Count all of the words on standard input

#

:while read line
:do
set -- $line
9: count=$((count + $#))
10:done

2

3

4:
5:count=0
6

7

8

12:echo Scount

From the Library of shannon powell

254

Chapter 11 More on Parameters

Because IFsS has an influence on the way things are interpreted by the shell, if you're going to
change it in your program it’s usually wise to save the old value first in another variable (such
as OIFS) and then restore it after you've finished the operations.

The readonly Command

The readonly command is used to specify variables whose values cannot be subsequently
changed. For example,

readonly PATH HOME

marks both PATH and HOME variables as read-only. Subsequent attempts to assign a value to
either variable causes the shell to issue an error message:

$ PATH=/bin:/usr/bin:.:

$ readonly PATH

$ PATH=$PATH:/users/steve/bin
sh: PATH: is read-only

$

Here you see that after the variable PATH was made read-only, the shell printed an error
message when an attempt was made to assign a value to it.

To get a list of your read-only variables, type readonly -p without any arguments:

$ readonly -p
readonly PATH=/bin:/usr/bin:.:
$

The read-only variable attribute is not passed down to subshells. Also, after a variable has been
made read-only in a shell, there is no way to “undo” it.

The unset Command

Sometimes you may want to remove the definition of a variable from your environment. To do
so, you type unset followed by the names of the variables:

$ x=100

S echo $x

100

$ unset x Remove x from the environment

$ echo $x

$

You can’t unset a read-only variable. Furthermore, the variables IFS, MAILCHECK, PATH, PS1,
and PS2 cannot be unset.

From the Library of shannon powell

12

Loose Ends

We've put commands and features into this chapter that did not fit into earlier chapters.
There’s no particular rationale for their order of presentation, so this is your chance to simply
expand your knowledge of shell programming tricks and techniques.

The eval Command

This section describes one of the more unusual shell commands: eval. Its format is as follows:

eval command-line

where command-1ine is a normal command line that you would type at the terminal. When
you put eval in front of it, however, the effect is that the shell scans the command line twice
before executing it, which can be very useful if the script is building a command that needs to
be invoked, among other purposes.

For the simple case, using eval seems to have no effect:

$ eval echo hello
hello
$

But consider the following example without the use of eval:

$ pipe="|"

$ ls $pipe wc -1

|: No such file or directory
wc: No such file or directory
-1: No such file or directory

$

Those 1s errors are because the value of pipe and the subsequent call to we -1 are all inter-
preted as command arguments. The shell takes care of pipes and I/O redirection before variable
substitution, so it never properly interprets the pipe symbol inside pipe.

Putting eval in front of the command sequence gives the desired results, however:

From the Library of shannon powell

256

Chapter 12 Loose Ends

$ eval ls $pipe wec -1
16
$

The first time the shell scans the command line, it substitutes | as the value of pipe.
Then eval causes it to rescan the line, at which point the | is recognized by the shell as the
pipe symbol and everything proceeds as desired.

The eval command is frequently used in shell programs that build up command lines inside
one or more variables. If the variables contain any characters that must be interpreted by
the shell, eval is essential. Command terminator (;, |, &), I/O redirection (<, >), and quote
characters are among the characters that must appear directly on the command line to have
special meaning to the shell.

For the next example, consider the program last whose sole purpose is to display the last
argument passed to it. Recall the mycp program from Chapter 9 where we accomplished this
task by shifting all the arguments until only one was left.

It turns out you can accomplish the same result by using eval:

$ cat last

eval echo \$s#

$ last one two three four

four

$ last * Get the last file
Z00_report

$
The first time the shell scans
echo \$$#

the backslash tells it to ignore the $ that immediately follows. After that, it encounters the
special parameter $#, so it substitutes its value on the command line. The command now looks
like this:

echo s$4

The backslash is removed by the shell after the first scan. When the shell rescans this line, it
substitutes the value of $4 and then executes echo.

This same technique could be used if you had a variable called arg that contained a digit, for
example, and you wanted to display the positional parameter referenced by arg. You could
simply write

eval echo \$Sarg

The only problem with this approach is that only the first nine positional parameters can be
accessed this way because accessing positional parameters 10 and above requires the ${n}
notation. So here’s a second attempt:

eval echo \${sarg}

From the Library of shannon powell

The wait Command 257

The eval command can also be used to effectively create “pointers” to variables:

$ x=100

$ ptrx=x

$ eval echo \$$ptrx Dereference ptrx

100

$ eval $ptrx=50 Store 50 in var that ptrx points to
$ echo $x See what happened

50

$

The wait Command

If you move a command into the background for execution, that command line runs in a
subshell independent of your current shell (the job is said to run asynchronously). In some
situations, however, you may want to wait for the background process (also known as a child
process because it’s spawned from your current shell—the parent) to finish execution before
proceeding. For example, you may have sent a large sort into the background and need to
wait for it to finish before you access the sorted data.

The wait command does the job. Its general format is
wait process-id

where process-id is the process ID of the process you want to complete. If the process ID is
omitted, the shell waits for all child processes to complete execution. Execution of your current
shell will be suspended until the process or processes finish execution.

You can try the wait command at your terminal:

$ sort big-data > sorted data & Send it to the background

[1] 3423 Job number & process id from the shell
$ date Do some other work

Wed Oct 2 15:05:42 EDT 2002

$ wait 3423 Now wait for the sort to finish

$ When sort finishes, prompt is returned

The $! Variable

If you have only one process running in the background, then wait with no argument suffices.
However, if you're running more than one background command and you want to wait on

the most recently launched, you can access the process ID of the most recent background
command as the special variable $!. So the command

wait $!

From the Library of shannon powell

258

Chapter 12 Loose Ends

waits for the last process sent to the background to complete execution. With some
intermediate variables involved, you can also save their process ID values for later access too:

progl &
pidl=s!
prog2 &
pid2=$!

wait $pidl # wait for progl to finish

wait $pid2 # wait for prog2 to finish

Tip: Want to test if a process you've launched is still running? The ps command can check if
you use the -p flag and the process ID.

The trap Command

When you press the DELETE or BREAK key at your terminal during execution of a shell program,
that program is typically terminated and you’re prompted for your next command. This may
not always be desirable in shell programs. For instance, you may end up leaving a bunch of
temporary files that won’t get cleaned up as they would on normal program completion.

Pressing the DELETE key sends what’s known as a signal to the executing program, and
programs can specify what action should be taken on receipt of the signal rather than just
relying on default actions like immediately exiting the process.

Signal handling in a shell program is done with the trap command, whose general format is

trap commands signals

where commands is one or more commands that will be executed whenever any of the signals
specified by signals is received.

Mnemonic names and numbers are assigned to the different types of signals, and the more
commonly used ones are summarized in Table 12.1. A more complete list is given under the
trap command in Appendix A.

Table 12.1 Commonly Used Signal Numbers

Signal Mnemonic Name Generated for

0 EXIT Exit from the shell

1 HUP Hangup

2 INT Interrupt (for example, DELETE, Ctrl+c key)

15 TERM Software termination signal (sent by ki1l by default)

From the Library of shannon powell

The trap Command 259

As an example of the trap command, the following shows how you can remove some files and
then exit if someone tries to interrupt the program from the terminal:

trap "rm SWORKDIR/workl$$ $WORKDIR/dataout$$; exit" INT

Once this trap is executed, the two files work1$s and dataout$s will be automatically
removed if a SIGINT (signal number 2) is received by the program. If the user interrupts
execution of the program after this trap is executed, you can be assured that these two
temporary files will be removed, not left around in the file system. The exit that follows the
rm is necessary because without it execution would continue in the program at the point that it
left off when the signal was received.

Signal number 1—SIGHUP or just HUP—is generated for hangup: originally this related to dialup
connections, but now more generally refers to an unexpected disconnect like the Internet
connection dropping. You can modify the preceding trap to also remove the two specified files
in this case by adding a SIGINT to the list of signals:

trap "rm S$WORKDIR/workl$s$ S$WORKDIR/dataout$s$; exit'' INT HUP

Now these files will be removed if the line gets hung up or if the user interrupts processing
with the DELETE key or Ctrl+c.

The sequence specified to trap (also known as the trap handler) must be enclosed in quotes if
it contains more than one command. Also note that the shell scans the command line at the
time that the trap command gets executed and also again when one of the listed signals is
received.

In the preceding example, the value of WORKDIR and $$ will be substituted at the time that the
trap command is executed. If you wanted this substitution to occur at the time that a signal
was received, you can put the commands inside single quotes:

trap 'rm SWORKDIR/workl$$ SWORKDIR/dataouts; exit' INT HUP
The trap command can be used to make your programs more user friendly too. In a further

revision to the rolo program in the next chapter, the ctrl+c interrupt signal will be caught by
the program and return the user to the main menu, not have the program quit completely.

trap with No Arguments

Executing trap with no arguments results in the display of any trap handlers that you have
defined or modified:

$ trap 'echo logged off at $(date) >>$HOME/logoffs' EXIT

$ trap List changed traps

trap - 'echo logged off at $(date) >>$HOME/logoffs' EXIT
$ Ctrl+d Log off

login: steve Log back in

Password:

$ cat $HOME/logoffs See what happened
logged off at Wed Oct 2 15:11:58 EDT 2002

$

From the Library of shannon powell

260 Chapter 12 Loose Ends

A trap was set to be executed whenever the shell exited—signal 0, ExIT—was received by the
shell. Because this was set in the login shell, the trap handler is used when you log off to write
the time you logged off into the file SHOME/logoffs. The command is enclosed in single
quotes to prevent the shell from executing date when the trap is defined.

The trap command is then executed with no arguments which lists the new action to be taken
for signal O (EXIT). When steve then logs off and back on again, the file $HOME/logof£fs veri-
fies that the echo command was executed and the trap worked.

Ignoring Signals

If the command listed for trap is null, the specified signal will be ignored when received. For
example, the command

trap "" SIGINT

specifies that the interrupt signal is to be ignored. You might want to ignore certain signals
when performing some operation that you don’t want interrupted.

Note that trap lets you specify signals by signal number, by shortened name (INT) or by the
full signal name (SIGINT). We encourage you to use mnemonic names to help produce readable
code, but it is, of course, up to you which you prefer.

In the above example, the first argument must be specified as a null value for a signal to be
ignored and is not equivalent to writing the following, which has a separate meaning of its
own:

trap 2

If you ignore a signal, all subshells also ignore that signal. If you specify a signal handler action,
however, all subshells will automatically take the default action on receipt of that signal, not
the new code sequence.

Suppose that you execute the command
trap nn 2

and then start a subshell, which in turn executes other shell programs as subshells. If an inter-
rupt signal is then generated, it will have no effect on the shells or subshells that are executing
because they will all ignore the signal by default.

If instead of executing the previous trap command you execute
trap : 2

and then execute your subshells, then the current shell will do nothing on receipt of an inter-
rupt (it will execute the null command), while subshells will be terminated (the default
action).

From the Library of shannon powell

More on I/0 261

Resetting Traps

After you've changed the default action to be taken on receipt of a signal, you can change it
back again with trap if you simply omit the first argument; so

trap HUP INT

resets the action to be taken on receipt of the SIGHUP or SIGINT signals back to the default
behavior for the shell.

Many shell programs also use a construct like this
trap "/bin/rm -f S$tempfile; exit" INT QUIT EXIT

to ensure that the rm command won't produce an error message if the temporary file hasn’t
yet been created upon exit. The trap handler removes the temporary file if it exists and does
nothing if it doesn’t.

More on I/0

You know about the standard constructs <, >, and >> for input redirection, output redirection,
and output redirection with append, respectively. You also know that you can redirect standard
error from any command simply by writing 2> instead of just >:

command 2> file

Sometimes you may want to explicitly write to standard error in your program. With a slight
variation on the above, you can redirect standard output to standard error by writing

command >&2

The notation >& specifies output redirection to a file associated with the file descriptor that
follows. File descriptor O is standard input, descriptor 1 is standard output, and descriptor 2 is
standard error. It's important to remember that no space is permitted between the > and the &.

To write a message to standard error:
echo "Invalid number of arguments" >&2

You may want to redirect both standard output (often abbreviated “stdout”) and standard error
output (“stderr”) from a program into the same file. If you know the name of the file, this is
straightforward:

command > foo 2>> foo
Here both stdout and stderr will be written to foo.

You can also write

command > foo 2>&1

to achieve the same effect; standard output is redirected to foo, and standard error is redirected
to standard output (which has already been redirected to £oo). Because the shell evaluates

From the Library of shannon powell

262 Chapter 12 Loose Ends

redirection from left to right on the command line, the last example won’t work properly if the
stderr redirection sequence appears first on the command line

command 2>&1 > foo
because this would first redirect standard error to standard output then standard output to foo.

You can also dynamically redirect standard input or output in a program using the exec
command:

exec < datafile

redirects standard input from the file datafile. Subsequent commands executed that read
from standard input will read from datafile instead. The command

exec > /tmp/output

does the same thing with standard output: all commands that subsequently write to standard
output will write to /tmp/output unless explicitly redirected elsewhere.

Naturally, standard error can be reassigned as well:

exec 2> /tmp/errors

All subsequent output to standard error will go to /tmp/errors.

<&- and >&-

The sequence >&- has the effect of closing standard output. If preceded by a file descriptor, the
associated file is closed instead. So writing

ls >&-

causes the output from 1s to go nowhere because standard output is closed by the shell before
1s is executed. Not hugely useful, we admit!

In-line Input Redirection
If the << characters follow a command in the format

command <<word

the shell uses the lines that follow as the input for command, until a line that contains just word
is found. Here’s a simple example:

$ we -1 <<ENDOFDATA Use lines up to ENDOFDATA as standard input
> here's a line
> and another
> and yet another
> ENDOFDATA
3

From the Library of shannon powell

More on I/0 263

The shell fed every line typed into the shell as the standard input stream of wc until it encoun-
tered the line containing just ENDOFDATA.

In-line input redirection—also referred to as here documents by some programmers—is a
powerful feature when used inside shell programs. It lets you specify the standard input to a
command directly in the program, thus obviating the need to write it into a separate file, or to
use echo to get it into the standard input of the command.

Here’s a common example of how this feature is used within a shell program:

$ cat mailmsg
mail $* <<END-OF-DATA

Attention:

Our monthly computer users group meeting
will take place on Friday, March 4, 2016 at
8pm in Room 1A-308. Please try to attend.

END-OF-DATA
$

To send this message to all members of the group as stored in the file users_list, you could
invoke

mailmsg $(cat users_list)

The shell performs parameter substitution for the redirected input data, executes back-quoted
commands, and recognizes the backslash character.

Special characters within a here document are generally ignored, but if you include dollar signs,
back quotes, or backslashes in these lines, they can be interpreted. To have them ignored,
precede them with a backslash character. Alternatively, if you want the shell to leave all input
lines completely untouched, precede the end of document word that follows the << with a
backslash.

Let’s highlight the difference between the two:

$ cat <<FOOBAR
> $HOME
S kkkkk
> \$foobar
> “date”
> FOOBAR Terminates the input
/users/steve
* % %k k%
$foobar
Wed Oct 2 15:23:15 EDT 2002
$

From the Library of shannon powell

264 Chapter 12 Loose Ends

Since the shell supplies all the lines up to FOOBAR as the input to cat it substitutes the value for
HOME but not for foobar because the latter is prefaced with a backslash. The date command is
also executed because back quotes are interpreted by the shell.

To side-step all the issues with the shell interpreting the contents of the lines, use backslash on
the end-of-document word instead:

$ cat <<\FOOBAR
> \\\\

> “date”

> SHOME

> FOOBAR

ARNN

“date”

SHOME

$

Use care when selecting the word that follows the <<. Generally, just make sure that it’s weird
enough so that the chances of it accidentally appearing in the subsequent lines of data are
miniscule.

You now know about the <<\ sequence, but there’s another one that most modern shells
understand: If the first character that follows the << is a dash (-), any leading tab characters in
the input will be removed by the shell. This is useful for visually indenting the redirected text
for readability while still having it output appear in normal left-aligned form:

$ cat <<-END

> Indented lines
> because tabs are cool
> END

Indented lines
because tabs are cool

$

Shell Archives

One of the best uses of the in-line input redirection feature is for creating shell archive files.
With this technique, one or more related shell programs can be put into a single file and then
sent to someone else using the standard Unix mail commands. When the archive is received, it
can be “unpacked” by invoking it as a shell program.

For example, here’s an archived version of the 1u, add, and rem programs used by rolo:

$ cat rolosubs

#

Archived programs used by rolo.
#

echo Extracting lu

From the Library of shannon powell

cat >lu <<\THE-END-OF-DATA

#

Look someone up in the phone book
#

if ["S#" -ne 1]

then
echo "Incorrect number of arguments"
echo "Usage: lu name"
exit 1

fi

name=$1

grep "$name" $SPHONEBOOK

if [$? -ne 0]
then
echo "I couldn't find S$name in the phone book"
fi
THE-END-OF-DATA

echo Extracting add

cat >add <<\THE-END-OF-DATA

#

Program to add someone to the phonebook file
#

if ["SH#" -ne 2]

then
echo "Incorrect number of arguments"
echo "Usage: add name number"
exit 1

fi

echo "s$1 $2" >> $PHONEBOOK
sort -o $PHONEBOOK $PHONEBOOK
THE-END-OF-DATA

echo Extracting rem

cat >rem <<\THE-END-OF-DATA

#

Remove someone from the phone book

#

if ["$#" -ne 1]
then
echo "Incorrect number of arguments"

More on I/0 265

From the Library of shannon powell

266

Chapter 12 Loose Ends

echo "Usage: rem name"

exit 1
fi
name=$1
#
Find number of matching entries
#

matches=$ (grep "S$name" $PHONEBOOK | we -1)

#
If more than one match, issue message, else remove it
#

if ["$matches" -gt 1]
then

echo "More than one match; please qualify further"
elif ["S$matches" -eq 1]

then
grep -v "$name" $PHONEBOOK > /tmp/phonebook
mv /tmp/phonebook $PHONEBOOK
else
echo "I couldn't find $name in the phone book"
fi
THE-END-OF-DATA
$

To be complete, this archive would include rolo as well, but we didn’t include it here to
conserve space in the book.

This shell archive offers one portable file, rolosubs, that contains the source for all three
programs lu, add, and rem, and can be sent to someone else using mail:

$ mail tony@aisystems.com < rolosubs Mail the archive
$ mail tony@aisystems.com Mail tony a message
Tony,

I mailed you a shell archive containing the programs

lu, add, and rem. rolo itself will be sent along shortly.
Pat
Ctrl+d
$

When tony receives the file in his mail, she can extract the three programs by saving the
message, then running the shell on the file (after having first removed any email header lines
that might have ended up in the beginning of the file):

From the Library of shannon powell

More on I/0 267

S sh rolosubs
Extracting lu
Extracting add
Extracting rem
$ ls lu add rem
add

lu

rem

$

To generalize this process, here’s a simple shell program, shar, that can produce a shell archive
that contains every specified script in a neat, ready-to-email format:

$ cat shar

#

Program to create a shell archive
from a set of files

#
echo "#"
echo "# To restore, type sh archive"
echo "#"
for file
do
echo
echo "echo Extracting $file"
echo "cat >$file <<\THE-END-OF-DATA"
cat $file
echo "THE-END-OF-DATA"
done

Flip back to look at the contents of the rolosubs file when studying the operation of this shar
program and remember, shar actually creates a shell program, not just a generic output file.

More sophisticated archiving programs allow entire directories to be included and use various
techniques to ensure that no data is lost in the transmission (see Exercises 2 and 3 at the end of
this chapter).

The sum and cksum commands can be used to generate a checksum for a program too. This
checksum can be generated on the sending end for each file in the archive, and then the shell
archive can verify the checksum for each unpacked file on the receiving end. If they don't
match, an error message can be displayed and the user will be alerted something went wrong
with the process.

From the Library of shannon powell

268

Chapter 12 Loose Ends

Functions

All modern shells support functions—long or short sequences of commands that can be refer-
enced or reused as often as desired in a shell program.

To define a function, you use the general format:

name () { command; ... command; }

where name is the name of the function, the parentheses denote that a function is being
defined, and the commands enclosed between the curly braces define the body of the function.
These commands will be executed whenever the function is executed.

Note that at least one whitespace character must separate the { from the first command, and
that a semicolon must separate the last command from the closing brace if they occur on the
same line.

The following defines a function called nu that displays the number of logged-in users:

nu () { who | we -1; }

You execute a function the same way you execute an ordinary command: by typing its name
into the shell:

$ nu
22
$

Functions are really useful for shell programmers and can alleviate lots of tedium in develop-
ing solutions. One key feature: arguments listed after the function on the command line are
assigned to the positional parameters $1, $2, ..., within the function, just as with any other
command.

Here’s a function called nrrun that runs tbl, nroff, and 1p on the file specified:

$ nrrun () { tbl $1 | nroff -mm -Tlp | 1lp; }
$ nrrun memol Run it on memol
request id is laserl-33 (standard input)

$

Functions exist only in the shell in which they’re defined so they can’t be passed to subshells.
Because the function is executed in the current shell, changes made to the current directory or
to variables remain after the function has completed execution, as if it had been invoked with
the . command explored earlier in the book:

$db () {

> PATH=$PATH: /uxn2/data

> PS1=DB:

> cd /uxn2/data

> }

$ db Execute it
DB:

From the Library of shannon powell

Functions 269

A function definition can continue over as many lines as necessary. The shell will continue to
prompt for commands within the function with the secondary command prompt until you
complete the function definition with the }.

You can put definitions for commonly used functions inside your .profile so that they’ll
be available whenever you log in. Alternatively, you can group the definitions in a file, say
myfuncs, and then execute the file in the current shell by typing

. myfuncs

As you now know, this causes any functions defined inside myfuncs to become available in the
current shell.

The following function, called mycd, takes advantage of the fact that functions are run in the
current environment. It mimics the operation of the Korn shell’s cd command, which has the
capability of substituting portions of the current directory’s path (see the discussion of cd in
Chapter 14 for more explanation).

$ cat myfuncs See what’s inside
#
new cd function:
mycd dir Switches dir
mycd old new Substitute new for old in current directory's path
#
mycd ()
{
if [$# -le 1] ; then
normal case -- 0 or 1 argument
cd $1
elif [$# -eq 2] ; then
special case -- substitute $2 for $1

cd $(echo $PWD | sed "s|$1|s$2|")

else
cd can't have more than two arguments
echo mycd: bad argument count
exit 1
fi
1
$. myfuncs Read in definition
$ pwd
/users/steve
$ mycd /users/pat Change directory
$ pwd Did it work?
/users/pat
$ myed pat tony Substitute tony for pat
$ pwd
/users/tony
$

From the Library of shannon powell

270 Chapter 12 Loose Ends

Functions execute faster than an equivalent shell program because the shell doesn’t have to
search the disk for the program, open the file, and read its contents into memory; it can just
jump right into executing the individual commands directly.

Another advantage of functions is the capability to group related shell programs in a single file.
For example, the add, 1u, and rem programs from Chapter 10 can now be defined as individual
functions within the rolo program file. The template for such an approach is shown:

$ cat rolo

#
rolo program written in function form
#
#
Function to add someone to the phonebook file
#
add () {
put commands from add program here
}
#
Function to look someone up in the phone book
#
lu O |
put commands from lu program here
}
#
Function to remove someone from the phone book
#
rem () {
put commands from rem program here
}
#
rolo - rolodex program to look up, add, and
remove people from the phone book
#

put commands from rolo here

$

None of the commands inside the original add, 1u, rem, or rolo programs would have to be
changed. The first three are turned into functions by including them inside rolo, sandwiched

From the Library of shannon powell

The type Command 271

between the function header and the closing curly brace. Defining them as functions would,
however, make them inaccessible as standalone commands.

Removing a Function Definition

To remove the definition of a function from the shell, use the unset command with the -f
option. Look familiar? It is the same command you use to remove the definition of a variable
from the shell.

$ unset -f nu
$ nu
sh: nu: not found

$

The return Command

If you use exit from inside a function, its effect is not only to terminate execution of the
function but also of the shell program that called the function. It exits all the way back to the
command line. If you instead want to just exit the function, use the return command, whose
format is

return n

The value n is used as the return status of the function. If omitted, the status is that of the last
command executed. This is also what gets returned if you don’t include a return statement in
your function. The return status is in all other ways equivalent to the exit status: you can access
its value through the shell variable $?, and you can test it in if, while, and until commands.

The type Command

When you type in the name of a command to execute, it’s useful to know whether the
command is a function, a shell built-in function, a standard Unix command or even a shell
alias. This is where the type command comes in handy. The type command takes one or more
command names as its argument and tells you what it knows about it. Here are some examples:

$nu () { who | we -1; }

$ type pwd

pwd is a shell builtin

$ type ls

ls is aliased to “/bin/ls -F'
$ type cat

cat is /bin/cat

$ type nu

nu is a function

$

From the Library of shannon powell

This page intentionally left blank

From the Library of shannon powell

13

Rolo Revisited

This chapter presents the final, much improved version of the rolo program enhanced with
additional options and also allows for more general types of entries (other than just names and
numbers). The sections in this chapter discuss the individual components of rolo, starting
with the main rolo program itself. At the end of this chapter, sample output is shown.

Data Formatting Considerations

While the initial name-and-number rolo program shown earlier in the book is handy, there’s
no question that a more useful program would allow more than just the names and numbers

to be stored. You'd probably want to save addresses and email addresses too, for example. The
new rolo program allows entries in the phone book to consist of multiple lines. A typical entry
might be

Steve's Ice Cream
444 6th Avenue

New York City 10003
212-555-3021

To increase the flexibility of the program, an individual entry can now contain as many lines as
desired. Another entry in the phone book might read

YMCA
(201) 555-2344

To logically separate entries in the phone book file, each entry is “packed” into a single line
by replacing the terminating newline characters in an entry with a different character. We
arbitrarily chose the caret * as it appears very rarely in regular user input, addresses, etc.
The only repercussion of this decision is that this character cannot be used as part of the
entry itself.

Using this technique, the first entry shown would be stored in the phone book file as

Steve's Ice Cream”444 6th Avenue’New York City 10003%212-555-3021"

From the Library of shannon powell

274 Chapter 13 Rolo Revisited

and the second entry as

YMCA™ (201) 555-2344"

It now becomes quite easy to work with entries when they're stored in this format, a
testament to how really thinking through a problem and solution can reap great benefits as
it’s developed further.

rolo - rolodex program to look up, add,
remove and change entries from the phone book

Set PHONEBOOK to point to the phone book file
and export it so other progs know about it
if it's set on entry, then leave it alone

FH oH H H =

$ { PHONEBOOK : =$HOME /phonebook }
export PHONEBOOK
if [! -e "$PHONEBOOK"] ; then
echo "$PHONEBOOK does not exist!™"
echo "Should I create it for you (y/n)? \c"
read answer

if ["Sanswer" != vy] ; then
exit 1

fi

> $PHONEBOOK || exit 1 # exit if the creation fails
fi
#
If arguments are supplied, then do a lookup
#
if ["$#" -ne 0] ; then

Ju " $@l|

exit
fi
#
Set trap on interrupt (DELETE key) to continue the loop
#

From the Library of shannon powell

trap "continue" SIGINT

#

Loop until user selects 'exit'

#

while true

do

#

Display menu

#

echo '

Would you like to:

o Ul s W N

Please

#
Read
#

Look someone up
Add someone to the phone book

Exit this program

select one of the above (1-6):

and process selection

read choice

echo

case "$choice"

Remove someone from the phone book
Change an entry in the phone book
List all names and numbers in the phone book

\c'

in
1) echo "Enter name to look up: \c"
read name
if [-z "Sname"] ; then
echo "Lookup ignored"
else
lu "S$name"
fi;;
2) add;;
3) echo "Enter name to remove: \c"
read name
if [-z "$name"] ; then
echo "Removal ignored"
else
rem "$Sname"
fi;;

rolo 275

From the Library of shannon powell

276 Chapter 13 Rolo Revisited

4) echo "Enter name to change: \c"
read name
if [-z "$name"] ; then
echo "Change ignored"

else
change "S$name"

fi;;

5) listall;;

6) exit 0;;

*) echo "Bad choice\a";;

esac
done

One improvement appears in the very beginning of the new code: Instead of requiring that the
user already have a phone book file in their home directory, the program checks to see whether
the variable PHONEBOOK has been set. If it has, it’s assumed that it contains the name of the
phone book file. If it hasn't, it’s set to $HOME/phonebook as the default.

The program then checks to see whether the actual file exists, and if it doesn’t, asks the user
whether they would like to have it created. This greatly improves that first use experience, as
you can imagine.

This version of rolo also has a couple of new choices on the menu too. Because individual
entries can be rather long, an edit option now allows the user to update a particular entry. Prior
to this, of course, the only way to change an entry was to remove it, then add a completely
new entry.

Another option lists the entire phone book. With this option, just the first and last lines
(fields) of each entry are displayed. This assumes that the user follows some convention such as
putting the name on the first line and the number on the last.

The entire menu selection code block is also now inside a while loop so that rolo will
continue to display menus until the user chooses to exit the program.

As per our discussion last chapter, notice that a trap command is executed before the loop
is entered. This trap specifies that a continue command is to be executed if an interrupt
(SIGINT) is generated by the user. If the user presses Ctrl+c in the middle of an operation
(such as listing the entire phone book), the program will stop the current operation and
redisplay the main menu.

Because entries can now span as many lines as desired, the action performed when add is
selected has been changed too. Instead of asking for the name and number, rolo invokes the
add program to get the entry and lets the function take care of prompting the user and figuring
out when the data input is done.

For the lookup, change, and remove options, a check is now made to ensure that the user
doesn’t end a null value by pressing the Enter key when asked to type in the name. This
avoids the regular expression error that grep would otherwise issue if given a null first
argument.

From the Library of shannon powell

add 277

Now let’s look at the individual programs that rolo utilizes, with particular attention paid to
how the change in data format ripples through the entire design. Each of the original programs
has been changed to accommodate the new entry format and also to be more user friendly.

add

#
Program to add someone to the phonebook file
#

echo "Type in your new entry"
echo "When you're done, type just a single Enter on the line."

first=
entry=

while true

do
echo ">> \c¢"
read line
if [-n "$line"] ; then
entry="$entry$line™"
if [-z "sfirst"] ; then
first=$line
fi
else
break
fi
done

echo "Sentry" >> SPHONEBOOK

sort -o $PHONEBOOK $PHONEBOOK

echo

echo "sfirst has been added to the phone book"

This program adds an entry to the phone book. It continually prompts the user to enter
lines until a line with just an Enter is typed (that is, a completely blank line). Each line that
is entered is appended to the variable entry, with the special * character used to logically
separate fields.

When the while loop is exited, the new entry is added to the end of the phone book, and the
file is sorted.

From the Library of shannon powell

278 Chapter 13 Rolo Revisited

1lu

#

Look someone up in the phone book
#

name="$1"

grep -i "$name" $PHONEBOOK > /tmp/matches$s

if [! -s /tmp/matches$s 1 ; then

echo "I can't find $name in the phone book"
else

#

Display each of the matching entries

#

while read line
do
display "sline"
done < /tmp/matches$s
fi

rm /tmp/matchess

This is the program to look up an entry in the phone book. Now, however, matching entries
are written to the file /tmp/matchess$$ so we can improve the user experience in the situation
where there are no matches.

If the size of this output file is zero (test -s), no match was found. Otherwise, the program
enters a loop to read each matching line from the file and display it to the user. A new program
called display is used to unwrap “-separated fields and turn them into multi-line output
entries. This new program is also used by the rem and change programs to display entries.

Also note the addition of the -1 flag to grep in the script. This allows case-insensitive matches,
so a search for “steve” will match “Steve.” A good example of how a working knowledge of
the flags to key Unix commands can easily make your scripts more powerful and easier to use.

display

#
Display entry from the phonebook

From the Library of shannon powell

display 279

entry=S$1
IFg="""
set $entry

for 1ine in l|$1v| H$2H H$3H H$4H H$5H H$6H

do

printf "| %-34.34s |\n" $line
done
echo "| o o "
echo M--mmmmm "
echo

This program displays the caret-separated entry passed as its argument. To make the output
more aesthetically interesting, the program actually “draws” a rolodex card. Typical output
from display looks like this:

| Steve's Ice Cream

| 444 6th Avenue

| New York City 10003

| 212-555-3021 |
| |
| |
| |

Look at the code again and notice how after skipping a line and displaying the top of the card,
display changes IFS to *, then executes the set command to assign each “line” to a different
positional parameter. For example, if entry is equal to

Steve's Ice Cream™444 6th Avenue”New York City 10003%212-555-3021"

executing the set command assigns Steve's Ice Creamto $1, 444 6th Avenue to $2,
New York City 10003 to $3, and 212-555-3021 to $4.

After breaking down the fields with set, the program enters a for loop that, with this version
of the code, will output six lines of data, no matter how many lines are contained in the entry.
This ensures uniformity of rolodex cards and the program can be easily modified to “draw”
larger-sized cards if desired.

If the set command was executed on Steve's Ice Cream as shown previously, $5 and $6
would be null, thus resulting in two blank lines to “fill out” the bottom of the card.

To ensure that the output is properly aligned on both left and right edges, the printf
command is used to display a line exactly 38 characters wide: the leading | followed by a space
followed by the first 34 characters of $1ine followed by a space and a |.

From the Library of shannon powell

280 Chapter 13 Rolo Revisited

rem

#

Remove someone from the phone book

#

name=$1

#

Get matching entries and save in temp file
#

grep -i "$name" $SPHONEBOOK > /tmp/matches$s
if [! -s /tmp/matches$$ 1 ; then
echo "I can't find S$name in the phone book"

exit 1
fi
#
Display matching entries one at a time and confirm removal
#

while read line

do
display "$line"
echo "Remove this entry (y/n)? \c"
read answer < /dev/tty

if ["Sanswer" = y] ; then
break
fi
done < /tmp/matches$s

rm /tump/matches$s

if ["Sanswer" = y] ; then
if grep -1 -v "*$line$" S$PHONEBOOK > /tmp/phonebook$s
then

mv /tmp/phonebook$$ $PHONEBOOK
echo "Selected entry has been removed"
elif [! -s SPHONEBOOK] ; then
echo "Note: You now have an empty phonebook."
else
echo "Entry not removed"
fi
fi

From the Library of shannon powell

change 281

The rem program collects all matching entries into a temporary file, then tests the result: If
the size of the file is zero, no match was found and an error message is issued. Otherwise, for
each matching entry, the program displays the entry and asks the user whether that entry
should be removed.

From a user experience perspective, this type of coding practice provides reassurance to the
user that the entry they intend to remove is the same one that the program is going to remove,
even in the single match case.

After the user has answered the prompt with y, a break command exits the loop. Outside the
loop, the program then tests the value of answer to determine how the loop was exited. If its
value is not equal to y, then the user doesn’t want to remove an entry after all (for whatever
reason). Otherwise, the program proceeds with the requested removal by greping all lines that
don’t match the specified pattern. Note that grep matches only entire lines by anchoring the
regular expression to the start and end of the line.

Note also that in the edge case of the user removing the last entry in their phonebook, the
script now recognizes the situation (by testing to see if the file exists and is non-zero in size)
and outputs an informative message. It’s not an error, but it ensures that the failure message
that would otherwise be triggered by the grep -v invocation isn’t displayed.

change

#

Change an entry in the phone book

#

name=$1

#

Get matching entries and save in temp file
#

grep -i "$name" $PHONEBOOK > /tmp/matches$$
if [! -s /tmp/matches$$ 1 ; then
echo "I can't find $name in the phone book"

exit 1
fi
#
Display matching entries one at a time and confirm change
#

while read line
do
display "$line"
echo "Change this entry (y/n)? \c"

From the Library of shannon powell

282

Chapter 13 Rolo Revisited

read answer < /dev/tty

if ["Sanswer" = y] ; then
break
fi
done < /tmp/matches$s

rm /tmp/matchess$s

if ["Sanswer" != vy] ; then
exit
fi
#
Start up editor on the confirmed entry
#

echo "$line\c" | tr '*' '\012' > /tmp/ed$$

echo "Enter changes with ${EDITOR:=/bin/vi}"
trap "" 2 # don't abort if DELETE hit while editing
SEDITOR /tmp/ed$s

#
Remove old entry now and insert new one

#

grep -i -v "*$line$" $PHONEBOOK > /tmp/phonebook$$
{ tr '"\o12' '*' < /tmp/ed$$; echo; } >> /tmp/phonebook$$
last echo was to put back trailing newline translated by tr

sort /tmp/phonebook$$ -o $PHONEBOOK
rm /tmp/ed$$ /tmp/phonebooks$s

The change program allows the user to edit an entry in the phone book. The first portion of
the code ends up virtually identical to rem: it finds the matching entries and then prompts the
user to select which one to change.

The selected entry is then written into the temporary file /tmp/ed$$, with the * characters
translated to newlines. This “unfolds” the entry into separate lines to be consistent with how
rolo displays the entry and for easier editing. The program then displays the message

echo "Enter changes with ${EDITOR:=/bin/vi}"
This serves a dual purpose: it tells the user what editor will be used to make the change and
sets the variable EDITOR to /bin/ed vi if it’s not already set. This technique allows the

user to use their preferred editor by simply assigning its name to the variable EDITOR before
executing rolo:

$ EDITOR=emacs rolo

From the Library of shannon powell

listall 283

The signal generated by the DELETE key (2) is ignored so that if the user presses this key while
in the editor, the change program won't abort. The editor is then launched so that the user
can make whatever changes are required. Once done, the program continues by removing the
old entry from the phone book file with grep, then the modified entry is converted back to
having * field separators and appended to the end of the file. An extra newline character must
be added here to make sure that a newline is stored in the file after the new entry, easily done
with an echo with no arguments.

Finally, the phone book file is sorted and the temporary files removed.

listall

#

list all of the entries in the phone book

#

IFS=""" # to be used in set command below

e cho N o o o e e e e e e e e e e o o e e o e e e e e e e e e e e e mmmmmm = n

while read line
do
#
Get the first and last fields, presumably names and numbers

#
set $line

#
display 1st and last fields (in reverse order!)

#

eval printf u\u%_40‘405 %S\\l’l\"" u\u$1\uu u\u\${$#}\uu
done < $PHONEBOOK

The 1istall program lists all entries in the phone book, printing just the first and last lines
of each entry. The internal field separator characters (IFs) is set to a *, to be used inside the
loop. Each line from the file is then read and assigned to the variable 1ine. The set command
assigns each field to the appropriate positional parameter as shown earlier.

The challenge is to get the value of the first and last positional parameters. The first is easy
because it can be directly referenced as $1. To get the last one, the program taps the power of
eval as explained in Chapter 12. Specifically, the command

eval echo \${$#}

displays the value of the last positional parameter. In this particular program, it shows up in
the command

From the Library of shannon powell

284 Chapter 13 Rolo Revisited

eval printf "\"%—40.408 %—S\\l’l\"" "\"$1\"" u\u\s{s#}\uu
This is evaluated, for example, to

printf "%-40.40s %-s\n" "Steve's Ice Cream" "${4}"

using the entry shown previously, and then rescanned to substitute the value of ${4} before
executing printf.

Sample Output

Now it’s time to see how the new, much improved rolo works. We'll start with an empty
phone book and add a few entries to it. Then we'll list all the entries, look up a friend, then
change their entry. To conserve space here in the book, we’ll show only the full menu that
rolo displays the first time.

$ PHONEBOOK=/users/steve/misc/book

$ export PHONEBOOK

$ rolo Start it up
/users/steve/misc/book does not exist!
Should I create it for you (y/n)? y

Would you like to:

. Look someone up

. Add someone to the phone book

. Remove someone from the phone book

. Change an entry in the phone book

. List all names and numbers in the phone

o Ul B W N

. Exit this program

Please select one of the above (1-6): 2

Type in your new entry

When you're done, type just a single Enter on the line.

>> Steve's Ice Cream

>> 444 6th Avenue

>> New York City 10003

>> 212-555-3021

>>

Steve's Ice Cream has been added to the phone book
Would you like to:

Please select one of the above (1-6): 2

Type in your new entry

From the Library of shannon powell

Sample Output 285

When you're done, type just a single Enter on the line.
>> YMCA
>> 973-555-2344

>>

YMCA has been added to the phone book
Would you like to:

Please select one of the above (1-6): 2

Type in your new entry

When you're done, type just a single Enter on the line.
>> Maureen Connelly

>> Hayden Book Companu

>> 10 Mulholland Drive

>> Hasbrouck Heights, N.J. 07604

>> 201-555-6000

>>
Maureen Connelly has been added to the phone book
Would you like to:
Please select one of the above (1-6): 2
Type in your new entry
When you're done, type just a single Enter on the line.
>> Teri Zak
>> Hayden Book Company
>> (see Maureen Connelly for address)
>> 201-555-6060
>>
Teri Zak has been added to the phone book

Would you like to:

Please select one of the above (1-6): 5

Maureen Connelly 201-555-6000
Steve's Ice Cream 212-555-3021
Teri Zak 201-555-6060
YMCA 973-555-2344

From the Library of shannon powell

286 Chapter 13 Rolo Revisited

Would you like to:

Please select one of the above (1-6): 1
Enter name to look up: Maureen

| Maureen Connelly

| Hayden Book Companu

| 10 Mulholland Drive

| Hasbrouck Heights, NJ 07604 |
| 201-555-6000 |
| |

| Teri zak

| Hayden Book Company

| (see Maureen Connelly for address) |
| 201-555-6060 |
| |
| |

Would you like to:
Please select one of the above (1-6): 4

Enter name to change: Maureen

| Maureen Connelly

| Hayden Book Companu

| 10 Mulholland Drive

| Hasbrouck Heights, NJ 07604 |
| 201-555-6000 |
| |

Change this person (y/n)? y
Enter changes with /bin/ed
101

1,$p

Maureen Connelly

Hayden Book Companu

10 Mulholland Drive
Hasbrouck Heights, NJ 07604
201-555-6000

From the Library of shannon powell

Sample Output 287

2s/anu/any Change the misspelling
Hayden Book Company
w
101
q
Would you like to:
Please select one of the above (1-6): 6
$

Hopefully this complex shell programming example offers you some insight into how to
develop larger shell programs and how the many different programming tools provided by the
system can work together.

Other than shell built-ins, rolo relies on tr, grep, an editor, sort, and the standard file
system commands such as mv and rm to get the job done.

The simplicity and elegance that enable you to easily tie all these tools together account for the
deserved popularity of the Unix system.

See Appendix B for more information on downloading the rolo programs.

Chapter 14 introduces you to interactive features of the shell and two shells that have some
nice features not found in the POSIX standard shell.

From the Library of shannon powell

This page intentionally left blank

From the Library of shannon powell

14

Interactive and
Nonstandard Shell Features

In this chapter you'll learn about shell features that are useful to interactive users or not
part of the POSIX shell standard. These features are available in Bash and the Korn shell, the
two most commonly available POSIX-compliant shells across Unix, Linux, and Mac systems.

The Korn shell was developed by David Korn of AT&T Bell Laboratories and was designed to
be “upward compatible” with both the System V Bourne shell and the POSIX standard shell.

It is now widely available across all major *nix platforms and if you have access to a command
line, you probably have ksh available to you.

Bash (short for Bourne-Again Shell) was developed by Brian Fox for the Free Software
Foundation. It was also designed to be compatible with the System V Bourne shell and the
POSIX standard shell, and additionally contains many extensions from the Korn and C shells.
Bash is the standard shell on Linux systems and on most modern Unix and Mac systems it

has replaced the Bourne shell (in fact, if you are using sh you're probably really using bash and
just don’t know it).

Except for a few minor differences, Bash and the Korn shell provide all the POSIX standard
shell’s features and add many new ones. To give you an idea of the compatibility of these shells
with the POSIX standard, all shell programs presented in this book work under both Bash and
the Korn shell.

We'll note any non-standard features that we discuss in this chapter, and Table 14.4 at the end
of this chapter lists the features supported by the different shells.

Getting the Right Shell

Up to this point we’ve dropped commands into a file and run it as a shell program without
really discussing what shell will actually read the lines and run the program. By default,
shell programs are run by your login shell, so it hasn’t been a big issue.

From the Library of shannon powell

290

Chapter 14 Interactive and Nonstandard Shell Features

It turns out that all the major interactive shells allow you to specify which shell—actually,
which program of the thousands included in a Unix or Linux distribution—should be used to
run the file. If the first two characters on the first line of a file are #!, the remainder of the line
specifies an interpreter for the file. So

#!/bin/ksh
specifies the Korn shell and
#!/bin/bash

specifies Bash. If you use constructs or notational conventions specific to one shell, you can use
this feature to force that shell to run your programs, avoiding compatibility problems.

Since you can specify any program you want, a Perl program beginning with

#!/usr/bin/perl
forces the shell to invoke /usr/bin/perl to interpret the lines within the file.

You have to use this feature with caution, however, because many programs, such as Perl,
don’t reside in a standard place on every Unix system. Also, this is not specified by the POSIX
standard, even though it’s found in every modern shell and is even implemented at the
operating system level on many Unix versions.

Most commonly you'll see system shell programs use this notation to ensure that Bourne Shell
is used regardless of the user’s login shell by beginning with

#!/bin/sh

The ENV File

When you start the shell, one of the first things it does is look in your environment for a
variable called Env. If it finds it and it’s non-null, the file specified by Exv will be executed,
much like the .profile is executed when logging in. The ENV file contains commands to

set up the shell’s environment. Throughout this chapter, we’ll mention various things that you
may want to put into this file.

If you do decide to have an ENV file, you should set and export the ENV variable inside your
.profile file:

$ cat .profile

export ENV=$HOME/.alias

$

Note the shortcut in use above: Instead of assigning the variable a value, then calling export,
it turns out you can do both on the same line for efficiency.

From the Library of shannon powell

Command-Line Editing 291

For Bash users, the ENV file is read only when Bash is invoked with the name sh, with the
--posix command-line option, or after set -o posix is executed (all of which force
POSIX standard compliance). By default, when a non-interactive Bash shell is started

(for example, when you run a shell program), it reads commands from the file specified
by the BASH ENV environment variable, and when an interactive Bash shell is started (for
example, by typing bash at the command prompt), it doesn't.

If you're running an older system, you should also export a variable called SHELL inside your
.profile file.

$ grep SHELL .profile
SHELL=/bin/ksh ; export SHELL
$

This variable is used by certain applications (such as vi) to determine what shell to start up
when you execute a shell escape. In such cases, you want to make sure that each time you start
up a new shell, you get the shell you want and not an older Bourne shell.

Probably, though, sHELL will already be set by your login shell. You can test it with

$ echo $SHELL
/bin/bash
$

Also note that the previous example demonstrates yet another way to set and export a variable,
this time by having two separate commands on the same line, separated by a semicolon. Why
the inconsistency? Because Unix is so flexible that you'll find it’s common for shell programs
you read—and users you work with—to accomplish the same task multiple ways. Might as well
get used to variations in notation!

Command-Line Editing

Line edit mode is a feature of the shell that allows you to edit a command line in a

manner that mimics features found in two popular screen editors. The POSIX standard

shell provides the capability to mimic vi and both Bash and the Korn shell also support an
emacs line edit mode. We list the complete set of vi commands in Table A.4 in Appendix A.

If you've used either of these screen-based text editors, you'll find that the built-in line editors
in the shell are faithful reproductions from a functional perspective. This capability is one of
the most useful features in the shell.

To turn on a line edit mode, use the set command with the -o mode option, where mode is
either vi or emacs:

$ set -o vi Turn on vi mode

Put this in your .profile or ENV file to automatically start up the shell with one of the edit
modes turned on.

From the Library of shannon powell

292 Chapter 14 Interactive and Nonstandard Shell Features

Command History

Regardless of which shell you use, it keeps a history of all your previously entered commands.
Each time you press the Enter key to execute a command, that command gets added to the
end of your history list.

Depending on your settings, your command history could even be saved to a file and restored
between login sessions, so you can quickly access commands from previous sessions.

By default, the history list is kept in a file in your home directory under the name
.sh_history (.bash history for Bash). You can change this filename to anything you
want by setting the variable HISTFILE to the name of your history file. This variable can be
set and exported in your .profile file.

There is a limit to the number of commands the shell stores. The minimum value is 128
commands but most modern shells save 500 or more of your commands on the list. Each time
you log in, the shell automatically truncates your history file to this length.

You can control the size of your history file through the HISTSIZE variable. If the default size
isn’t adequate for your needs, set the HISTSIZE variable to a larger value, such as 500 or 1000.
The value you assign to HISTSIZE can be set and exported in your .profile file:

$ grep HISTSIZE .profile
HISTSIZE=500

export HISTSIZE

$

Don’t go crazy with a massive history size, however: The larger the value, the more disk space
you will need to store the history file, and the longer it will take the shell to search through the
list when you access previous commands.

The vi Line Edit Mode

After turning on the vi line editor feature, you will be typing all subsequent commands in
what vi users would think of as input mode. You probably won'’t even notice anything differ-
ent because you can type in and execute commands exactly the same way that you do with the
default shell input prompt:

S set -o vi
$ echo hello
hello

$ pwd
/users/pat

$

To make use of the line editor, you must switch to command mode by pressing the ESCAPE or
Esc key, usually in the upper-left corner of the keyboard. When you enter command mode, the
cursor moves to the left one space, to the last character typed in.

From the Library of shannon powell

The vi Line Edit Mode 293

The current character is whatever character the cursor is on; we’ll say more about the
current character in a moment. You can enter vi commands only in command mode and that
the commands are interpreted immediately upon typing them in, no Enter needed.

A typical problem you may encounter when typing in long commands is that it’s only after
typing it all in that you notice an error. Inevitably, the error is at the beginning of the line!

In command mode, you can move the cursor around and fix the errors without disturbing
the command line. After you've moved the cursor to the place where the error is, you can
change the letter or letters to whatever you want. Then press Enter (regardless of where the
cursor is on the line) and it’ll be given to the shell for interpretation.

In the following examples, the underline (_) represents the cursor. A command line will be
shown, followed by one or more keystrokes, followed by what the line looks like after applying
the keystrokes:

before keystrokes after

First, let’s look at moving the cursor around. Many systems will let you use the arrow keys on
your keyboard, which makes it easy: left arrow to move left, right arrow to move right.

The more general vi-inspired movement commands, however, are h to move the cursor to the
left and the 1 key moves it to the right. Try this out by entering command mode (press Esc)
and pressing the h and 1 keys a few times. The cursor should move around on the line. If you
try to move the cursor past the left or right side of the line, the shell “beeps” at you.

$ mary had a little larb Esc $ mary had a little larb
$ mary had a little larb h $ mary had a little larb
$ mary had a little larb h $ mary had a little larb
$ mary had a little larb 1 $ mary had a little larb

After the cursor is on the character you want to change, you can use the x command to delete
the current character (“X” it out).

$ mary had a little larb X $ mary had a little lab
Note that the b moved to the left when the r was deleted and is now the current character.

To add characters to the command line, you can use the i or a commands. The i command
inserts characters before the current character, and the a command adds characters after the
current character. Both of these commands put you back into input mode, so remember to
press Esc to go back to command mode.

$ mary had a little lab im $ mary had a little lamb

$ mary had a little lamb m $ mary had a little lammb

$ mary had a little lammb Esc $ mary had a little lammb

$ mary had a little lammb x $ mary had a little lamb

$ mary had a little lamb a $ mary had a little lamb

$ mary had a little lamb_ da $ mary had a little lambda_

From the Library of shannon powell

294 Chapter 14 Interactive and Nonstandard Shell Features

If you think that moving the cursor around by repeatedly pressing h and 1 is slow, you're right.
The h and 1 commands may be preceded by a number that specifies the number of spaces
to move the cursor.

$ mary had a little lambda Esc
$ mary had a little lambda 10h
$ mary had a little lambda 13h
$ mary had a little lambda 5x

mary had a little lambda
mary had a little lambda
mary had a little lambda
had a little lambda

or vr »r

As you see, the x command can also be preceded by a number to tell it how many characters
to delete.
You can then easily move to the end of the line by typing the $ command:

$ had a little lambda S $ had a little lambda

To move to the beginning of the line, you use the 0 (that’s a zero) command:

$ had a little lambda 0 $ had a little lambda

Two other useful cursor movement commands are w and b. The w command moves the

cursor forward to the beginning of the next word, where a word is a string of letters, numbers,
and underscores delimited by blanks or punctuation. The b command moves the cursor
backward to the beginning of the previous word. These commands may also be preceded by a
number to specify the number of words to move forward or backward.

$ had a little lambda w $ had a little lambda
$ had a little lambda 2w $ had a little lambda
$ had a little lambda 3b $ had a little lambda

At any time you can press Enter and the current line will be executed as a command.

$ had a little lambda Hit Enter
ksh: had: not found
$

After a command is executed, you are placed back in input mode.

Accessing Commands from Your History

So far, you've learned how to edit the current command line. But there’s more to vi mode because
you can use the vi commands k and j to retrieve commands from your history. The k command
replaces the current line on your terminal with the previously entered command, putting the
cursor at the beginning of the line. Let’s assume that these commands have just been entered:

$ pwd

/users/pat

$ cd /tmp

$ echo this is a test
this is a test

$

From the Library of shannon powell

The vi Line Edit Mode 295

Now go into command mode (Esc) and use k to access previous commands from the command
history:

$ Esc k $ echo this is a test

Every time k is used, the line is replaced by the previous line from the command history, as far
back as you want to go, within the constraints set with HISTSIZE, as discussed earlier.

$ echo this is a test k $ cd /tmp
$ cd /tmp k $ pwd

To execute the command being displayed, just press the Enter key.

$ pwd Hit Enter
/tmp
$

The j command is the reverse of the k command and is used to display the next most recent
command in the history. In other words, k moves you “back” in time, and j moves you
“forward” in time. Try them a few times and you’ll immediately see what we mean.

The / command searches through the command history for a command containing the
specified string. If the / is entered followed by a string, the shell searches backward through its
history to find the most recently executed command that contains that string. The command
will then be displayed.

If no line in the history contains the specified string, the shell “beeps” to indicate the error.
When the / is entered, the current line is replaced by a /.

/tmp
$ Esc /test /test

The search is begun when the Enter key is pressed.

/test_ Enter $ echo this is a test

To execute the command that results from the search, Enter must be pressed again.

$ echo this is a test Hit Enter again
this is a test
$

If the command that’s displayed isn’t the one you seek, continue the search by typing in /
without a pattern and pressing Enter. The shell is smart enough to use the string that you entered
the last time you executed the search command and continue from the last match shown

further back in your command list.

When you've found the command in the history (either by k, j, or /), you can edit the
command using the other vi commands we've already discussed. Worth noting is that by
making these changes, you don't actually change the command in the history. You're editing a
copy of the command, which will then be entered in the history as the most recent command
when you press Enter.

Table 14.1 summarizes the basic vi line edit commands.

From the Library of shannon powell

296 Chapter 14 Interactive and Nonstandard Shell Features

Table 14.1 Basic vi Line Edit Commands

Command Meaning

h Move left one character.

1 Move right one character.

b Move left one word.

w Move right one word.

0 Move to start of line.

$ Move to end of line.

X Delete character at cursor.

dw Delete word at cursor.

rc Change character at cursor to c.

a Enter input mode and enter text after the current character.

i Enter input mode and insert text before the current character.
k Get previous command from history.

J Get next command from history.

/string Search history for the most recent command containing string;

if string is null, the previous string will be used.

It seems like a lot, but don’t get too anxious: j and k to move up and down your history list, h
and 1 to move around on the command line, i to insert and Enter to invoke are all you really
need to get going with command line editing in vi mode.

The emacs Line Edit Mode

Not a fan of the vi visual editor but prefer emacs, an editor much beloved by the open source
developer community? The shell has a line edit mode for you too. After turning on the emacs
line editor, you again won’t notice anything different because you’ll type in and execute
commands exactly as before:

$ set -o emacs
$ echo hello
hello

$ pwd
/users/pat

$

This time, however, to use the emacs line editor you will enter emacs commands. emacs
commands are either control characters—characters typed in by holding down the ctrl key
and pressing another character—or they are characters preceded by the Esc key. You may enter

From the Library of shannon powell

The emacs Line Edit Mode 297

emacs commands any time you want because there are no separate “modes” like the vi line
editor. Note that emacs commands are not followed by an Enter.

(For a complete list of emacs commands, refer to the documentation for Bash or the Korn
shell.)

First, let’s look at how to move the cursor around on the command line. Ctrl+b moves the
cursor back (to the left), and the Ctfrl+f command moves it forward (to the right). Try this

by pressing Ctrl+b and Ctrl+f a few times while entering a command on the command line.
The cursor should move around on the line. If you try to move the cursor past the left or right
side of the line, the shell simply ignores your command.

$ mary had a little larb Ctrl+b $ mary had a little larb
$ mary had a little larb Ctrl+b $ mary had a little larb
$ mary had a little larb Ctrl+b $ mary had a little larb
$ mary had a little larb Ctrl+f $ mary had a little larb

After the cursor is on the character you want to change, you can use the Ctrl+d command to
delete the current character.

$ mary had a little larb Ctrl+d $ mary had a little lab
Note that the b moved to the left when the r was deleted and is now the current character.

To add characters to the command line, you simply type them in. The characters are inserted
before the current character.

$ mary had a little lab m $ mary had a little lamb
$ mary had a little lamb m $ mary had a little lammb
$ mary had a little lammb Ctrl+h $ mary had a little lamb

Note that the current erase character (usually either Backspace or Ctrl+h) will always delete the
character to the left of the cursor.

The Ctrl+a and Ctrl+e commands may be used to move the cursor to the beginning and end of
the command line, respectively.

$ mary had a little lamb Ctrl+a $ mary had a little lamb
$ mary had a little lamb Ctrl+e $ mary had a little lamb_

Note that the Ctrl+e command places the cursor one space to the right of the last character
on the line. (When you're not in emacs mode, the cursor is always at the end of the line, one
space to the right of the last character typed in.)

This is handy because when you're at the end of the line, anything you type will be appended
to whatever is already on the line.

$ mary had a little lamb_ da $ mary had a little lambda_

Two other useful cursor movement commands are the Esc f and Esc b commands. The Esc £
command moves the cursor forward to the end of the current word. The Esc b command moves
the cursor backward to the beginning of the previous word. Note that for these commands you
press and release the Esc key, then press the key that corresponds to the desired command (£, b,
and so on).

From the Library of shannon powell

298

Chapter 14 Interactive and Nonstandard Shell Features

$ mary had a little lambda_ Esc b $ mary had a little lambda

$ mary had a little lambda Esc b $ mary had a little lambda

$ mary had a little lambda Esc b $ mary had a little lambda

$ mary had a little lambda Esc f $ mary had a little lambda

$ mary had a little lambda Esc f $ mary had a little lambda

You can press the Enter key at any time and the current line will be executed as a command.
$ mary had a little lambda Hit Enter; enter command

ksh: mary: not found

$

Accessing Commands from Your History

You’ve learned how to edit the current command line, but the shell keeps a history of recently
entered commands. To access these commands from the history list, use the emacs commands
Ctrl+p and Ctrl+n. The Ctrl+p command replaces the current line on your terminal with the
previously entered command, putting the cursor at the end of the line. Ctrl+n does the same
action, but with the next command in the history list.

Let’s assume that these commands have just been entered:

$ pwd

/users/pat

$ cd /tmp

S echo this is a test
this is a test

$

Now use Ctrl+p to access them:

S Ctrl+p $ echo this is a test_

Every time Ctrl+p is used, the current line is replaced by the previous line from the command
history.

$ echo this is a test Ctrl+p $ cd /tmp_
$ cd /tmp_ Ctrl+p $ pwd_

To execute the command being displayed, just press Enter.

$ pwd Hit Enter
/tmp
$

The Ctrl+r command is used to search through the command history for a command
containing the specified string. The Ctrl+r is entered followed by the search pattern, followed
by the Enter key. The shell then searches the command history for the most recently

executed command that contains that string. If found, the command line is displayed; otherwise,
the shell “beeps.”

From the Library of shannon powell

The emacs Line Edit Mode 299

When the Ctrl+r is typed, the shell replaces the current line with the prompt *Rr:

$ Ctrl+r test $ “Rtest

The search is initiated when Enter is pressed.

S ARtest_ Enter $ echo this is a test_

To execute the command that is displayed as a result of the search, Enter must be pressed
again.

$ echo this is a test Hit Enter again
this is a test
$

To continue the search through the command history, keep typing Ctrl+r followed by an Enter.

Bash handles Ctrl+r a little differently. When you type Ctrl+r, Bash replaces the current line
with (reverse-i-search) ':

S Ctrl+r (reverse-i-search) ~':

As you type text, the line is updated inside the
line is updated with the matching command:

' with the text you type, and the rest of the

(reverse-i-search) ™ ': c (reverse-i-search) “c': echo this is a
test
(reverse-i-search) "c': echo this is a test d (reverse-i-search) “cd': cd /tmp

Note how Bash highlights the matching part of the command by placing the cursor on it. As
with the Korn shell, the command is executed by pressing Enter.

When you've found the command in the history (either by Ctrl+p, Ctrl+n, or Ctrl+r), you can
also edit the command using the other emacs commands already discussed. As with the vi edit
mode, you won't actually change the command in the history but are editing a copy of the
command, which will then be entered in the history list when you press Enter.

Table 14.2 summarizes the basic emacs line edit commands.

Table 14.2 Basic emacs Line Edit Commands

Command Meaning

Ctrl+b Move left one character.
Ctri+f Move right one character.
Esc £ Move forward one word.
Esc b Move back one word.
Ctrl+a Move to start of line.
Ctrl+e Move to end of line.
Ctri+d Delete current character.

From the Library of shannon powell

300 Chapter 14 Interactive and Nonstandard Shell Features

Command Meaning

Esc d Delete current word.

erase char (User-defined erase character, usually # or Ctrl+h), delete previous
character.

Ctrl+p Get previous command from history.

Ctrl+n Get next command from history.

Ctrl+r string Search history for the most recent command line containing
string.

Other Ways to Access Your History

There are several other ways to access your command history that are worth noting if you don't
find that either the vi or emacs line edit modes work for you.

The history Command

The easiest way to access your command history is actually to just type in the command
history:

$ history

507 cd shell

508 cd chls

509 vi int

510 ps

511 echo SHISTSIZE
512 cat SENV

513 cp int int.sv
514 history

515 exit

516 cd shell

517 cd chle

518 vi all

519 run -n5 all
520 ps

521 lpr all.out
522 history

The numbers to the left are relative command numbers (command number 1 would be the
first, or oldest, command in your history).

Be aware that the history command differs between the Korn and Bash shells: The Korn
shell history command writes your last 16 commands to standard output while Bash will list
your entire command history, even if it’s 500 or 1000 lines long.

From the Library of shannon powell

Other Ways to Access Your History 301

If you're running Bash and don’t want to be inundated with commands, you can specify the
number of commands to display as an argument:

$ history 10
513 cp int int.sv
514 history
515 exit
516 cd shell
517 cd chle
518 vi all
519 run -n5 all
520 ps
521 lpr all.out
522 history 10

The £c¢ Command

The £c command allows you to start up an editor on one or more commands from your history
or to write a list of history commands to your terminal. In the latter form, which is indicated
by giving the -1 option to fc, it is like typing in history, only more flexible (you can specify
a range of commands to be listed). For example, the command

fc -1 510 515

writes commands 510 through 515 to standard output, and the command

fc -n -1 -20

writes the last 20 commands to standard output, but omits the command numbers (-n).
Suppose that you've just executed a long command and decide that it would be nice to turn
that command line into a shell program called runx. You can use fc to get the command from
your history and I/O redirection to write that command to a file:

fc -n -1 -1 > runx

That'’s the letter 1 followed by the number -1 to get the most recent command (current minus
one). fc is described in full detail in Appendix A.

The r Command

A simple Korn shell command allows you to re-execute previous commands using even fewer
keystrokes. Type in the r command, and the Korn shell re-executes your last command:

S date

Thu Oct 24 14:24:48 EST 2002

$r Re-execute previous command
date

Thu Oct 24 14:25:13 EST 2002

$

From the Library of shannon powell

302

Chapter 14 Interactive and Nonstandard Shell Features

When you type in the r command, the Korn shell redisplays the previous command and then
immediately executes it.

If you give r the name of a command as an argument, the Korn shell re-executes the most
recent command from your history that begins with the specified pattern:

$ cat docs/planA

$ pwd

/users/steve

$ r cat Rerun last cat command
cat docs/planA

$

Once again, the Korn shell redisplays the command line from its history before automatically
re-executing it.

The final form of the r command allows you to substitute the first occurrence of one
string with the next. To re-execute the last cat command on the file planB instead of plana
you could type:

$ r cat planA=planB
cat docs/planB

$
or even more simply, you could have typed:

S r cat A=B
cat docs/planB

$
Bash has a similar history shortcut command. ! string lets you search your history and ! !

re-executes the previous command:

S 11
cat docs/planB

$ 1d

date

Thu Oct 24 14:39:40 EST 2002
$

No spaces can occur between ! and string.

The fc command can be used with the -s option to do the same thing with any POSIX
compliant shell (the r command is actually an alias to the £c command in the Korn
shell—more on that later in this chapter):

$ fc -s cat
cat docs/planB

From the Library of shannon powell

Integer Arithmetic 303

$ fc -s B=C
cat docs/planC

Functions

Bash and the Korn shell both have function features not available in the POSIX standard shell.
Let’s have a look.

Local Variables

Both Bash and Korn shell functions can have local variables, making recursive functions
possible. These variables are defined with the typeset command, as in

typeset 1 j

If a variable of the same name already exists, it is saved when the typeset is executed and
restored when the function exits.

After using the shell for a while, you may develop a set of functions that you like to use during
your interactive work sessions. A good place to define such functions is inside your ENV file so
that they will be defined whenever you start up a new shell.

Automatically Loaded Functions

The Korn shell allows you to set up a special variable called FPATH that is similar to your PATH
variable. If you try to execute a function that is not yet defined, the Korn shell searches the
colon-delimited list of directories in FPATH for a file that matches the function name. If it
finds such a file, it executes it in the current shell with the expectation that somewhere in the
file is a definition for the specified function.

Integer Arithmetic

Both Bash and the Korn shell support evaluating arithmetic expressions without arithmetic
expansion. The syntax is similar to $ ((...)) but without the dollar sign. Because expansion is
not performed, the construct can therefore be used by itself as a command:

$ x=10

$ ((x =x * 12))
$ echo $x

120

$

From the Library of shannon powell

304 Chapter 14 Interactive and Nonstandard Shell Features

The real value of this construct is that it allows arithmetic expressions to be used in if, while,
and until commands. The comparison operators set the exit status to a non-zero value if the
result of the comparison is false and to a zero value if the result is true. So writing

((i ==100))

has the effect of testing i to see whether it is equal to 100 and setting the exit status appropriately.
This makes integer arithmetic ideal for inclusion in if conditionals:

if ((1 == 100))

then

fi

The ((i == 100)) returns an exit status of zero (true) if i equals 100 and one (false)
otherwise, and has the same effect as writing

if ["$i" -eq 100]

then

fi

Another advantage of using ((...)) rather than test is the ability to perform arithmetic as part
of the test:

if ((1 /10 '=0))
then

fi
Here the comparison returns TRUE if i divided by 10 is not equal to zero.

while loops can also benefit from integer arithmetic. For example,

x=0
while ((x++ < 100))
do

commands
done

executes commands 100 times.

Integer Types

Both the Korn and Bash shells support an integer data type. You can declare variables to be
integers by using the typeset command with the -i option

typeset -i variables

where variables are any valid shell variable names. Initial values can also be assigned to the
variables at the time they are declared:

typeset -1 signal=1

From the Library of shannon powell

Integer Arithmetic 305

The main benefit: arithmetic performed on integer variables with the ((...)) construct is faster
than on non-integer values.

However, an integer variable cannot be assigned anything but an integer value or integer
expression. If you attempt to assign a non-integer to it, the message bad number is printed by
the shell:

$ typeset -i i
$ i=hello
ksh: i: bad number

Bash simply ignores any strings that don’t contain numeric values and generates an error for
anything that contains both numbers and other characters:

$ typeset -i i

$ i=hello

S echo $i

0

$ i=lhello

bash: lhello: value too great for base (error token is "lhello")
$ 1=10+15

$ echo $i

25

$

The preceding example also shows that integer-valued expressions can be assigned to an integer
variable, without even having to use the ((...)) construct. This holds true for both shells.

Numbers in Different Bases

Both Korn and Bash also allow you to perform arithmetic in different numeric bases. To write a
number in a different base with these shells, you use the notation

base#tnumber

For example, to express the value 100 in base 8 (octal) you can write

8#100

You can write constants in different bases anywhere an integer value is permitted. To assign
octal 100 to the integer variable i, you can write

typeset -i 1=8#100

Note that with the Korn shell the base of the first value assigned to an integer variable sets the
default base of all subsequent uses of that variable. In other words, if the first value you assign
to the integer variable i is an octal number, each time you reference the value of i on the
command line, the Korn shell displays it as an octal number using the notation s#value.

$ typeset -i i=8#100

$ echo $i

8#100

$ 1=50

From the Library of shannon powell

306

Chapter 14 Interactive and Nonstandard Shell Features

S echo $i

8#62

$ ((i = 16#a5 + 16#120))
$ echo $i

8#705

$

Because the first value assigned to i is an octal number (8#100), all further references to i will
also be in octal. When the base 10 value of 50 is next assigned to i and then i is subsequently
displayed, we get the value 8#62, which is the octal equivalent of 50 in base 10.

There’s a subtlety in the above example too: while the display value of i is set to octal, the
default numeric base for values assigned to the variable remain decimal unless specified
otherwise. In other words, i=50 was not equivalent to i=8#50 even though the shell knew i
was to be referenced as base 8.

In the preceding example, the ((...)) construct is used to add the two hexadecimal values a5
and 120. The result is then displayed, once again in octal. We admit, that’s fairly obscure
and not likely something you'll encounter in day-to-day shell programming or interactive use!

Bash uses both the base#number syntax for arbitrary bases and the C language syntax for
octal and hexadecimal numbers—octal numbers are preceded by 0 (zero), and hexadecimal
numbers are preceded by 0x:

$ typeset -i i=0100
$ echo $i

64

$ 1i=0x80

S echo $i

128

$ i=2#1101001

$ echo $i

105

S ((1 = 16#a5 + 16#120))
S echo $i

453

$

Unlike the Korn shell, Bash doesn’t keep track of the variable’s numeric base; integer variables
are displayed as decimal values. You can always use printf to print integers in octal or
hexadecimal format.

As you can see, with Bash and the Korn shell it’s easy to work with different bases which makes
it possible to write functions that perform base conversion and non-decimal arithmetic.

From the Library of shannon powell

The alias Command 307

The alias Command

An alias is a shorthand notation provided by the shell to allow command customization.

The shell keeps a list of aliases that is searched when a command is entered before any other
substitution occurs. If the first word of a command line is an alias, it is replaced by the text of
the alias.

An alias is defined by using the alias command. The format is

alias name=string

where name is the name of the alias, and string is any string of characters. For example,
alias 1l='ls -1'
assigns 1s -1 to the alias 11. Now when the command 11 is entered by the user, the shell

silently replaces it with 1s -1. Even better, you can type arguments after the alias name on the
command line, as in

11 *.c

which transforms into this after alias substitution has been performed:
s -1 *.c
The shell performs its normal command-line processing both when the alias is set and when it

is used, so quoting can be tricky. For example, recall that the shell keeps track of your current
working directory inside a variable called pPwD:

$ cd /users/steve/letters
$ echo $PWD
/users/steve/letters

$

You can create an alias called dir that gives you the base name of your current working
directory by using the PwD variable and one of the parameter substitution constructs:

alias dir="echo ${PWD##x*/}"

This seems reasonable, but let’s see how this alias works in practice:

$ alias dir="echo ${PWD##*/}" Define alias

$ pwd Where are we?
/users/steve

$ dir Execute alias
steve

$ cd letters Change directory
$ dir Execute the alias again
steve

$ c¢d /usr/spool One more try

$ dir

steve

$

From the Library of shannon powell

308

Chapter 14 Interactive and Nonstandard Shell Features

No matter the current directory, the dir alias prints out steve. That’s because we weren’t
careful about quotes when we defined the dir alias. Recalling that the shell performs parameter
substitution inside double quotes, the problem is that the shell evaluated

${PWD##+/}

at the time the alias was defined. This means that the dir alias was essentially defined as if
we'd typed in the following:

$ alias dir="echo steve"
No wonder it didn’t work!

The solution is to use single rather than double quotes when defining the dir alias to defer the
parameter substitution until the alias is executed:

$ alias dir='echo ${PWD##*/}' Define alias

$ pwd Where are we?
/users/steve

$ dir Execute alias
steve

$ cd letters Change directory
$ dir Execute alias again
letters

$ e¢d /usr/spool One more try

$ dir

spool

$

If an alias ends with a space, the word following the alias is also checked for alias substitution.
For example:

alias nohup="/bin/nohup "
nohup 11

causes the shell to perform alias checking on the string 11 after replacing nohup with /bin/

nohup.

Quoting a command or prefacing it with a backslash prevents alias substitution. For example:

$ 111

ksh: 11: command not found
$

The format

alias name

causes the value of the alias name to be listed, and the alias command without arguments
causes all aliases to be listed.

From the Library of shannon powell

Arrays 309

The following aliases are automatically defined when the Korn shell starts up:

autoload="'typeset -fu'
functions='typeset -f'
history='fc -1
integer="'typeset -1i'
local=typeset
nohup="'nohup '

r='fc -e -
suspend="'kill -STOP $$'

Note from the preceding example that r is actually an alias for the fc command with
the -e option, and history is an alias for f¢ -1. By comparison, Bash doesn’t automatically
define any aliases by default.

Removing Aliases
The unalias command is used to remove aliases from the alias list. The format is

unalias name

which removes the alias name and

unalias -a
which removes all aliases.

If you develop a set of alias definitions that you like to use during your login sessions, you
may want to define them inside your ENV file so that they will always be available for you to
use, as they don’t otherwise migrate to subshells.

Arrays

Both Korn and Bash provide a limited array capability. Bash arrays may contain an unlimited
number of elements (subject to memory limitations); Korn shell arrays are limited to 4096
elements. Array indexing in both shells starts at zero.

An array element is accessed with a subscript, which is an integer-valued expression enclosed
within square brackets. You don’t declare the maximum size of a shell array either, you simply
assign values to elements as needed. The values that you can assign are the same as for ordinary
variables:

$ arr[0]=hello
S arr[l]="some text"
$ arr[2]=/users/steve/memos

$

To retrieve an element from an array, you need to write the array name followed by an
open bracket, the element number and a close bracket. The entire construct must also be

From the Library of shannon powell

310

Chapter 14 Interactive and Nonstandard Shell Features

enclosed inside a pair of curly braces, and the whole element is preceded by a dollar sign.
Sounds complicated? It’s not:

$ echo ${arrayl0]}
hello

$ echo ${arrayl1]}
some text

$ echo ${arrayl2]}
/users/steve/memos
$ echo $array
hello

$

As you can see from the preceding example, if no subscript is specified, element zero is used.

If you forget the curly braces when performing the substitution, nothing breaks, it just
produces a result that’s not quite what you expect:

$ echo $arrayl[l]
hello[1]
$

The value of array is substituted (hello—the value of array [0]) and then echoed along
with [1]. (Note that because the shell does filename substitution after variable substitution, the
shell would attempt to match the pattern hello[1] against the files in your current directory.)

The construct [*] can be used as a subscript to produce all the elements of an array on the
command line, with each element separated by a space.

$ echo ${arrayl[*]}
hello some text /users/steve/memos

$
The construct ${#array[*]} can be used to find out the number of elements in array.

$ echo ${#arrayl[*]}
3
$

The number reported is the actual number of values stored within array elements, not the
largest subscript used to store an element inside the array.

$ array[10]=foo

$ echo ${arrayl[*]} Display all elements
hello some text /users/steve/memos foo

$ echo ${#array[*]} Number of elements
4

$

An array that has noncontiguous values defined is known as a sparse array, in case you've ever
heard that phrase before.

You can declare an array of integers by specifying the array name to typeset -i:

typeset -i data

From the Library of shannon powell

Arrays 311

Integer calculations can be performed on array elements using the ((...)) construct:

typeset -i array

array[0]1=100

array[1]1=50

((array[2] = array[0] + arrayl[l]))

wr Wvr r r W

echo ${arrayl2]}

150

S i=1

$ echo ${arraylil}

50

$ array[3]=array[0] +array[2]
$ echo ${arrayl[3]}

250

$

Note that not only can you omit the dollar signs and the curly braces when referencing array
elements within double parentheses, you also can omit them outside when the array is declared
to be of integer type. Also note that dollar signs are not needed before variables used in
subscript expressions.

The following program, called reverse, reads lines from standard input and then writes them
back to standard output in reverse order:

$ cat reverse
read lines to array buf

typeset -i line=0

while ({ line < 4096)) && read buf[line]
do

({ 1ine = line + 1))
done

now print the lines in reverse order

while ((line > 0)) do
((line = line - 1))
echo "${buf[line]}"
done

S reverse
line one
line two
line three
Ctrl+d
line three
line two
line one

$

From the Library of shannon powell

312 Chapter 14 Interactive and Nonstandard Shell Features

The first while loop executes until end of file or 4096 lines have been read (4096 is a Korn
shell buffer limit for arrays).

Another example: The cdh function defined below changes the current directory but also uses
an array to keep a history of previous directories. It allows the user to list the directory history
and move back to any directory in the list:

S cat cdh
CDHIST[0] =$SPWD # initialize CDHIST[O]
cdh ()
{
typeset -i cdlen i
if [$# -eq 0 1 ; then # default to HOME with no arguments
set -- S$SHOME
fi
cdlen=${#CDHIST [*] } # number of elements in CDHIST

case "sS@" in

-1) # print directory list
i=0
while ((i < cdlen))
do
printf "%3d %s\n" $i ${CDHIST[i]}
((L =1+ 1))

done

return ;;

-[0-91]-[0-9][0-9]) # cd to dir in list
i=${1#-} # remove leading '-'
cd ${CDHIST[i]} ;;

*) # cd to new dir
cd s@ ;;

esac

CDHIST [cdlen] =SPWD

}
$

The CDHIST array stores each directory visited by cdh, and the first element, CDHIST[0], is
initialized with the current directory when the cdh file is run:

$ pwd
/users/pat
$. cdh Define cah function
$ cdh /tmp
$ cdh -1
0 /users/pat
1 /tmp

From the Library of shannon powell

Arrays

When the cdh file was first run, CDHIST [0] was assigned /users/pat, and the cdh function
was defined. When cdh /tmp was executed, cdlen was assigned the number of elements in
CDHIST (one), and CDHIST [1] was assigned /tmp. The cdh -1 caused printf to display each
element of CDHIST (on this invocation, cdlen was set to 2, because elements O and 1 of CDHIST
contained data).

Note that the if statement at the beginning of the function sets $1 to $HOME if no arguments
are passed. Let’s try that out:

$ edh
$ pwd
/users/pat
$ edh -1
0 /users/pat
1 /tmp
2 /users/pat
$

It worked, but now /users/pat shows up twice in the list. One of the exercises at the end of
this chapter asks you to come up with a solution for this bug.

The most useful feature of cdh is the -n option, which changes your current directory to the
one specified in the list:

$ cdh /usr/spool/uucppublic
$ cdh -1
0 /users/pat
1 /tmp
2 /users/pat
3 /usr/spool/uucppublic
$ cdh -1
$ pwd
/tmp
$ cdh -3
$ pwd
/usr/spool /uucppublic
$

cdh can replace the standard cd command because alias lookup is performed before built-in
commands are executed. If we create a cd alias to cdh, we now have an enhanced cd.

For that to work, however, we will have to quote every use of cd in the cdh function to prevent
unwanted recursion:

$ cat cdh
CDHIST[0]=$PWD # initialize CDHIST[O0]
alias cd=cdh

cdh ()

{

typeset -i cdlen i
if [$# -eq 0] ; then # default to HOME with no arguments

From the Library of shannon powell

313

314

Chapter 14 Interactive and Nonstandard Shell Features

set -- SHOME
fi

cdlen=${#CDHIST[*]}

case "$@" in

number of elements in CDHIST

-1)

i=0
while ((i < cdlen))
do

printf "%3d %s\n"

((1 =1+ 1))
done
return ;;

-[0-91]-[0-9]1[0-9])

esac

i=${1#-}
'cd' ${CDHIST[il} ;;

'ed' $@ ;;

CDHIST [cdlen] =$PWD

. cdh
cd /tmp
cd -1

r r Ur ——

0 /users/pat

1 /tmp

$ cd /usr/spool

$ ed -1

0 /users/pat

1 /tmp

2 /usr/spool

$

print directory list

$i ${CDHIST[il]}

cd to dir in list
remove leading '-'

cd to new dir

Define cdh function and cd alias

Table 14.3 summarizes the various array constructs in the Korn shell and Bash.

Table 14.3 Array Constructs

Construct

Meaning

${arraylil}
Sarray
${array[*]}
${#array[*]}

arraylil=val

Substitute value of element i

Substitute value of first element (array([0])

Substitute value of all elements

Substitute number of elements

Store val into array[il]

From the Library of shannon powell

Job Control 315

Job Control

The shell provides facilities for controlling jobs directly from the command line. A job is any
command or command sequence in the shell. For example:

who | wc
When a command is started in the background (that is, with &), the shell prints out the job
number inside brackets ([]) as well as the process ID:

$ who | we &
[1] 832
$

When a job finishes, the shell prints the message

[n] + Done sequence

where n is the job number of the finished job, and sequence is the text of the command
sequence used to create the job.

In its easiest usage, the jobs command is used to print the status of jobs that haven’t
completed.

S jobs

[3] + Running make ksh &

[2] - Running monitor &

[1] Running pic chapt2 | troff > aps.out &

The + and - after the job number mark the current and previous jobs, respectively. The
current job is the job most recently sent to the background, and the previous job is the next-
to-the-last job sent to the background. A number of built-in commands may be given a job
number or the current or previous job as arguments as a convenient shortcut.

For example, the shell’s built-in kill command can be used to terminate a job running in the
background. The argument to it can be a process ID or a percent sign (%) followed by a job
number, a + (current job), a - (previous job), or another % (also current job).

$ pic chaptl | troff > aps.out &

[1] 886

$ jobs

[1] + Running pic chaptl | troff > aps.out &
$ kill %1

[1] Done pic chaptl | troff > aps.out &
$

The preceding kill could have used %+ or %% to refer to the same job.

The first few characters of the command sequence can also be used to refer to a job; for
example, kill %pic would have worked in the preceding example.

From the Library of shannon powell

316

Chapter 14 Interactive and Nonstandard Shell Features

Stopped Jobs and the £g and bg Commands

If you are running a job in the foreground (without an &) and you want to suspend it, you can
press Ctrl+z. The job stops executing, and the shell prints the message

[n] + Stopped (SIGTSTP) sequence

The stopped job becomes the current job. To have it continue executing, use the £g or bg
command: The £g command causes the current job to resume execution in the foreground, and
bg causes the current job to resume execution in the background.

You can also specify a job number, the first few characters of the pipeline, a +,a -, ora %
preceded by a % to specify any job to the £g and bg commands. These commands also print out
the command sequence to remind you what is being brought to the foreground or sent to the
background.

$ troff memo | photo

Ctrl+z

[1] + Stopped (SIGTSTP) troff memo | photo
$ bg

[1] troff memo | photo &

$

The preceding sequence is one of the most often used with job control: stopping a running
foreground job and sending it to the background.

If a job running in the background tries to read from the terminal, it is stopped, and the
message

[n] - Stopped (SIGTTIN) sequence

is printed. It can then be brought to the foreground with the £fg command to enter the data
required. After entering input, the job can be stopped again (with Ctrl+z) and moved to the
background to continue running.

Output from a background job normally goes directly to the terminal, which can be confusing
if you're doing something else at the time. There’s a fix, though: The command

stty tostop

causes any background job that attempts to write to the terminal to be stopped and the
message

[n] - Stopped (SIGTTOU) sequence

to be printed. (Bash generates slightly different messages than the ones shown here, but the
functionality is identical)

The following shows how job control might be used:

$ stty tostop

$ rundb Start up data base program
??? find green red Find green and red objects
Ctrl+z This may take a while

From the Library of shannon powell

Miscellaneous Features 317

[1] + Stopped rundb
$ bg So put it in the background
[1] rundb &
. Do some other stuff
$ jobs
[1] + Stopped(tty output) rundb &
$ fg Bring back to foreground
rundb
1973 Ford Mustang red
1975 Chevy Monte Carlo green
1976 Ford Granada green
1980 Buick Century green
1983 Chevy Cavalier red
??? find blue Find blue objects
Ctrl+z Stop it again
[1] + Stopped rundb
$ bg Back to the background
[1] rundb &

Keep working until it's ready

Miscellaneous Features

Just a few more tidbits before we wrap up this chapter...

Other Features of the cd Command

The cd command seems straightforward, but it has a few tricks up its proverbial sleeve. For
example, the - argument means “the previous directory” as a convenient shortcut:

$ pwd

/usr/src/cmd

$ cd /usr/spool/uucp

$ pwd

/usr/spool/uucp

$ ed - cd to previous directory
/usr/src/cmd cd prints out name of new directory
$ ed -

/usr/spool/uucp

$
As you can see, cd - can be used to toggle between two directories with no effort at all.

The Korn shell’s cd command has the capability to substitute portions of the current directory’s
path. (Neither Bash nor the POSIX standard shell support this feature)

The format is

cd old new

From the Library of shannon powell

318 Chapter 14 Interactive and Nonstandard Shell Features

cd attempts to replace the first occurrence of the string o1d in the current directory’s path
with the string new.

$ pwd

/usr/spool/uucppublic/pat

$ cd pat steve Change pat to steve and cd
/usr/spool /uucppublic/steve cd prints out name of new directory
$ pwd Confirm location
/usr/spool/uucppublic/steve

$

Tilde Substitution

If a word on the command line begins with the tilde ~ character, the shell performs the follow-
ing substitutions: If the tilde is the only character in the word or if the character following
the tilde is a slash /,the value of the HOME variable is substituted:

$ echo ~

/users/pat

$ qrep Korn ~/shell/chapter9/ksh

The Korn shell is a new shell developed

by David Korn at AT&T

for the Bourne shell would also run under the Korn

the one on System V, the Korn shell provides you with
idea of the compatibility of the Korn shell with Bourne's,
the Bourne and Korn shells.

The main features added to the Korn shell are:

$

If the rest of the word up to a slash is a user’s login name in /etc/passwd, the tilde and the
user’s login name are substituted by the HOME directory of that user.

S echo ~steve

/users/steve

$ echo ~pat

/users/pat

$ qgrep Korn -pat/shell/chapter9/ksh

The Korn shell is a new shell developed

by David Korn at AT&T

for the Bourne shell would also run under the Korn
the one on System V, the Korn shell provides you with
idea of the compatibility of the Korn shell with Bourne's,
the Bourne and Korn shells.

The main features added to the Korn shell are:

$

In both the Korn and Bash shells, if the ~ is followed by a + or a -, the value of the variable PwD
or OLDPWD is substituted, respectively. PWD and OLDPWD are set by cd and are the full pathnames

From the Library of shannon powell

Compatibility Summary 319

of the current and previous directories, respectively. ~+ and ~- are not supported by the POSIX
standard shell.

$ pwd
/usr/spool/uucppublic/steve
$ cd

$ pwd

/users/pat

S echo ~+

/users/pat

S echo ~-

/usr/spool /uucppublic/steve
$

In addition to the preceding substitutions, the shell also checks for a tilde after a colon :
and performs tilde substitution on that as well (that’s how you can have something like ~/bin
in your PATH and have it work correctly).

Order of Search

It’s worthwhile understanding the search order that the shell uses when you type in a
command name:

1. The shell first checks to see whether the command is a reserved word (such as for or do).

2. If it’s not a reserved word and is not quoted, the shell next checks its alias list, and if it
finds a match, performs the substitution. If the alias definition ends in a space, it also
attempts alias substitution on the next word. The final result is then checked against the
reserved word list, and if it’s not a reserved word, the shell proceeds to step 3.

3. The shell checks the command against its function list and executes the eponymous
function if found.

4. The shell checks to see whether the command is a built-in command (such as cd and pwd).
5. Finally, the shell searches the PATH to locate the command.

6. If the command still isn’t found, a “command not found” error message is issued.

Compatibility Summary

Table 14.4 summarizes the compatibility of the POSIX standard shell, the Korn shell, and Bash
with the features described in this chapter. In this table, an “X” denotes a supported feature,
“UP,” an optional feature in the POSIX shell (these are also known as “User Portability” features
in the POSIX shell specification), and “POS” a feature supported only by Bash when it is
invoked with the name sh or with the - -posix command-line option, or after set -o posix
is executed.

From the Library of shannon powell

320

Chapter 14 Interactive and Nonstandard Shell Features

Table 14.4 POSIX Shell, Korn Shell, and Bash Compatibility

POSIX Shell Korn Shell Bash
ENV file X X POS
vi line edit mode X X X
emacs line edit mode X X
fc command X X X
r command X
]
| string X
Functions X X X
Local variables X X
Autoload via FPATH X
Integer expressions with ((...)) X X
Integer data type X X
Integers in different bases X X
Oxhexnumber, 0octalnumber X
Aliases up X X
Arrays X X
Job control up X X
cd - X X X
cd old new X
~username, ~/ X X X
~ty o~ X

From the Library of shannon powell

A

Shell Summary

This appendix summarizes the main features of the standard POSIX shell as per IEEE Std
1003.1-2001.

Startup

The shell can be given the same options on the command line as can be specified with the set
command. In addition, the following options can be specified:

-c commands commands are executed.

-i The shell is interactive. Signals 2, 3, and 15 are ignored.

-s Commands are read from standard input.
Commands

The general format of a command typed to the shell is

command arguments

where command is the name of the program to be executed, and arguments are its arguments.
The command name and the arguments are delimited by whitespace characters, normally the
space, tab, and newline characters (changing the variable 1Fs affects this).

Multiple commands can be typed on the same line if they’re separated by semicolons ;.

Every command that gets executed returns a number known as the exit status; zero is used to
indicate success, and non-zero indicates a failure.

The pipe symbol | can be used to connect the standard output from one command to the
standard input of another, as in

who | wc -1

From the Library of shannon powell

322 Appendix A Shell Summary

The exit status is that of the last command in the pipeline. Placing a ! at the beginning of the
pipeline causes the exit status of the pipeline to be the logical negation of the last command in
the pipeline.

If the command sequence is terminated by an ampersand &, it is run asynchronously in the
background. The shell displays the process ID and job number of the command at the terminal
and prompts for the next interactive command to be entered.

Typing of a command can continue to the next line if the last character on the line is a
backslash character \.

The characters && cause the command that follows to be executed only if the preceding
command returns a zero exit status. The characters | | cause the command that follows to be
executed only if the preceding command returns a non-zero exit status. As an example, in

who | grep "fred" > /dev/null && echo "fred's logged on"

the echo is executed only if the grep returns a zero exit status.

Comments

If the character # appears on a line, the shell treats the remainder of the line as a comment and
ignores it for interpretation, substitution and execution.

Parameters and Variables

There are three different types of parameters: shell variables, special parameters, and positional
parameters.

Shell Variables

A shell variable name must start with an alphabetic or underscore _ character, and can be
followed by any number of alphanumeric or underscore characters. Shell variables can be
assigned values on the command line by writing:

variable=value variable=value ...

Filename substitution is not performed on value.

Positional Parameters

Whenever a shell program is executed, the name of the program is assigned to the variable

$0 and the arguments typed on the command line to the variables $1, $2, ..., respectively.
Positional parameters can also be assigned values with the set command. Parameters 1 through
9 can be explicitly referenced. Parameters greater than 9 must be enclosed inside braces, as

in ${10}.

From the Library of shannon powell

Parameters and Variables 323

Special Parameters

Table A.1 summarizes the special shell parameters.

Table A.1 Special Parameter Variables

Parameter Meaning

S# The number of arguments passed to the program; or the number of param-
eters set by executing the set statement.

S* Collectively references all the positional parameters as 31, $2,

Se Same as $*, except when double-quoted ("se") collectively references all the
positional parameters as "s1", "$2" ,

S0 The name of the program being executed.

$S The process ID of the program being executed.

St The process ID of the last program sent to the background for execution.

$? The exit status of the last command not executed in the background.

S- The current option flags in effect (see the set statement).

In addition to these parameters, the shell has some other variables that it uses. Table A.2
summarizes the more important of these variables.

Table A.2 Other Variables Used by the Shell

Variable Meaning

CDPATH The directories to be searched whenever cd is executed without a full path as
argument.

ENV The name of a file that the shell executes in the current environment when

started interactively.
FCEDIT The editor used by fc. If not set, ed is used.

HISTFILE If set, specifies a file to be used to store the command history. If not set or if
the file isn’t writable, $HOME/ . sh_history is used.

HISTSIZE If set, specifies the number of previously entered commands accessible for
editing. The default value is at least 128.

HOME The user’'s home directory; the directory that cd changes to when no argument
is supplied.
IFS The internal field separator characters; used by the shell to delimit words

when parsing the command line, for the read and set commands, when
substituting the output from a back-quoted command, and when performing
parameter substitution. Normally, it contains the three characters: space,
horizontal tab, and newline.

From the Library of shannon powell

324

Appendix A Shell Summary

Variable Meaning

LINENO Set by the shell to the line number in the script it is executing. This value is
set before the line gets executed and starts at 1.

MAIL The name of a file that the shell periodically checks for the arrival of mail.
If new mail arrives, the shell displays a “You have mail” message. See also
MAILCHECK and MAILPATH.

MAILCHECK The number of seconds specifying how often the shell is to check for the
arrival of mail in the file in MAIL or in the files listed in MAILPATH. The default
is 600. A value of O causes the shell to check before displaying each com-
mand prompt.

MAILPATH A list of files to be checked for the arrival of mail. Each file is delimited by a
colon and can be followed by a percent sign $ and a message to be displayed
when mail arrives in the indicated file. (You have mail is often the default.)

PATH A colon-delimited list of directories to be searched when the shell needs to
find a command to be executed. The current directory is specified as : : or
: (if it heads or ends the list, : suffices).

PPID The process ID of the program that invoked this shell (that is, the parent pro-
cess).

PsS1 The primary command prompt, normally “$ ”

PS2 The secondary command prompt, normally “> ”

ps4 Prompt used during execution trace (-x option to shell or set -x). Default is
“p o

PWD Pathname of the current working directory.

Parameter Substitution

In the simplest case, the value of a parameter can be accessed by preceding the parameter with
a dollar sign $. Table A.3 summarizes the different types of parameter substitution that can be
performed. Parameter substitution is performed by the shell before filename substitution and
before the command line is divided into arguments.

The presence of the colon after parameter in Table A.3 indicates that parameter is to be
tested to see whether it’s set and non-null. Without the colon, a test is made to check whether
parameter is set only.

From the Library of shannon powell

Parameters and Variables 325

Table A.3 Parameter Substitution

Parameter Meaning

$parameter Or ${parameter} Substitute the value of parameter.

${parameter: -value} Substitute the value of parameter if it's set and non-null;
otherwise, substitute value.

${parameter-value} Substitute the value of parameter if it's set; otherwise,
substitute value.

${parameter:=value} Substitute the value of parameter if it's set and
non-null; otherwise, substitute value and also assign it to
parameter.

${parameter=value} Substitute the value of parameter if it's set; otherwise,

substitute value and also assign it to parameter.

${parameter:?value} Substitute the value of parameter if it's set and non-null;
otherwise, write value to standard error and exit. If value
is omitted, write parameter: parameter null or not
set instead.

${parameter?value} Substitute the value of parameter if it's set; otherwise,
write value to standard error and exit. If value is omitted,
write parameter: parameter null or not set

instead.

${parameter:+value} Substitute value if parameter is set and non-null;
otherwise, substitute null.

${parameter+value} Substitute value if parameter is set; otherwise, substitute
null.

${#parameter} Substitute the length of parameter. If parameter is * or

@, the result is not specified.

${parameter#pattern} Substitute the value of parameter with pattern removed
from the left side. The smallest portion of the contents of
parameter matching pattern is removed. Shell filename
substitution characters (*, ?, [. .. 1, !, and @) may be
used in pattern.

${parameter##pattern} Same as #pattern except the largest matching pattern
is removed.

${parameterspattern} Same as #pattern except pattern is removed from the
right side.

${parameter%sspattern} Same as ##pattern except the largest matching pattern

is removed from the right side.

From the Library of shannon powell

326

Appendix A Shell Summary

Command Re-entry

The shell keeps a history list of recently entered commands. The number of commands
available is determined by the HISTSIZE variable (default is typically 128), and the file

in which the history is kept is determined by the HISTFILE variable (default is $HOME/
.sh_history). Because the command history is stored in a file, these commands are available
after you log off and back on.

There are three ways you can access the command history.

The £c Command

The built-in command fc allows you to run an editor on one or more commands in the
command history. When the edited command is written and you leave the editor, the edited
version of the command is then executed. The editor is determined by the FCEDIT variable
(default ed). The -e option may be used with fc to specify the editor rather than FCEDIT.

The -s option causes commands to be executed without first invoking an editor. A simple
editing capability is built in to the fc¢ -s command; an argument of the form

old=new

may be used to change the first occurrence of the string old to the string new in the
command(s) to be re-executed.

vi Line Edit Mode

The shell has a vi editor compatible edit mode. When vi mode is turned on, you are placed

in a state that duplicates vi’s input mode. You can press the ESC key to be placed in edit mode,
at which point most vi commands will be properly interpreted by the shell. The current
command line can be edited, as can any of the lines in the command history. Pressing Enter at
any point in either command or input mode causes the command being edited to be executed.

Table A.4 lists all the editing commands in vi mode. Note: [count] is an integer and can be
omitted.

Table A.4 vi Editing Commands

Input Mode Commands

Command Meaning

erase (Erase character, usually Ctrl+h or #); delete previous character.

Ctrl+w Delete the previous blank-separated word.

kill (Line kill character, normally Ctri+u or @); delete the entire current line.

eof (End-of-file character, normally Ctrl+d); terminate the shell if the current line
is empty.

From the Library of shannon powell

Command Re-entry 327

Ctrl+v Quote next character; editing characters and the erase and kill characters
may be entered in a command line or in a search string if preceded by a
Ctrl+v.

Enter Execute the current line.

ESC Enter edit mode.

Edit Mode Commands

Command Meaning

[count]k Get previous command from history.

[count] - Get previous command from history.

[count]j Get next command from history.

[count] + Get next command from history.

[count] G Get the command number count from history; the default is the oldest

stored command.

/string Search history for the most recent command containing string; if string
is null, the previous string will be used (string is terminated by an Enter
or a Ctrl+j); if string begins with *, search for line beginning with string.

?string Same as / except that the search will be for the least recent command.
n Repeat the last / or ? command.
N Repeat the last / or ? command but reverse the direction of the search.

[count]l or

[count]space Move cursor right one character.

[count]w Move cursor right one alphanumeric word.
[count]w Move cursor right to next blank-separated word.
[count]e Move cursor to end of word.

[count] E Move cursor to end of current blank-separated word.
[count]h Move cursor left one character.

[count]b Move cursor left one word.

[count]B Move cursor left to previous blank-separated word.
0 Move cursor to start of line.

A

Move cursor to first nonblank character.

$ Move cursor to end of line.

[count] | Move cursor to column count; 1 is default.
[count] fc Move cursor right to character c.

[count] Fc Move cursor left to character c.

From the Library of shannon powell

328

Appendix A Shell Summary

Command

Meaning

[count]ltc
[count] Tc
i
,
a

A

[count]c motion

C
S

[count]d motion

D
i
I
[count] P
[countl]lp

[count]ly motion

Y

R
[count]rc
[count]x
[count]X
[count] .

[count]

Same as fc followed by h.

Same as Fc followed by 1.

Repeats the last £, F, t, or T command.

Reverse of ;.

Enter input mode and enter text after the current character.
Append text to the end of the line; same as $a.

Delete current character through character specified by motion and enter
input mode; if motion is c, the entire line is deleted.

Delete current character through end of line and enter input mode.
Same as cc.

Delete current character through the character specified by motion; if
motion is d, the entire line is deleted.

Delete current character through the end of line; same as ds.
Enter input mode and insert text before the current character.
Enter input mode and insert text before the first word on the line.
Place the previous text modification before the cursor.

Place the previous text modification after the cursor.

Copy current character through character specified by mot ion into buffer
used by p and p; if motion is vy, the entire line is copied.

Copy current character through the end of line; same as y$.
Enter input mode and overwrite characters on the line.

Replace the current character with c.

Delete current character.

Delete preceding character.

Repeat the previous text modification command.

Invert the case of the current character and advance the cursor.

Append the count word from the previous command and enter input mode;
the last word is the default.

Attempt filename generation on the current word; if a match is found,
replace the current word with the match and enter input mode.

List files that begin with current word.

From the Library of shannon powell

Quoting 329

\ Complete pathname of current word; if current word is a directory, append a
/; if current word is a file, append a space.

u Undo the last text modification command.

) Restore the current line to its original state.

@letter Soft function key—if an alias of the name _Ietter is defined, its value will
be executed.

[count]v Executes vi editor on line count; if count is omitted, the current line is used.

Ctri+l Linefeed and print current line.

L Reprint the current line.

Ctrl+j Execute the current line.

Ctrl+m Execute the current line.

Enter Execute the current line.

Insert a # at the beginning of the line and enter the line into the command

history (same as I#Enter).

Quoting

Four different types of quoting mechanisms are recognized, as summarized in Table A.5.

Table A.5 Summary of Quotes

Quote Description

L Removes special meaning of all enclosed characters.

"L Removes special meaning of all enclosed characters except s, ',

and \.
\¢c Removes special meaning of character ¢ that follows; inside double
quotes removes special meaning of $, ', ", newline, and \ that follows,

but is otherwise not interpreted; used for line continuation if it appears
as last character on line (newline is removed).

' command' Or Executes command and inserts standard output at that point.

$ (command)

Tilde Substitution

Each word and shell variable on a command line is checked to see whether it begins with an
unquoted ~. If it does, the rest of the word or variable up to a / is considered a login name and
is looked up in a system file, typically /etc/passwd. If that user exists, their home directory
replaces the ~ and the login name. If that user doesn’t exist, the text is unchanged. A ~ by itself
or followed by a / is replaced by the HOME variable.

From the Library of shannon powell

330

Appendix A Shell Summary

Arithmetic Expressions

General Format: $ ((expression))

The shell evaluates the integer arithmetic expression. expression can contain constants,
shell variables (which don’t have to be preceded by dollar signs), and operators. The operators,

in order of decreasing precedence, are

&
~
&&
expr, ? expr, : expr,
=, *=, /=, %=
+=, <<=, >>=,
A
&=, "=, |=

unary minus

bitwise NOT

logical negation
multiplication, division, remainder
addition, subtraction
left shift, right shift
comparison

equal, not equal
bitwise AND

bitwise exclusive OR
bitwise OR

logical AND

logical OR

conditional operator

assignment

Parentheses may be used to override operator precedence.

The exit status is zero (true) if the last expression is nonzero and one (false) if the last

expression is zero.

The C operators sizeof, ++, and -- may be available in your shell implementation but are not
required by the standard. Check by typing sizeof and see what happens.

Examples

y=$((22 * 33))
z=$((y *y / (y - 1))

From the Library of shannon powell

1/0 Redirection 331

Filename Substitution

After parameter substitution and command substitution are performed on the command line,
the shell looks for the special characters *, ?, and [. If they're not quoted, the shell searches the
current directory, or another directory if preceded by a /, and substitutes the names of all files
that match. If no match is found, the characters remain untouched.

Note that filenames beginning with a . must be explicitly matched (in other words, echo *
won't display your hidden files but echo . * will).

The filename substitution characters are summarized in Table A.6.

Table A.6 Filename Substitution Characters

Character(s) Meaning

? Matches any single character.
* Matches zero or more characters.
[chars] Matches any single character in chars; the format ¢, -c, can be used to match

any character in the range ¢, through c,, inclusive (for example, [A-Z] matches
any uppercase letter).

[!chars] Matches any single character not in chars; a range of characters may be specified
as above.

/0 Redirection

When scanning the command line, the shell looks for the special redirection characters < and >.
If found, they are processed and removed (with any associated arguments) from the command
line. Table A.7 summarizes the different types of I/O redirection that the shell supports.

Table A.7 1/0 Redirection

Construct Meaning

< file Redirect standard input from file.

> file Redirect standard output to file; file is created if it doesn’t exist and zeroed if
it does.

>| file Redirect standard output to file; file is created if it doesn’t exist and zeroed if

it does; the noclobber (-C) option to set is ignored.
>> file Like >, except that output is appended to file if it already exists.

<< word Redirect standard input from lines that follow up until a line containing just
word; parameter substitution occurs on the lines, and back-quoted commands
are executed and the backslash character interpreted; if any character in word
is quoted, none of this processing occurs and the lines are passed through
unaltered; if word is preceded by a -, leading tabs on the lines are removed.

<& digit Standard input is redirected from the file associated with file descriptor digit.

From the Library of shannon powell

332 Appendix A Shell Summary

Construct Meaning

>& digit Standard output is redirected to the file associated with file descriptor digit.
<&- Standard input is closed.

>&- Standard output is closed.

<> file Open file for both reading and writing.

Note that filename substitution is not performed on f£ile. Any of the constructs listed in the
first column of the table may be preceded by a file descriptor number to have the same effect
on the file associated with that file descriptor.

The file descriptor O is associated with standard input, 1 with standard output, and 2 with
standard error.

Exported Variables and Subshell Execution

Commands other than the shell’s built-in commands are normally executed in a new
instantiation of the shell called a subshell. Subshells cannot change the values of variables
in the parent shell, and they can only access variables from the parent shell that were
exported—either implicitly or explicitly—by the parent. If the subshell changes the value of
one of these variables and wants to have its own subshells know about it, it must explicitly
export the variable before executing the subshell.

When the subshell finishes execution, any variables that it may have set are inaccessible by
the parent.

The (...) Construct

If one or more commands are placed inside parentheses, those commands will be executed in
a subshell.

The { ..; } Construct

If one or more commands are placed inside curly braces, those commands will be executed by
the current shell.

With this construct and the (...) construct, I/O can be redirected and piped into and out of the
set of enclosed commands, and the set can be sent to the background for execution by placing
an & at the end. For example,

(progl; prog2; prog3) 2>errors &

submits the three listed programs to the background for execution, with standard error from all
three programs redirected to the file errors.

From the Library of shannon powell

Job Control 333

More on Shell Variables

A shell variable can be placed into the environment of a command by preceding the command
name with the assignment to the parameter on the command line, as in

PHONEBOOK=$HOME /misc/phone rolo

Here the variable PHONEBOOK will be assigned the indicated value and then placed in rolo’s
environment. The environment of the current shell remains unchanged, as if

(PHONEBOOK=$HOME /misc/phone; export PHONE BOOK; rolo)

had been executed instead.

Functions

Functions take the following form:

name () compound-command

where compound-command is a set of commands enclosed in (...), {...} or can be a for, case,
until, or while command. Most often, the function definition takes this form:

name () { command; command; ...command; }

where name is the name of the function defined to the current shell (functions can’t be
exported). The function definition can span as many lines as needed. A return command can
be used to cause execution of the function to be terminated without also terminating the shell
(see the return command description).

For example,

nf () { 1s | we -1; }

defines a function called nf to count the number of files in your current directory.

Job Control
Shell Jobs

Every command sequence run in the background is assigned a job number, starting at one.
A job can be referenced by a job_id, which is a % followed by the job number, %+, %-, %%, %
followed by the first few letters of the pipeline, or $?string.

The following built-in commands can be given a job_id as an argument: kill, fg, bg, and wait.
The special conventions %+ and %- refer to the current and previous jobs, respectively; %% also
refers to the current job. The current job is the most recent job placed in the background or the
job running in the foreground. The convention %string refers to the job whose name begins
with string; $?string refers to the job whose name contains string. The jobs command
may be used to list the status of all currently running jobs.

From the Library of shannon powell

334 Appendix A Shell Summary

If the monitor option of the set command is turned on, the shell prints a message when each
job finishes. If you still have jobs when you try to exit the shell, a message is printed to alert
you of this. If you immediately try to exit again, the shell exits. The monitor option is enabled
by default for interactive shells.

Stopping Jobs

If the shell is running on a system with job control, and the monitor option of the set
command is enabled, jobs that are running in the foreground may be placed in the background
and vice versa. Normally, Ctrl+z stops the current job and the bg command puts a stopped job
in the background. The £g command brings a background or stopped job to the foreground.

Whenever a job in the background attempts to read from the terminal, it is stopped until it is
brought to the foreground. Output from background jobs normally comes to the terminal. If
stty tostop is executed, output from background jobs is disabled, and a job writing to the
terminal is stopped until it is brought to the foreground. When the shell exits, all stopped jobs
are killed.

Command Summary

This section summarizes the shell’s built-in commands. Actually, some of these commands
(such as echo and test) may not be built in to the shell or might have a streamlined version
built-in and a more sophisticated version as a separate program. In all cases, these functions
must be provided as a utility by a POSIX-compliant system. They are built in to Bash and the
Korn shell and are used in almost all shell scripts.

The : Command

General Format: :

This is essentially a null command. It is frequently used to satisfy the requirement that a
command appear.

Example

if who | grep jack > /dev/null ; then

else
echo "jack's not logged in"
fi

The : command returns an exit status of zero.

The . Command

General Format: . file

From the Library of shannon powell

Command Summary 335

The “dot” command causes the indicated file to be read and executed by the shell, just as if
the lines from the file were typed at that point. Note that £ile does not have to be executable,
only readable. Also, the shell uses the PATH variable to find file.

Example

. progdefs Execute commands in progdefs

The preceding command causes the shell to search the current PATH for the file progdefs.
When it finds it, it reads and executes the commands from the file.

Note that because £ile is not executed by a subshell, variables set and/or changed within file
remain in effect after execution of the commands in file is complete.

The alias Command

General Format: alias name=string [name=string ...]

The alias command assigns string to the alias name. Whenever name is used as a command,
the shell substitutes string, performing command-line substitution after string is in place.

Examples

alias 11='1s -1
alias dir='basename $ (pwd)'

If an alias ends with a blank, the word following the alias is also checked to see whether it’s an
alias.

The format

alias name
causes the alias for name to be printed out.
alias with no arguments lists all aliases.

alias returns an exit status of zero unless a name is given (as in alias name) for which no
alias has been defined.

The bg Command

General Format: bg job id

If job control is enabled, the job identified by job idis put into the background. If no
argument is given, the most recently suspended job is put into the background.

Example

bg %2

From the Library of shannon powell

336

Appendix A Shell Summary

The break Command

General Format: break

Execution of this command causes execution of the innermost for, while, or until loop to be
immediately terminated. Execution continues with the commands that immediately follow the
loop.

If the format

break n

is used, execution of the n innermost loops is automatically terminated.

The case Command
General Format:

case value in
pat,) command
command

command; ;
pat,) command
command

command; ;

pat,) command
command

command; ;
esac

The word value is successively compared against pat,, pat,, ..., pat, until a match is found.
The commands that appear immediately after the matching pattern are then executed until a
double semicolon (; ;) is encountered. At that point, execution of the case is terminated.

If no pattern matches value, none of the commands inside the case are executed. The pattern
* matches anything and is often used as the last pattern in a case as the default or “catch-all”
case.

The shell metacharacters

* (match zero or more characters),

? (match any single character), and

[...] (match any single character enclosed between the brackets)

can be used in patterns. The character | can be used to specify a logical ORing of two patterns,
as in

From the Library of shannon powell

Command Summary 337

pat,| pat,
which means to match either pat, or pat..

Examples

case $1 in

-1) lopt=TRUE;;
-w) wopt=TRUE; ;
-c) copt=TRUE; ;
*) echo "Unknown option";;

esac
case S$choice in
[1-9]) valid=TRUE;;
*) echo "Please choose a number from 1-9";;
esac

The ¢d Command

General Format: cd directory

Execution of this command causes the shell to make directory the current directory. If
directory is omitted, the shell makes the directory specified in the HOME variable the current
directory.

If the shell variable CDPATH is null, directory must be a full directory path (for example,
/users/steve/documents) or specified relative to the current directory (for example,
documents oOr .. /pat).

If cDPATH is non-null and directory is not a full path, the shell searches the colon-delimited
directory list in CDPATH for a directory containing directory.

Examples
$ cd documents/memos Change to documents/memos directory
$ cd Change to HOME directory

An argument of - causes the shell to move the user back to the previous directory.
The pathname of the new current directory is printed out.

Examples

$ pwd
/usr/lib/uucp
$ cd/

S ed -
/usr/lib/uucp
$

The cd command sets the shell variable pPwD to the new current directory, and oLDPWD to the
previous directory.

From the Library of shannon powell

338 Appendix A Shell Summary

The continue Command

General Format: continue

Execution of this command from within a for, while, or until loop causes any commands
that follow the continue to be skipped. Execution of the loop then continues as normal.

If the format

continue n

is used, the commands within the n innermost loops are skipped. Execution of the loops then
continues as normal.

The echo Command

General Format: echo args

This command causes args to be written to standard output. Each word from args is delimited
by a blank space. A newline character is written at the end. If args is omitted, the effect is to
simply skip a line.

Certain backslashed characters have a special meaning to echo as shown in Table A.8.

Table A.8 echo Escape Characters

Character Prints

\a Alert

\b Backspace

\c The line without a terminating newline
\f Formfeed

\n Newline

\r Carriage return

Tab character

\v Vertical tab character
AR Backslash character
\0nnn The character whose ASCII value is nnn, where nnn is a one- to

three-digit octal number that starts with a zero

Remember to quote these characters so that the echo command, rather than the shell,
interprets them.

From the Library of shannon powell

Command Summary 339

Examples

$ echo * List all files in the current directory

bin docs mail mise src

$ echo Skip a line

$ echo 'X\ty' Print X and Y, separated by a tab

X Y

$ echo "\n\nSales Report" Skip two lines before displaying Sales Report

Sales Report

$ echo "Wake up!!\a" Print message and beep terminal
Wake up!!

$

The eval Command

General Format: eval args

Execution of this command causes the shell to evaluate args and then execute the results.
This is useful for causing the shell to effectively “double-scan” a command line.

Example

$ x='abc def'

$ y="'$x" Assign $x toy
$ echo $y

Sx

$ eval echo $y

abc def

$

The exec Command

General Format: exec command args

When the shell executes the exec command, it initiates execution of the specified command
with the indicated arguments. Unlike other commands, command replaces the current process
(that is, no new process is created). After command starts execution, there is no return to the
program that initiated the exec.

If just I/O redirection is specified, the input and/or output for the shell is accordingly
redirected.

Examples
exec /bin/sh Replace current process with sh
exec < datafile Reassign standard input to datafile

From the Library of shannon powell

340 Appendix A Shell Summary

The exit Command

General Format: exit n

Execution of exit causes the current shell program to be immediately terminated. The
exit status of the program is the value of the integer n, if supplied. If n is not supplied, the exit
status is that of the last command executed prior to the exit.

An exit status of zero is used to indicate success, and non-zero to indicate failure (such as an
error condition). This convention is used by the shell in evaluation of conditions for if, while,
and until commands, and with the && and || constructs.

Examples

who | grep $user > /dev/null

exit Exit with status of last grep

exit 1 Exit with status of 1

if finduser If £induser returns an exit status of zero then...
then

fi

Note that executing exit directly from a login shell has the effect of logging you off.

The export Command

General Format: export variables

The export command tells the shell that the indicated variables are to be marked as exported;
that is, their values are to be passed down to subshells.

Examples

export PATH PS1
export dbhome x1 yl date

Variables may be set when exported using the form
export variable=value. ..
So lines such as

PATH=$PATH: $HOME/bin; export PATH
CDPATH=. : SHOME: /usr/spool/uucppublic; export CDPATH

can be rewritten as

export PATH=$PATH:$HOME/bin CDPATH=. :$HOME:/usr/spool/uucppublic

The output of export with a -p argument is a list of the exported variables and their values in
the form

export variable=value

or

From the Library of shannon powell

Command Summary 341

export variable

if variable has been exported but does not yet have its value set.

The false Command

General Format: false

The false command returns a nonzero exit status.

The £c Command

General Format: fc -e editor -lnr first last
fc -s old=new first

The £c command is used to edit commands in the command history. A range of commands

is specified from first to last, where first and last can be either command numbers or
strings; a negative number is taken as an offset from the current command number, while a
string specifies the most recently entered command beginning with that string. The commands
are read into the editor and executed upon exit from the editor. If no editor is specified, the
value of the shell variable FCEDIT is used; if FCEDIT is not set, ed is used.

The -1 option lists the commands from first to last (that is, an editor is not invoked). If the
-n option is also selected, these commands are not preceded by command numbers.

The -r option to fc reverses the order of the commands.

If 1ast is not specified, it defaults to first. If first is also not specified, it defaults to the
previous command for editing and to -16 for listing.

The -s option causes the selected command to be executed without editing it first. The format
fc -s old=new first

causes the command first to be re-executed after the string o1d in the command is replaced

with new. If first isn’t specified, the previous command is used, and if ol1d=new isn’t specified,
the command is not changed.

Examples

fc -1 List the last 16 commands

fc -e vi sed Read the last sed command into vi

fc 100 110 Read commands 100 to 110 into $SFCEDIT

fc -s Re-execute the previous command

fc -s abc=def 104 Re-execute command 104, replacing abc with def

From the Library of shannon powell

342 Appendix A Shell Summary

The £g Command
General Format: £g job id
If job control is enabled, the job specified by job id is brought to the foreground. If no

argument is given, the most recently suspended job or the job last sent to the background is
brought to the foreground.

Example

fg %2

The for Command
General Format:

for var in word, word, ... word,
do

command

command

done

Execution of this command causes the commands enclosed between the do and done to be
executed as many times as there are words listed after the in.

The first time through the loop, the first word—word,—is assigned to the variable var and the
commands between the do and done executed. The second time through the loop, the second
word listed—word,—is assigned to var and the commands in the loop executed again.

This process continues until the last variable in the list—word,—is assigned to var and the
commands between the do and done executed. At that point, execution of the for loop is
terminated. Execution then continues with the command that immediately follows the done.

The special format

for var
do

done
indicates that the positional parameters “s1”, “$2”, ... are to be used in the list and is
equivalent to

for var in "se@"
do

done

Example

nroff all of the files in the current directory
for file in *

From the Library of shannon powell

Command Summary 343

do
nroff -Tlp $file | 1p
done

The getopts Command

General Format: getopts options var

This command processes command-line arguments. options is a list of valid single letter
options. If any letter in options is followed by a :, that option requires an additional argu-
ment on the command line which must be separated from the option by at least one space.

Each time getopts is called, it processes the next command-line argument. If a valid option is
found, getopts stores the matching option letter inside the specified variable var and returns
a zero exit status.

If an invalid option is specified (one not listed in options), getopts stores a ? inside var and
returns with a zero exit status. It also writes an error message to standard error.

If an option takes an argument, getopts stores the matching option letter inside var and
stores the command-line argument inside the special variable OPTARG. If no arguments are left
on the command line, getopts sets var to ? and writes an error message to standard error.

If no more options remain on the command line (if the next command-line argument does not
begin with a -), getopts returns a nonzero exit status.

The special variable OPTIND is also used by getopts. It is initially set to 1 and is adjusted
each time getopts returns to indicate the number of the next command-line argument to be
processed.

The argument - - can be placed on the command line to specify the end of the command-line
arguments.

getopts supports stacked arguments, as in

repx -iau

which is equivalent to

repx -1 -a -u

Options that have required arguments may not be stacked.

If the format

getopts options var args

is used, getopts parses the arguments specified by args rather than the command-line
arguments.

Example

usage="Usage: foo [-r] [-O0 outfile] infile"

while getopts ro: opt

From the Library of shannon powell

344 Appendix A Shell Summary

do
case "sopt"
in
r) rflag=1;;
0) oflag=1
0file=SOPTARG; ;
\?) echo "$usage"
exit 1;;
esac
done

if [$OPTIND -gt S$#]

then
echo "Needs input file!"
echo "Susage"
exit 2

fi

shift $((OPTIND - 1))
ifile=$1

The hash Command

General Format: hash commands

This command tells the shell to look for the specified commands and to remember what
directories they are located in. If commands is not specified, a list of the hashed commands is
displayed.

If the format

hash -r

is used, the shell removes all commands from its hash list. Next time any command is
executed, the shell uses its normal search methods to find the command.

Examples

hash rolo whog Add rolo and whoq to hash list
hash Print hash list

hash -r Remove hash list

The if Command
General Format:

if command,
then

From the Library of shannon powell

Command Summary 345

command
command

fi
command, is executed and its exit status tested. If it is zero, the commands that follow up to the
£i are executed. Otherwise, the commands that follow up to the £i are skipped.

Example
if grep $sys sysnames > /dev/null
then
echo "$sys is a valid system name"
fi

If the grep returns an exit status of zero (which it will if it finds $sys in the file sysnames), the
echo command is executed; otherwise it is skipped.

The built-in command test is often used as the command following the if, either by explic-
itly calling test or using its mnemonic shortcut [, the latter of which requires a matching].

Example

if [$# -eq 0] ; then
echo "Usage: $0 [-1] file ..."
exit 1

fi

An else clause can be added to the if to be executed if the command returns a nonzero exit
status. In this case, the general format of the if becomes

if command,

then
command
command
else
command
command
fi

If command, returns an exit status of zero, the commands that follow up to the else are
executed, and the commands between the else and the £i are skipped. Otherwise, command,
returns a nonzero exit status and the commands between the then and the else are skipped,
and the commands between the else and the £i are executed.

Example
if [-z "$line"]
then

echo "I couldn't find S$name"

From the Library of shannon powell

346

Appendix A Shell Summary

else
echo "$line"
fi

In the preceding example, if 1ine has zero length, the echo command that displays the
message I couldn't find $name is executed; otherwise, the echo command that displays the

value of 1ine is executed.

A final format of the if command is useful when more than a two-way decision has to be

made. Its general format is

if command,
then
command
command

elif command,
then
command
command

elif command,
then
command
command

else
command

command

fi

command,, command,, ..., command,, are evaluated in order until one of the commands returns
an exit status of zero, at which point the commands that immediately follow the then (up to
another elif, else, or £1i) are executed. If none of the commands returns an exit status of

zero, the commands listed after the else (if present) are executed.

Example

if ["$choice" = a] ;
add s$*

elif ["Schoice" = d]
delete $*

elif ["$choice" =1]
list

else

echo "Bad choice!"

error=TRUE
fi

From the Library of shannon powell

Command Summary 347

The jobs Command

General Format: jobs

The list of active jobs is printed. If the -1 option is specified, detailed information about each
job, including its process ID, is listed as well. If the -p option is specified, only process IDs are
listed.

If an optional job_id is supplied to the jobs command, just information about that job is listed.

Example

$ sleep 100 &

[1] 1104

$ jobs

[1] + Running sleep 100 &
$

The k111 Command

General Format: kill -signal job

The kill command sends the signal signal to the specified process, where job is a process ID
or job_id, and signal is a number or one of the signal names specified in <signal.h> (see the
description of trap later in the chapter). ki1l -1 lists these names. A signal number supplied
with the -1 option lists the corresponding signal name. A process ID used with the -1 option
lists the name of the signal that terminated the specified process (if it was terminated by a
signal).

The -s option can also be used when a signal name is supplied, in which case the dash before
the name is not used (see the following example).

If signal isn't specified, SIGTERM (TERM) is used.

Examples

kill -9 1234

kill -HUP %2 3456
kill -s TERM %2
kill %1

Note that more than one process ID can be supplied to the ki1l command on the command
line.

The newgrp Command

General Format: newgrp group

This command changes your real group id (GID) to group. If no argument is specified, it
changes you back to your default group.

From the Library of shannon powell

348 Appendix A Shell Summary

Examples
newgrp shbook Change to group shbook
newgrp Change back to default group

If a password is associated with the new group, and you are not listed as a member of the
group, you will be prompted to enter it.

newgrp -1 changes you back to your login group.

The pwd Command

General Format: pwd

This command tells the shell to print your working directory, which is written to standard
output.

Examples

$ pwd
/users/steve/documents/memos
S cd

$ pwd

/users/steve

$

The read Command

General Format: read vars

This command causes the shell to read a line from standard input and assign successive
whitespace-delimited words from the line to the variables vars. If fewer variables are listed
than there are words on the line, the additional words are stored in the last variable.

Specifying just one variable has the effect of reading and assigning an entire line to the
variable.

The exit status of read is zero unless an end-of-file condition is encountered.

Examples

S read hours mins

10 19

$ echo "$hours:$mins"

10:19

S read num rest

39 East 12th Street, New York City 10003
$ echo "$num\n$rest"

39

East 12th Street, New York City 10003

From the Library of shannon powell

Command Summary 349

$ read line

Here is an entire line \r
$ echo "$line"
Here is an entire line r

$

Note in the final example that any leading whitespace characters get “eaten” by the shell when
read. You can change IFs if this poses a problem.

Also note that backslash characters get interpreted by the shell when you read the line, and any
that make it through (double backslashes will get through as a single backslash) get interpreted
by echo if you display the value of the variable.

A -r option to read says to not treat a \ character at the end of a line as line continuation.

The readonly Command

General Format: readonly vars

This command tells the shell that the listed variables cannot be assigned values. These variables
may be optionally assigned values on the readonly command line. If you subsequently try to
assign a value to a readonly variable, the shell issues an error message.

readonly variables are useful for ensuring that you don’t accidentally overwrite the value

of a variable. They’re also good for ensuring that other people using a shell program can’t
change the values of particular variables (for example, their HOME directory or their PATH). The
readonly attribute is not passed down to subshells.

readonly with a -p option prints a list of your readonly variables.

Example

$ readonly DB=/users/steve/database Assign value to DB and make it readonly
$ DB=foo Try to assign it a value

sh: DB: is read-only Error message from the shell

$ echo $DB But can still access its value
/users/steve/database

$

The return Command

General Format: return n

This command causes the shell to stop execution of the current function and immediately
return to the caller with an exit status of n. If n is omitted, the exit status returned is that of the
command executed immediately prior to the return.

From the Library of shannon powell

350

Appendix A Shell Summary

The set Command

General Format: set options args

This command is used to turn on or off options as specified by options. It is also used to set
positional parameters, as specified by args.

Each single letter option in options is enabled if the option is preceded by a minus sign -, or
disabled if preceded by a plus sign +. Options can be grouped, as in

set -fx
which enables the £ and x options.

Table A.9 summarizes the options that can be selected.

Table A.9 set Options

Meaning Option

-- Don’t treat subsequent args preceded by a - as options. If there are no
arguments, the positional parameters are unset.

-a Automatically export all variables that are subsequently defined or
modified.
-b If supported by the implementation, causes the shell to notify you when

background jobs finish.

-C Don’t allow output redirection to overwrite existing files. >| can still
be used to force individual files to be overwritten even if this option is
selected.

-e Exit if any command that gets executed fails or has a nonzero exit status.

-f Disable filename generation.

-h Add commands inside functions to the hash list as they are defined, and
not as they are executed.

-m Turn on the job monitor.

-n Read commands without executing them (useful for checking for balanced

do...dones, and if ... £is).

+0 Write current option mode settings in command format.

-o m Turn on option mode m (see Table A.10).

-u Issue an error if a variable is referenced without having been assigned a
value or if a positional parameter is referenced without having been set.

-v Print each shell command line as it is read.

-X Print each command and its arguments as it is executed, preceded by a +.

From the Library of shannon powell

Command Summary 351

Shell modes are turned on or off by using the -o and +o options, respectively, followed by an
option name. These options are summarized in Table A.10.

Table A.10 Shell Modes

Mode Meaning

allexport Same as -a.

errexit Same as -e.

ignoreeof The exit command must be used to leave the shell.
monitor Same as -m.

noclobber Same as -C.

noexec Same as -n.

noglob Same as -f.

nolog Don’t put function definitions in the history.
nounset Same as -u.

verbose Same as -v.

vi The in-line editor is set to vi.

xtrace Same as -x.

The command set -o without any options has the effect of listing all shell modes and their
current settings.

The shell variable $- contains the current options setting.

Each word listed in args is set to the positional parameters $1, $2, ..., respectively. If the
first word might start with a minus sign, it’s safer to specify the -- option to set to avoid
interpretation of that value.

If args is supplied, the variable $# will be set to the number of parameters assigned after
execution of the command.

Examples
set -vx
set "S$name" "S$address" "S$phone"

set
set
set

-
-o vi

+0 verbose -o noglob

Print all command lines as they are read,
and each command and its arguments as
it is executed

Set $1 to $name, $2 to $address, and $3 to
$phone

Set $1 to -1
Turn on vi mode
Turn verbose mode off, noglob on

From the Library of shannon powell

352

Appendix A Shell Summary

The shift Command

General Format: shift

This command causes the positional parameters $1, $2, ..., $n to be “shifted left” one place.
That is, $2 is assigned to $1, $3 to $2, ..., and $n to $n-1. $# is adjusted accordingly.
If the format

shift n
is used instead, the shift is to the left n places.

Examples

set abcd
echo "$#\ng*"

bcd
shift
echo "$#\ng*"

cd
shift 2
echo "$#\ng*"

“r QR W OOW ! @

The test Command
General Format:

test condition

or

[condition]

The shell evaluates condition and if the result of the evaluation is TRUE, returns a zero exit
status. If the result of the evaluation is FALSE, a nonzero exit status is returned. If the format
[condition] is used, a space must appear immediately after the [and before the].

condition is composed of one or more operators as shown in Table A.11. The -a operator
has higher precedence than the -o operator. In any case, parentheses can be used to group
subexpressions. Just remember that the parentheses are significant to the shell and so must
be quoted. Operators and operands (including parentheses) must be delimited by one or more
spaces so that test sees them as separate arguments.

test is most often used to test conditions in an if, while, or until command.

From the Library of shannon powell

Command Summary 353

Examples

see if perms is executable

if test -x /etc/perms
then

fi
see if it's a directory or a normal file that's readable

if [-d $file -o \(-f $file -a -r $file \) 1
then

fi

Table A.11 test Operators

Operator Returns TRUE (zero exit status) if

File Operators

-b file file is a block special file

-c file file is a character special file

-d file file is a directory

-e file file exists

-f file file is an ordinary file

-g file file has its set group id (SGID) bit set
-h file file is a symbolic link

-k file file has its sticky bit set

-L file file is a symbolic link

-p file file is a named pipe

-r file file is readable by the process

-s file file is a socket

-s file file has nonzero length

-t fd £d is an open file descriptor associated with a terminal (1 is default)
-u file file has its set user id (SUID) bit set
-w file file is writable by the process

-x file file is executable

From the Library of shannon powell

354

Appendix A Shell Summary

Operator Returns TRUE (zero exit status) if

String Operators

string string is not null

-n string string is not null (and string must be seen by test)
-z string stringis null (and string must be seen by test)
string, = string, string, is identical to string,

string, != string, string, is not identical to string,

Integer Comparison Operators

int, -eq int, int, is equal to int,

int, -ge int, int, is greater than or equal to int,
int, -gt int, int, is greater than int,

int, -le int, int, is less than or equal to int,
int, -1t int, int, is less than int,

int, -ne int, int, is not equal to int,

Boolean Operators

| expr expr is FALSE; otherwise, returns TRUE
expr, -a expr, expr, is TRUE, and expr, is TRUE
expr, -o expr, expr, is TRUE, or expr, is TRUE

The times Command

General Format: times

Execution of this command causes the shell to write to standard output the total amount of
time that has been used by the shell and by all its child processes. For each, two numbers are
listed: first the accumulated user time and then the accumulated system time.

Note that times does not report the time used by built-in commands.

Example

$ times Print time used by processes

1m5s 2m9s 1 min., 5 secs. user time, 2 mins., 9 secs. system time
8m22.23s 6m22.01s Time used by child processes

$

From the Library of shannon powell

Command Summary 355

The trap Command

General Format: trap commands signals

This command tells the shell to execute commands whenever it receives one of the signals listed
in signals. The listed signals can be specified by name or number.

trap with no arguments prints a list of the current trap assignments.

If the first argument is the null string, as in

trap "" signals
the signals in signals are ignored when received by the shell.

If the format

trap signals
is used, processing of each signal listed in signals is reset to the default action.

Examples

trap "echo hangup >> $ERRFILE; exit" HUP Log message and exit on hangup

trap "rm $TMPFILE; exit" 1 2 15 remove $TMPFILE on signals 1, 2, or 15
trap "" 2 Ignore interrupts
trap 2 Reset default processing of interrupts

Table A.12 lists values that can be specified in the signal list.

Table A.12 Signal Numbers and Names for trap

Signal # Signal Name Generated for

0 EXIT Exit from the shell

1 HUP Hangup

2 INT Interrupt (for example, Delete key, Ctri+c)

3 QUIT Quit

6 ABRT Abort

9 KILL Kill

14 ALRM Alarm timeout

15 TERM Software termination signal (sent by ki11 by default)

The shell scans commands when the trap command is encountered and again when one of
the listed signals is received. This means, for example, that when the shell encounters the
command

trap "echo S$Scount lines processed >> SLOGFILE; exit" HUP INT TERM

From the Library of shannon powell

356 Appendix A Shell Summary

it substitutes the value of count at that point, and not when one of the signals is received. You can
get the value of count substituted when one of the signals is received if you instead enclose
the commands in single quotes:

trap 'echo $count lines processed >> SLOGFILE; exit' HUP INT TERM

The true Command

General Format: true

This command returns a zero exit status.

The type Command

General Format: type commands
This command prints information about the indicated commands.

Examples

$ type troff echo
troff is /usr/bin/troff
echo is a shell builtin

$

The umask Command

General Format: umask mask

umask sets the default file creation mask to mask. Files that are subsequently created are ANDed
with this mask to determine the mode of the file.

umask with no arguments prints the current mask. The -s option says to produce symbolic

output.

Examples

$ umask Print current mask
0002 No write to others

$ umask 022 No write to group either
$

The unalias Command

General Format: unalias names

The aliases names are removed from the alias list. The -a option says to remove all aliases.

From the Library of shannon powell

Command Summary 357

The unset Command

General Format: unset names

This causes the shell to erase definitions of the variables or functions listed in names. Read-
only variables cannot be unset. The -v option to unset specifies that a variable name follows,
whereas the -f£ option specifies a function name. If neither option is used, it is assumed that
variable name(s) follow.

Example

unset dblist files Remove definitions of variables dblist and files

The until Command
General Format:

until command,
do
command
command

done

command, is executed and its exit status tested. If it is nonzero, the commands enclosed
between the do and done are executed. Then command, is executed again and its status tested.
If it is nonzero, the commands between the do and done are once again executed. Execution
of command, and subsequent execution of the commands between the do and done continues
until command, returns a zero exit status, at which point the loop is terminated. Execution then
continues with the command that follows the done.

Because command, gets evaluated immediately on entry into the loop, the commands between
the do and done may never be executed if the test returns a zero exit status the first time.

Example

sleep for 60 seconds until jack logs on
until who | grep jack > /dev/null
do
sleep 60
done

echo jack has logged on

The preceding loop continues until the grep returns a zero exit status (that is, finds jack in
who's output). At that point, the loop is terminated, and the echo command that follows is
executed.

From the Library of shannon powell

358 Appendix A Shell Summary

The wait Command

General Format: wait job
This command causes the shell to suspend its execution until the process identified as job
finishes executing. Job can be a process ID or a job_id. If job is not supplied, the shell waits for

all child processes to finish executing. If more than one process id is listed, wait will wait for
them all to complete.

wait is useful for waiting for processes to finish that have been sent to the background for

execution.

Example

sort large file > sorted file & sort in the background
R Continue processing

wait Now wait for sort to finish

plotdata sorted file

The variable $! can be used to obtain the process ID of the last process sent to the background.

The while Command
General Format:

while command,
do
command
command

done

command, is executed and its exit status tested. If it is zero, the commands enclosed between
the do and done are executed. Then command, is executed again and its status tested. If it is
zero, the commands between the do and done are once again executed. Execution of command,
and subsequent execution of the commands between the do and done continues until
command, returns a non-zero exit status, at which point the loop is terminated. Execution then
continues with the command that follows the done.

Note that because command, gets evaluated immediately on entry into the loop, the commands
between the do and done may never be executed if the test returns a non-zero exit status the
first time.

Example

£fi1ll up the rest of the buffer with blank lines

while [$lines -le Smaxlines]
do
echo >> $BUFFER
lines=$((lines + 1))
done

From the Library of shannon powell

B

For More Information

Many sources of information on Unix, Linux and the Mac OS X command line are available,
but we have selected titles and Web sites of particular value to shell programmers. All Web sites
and URLs are valid as of the publication of this book, but as is often the case on the Internet,
some may not be available by the time you read this.

There is one reference that you cannot do without. This is the built-in documentation for
your particular system, which offers detailed descriptions of the syntax and various options for
each command.

Online Documentation

If a printed version of your system’s documentation isn’t available, you can use the man
command to get information (referred to as the “man pages”) about any specific Unix
command. The format is

man command

Not sure of the command name? man -k can help you identify the specific Linux or Unix
command you seek, as in this example from Ubuntu Linux:

$ man -k dvd

brasero (1) - Simple and easy to use CD/DVD burning application for ...
btcflash (8) - firmware flash utility for BTC DRW1008 DVD+/-RW recorder.
dvd+rw-booktype (1) - format DVD+-RW/-RAM disk with a logical format
dvd+rw-format (1) - format DVD+-RW/-RAM disk

dvd+rw-mediainfo (1) - display information about dvd drive and disk
dvd-ram-control (1) - checks features of DVD-RAM discs

growisofs (1) - combined genisoimage frontend/DVD recording program.

rpl8 (8) - Firmware loader for DVD drives

$

Some systems have an interactive documentation command called info. To invoke it, simply
type info and after it starts up, type h for a tutorial.

From the Library of shannon powell

360 Appendix B For More Information

Documentation on the Web

The best place on the Web for information on the POSIX standard is at www.unix.org. This
site is maintained by The Open Group, an international consortium that worked with the
IEEE to create the current POSIX specification. The complete specification is available on its
Web site. You must register first to read it, but registration is free. The URL for accessing the
documentation is www.unix.org/online.html.

The Free Software Foundation maintains online documentation for a variety of Linux and Unix
utilities, notably including Bash and the C compiler, at www. fsf.org/manual.

David Korn, the developer of the Korn shell, maintains www.kornshell.com. It contains
documentation, downloads, information on books on the Korn shell, and links to information
on other shells.

If you only have access to Microsoft Windows systems but still want to try your hand at shell
programming, or you just want to get a taste of Linux, we encourage you to install the Cygwin
package from www.cygwin.com. The base system includes Bash and lots of other command
line utilities, offering a system remarkably Linux and Unix like. Best of all, the entire Cygwin
package is free to download and use.

Books
O’Reilly & Associates

A good source of books on Linux and Unix-related topics is O'Reilly and Associates
(www.ora.com). Their books cover a wide variety of subjects and are available from their
Web site, from booksellers online, and in book stores. Their Web site also has many useful
articles on Unix and Linux.

Two good references on Unix and Linux, respectively:
Unix in a Nutshell, 4th Edition, A. Robbins, O’Reilly & Associates, 2005.

Linux in a Nutshell, 6th Edition, E. Siever, S. Figgins, R. Love and A. Robbins, O’Reilly &
Associates, 2009.

Two good books on Perl programming, from beginner to advanced:
Learning Perl, 6th Edition, R. L. Schwartz, B. Foy and T. Phoenix, O’Reilly & Associates, 2011.

Perl in a Nutshell, 2nd Edition, S. Spainhour, E. Siever, and N. Patwardhan, O’Reilly &
Associates, 2002

A good book covering both the POSIX standard versions of awk and sed as well as the
GNU versions:

Sed & Awk, 2nd Edition, D. Dougherty and A. Robbins, O’Reilly & Associates, 1997
(ISBN 978-1-56592-225-9).

From the Library of shannon powell

http://www.unix.org
http://www.unix.org/online.html
http://www.fsf.org/manual
http://www.kornshell.com
http://www.cygwin.com
http://www.ora.com

Books 361

Want to learn more about the Unix command line from a Mac user’s perspective? We
recommend:

Learning Unix for OS X, D. Taylor, O’Reilly & Associates

Pearson

Learn the essentials of Unix shell programming from the ground up:

Sams Teach Yourself Shell Programming in 24 Hours, 2nd Edition, S. Veeraraghaven, Sams
Publishing, 2002.

A good book for learning Unix and programming in C and Perl on a Unix system:
Sams Teach Yourself Unix in 24 Hours, 5th Edition, D. Taylor, Sams Publishing, 2016.

This title offers a broad range of topics related to FreeBSD, a robust and free UNIX that
many demanding enterprises use in place of Linux. It is detailed in its approach and offers
information not found anywhere else:

FreeBSD Unleashed, 2nd Edition, M. Urban and B. Tiemann, Sams Publishing, 2003.

Learn FreeBSD from the ground up. This book is the only beginning level tutorial that offers all
the ins and outs of the FreeBSD operating system:

Sams Teach Yourself FreeBSD in 24 Hours, Michael Urban and Brian Tiemann, 2002.
The Unix C Shell Field Guide, G. Anderson and P. Anderson, Prentice Hall, 1986.
An in-depth reference to the C shell.

The AWK Programming Language, A. V. Aho, B. W. Kernighan, and P. J. Weinberger,
Addison-Wesley, 1988.

A complete description of the awk language authored by its creators.
The Unix Programming Environment, B. W. Kernighan and R. Pike, Prentice Hall, 1984.
An advanced Unix programming book.

Advanced Linux Programming, M. Mitchell, J. Oldham, and A. Samuel, New Riders Publishing,
2001.

An advanced Linux programming book.

From the Library of shannon powell

This page intentionally left blank

From the Library of shannon powell

Index

Symbols

& (ampersand)
&& construct, 161-162
background execution of loops, 177
command sequences and, 322
* (asterisk)
with case statement, 155
filename substitution, 24-25, 47, 331
pattern matching, 57-59, 63, 242, 336
° (back quote), 114-115
\ (backslash)
escaping characters with, 111-112
inside double quotes, 112-114
line continuation, 112
overview, 322
[1 (brackets), 139-140
N (caret), 53, 63
: (colon)
: (null) command, 160-161, 334
in directories, 218
((.)) construct, 311
(.) construct, 47, 231-234, 332
\(.\) construct, 61-63, 64
\{:\} construct, 59-61, 64
#! construct, 289-290
|| construct, 161-162
$(.) construct, 115-118
['] construct, 242

From the Library of shannon powell

364

[.] construct

[.] construct, 55-57, 242, 336
{ .; } construct, 231-234, 332
>& construct, 261-262
>&- construct, 262
<&- construct, 262
$ (dollar sign)
command prompt, 43
parameter substitution
${parameter}, 239-240
${parameter:+value}, 242
${parameter:=value}, 241
${parameter:—value}, 240
${parameter:?value}, 241-242
pattern matching, 53-54, 63
variable substitution, 98-100
" (double quotes)
backslash (\) in, 112-114

grouping character sequences with,
109-111

- (hyphen)
command options, 8
job control, 315

printf format specification modifier,
206

< (left arrow), 48-49, 331-332

! (logical negation) operator,
143, 322

$(()) operator, 103

% (percent sign)

%% format specification character, 203
%b format specification character, 203
%c format specification character, 203
%d format specification character, 203
%0 format specification character, 203
%s format specification character, 203
%u format specification character, 203

%X format specification character, 203

%x format specification character, 203
job control, 315
pattern matching, 242-243
with printf command, 202
. (period)
dot (.) command, 227-230, 334-335
pattern matching, 51-53, 63
| (pipe) symbol
|| construct, 161-162
case command, 159-160
loops, 178-179
pipeline process, 33-34, 49, 321, 322
+ (plus sign)
job control, 315
pattern matching, 63

printf format specification modifier,
206

(pound sign)
comments, 96
pattern matching, 243

printf format specification modifier,
206

? (question mark)
filename substitution, 25-27, 47, 331
pattern matching, 242, 336

>> (redirection append) characters,
31-32, 48-49

<< (redirection append) characters
shell archive creation, 264-267
syntax, 262-264

> (right arrow), 30-32, 48-49, 331-332

; (semicolon), 36, 179-180, 321

' (single quotes), 105-108

~ (tilde) substitution, 318-319, 329

_ (underscore), 322

$? $! variable, 323

$! variable, 257-258, 323

From the Library of shannon powell

$- variable, 323

$# variable, 122-123, 323

$$ variable, 198-199, 323

$* variable, 123-124, 166, 323

$@ variable, 166-167, 323

$0 variable, 245, 323

${n} variable, 128

${variable} construct, 98-100, 102-103

A

-a (logical AND) operator, 143-144
access modes, 16-17

accessing command history.
See command history

add program, 125-127, 277
addi program, 200
alias command, 307-309, 335
aliases
defining, 307-309
removing, 309
allexport shell mode, 350

alternative format for test command,
139-140

ampersand (&)
&& construct, 161-162
background execution of loops, 177
command sequences and, 322
archives, creating, 264-267
args program, 122-123
arguments
definition of, 321
passing
$# variable, 122-123
$* variable, 123-124
${n} special variable, 128

phonebook file example,
124-128

bases, numbers in different bases

positional parameters, 121-122
shift command, 128-129
processing, 343-344
arithmetic
arithmetic expansion, 103-104
arithmetic expressions, 330
expr command, 119-120
integer arithmetic
integer types, 304-305
numbers in different bases, 305-306
overview, 303-304
line sorting, 86
arrays, 309-314
ASCII characters, octal values of, 75
asterisk (*)
with case statement, 155
filename substitution, 24-25, 47, 331
pattern matching, 57-59, 63, 242, 336
asynchronous jobs, 257
automatically loaded functions, 303
awk command, 91

B

%b format specification character, 203
back quote (7), 114-115

background execution

commands, 36-37

jobs, 316-317

loops, 177
backslash (\)

escaping characters with,
111-112

inside double quotes, 112-114
line continuation, 112
overview, 322

bases, numbers in different bases,
305-306

From the Library of shannon powell

365

366

Bash shell

Bash shell. See also nonstandard shell
features

compatibility summary, 319-320
history of, 289
Web documentation, 360
beginning of line, matching, 53
Bell Laboratories, 1
bg command, 316-317, 335
blocks of storage, 16
body of loops, 164
books, recommended, 360-361
Bourne, Stephen, 1
brackets ([1), 139-140
break command, 174-176, 336
breaking out of loops, 174-176

C

C compiler, 360
%c format specification character, 203
caret (), 53, 63
case command
debugging, 157-159
overview, 336-337
pattern-matching characters, 155-156
pipe symbol (), 159-160
syntax, 153-154
cat command, 7
cd command, 12-15, 317-318, 337
cdh function, 312-314
CDPATH variable, 323, 337
cdtest program, 225
change program, 281-283
changing
directories, 12-15, 337
group id (GID), 347-348
phonebook file entries, 281-283

character sets, matching, 55-57

characters. See also text
ASCII characters, octal values of, 75
character sequences
double quotes ("), 109-111
single quotes ('), 105-108
cutting, 64-68
deleting from input stream, 77-78
echoing, 6
escaping, 111-112
in filenames
allowed characters, 6
special characters, 28

format specification characters (printf),
202-205

pattern matching
any character, 51-53
beginning of line, 53
character sets, 55-57
end of line, 53-54
filename substitution, 25-27
matched characters, saving, 61-63
overview, 155-156
parameter substitution, 242-244
precise number of characters, 59-61
zero or more characters, 57-59
quote characters
backslash (), 111-114
double quotes ("), 109-111
single quotes ('), 105-108

translating from standard input,
74-77

child processes, 257
clauses, else, 145-147, 345-346
closing standard output, 262
colon (:)

: (null) command, 334

in directories, 218

From the Library of shannon powell

for command
$* variable, 166
$@ variable, 166-167
overview, 163-166, 342-343
without in element, 167-168
command cycle, 43
command files, 93-96
command history
accessing
emacs line edit mode, 294-296
fc command, 301, 326

history command, 294-296,
300-301

quoting, 329
r command, 301-303

vi line edit mode, 294-296,
326-329

controlling size of, 292

editing commands in, 341
command line. See commands
Command not found error, 94
command prompt, 43
command substitution

$(.) construct, 115-118

back quote (), 114-115

definition of, 112

expr command, 119-120
command-line editing

command history

accessing with vi,
294-296

controlling size of, 292
emacs line edit mode

command history, accessing,
296-298

overview, 296-298

overview, 291

commands

vi line edit mode

command history, accessing,
294-296

overview, 292-294

commands

(.) construct, 332
{.; } construct, 332
alias, 307-309, 335
arguments, passing
$# variable, 122-123
$* variable, 123-124
${n} special variable, 128
overview, 343-344

phonebook file example,
124-128

positional parameters, 121-122
shift command, 128-129
awk, 91
bg, 316-317, 335
break, 174-176, 336
case
debugging, 157-159
overview, 336-337

pattern-matching characters,
155-156

pipe symbol (|), 159-160
syntax, 153-154
cat, 7
cd, 12-15, 317-318, 337
command cycle, 43
command history
accessing, 326-329
editing commands in, 341
command re-entry, 326
command summary, 37-38
continue, 176-177, 338
cp, 8, 18-19

From the Library of shannon powell

367

368 commands

cut
-d option, 66-68
-f option, 66-68
overview, 64-66
date, 5, 95-96, 237
dot (.), 334-335
echo
escape characters, 187-188
overview, 6, 338-339
emacs line edit commands, 299-300
entering, 43-44
eval, 255-257, 339
exec, 230-231, 262, 339
exit, 147-148, 340
export, 340-341
expr, 119-120
false, 341
fc, 301, 326-Z01.2304, 341
fg, 316-317, 342
for
$* variable, 166
$@ variable, 166-167
overview, 163-166, 342-343
without in element, 167-168
format of, 321-322
getopts, 180-184, 343-344
grep
-1 option, 82-83
-n option, 83
overview, 78-81
regular expressions, 81-82
-v option, 82
grouping, 231-234
hash, 344
history, 294-296, 300-301
if. See if statement
info, 359

jobs, 315, 347
kill, 315, 347
In, 20-23
Is, 7, 15-17
man, 359
mkdir, 17-18
multiple commands on same line, 36
mv, 8-9, 19
newgrp, 347-348
null (:), 160-161, 334
od, 251
options, 8
paste
-d option, 69-70
overview, 68-69
-s option, 70
perl, 91
printf
example, 206-207

format specification characters,
202-205

format specification modifiers,
205-206

syntax, 202
printing information about, 356
ps, 37
pwd, 12, 95-96, 348
quoting, 329
1, 301-303
read
exit status, 199-202

menu-driven phone program (rolo),
193-199

mycp program, 185-193
overview, 348-349
syntax, 185

readonly, 349

From the Library of shannon powell

readyonly, 254

return, 271, 349

returning information about, 271
rm, 9

rmdir, 22-23

scanning twice before executing,
255-257

sed
d command, 73
examples, 73
-n option, 72
syntax, 70-72
sending to background, 36-37
set
-- option, 248-250
IFS variable, 251-254
monitor option, 331-332
with no arguments, 247
overview, 239, 321, 350-351

positional parameters, reassigning,
247-248

-Xx option, 246
shift, 128-129, 352
skipping in loops, 176-177
sort

-k2n option, 87

-n option, 86

-0 option, 85

other options, 88

overview, 84

-r option, 85

-t option, 87-88

-u option, 84
substitution

$(.) construct, 115-118

back quote (°), 114-115

definition of, 112

expr command, 119-120

compatibility of shells

test, 135, 352-354
tilde substitution, 318-319, 329
times, 354, 355-356
tr
-d option, 77-78
examples, 78

octal values of ASCII characters,
75

overview, 74-76
-s option, 76-77
trap

execution with no arguments,
259-260

ignored signals, 260
overview, 258-259
signal numbers, 258
trap reset, 261

true, 356

type, 271

typing on one line,
179-180

umask, 356
unalias, 309, 356
uniq
-c option, 90
-d option, 89-90
overview, 88-89
unset, 254, 271, 357
until, 170-174, 357

vi line edit commands, 296,
326-329

wait, 257, 358
wc, 7, 95-96
while, 168-170
who, 5-6

comments, 96, 322
compatibility of shells,

319-320

From the Library of shannon powell

369

370 conditional statements

conditional statements. See also loops
&& construct, 161-162
|| construct, 161-162
if
case command, 153-160
elif construct, 148-151
else construct, 145-147
exit command, 147-148
exit status, 131-135
null command (:), 160-161
pipe symbol (]), 159-160
syntax, 131
testing conditions in, 131-144
nesting, 148-149
testing conditions in
alternative format for test, 139-140
file operators, 142-143
integer operators, 140-142
logical AND operator (-a), 143-144
logical negation operator (!), 143
logical OR operator (-0), 144
overview, 135
string operators, 135-139
contents of files, displaying, 7
continuation of lines, 112
continue command, 176-177, 338
Coordinated Universal Time, 237
copying files
to another directory, 18-19
mycp program
echo escape characters, 187-188
final code listing, 190-193
initial code listing, 185-187
revised code listing, 188-190
into new file, 8
counting words in files, 7
cp command, 8, 18-19

creating
aliases, 307-309
directories, 17-18
functions, 268
pointers to variables, 257
shell archives, 264-267
ctype program, 155-156, 158-159
current directory, 225-226
cut command
-d option, 66-68
-f option, 66-68
overview, 64-66
Cygwin, 360

D

d command, 73
-d file operator, 142-143
%d format specification character, 203
dangling symbolic links, 23
data. See also 1/0 (input/output) redirection
extracting
cut command syntax, 64-66
delimiter characters, 66-68
fields, 66-68
printing
command information, 356
date/time, 5, 95-96
formatted output, 202-207
list of active jobs, 347
to working directory, 348
reading
exit status, 199-202

menu-driven phone program (rolo)
example, 193-199

mycp program, 185-193
read command syntax, 185
data formatting (rolo program), 273-274

From the Library of shannon powell

date command, 5, 95-96, 237
date/time, printing, 5, 95-96
db program, 227-229
debugging with x, 157-159
defining. See creating
definitions (function)
creating, 268
removing, 271
deleting
aliases, 309
characters from input stream, 77-78
directories, 22-23
duplicate lines
sort command, 84
uniq command, 88-89
files, 9
function definitions, 271
lines, 73

phonebook file entries, 127-128,
280-281

delimiter characters
cut command, 66-68
paste command, 69-70
sort command, 87-88
development of Unix, 1
/dev/tty, 178
directories
changing, 12-15, 337
copying files to, 18-19
creating, 17-18
current directory, 225-226
directory files, 6
home, 10-12, 217
moving files between, 19
pathnames, 10-12
removing, 22-23

structure of, 9-10

duplicate entries, finding

working directory
definition of, 10
displaying, 12
printing to, 348
disabling trace mode, 246
display program, 278-279
displaying
error messages, 245
file contents, 7
phonebook file entries, 278-279
variable values, 98-100
working directory, 12
documentation
books, 360-361
comments, 96
here documents

shell archive creation,
264-267

syntax, 262-264
online documentation, 359
Web documentation, 360
dollar sign ($)
command prompt, 43
parameter substitution
${parameter}, 239-240
${parameter:+value}, 242
${parameter:=value}, 241
${parameter:—value}, 240
${parameter:?value}, 241-242
pattern matching, 53-54, 63
variable substitution, 98-100
dot (.) command, 227-230
double quotes (")
backslash (\) in, 112-114

grouping character sequences with,
109-111

duplicate entries, finding, 89-90

From the Library of shannon powell

371

372

duplicate lines, eliminating

duplicate lines, eliminating
sort command, 84

uniq command, 88-89

E

-e file operator, 142-143
echo command
escape characters, 187-188
overview, 6, 338-339
editing
command-line editing
command history, 292
emacs line edit mode, 296-300
overview, 291
vi line edit mode, 292-296
phonebook file entries, 281-283
editors
stream editor (sed)
command syntax, 70-72
d command, 73
examples, 73
-n option, 72
vi line edit mode, 326-329

elements of arrays, retrieving,
309-310

elif construct, 148-151
else clause, 145-147, 345-346
emacs line edit mode

command history, accessing,
296-298

overview, 296-298
enabling trace mode, 246
end of line, matching, 53-54
end-of-line character, 45
entering

commands, 43-44

passwords at login, 41

entries (phonebook file)
adding, 125-127, 277
displaying, 278-279
editing, 281-283
listing, 283-284
looking up, 124-125, 278
removing, 127-128, 280-281
ENV file, 290-291
ENV variable, 290-291, 323
environment
current directory, 225-226
exported variables, 211-216
HOME variable, 217
local variables, 209-210
PATH variable, 217-224
.profile file, 235-236
PS1 variable, 216
PS2 variable, 216
subshells
(.) construct, 231-234
{ .; } construct, 231-234
dot (.) command, 227-230
exec command, 227-230
overview, 210-211, 227
passing variables to, 234-235
TERM variable, 236-237
TZ variable, 236-237
environment control, 49
-eq operator, 140-142
errexit shell mode, 350
errors
Command not found, 94
error messages, displaying, 245
standard error, 35

escape characters (echo command),
187-188, 338

escaping characters, 111-112

From the Library of shannon powell

/etc/passwd, 41
/etc/profile, 235-236
/etc/shadow, 41
eval command, 255-257, 339
exclamation mark (!), 322
exec command, 230-231, 262, 339
executable files, 94
execution
background execution of loops, 177
command execution
command files, 93-96

scanning command line twice
before executing, 255-257

in current shell, 227-230
function execution, 268-269
program execution, 45-47
subshell execution, 332
exit command, 147-148, 340
EXIT signal, 258
exit status
$? variable, 132-135
definition of, 321
non-zero values, 131
overview, 131-132
read command, 199-202
zero values, 131
export command, 340-341

exported variables, 211-216, 332,
340-341

expr command, 119-120
expressions
arithmetic expressions, 330
regular expressions
[.] construct, 55-57
\(.\) construct, 61-63
\{.\} construct, 59-61
asterisk (*), 57-59

files

caret (), 53
dollar sign (§), 53-54
grep command, 81-82
overview, 51
period (.), 51-53
summary table, 61-63
extracting data
cut command
delimiter characters, 66-68
fields, 66-68

overview, 64-66

F

-f file operator, 142-143
false command, 341
fc command, 301, 326-201.2304, 341
FCEDIT variable, 323
fg command, 316-317, 342
fields
cutting, 66-68

skipping during sort, 87
file descriptors, 261
file operators, 142-143
filename substitution
asterisk (*), 24-25
overview, 47, 331
POSIX shell, 331
question mark (?), 25-27
variables, 101-103
files
command files, 93-96
copying
to another directory, 18-19
mycp program, 185-193
into new file, 8
counting words in, 7

directory files, 6

From the Library of shannon powell

373

374 files

displaying contents of, 7
duplicate entries, finding, 89-90
ENV, 290-291
executable files, 94
executing in current shell, 227-230
file descriptors, 261
file operators, 142-143
filename substitution
* (asterisk), 24-25
? (question mark), 25-27
asterisk (*), 24-25
overview, 47, 331
POSIX shell, 331
question mark (?), 25-27
variables, 101-103
filenames
allowed characters, 6
changing, 8-9
spaces in, 27
special characters, 28
linking, 20-23
listing, 7, 15-17
moving between directories, 19
ordinary files, 6
overview, 6-7
phonebook
adding entries to, 125-127, 277
displaying entries from, 278-279
editing entries in, 281-283
listing entries in, 283-284
looking up entries in, 124-125, 278

removing entries from, 127-128,
280-281

.profile, 235-236
removing, 9
renaming, 8-9
rolosubs file, 264-266

searching with grep
-1 option, 82-83
-n option, 83
overview, 78-81
regular expressions, 81-82
-v option, 82
sorting lines into, 85
special files, 6
temporary files, 198-199
filters, 35
finding. See pattern matching
foreground jobs
bringing jobs to, 342
stopping, 316-317
format specification (printf)
characters, 202-205
modifiers, 205-206
formatted output, printing
example, 206-207

format specification characters,
202-205

format specification modifiers,
205-206

printf command syntax, 202
Fox, Brian, 289
Free Software Foundation, 289, 360
fsf.org website, 360
functions
automatically loaded functions, 303
cdh, 312-314
definitions
creating, 268-271
removing, 271
execution, 268-269
local variables, 303
overview, 333

terminating, 271

From the Library of shannon powell

G

-ge operator, 140-142
getopts command, 180-184, 343-344
getty program. See shells
GID (group id), changing, 347-348
greetings program, 149-151, 159-160
grep command

-1 option, 82-83

-n option, 83

overview, 78-81

regular expressions, 81-82

-v option, 82
group id (GID), changing, 347-348
grouping commands, 231-234
groups, 16-17
-gt operator, 140-142

H

handing signals with trap command

execution with no arguments,
259-260

ignored signals, 260
overview, 258-259
signal numbers, 258
trap reset, 261
hash command, 344
hash sign (#)
comments, 96
pattern matching, 243
printf format specification modifier, 206
here documents
shell archive creation, 264-267
syntax, 262-264
HISTFILE variable, 323

history command, 294-296, 300-301.
See also command history

if statement

history of Unix, 1
HISTSIZE variable, 326
home directory, 10-12, 217
HOME variable, 217, 323
HUP signal, 258
hyphen (-)
command options, 8
job control, 315

printf format specification modifier, 206

if statement
case command
debugging, 157-159

pattern-matching characters,
155-156

pipe symbol (|), 159-160
syntax, 153-154
elif construct, 148-151
else construct, 145-147
exit command, 147-148
exit status
$? variable, 132-135
non-zero values, 131
overview, 131-132
zero values, 131
nesting, 148-149
null command (:), 160-161
overview, 344-346
syntax, 131
testing conditions in

alternative format for test,
139-140

file operators, 142-143

integer operators, 140-142

logical AND operator (-a), 143-144
logical negation operator (!), 143

From the Library of shannon powell

375

376 if statement

defining, 307-309
removing, 309

arrays, 309-314

cd command, 317-318

command history, accessing
emacs line edit mode, 296-298
fc command, 301
history command, 300-301

logical OR operator (-0), 144 r command, 301-303
overview, 135 vi line edit mode, 294-296
parentheses, 144 command-line editing
string operators, 135-139 command history, 292
test command syntax, 135 emacs line edit mode, 296-300
IFS variable, 251-254, 323 overview, 291
ignoreeof shell mode, 351 vi line edit mode, 292-296
ignoring signals, 260 ENV file, 290-291
infinite loops, breaking out of, 174-176 functions
info command, 359 automatically loaded functions, 303
init program, 40-43 local variables, 303
input redirection integer arithmetic
< (left arrow), 331 integer types, 304-305
exec command, 230-231, 262 numbers in different bases, 305-306
in-line input redirection overview, 303-304
shell archive creation, 264-267 job control, 315-317
syntax, 262-264 order of search, 319
POSIX shell, 331 shell, specifying, 290
standard I/O (input/output), 28-30 tilde substitution, 318-319
INT signal, 258 internal field separators, 251-254
integer arithmetic interpreted programming language, 50
expr command, 119-120 1/0 (input/output) redirection
integer types, 304-305 <&- construct, 262
numbers in different bases, 305-306 >&- construct, 262
overview, 303-304 input redirection
integer operators, 140-142 < (left arrow), 331
integer types, 304-305 exec command, 230-231, 262
interactive shell features in-line input redirection, 262-267
aliases overview, 331

POSIX shell, 331
shell archive creation, 264-267
standard I/O (input/output), 28-30
loops, 177-178
output redirection
exec command, 230-231, 262
overview, 30-32
standard output, closing, 262

From the Library of shannon powell

overview, 48-49, 331-332
in programs, 94

standard error, writing to,
261-262

standard I/O (input/output), 28-30
ison program, 122

jobs
asynchronous jobs, 257
bringing to foreground, 342
job control, 315-317
job numbers, 37
killing, 347
printing list of, 347
referencing, 333-334
sending to background, 316-317
stopped jobs, 316-317
stopping, 334
waiting for, 358
waiting for completion
$! variable, 257-258
wait command, 257
jobs command, 315, 347

K

kernel, 1, 39

keyword parameters. See variables (shell)
kill command, 315, 347

killing jobs, 347

Korn, David, 289, 360

Korn shell. See also nonstandard shell
features

compatibility summary, 319-320
history of, 289
Web documentation, 360

kornshell.com website, 360

lines

L

-L file operator, 142-143
-le operator, 140-142

left-shifting positional parameters,
128-129

line edit modes
emacs

command history, accessing,
296-298

overview, 296-298
overview, 291
vi

command history, accessing,
294-296

overview, 292-294
in-line input redirection
shell archive creation, 264-267
syntax, 262-264
LINENO variable, 324
lines
cutting, 64-66
deleting, 73
duplicate lines, eliminating
sort command, 84
uniq command, 88-89
line continuation, 112
pasting
from different files, 68-69
output delimiters, 69-70
from same file, 70
pattern matching
beginning of line, 53
end of line, 53-54
sorting
arithmetically, 86
delimiter characters, 87-88
duplicate lines, eliminating, 84

From the Library of shannon powell

377

378 lines

to output file, 85 skipping remaining commands in,
176-177

terminating, 336

overview, 84

reverse order, 85

skipped fields, 87 typing on one line, 179-180
linking files, 20-23 until, 170-174
while, 168-170, 358

Linux resources
books, 360-361 Is command, 7, 15-17

-It operator, 140-142
lu program, 124-125, 278

online documentation, 359
overview, 359

Web documentation, 360

listall program, 283-284 M
listing MAIL variable, 324
files, 7, 15-17 MAILCHECK variable, 324
phonebook file entries, 283-284 MAILPATH variable, 324
variables, 247 man command, 359
In command, 20-23 matched characters, saving, 61-63
local variables, 209-210, 303 matching patterns
logical AND operator (-a), 143-144 any character, 51-53
logical negation operator (!), 143, 322 beginning of line, 53
logical OR operator (-0), 144 case command, 155-156, 336-337
login cycle, 44 character sets, 55-57
login shell, 40-43 duplicate entries, 89-90
looking up phonebook entries, 124-125, end of line, 53-54
278 filename substitution, 25-27
for loops, 342-343 grep command
loops -1 option, 82-83
body of, 164 -n option, 83
breaking out of, 174-176 overview, 78-81
executing in background, 177 regular expressions, 81-82
for -v option, 82
$* variable, 166 matched characters, saving, 61-63
$@ variable, 166-167 overview, 51
overview, 163-166, 342-343 parameter substitution, 242-244
without in element, 167-168 precise number of subpatterns, 59-61
getopts command, 180-184 summary of regular expression
1/O redirection, 177-178 characters, 63-64
piping data into and out of, 178-179 zero or more characters, 57-59

From the Library of shannon powell

mathematical equation solver (expr),
119-120

menu-driven phone program (rolo)
$$ variable, 198-199
add program, 277
change program, 281-283

nonstandard shell features

overview, 27, 47, 331

POSIX shell, 331

question mark (?), 25-27

variables, 101-103
filenames

allowed characters, 6

379

data formatting, 273-274 changing, 8-9
display program, 278-279
final code listing, 274-277
initial code listing, 193-194

listall program, 283-284

spaces in, 27
special characters, 28
pathnames, 10-12
-ne operator, 140-142

lu program, 278 nesting if statements, 148-149

rem program, 280-281
revised code listing, 196-198

newgrp command, 347-348

newline character, 45

sample output, 284-287 noclobber shell mode, 351

sample runs, 195-196 noexec shell mode, 351
noglob shell mode, 351

nolog shell mode, 351

temporary files, 198-199
messages (error), displaying, 245

minus sign (-). See hyphen () nonstandard shell features

mkdir command, 17-18
monitor option (set command), 331-332
monitor shell mode, 351
moving files between directories, 19
multiple commands on same line, 36
mv command, 8-9, 19
mybasename program, 244
mycp program
echo escape characters, 187-188
final code listing, 190-193
initial code listing, 185-187
revised code listing, 188-190

N

-n string operator, 137, 138
names
filename substitution
asterisk (*), 24-25

aliases
defining, 307-309
removing, 309
arrays, 309-314
cd command, 317-318
command history, accessing
emacs line edit mode, 296-298
fc command, 301
history command, 300-301
r command, 301-303
vi line edit mode, 294-296
command-line editing
command history, 292
emacs line edit mode, 296-300
overview, 291
vi line edit mode, 292-296
ENV file, 290-291

functions

From the Library of shannon powell

380

nonstandard shell features

automatically loaded functions, 303

local variables, 303
integer arithmetic
integer types, 304-305

numbers in different bases, 305-306

overview, 303-304

job control, 315-317

numbers, 304-305

order of search, 319

shell, specifying, 290

tilde substitution, 318-319
non-zero exit status, 131
nounset shell mode, 351
null command (:), 160-161
null values, 100-101
number program, 154-155, 201-202
number 2 program, 253
numbers

in different bases, 305-306

job numbers, 37

signal numbers, 258, 355

o)

%o format specification character, 203
-0 (logical OR) operator, 144
octal dump command, 251
octal values of ASCII characters, 75
od command, 251
online documentation, 359
The Open Group, 360
AND operator, 143-144
OR operator, 144
operators
$(()), 103
arithmetic operators, 330
file operators, 142-143

integer operators, 140-142
logical AND operator (-a), 143-144
logical negation operator (!), 143
logical OR operator (-0), 144
string operators, 135-139
test operators, 353-354
options (command), 8
ordinary files, 6
O'Reilly & Associates, 360-361
output
output redirection
> (right arrow), 30-32
exec command, 230-231, 262
POSIX shell, 331-332
standard output, closing, 262
standard I/O (input/output), 28-30
output delimiters
paste command, 69-70

sort command, 88

P

packages, Cygwin, 360
parameters. See also variables (shell)
overview, 239
parameter substitution
${parameter}, 239-240
${parameter:+value}, 242
${parameter:=value}, 241
${parameter:—value}, 240
${parameter:?value}, 241-242
overview, 324-325
pattern matching, 242-244
positional parameters
definition of, 239
left-shifting, 128-129

overview, 322

From the Library of shannon powell

reassigning values to, 239, 247-248
setting, 350
shifting left, 352
substitution, 121-122
special parameters, 323-324
parent processes, 257
parentheses in test command, 144
parsing phase, 44
passing
arguments
$# variable, 122-123
$* variable, 123-124
${n} special variable, 128
phonebook file example, 124-128
positional parameters, 121-122
shift command, 128-129
variables to subshells, 234-235
passwords, entering at login, 40
paste command
-d option, 69-70
overview, 68-69
-s option, 70
pasting lines
from different files, 68-69
output delimiters, 69-70
from same file, 70
PATH variable, 217-224, 324
pathnames, 10-12
pattern matching
any character, 51-53
beginning of line, 53
case command, 155-156, 336-337
character sets, 55-57
duplicate entries, 89-90
end of line, 53-54
filename substitution, 25-27

grep command

pipe symbol (|)

-1 option, 82-83

-n option, 83

overview, 78-81

regular expressions, 81-82

-v option, 82
matched characters, saving, 61-63
overview, 51
parameter substitution, 242-244

precise number of subpatterns,
59-61

summary of regular expression
characters, 63-64

zero or more characters, 57-59
Pearson books, 361
percent sign (%)
job control, 315
pattern matching, 242-243
with printf command, 202
period (.)
dot (.) command, 227-230, 334-335
pattern matching, 51-53, 63
perl command, 91

phonebook file. See also rolo (Rolodex)
program

adding entries to, 125-127, 277
displaying entries from, 278-279
editing entries in, 281-283

listing entries in, 283-284

looking up entries in, 124-125, 278

removing entries from, 127-128,
280-281

PIDs (process IDs), 37, 199
pipe symbol (])
|| construct, 161-162
case command, 159-160
loops, 178-179

pipeline process, 33-34, 49, 321,
322

From the Library of shannon powell

381

382 plus sign (+)

plus sign (+) date/time, 5, 95-96
job control, 315 formatted output
pattern matching, 63 example, 206-207
printf format specification modifier, 206 format specification characters,
pointers to variables, 257 202-205
positional parameters format specification modifiers,
205-206

definition of, 239
left-shifting, 128-129

overview, 322

printf command syntax, 202
list of active jobs, 347
to working directory, 348
process IDs (PIDs), 37, 199

processes

reassigning values to, 239, 247-248
setting, 350
shifting left, 352
substitution, 121-122
POSIX shell
compatibility summary, 319-320

definition of, 43
parent/child, 257
returning information about, 37
waiting for completion
$! variable, 257-258
wait command, 257
.profile file, 235-236
on program, 132-135, 145-147,

overview, 1

startup, 321

subshell execution, 332

vi line edit mode, 326-329
Web documentation, 360

170-171
pound sign (#) programs
comments, 96 add, 125-127, 277
pattern matching, 243 addi, 200

printf format specification modifier, 206 args, 122-123

PPID variable, 324 .
arguments, passing

prargs program, 169-170 $# variable, 122-123

precedence of operators, 330 $* variable, 123-124

precise number of subpatterns, matching,
59-61

precision modifier (printf), 205-206

${n} special variable, 128
phonebook file example, 124-128
positional parameters, 121-122
shift command, 128-129

cdtest, 225

change, 281-283

command files, 93-96

printf command
example, 206-207
format specification characters, 202-205
format specification modifiers, 205-206

syntax, 202
comments, 96

rintin
P g ctype, 155-156, 158-159

command information, 356

From the Library of shannon powell

db, 227-229
debugging, 157-159
display, 278-279
execution, 45-47
getty. See shells

PWD variable

revised code listing, 196-198
rolosubs file, 264-266
sample output, 284-287
sample runs, 195-196
temporary files, 198-199

383

greetings, 149-151, 159-160 run, 95, 121, 164
init, 40-43 shar, 267

ison, 122 shell variables

listall, 283-284
lu, 124-125, 278
mybasename, 244
mycp

echo escape characters,
187-188

final code listing, 190-193
initial code listing, 185-187

revised code listing,
188-190

number, 154-155
number2, 253

arithmetic expansion, 103-104

assigning values to, 97, 322,
333

definition of, 97

displaying values of, 98-100
exported variables, 332, 340-341
filename substitution, 101-103
HISTSIZE, 326

null values, 100-101

readonly variables, 349

table of, 323-324

undefined variables, 100-101

on, 132-135, 145-147, 170-171 stats, 95-96
prargs, 169-170 trace mode, turning on/off, 246
rem, 147-148, 151-153, 280-281 twhile, 169
reverse, 311 vartest, 209

rolo (Rolodex)
$$ variable, 198-199
add program, 277

vartest2, 210
vartest3, 212
vartest4, 213-214
waitfor, 171-174, 180-184
words, 249-250
ps command, 37
PS1 variable, 216, 324
PS2 variable, 216, 324
PS4 variable, 324
pseudo-terminals, 40

change program, 281-283
data formatting, 273-274
display program, 278-279
final code listing, 274-277
fun, 270-271

initial code listing, 193-194
listall program, 283-284

lu program, 278

PATH variable, 221-224
rem program, 280-281

pseudo-tty, 40
pwd command, 12, 95-96, 348
PWD variable, 324

From the Library of shannon powell

384 question mark (?)

Q

question mark (?)
filename substitution, 25-27, 47, 331
pattern matching, 242, 336
quote characters
back quote (°), 114-115
backslash (\)

escaping characters with,
111-114

inside double quotes, 112-114
line continuation, 112
overview, 111-112

double quotes ("), 109-111

overview, 329

single quotes ('), 105-108

smart quotes, 119

R

r command, 301-303
-r file operator, 142-143
race conditions, 199
read command
exit status, 199-202
menu-driven phone program (rolo)
$$ variable, 198-199
initial code listing, 193-194
revised code listing, 196-198
sample runs, 195-196
temporary files, 198-199
mycp program
echo escape characters, 187-188
final code listing, 190-193
initial code listing, 185-187
revised code listing, 188-190
overview, 348-349

syntax, 185

reading data
exit status, 199-202
menu-driven phone program (rolo)
$$ variable, 198-199
initial code listing, 193-194
revised code listing, 196-198
sample runs, 195-196
temporary files, 198-199
mycp program
echo escape characters, 187-188
final code listing, 190-193
initial code listing, 185-187
revised code listing, 188-190
read command syntax, 185
readonly command, 254, 349
read-only variables, 254, 349

reassigning values to positional parameters,
239, 247-248

redirection (1/0)
<&- construct, 262
>&- construct, 262
input redirection
< (left arrow), 331
exec command, 230-231, 262
in-line input redirection, 262-267
overview, 331
POSIX shell, 331
shell archive creation, 264-267
standard I/O (input/output), 28-30
loops, 177-178
output redirection
exec command, 230-231, 262
overview, 30-32
standard output, closing, 262
overview, 48-49, 331-332
POSIX shell, 331-332
in programs, 94

From the Library of shannon powell

standard error, writing to, 261-262

standard I/O (input/output), 28-30
redirection append (>>) characters, 31-32
re-entry of commands, 326
references

books, 360-361

online documentation, 359

overview, 359

Web documentation, 360
referencing jobs, 333-334
regex. See regular expressions
registering your book, 3
regular expressions

[.] construct, 55-57

\(.\) construct, 61-63

\{.\} construct, 59-61

asterisk (*), 57-59

caret ("), 53

dollar sign ($), 53-54

grep command, 81-82

overview, 51

period (.), 51-53

summary table, 61-63

rem program, 147-148, 151-153,
280-281

removing
aliases, 309
characters from input stream, 77-78
directories, 22-23
duplicate lines
sort command, 84
uniq command, 88-89
files, 9
function definitions, 271
lines, 73

phonebook file entries, 127-128,
280-281

running rolo program

renaming files, 8-9
resetting traps, 261
resources
books, 360-361
online documentation, 359
overview, 359
Web documentation, 360
return command, 271, 349
reverse program, 311
reversing sort order, 85
Ritchie, Dennis, 1
rm command, 9
rmdir command, 22-23
rolo (Rolodex) program
$$ variable, 198-199
add program, 277
change program, 281-283
data formatting, 273-274
display program, 278-279
final code listing, 274-277
functions, 270-271
initial code listing, 193-194
listall program, 283-284
lu program, 278
PATH variable, 221-224
rem program, 280-281

revised code listing,
196-198

rolosubs file, 264-266
sample output, 284-287
sample runs, 195-196
temporary files, 198-199

Rolodex program. See rolo (Rolodex)
program

rolosubs file, 264-266
run program, 95, 121, 164
running rolo program, 195-196

From the Library of shannon powell

385

386

-s file operator

S

-s file operator, 142-143

%s format specification character,
203

saving matched characters, 61-63

scanning command line twice before
executing, 255-257

search order, 319
searching. See pattern matching
searching files with grep
-1 option, 82-83
-n option, 83
overview, 78-81
regular expressions, 81-82
-v option, 82
sed command
d command, 73
examples, 73
-n option, 72
overview, 70-72
semicolon (;), 36, 179-180, 321

sending commands to background,
36-37

sequences of characters
double quotes ("), 109-111
single quotes ('), 105-108
set command
-- option, 248-250
IFS variable, 251-254
monitor option, 331
with no arguments, 247
overview, 239, 321, 350-351

positional parameters, reassigning,
247-248

-X option, 246
shar program, 267
shell archives, creating, 264-267

shell variables. See also parameters
arithmetic expansion, 103-104
assigning values to, 97, 322, 333
definition of, 97
displaying values of, 98-100
ENV, 290-291

exported variables, 211-216, 332,
340-341

filename substitution and,
101-103

finding number of characters stored in,

244
HISTSIZE, 326
HOME, 217
IFS, 251-254
listing, 247
local variables, 209-210, 303
null values, 100-101

passing to subshells,
234-235

PATH, 217-224
pointers, creating, 257
PS1, 216
PS2, 216
read-only variables, 254, 349
special variables
$? variable, 132-135
$! variable, 257-258
$# variable, 122-123
$* variable, 123-124, 166
$@ variable, 166-167
${n} variable, 128
$0 variable, 245
table of, 323-324
TERM, 236-237
TZ, 236-237
undefined variables, 100-101
unsetting, 254

From the Library of shannon powell

shells

Bash. See also nonstandard shell features

compatibility summary, 319-320

history of, 289

Web documentation, 360
compatibility summary, 319-320

current shell, executing files in,
227-230

definition of, 1

Korn shell. See also nonstandard shell
features

compatibility summary, 319-320
history of, 289
Web documentation, 360
login shell, 40-43
POSIX shell. See POSIX shell
responsibilities of
environment control, 49
filename substitution, 47

interpreted programming
language, 50

I/0 redirection, 48-49
overview, 44-45
pipelines, 49
program execution, 45-47
variable substitution, 47
specifying, 289-290
subshells
definition of, 43
environment, 210-211
overview, 227
terminating, 340
typing commands to, 43-44
shift command, 128-129, 352
signals
handling with trap command

execution with no arguments,
259-260

ignored signals, 260
overview, 258-259

signal numbers, 258

trap reset, 261
ignoring, 260
numbers, 355

single quotes ('), 105-108

skipping

commands in loops, 176-177

fields during sort, 87
smart quotes, 119
sort command

-k2n option, 87

-n option, 86

-0 option, 85

other options, 88

overview, 84

-1 option, 85

-t option, 87-88

-u option, 84
sorting lines

arithmetically, 86

delimiter characters, 87-88

duplicate lines, eliminating, 84

to output file, 85
overview, 84
reverse order, 85
skipped fields, 87
spaces in filenames, 27
sparse arrays, 310
special files, 6
special variables
$? variable, 132-135
$! variable, 257-258
$# variable, 122-123

$* variable, 123-124, 166
$@ variable, 166-167

special variables 387

From the Library of shannon powell

388

special variables

${n} variable, 128
$0 variable, 245
table of, 323-324
specifying shell, 289-290
standard error
overview, 35
writing to, 261-262
standard 1/0 (input/output)
closing, 262
deleting from input stream, 77-78
overview, 28-30
redirecting, 230-231
redirection, 261-262
translating characters from, 74-77
standard shell. See POSIX shell
starting up POSIX shell, 321
statements
&& construct, 161-162
|| construct, 161-162
comments, 96
if
elif construct, 148-151
else construct, 145-147
exit command, 147-148
exit status, 131-135
nesting, 148-149
syntax, 131
testing conditions in, 131-144
testing conditions in
alternative format for test, 139-140
file operators, 142-143
integer operators, 140-142
logical AND operator (-a), 143-144
logical negation operator (!), 143
logical OR operator (-0), 144
overview, 135

string operators, 135-139

stats program, 95-96
status, exit
$? variable, 132-135
definition of, 321
non-zero values, 131
overview, 131-132
zero values, 131
stopped jobs, 316-317, 334
storing values in variables, 97
stream editor (sed)
command overview, 70-72
d command, 73
examples, 73
-n option, 72
string operators, 135-139
subpatterns, matching, 59-61
subscripts, 309
subshells
(.) construct, 231-234
{.; } construct, 231-234
definition of, 43
dot (.) command, 227-230
environment, 210-211
exec command, 227-230
execution, 332
overview, 227
passing variables to, 234-235
substitution
command substitution
$(.) construct, 115-118
back quote (), 114-115
definition of, 112
expr command, 119-120
filename substitution
asterisk (*), 24-25
overview, 47
POSIX shell, 331

From the Library of shannon powell

question mark (?), 25-27
shell variables, 101-103
parameter substitution
${parameter}, 239-240
${parameter: +value}, 242
${parameter:=value}, 241
${parameter:—value}, 240
${parameter:?value}, 241-242
overview, 324-325
pattern matching, 242-244
positional parameters, 121-122
tilde substitution, 318-319, 329
variable substitution, 47, 98-100
suspending jobs, 316
symbolic links, 21-23

T

temporary files, 198-199

TERM, 236-237, 258

terminal, 28

terminating
functions, 271
jobs, 315
loops, 336
shell program, 340

test command
alternative format, 139-140
file operators, 142-143
integer operators, 140-142
logical AND operator (-a), 143-144
logical negation operator (!), 143
logical OR operator (-0), 144
overview, 135, 352-354
parentheses, 144
string operators, 135-139
syntax, 135

text

testing conditions in if statements

alternative format, 139-140

file operators, 142-143

integer operators, 140-142

logical AND operator (-a), 143-144
logical negation operator (!), 143
logical OR operator (-0), 144
overview, 135

parentheses, 144

string operators, 135-139

test command syntax, 135

text

ASCII characters, octal values of, 75
character sequences
double quotes ("), 109-111
single quotes ('), 105-108
cutting, 64-66
deleting
with sed, 73
with tr command, 77-78
echoing, 6
escaping, 111-112
filenames
allowed characters, 6
special characters, 28
line continuation, 112
pasting, 68-70
pattern matching
any character, 51-53
beginning of line, 53
character sets, 55-57
end of line, 53-54
filename substitution, 25-27

matched characters, saving,
61-63

parameter substitution,
242-244

From the Library of shannon powell

389

text

precise number of characters,
59-61

zero or more characters, 57-59
sorting, 84-88

translating from standard input,
74-77

Thompson, Ken, 1
tilde substitution, 318-319, 329
time
printing, 5
time zone, determining, 237
times command, 354, 355-356
tools. See commands
tr command
-d option, 77-78
examples, 78
octal values of ASCII characters, 75
overview, 74-76
-s option, 76-77
trace mode, turning on/off, 246

translating characters from standard input,
74-77

trap command

execution with no arguments,
259-260

ignored signals, 260
overview, 258-259
signal numbers, 258
trap reset, 261
Trojan horse, 218-219
true command, 356
turning on/off trace mode, 246
twhile program, 169
type command, 271
types, integer, 304-305
typing loops on one line, 179-180
TZ variable, 236-237

U

%u format specification character, 203
umask command, 356
unalias command, 309, 356
unary file operators, 142-143
unary logical negation operator (!), 143
undefined variables, 100-101
underscore (_), 322
uniq command
-c option, 90
-d option, 89-90
overview, 88-89
Unix
development of, 1
resources
books, 360-361
online documentation, 359
overview, 359
Web documentation, 360
strengths of, 1
unix.org website, 360
unset command, 254, 271, 357
until command, 170-174, 357
users, returning information about, 5-6
utilities, 39. See also commands

\%

values
assigning to variables, 97

reassigning to positional parameters,
239, 247-248

variables (shell). See also parameters
arithmetic expansion, 103-104
assigning values to, 97, 322, 333
definition of, 97
displaying values of, 98-100

From the Library of shannon powell

ENV, 290-291

exported variables, 211-216, 332,
340-341

filename substitution, 101-103

finding number of characters stored in,
244

HISTSIZE, 326
HOME, 217
IFS, 251-254
listing, 247
local variables, 209-210, 303
null values, 100-101
passing to subshells, 234-235
PATH, 217-224
pointers, creating, 257
PS1, 216
PS2, 216
read-only variables, 254
readonly variables, 349
special variables
$? variable, 132-135
$! variable, 257-258
$# variable, 122-123
$* variable, 123-124, 166
$@ variable, 166-167
${n} variable, 128
$0 variable, 245
substitution, 47, 98-100
table of, 323-324
TERM, 236-237
TZ, 236-237

undefined variables,
100-101

unsetting, 254
vartest program, 209
vartest2 program, 210
vartest3 program, 212

writing to standard error

vartest4 program, 213-214
verbose shell mode, 351
vi line edit mode

command history, accessing,
294-296

overview, 292-294, 326-329,
351

W

-w file operator, 142-143
wait command, 257, 358

waitfor program, 171-174, 180-184,
232-234

waiting for job completion
$! variable, 257-258

overview, 358

wait command, 257
wc command, 7, 95-96
Web documentation, 360
Web Edition of book, 3
websites
Cygwin, 360
cygwin.com, 360
Free Software Foundation, 360
Korn shell, 360
The Open Group, 360
while loops, 168-170, 358
whitespace, 45, 321
who command, 5-6
width modifier (printf), 205-206
words, counting, 7
words program, 249-250
working directory
definition of, 10
displaying, 12
printing to, 348
writing to standard error, 261-262

From the Library of shannon powell

391

392

X file operator

X

Y-Z

-x file operator, 142-143

%X format specification character, 203
%x format specification character, 203
-x option, debugging with, 157-159
xtrace mode, 351

-z string operator, 137, 138
zero exit status, 131

zero or more characters, matching, 57-59

From the Library of shannon powell

This page intentionally left blank

From the Library of shannon powell

e

THIS PRODUCT

informit.com/register

Register the Addison-Wesley, Exam Registering your products can unlock
Cram, Prentice Hall, Que, and the following benefits:

Sams products you own to unlock e Access to supplemental content,
great benefits. including bonus chapters,

source code, or project files.
e A coupon to be used on your
next purchase.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.

You will then be prompted to enter Registration benefits vary by product.
the 10- or 13-digit ISBN that appears Benefits will be listed on your Account
on the back cover of your product. page under Registered Products.

N
About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE
INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall

Professional, Que, and Sams. Here you will gain access to quality and trusted content and
resources from the authors, creators, innovators, and leaders of technology. Whether you're
looking for a book on a new technology, a helpful article, timely newsletters, or access to

the Safari Books Online digital library, InformIT has a solution for you.

Addison-Wesley | Cisco Press | Exam Cram
IBM Press | Que | Prentice Hall | Sams

informiT.com

THE TRUSTED TECHNOLOGY LEARNING SOURCE

SAFARI BOOKS ONLINE

From the Library of shannon powell

http://www.informit.com/register
http://www.informit.com/register
http://www.informIT.com

REGISTER YOUR PRODUCT at informit.com/register
Access Additional Benefits and SAVE 35% on Your Next Purchase

* Download available product updates.
* Access bonus material when applicable.

* Receive exclusive offers on new editions and related products.
(Just check the box to hear from us when setting up your account.)

* Get a coupon for 35% for your next purchase, valid for 30 days. Your code will
be available in your InformIT cart. (You will also find it in the Manage Codes
section of your account page.)

Registration benefits vary by product. Benefits will be listed on your account page
under Registered Products.

InformIT.com—The Trusted Technology Learning Source
InformlIT is the online home of information technology brands at Pearson, the world's foremost
education company. At InformlIT.com you can

* Shop our books, eBooks, software, and video training.

» Take advantage of our special offers and promotions (informit.com/promotions).

* Sign up for special offers and content newsletters (informit.com/newsletters).

* Read free articles and blogs by information technology experts.

* Access thousands of free chapters and video lessons.

Connect with InformIT—Visit informit.com/community
Learn about InformIT community events and programs.

noB@OmD
informit.com

the trusted technology learning source

Addison-Wesley + Cisco Press « IBM Press + Microsoft Press « Pearson IT Certification « Prentice Hall - Que + Sams » VMware Press

ALWAYS LEARNING PEARSON

From the Library of shannon powell

http://www.informit.com/register
http://www.InformIT.com
http://www.InformIT.com
http://www.informit.com/promotions
http://www.informit.com/newsletters
http://www.informit.com/community
http://www.informIT.com

Developer’s Library

ESSENTIAL REFERENCES FOR
PROGRAMMING PROFESSIONALS

il ~
Fourh Edilian adf) Edilios

-

Programming in

ObJeCtNe-C Programming in C C Primer Plus

Sixth Edition

Programming in Programming in C, C Primer Plus,
Objective-C, Sixth Edition Fourth Edition Sixth Edition

Stephen G. Kochan Stephen G. Kochan Stephen Prata

ISBN-13: 978-0-321-96760-2 ISBN-13: 978-0-321-77641-9 ISBN-13: 978-0-321-92842-9

Other Developer’s Library Titles

TITLE AUTHOR ISBN-13
C++ Primer Plus, Stephen Prata 978-0-321-77640-2
Sixth Edition
Linux Kernel Development, Robert Love 978-0-672-32946-3
Third Edition
Linux Phrasebook, Scott Granneman 978-0-321-83388-4
Second Edition
Linux Shell Scripting with Bash Ken O. Burtch 978-0-672-32642-4

A

vv

Developer’s Library books are available at most retail and online Addison
bookstores. For more information or to order direct, visit our online Wesley
bookstore at informit.com/store Developer’s
Online editions of all Developer’s Library titles are available by Library
subscription from Safari Books Online at safari.informit.com informit.com/devlibrary

From the Library of shannon powell

http://www.informit.com/store
http://www.safari.informit.com
http://www.informit.com/devlibrary

	Cover
	Title Page
	Copyright Page
	About the Authors
	Table of Contents
	Introduction
	How This Book Is Organized
	Accessing the Free Web Edition

	1 A Quick Review of the Basics
	Some Basic Commands
	Displaying the Date and Time: The date Command
	Finding Out Who’s Logged In: The who Command
	Echoing Characters: The echo Command

	Working with Files
	Listing Files: The ls Command
	Displaying the Contents of a File: The cat Command
	Counting the Number of Words in a File: The wc Command
	Command Options
	Making a Copy of a File: The cp Command
	Renaming a File: The mv Command
	Removing a File: The rm Command

	Working with Directories
	The Home Directory and Pathnames
	Displaying Your Working Directory: The pwd Command
	Changing Directories: The cd Command
	More on the ls Command
	Creating a Directory: The mkdir Command
	Copying a File from One Directory to Another
	Moving Files Between Directories
	Linking Files: The ln Command
	Removing a Directory: The rmdir Command

	Filename Substitution
	The Asterisk
	Matching Single Characters

	Filename Nuances
	Spaces in Filenames
	Other Weird Characters

	Standard Input/Output, and I/O Redirection
	Standard Input and Standard Output
	Output Redirection
	Input Redirection

	Pipes
	Filters

	Standard Error
	More on Commands
	Typing More Than One Command on a Line
	Sending a Command to the Background
	The ps Command

	Command Summary

	2 What Is the Shell?
	The Kernel and the Utilities
	The Login Shell
	Typing Commands to the Shell
	The Shell’s Responsibilities
	Program Execution
	Variable and Filename Substitution
	I/O Redirection
	Hooking up a Pipeline
	Environment Control
	Interpreted Programming Language

	3 Tools of the Trade
	Regular Expressions
	Matching Any Character: The Period (.)
	Matching the Beginning of the Line: The Caret (^)
	Matching the End of the Line: The Dollar Sign $
	Matching a Character Set: The [...] Construct
	Matching Zero or More Characters: The Asterisk (*)
	Matching a Precise Number of Subpatterns: \{...\}
	Saving Matched Characters: \(...\)

	cut
	The -d and -f Options

	paste
	The -d Option
	The -s Option

	sed
	The -n Option
	Deleting Lines

	tr
	The -s Option
	The -d Option

	grep
	Regular Expressions and grep
	The -v Option
	The -l Option
	The -n Option

	sort
	The -u Option
	The -r Option
	The -o Option
	The -n Option
	Skipping Fields
	The -t Option
	Other Options

	uniq
	The -d Option
	Other Options

	4 And Away We Go
	Command Files
	Comments

	Variables
	Displaying the Values of Variables
	Undefined Variables Have the Null Value
	Filename Substitution and Variables
	The ${variable} Construct

	Built-in Integer Arithmetic

	5 Can I Quote You on That?
	The Single Quote
	The Double Quote
	The Backslash
	Using the Backslash for Continuing Lines
	The Backslash Inside Double Quotes

	Command Substitution
	The Back Quote
	The $(...) Construct
	The expr Command

	6 Passing Arguments
	The $# Variable
	The $* Variable
	A Program to Look Up Someone in the Phone Book
	A Program to Add Someone to the Phone Book
	A Program to Remove Someone from the Phone Book
	${n}

	The shift Command

	7 Decisions, Decisions
	Exit Status
	The $? Variable

	The test Command
	String Operators
	An Alternative Format for test
	Integer Operators
	File Operators
	The Logical Negation Operator !
	The Logical AND Operator -a
	Parentheses
	The Logical OR Operator -o

	The else Construct
	The exit Command
	A Second Look at the rem Program

	The elif Construct
	Yet Another Version of rem

	The case Command
	Special Pattern-Matching Characters
	The -x Option for Debugging Programs
	Back to the case

	The Null Command :
	The && and || Constructs

	8 'Round and 'Round She Goes
	The for Command
	The $@ Variable
	The for Without the List

	The while Command
	The until Command
	More on Loops
	Breaking Out of a Loop
	Skipping the Remaining Commands in a Loop
	Executing a Loop in the Background
	I/O Redirection on a Loop
	Piping Data into and out of a Loop
	Typing a Loop on One Line

	The getopts Command

	9 Reading and Printing Data
	The read Command
	A Program to Copy Files
	Special echo Escape Characters
	An Improved Version of mycp
	A Final Version of mycp
	A Menu-Driven Phone Program
	The $$ Variable and Temporary Files
	The Exit Status from read

	The printf Command

	10 Your Environment
	Local Variables
	Subshells

	Exported Variables
	export -p

	PS1 and PS2
	HOME
	PATH
	Your Current Directory
	CDPATH

	More on Subshells
	The .Command
	The exec Command
	The (...) and { ...; } Constructs
	Another Way to Pass Variables to a Subshell

	Your .profile File
	The TERM Variable
	The TZ Variable

	11 More on Parameters
	Parameter Substitution
	${parameter}
	${parameter:-value}
	${parameter:=value}
	${parameter:?value}
	${parameter:+value}
	Pattern Matching Constructs
	${#variable}

	The $0 Variable
	The set Command
	The -x Option
	set with No Arguments
	Using set to Reassign Positional Parameters
	The -- Option
	Other Options to set

	The IFS Variable
	The readonly Command
	The unset Command

	12 Loose Ends
	The eval Command
	The wait Command
	The $! Variable

	The trap Command
	trap with No Arguments
	Ignoring Signals
	Resetting Traps

	More on I/O
	<&- and >&-
	In-line Input Redirection
	Shell Archives

	Functions
	Removing a Function Definition
	The return Command

	The type Command

	13 Rolo Revisited
	Data Formatting Considerations
	rolo
	add
	lu
	display
	rem
	change
	listall
	Sample Output

	14 Interactive and Nonstandard Shell Features
	Getting the Right Shell
	The ENV File
	Command-Line Editing
	Command History
	The vi Line Edit Mode
	Accessing Commands from Your History

	The emacs Line Edit Mode
	Accessing Commands from Your History

	Other Ways to Access Your History
	The history Command
	The fc Command
	The r Command

	Functions
	Local Variables
	Automatically Loaded Functions

	Integer Arithmetic
	Integer Types
	Numbers in Different Bases

	The alias Command
	Removing Aliases

	Arrays
	Job Control
	Stopped Jobs and the fg and bg Commands

	Miscellaneous Features
	Other Features of the cd Command
	Tilde Substitution
	Order of Search

	Compatibility Summary

	A: Shell Summary
	Startup
	Commands
	Comments
	Parameters and Variables
	Shell Variables
	Positional Parameters
	Special Parameters
	Parameter Substitution

	Command Re-entry
	The fc Command
	vi Line Edit Mode

	Quoting
	Tilde Substitution
	Arithmetic Expressions

	Filename Substitution
	I/O Redirection
	Exported Variables and Subshell Execution
	The (...) Construct
	The { ...; } Construct
	More on Shell Variables

	Functions
	Job Control
	Shell Jobs
	Stopping Jobs

	Command Summary
	The : Command
	The . Command
	The alias Command
	The bg Command
	The break Command
	The case Command
	The cd Command
	The continue Command
	The echo Command
	The eval Command
	The exec Command
	The exit Command
	The export Command
	The false Command
	The fc Command
	The fg Command
	The for Command
	The getopts Command
	The hash Command
	The if Command
	The jobs Command
	The kill Command
	The newgrp Command
	The pwd Command
	The read Command
	The readonly Command
	The return Command
	The set Command
	The shift Command
	The test Command
	The times Command
	The trap Command
	The true Command
	The type Command
	The umask Command
	The unalias Command
	The unset Command
	The until Command
	The wait Command
	The while Command

	B: For More Information
	Online Documentation
	Documentation on the Web
	Books
	O’Reilly & Associates
	Pearson

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

